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We discuss the determination of deep-inelastic hadron structure in lattice QCD. By using a
fictitious heavy quark, direct calculations of the Compton scattering tensor can be performed in
Euclidean space that allow the extraction of the moments of structure functions. This overcomes
issues of operator mixing and renormalisation that have so far prohibited lattice computations of
higher moments. This approach is especially suitable for the study of the twist-two contributions to
isovector quark distributions, which is practical with current computing resources. While we focus on
the isovector unpolarised distribution, our method is equally applicable to other quark distributions
and to generalised parton distributions. By looking at matrix elements such as 〈π±|T [V µ(x)Aν(0)]|0〉
(where V µ and Aν are vector and axial-vector heavy-light currents) within the same formalism,
moments of meson distribution amplitudes can also be extracted.

I. INTRODUCTION

Lattice QCD offers the prospect of exploring the structure functions probed in deeply inelastic scattering (DIS) and
other high-energy experiments from first principles. By comparing to accurate experimental data, such calculations
provide stringent tests of QCD. They also allow the extraction of information on hadron structure which is not
currently available from experiment, e.g., the transversity distribution δq(x). The structure functions describe the
hadronic part of the DIS process, viz., the hadronic tensor

Wµν
S (p, q) =

∫
d4x eiq·x〈p, S| [Jµ(x), Jν (0)] |p, S〉, (1)

where p and S are the momentum and spin of the external state, q is the momentum transfer between the lepton and
the hadron, and Jµ is the electromagnetic current. Using the optical theorem, Wµν

S can be related to the imaginary
part of the forward Compton scattering tensor

T µν
S (p, q) =

∫
d4x eiq·x〈p, S|T [Jµ(x)Jν(0)] |p, S〉 . (2)

Since lattice QCD is necessarily formulated in Euclidean space, direct calculation of the structure functions is
challenging because of the analytical continuation to Minkowski space that is required [1, 2]. In addition, such
a calculation would involve all-to-all light-quark propagators, and is therefore numerically demanding. For these
reasons, beginning with pioneering works of Refs. [3, 4], lattice studies of the deep-inelastic structure of hadrons have
focused on calculations of matrix elements of local operators that arise from the light-cone operator product expansion
(OPE) [5, 6, 7, 8, 9] of the currents

T [Jµ(x)Jν (0)] =
∑

i,n

Ci

(
x2, µ2

)
xµ1

. . . xµn
Oµνµ1...µn

i (µ), (3)

where the Ci are the perturbatively calculable Wilson coefficients that incorporate the short-distance physics, and the
sum is over all local operators, Oµνµ1...µn

i with the correct symmetries. µ is the renormalisation scale. This expansion
enables the investigation of T µν

S via the knowledge of hadronic matrix elements of local operators. The analytical
continuation of these matrix elements from Euclidean space to Minkowski space is straightforward. However, a number
of difficulties arise in this approach because of the lattice regularisation. Firstly, the non-zero lattice spacing breaks the
symmetry group of Euclidean space-time from O(4) to the discrete hyper-cubic subgroup H(4), consequently modifying
the transformation properties of the local operators in the OPE. In general, operators belonging to different irreducible
representations of O(4), which span the right-hand side of the OPE in Eq. (3), mix unavoidably in the lattice theory
since H(4) has only a finite set of irreducible representations. For twist-two (twist = dimension - spin) contributions,
this becomes particularly severe for operators of spin n > 4 as they mix with lower dimensional operators and the
mixing coefficients contain power divergences. Currently this restricts the available lattice calculations to operators
of spin n = 1, 2, 3, 4. For higher-twist operators, such power divergences are generally unavoidable [10, 11, 12]. A
second issue is that the matching of the lattice regularisation to continuum renormalisation schemes [13, 14, 15, 16],
in which the Wilson coefficients are calculated, becomes more involved as n increases.

The “traditional” approach

Hadronic tensor (PDFs from the twist-2 sector)
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optical theorem Imaginary part challenging in Euclidean QCD

local operators, issue of operator mixing leading moments in practice

Power divergences arising from Lorentz symmetry breaking 

The “traditional” approach

Hadronic tensor (PDFs from the twist-2 sector)

Light-cone OPE
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The “new” approach to avoid difficulties in renormalisation

H (p) H (p′)

O
µνµ1...µn

i

H (p) H (p′)

Onon−local

General idea: Inserting non-local, instead of local, operator 



Parton distribution from lattice QCD
The “new” approach to avoid difficulties in renormalisation

H (p) H (p′)

Onon−local

Make certain the absence of on-shell states for analytic continuation 

H (p) H (p′)

Onon−local
- -

 - 
- -

 - 
- -
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The “new” approach to avoid difficulties in renormalisation

H (p) H (p′)

Onon−local

Typical examples of the non-local operator 
A space-like Wilson line (quasi-PDF and pseudo-PDF) 

Two currents separated by space-like distance 

Two flavour-changing currents with valence heavy quark

X. Ji, PRL 110 (2013); A. Radyushkin, PRD 96 (2017)

V. Braun and D. Mueller, EPJC 55 (2018)

Smeared “local” operators
Z. Davoudi and M. Savage, PRD 86 (2012)

W. Detmold and CJDL, PRD 73 (2006)

And other proposals
A. Chambers et al., PRL 118 (2017); Y. Ma and J.-W. Qiu, PRL 120 (2018);…… 



Introducing the valence heavy quark

2

In this paper, we discuss an approach to determining matrix elements of higher-spin, twist-two operators in Eq. (3).
This approach is based upon directly studying the OPE on the lattice, as was first investigated in kaon physics in
Ref. [17]. A similar technique has also been applied to determine Wilson coefficients non-perturbatively [18] and
extract the lowest moment of the isovector twist-two quark distribution [19] (our method is related to this latter
work but improves on it in a number of ways). In our proposal, one simulates the Compton scattering tensor
using lattice QCD, with currents coupling the physical light quarks, ψ(x), present in the hadron to a non-dynamical
(purely valence), unphysically heavy quark, Ψ(x).1 The introduction of this heavy quark significantly simplifies
the calculation of isovector matrix elements because it removes the requirement of all-to-all propagators. After
performing an extrapolation to the continuum limit, the lattice data for the Compton tensor are compared to the
predictions of the OPE in Euclidean space to extract the matrix elements of local operators in Eq. (3), directly in
the continuum renormalisation scheme in which the Wilson coefficients are calculated. This approach also removes
the power divergences, thereby enabling extraction of matrix elements of higher spin (n > 4) operators for twist-two
operators with a simple renormalisation procedure. These matrix elements determine the Mellin moments of the
structure functions which are identical in Euclidean space and Minkowski space and their analytical continuation is
trivial. Finally, the chiral and infinite volume extrapolations can now be performed at the level of the local matrix
elements using chiral perturbation theory [21, 22, 23, 24, 25, 26, 27, 28, 29].

The matrix elements obtained via the above procedure are completely independent of the mass of the unphysical,
heavy quark and are indeed physical quantities. This is because such a quark can only propagate between the
bilocal currents, and the OPE relegates its short-distance information to the Wilson coefficients. In addition to the
numerical advantage, it also proves useful to introduce a fictitious heavy quark for other reasons. Firstly, the presence
of the heavy scale suppresses long distance correlations between the currents in a similar way to a large Euclidean
momentum. Combining both the heavy quark mass, mΨ, and momentum injection, q, at the current allows us to
control the behaviour of the OPE precisely at moderate mΨ and q2. The only constraint is

ΛQCD ! mΨ ∼
√

q2 !
1

â
, (4)

where â is the coarsest lattice spacing used in the calculation. Secondly, the non-dynamical nature of the heavy quark
automatically removes many contributions (for example, so-called “cat’s ears” diagrams – see Fig. 1(d) below) that
are higher-twist contaminations in traditional DIS.

