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What machine and condensed matter physicist do
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Lagrangian
Physical observables

Analytical 
calculations
Numerical 
calculations

Lagrangian

Physical observables

Machine

me

condensed matter physicist and machine 
might not understand the Lagrangian… 



Today’s talk
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Self learning Monte Carlo method

High-speed method with making an effective Hamiltonian/Lagrangian

configuration Boltzmann weightheavy numerical 
calculation

Effective modelconfiguration Boltzmann weight

Spin systems strongly correlated 
electron systems

atomic/molecular 
systems Lattice QCD

Exact method: physical observables 
are statistically exact 



Outline

Machine learning and physics 

Self learning Monte Carlo method 

Examples in condensed matters 

Self learning Monte Carlo method for lattice QCD simulations 

Summary
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Machine learning and physics
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What is this?
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Basile Morin / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

This is a cat

You saw many cats so you know this is a cat



What is this?
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https://ja-jp.facebook.com/9GAGCute/photos/saiga-antelope-a-priority-species-for-conservationthe-break-up-of-the-former-uss/816439751883761/

You did not learn this, yet.

This is a saiga antelope
a critically endangered antelop

https://en.wikipedia.org/wiki/Critically_endangered
https://en.wikipedia.org/wiki/Antelope


What is a machine-learning?
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Cats and others

cat?
yes or no

function  
f(x)

x

y

cat!

Using many input data x, 
f(x)=y is obtained

Training 
process

Self learning Monte Carlo method

Boltzmann 
weight

Simulate with 
use of this

Configuration



What is a machine-learning?
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Supervised learning

Simplest case y = ax+ b Linear regression

cat!

Multi inputs→vector x
y = Wx+ b

y

x
W

Not enough?
y = W2 f(W1x+ b1)+b
y = W3f(W2 f(W1x+ b1)+b2)+b

：

…

Deep learning

Neural networks

f:non linear func.

Using many input data x and output data y, a function f(x)=y is obtained



Applications to physics
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Detecting phase transitions
Phase transition in the Ising model

A.Tanaka and Y. Tomita, J. Phys. Soc. Jpn. 86, 
063001 (2017) 

phase detection in the quantum system with the Fermion sign-problem
P. Broecker et al. Scientific Reports 7 8823 (2017) 
volume 
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Analysis of the equal-time Green’s function
Analysis of spin distribution

Honeycomb Hubbard model 

Many papers => image recognitions



Application to physics
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Image recognition：Detection of the phase transition etc.

Other approach?
Nature is too complicated
Build a simplest model and analyze it
Example: Throwing a ball. Where does the ball fall?

Neglecting a wind -> Not so bad

Done is better than perfect

Self-learning Monte Carlo method：A Machine builds a model
Build a model describing phenomenaWhat physicists did：



Self learning Monte Carlo method
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Purpose
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To speed up the Markov Chain Monte Carlo (MCMC) simulations
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π(x)
multi-dimensional integrals

Regarding π(x) as a probability 
distribution function,

 Numerical approximations of multi-dimensional integrals

Bayesian statistics, computational physics, quantum chemistry, 
and computational biology, etc. 

To use machine learning techniques in Monte Calro method
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MCMC in physics

Partition function

For example: Classical spin systems
Excepted value for A

i: spin configuration

wi = exp(-βEi) as a probability distribution →Monte Carlo simulation

x1=(1,-1,1,1) x2=(1,-1,-1,1) x3=(1,-1,-1,-1)

w(x1) w(x2) w(x3)



17

Details of MCMC
∫ dx1⋯dxNW(x1, ⋯, xN)f(x1, ⋯, xN) ∼ ∑

C

f(C)

W(C)is randomly generated with the probabilityC = (x1, ⋯, xN)

How to generate W(C) We use Markov chain that has a desired 
distribution as its equilibrium distribution 

W(CA) W(CB)

P(CA |CB)

P(CB |CA)

P(CA |CB)W(CB) = P(CB |CA)W(CA)
Detailed balance condition

C1 C2 CnC3 …C4

We can design P(CA|CB)
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Details of MCMC

W(CA) W(CB)

P(CA |CB)

P(CB |CA)

P(CA |CB)W(CB) = P(CB |CA)W(CA)
Detailed balance condition

C1 C2 CnC3 …C4

We can design P(CA|CB) Metropolis-Hastings algorithm
P(CB |CA) = g(CB |CA)A(CB, CA)

g(CB|CA):Proposal probability

A(CB,CA):Acceptance probability

A(CB, CA)
A(CA, CB)

=
W(CB)
W(CA)

g(CA |CB)
g(CB |CA)

A(CB, CA) = min (1,
W(CB)
W(CA)

g(CA |CB)
g(CB |CA) )

Acceptance ratio from CA to CB

This acceptance ratio should be high!
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How to improve MCMC?
We have to choose CB with 

high acceptance ratio A(CB,CA)

Solution 1: Local updates
If CB is similar to CA, W(CB) might be similar to W(CA)

CA=(1,-1,1,1) CB=(1,-1,-1,1)

W(CA) W(CB)
One randomly chooses a single site and proposes 
a new configuration by changing the variable on 
this site
Good: general
Bad: difference between CA and CB is small

 Long autocorrelation timeSolution 2: Global updates
We choose CB with the use of knowledge of a system

CA=(1,-1,1,1) CB=(-1,1,-1,-1)

W(CA) W(CB)

Swendsen-Wang, Wolff, worm, etc.

