T. Kaneko (KEK, SOKENDAI)
for JLQCD Collaboration
seminar @ RIKEN R-CCS, February 17, 2021

principles and history of universe

super-symmetry?

inflation • big ban

Planck scale : O(10 ${ }^{19}$) GeV
new physics
SUSY?, extra-dimension?, ...

Standard particles

electro-weak scale : $\mathrm{O}(100) \mathrm{GeV}$

search for "new physics" beyond SM

intensity frontier for new physics

experiments vs standard model \Rightarrow new physics

standard model

new physics
charged Higgs ? lepto-quark ?
SUPERSYMMETRY

Standard particles

SUSY particles

- Higgs sector \Rightarrow EW symmetry breaking
- grand unification
- ...

Outline

form factors of $B \rightarrow D^{*} \ell_{v}$ decays from lattice QCD

- $B \rightarrow D^{*} \ell v$ decays and form factors
- background: flavor physics, "CKM" element $\left|\mathrm{V}_{c b}\right|$, new physics
- form factors: definition, phenomenology
- JLQCD 's simulation
- simulation setup ... extrapolation to the real world
- for determination of $\left|\mathrm{V}_{c b}\right|$
- recent determinations
- indication of our lattice results

please ask questions any time

1. $B \rightarrow D^{*} \ell v$ decays and form factors

flavor physics and CKM matrix

flavor physics

- processes w/ quark flavor change(s)
- Cabbibo-Kobayashi-Maskawa mechanism
- elements of 3×3 CKM matrix
\Rightarrow strength of flavor changes
\Rightarrow amplitude of processes
missing anti-matter
- a condition : violation of "CP" symmetry C : particle \Leftrightarrow anti-particle; P : parity trans.
- in SM: CKM zned-QG日-Ө-єerm nEDM
- CKM is not sufficient to explain \rightarrow
- other sources (new physics) ???

$B \rightarrow D * \ell v$ semileptonic decay

- mediated by weak interaction $b \rightarrow c W(\rightarrow \ell v) \Rightarrow$ pick up $\left|\mathrm{V}_{c b}\right|$
- W+lepton part : perturbation
- hadronic QCD effects \Rightarrow lattice
- recoil : $\left(v-v^{\prime}\right)^{2}=2+w, w=v v^{\prime}$

$$
\mathcal{M}\left(B \rightarrow D^{*} \ell \nu\right)=V_{c b}\langle\ell \nu| V_{\mu}-A_{\mu}|0\rangle G_{W}\left\langle D^{*}\right| V_{\mu}-A_{\mu}|B\rangle
$$

experiment

- lepton+neutrino+W+hadron parts \Rightarrow determination of $\left|\mathrm{V}_{c b}\right|$
- $\left|\mathrm{V}_{c b}\right|$ from another decay, ratio \Rightarrow search for new physics

experiments

KEKB / Belle @KEK (-2010)

BaBar @ SLAC (-2008)

LHCb @ CERN Run3 2023-

- $e^{+} e^{-} \rightarrow \mathrm{O}\left(10^{9}\right)$ pairs of $B B, B^{+} B^{-}$
- good at semileptonic decays w/v

- upgrade of Belle
- $\times 50$ statastics bay 2031

- "tagged" data
- "untagged" is also possible
promising probe of new physics

$$
R\left(D^{(*)}\right)=\Gamma\left(B \rightarrow D^{(*)} \tau \nu\right) / \Gamma\left(B \rightarrow D^{(*)}\{e, \mu\} v\right)
$$

Belle II: 3σ tension $\Rightarrow 10 \sigma$ evidence !?

determination of CKM element $\left|V_{c b}\right|$ long-standing discrepancy (6-15\%)

to be revolved for precision new physics search

hadronic matrix elements

"relativistic" convention

$$
\begin{aligned}
\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| V^{\mu}|\bar{B}(p)\rangle & =g \epsilon^{\mu \alpha \beta \gamma} \epsilon_{\alpha}^{*} p_{\beta}^{\prime} p_{\gamma}, \\
\left\langle D^{*}\left(p^{\prime}, \epsilon\right)\right| A^{\mu}|\bar{B}(p)\rangle & =f \epsilon^{* \mu}+\left(\epsilon^{*} \cdot p\right)\left[a_{+}\left(p+p^{\prime}\right)^{\mu}+a_{-}\left(p-p^{\prime}\right)^{\mu}\right]
\end{aligned}
$$

