Self-learning Monte-Carlo Method for nonabelian gauge theory with dynamical fermions

Japan Atomic Energy Agency
RIKEN AIP
Yuki Nagai

Yuki Nagai, Akinori Tanaka, Akio Tomiya,
"Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions", arXiv:2010.11900

Collaborators

Akio Tomiya RIKEN BNL

About me

superconductivity and condensed matter theory
2010: Ph.D in Univ. of Tokyo
2010-2019 researcher in Japan Atomic Energy Agency
2016-2017 visiting researcher in MIT Machine learning and physics 2018- visiting researcher in RIKEN AIP

2019- senior researcher in Japan Atomic Energy Agency

Yuki Nagai

What machine and condensed matter physicist do

Analytical calculations Numerical calculations

Lagrangian

Machine condensed matter physicist and machine might not understand the Lagrangian...

Today's talk

Self learning Monte Carlo method
High-speed method with making an effective Hamiltonian/Lagrangian

configuration \longrightarrow| heavy numerical |
| :---: |
| calculation |

configuration \longrightarrow Effective model \longrightarrow Boltzmann weight

Spin systems

strongly correlated electron systems
atomic/molecular
systems

Lattice QCD

Exact method: physical observables are statistically exact

Outline

- Machine learning and physics
- Self learning Monte Carlo method
- Examples in condensed matters
- Self learning Monte Carlo method for lattice QCD simulations
- Summary

Machine learning and physics

What is this?

This is a cat
Basile Morin / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)
You saw many cats so you know this is a cat

What is this?

This is a saiga antelope
a critically endangered antelop

You did not learn this, yet.

((AAEA)) \&SE AIP What is a machine-learning?

Using many input data $x_{\text {, }}$ $f(x)=y$ is obtained

Self learning Monte Carlo method
Configuration

Simulate with use of this

What is a machine-learning?

Supervised learning

Using many input data x and output data y, a function $f(x)=y$ is obtained
Simplest case $\quad y=a x+b \quad$ Linear regression

Multi inputs \rightarrow vector \mathbf{x}

$$
y=W x+b
$$

Not enough?

$$
\begin{gathered}
y=W_{2} f\left(W_{1} x+b_{1}\right)+b \quad \text { finon linear func. } \\
y=W_{3} f\left(W_{2} f\left(W_{1} x+b_{1}\right)+b_{2}\right)+b \\
\vdots \\
\text { Deep learning }
\end{gathered}
$$

X

Applications to physics

Detecting phase transitions

Phase transition in the Ising model
A. Tanaka and Y. Tomita, J. Phys. Soc. Jpn. 86, 063001 (2017)

Analysis of spin distribution
phase detection in the quantum system with the Fermion sign-problem P. Broecker et al. Scientific Reports 78823 (2017)

Honeycomb Hubbard model
Analysis of the equal-time Green's function

Many papers => image recognitions

Application to physics

Image recognition : Detection of the phase transition etc.

Other approach?

Nature is too complicated
Build a simplest model and analyze it
Example: Throwing a ball. Where does the ball fall?
Neglecting a wind -> Not so bad
Done is better than perfect
What physicists did : Build a model describing phenomena

Self learning Monte Carlo method

Purpose

To speed up the Markov Chain Monte Carlo (MCMC) simulations

multi-dimensional integrals

$$
I=E_{\pi}[h(\mathbf{x})]=\int_{\mathcal{X}} h(\mathbf{x}) \pi(\mathbf{x}) d \mathbf{x}
$$

Regarding $\pi(x)$ as a probability distribution function,

Numerical approximations of multi-dimensional integrals

Bayesian statistics, computational physics, quantum chemistry, and computational biology, etc.

To use machine learning techniques in Monte Calro method

MCMC in physics

For example: Classical spin systems

Partition function

$\mathrm{w}_{\mathrm{i}}=\exp \left(-\beta \mathrm{E}_{\mathrm{i}}\right)$ as a probability distribution $\quad \rightarrow$ Monte Carlo simulation

Excepted value for A

i: spin configuration

Details of MCMC

$\int d x_{1} \cdots d x_{N} W\left(x_{1}, \cdots, x_{N}\right) f\left(x_{1}, \cdots, x_{N}\right) \sim \sum_{C} f(C)$
$C=\left(x_{1}, \cdots, x_{N}\right) \quad$ is randomly generated with the probability $W(C)$
How to generate $W(C)$
We use Markov chain that has a desired distribution as its equilibrium distribution

We can design $P\left(C_{A} \mid C_{B}\right)$

Details of MCMC

We can design $P\left(C_{A} \mid C_{B}\right)$

$$
P\left(C_{A} \mid C_{B}\right)
$$

Metropolis-Hastings algorithm

$$
P\left(C_{B} \mid C_{A}\right)=g\left(C_{B} \mid C_{A}\right) A\left(C_{B}, C_{A}\right)
$$

$g\left(C_{B} \mid C_{A}\right)$:Proposal probability $A\left(C_{B}, C_{A}\right)$:Acceptance probability

$$
\frac{A\left(C_{B}, C_{A}\right)}{A\left(C_{A}, C_{B}\right)}=\frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}
$$

Acceptance ratio from C_{A} to C_{B}

$$
A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}\right)
$$

This acceptance ratio should be high!