Variables on an extensive number of sites 
are simultaneously changed in a single MC 
update
Good: difference between CA and CB is not small
Bad: it is hard to find it

Acceptance ratio from CA to CB

A(CB, CA) = min (1,
W(CB)
W(CA)

g(CA |CB)
g(CB |CA) )



Self-learning MC
A(CB, CA) = min (1,

W(CB)
W(CA)

g(CA |CB)
g(CB |CA) )

Acceptance ratio from CA to CB

We have to choose CB with 
high acceptance ratio A(CB,CA)

Solution 3: Self-learning updates
g(CA |CB)
g(CB |CA)

= 1
Usually, ratio of the proposal probability is one

we can change this!

Another Markov chain with the probability W’(C)

CA C2 CBC3 …C4

P′ (CA |CB)W′ (CB) = P′ (CB |CA)W′ (CA)
Detailed balance condition

P’(CB|CA): probability from CA to CB 

This Markov chain proposes CB from CA!

P’(CB|CA)=g(CB|CA)

g(CA |CB)
g(CB |CA)

= ( W′ (CB)
W′ (CA) )

−1 If W’(C)=W(C), 

the acceptance ratio is one!
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Concept of SLMC
A(CB, CA) = min (1,

W(CB)
W(CA)

g(CA |CB)
g(CB |CA) )C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA C2 CBC3 …C4

Another Markov chain with the probability W’(C)

To propose CB from CA
A(CB, CA) = min (1,

W(CB)
W(CA)

W′ (CA)
W′ (CB) )

If W’(C)=W(C), 

the acceptance ratio is one!

If the computational cost of the proposal Markov chain is small, we 
can speed up the simulation

How to construct the Markov chain with W’(C)?
->Machine learning technique!

W(C) = exp(-βH(C)) -> W’(C) = exp(-βHeff(C))  We construct the effective Hamiltonian
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SLMC and HMC

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA C2 CBC3 …C4

Another Markov chain with the probability W’(C)

To propose CB from CA

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA CB

Molecular dynamics

To propose CB from CA

SLMC Hybrid Monte Carlo Method

These two are exact!



Examples in condensed matters
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Classical spin system
Hamiltonian: classical model on a two-dimensional square lattice

Original model Effective model

J

K

J1

J2

~

~

Log w=-βH(Si) Log weff=-βHeff(Si)

Four-body interaction: 

No efficient global update method

Only two-body interactions: 

Wolff global update method

Linear regression

Gathering the configurations 
and their weights
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Classical spin system
Original model Effective model

C1:nearest neighbor spin-spin correlation

Decay of the autocorrelation function

Only one parameter J1 reproduces the original weights! 

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 041101(R) (2017) 



26

Double exchange model
Original model Effective model

matrix scalar

Oscillating function-> 
RKKY interaction

Almost same weight 
distribution

Au
to

co
rr

el
at

io
n 

ti
m
e

System size

For L=8 (8x8x8 cubic)

103 times speedup!

J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 241104(R)(2017) 



27

Continuous-time quantum Monte Carlo method
Anderson impurity model continuous-time auxiliary-field method (CTAUX)

Partition function

Ising-like auxiliary fields

Markov chain on different Feynman diagrams 

0 β τ

configurations
0 β τ

Number of spins changes on continuous imaginary-time axis

What is an effective model?
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Self-learning continuous-time QMC
YN, H. Shen, Y. Qi, J. Liu and L. Fu, Phys. Rev. B 96, 161102(R) (2017)

Effective model

We call this the diagram generating function (DGF)

The DGF can propose good configurations!

Autocorrelation functions
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Self-learning Hybrid Monte Carlo method (SLHMC)

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA C2 CBC3 …C4

Another Markov chain with the probability W’(C)

To propose CB form CA

C1 C2 CNCA …CB

Markov chain with the probability W(C)

CA CB

Machine-learning MD

To propose CB form CA

SLMC SLHMC

YN, M. Okumura, K. Kobayashi, and M. Shiga, 
“Self-learning Hybrid Monte Carlo: A First-principles Approach”,
Phys. Rev. B 102, 041124(R) (2020)

We developed the SLHMC for molecular simulations



When does the SLMC become better?
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1. Long autocorrelation time
Near critical point, one needs to get many configurations

2. Heavy computational cost for calculating the Boltzmann weight
Calculation of the Fermion determinant is heavy

one can integrate out the fermion with the use of the SLMC
Calculation based on the density functional theory is heavy 

one can use the neural networks to imitate Hamiltonian 



Self learning Monte Carlo method for 
Lattice QCD simulations

31



Lattice QCD to me
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Formula One  in computational physics

supercomputer, hybrid Monte 
Carlo, parallel computing, 
GPU computing…

Many cutting edge technologiesLattice QCD

Condensed matter physics

Many body physics

We can learn many things 
from the Lattice QCD?



