## Parton physics from Euclidean current-current correlator with a valence heavy quark: pion light-cone distribution amplitude as an example

C.-J. David Lin<br>National Chiao Tung University, Taiwan<br>

Field Theory Team seminar, RIKEN RCCS, Kobe
18/11/2020
In collaboration with William Detmold, Anthony Grebe, Issaku Kanamori, Santanu Mondal, Robert Perry and Yong Zhao

## Outline

- General HOPE strategy

```
W. Detmold and CJDL, PRD }73\mathrm{ (2006)
```

- HOPE and the pion light-cone wavefunction
W.Detmold, A.Grebe, I.Kanamori, CJDL, S.Mondal, R.Perry, Y.Zhao, Contribution to APLAT2020, arXiv:2009.09473.
- Preliminary numerical result

> W.Detmold, A.Grebe, I.Kanamori, CJDL, S.Mondal, R.Perry, Y.Zhao, Contribution to APLAT2020, arXiv:2009.09473.

- Outlook


## General strategy

## Parton distribution from lattice QCD

## The "traditional" approach

Hadronic tensor (PDFs from the twist-2 sector)

$$
W_{S}^{\mu \nu}(p, q)=\int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S|\left[J^{\mu}(x), J^{\nu}(0)\right]|p, S\rangle
$$

## Parton distribution from lattice QCD

## The "traditional" approach

Hadronic tensor (PDFs from the twist-2 sector)

$$
\begin{aligned}
& W_{S}^{\mu \nu}(p, q)=\int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S|\left[J^{\mu}(x), J^{\nu}(0)\right]|p, S\rangle \\
& \text { optical theorem } \\
& T_{S}^{\mu \nu}(p, q)=\int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S| T\left[J^{\mu}(x) J^{\nu}(0)\right]|p, S\rangle
\end{aligned}
$$

## Parton distribution from lattice QCD

## The "traditional" approach

Hadronic tensor (PDFs from the twist-2 sector)

$$
\begin{aligned}
& W_{S}^{\mu \nu}(p, q)=\int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S|\left[J^{\mu}(x), J^{\nu}(0)\right]|p, S\rangle \\
& \text { optical theorem } \\
& T_{S}^{\mu \nu}(p, q)=\int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S| T\left[J^{\mu}(x) J^{\nu}(0)\right]|p, S\rangle
\end{aligned}
$$

## Light-cone OPE

$$
T\left[J^{\mu}(x) J^{\nu}(0)\right]=\sum_{i, n} \mathcal{C}_{i}\left(x^{2}, \mu^{2}\right) x_{\mu_{1}} \ldots x_{\mu_{n}} \mathcal{O}_{i}^{\mu \nu \mu_{1} \ldots \mu_{n}}(\mu)
$$



Power divergences arising from Lorentz symmetry breaking

## Parton distribution from lattice QCD

The "new" approach to avoid difficulties in renormalisation


General idea: Inserting non-local, instead of local, operator

## Parton distribution from lattice QCD

The "new" approach to avoid difficulties in renormalisation


Make certain the absence of on-shell states for analytic continuation

## Parton distribution from lattice QCD

The "new" approach to avoid difficulties in renormalisation


Typical examples of the non-local operator
A space-like Wilson line (quasi-PDF and pseudo-PDF) X. Ji, PRL 110 (2013); A. Radyushkin, PRD 96 (2017)

Smeared "local" operators
Z. Davoudi and M. Savage, PRD 86 (2012)

Two currents separated by space-like distance
V. Braun and D. Mueller, EPJC 55 (2018)

Two flavour-changing currents with valence heavy quark W. Detmold and CJDL, PRD 73 (2006)

And other proposals
A. Chambers et al., PRL 118 (2017); Y. Ma and J.-W. Qiu, PRL 120 (2018);

## Introducing the valence heavy quark

Valence $\longrightarrow$ Not in the action

The "heavy quark" is relativistic
propagating in both space and time
The current for computing the even moments of the PDF

$$
J_{\Psi, \psi}^{\mu}(x)=\bar{\Psi}(x) \gamma^{\mu} \psi(x)+\bar{\psi}(x) \gamma^{\mu} \Psi(x)
$$

