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Introduction to lattice QCD

Quantum ChromoDynamics (QCD): Theory of strong interaction which governs interaction

between quarks and gluons.

In contrast to Quantum Electrodynamics (QED), The effective coupling of QCD decreases in

high energy, hence is calculable by hand, but not in low energy. — Nonperturbative techniques

such as lattice QCD is needed for ab initio calculations.
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Current "typical” calculation: V = 643 x 128, rank(D) ~ 101°, nonzero element per row
=~ 102
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Configuration generation, measurements

(Hybrid — Hamiltonian) Monte Carlo first devsied for LQCD (Duane,Kennedy,Pendleton/Gottlieb, Toussaint, ....)
Importance sampling using exp(—(S = (S5g + S¢))) as the probability distribution, requires S¢
to be real & nonnegative. Introduce fictitious momenta H to evaluate the path integral.

Sf = det([p + m) is evaluated by Pseudofermions.

Numerical integrators does not preserve h = (3H? + S)
exactly. Calculate h at each end of trajectory and accept
or reject according to max[1, exp[—(h — h)]. This process
achieves w(U) o< exp(—S) if reversible and w(U;)P(Us —
Up) = m(U2)P(Uz — Ui) (detailed balance).
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Different Hamiltonians used in Monte Carlo simulations:

S1: Guiding Hamiltonian during MD (Shadow Hamiltonian)

Sy: Hamiltonian for Accept/reject step

S3: Hamiltonian for ensemble averaging

Reweighting: (S3 — S2) # 0. In principle, S51.52, S3 don't have to be the same, but it is hard to
find S 3 which the acceptance/reweighting factor e~ A5 is close enough to 1 while gives
significant benefit (Overlap problem). Many ML based approaches aim to find S» which is
numerically cheap with tolerable AS.
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LQCD workflow and characteristics

@ Configuration generation: generate U; according to exp(—S) evaluation of det ([2 + m)
requires inversion of spase matrix M, a discretized version of ([2 + m) for evolving gauge
configurations.

@ Measurements: often requires multiple inversions, but on the same gauge configurations
— allows for effective use of algorithms and techniques for multiple RHS

M from typical LGT simulations exhibits a separation of scales:
o Larger eigenvalues (> mg): Dense. Usually straight inversion.

e Small eigenvalue (~< ms): relatively small, slowly evolving in MD , affects the condition
number , can be separated by deflation, Low-mode/All-mode averaging (LMA/AMA),
multi-timescale integration algorithm, etc...
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RBC/UKQCD Domain Wall Fermion program

RBC/UKQCD has chosen DWF discretization of Dirac operators, which realizes 4d fermion as
boundary modes of 5d fermion.

e Good chrial symmetry: Remnant symmetry breaking (residual mass) can be controlled
separately from lattice spacing by increasing the extent of the 5th dimension (Ls) and the
coupling between 4d slices ((z)Mobius, Mébius Accelerated DWF (MADWF)..)

@ Protected zero mode: In contrast to Wilson fermions where the discretized Dirac operator
can have poles near the valence mass (exceptional configurations), DWF formalism
guarantees safety as long as valence mass is positive. Allowing simulation at physical
point for moderate lattice spacing without the need for chrial extrapolation or link
smearing for fermions, etc. — Focus on physical point. Avoid relying on ChPT.

e Focus on generating one longest possible Markov chain (vs. 'farming’) : While evolving
multiple chain can give practical advantages, this needs additional thermalization and
potentially obscures autocorrelation, ergodicity issues.
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RBC/UKQCD 2+1f ensembles
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RBC/UKQCD 2+1f DWF/Mobius ensembles

RBC/UKQCD 2+1f DWF/Mobius ensembles (near physical)
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@ Performance optimization and algorithmic advances has brought computaitional cost for
finer(smaller a) and lighter (near physical m;) per trajectory somewhat manageable,
despite challenges from computing environement (severe inter-node bandwidth decrease
compared to compute capabilities)

o Mass preconditioning (Hasenbusch), N-th root trick: decrease the condition number and
force for each pseudofermions, which allows to use larger step size and reduce the number of
light quark inversions per each trajectory.