In Section II, we review the formalism of DIS with heavy quarks before discussing the extraction of the moments of
twist-two parton distributions from lattice correlators in Section III. Finally in Section IV, we broaden the analysis
to investigate moments of meson distribution amplitudes.

II. FLAVOUR CHANGING CURRENTS AND HEAVY QUARKS IN LEPTON-HADRON
DEEP-INELASTIC SCATTERING

The roles of quark and hadron masses in deep-inelastic scattering have been well studied. Target mass effects were
first discussed by Nachtmann [30] and extensively investigated throughout the 1970s, following the observation of
the precocious scaling of the structure functions [31, 32]. Away from the Bjorken limit, they result in significant
contributions which arise from the OPE being an expansion in terms of operators belonging to definite irreducible
representations of the Lorentz group. These contributions scale as powers of M2/Q2, where M is the target mass and
Q2 = −q2, and can be summed exactly [30, 33, 34, 35]. The effects of the struck and produced quark masses were
also comprehensively investigated [33, 34, 36]. These target and quark mass effects lead to ξ scaling [30, 33, 34, 35],
and are particularly relevant at moderate values of Q2. Since currently available lattice cut-offs are 1/a ∼ 3 GeV,
it is important to include these mass effects in the application of the OPE on the lattice, because of the condition
in Eq. (4). In this section we present the OPE in Euclidean space relevant for computing higher moments of parton
distributions on the lattice with these mass effects taken into account.

We consider fictitious currents that couple light up and down quarks to unphysical heavy quarks of mass mΨ. We
focus on a purely vector coupling, leaving the discussion of other possible currents to the end of the section. We define

Jµ
Ψ,ψ(x) = Ψ(x)γµψ(x) + ψ(x)γµΨ(x) , (5)

1 Such fictitious currents have been used to study quark-hadron duality in heavy quark effective theory [20]. However, in this context the
heavy quark is not a valence quark.
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.

and construct the Euclidean Compton scattering tensor

T µν
Ψ,ψ(p, q) ≡

∑

S

〈p, S|tµνΨ,ψ(q)|p, S〉 =
∑

S

∫
d4x eiq·x〈p, S|T

[
Jµ

Ψ,ψ(x)JνΨ,ψ(0)
]
|p, S〉 , (6)

(henceforth all momenta are Euclidean).
In the limit q2 → ∞ or mΨ → ∞, T µν

Ψ,ψ is given by the leading-twist contribution, the “handbag diagrams” in

Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor

T µν
Ψ,v = T µν

Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.

The twist-two contributions to the OPE in T µν
Ψ,v are from

tµνΨ,ψ = ψγµ
−i
(
iD/
↔

+ q/
)

+ mΨ

(i
↔
D + q)2 + m2

Ψ

γνψ , (8)

and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
↔
Dµ = 1

2

(→
Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.

propagating in both space and time

Compton tensor

W. Detmold and CJDL, PRD 73 (2006)

Valence Not in the action

The “heavy quark” is relativistic

The current for computing the even moments of the PDF



Strategy for extracting the moments

• Simple renormalisation for quark bilinears. 

• Work with the hierarchy of scales 
 
 

• Extrapolate                to the continuum limit first. 
        Then match to the short-distance OPE results. 
        Extract the moments without power divergence.
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.
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scattering tensor
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Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.
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and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
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Dµ = 1
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Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.
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In this paper, we discuss an approach to determining matrix elements of higher-spin, twist-two operators in Eq. (3).
This approach is based upon directly studying the OPE on the lattice, as was first investigated in kaon physics in
Ref. [17]. A similar technique has also been applied to determine Wilson coefficients non-perturbatively [18] and
extract the lowest moment of the isovector twist-two quark distribution [19] (our method is related to this latter
work but improves on it in a number of ways). In our proposal, one simulates the Compton scattering tensor
using lattice QCD, with currents coupling the physical light quarks, ψ(x), present in the hadron to a non-dynamical
(purely valence), unphysically heavy quark, Ψ(x).1 The introduction of this heavy quark significantly simplifies
the calculation of isovector matrix elements because it removes the requirement of all-to-all propagators. After
performing an extrapolation to the continuum limit, the lattice data for the Compton tensor are compared to the
predictions of the OPE in Euclidean space to extract the matrix elements of local operators in Eq. (3), directly in
the continuum renormalisation scheme in which the Wilson coefficients are calculated. This approach also removes
the power divergences, thereby enabling extraction of matrix elements of higher spin (n > 4) operators for twist-two
operators with a simple renormalisation procedure. These matrix elements determine the Mellin moments of the
structure functions which are identical in Euclidean space and Minkowski space and their analytical continuation is
trivial. Finally, the chiral and infinite volume extrapolations can now be performed at the level of the local matrix
elements using chiral perturbation theory [21, 22, 23, 24, 25, 26, 27, 28, 29].

The matrix elements obtained via the above procedure are completely independent of the mass of the unphysical,
heavy quark and are indeed physical quantities. This is because such a quark can only propagate between the
bilocal currents, and the OPE relegates its short-distance information to the Wilson coefficients. In addition to the
numerical advantage, it also proves useful to introduce a fictitious heavy quark for other reasons. Firstly, the presence
of the heavy scale suppresses long distance correlations between the currents in a similar way to a large Euclidean
momentum. Combining both the heavy quark mass, mΨ, and momentum injection, q, at the current allows us to
control the behaviour of the OPE precisely at moderate mΨ and q2. The only constraint is

ΛQCD ! mΨ ∼
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q2 !
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â
, (4)

where â is the coarsest lattice spacing used in the calculation. Secondly, the non-dynamical nature of the heavy quark
automatically removes many contributions (for example, so-called “cat’s ears” diagrams – see Fig. 1(d) below) that
are higher-twist contaminations in traditional DIS.

In Section II, we review the formalism of DIS with heavy quarks before discussing the extraction of the moments of
twist-two parton distributions from lattice correlators in Section III. Finally in Section IV, we broaden the analysis
to investigate moments of meson distribution amplitudes.

II. FLAVOUR CHANGING CURRENTS AND HEAVY QUARKS IN LEPTON-HADRON
DEEP-INELASTIC SCATTERING

The roles of quark and hadron masses in deep-inelastic scattering have been well studied. Target mass effects were
first discussed by Nachtmann [30] and extensively investigated throughout the 1970s, following the observation of
the precocious scaling of the structure functions [31, 32]. Away from the Bjorken limit, they result in significant
contributions which arise from the OPE being an expansion in terms of operators belonging to definite irreducible
representations of the Lorentz group. These contributions scale as powers of M2/Q2, where M is the target mass and
Q2 = −q2, and can be summed exactly [30, 33, 34, 35]. The effects of the struck and produced quark masses were
also comprehensively investigated [33, 34, 36]. These target and quark mass effects lead to ξ scaling [30, 33, 34, 35],
and are particularly relevant at moderate values of Q2. Since currently available lattice cut-offs are 1/a ∼ 3 GeV,
it is important to include these mass effects in the application of the OPE on the lattice, because of the condition
in Eq. (4). In this section we present the OPE in Euclidean space relevant for computing higher moments of parton
distributions on the lattice with these mass effects taken into account.