How to improve MCMC?

Acceptance ratio from C_{A} to C_{B}
$A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}\right)$
We have to choose C_{B} with high acceptance ratio $A\left(C_{B}, C_{A}\right)$

Solution 1: Local updates

If C_{B} is similar to $C_{A}, W\left(C_{B}\right)$ might be similar to $W\left(C_{A}\right)$

One randomly chooses a single site and proposes a new configuration by changing the variable on this site
Good: general
Bad: difference between C_{A} and C_{B} is small
Solution 2: Global updates
We choose C_{B} with the use of knowledge of a system

Variables on an extensive number of sites are simultaneously changed in a single MC update
Good: difference between C_{A} and C_{B} is not small Bad: it is hard to find it

Self-learning MC

Acceptance ratio from C_{A} to C_{B}

$$
A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}\right)
$$

We have to choose C_{B} with
high acceptance ratio $A\left(C_{B}, C_{A}\right)$

Solution 3: Self-learning updates
Usually, ratio of the proposal probability is one

$$
\frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}=1
$$

we can change this!
Another Markov chain with the probability $W^{\prime}(C)$

$\begin{array}{llllllll}C_{A} & C_{2} & C_{3} & C_{4} & \ldots & C_{B}\end{array}$	$P^{\prime}\left(C_{B} \mid C_{A}\right)$: probability from $C A$ to $C B$
Detailed balance condition	This Markov chain proposes C_{B} from C_{A} !
$P^{\prime}\left(C_{A} \mid C_{B}\right) W^{\prime}\left(C_{B}\right)=P^{\prime}\left(C_{B} \mid C_{A}\right) W^{\prime}\left(C_{A}\right)$	$\mathrm{P}^{\prime}\left(C_{B} \mid C_{A}\right)=\mathrm{g}\left(C_{B} \mid C_{A}\right)$

$$
\rightleftharpoons \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}=\left(\frac{W^{\prime}\left(C_{B}\right)}{W^{\prime}\left(C_{A}\right)}\right)^{-1}
$$

If $W^{\prime}(C)=W(C)$, the acceptance ratio is one!

Concept of SLMC

Markov chain with the probability $W(C)$

Another Markov chain with the probability $W^{\prime}(C)$

$$
\begin{gathered}
A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}\right) \\
A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{W^{\prime}\left(C_{A}\right)}{W^{\prime}\left(C_{B}\right)}\right) \\
\text { If } W^{\prime}(C)=W(C),
\end{gathered}
$$

the acceptance ratio is one!

If the computational cost of the proposal Markov chain is small, we can speed up the simulation

How to construct the Markov chain with $\mathrm{W}^{\prime}(C)$?
->Machine learning technique!

$$
W(C)=\exp (-\beta H(C)) \rightarrow W^{\prime}(C)=\exp \left(-\beta H_{\operatorname{eff}}(C)\right) \quad \text { We construct the effective Hamiltonian }
$$

SLMC and HMC

SLMC

Markov chain with the probability $W(C)$

Hybrid Monte Carlo Method

Markov chain with the probability $W(C)$

These two are exact!

Examples in condensed matters

Classical spin system

Hamiltonian: classical model on a two-dimensional square lattice

Original model

Four-body interaction: No efficient global update method

$\log w=-\beta H\left(S_{i}\right)$

Effective model

Only two-body interactions:
Wolff global update method

Classical spin system

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 041101 (R) (2017)

Original model

C_{1} :nearest neighbor spin-spin correlation

Effective model

Decay of the autocorrelation function

	\tilde{J}_{1}	\tilde{J}_{2}	\tilde{J}_{3}	Mean error
Train 1	1.2444	-0.0873	-0.0120	0.0009
Train 2	1.1064			0.0011

Only one parameter J_{1} reproduces the original weights!