Lattice QCD package
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You can start it in 10 minutes 
We have made a public LQCD code by Julia language: 

https://github.com/akio-tomiya/LatticeQCD.jl

Easy and quick start on laptop/desktop:  HMC/heatbath/SLMC + Measurements
Compatible speed with a Fortran code

https://github.com/akio-tomiya/LatticeQCD.jl


Lattice QCD
34

Eqs given from Dr. Tomiya

Physical observables

We can use the MCMC!



Effective action
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Actions about Gauge field Actions about fermions

classical spins + fermions -> classical spins 
SLMC in condensed matters

SLMC in lattice QCD
gauge fields + fermions -> gauge fields 

There is a large mass expansion

Can the SLMC reach to small mass region?

There is a small coupling expansion
The SLMC can reach to large coupling region



SLMC for gauge systems
36

A(CB, CA) = min (1,
W(CB)
W(CA)

g(CA |CB)
g(CB |CA) ) A(CB, CA) = min (1,

W(CB)
W(CA)

W′ (CA)
W′ (CB) )

Acceptance ratio

g(CB|CA):Proposal probability

A(UA → UB) = min (1,
e−(S(UB)−Seff(UB))

e−(S(UA)−Seff(UA)) )
S(U): Two color QCD (gluons + 4 of quarks), 4dim
Seff(U): QCD action without fermions (1/m expansion)

Plaquette + Rect + Polyakov loop + (crown, chair, etc.)
Couplings are determined from linear regression
parameters are tuned to make acceptance high.

Update method: heatbath. Any update, which satisfies the detailed balance is fine
(non-reversible update is fine)



Target system
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System
Two color QCD (plaquette + staggered(not rooted))
HMC and SLMC, T=0 & T>0

Parameters Ls = 4,6,8, Lt=Ls(T=0) or 4 (T>0)

m=0.5,…,0.05
beta = [0.8-4.0] including a phase transition for T>0

Effective action Plaquette+rect+Polyakov loop +(chair,crown,Bended polyakov)
(automatic code generator is used)

Observables
Plaquette (P), Polyakov loop (L)

Chiral condensate

and their Binder cumulant (4th order cumulant)

Topological charge is not relevant for this volume

Code Fully written in Julia lang.
(Different from the public one (old ver is used in the paper))



How to compare different algorithms?
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In general, different algorithms can not compare 

There are several ways.
Measure elapsed time?

Count by operation by operation?

Most numerically expensive part?

implementation dependent 
(hardware and software)

We count it by the number of Metropolis test

Namely our “MD time” is counted by the number of Metropolis test



T=0 results
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Observables are consistent (expected)

Autocorrelation for Polyakov loop
Very short

YN, A. Tomiya, and A. Tanaka, arXiv:2010.11900



T>0 results (Polyakov loop)
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YN, A. Tomiya, and A. Tanaka, arXiv:2010.11900



T>0 results (Chiral condensate)
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YN, A. Tomiya, and A. Tanaka, arXiv:2010.11900



T>0 results
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Autocorrelation around the critical regime. it is slightly better

YN, A. Tomiya, and A. Tanaka, arXiv:2010.11900



Quantitive way to calculate QFT observables
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Acceptance goes down for lighter mass…(expected)

for m=0.5, roughly 80-60%

We have to use more expressible effective action!
neural net?



Issues to be solved
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Extend to SU(3) -> straight forward

Nf = 2+1 -> straight forward

Determinant -> stochastic estimator (A. Hasenfratz’s work)

Lighter mass -> using neural network effective action? (SLMC+NN)

Topological charge for large system

Systematic study of critical scaling

Can neural networks mimic log det(D[U]+m)?
Heatbath or MD with an action including neural networks

H. Shen, J. Liu and L. Fu, Phys. Rev. B 97, 205140 (2018)
YN, M. Okumura and A. Tanaka, Phys. Rev. B 101, 115111 (2020)
YN, M. Okumura, K. Kobayashi, and M. Shiga, 
Phys. Rev. B 102, 041124 (2020)



Summary
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Summary
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Machine learning is a tool to construct functions

cat!
Boltzmann 
weight

Configuration

Self-learning Monte Carlo method including fermions in LQCD is just started

A lot of things to do

Self-learning Monte Carlo methodmachine for cats