We consider fictitious currents that couple light up and down quarks to unphysical heavy quarks of mass mΨ. We
focus on a purely vector coupling, leaving the discussion of other possible currents to the end of the section. We define

Jµ
Ψ,ψ(x) = Ψ(x)γµψ(x) + ψ(x)γµΨ(x) , (5)

1 Such fictitious currents have been used to study quark-hadron duality in heavy quark effective theory [20]. However, in this context the
heavy quark is not a valence quark.
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.

and construct the Euclidean Compton scattering tensor

T µν
Ψ,ψ(p, q) ≡

∑

S

〈p, S|tµνΨ,ψ(q)|p, S〉 =
∑

S

∫
d4x eiq·x〈p, S|T

[
Jµ

Ψ,ψ(x)JνΨ,ψ(0)
]
|p, S〉 , (6)

(henceforth all momenta are Euclidean).
In the limit q2 → ∞ or mΨ → ∞, T µν

Ψ,ψ is given by the leading-twist contribution, the “handbag diagrams” in

Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor

T µν
Ψ,v = T µν

Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.

The twist-two contributions to the OPE in T µν
Ψ,v are from

tµνΨ,ψ = ψγµ
−i
(
iD/
↔

+ q/
)

+ mΨ

(i
↔
D + q)2 + m2

Ψ

γνψ , (8)

and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
↔
Dµ = 1

2

(→
Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.
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Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor
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This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.
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Ψ,v are from
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to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.
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∫
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Ψ,ψ(x)JνΨ,ψ(0)
]
|p, S〉 , (6)

(henceforth all momenta are Euclidean).
In the limit q2 → ∞ or mΨ → ∞, T µν

Ψ,ψ is given by the leading-twist contribution, the “handbag diagrams” in

Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor

T µν
Ψ,v = T µν

Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.

The twist-two contributions to the OPE in T µν
Ψ,v are from

tµνΨ,ψ = ψγµ
−i
(
iD/
↔

+ q/
)

+ mΨ
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↔
D + q)2 + m2
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γνψ , (8)

and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
↔
Dµ = 1

2

(→
Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.
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currents and the large shaded regions to the various parton distributions.
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We explore the feasibility of determining Mellin moments of the pion’s light cone distribution
amplitude using the heavy quark operator product expansion (HOPE) method. As the first step of
a proof of principle study we pursue a determination of the second Mellin moment. We discuss our
choice of kinematics which allows us to successfully extract the moment at low pion momentum. We
describe the numerical simulation, and describe the data analysis, which leads us to a preliminary
determination of the second Mellin moment in the continuum limit in the quenched approximation
as

⌦
⇠2
↵
= 0.19(7) in the MS scheme at 2 GeV.

I. INTRODUCTION

At high energies, exclusive processes in quantum chro-
modynamics (QCD) may be described with the aid of
the so-called light cone distribution amplitudes (LCDAs),
convolved with a short distance perturbative kernel [1,
2]. These distribution amplitudes contain the non-
perturbative information about the process, and are the
result of a Fock space truncation where only the lowest,
valence Fock state is retained. In this sense, one may con-
sider the pion’s light cone distribution amplitude �(x, µ2)
as giving the probability amplitude for converting a pion
into a pair of collinear quark and antiquark with longi-
tudinal momentum fraction x and 1� x, respectively. It
is defined via the matrix element

h0| (z2n)/n�5W [z2n, z1n] (z1n)
��⇡+(p)

↵

= if⇡(p · n)

Z 1

0
dx e�i(z1x+z2(1�x))p·n�⇡(x, µ

2),
(1)

where pµ is the momentum of the pion, n is a light-
like vector (n2 = 0), z1 and z2 are real numbers, f⇡ =

⇤
agrebe@mit.edu, Speaker at APLAT 2020

†
perryrobertjames@gmail.com, Speaker at APLAT 2020

0.132 GeV is the pion decay constant, µ2 is the renor-
malization scale and W [a, b] is a Wilson line required to
ensure gauge invariance of the matrix element. We take x
to be the longitudinal momentum fraction of the u-quark
in the Fock state

��ud
↵
. Momentum conservation then im-

plies that the d quark has momentum fraction 1� x. In
the isospin limit, where the masses of the up and down
quarks are degenerate, the light cone distribution ampli-
tude is symmetric under the interchange x ! 1�x, that
is

�⇡(x, µ
2) = �⇡(1� x, µ2). (2)

We shall assume isospin symmetry in this work.
The value of precise determinations of the LCDA lies

in the object’s process independence. This allows one to
describe many exclusive processes in QCD with the same
distribution amplitude convolved with a process depen-
dent perturbative kernel.
Currently, the only ab-initio approach to the determi-

nation of this object is a numerical computation using
lattice QCD. Unfortunately, direct calculation of such
light-cone objects is impossible on a Euclidean lattice
since the light cone, defined by z2 = 0, is a reduced to
a single point (zµE = 0). Despite this di�culty informa-
tion about the LCDA may be determined from the lattice
in a number of indirect ways. The traditional approach
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involves a determination of the Mellin moments of the
LCDA [3, 4]. These are defined by

h⇠niµ2 =

Z 1

�1
d⇠ ⇠n�(⇠, µ2), (3)

where ⇠ = 2x� 1 and x is the momentum fraction of the
collinear quark anti-quark pair. Noting again the isospin
symmetry x $ (1�x) we see that only the even moments
may be non-zero for the pion. These moments may be
related to local matrix elements which are immediately
amenable to a lattice calculation. It is possible to write
the full distribution amplitude with the knowledge of the
Mellin moments alone:

�(⇠, µ2) =
1

2⇡

Z 1

�1
ds

 1X

n=0

(is)n

n!
h⇠niµ2

!
e�is⇠. (4)

Unfortunately, the breaking of the full rotation group
on the lattice leads to operator mixing and thus power
divergences appear in twist-2 operators with spin higher
than four [5]. These power divergences make the determi-
nation of the higher moments more di�cult. Neverthe-
less, this approach has been well studied and has yielded
results for the first non-trivial moment of the pion and
kaon [6, 7]. A number of other proposals in the literature
seek to overcome this di�culty [8–28].

While much good work has been done in the extrac-
tion of the pion LCDA, it is clear that more must still
be done to acquire precise predictions of this object.
With this view, it is clearly of interest to explore other
proposals for the calculation of the distribution ampli-
tude. One such approach, which we pursue in this work
is the so-called heavy quark operator product expansion
(HOPE) [29, 30]. The HOPE method builds on the con-
ventional operator product expansion (OPE) approach,
by performing the numerical simulation with a fictitious
heavy quark species, which leads to a number of advan-
tages over the standard treatment [29]. This method al-
lows the extraction of the Mellin moments of the LCDA,
and thus in principle allows the reconstruction of the am-
plitude within a wide range of x. In this paper, we dis-
cuss the application of the HOPE method to the pion’s
LCDA. In particular, we discuss kinematic choices which
lead to an e�cient extraction of the second Mellin mo-
ment, and discuss the resulting preliminary extraction of
the second Mellin moment.

II. SUMMARY OF THE CALCULATION

The HOPE method is a multi-step procedure. Thus,
before beginning our discussion of the kinematics used
and the numerical study we performed, we provide an
overview of the calculation. The starting point of this
work is a study of the anti-symmetric version of the ma-

trix element in Minkowski space,

Tµ⌫(p, q) =

Z
d4z eiq·z h0| T [Jµ

A(z/2)J
⌫
A(�z/2)] |⇡(p)i ,

(5)
given by

Uµ⌫(p, q) =
1

2

✓
Tµ⌫(p, q)� T ⌫µ(p, q)

◆

=

Z
d4z eiq·z h0| T [J [µ

A (z/2)J⌫]A (�z/2)] |⇡(p)i ,

(6)

where the axial-vector current is replaced by the heavy-
light flavour changing current:

Jµ
A =  ̄�µ�5 +  ̄�µ�5 , (7)

with  being the light quark field, and  being the heavy
quark field. We note that it is also possible to study the
LCDA Mellin moments using the corresponding heavy-
light vector current. By applying the OPE to the above
matrix element, we can show [30] that to leading twist,
the antisymmetric tensor Uµ⌫(p, q) may be written in the
isospin limit as1