"heavy quark" convention $\left(\sqrt{M_{B}}|B\rangle \rightarrow|B\rangle\right)$

$$
\left\langle D^{*}\left(v^{\prime}, \varepsilon^{\prime}\right)\right| V^{\mu}|\bar{B}(v)\rangle=i h_{V}(w) \epsilon^{\mu \nu \alpha \beta} \varepsilon_{\nu}^{\prime *} v_{\alpha}^{\prime} v_{\beta}
$$

$$
\left\langle D^{*}\left(v^{\prime}, \varepsilon^{\prime}\right)\right| A^{\mu}|\bar{B}(v)\rangle=h_{A_{1}}(w)(w+1) \varepsilon^{\prime * \mu}-\left[h_{A_{2}}(w) v^{\mu}+h_{A_{3}}(w) v^{\prime \mu}\right] \varepsilon^{*} \cdot v
$$

- 4 form factors (FFs) $\mathrm{w} / \varepsilon_{D^{*}} p_{D^{*}}=0$
- function of momentum transfer / recoil parameter
- $q^{2}=t=\left(p-p^{\prime}\right)^{2}, q^{2} \leq\left(M_{B^{-}} M_{D^{*}}\right)^{2}=q^{2}{ }_{\text {max }}=t_{-} \quad\left(\mathbf{p}=\mathbf{p}^{\prime}=\mathbf{0}\right)$
- $v=p / M_{B^{\prime}} \quad w=v v^{\prime}=\left(M_{B}^{2}+M_{D^{*}}{ }^{2}-q^{2}\right) / 2 M_{B^{*}} M_{D^{* \prime}} \quad 1 \leq w$

"form" factors (FFs)

Lorentz invariant function of Lorentz invariant variable describing MEs

$c f$. pion electro-magnetic form factor

- form factor of $\pi \rightarrow \pi \gamma$
- shape w.r.t charge distribution probed by γ
- point-like particle $\Rightarrow t$-indep. constant
- slope = charge radius

$B \rightarrow D^{*} \ell v$ form factors
- shape of B probed by W boson
- shape of QCD bound state \Rightarrow essentially non-perturbative

how can we describe FFs analytically?

recoil parameter dependence

small parameter expansions

zero recoil expansion in $(w-1)$

- heavy quark convention, near $w=1$, interpolation

z-parameter expansion

- map semileptonic region to short segment
- factor out singularity due to resonances

$$
\begin{aligned}
& z=\frac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}} \\
& F(t)=\frac{1}{P(t) \phi\left(t ; t_{0}\right)} \sum_{n=0}^{\infty} a_{n} z\left(t ; t_{0}\right)^{n} P(t)=t-M_{\text {resp }}^{2} \\
& \text { - model-independent } \Rightarrow \text { phenomenology }
\end{aligned}
$$

quark mass dependences

heavy quark effective theory (HQET)

- based on heavy quark symmetry w.r.t heavy hadron's flavor and spin
- FFs: $1 / m_{Q}{ }^{n}$ expansion around the $m_{Q}=\infty$ limit
- NLO is known but with a set of unknown parameters (Isgur-Wise func.)
- unknown higher order corrections MAY be small for FF rarios h_{X} / h_{Y}

chiral perturbation theory (ChPT)

- based on spontaneous breaking of chiral symmetry w.r.t. light flavors
- non-analytic correction "chiral logarithm" $\ln \left[M_{\pi}^{2} / \mu^{2}\right]$
- NLO but with a set of unknown parameters (LECs)
- heavy quark symmetry \Rightarrow suppressed by $D^{*}-D$ mass splitting

w/ unknown param.s but useful in LQCD

2. JLQCD collabortion's study

lattice QCD

numerical and first-principles calculation

JLQCD's simulation of QCD (1)

preserving chiral symmetry

chiral symmetry

- spontaneous breaking:
characterize low-energy dynamics \Leftrightarrow Wilson types : explicitly violated \Leftrightarrow staggered types : partly, tocality for heavy quark physics
- forbid leading discretization error
- simplified renormalization
- lattice : removed ∞^{\prime} 's
- lattice \Leftrightarrow MS ${ }^{\text {bar }}$: finite correction

- ChPT to describe m_{q} dependence
computationally demanding \Rightarrow speed up $\times 20$

JLQCD's simulation of QCD (2)

relativistic QCD

relativistic QCD

- QCD as it is
- lattice fine enough for m_{b} ?
- Compton wavelength $1 / m_{b}$
- discretization error as $O\left(\left(a m_{b}\right)^{n}\right)$