1/N‘| N

e Exact One flavor algorithm (T.W. Chiu, D. Murphy,..): Especially useful on GPU, as it
significantly reduces the memory traffic. ~ 40% reduction in time per MD.
o Multisplitting preconditioned CG (J. Tu): Utilizes Tensor core. ~ 10 — 20% gain over CG

’D(mf)
D)

’D(mf)
D)

‘ D(m¢)
D(my-1)

‘D(ml)
D)

’D("’Z)
D(m)

@ Various deflation techniques, mostly built on efficient generation of exact eigenvectors
(All-to-All (A2A), All mode averaging (AMA)), achieves significant reduction in numerical
cost for generation of necessary propagators ( Disconnected HVP, etc....)
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OLCF SUmmit (https://www.olcf.ornl.gov/summit/)

(6 Nvidia V100 2 Power9 CPU, 512GB DDR4 + 96GB HBM2 ) x 4608 nodes
Infiniband EDR

241 flavor physical , 963 x 192 x 12, a=1 ~2.77Gev, L ~ 6.8fm
16 x 123 x 12 on (1 x 8 x 8 x 16 = 1024) ndoes x 6 GPUs
Software: CPS(https://github.com/RBC-UKQCD/CPS),
QUDA(https://github.com/lattice/quda), Grid (https://github.com/paboyle/Grid),
GPT(https://github.com/lehner/gpt)

@ Tuning with (currently 7) Hasenbusch masses, Force Gradient...

o Started from a thermalized 323 x 64 lattice duplicated in all directions

e QUDA inverter (CG+Multimass) interface (re)checked against CPS/BFM. Exact One
Flavor Algorithm(EOFA) added.

@ Previously only had interface to asymmetric preconditioner. Symmetric added for
Multisplitting-preconditioned CG (MSPCG: arXiv:1804.08593).
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QUDA Mobius inverter performance on Summit at the INCITE submission
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ExaCt One—ﬂavor(EOFA) TWQCD, D. Murphy, J. Tu,et al. arXiv:1403.1683, 1611.00298, 1706.05843

DMob(m) = (DW)XX’ [(C + d)555/ + (C - d)Lss’] + (sxx’(l - L)ss’ = Deora - b (1)
c+d (c=d)P- —m(c —d)P;+
(c—d)P+ c+d (c—d)P-
D=d(1-L)+c(1+L)= (c —d)Py c+d
—m(c —d)P— . . (cfd-)PJr c+d

DEOFA(m) = (DW)xx/(sss/ + 6xx’(P+M+)ss’ + 6xx’('D— M_ )ss’v HEOFA(m) = 75R5DEOFA(m)7

1 flavor Mobius fermion action with PV (det ‘M ) can be simulated by

Deorpa(mo)
S = (0 th) [I_ ks HT(lml)Qi] ( ‘7?1 )+
(¢>Z 0) [H_kQI HT(m2)*A1+(m17m2)P+ QJ ( %2 )7 )
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Advantages:
Allow mixed precision, etc to reduce time on inversion
Less memory footprint: improve overall arithmetic intensity, especially significant on GPUs

Eq. (1) suggests D can be used as a preconditioner, to allow using DI\?I%)B instead of DEéFA
with dense 5D matrix.
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Factor of ~ 4 savings overall for 323 x 64 G-parity ensemble (32ID-G).
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Multisplitting-preconditiond Conjugate Gradient(MSPCG) arxiv:1811.08488

Additive Schwarz 'done right' for Mobius CGNE (DTD¢ = Dty).
Fixed iteration preconditioner per outer iteration.
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The preconditioner inversion P~! does not need to be solved to
arbitrarily high precision for the algorithm to work.
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from J. Tu, arXiv:1811.08488
Up to factor of 3 reduction in outer iteration.
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@ QUDA Dslash rewrite (K. Clark,..),
@ 5D part fused to achieve better overlap with communication (J. Tu) + Tensor core for 5D

part
Time in CG <10% 25-35% > 60%
64 x 128 x 12 Double  Half  Precon | min/traj.
(4x)4% x 8 = 128 160 570 3230 86
(4x)4? x 16 = 256 260 861 6230 53

(4x)4 x 8 x 16 =512 | 360 1165 11630 36
963 x 192 x 12
(6x)4? x 16 = 256 420 1340 9400
(6x)4 x 8 = 512 770 2300 18810 79
(6x)8% x 16 = 1024 | 1140 3700 36300 47

Table 1: Aggregate QUDA Mobius performance on summit, in TFLOPS/s
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96l evolution on Summit
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While Multimass solver does not take
much time, fermion force term calcula-
tion becomes time consuming. Arith-
metic intensity low (no smearing).
EOFA with the Cayley preconditioner
allows effective use of mixed preci-
sion solvers, efficient mass precondi-
tioning, and reduce the number of
pseudofermions significantly.
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2+1f Force distribution(Fdt,Linf)
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Eigenvector generation & deflation