Uµ⌫(p, q) =
2if⇡✏µ⌫↵�q↵p�

Q̃2

1X

n even

C
2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)

⇥ h⇠ni ⇣n +O(1/Q̃3),
(8)

where f⇡ ⇡ 0.132 GeV is the pion decay constant, Q̃, ⌘
and ⇣ are kinematic variables given by

Q̃2 = �q2 �m2
 , (9)

⌘ =
p · qp
p2q2

, (10)

⇣ =

p
p2q2

Q̃2
. (11)

C(n)
W are the Wilson coe�cients, and C

2
n(⌘) are the Gegen-

bauer polynomials, which arise as a result of resumming
target mass e↵ects [31, 32].
In order to accurately extract the Mellin moments, one

needs to determine the Wilson coe�cients beyond zeroth
order. Since these Wilson coe�cients only account for
the ultraviolet e↵ects of QCD, they may be calculated
using perturbation theory. The Wilson coe�cients may
be written

C(n)
W (Q̃2) = 1 + ↵sc

(1)
n + . . . . (12)

1
Note that Ref. [30], uses a normalization for the Mellin mo-

ments which di↵ers by a factor of 2
n
from our convention. Ours

agrees with the ‘standard’ normalization which allows us to di-

rectly compare our result with other determinations of the second

Mellin moment.
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Figure 1: Graphical representation of the factorization formula. Only one of the two
form-factor terms in (4) is shown for simplicity.

an operator Oi in the weak effective Hamiltonian is given by

〈M1M2|Oi|B̄〉 =
∑

j

F B→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u) + (M1 ↔ M2)

+
∫ 1

0
dξdudv T II

i (ξ, u, v) ΦB(ξ) ΦM1(v) ΦM2(u)

if M1 and M2 are both light, (4)

〈M1M2|Oi|B̄〉 =
∑

j

F B→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u)

if M1 is heavy and M2 is light.

Here F
B→M1,2

j (m2
2,1) denotes a B → M1,2 form factor, and ΦX(u) is the light-cone

distribution amplitude for the quark-antiquark Fock state of meson X. These non-
perturbative quantities will be defined precisely in the next subsection. T I

ij(u) and
T II

i (ξ, u, v) are hard-scattering functions, which are perturbatively calculable. The
hard-scattering kernels and light-cone distribution amplitudes depend on a factoriza-
tion scale and scheme, which is suppressed in the notation of (4). Finally, m1,2 denote
the light meson masses. Eq. (4) is represented graphically in Fig. 1. (The second
line of the first equation in (4) is somewhat simplified and may require including an
integration over transverse momentum in the B meson starting from order α2

s , see
the remarks after (12).)

As it stands, the first equation in (4) applies to decays into two light mesons, for
which the spectator quark in the B meson (in the following simply referred to as the
“spectator quark”) can go to either of the final-state mesons. An example is the decay
B− → π0K−. If the spectator quark can go only to one of the final-state mesons, as
for example in B̄d → π+K−, we call this meson M1 and the second form-factor term
on the right-hand side of (4) is absent.

The factorization formula simplifies when the spectator quark goes to a heavy
meson (second equation in (4)), such as in B̄d → D+π−. In this case the third term
on the right-hand side of (4), which accounts for hard interactions with the spectator

6

5

FIG. 2. The leading-order diagrams that contribute to the
pion form factor. �(x, Q̃x) is the pion wave function, that
gives the amplitude for finding the quark or antiquark within
the pion carrying the fractional momentum x or 1 � x. The
photon transfers the momentum q0 (in Minkowski space),
Q2 = �q02, for the qq pair of total momentum P producing a
qq pair of final momentum P 0.

Since this mass decays very fast with the momentum our
calculations are not a↵ected if we just assume M2

g (q
2) ⇡

M2
g , as we took for granted in the previous section.
The inclusion of radiative corrections in the hard-

scattering amplitude imply that TH(x, y,Q2) has to be
multiplied by the factor [50]

[1�
5

6

↵s(Q2)

⇡
] . (27)

Note that in our calculations we are including the radia-
tive corrections in the hard-scattering amplitude, and as-
sume that factorization happens at a scale Q2 > 1 GeV2.
The result for the electromagnetic pion form factor is

shown in Fig.(3), where it is compared to a simple fit to
the experimental data [59]:

F fit
⇡ (Q2) =

0.46895

Q2

✓
1�

0.3009

Q2

◆
, (28)

although this is a quite naive fit, which does not include
one of the highest energy data. It is clear that more data
is necessary in order to check the high energy behavior of
the pion form factor, but it is quite interesting that the
high energy behavior of the electromagnetic form fac-
tor seems to be reasonably described by the same factors
(pion DA and dynamical masses) that we considered pre-
viously. We observe that the pion form factor is not very
sensitive to mq and mg, changing by about 15% (19%)
when mq (mg) ranges from 200 to 250 MeV (from 500 to
700 MeV).
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FIG. 3. Pion form factor calculated with the flat pion dis-
tribution of Eq.(12), and with dynamical quark and gluon
masses given respectively by 250 and 600 MeV. Comparison
with the experimental fit of Ref.[59]. The experimental data
are taken from [60–63].

V. HARD EXCLUSIVE TWO PHOTON
PRODUCTION OF A PION PAIR

The helicity amplitudes for a pion pair production in
exclusive two photon collisions at high energies and large
center of mass scattering angles ✓cm is given by

M
��0

=

Z 1

0
dx

Z 1

0
dy'⇤(x, Q̃x)'

⇤(y, Q̃y)T
��0

H (x, y,Q2),

(29)
where Q̃x = Min(x, 1 � x)

p
s| sin ✓cm|, similarly for Q̃y,

and s = W 2
�� is the square of the cm energy of the two-

photon system. T��0

H (x, y,Q2) is the helicity dependent
perturbative hard scattering amplitude for two pion pro-
duction. The spin-averaged cross section for producing
the pion pair is

d�

dz
=

1

32⇡s
h|M|

2
i, (30)

with

h|M|
2
i =

1

4

X

��0

���M��0
���
2
. (31)

and z = cos ✓cm. The hard scattering amplitudes (in
leading order) for the di↵erent helicity structures are
given by [49]

T (0)
H (++)

T (0)
H (��)

)
=

16⇡↵s

3s

32⇡↵

x(1� x)y(1� y)

⇥


(e1 � e2)2a

1� z2

�
, (32)
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FIG. 5: Extraction of moments of meson distribution amplitudes. Here, the light-shaded circle denotes the pion interpolating
operator and the dark circle and dark square indicate the vector and axial-vector currents, respectively.

In this case, choosing MΨ = 2.1 GeV, q0 = 1.98 GeV and Q2 = −3.85 GeV2 which gives the flatter behaviour shown
in the RHS of Fig. 4 may be more appropriate. Without performing the large scale simulations that are required to
determine the Compton amplitude, it is hard to be definite on the choices of parameters. However, it seems that this
approach has significant potential to determine higher moments of isovector parton distributions than are currently
available from QCD.