Compton tensor

$$
T_{\Psi, \psi}^{\mu \nu}(p, q) \equiv \sum_{S}\langle p, S| t_{\Psi, \psi}^{\mu \nu}(q)|p, S\rangle=\sum_{S} \int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S| T\left[J_{\Psi, \psi}^{\mu}(x) J_{\Psi, \psi}^{\nu}(0)\right]|p, S\rangle
$$

## Strategy for extracting the moments

$$
\begin{gathered}
T_{\Psi, \psi}^{\mu \nu}(p, q) \equiv \sum_{S}\langle p, S| t_{\Psi, \psi}^{\mu \nu}(q)|p, S\rangle=\sum_{S} \int d^{4} x \mathrm{e}^{i q \cdot x}\langle p, S| T\left[J_{\Psi, \psi}^{\mu}(x) J_{\Psi, \psi}^{\nu}(0)\right]|p, S\rangle \\
J_{\Psi, \psi}^{\mu}(x)=\bar{\Psi}(x) \gamma^{\mu} \psi(x)+\bar{\psi}(x) \gamma^{\mu} \Psi(x)
\end{gathered}
$$

- Simple renormalisation for quark bilinears.
- Work with the hierarchy of scales $\Lambda_{\mathrm{QCD}} \ll \sqrt{q^{2}} \leq m_{\Psi} \ll \frac{1}{a}$
$\rightarrow$ Heavy scales for short-distance OPE.
$\rightarrow$ Avoid branch point in Minkowski space

$$
\text { at }(q+p)^{2} \sim\left(m_{N}+m_{\Psi}\right)^{2}
$$

- Extrapolate $T_{\Psi, \psi}^{\mu \nu}(p, q)$ to the continuum limit first.
$\rightarrow$ Then match to the short-distance OPE results.
$\rightarrow$ Extract the moments without power divergence.


## Short-distance OPE \& valence heavy quark



## HOPE

## and pion light-cone distribution amplitude

W.Detmold, A.Grebe, I.Kanamori, CJDL, S.Mondal, R.Perry, Y.Zhao,

Contribution to APLAT2020, arXiv:2009.09473.

## Pion light-cone wavefunction

$$
\begin{aligned}
& \langle 0| \bar{\psi}\left(z_{2} n\right) \not \hbar \gamma_{5} W\left[z_{2} n, z_{1} n\right] \psi\left(z_{1} n\right)\left|\pi^{+}(\mathbf{p})\right\rangle \\
& \quad=i f_{\pi}(p \cdot n) \int_{0}^{1} d x e^{-i\left(z_{1} x+z_{2}(1-x)\right) p \cdot n} \phi_{\pi}\left(x, \mu^{2}\right) \\
& \left\langle\xi^{n}\right\rangle_{\mu^{2}}=\int_{-1}^{1} d \xi \xi^{n} \phi_{\pi}\left(\xi, \mu^{2}\right) \\
& \text { OPE Mellin moments } \\
& \langle 0| O_{\psi}^{\mu_{1} \ldots \mu_{n}}|\pi(p)\rangle=f_{\pi}\left\langle\xi^{n-1}\right\rangle\left[p^{\mu_{1}} \ldots p^{\mu_{n}}-\text { traces }\right] \\
& O_{\psi}^{\mu_{1} \ldots \mu_{n}}=\bar{\psi} \gamma_{5} \gamma^{\left\{\mu_{1}\right.}\left(i D^{\mu_{2}}\right) \ldots\left(i D^{\left.\mu_{n}\right\}}\right) \psi-\text { traces }
\end{aligned}
$$

## Phenomenological relevance

Pion form factor in QCD exclusive processes


Important input for flavour physics


## Hadronic tensor for computing pion LCDA



$$
T^{\mu \nu}(p, q)=\int d^{4} z e^{i q \cdot z}\langle 0| \mathcal{T}\left[J_{A}^{\mu}(z / 2) J_{A}^{\nu}(-z / 2)\right]|\pi(\mathbf{p})\rangle
$$

$$
J_{A}^{\mu}=\bar{\Psi} \gamma^{\mu} \gamma^{5} \psi+\bar{\psi} \gamma^{\mu} \gamma^{5} \Psi
$$