Double exchange model

Original model $\hat{H}=-t \sum_{\langle i j\rangle, \alpha}\left(\hat{c}_{i \alpha}^{\dagger} \hat{c}_{j \alpha}+\right.$ h.c. $)-\frac{J}{2} \sum_{i, \alpha, \beta} \vec{S}_{i} \cdot \hat{c}_{i \alpha}^{\dagger} \vec{\sigma}_{\alpha \beta} \hat{c}_{i \beta}$,
$Z=\sum_{\phi} \operatorname{det}\left[\mathbf{I}+e^{-\beta H_{j}[\phi]}\right] \equiv \sum_{\phi} W[\phi] . \quad$ matrix

Oscillating function-> RKKY interaction

Effective model

$W[\phi] \simeq e^{-\beta H_{\mathrm{eff}}[\phi]}$
scalar

System size

Continuous-time quantum Monte Carlo method

Anderson impurity model

```
\(H=H_{0}+H_{1}\)
\(H_{0}=-(\mu-U / 2)\left(n_{\uparrow}+n_{\downarrow}\right)+\sum_{\mathcal{L}}\left(V c_{\sigma}^{\dagger} a_{p, \sigma}+h . c.\right)+\sum_{\sigma, p} \epsilon_{p} a_{p, \sigma}^{\dagger} a_{p, \sigma}+K / \beta\),
\(H_{1}=U\left(n_{\uparrow} n_{\downarrow}-\left(n_{\uparrow}+n_{\downarrow}\right) / 2\right)-K / \beta\),
```


Ising-like auxiliary fields

Partition function

Markov chain on different Feynman diagrams configurations

Number of spins changes on continuous imaginary-time axis What is an effective model?

Self-learning continuous-time QMC

YN, H. Shen, Y. Qi, J. Liu and L. Fu, Phys. Rev. B 96, $161102($ R) (2017)
Effective model
$-\beta H_{n}^{e f(}\left(\left\{s_{i}, \tau_{i}\right\}\right)=\frac{1}{n} \sum_{i, j} J\left(\tau_{i}-\tau_{j}\right) s_{i} s_{j}+\frac{1}{n} \sum_{i, j} L\left(\tau_{i}-\tau_{j}\right)+f(n)$

We call this the diagram generating function (DGF)

The DGF can propose good configurations!

Self-learning Hybrid Monte Carlo method (SLHMC)

SLMC

Markov chain with the probability W(C)

Another Markov chain with the probability $\mathrm{W}^{\prime}(\mathrm{C})$

SLHMC

Markov chain with the probability W(C)

We developed the SLHMC for molecular simulations
YN, M. Okumura, K. Kobayashi, and M. Shiga,
"Self-learning Hybrid Monte Carlo: A First-principles Approach",
Phys. Rev. B 102, 041124(R) (2020)

When does the SLMC become better?

1. Long autocorrelation time

Near critical point, one needs to get many configurations
2. Heavy computational cost for calculating the Boltzmann weight Calculation of the Fermion determinant is heavy one can integrate out the fermion with the use of the SLMC
Calculation based on the density functional theory is heavy one can use the neural networks to imitate Hamiltonian

Self learning Monte Carlo method for Lattice QCD simulations

Lattice QCD to me

Formula One in computational physics
Lattice QCD

Many cutting edge technologies supercomputer, hybrid Monte Carlo, parallel computing, GPU computing...

We can learn many things from the Lattice QCD

Lattice QCD package

You can start it in 10 minutes
We have made a public LQCD code by Julia language:
https://github.com/akio-tomiya/LatticeQCD.jl
Easy and quick start on laptop/desktop: HMC/heatbath/SLMC + Measurements
Compatible speed with a Fortran code

Eqs given from Dr. Tomiya

Lattice QCD

QCD in $3+1$ dimension QCD in Euclidean 4 dimension

$$
\begin{aligned}
& S=\int d^{4} x\left[-\frac{1}{2} \operatorname{tr} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(\mathrm{i} \phi+g A-m) \psi\right] \\
& Z=\int \mathscr{D} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{\mathrm{iS}} \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-\mathrm{i} g\left[A_{\mu}, A_{\nu}\right] \\
& S=\int d^{4} x\left[+\frac{1}{2} \operatorname{tr} F_{\mu \nu} F_{\mu \nu}+\bar{\psi}(\not(-\mathrm{ig} A+m) \psi]\right. \\
& Z=\int \mathscr{D} A \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{-S}
\end{aligned}
$$

$$
S[U, \psi, \bar{\psi}]=a^{4} \sum_{n}\left[-\frac{1}{g^{2}} \operatorname{Re} \operatorname{tr} U_{\mu \nu}+\bar{\psi}(\mathbb{D}+m) \psi\right]
$$

Physical observables

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U \mathscr{D} \bar{\psi} \mathscr{D} \psi e^{-S} \mathscr{O}(U)=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\text {gugge }}[U]} \operatorname{det}(D+m) \mathscr{O}(U) \\
& \langle\mathscr{O}\rangle=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\text {eff }}[U]} \mathscr{O}(U) \quad S_{\text {eff }}[U]=S_{\text {guage }}[U]-\log \operatorname{det}(\mathscr{D}[U]+m)
\end{aligned}
$$

We can use the MCMC!