IV. DISTRIBUTION AMPLITUDES FROM CURRENT-CURRENT MATRIX ELEMENTS

A further application of the approach we have outlined is in computing moments of meson distribution amplitudes,
φM . In the lattice approach, we can extract moments of distribution amplitudes in the same way as DIS determines
moments of parton distributions; for example, we may study the matrix element 〈π±|T [V µ

Ψ,ψ(x)Aν
Ψ,ψ(0)]|0〉, where

V µ
Ψ,ψ and Aµ

Ψ,ψ are fictitious vector and axial vector heavy-light currents. This process is described by the tensor

Sµν
Ψ,ψ(p, q) =

∫
d4x ei q·x〈π+(p)|T [V µ

Ψ,ψ(x)Aν
Ψ,ψ(0)]|0〉 . (23)

Following from Eq.(9), the OPE of the two currents leads to the same matrix elements of twist-two operators that
determine the moments of the pion distribution amplitude:

〈π+(p)|ψγ{µ1γ5(i D)µ2 . . . (i D)µn}ψ|0〉 = fπ〈ξ
n−1〉π [pµ1 . . . pµn − traces] , (24)

where

〈ξn〉π ≡

∫ 1

0
dξ ξnφπ(ξ) . (25)

These matrix elements can be determined by studying the various components of Sµν
Ψ,ψ for varying mΨ and qµ

analogously to Eq. (14). As in the DIS case, many higher-twist contributions are absent because of the valence nature
heavy quark and the problems that plague direct evaluation of higher moments due to the lattice cutoff are eliminated.
Since only the zeroth (decay constant) and second moments of the pion distribution amplitude have been investigated
in the direct approach [51, 52, 53, 54, 55, 56], any information on higher moments will be useful in constraining the
distribution amplitude from QCD. For flavour non-diagonal mesons (e.g. π±, K±,0), extraction of the tensor Sµν

Ψ,ψ on
the lattice only requires the computation of the Wick contraction shown in Fig. 5.

V. SUMMARY

To summarise, the direct study of Compton scattering tensor on the lattice using the operator product expansion
can provide useful information on the moments of quark distributions. Using currents that couple an unphysical,
quenched, heavy quark field to the physical light quarks renders the approach feasible without modifying the non-
perturbative physics that can be extracted. This has the potential that a large enough number of moments can
be extracted that the parton distributions can be reliably reconstructed from lattice calculations. Our analysis has
focused on the unpolarised isovector quark distribution, but it can also be used to study the other twist-two and twist-
three parton distributions and generalised parton distributions. Additionally, this method will allow computations of
the moments of meson distribution amplitudes where even the lowest non-trivial moment is not known reliably from
the lattice.

+
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I. INTRODUCTION

tµµΨ,ψ = ψγµ
−i(D/ + q/ ) +mΨ

(iD + q)2 +m2
Ψ

γνψ + ψγν
−i(D/ − q/ ) +mΨ

(iD − q)2 +m2
Ψ

γµψ (1)

−i(D/ ± q/ ) +mΨ

(iD ± q)2 +m2
Ψ

= −
−i(D/ ± q/ ) +mΨ

Q2 +D2 −m2
Ψ

∞
∑

n=0

(

−2iq ·D

Q2 +D2 −m2
Ψ

)n

(2)

(

−2iq ·D +D2

Q2 −m2
Ψ

)

(3)

mΨ = MΨ − α/2 (4)

Q̃2 = Q2 +D2 −m2
Ψ = Q2 −M2

Ψ + α+ β (5)

p q

Oµ1...µn

ψ = ψγ{µ1(iDµ2) . . . (iDµn})ψ − traces (6)

α = 0.4 GeV

α = 1.2 GeV

Oµ1...µn

ψ = ψγ5γ
{µ1(iDµ2) . . . (iDµn})ψ − traces (7)

〈π+(p)|Oµ1...µn

ψ |0〉 = fπan−1 [p
µ1 . . . pµn − traces] (8)

〈π+(p)|ū(z/2)γ5γµd(−z/2)|0〉 = −ipµfπ

∫ 1

0

dξ ei(ξ̄p
z

2
−ξp z

2 )φπ(ξ) (9)

an =

∫ 1

0

dξ ξnφπ(ξ) (10)

(

q ↔ −q
µ ↔ µ

)

(11)

(

q ↔ −q′

V µ
Ψ,ψ ↔ AνΨ,ψ

)

(12)

2

involves a determination of the Mellin moments of the
LCDA [3, 4]. These are defined by

h⇠niµ2 =

Z 1

�1
d⇠ ⇠n�(⇠, µ2), (3)

where ⇠ = 2x� 1 and x is the momentum fraction of the
collinear quark anti-quark pair. Noting again the isospin
symmetry x $ (1�x) we see that only the even moments
may be non-zero for the pion. These moments may be
related to local matrix elements which are immediately
amenable to a lattice calculation. It is possible to write
the full distribution amplitude with the knowledge of the
Mellin moments alone:

�(⇠, µ2) =
1

2⇡

Z 1

�1
ds

 1X

n=0

(is)n

n!
h⇠niµ2

!
e�is⇠. (4)

Unfortunately, the breaking of the full rotation group
on the lattice leads to operator mixing and thus power
divergences appear in twist-2 operators with spin higher
than four [5]. These power divergences make the determi-
nation of the higher moments more di�cult. Neverthe-
less, this approach has been well studied and has yielded
results for the first non-trivial moment of the pion and
kaon [6, 7]. A number of other proposals in the literature
seek to overcome this di�culty [8–28].

While much good work has been done in the extrac-
tion of the pion LCDA, it is clear that more must still
be done to acquire precise predictions of this object.
With this view, it is clearly of interest to explore other
proposals for the calculation of the distribution ampli-
tude. One such approach, which we pursue in this work
is the so-called heavy quark operator product expansion
(HOPE) [29, 30]. The HOPE method builds on the con-
ventional operator product expansion (OPE) approach,
by performing the numerical simulation with a fictitious
heavy quark species, which leads to a number of advan-
tages over the standard treatment [29]. This method al-
lows the extraction of the Mellin moments of the LCDA,
and thus in principle allows the reconstruction of the am-
plitude within a wide range of x. In this paper, we dis-
cuss the application of the HOPE method to the pion’s
LCDA. In particular, we discuss kinematic choices which
lead to an e�cient extraction of the second Mellin mo-
ment, and discuss the resulting preliminary extraction of
the second Mellin moment.

II. SUMMARY OF THE CALCULATION

The HOPE method is a multi-step procedure. Thus,
before beginning our discussion of the kinematics used
and the numerical study we performed, we provide an
overview of the calculation. The starting point of this
work is a study of the anti-symmetric version of the ma-

trix element in Minkowski space,

Tµ⌫(p, q) =

Z
d4z eiq·z h0| T [Jµ

A(z/2)J
⌫
A(�z/2)] |⇡(p)i ,

(5)
given by

Uµ⌫(p, q) =
1

2

✓
Tµ⌫(p, q)� T ⌫µ(p, q)

◆

=

Z
d4z eiq·z h0| T [J [µ

A (z/2)J⌫]A (�z/2)] |⇡(p)i ,

(6)

where the axial-vector current is replaced by the heavy-
light flavour changing current:

Jµ
A =  ̄�µ�5 +  ̄�µ�5 , (7)

with  being the light quark field, and  being the heavy
quark field. We note that it is also possible to study the
LCDA Mellin moments using the corresponding heavy-
light vector current. By applying the OPE to the above
matrix element, we can show [30] that to leading twist,
the antisymmetric tensor Uµ⌫(p, q) may be written in the
isospin limit as1

Uµ⌫(p, q) =
2if⇡✏µ⌫↵�q↵p�

Q̃2

1X

n even

C
2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)

⇥ h⇠ni ⇣n +O(1/Q̃3),
(8)

where f⇡ ⇡ 0.132 GeV is the pion decay constant, Q̃, ⌘
and ⇣ are kinematic variables given by

Q̃2 = �q2 �m2
 , (9)

⌘ =
p · qp
p2q2

, (10)

⇣ =

p
p2q2

Q̃2
. (11)

C(n)
W are the Wilson coe�cients, and C

2
n(⌘) are the Gegen-

bauer polynomials, which arise as a result of resumming
target mass e↵ects [31, 32].
In order to accurately extract the Mellin moments, one

needs to determine the Wilson coe�cients beyond zeroth
order. Since these Wilson coe�cients only account for
the ultraviolet e↵ects of QCD, they may be calculated
using perturbation theory. The Wilson coe�cients may
be written

C(n)
W (Q̃2) = 1 + ↵sc

(1)
n + . . . . (12)

1
Note that Ref. [30], uses a normalization for the Mellin mo-

ments which di↵ers by a factor of 2
n
from our convention. Ours

agrees with the ‘standard’ normalization which allows us to di-

rectly compare our result with other determinations of the second

Mellin moment.
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the full distribution amplitude with the knowledge of the
Mellin moments alone:

�(⇠, µ2) =
1

2⇡

Z 1

�1
ds

 1X

n=0

(is)n

n!
h⇠niµ2

!
e�is⇠. (4)

Unfortunately, the breaking of the full rotation group
on the lattice leads to operator mixing and thus power
divergences appear in twist-2 operators with spin higher
than four [5]. These power divergences make the determi-
nation of the higher moments more di�cult. Neverthe-
less, this approach has been well studied and has yielded
results for the first non-trivial moment of the pion and
kaon [6, 7]. A number of other proposals in the literature
seek to overcome this di�culty [8–28].