$\Psi$ is the valence, relativistic heavy quark

$$
U^{\mu \nu}(p, q)=\frac{1}{2}\left(T^{\mu \nu}(p, q)-T^{\nu \mu}(p, q)\right)
$$

## OPE for the hadronic tensor: Euclidean result

$$
\begin{array}{cc}
U^{\mu \nu}(p, q)=\frac{2 \epsilon^{\mu \nu \alpha \beta} q_{\alpha} p_{\beta}}{\tilde{Q}^{2}} \sum_{n \text { even }}^{\infty} \frac{\zeta^{n} \mathcal{C}_{n}^{2}(\eta)}{2^{n}(n+1)} C_{W}^{(n)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{n}\right\rangle+\mathcal{O}\left(1 / \tilde{Q}^{3}\right) \\
\mu=2 \mathrm{GeV} \text { in this talk } & \text { higher-twist } \\
\tilde{Q}^{2}=q^{2}+m_{\Psi}^{2} \\
\eta=\frac{p \cdot q}{\sqrt{p^{2} q^{2}}}, \zeta=\frac{\sqrt{p^{2} q^{2}}}{\tilde{Q}^{2}} \\
\mathcal{C}_{n}^{2}(\eta): \text { target-mass effect } & \text { one-loop } \\
& \text { fit lattice data }
\end{array}
$$

## OPE for $U^{\mu \nu}$ : issue in fitting higher moments

$$
U^{\mu \nu}(p, q) \sim \sum_{n=0}^{\infty}\left\langle\xi^{n}\right\rangle \omega^{n}, \omega=\frac{2 p \cdot q}{\tilde{Q}^{2}}=\frac{2 \mathbf{p} \cdot \mathbf{q}}{q_{4}^{2}+\mathbf{q}^{2}+m_{Q}^{2}}+\frac{2 i E_{\pi} q_{4}}{q_{4}^{2}+\mathbf{q}^{2}+m_{Q}^{2}}
$$

suppressing higher-moments
need large $\mathbf{p}$ to make $\omega \rightarrow 1$


## OPE for $U^{\mu \nu}$ : issue in fitting higher moments

$$
\begin{aligned}
U^{\mu \nu}(p, q) & =\frac{2 \epsilon^{\mu \nu \alpha \beta} q_{\alpha} p_{\beta}}{\tilde{Q}^{2}} \sum_{n \text { even }}^{\infty} \frac{\zeta^{n} \mathcal{C}_{n}^{2}(\eta)}{2^{n}(n+1)} C_{W}^{(n)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{n}\right\rangle+\mathcal{O}\left(1 / \tilde{Q}^{3}\right) \\
& =\frac{2 \epsilon^{\mu \nu \alpha \beta} q_{\alpha} p_{\beta}}{\tilde{Q}^{2}} \sum_{n \text { even }}^{\infty} W(n) C_{W}^{(n)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{n}\right\rangle+\mathcal{O}\left(1 / \tilde{Q}^{3}\right)
\end{aligned}
$$



In general, need large $\mathbf{p}$ to access non-leading moments

## Strategy for fitting $\left\langle\xi^{2}\right\rangle$ at low pion momentum

$$
\begin{aligned}
U^{12}(p, q) & =\frac{2 \epsilon^{12 \alpha \beta} q_{\alpha} p_{\beta}}{\tilde{Q}^{2}} \sum_{n \text { even }}^{\infty} \frac{\zeta^{n} \mathcal{C}_{n}^{2}(\eta)}{2^{n}(n+1)} C_{W}^{(n)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{n}\right\rangle+\mathcal{O}\left(1 / \tilde{Q}^{3}\right) \\
= & \frac{2\left(q_{3} p_{4}-q_{4} p_{3}\right)}{\tilde{Q}^{2}}\left[C_{W}^{(0)}\left(\tilde{Q}^{2}\right) f_{\pi}+\frac{6(p \cdot q)^{2}-p^{2} q^{2}}{6\left(\tilde{Q}^{2}\right)^{2}} C_{W}^{(2)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{2}\right\rangle+\ldots\right]+\mathcal{O}\left(1 / \tilde{Q}^{3}\right) \\
& \text { choose } \mathbf{p} \cdot \mathbf{q} \neq 0 \text { while } p_{3}=0, q_{3} \neq 0 \text { and } q_{4} \text { being real }
\end{aligned}
$$