Eigenvalues CG residuals
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From coarse grid Lanczos(arXiv:1710.06884) implemented in Grid. Factor of ~1000 reduction
in condition number turning to ~ 30 reduction in iteration count for each inversion. Coarse
grid also reduces memory footprint by a factor of x ~ 30 over normal eigenvectors.
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o All mode averaging (AMA):

<O(imp)> _ </\} (@ _ @(appx))> n </\} 3 @<appx),g> Ne < Ne

E GgGG

O(@PPx) - O with "sloppy’ propagators, often much relaxed stopping condition with
deflation

o All-to-all(A2A): A2A approximates an arbitrary component of the M~! as a sum of the
outer product of pre-calculated vectors
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Pion, Kaon effective masses on 961 ensemble (preliminary)
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(((48sloppy + 8exact) x 12) light+strange) inversion per configuration
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Wilson flow scale on 96l ensemble
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Global topology on 961 ensemble
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autocorrelation ~ 50MD
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Discussion & future plans

@ 963 x 192 DWF+Iwasaki ensemble (961) will provide RBC/UKQCD with the physical
mass at 3rd lattice spacing.

@ Current lattice spacing was chosen to achieve reasonable topology tunneling. Going
further requires a significant increase in the computing resource required to generate
similar number of independent configurations (cost) ~ a~—1% (Critical slowing down).

o DWF ensemble generation on new and upcoming machines are likely to continue to be
limited by the memory and internode bandwidth. While EOFA and MSPCG has helped
mitigating these issues, evolution is more vulnerable compared to measurements, where
various techniques (exact deflation, AMA, A2A, Split Grid...) are already devloped to
mitigate, if not overcome, bandwidth issues.

@ Algorithmic improvements for reducing autocorrelation time and numerical cost for
evolution are critical.
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Thank you!
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Local coherence: Eigenvector compression and Multi-Grid Lanczos

LQCD operator has relatively low number of near-nullspace,
which allows for efficient deflation via multigrid or exact defla-
tion with Chebyshef-accelerated Lanczos. 1-2000 low modes can
result in factor of 10-100 reduction in subsequent measurements.
Storing and retrieving these eigenvectors pose a signifiant

challenge for exact deflation approach.
Deflated CG resndual from Mu|t| Gnd Lanczos

1 ’ 1e+00 T
Local coherence ('smoothness’) of the low modes suggests the
bases formed from spatially blocked eigevectors effectively spans Te-02 -i‘
eigenspace just above already generated ones — necessary to 1o-04 |- \
only save coefficients. (https://github.com/lehner/eigen-comp) roos | ]
483x96 — 43x3, 2000 evecs : 9.3 — 1.5 TB (84% compression) te08 - ]
643 x 128 — 4*, 2000 evecs : 36 — 3.5 TB (90% compression) 1e-10 |-
963 x 192 — 4*, 5000 evecs : 500 — 15 TB (97% compression) oz | Dofited with bagis UrgEeted ]
Multi-Grid Lanczos(arXiv:1710.06884): - Dg"”"”°°ﬂ’399"d(;'”°/5"‘°°{[}eg e'ge"va:‘g‘es

efl. on coarse grid w/ smoothe elgenvaues .

Using the same blocking procedure to generate eigenvectors re- e 00 400 600 800 1000 1200 1400 1600 1800 2000

duces memory usage significantly. Allows more efficient eigen-
vector generation
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Split Grid/Domain

Most time consuming LQCD operations has flops/byte ~ 1, L =
10 - 20 — Maximum performance per node is often limited by
internode bandwidth.

Most available " communication avoiding” algorithms focus more
on minimizing number of global operation or overhead from them,
rather than minimizing the amount of communication.

For some applications, there are multiple, duplicate routines
needed (Dirac operator inversion on multiple sources, etc).
Within single binary, switch between 1 domain (MPI/QMP Com-
municator) and multiple small domains — improve the sur-
face/volume.

Split CG: Inversion on multiple sources done on split grid.

~4X gain on 256-node Cori at NERSC. o
~2X gain on 16-split Summit at ORNL.

Eigenvector generation (Y. Jang, C. Jung): Lanczos with block

size 8 converge with a similar numerical cost as IRL (Lehoucq

and Sorensen). Split domain implementation in Grid done. ” m
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(Nw = 8, Ny = 1024, N, = 320, 24% x 64 x 12)
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