While much good work has been done in the extrac-
tion of the pion LCDA, it is clear that more must still
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With this view, it is clearly of interest to explore other
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tude. One such approach, which we pursue in this work
is the so-called heavy quark operator product expansion
(HOPE) [29, 30]. The HOPE method builds on the con-
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and thus in principle allows the reconstruction of the am-
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cuss the application of the HOPE method to the pion’s
LCDA. In particular, we discuss kinematic choices which
lead to an e�cient extraction of the second Mellin mo-
ment, and discuss the resulting preliminary extraction of
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Kinematic Strategy

I OPE proportional to

U
µ⌫(p,q) ⇠

1X

n=0

h⇠n
i!n (10)

! =
2p · q

Q̃2
=

1
x

(11)

I Physical region ! > 1, x < 1.
HOPE valid for |!| < 1. We
wish to enhance our sensitivity
to higher moments, so must
ensure ! not too small.

I Increasing 2p · q while keeping
Q̃

2 fixed lets us enhance the
contribution from higher
moments.
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Analytic Continuation

I Physical pion has p4 = iE⇡(p), we choose q4 real.
I In general, this choice leads to complex !:

! =
2p · q

Q̃2
=

2p · q
q2

4 + q2 + m2
Q

+
2iE⇡q4

q2
4 + q2 + m2
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Re{!}

Im{!}

�1 1

I Complex ! ensures we avoid physical region of amplitude. No
complication from on-shell states propagating between currents.
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By calculating the matrix element Tµ⌫(p, q) on the lat-
tice, one may then perform a fit to the form of the heavy
quark OPE, and thus obtain the Mellin moments of the
distribution amplitude. We note that when computing
the hadronic tensor, kinematics should be chosen such
that we remain in the unphysical region. This requires
choosing

(p+ q)2 < m2
hl ⇡ (m + ⇤QCD), (13)

where mhl is the mass of the lightest heavy-light me-
son. This ensures that the analytic continuuation to
Minkowski space is may be straightforwardly obtained
by the replacement q4 ! iq0. Thus this method is con-
strained to work in the window

⇤QCD ⌧

p
q2 < m ⌧

1

a
(14)

By performing the calculation at a number of lattice spac-
ings, one may then extrapolate to the continuum in the
usual way [33].

A. E�cient Kinematics for an Extraction of the
Second Mellin Moment

In this work, we are primarily interested in an extrac-
tion of the second Mellin moment of the pion’s LCDA.
From Eqn. 8, it is possible to see that the nth moment is
weighted by the kinematical factor

C
2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)⇣n. (15)

For this section, we shall assume that the Wilson coe�-
cients are unity. This results inO(↵S) errors, but will not
e↵ect the features discussed here. We define the weight
function

W (n) =
C
2
n(⌘)

2n(n+ 1)
⇣n. (16)

This weighting factor is the origin of the di�culty in ex-
tracting the higher moments in OPE approaches. For
example in our numerical work we fix the physical size of
the system to be L ⇥ a = 1.92 fm for all choices of the
lattice spacing, a. Thus the smallest unit of momentum
is

�p =
2⇡

La
= 0.64 GeV, (17)

with the pion at rest p = (0, 0, 0) ⇥ 0.64 GeV and the
current insertion momentum q = (0, 0, 1) ⇥ 0.64 GeV
with m⇡ = 0.56 GeV and m = 2.7 GeV, we find when
scanning over q4

max[W (0), q4] = 1 (18)

max[W (2), q4] = 0.008, (19)

p�=(0,0,0), q�=(0,0,1)

p�=(1,0,0), q�=( 1
2
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FIG. 1. We demonstrate the suppression factor obtained from
the kinematic weight function W (n) for several di↵erent kine-
matic choices. We examine the combinations p = (0, 0, 0),
q = (0, 0, 1) (blue circles), p = (1, 0, 0), q = (1/2, 0, 1) (earth
squares) and p = (4, 0, 0), q = (2, 0, 1) (garnet diamonds),
where all momenta should be multiplied by 0.64 GeV to deter-
mine their physical values. As we explain, in the case where
p · q 6= 0, the weighting function will be complex. Since
p · q = 0 for the kinematic choice described by the blue cir-
cles, there is no imaginary part, and we thus exclude those
points from the lower plot for clarity.

with higher moments further suppressed. Under nor-
mal circumstances, an extraction of even the first non-
trivial (ie, the second) moment with this particular choice
of kinematics would be a challenging task. Note how-
ever that by changing the kinematics, one may reduce
the kinematic suppression. This fact is demonstrated in
Fig. 1, where a number of di↵erent choices of kinemat-
ics are shown. We note that in general the extraction of
higher Mellin moments requires higher pion momentum,
which poses a challenge for numerical determinations.

Since we wish to numerically simulate the Compton
tensor so that we may determine the second Mellin mo-
ment, it is advantageous to explore our kinematic op-
tions to best optimize the desired signal. In particular,
by studying the properties of this weight function, we
can determine kinematics which allow us direct access
to the second Mellin moment, somewhat bypassing the
kinematical suppression.
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Correlators for lattice calculation5
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to
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with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:
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A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is
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inary, as can be seen from the operator product expansion. The
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To begin, we note that while this function is real in
Minkowski space, it is in general complex in Euclidean
space. This is because p4 = iE⇡(p), and we take q4 real.
Noting again the definitions of the kinematical variables

⌘ =
p · qp
p2q2

, (20)

⇣ =

p
p2q2

Q̃2
. (21)

We see that while ⇣2n is always real, under certain kine-
matical choices, ⌘ is complex:

⌘ =
p · qp
p2q2

+ i
E⇡(p)q4p

p2q2
. (22)

Note that only the even moments are non-zero due to
our assumption of isospin symmetry. The corresponding
Gegenbauer polynomials are also even. Thus we only
have even factors of ⌘, and so we see that if we have the
spatial inner product p · q 6= 0, the coe�cient of

⌦
⇠2
↵

is complex. Note that since the kinematic factors are
absent from the zeroth moment, this allows one separate
the contribution from the lowest moment, and thus gain
direct access to the second moment.