$$
=\frac{\frac{2 i q_{3} E_{\pi}}{\tilde{Q}^{2}}\left[C_{W}^{(0)}\left(\tilde{Q}^{2}\right) f_{\pi}\right.}{\text { imaginary }}+\frac{\left.\frac{6(p \cdot q)^{2}-p^{2} q^{2}}{6\left(\tilde{Q}^{2}\right)^{2}} C_{W}^{(2)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{2}\right\rangle+\ldots\right]+\mathcal{O}\left(1 / \tilde{Q}^{3}\right)}{\text { complex }}
$$

The largest contribution to $\operatorname{Re}\left[U^{12}\right]$ is from $\left\langle\xi^{2}\right\rangle$

## Correlators for lattice calculation



$$
\begin{array}{r}
C_{3}^{\mu \nu}\left(\tau_{e}, \tau_{m} ; \mathbf{p}_{e}, \mathbf{p}_{m}\right)=\int d^{3} \mathbf{x}_{e} d^{3} \mathbf{x}_{m} e^{i \mathbf{p}_{e} \cdot \mathbf{x}_{e}} e^{i \mathbf{p}_{m} \cdot \mathbf{x}_{m}} \\
\langle 0| \mathcal{T}\left[J_{A}^{\mu}\left(\mathbf{x}_{e}, \tau_{e}\right) J_{A}^{\nu}\left(\mathbf{x}_{m}, \tau_{m}\right) \mathcal{O}_{\pi}^{\dagger}(\mathbf{0}, 0)\right]|0\rangle
\end{array}
$$

$$
C_{2}\left(\tau_{\pi}, \mathbf{p}\right)=\int d^{3} \mathbf{x} e^{i \mathbf{p} \cdot \mathbf{x}}\langle 0| \mathcal{O}_{\pi}\left(\mathbf{x}, \tau_{\pi}\right) \mathcal{O}_{\pi}^{\dagger}(\mathbf{0}, 0)|0\rangle
$$

## $R^{\mu \nu}$ and the Fourier transform for $U^{\mu \nu}$

From $C_{3}^{\mu \nu}$ and $C_{2}$, one can construct

$$
\begin{gathered}
R^{\mu \nu}(\tau ; \mathbf{p}, \mathbf{q})=\int d^{3} \mathbf{z} e^{i \mathbf{q} \cdot \mathbf{z}}\langle 0| \mathcal{T}\left[J^{\mu}\left(\frac{z}{2}\right) J^{\nu}\left(-\frac{z}{2}\right)\right]|\pi(\mathbf{p})\rangle \\
z=x_{e}-x_{m}, \quad \mathbf{p}=\mathbf{p}_{e}+\mathbf{p}_{m}, \quad \mathbf{q}=\frac{1}{2}\left(\mathbf{p}_{m}-\mathbf{p}_{e}\right)
\end{gathered}
$$

Then the hadronic tensor can be obtained via

$$
U^{\mu \nu}(p, q) \equiv \int d \tau e^{i q_{4} \tau} R^{[\mu \nu]}(\tau ; \mathbf{p}, \mathbf{q})
$$

## Exploratory quenched calculation @ $M_{\pi} \approx 560 \mathrm{MeV}$

Wilson plaquette and non-perturbatively improved clover actions

| $a(\mathrm{fm})$ | $\hat{L}^{3} \times \hat{T}$ | $N_{\text {config }}$ | $N_{\text {src }}$ |
| :---: | :---: | :---: | :---: |
| 0.081 | $24^{3} \times 48$ | 650 | 2 |
| 0.060 | $32^{3} \times 64$ | 450 | 3 |
| 0.048 | $40^{3} \times 80$ | 250 | 3 |
| 0.041 | $48^{3} \times 96$ | 341 | 3 |


| bare $m_{\Psi}$ | fitted $m_{\Psi}$ |
| :---: | :---: |
| 1.0 GeV | 2.0 GeV |
| 1.6 GeV | 2.6 GeV |
| 2.5 GeV | 3.3 GeV |