\Rightarrow unphysically small $m_{b}+$ extrapolation to $m_{b, \text { phys }}$
effective theory (ET) approach
- NRQCD / HQET action for heavy quarks
- can simulate $m_{b, \text { phys }}$
- need matching : parameter tuning of ET to reproduce QCD
independent calculations w/ different systematics

previous and on-going studies only limited number of studies

published studies

- Fermilab / MILC '14 staggered light quarks + ET-based heavy quarks
- HPQCD '17 staggered light quarks + relativistic heavy quarks
- only $h_{A 1} @ w=1 \Leftrightarrow$ four FFs $h_{A 1^{\prime}} h_{A 2^{\prime}} h_{A 3^{\prime}} h_{V}$

need to calculate all FFs

on-going studies

- Fermilab / MILC
- JLQCD
staggered light quarks + ET-based heavy quarks
chiral light quarks + reltativistic heavy quarks
- calculating all FFs w/ very different systematics

gauge ensembles

clean simulation w/ chiral symmetry

simulation parameters

- $N_{f}=2+1$
- $a^{-1} \sim 2.5,3.6,4.5 \mathrm{GeV}$
- M_{π} ~ 230, 300, 400, 500 MeV
-5,000 HMC traj. for each
- $M_{\pi} L \geq 4$

similar parameter regions w/ chiral symmetry

measurements

relativistic approach for hadron correlators

chiral fermion action also for heavy quarks

- $m_{b}=\left\{1.00,1.25,1.25^{2}, \ldots\right\} \times m_{c}$
- $m_{b} \leq 0.7 a^{-1}$
- extrapolation to $m_{b, \text { phys }}$ \Leftrightarrow no $O\left(a m_{b}\right)$ error small $O\left(\left(a m_{b}\right)^{2}\right)$ error
\Leftrightarrow discretization effects
suppressed to a few \% level

extrapolation is controllable

ratio method (Hashimoto et al. '99)

can calculate SM FFs w/o explicit renormalization

$$
\left\{h_{A_{2}}(w), h_{A_{3}}(w), h_{V}(w)\right\} / h_{A_{1}}(w), \quad h_{A_{1}}(w) / h_{A_{1}}(1), \quad h_{A_{1}}(1) / \sqrt{F_{B}^{\mathrm{EM}}(1) F_{D^{*}}^{\mathrm{EM}}(1)}
$$

ground state contribution

$$
\left\langle D^{*}\right| A_{1}|B\rangle\langle B| A_{1}\left|D^{*}\right\rangle /\left\langle D^{*}\right| V_{4}\left|D^{*}\right\rangle\langle B| V_{4}|B\rangle \quad \rightarrow \quad h_{A 1}(1)
$$

4 values of total separation $\Delta t+\Delta t^{\prime}$

$$
\left.\left|\left\langle D^{*}\right| A\right| B\right\rangle\left.\right|^{2}
$$

$$
\times\left\{1+c e^{-\Delta E_{B} \Delta t}+c^{\prime} e^{-\Delta E_{D^{*}} \Delta t^{\prime}}\right\}
$$

multiple $\left(\Delta t+\Delta t^{\prime}\right)$'s \Rightarrow excited state contamination good statistical accuracy

extrapolation to the real world

NLO HMChPT (Randall-Wise '92, Savage '01)

- non-analytic log term (but small) $\quad \xi_{\pi}=\frac{M_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}, \quad \xi_{n s}=\frac{M_{n s}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}$ - polynomial in light quark masses
$h_{A 1}(w)=c\left(m_{c}\right)+\frac{g_{D^{*} D \pi}^{2}}{16 \pi^{2} f_{\pi}^{2}} \Delta_{c}^{2} b_{\log } \bar{F}_{\log }\left(M_{\pi}, \Delta_{c}, \Lambda_{\chi}\right)+c_{\pi} \xi_{\pi}+c_{\eta s} \xi_{\eta s}$

$$
+c_{w}(w-1)+d_{w}(w-1)^{2}+c_{b} \varepsilon_{b}+c_{a} \xi_{a}+c_{a m_{b}} \xi_{a m b}
$$

0 recoil expansion - interpolation w/ quad.