There are several caveats to this. Firstly, the overall
normalization of the HOPE can spoil this result. In par-
ticular consider the term ✏µ⌫↵�q↵p� . In this work, we
study the combination µ = 1, ⌫ = 2. We thus have

✏12↵�q↵p� = q3iE⇡(p)� q4p3. (23)

Since this is an overall multiplicative factor, it will in gen-
eral imbue all the moments (including the zeroth), with
a complex kinematical factor. We can ensure this does
not occur by taking kinematics where either p3 = 0 or
q3 = 0. In either case, the kinematic factor will again be
either purely real or purely imaginary, and thus the spe-
cial kinematics may be used to directly access the second
moment. Secondly, in this discussion we have neglected
the role of the Wilson coe�cients, however, we note that
these can only give corrections which are O(↵S), and
will be numerically small. Thus as we shall see the ‘spe-
cial kinematics’ are still e↵ective in isolating the second
Mellin moment. A demonstration of the special kinemat-
ics is shown in Fig. 2. To summarize, in this work, we
use the conditions

p · q 6= 0, (24)

p3 = 0. (25)

In particular, we choose to perform the simulations with
the momentum

p = (1, 0, 0)⇥ 0.64 GeV, (26)

q = (1/2, 0, 1)⇥ 0.64 GeV, (27)

The reason for the apparent fractional lattice momentum
is that as we shall see the ‘physical’ momenta are linear

FIG. 2. Examining the special kinematics. By choosing the
kinematics p = (1, 0, 0)⇥0.64 GeV, q = (1/2, 0, 1)⇥0.64 GeV
and considering the real and imaginary parts independently,
it is possible to see that while the imaginary part is satu-
rated with the contribution from the lowest moment, the real
part allows one to directly access the second Mellin moment
directly.

combinations of the inserted momenta, and in particu-
lar, we will see that we must include a factor of half in
the definition of q. This kinematic choice leads to less
kinematical suppression;

max[W (0), q4] = 1 (28)

max[W (2), q4] = 0.02, (29)

but most importantly allows one direct access to the sec-
ond Mellin moment. Having now optimized our kinemat-
ical choice, we proceed to discuss the numerical simula-
tion, and resulting extraction of the Mellin moment.

III. LATTICE COMPUTATION

The hadronic tensor is the Fourier transform of a
current-current correlator, so it can be written in terms
of 2- and 3-point functions of the form

C2(⌧⇡,p) =

Z
d3x eip·xh0|O⇡(x, ⌧⇡)O

†
⇡(0, 0)|0i (30)

Excited states?



 and the Fourier transform for Rμν Uμν
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and
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is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
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with
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The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:
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A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is
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relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
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the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
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currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to
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with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to

C2(⌧⇡,p) ⇠

��h⇡(p)|O†
⇡(0, 0)|0i

��2

2E⇡
e�E⇡⌧⇡ (33)

C3(⌧e, ⌧m;pe,pm) ⇠
h⇡(p)|O†

⇡(0, 0)|0i

2E⇡
e�E⇡(⌧e+⌧m)/2

Z
d3z eiq·zh0|T

h
Jµ
A

⇣z
2

⌘
J⌫
A

⇣
�
z

2

⌘i
|⇡(p)i

(34)

with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to

C2(⌧⇡,p) ⇠
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with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The

From  and  , one can constructCμν
3 C2

Then the hadronic tensor can be obtained via
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where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to
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with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract
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The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-

inary, as can be seen from the operator product expansion. The
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FIG. 6. Excited state contamination is controlled by the sepa-
ration between the pion source and the first current insertion
(⌧e). The inverse Fourier transform of the hadronic tensor
(Rµ⌫) is measured at a range of ⌧e values on the coarsest lat-
tice (a = 0.060 fm). Excited state contamination is clearly
visible at ⌧e . 0.4 fm and is suppressed at larger ⌧e.

FIG. 7. To make a quantitative estimate of excited-state con-
tamination, we fit the ⌧ = 0 data shown in Fig. 6 with a
two-state fit in ⌧e. Excited-state contamination is about 1%
at ⌧e = 0.7 fm, which is smaller than many of the other sta-
tistical and systematic errors in this analysis.

Future work will increase statistics on the three existing
ensembles and add a fourth, finer ensemble (at a = 0.030
fm) to approach the continuum limit.

The value of h⇠2i in the continuum should be indepen-
dent of the heavy quark mass up to higher twist e↵ects,
which scale as inverse powers of Q̃ and therefore vanish as
m ! 1. The level of precision of current measurements
is not su�cient to resolve these e↵ects, so the fit values
of h⇠2i are compatible at the two heavy quark masses in
the continuum limit.

VI. CONCLUSION

This preliminary study explores the potential of ex-
tracting the moments of the pion light-cone distribution

FIG. 8. The continuum extrapolation of h⇠2i at heavy quark
bare masses of about 1.6 GeV (blue) and 2.5 GeV (earth),
corresponding to renormalized masses of about 2.6 GeV and
3.2 GeV, respectively. The uncertainties in the continuum
limit are large but should be reduced in future work.

amplitude using the operator product expansion with a
heavy valence intermediate quark. In the quenched ap-
proximation at an unphysical pion mass, this method
does allow determination of h⇠2i in the continuum limit,
albeit with a large uncertainty (0.19 ± 0.07). Our on-
going work will significantly reduce the statistical and
systematic uncertainties in this preliminary calculation.
Looking forward, this method can in principle be used

to extract higher moments of the pion LCDA as well,
provided we choose appropriate kinematics. Future work
will investigate the possibility of determining the fourth
moment h⇠4i using this method.
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Momentum space: fit the continuum-limit  toU12

Position space: Fourier transform

Allows for determining  at finite lattice spacing⟨ξ2⟩
Offers a different analysis procedure 
Less sensitive to  and  ZA bA
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Continuum extrapolation for ⟨ξ2⟩
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Continuum extrapolation for  from fπ ⟨ξ0⟩
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Conclusion and outlook

The HOPE method is completely worked out for ϕπ(x, μ)

In general, need large p for accessing non-leading moments  

A strategy is found for computing  at low p⟨ξ2⟩

Numerical result shows the validity of  the HOPE method

Future: higher  and other partonic quantities⟨ξn⟩
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Enhancing the signal: the need

Leading contribution in Re[ ] is ~   U12 ⟨ξ2⟩ω2

Leading contribution in Im[ ] is ~   U12 ⟨ξ0⟩

We work with |ω | =
2p ⋅ q

Q̃

2
< 1

Much noisier compared to Im[ ] U12



Enhancing the signal: the idea
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TABLE I. The ensembles used in this study and the number of measurements performed on each.

� a (fm) L3 ⇥ T light heavy, 1 heavy, 2 Ncfg Nsrc Light Props Heavy Props
6.30168 0.060 323 ⇥ 64 0.135146 0.119867 0.112779 450 7 3150 126,000
6.43306 0.048 403 ⇥ 80 0.135170 0.122604 0.116599 250 2 500 20,000
6.59773 0.041 483 ⇥ 96 0.135028 0.124420 0.119228 341 3 1023 40,920

symmetric parts of Rµ⌫ . Specifically,

Re[Uµ⌫(p, q)] = Re

Z 1

�1
d⌧ Rµ⌫(⌧ ;p,q)e�iq4⌧

�

/

Z 1

0
d⌧ [Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q)] sin(q4⌧)

(40)

Thus, we need to measure a di↵erence Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) that is two orders of magnitude smaller
than each of the terms constituting the di↵erence. The
precision to which we can measure this di↵erence depends
on how well the two terms are correlated (which would
cause correlated errors to cancel). However, for moder-
ately large ⌧ , the correlators Cµ⌫

3 (⌧e, ⌧e± ⌧ ;pe,pm) used
to compute Rµ⌫(±⌧ ;p,q) have poorly correlated uncer-
tainties since the sinks are temporally separated on the
lattice.