Effective action

$\langle\mathcal{O}\rangle=\frac{1}{Z} \int \mathscr{D} U e^{-S_{\text {eff }}[U]} \mathcal{O}(U) \quad S_{\text {eff }}[U]=S_{\text {gauge }}[U]-\log \operatorname{det}(\mathscr{D}[U]+m)$
Actions about Gauge field
Actions about fermions
SLMC in condensed matters
classical spins + fermions \rightarrow classical spins The SLMC can reach to large coupling region SLMC in lattice QCD gauge fields + fermions \rightarrow gauge fields

There is a large mass expansion Can the SLMC reach to small mass region?

SLMC for gauge systems

Acceptance ratio

$$
A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{g\left(C_{A} \mid C_{B}\right)}{g\left(C_{B} \mid C_{A}\right)}\right) \quad A\left(C_{B}, C_{A}\right)=\min \left(1, \frac{W\left(C_{B}\right)}{W\left(C_{A}\right)} \frac{W^{\prime}\left(C_{A}\right)}{W^{\prime}\left(C_{B}\right)}\right)
$$

$g\left(C_{B} \mid C_{A}\right)$:Proposal probability

$$
A\left(U_{A} \rightarrow U_{B}\right)=\min \left(1, \frac{e^{-\left(S\left(U_{B}\right)-S_{\mathrm{eff}}\left(U_{B}\right)\right)}}{e^{-\left(S\left(U_{A}\right)-S_{\mathrm{eff}}\left(U_{A}\right)\right)}}\right)
$$

S(U): Two color QCD (gluons +4 of quarks), 4dim $S_{\text {eff }}(U)$: QCD action without fermions ($1 / m$ expansion) Plaquette + Rect + Polyakov loop + (crown, chair, etc.) Couplings are determined from linear regression parameters are tuned to make acceptance high.

Update method: heatbath. Any update, which satisfies the detailed balance is fine (non-reversible update is fine)

Target system

System
Parameters

Two color QCD (plaquette + staggered(not rooted))
HMC and SLMC, T=0 \& T>0
$L s=4,6,8, L t=\operatorname{Ls}(T=0)$ or $4(T>0)$
$\mathrm{m}=0.5, \ldots, 0.05$
beta $=[0.8-4.0]$ including a phase transition for $T>0$
Effective action Plaquette+rect+Polyakov loop +(chair,crown, Bended polyakov) (automatic code generator is used)
Plaquette (P), Polyakov loop (L)
Chiral condensate
and their Binder cumulant (4th order cumulant) Topological charge is not relevant for this volume

Code
Fully written in Julia lang.
(Different from the public one (old ver is used in the paper))

How to compare different algorithms?

 In general, different algorithms can not compareThere are several ways.
Measure elapsed time?
Count by operation by operation? Most numerically expensive part?
implementation dependent (hardware and software)

We count it by the number of Metropolis test
Namely our "MD time" is counted by the number of Metropolis test

$\mathrm{T}=0$ results

Observables are consistent (expected)

Autocorrelation for Polyakov loop
Very short

T>0 results (Chiral condensate)

T>0 results

Autocorrelation around the critical regime. it is slightly better

Quantitive way to calculate QFT observables

Acceptance goes down for lighter mass...(expected)
for $m=0.5$, roughly $80-60 \%$

ALG	N_{σ}	N_{τ}	β		Acceptance	$N_{\text {trj }}$	$\langle P\rangle$	$\langle R\rangle$	$\langle L\rangle$
HMC	6	6		0.05	0.82	50000	0.67774(4)	0.49772(5)	0.437(6)
SLMC	6	6	2.5	0.05	0.34	50000	0.67813(8)	0.4982(1)	0.436(7)
HMC	6	6		0.10	0.73	50000	0.6771(4)	0.49666(5)	0.428(6)
SLMC	6	6	2.5	0.10	0.37	50000	0.67749(7)	0.49732(9)	0.438(5)

We have to use more expressible effective action! neural net?

Issues to be solved

Extend to SU(3) \rightarrow straight forward
Nf $=2+1 \rightarrow$ straight forward
Determinant \rightarrow stochastic estimator (A. Hasenfratz's work) Lighter mass \rightarrow using neural network effective action? (SLMC+NN)
Topological charge for large system Systematic study of critical scaling

Can neural networks mimic $\log \operatorname{det}(\mathrm{D}[\mathrm{U}]+\mathrm{m})$?
Heatbath or MD with an action including neural networks

Summary

Summary

Machine learning is a tool to construct functions

Self-learning Monte Carlo method

Self-learning Monte Carlo method including fermions in LQCD is just started A lot of things to do