- $\mathbf{p}=(1,0,0) \mathbf{q}=(1 / 2,0,1)$ in units of $2 \pi / L \sim 0.64 \mathrm{GeV}$
- $U^{\mu \nu}$ is $O(a)$ improved without improving the axial current


## Excited-state contamination




## Continuum extrapolation of $U^{12}$




## Continuum extrapolation of $U^{12}$




## Results of $U^{12}$




## OPE fits in momentum and position spaces

- Momentum space: fit the continuum-limit $U^{12}$ to
$U^{12}(p, q)=\frac{2 i q_{3} E_{\pi}}{\tilde{Q}^{2}}\left[C_{W}^{(0)}\left(\tilde{Q}^{2}\right) f_{\pi}+\frac{6(p \cdot q)^{2}-p^{2} q^{2}}{6\left(\tilde{Q}^{2}\right)^{2}} C_{W}^{(2)}\left(\tilde{Q}^{2}\right) f_{\pi}\left\langle\xi^{2}\right\rangle+\ldots\right]+\mathcal{O}\left(1 / \tilde{Q}^{3}\right)$
- Position space: Fourier transform

$$
\tilde{U}^{\mu \nu}(p, \mathbf{q}, \tau)=\int d \tau e^{-i q_{4} \tau} U^{\mu \nu}(p, q)
$$

$\rightarrow$ Allows for determining $\left\langle\xi^{2}\right\rangle$ at finite lattice spacing
$\rightarrow$ Offers a different analysis procedure
$\rightarrow$ Less sensitive to $Z_{A}$ and $b_{A}$

## Continuum extrapolation for $\left\langle\xi^{2}\right\rangle$



## Continuum extrapolation for $\left\langle\xi^{2}\right\rangle$



## Continuum extrapolation for $\left\langle\xi^{2}\right\rangle$



## Continuum extrapolation for $f_{\pi}$ from $\left\langle\xi^{0}\right\rangle$



## Comparing with other calculations



## Conclusion and outlook

- The HOPE method is completely worked out for $\phi_{\pi}(x, \mu)$
- In general, need large $\mathbf{p}$ for accessing non-leading moments
- A strategy is found for computing $\left\langle\xi^{2}\right\rangle$ at low $\mathbf{p}$
- Numerical result shows the validity of the HOPE method
- Future: higher $\left\langle\xi^{n}\right\rangle$ and other partonic quantities


## Backup slides

## Enhancing the signal: the need

We work with $|\omega|=\left|\frac{2 p \cdot q^{2}}{\tilde{Q}}\right|<1$
Leading contribution in $\operatorname{Im}\left[U^{12}\right]$ is $\sim\left\langle\xi^{0}\right\rangle$
Leading contribution in $\operatorname{Re}\left[U^{12}\right]$ is $\sim\left\langle\xi^{2}\right\rangle \omega^{2}$
Much noisier compared to $\operatorname{Im}\left[U^{12}\right]$

## Enhancing the signal: the idea

We work with $|\omega|<1$ where Minkowskian $U^{\mu \nu}$ is imaginary.
From $U_{\text {Minkowski }}^{\mu \nu}(p, q)=\int_{-\infty}^{\infty} d \tau e^{-q_{0} \tau} R^{\mu \nu}(\tau ; \mathbf{p}, \mathbf{q})$.
$\longrightarrow R^{\mu \nu}$ is imaginary.
Back to Euclidean space:

$$
\operatorname{Re}\left[U^{\mu \nu}(\mathbf{p}, q)\right]=\operatorname{Re}\left[\int_{-\infty}^{\infty} d \tau R^{\mu \nu}(\tau ; \mathbf{p}, \mathbf{q}) e^{-i q_{4} \tau}\right]
$$

$$
\propto \int_{0}^{\infty} d \tau\left[R^{\mu \nu}(\tau ; \mathbf{p}, \mathbf{q})-R^{\mu \nu}(-\tau ; \mathbf{p}, \mathbf{q})\right] \sin \left(q_{4} \tau\right)
$$

$$
\gamma_{5} \text { hermiticity } \longrightarrow=R^{\mu \nu}(\tau ; \mathbf{p}, \mathbf{q})+R^{\mu \nu}(\tau ;-\mathbf{p}, \mathbf{q})
$$

More correlated
reduced error

## Enhancing the signal: the result