We could obtain better correlations – and there-
fore better error cancellation – if we could com-
pute Rµ⌫(�⌧ ;p,q) using Cµ⌫

3 (⌧m, ⌧e;pe,pm), since
then the correlators used to compute Rµ⌫(⌧ ;p,q) and
Rµ⌫(�⌧ ;p,q) would be at the same timeslices (up to in-
terchange of the two current insertions). However, with
the current setup where the sequential propagator passes
through the first current inserted, this would require cur-
rent insertions at all desired ⌧m, which would be pro-
hibitively expensive. Instead, we use �5-hermiticity to
write

Cµ⌫
3 (⌧e, ⌧m;pe,pm)⇤ = C⌫µ

3 (⌧m, ⌧e;�pm,�pe) (41)

where pe and pm are related to p and q via (36), (37).
This lets us compute both terms in the right-hand side
of (40) in terms of correlators with ⌧m � ⌧e, since

Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q) = Rµ⌫(⌧ ;p,q)+Rµ⌫(⌧ ;�p,q)
(42)

Now, the terms in the right-hand side of (42) are more
highly correlated, so we would expect larger cancellation
of correlated errors. This e↵ect is shown in Fig. 4, where
uncertainties are reduced by a factor of about 10 by using
the right-hand side of (42) rather than the left-hand side.

Euclidean-space data Rµ⌫
are related to the Minkowski-space

hadronic tensor via Laplace transform

Uµ⌫
(q, p) =

Z 1

�1
d⌧ e�q0⌧Rµ⌫

(⌧ ;q,p)

whose kernel is purely real for real q0. Thus, if Uµ⌫
with q0 2 R

is imaginary, Rµ⌫
(⌧ ;p,q) must be too.

FIG. 4. Comparing both sides of the equality in (42)
Rµ⌫(⌧ ;p,q) + Rµ⌫(⌧ ;�p,q) (blue) and Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) (earth), both measured with two sources on 450
configurations. These quantities agree in expectation, but the
former has uncertainties an order of magnitude smaller than
the latter.

IV. FITTING TO THE HOPE

At the kinematics used here, the nth moment picks up

a factor of
⇣

p·q
Q̃

⌘n
. 0.12n, so the contribution of fourth

moment is suppressed by a factor of about 50 relative to
that of the second moment. As a result, in this work,
we will neglect higher-moment contributions, so we can
write the operator product expansion as

Uµ⌫ =
2if⇡"µ⌫⇢�q⇢p�

Q̃2


C
(0)
W + h⇠2i

6(p · q)2 � p2q2

6(Q̃2)2
C
(2)
W

+ · · ·+O

✓
⇤QCD

Q̃

◆�

(43)

where Q̃2 = �m2
 � q2, m is the renormalized heavy

quark mass, and C
(n)
W are perturbatively calculable Wil-

son coe�cients. For this analysis, we have calculated the
Wilson coe�cients to 1-loop order, and we will publish
the results in forthcoming work [33]. The remaining pa-
rameters (f⇡,m , h⇠2i) will be fit to the data.
In principle, one could measure f⇡ separately using

the pion-axial current. However, measurements involv-
ing heavy quarks are known to involve additional nor-
malization factors, which have been approximated by El-
Khadra, Kronfeld, and Mackenzie [37]. If we fit f⇡ from
the hadronic tensor, any errors in this overall normaliza-

We work with  where Minkowskian  is imaginary.|ω | < 1 Uμν

From ;p,q).Uμν
Minkowski(p, q) = ∫

∞

−∞
dτ e−q0τ Rμν(τ
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on how well the two terms are correlated (which would
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former has uncertainties an order of magnitude smaller than
the latter.
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6.30168 0.060 323 ⇥ 64 0.135146 0.119867 0.112779 450 7 3150 126,000
6.43306 0.048 403 ⇥ 80 0.135170 0.122604 0.116599 250 2 500 20,000
6.59773 0.041 483 ⇥ 96 0.135028 0.124420 0.119228 341 3 1023 40,920

symmetric parts of Rµ⌫ . Specifically,

Re[Uµ⌫(p, q)] = Re

Z 1

�1
d⌧ Rµ⌫(⌧ ;p,q)e�iq4⌧

�

/

Z 1

0
d⌧ [Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q)] sin(q4⌧)

(40)

Thus, we need to measure a di↵erence Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) that is two orders of magnitude smaller
than each of the terms constituting the di↵erence. The
precision to which we can measure this di↵erence depends
on how well the two terms are correlated (which would
cause correlated errors to cancel). However, for moder-
ately large ⌧ , the correlators Cµ⌫

3 (⌧e, ⌧e± ⌧ ;pe,pm) used
to compute Rµ⌫(±⌧ ;p,q) have poorly correlated uncer-
tainties since the sinks are temporally separated on the
lattice.

We could obtain better correlations – and there-
fore better error cancellation – if we could com-
pute Rµ⌫(�⌧ ;p,q) using Cµ⌫

3 (⌧m, ⌧e;pe,pm), since
then the correlators used to compute Rµ⌫(⌧ ;p,q) and
Rµ⌫(�⌧ ;p,q) would be at the same timeslices (up to in-
terchange of the two current insertions). However, with
the current setup where the sequential propagator passes
through the first current inserted, this would require cur-
rent insertions at all desired ⌧m, which would be pro-
hibitively expensive. Instead, we use �5-hermiticity to
write

Cµ⌫
3 (⌧e, ⌧m;pe,pm)⇤ = C⌫µ

3 (⌧m, ⌧e;�pm,�pe) (41)

where pe and pm are related to p and q via (36), (37).
This lets us compute both terms in the right-hand side
of (40) in terms of correlators with ⌧m � ⌧e, since

Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q) = Rµ⌫(⌧ ;p,q)+Rµ⌫(⌧ ;�p,q)
(42)

Now, the terms in the right-hand side of (42) are more
highly correlated, so we would expect larger cancellation
of correlated errors. This e↵ect is shown in Fig. 4, where
uncertainties are reduced by a factor of about 10 by using
the right-hand side of (42) rather than the left-hand side.

Euclidean-space data Rµ⌫
are related to the Minkowski-space

hadronic tensor via Laplace transform

Uµ⌫
(q, p) =

Z 1

�1
d⌧ e�q0⌧Rµ⌫

(⌧ ;q,p)

whose kernel is purely real for real q0. Thus, if Uµ⌫
with q0 2 R

is imaginary, Rµ⌫
(⌧ ;p,q) must be too.

R��(�;p�,q�)+R��(�;-p�,q�)

R��(�;p�,q�)-R��(-�;p�,q�)
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FIG. 4. Comparing both sides of the equality in (42)
Rµ⌫(⌧ ;p,q) + Rµ⌫(⌧ ;�p,q) (blue) and Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) (earth), both measured with two sources on 450
configurations. These quantities agree in expectation, but the
former has uncertainties an order of magnitude smaller than
the latter.

IV. FITTING TO THE HOPE

At the kinematics used here, the nth moment picks up

a factor of
⇣

p·q
Q̃

⌘n
. 0.12n, so the contribution of fourth

moment is suppressed by a factor of about 50 relative to
that of the second moment. As a result, in this work,
we will neglect higher-moment contributions, so we can
write the operator product expansion as

Uµ⌫ =
2if⇡"µ⌫⇢�q⇢p�

Q̃2


C
(0)
W + h⇠2i

6(p · q)2 � p2q2

6(Q̃2)2
C
(2)
W

+ · · ·+O

✓
⇤QCD

Q̃

◆�

(43)

where Q̃2 = �m2
 � q2, m is the renormalized heavy

quark mass, and C
(n)
W are perturbatively calculable Wil-

son coe�cients. For this analysis, we have calculated the
Wilson coe�cients to 1-loop order, and we will publish
the results in forthcoming work [33]. The remaining pa-
rameters (f⇡,m , h⇠2i) will be fit to the data.
In principle, one could measure f⇡ separately using

the pion-axial current. However, measurements involv-
ing heavy quarks are known to involve additional nor-
malization factors, which have been approximated by El-
Khadra, Kronfeld, and Mackenzie [37]. If we fit f⇡ from
the hadronic tensor, any errors in this overall normaliza-

2 sources on 450 configs 

 fma = 0.060