HQET
\cdot in $\varepsilon_{b}=\frac{\bar{\Lambda}}{2 m_{b}}$
discretization effects

- in $\xi_{a}=\left(a \Lambda_{\mathrm{QCD}}\right)^{2}, \xi_{a}=\left(a m_{b}\right)^{2}$
- systematic error of this form : adding higher order / remove terms
- large covariance matrix, input $g_{D^{*} D \pi}, \ldots$
analysis is being finalized \Rightarrow preliminary results in this talk

$B \rightarrow D \ell v$ form factors

h_{+}VS w
h V w

- mildly depend on $a_{,} M_{\pi}, m_{s}, m_{b} \Rightarrow \geq 50 \%$ error except $c, c_{w^{\prime}} c_{b}\left(h_{+}\right)$
\Rightarrow consistent w/ world average (FLAG4 '19) within 2σ
- $h_{+}: \sim 1 \%$ stat $/ 1 \%$ systematic errors @ $a=0, m_{q, \text { phys }}$

$B \rightarrow D * \ell v$ form factors

- mild $a_{1} M_{\pi^{\prime}} m_{s^{\prime}} m_{b}$ dependence
- only $h_{A 1}(1)$ from previous studies [consistent]
- $h_{A 1}, h_{V} \sim 1-2 \%$ stat / $3-6 \%$ systematic $(a \neq 0)$

$B \rightarrow D * \ell v$ form factors

- $h_{A 2}, h_{A 3} \sim 20 \%$ stat. / sys. errors $\Leftrightarrow \Delta[d \Gamma / d w] \sim$ Belle

$$
\left\langle D^{*}\left(p^{\prime}, \varepsilon^{\prime}\right)\right| A_{\mu}|B(p)\rangle \Rightarrow\left\{h_{A_{1}}(w), h_{A_{2}}(w), h_{A_{3}}(w)\right\}
$$

3. determination of $\left|\mathbf{V}_{c b}\right|$

$\boldsymbol{B} \rightarrow \boldsymbol{D} * \ell v$ differential decay rate

$B \rightarrow D^{*}\{e, \mu\} v$ in the limit $m_{l}^{2}=0$

QCD : non-perturbative

- described by $h_{A 1}, \quad R_{1}=\frac{h_{V}}{h_{A 1}}, \quad R_{2}=\frac{r h_{A 2}+h_{A 3}}{h_{A 1}}$ (functions of w)
$\left|\mathrm{V}_{c b}\right|$: a relative normalization by comparing exp. and th.

conventional determination of $\left|\mathbf{V}_{c b}\right|$

$$
\frac{d \Gamma}{d w} \propto\left|V_{c b}\right|^{2}\left[2 \frac{1-2 w r+r^{2}}{(1-r)^{2}}\left\{1+\frac{w-1}{w+1} R_{1}(w)\right\}+\left\{1+\frac{w-1}{1-r}\left(1-R_{2}(w)\right)\right\}^{2}\right] h_{A 1}(w)^{2}
$$

- no published results for FFs except $h_{A 1}(1)$!!
(1) assume a parametrization of FFs as a function of w
(2) fix $\left|\mathrm{V}_{c b}\right|$ and unknown parameters by the fit to exp. and th. data
\Rightarrow estimate FFs from experimental data !!

Boyd-Grinstein-Lebed (BGL) parametrization '97

- model-independent z expansion based on analyticity
- many parameters ... can not be determined by previous exp. data

$$
g(z)=\frac{1}{P_{1^{-}}(z) \phi_{g}(z)} \sum_{n=0}^{\infty} a_{n}^{g} z^{n} \quad f(z)=\frac{1}{P_{1+}(z) \phi_{f}(z)} \sum_{n=0}^{\infty} a_{n}^{f} z^{n} \quad \mathcal{F}_{1}(z)=\ldots
$$

conventional determination of $\left|\mathbf{V}_{c b}\right|$

$\frac{d \Gamma}{d w} \propto\left|V_{c b}\right|^{2}\left[2 \frac{1-2 w r+r^{2}}{(1-r)^{2}}\left\{1+\frac{w-1}{w+1} R_{1}(w)\right\}+\left\{1+\frac{w-1}{1-r}\left(1-R_{2}(w)\right)\right\}^{2}\right] h_{A 1}(w)^{2}$

Caprini-Lellouch-Neubert (CLN) parametrization '97

- BGL + NLO HQET constraints \Rightarrow (too much?) less parameters
- HQET for $h_{A 1}(\mathrm{w}) / h_{A 1}(1), R_{1}, R_{2}$ expecting small correction to FF ratios

$$
\begin{aligned}
h_{A_{1}}(w) & =\underbrace{h_{A_{1}}(1)\left(1-8 \rho_{D^{*}}^{2} z+\left(53 \rho_{D^{*}}^{2}-15\right) z^{2}-\left(231 \rho_{D^{*}}^{2}-91\right) z^{3}\right)}_{\text {fit parameters }} \\
& \\
R_{1}(w)= & R_{1}(1)-0.12(w-1)+0.05(w-1)^{2} \\
R_{2}(w) & =R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}
\end{aligned}
$$

determinations w/ Belle data

Belle '17 and '18 (near full statistics)

- full kinematical distribution (q^{2} and $3 \theta^{\prime} \mathrm{s}$)
- '17: tagged (less miss-identification of v)
- '18: untagged (more statistics)
conventional CLN analysis w/ tagged data

"model-independent" BGL analyses w/ tagged data
- Bigi - Gambino - Schacht '17: $\left|\mathrm{V}_{c b}\right| \times 10^{3}=41.7(+2.0 /-2.2)$
- Grinstein - Kobach '17: $\quad\left|\mathrm{V}_{c b}\right| \times 10^{3}=41.9(+2.0 /-1.9)$
- consistent w/ inclusive determination 42.0 (0.5)

HQET constraints for CLN are source of the $\left|\mathrm{V}_{c b}\right|$ tension?

determinations w/ Belle data

it is plausible that a tension is resolved by removing phenomenological assumptions
form factors should be predicted from QCD
the CLN and BGL analyses gave inconsistent results for

$$
h_{A 1}(\mathrm{w}) / h_{A 1}(1), R_{1}
$$

\Rightarrow let us compare w/ our lattice results from first-principles

FF ratio $\boldsymbol{R}_{\mathbf{2}}$

no big difference among CLN, BGL, HQET...

JLQCD
nicely consistent w/ phenomenological analyses
reduced stat.+sys. error in the ratio

- good consistency among BGL / CLN / HQET / LQCD

FF shape of $\boldsymbol{h}_{\boldsymbol{A 1}}(\boldsymbol{w})$

- '17: tension b/w CLN and BGL
- recent Belle tagged / untagged data : consistent CLN analyses
- our lattice estimate : $1^{\text {st }}$ principles th. prediction, favor CLN

FF ratio $\boldsymbol{R}_{\mathbf{1}}$

- systematic uncertainty of BGL analyses was underestimated
- LQCD could be helpful to stabilize "model-independent" BGL fit

normalization $\boldsymbol{h}_{\boldsymbol{A 1}}(\mathbf{1})$

HQET expansion

$$
\begin{aligned}
& \varepsilon_{b}=\bar{\Lambda} / M_{\eta_{b}} \\
& \bar{\Lambda}=0.5 \mathrm{GeV}
\end{aligned}
$$

largest but 1-3\% uncertainty from discretization

- $c_{a} a^{2}+c_{a m b}\left(a m_{b}\right)^{2}$
- $c_{\text {amb }}\left(a m_{b}\right)^{2}$
- $c_{a} a^{2}$
give good χ^{2} s
- closer to QCDSR $\Rightarrow\left|\mathrm{V}_{c b}\right| \times 10^{3}=38.4-\left.41.1\right|_{ \pm 1 \sigma} \Leftrightarrow 42.2(0.8) \mathrm{incl}$
- consistent both with previous exclusive and inclusive @ w=1

towards resolution of $\left|\mathrm{V}_{c b}\right|$ tension collaboration w/ Belle using data in full w region

in full w region

lattice data not only $w=1$ but $w \neq 1$
\Rightarrow stable fit even w/ model-independent BGL

Ferlewicz et al., '20
 in progress

with Fugaku and Belle II

- physics run $2019-2031 \Rightarrow$ x 50 more data
- $B \rightarrow D^{(*)} \mathcal{V}$: slight improvement by good control of systematics
[systematics cancel in the ratio $B \rightarrow D^{(*)} \tau v / B \rightarrow D^{(*)}\{e, \mu\}$]
$-B \rightarrow \pi \ell v: \quad$ big improvement in next 5 years
- expect progress for $\left|\mathrm{V}_{c b}\right|$ tension, but how about $\left|\mathrm{V}_{u b}\right|$???
$B \rightarrow \pi \ell v$ to resolve $\left|\mathrm{V}_{u b}\right|$ tension / new physics search

current status

e.g. differential branching fraction

Program for Promoting Researches : 10\% in a few years

Summary

$B \rightarrow D^{*} \ell v$ decays in relativistic lattice QCD

- promising probe of new physics, but a tension in $\left|\mathrm{V}_{c b}\right|$
- all form factors @ zero and non-zero recoils
- relativistic lattice QCD w/ chiral symmetry : O(a), NPR
- indication to $\left|\mathrm{V}_{c b}\right|$ determination
- CLN w/ HQET can reasonably describe FF ratios
- LQCD would be helpful to obtain a stable BGL analysis
- on-going analysis
- collaborative analysis with Belle
- BSM form factors for new physics search (need NPR)

