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QFT

In path-integral formulation, all physical predictions in QFT is the

generating functional:
Z= / Dge™.

SQCD = /d4X[,QCD = Sw + S¢

In particular, for QCD,

where
Sw = /d4XZ’(/_)f (I.’)/MDH - mf) 1/){ and SG = Sg(AZ)
f
The expectation value of an observable can be computed using

(0)=3 / DGO(6)e.
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Lattice QCD

Now the task is to evaluate (O). We do this non-perturbatively. To be
more specific,

» We perform Wick rotation from Minkovski to Eulcidean space-time

to obtain )
_ = —Sg
— 5 [ Poolo)e

where Sg is a real-valued Euclidean action.

» Then, we use e °F as a Monte-Carlo weight and have
N
0= jim 43 0=%3 0,

To make the computation doable on a computer,

» We discretize the space-time into the
lattice with its spacing a and dimension
L3xT.

» Fermion fields, v, live on a lattice site, and
gauge fields are replaced by a link, U,,,
connecting the adjacent points.
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The Problem

As the fermion fields in the action are Grassmann numbers, using its
properties, we can take integration over fermion fields explicitly to
obtain

(0) = %/ZDUO(D‘l, U)DetD(U)e™%¢

where D is a Dirac matrix in Sy, = YD = 3" ¢ (D + mr) vy
Evaluation of the expectation value requires

» computation of the inverse of the Dirac matrix repeatedly many
times

» generation of gauge configurations according to the weight
e~ >sDetD(U) via importance sampling, e.g., HMC methods

In lattice QCD calculations, the main computational task is to solve the
system

Dx = b.
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The Matrix

» Dirac matrix: D = [Pg+m

» Wilson Dirac operator:
Dw =3 ZZ:O (Vu(Ay + AF) —alA,AF) + 2 where

D = = (Ul + ) — 9()
A= (90x) — Ublx — Alx — ) = ()
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The Matrix for Twisted Mass Fermions
» The clover-improved Wilson Dirac operator:

3
C.

Dew = Dw — 353/

(V1) @ (Quu(x) = Qupu(x)) I

w,v=0
where Q. (x) = 323, U5 (x) and

Uy (x) =Un(x) Un (x + ) UL (x + 2) UL ()
Upn (x) = U (x + ) U (x + 2) UJ(x) Up (%)

» The degenerated twisted mass
operator:

Dp(p) = (Dew @ ) + iu(ls @ 73)

_ (DTI\S(N) DTMO(—,U,))

where DTM(M) = DCW + /ul'5

Normalized density

3 4 5 6 7 8

Approx. rescaled eigenvalues [MeV] ;
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Why do we need a linear solver?

» Typically, for modern simulations, the size of the lattice is
V =128 x 643 ~ 3 x 107.

» Then, a typical size of the matrix is n x n with
n=Vx 4 x 3 x 2 ~8x10®~6.4GB
—~ = =~

spins  colors  complex

» For general matrix inversion, the computational cost is O(n?379)
(Optimized CW-like algorithms)

> If we were to store all entries of the inverse, we need the memory
space of n x n~ 6.5 x 107 ~ 5 x 10°GB = 5EB

» It is impractical in lattice computations to invert D explicitly and
store all its entries.
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Why do we need a good linear solver?

» We switch to solving Dx = b.

b is usually a random vector or a point source, i.e., b = 0x, y» Where
X,y are lattice sites and a, b are internal quantum numbers.

» In practice, computation of point-to-all propagators, i.e., the
solutions of Dx = b with a point source, is often sufficient, e.g., for
two-point correlation functions.

» The inversion needs to be done a lot of times.

» For example, computation of nucleon structure requires

4 x 3 x 2 x 5 x 200 x 400 ~ 107 inversions.
N N N AR - TN

spins  colors  flavors proj src pos  configs

[ We need a good solver! ]
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Krylov Solver

» Due to sparse nature of the matrix, the computational cost for
matrix-vector multiplication is O(n)

> We use a Krylov method, which consists of constructing a Krylov
subspace K = span{b, Db, D?b, D3b, - --, D*~1b}, projecting the
system onto K, and solving the projected system to obtain an
approximate solution x.

» As it is a projection-based method, it does not require a large
memory space.
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Krylov Solver - Critical Slowing Down

» The condition number for D is roughly proportional to the inverse of

the mass.

» The matrix D becomes singular as the mass approaches its critical

value mepige.

» Convergence to the solution slows down.

» Inversion on and generation of gauge configuration at physical light
quark masses leads to a larger condition number and thus increasing

solver time.

10000 7
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Multigrid Solvers

Among various solvers, a class of solvers based on multigrid approaches
in preconditioning Krylov subspace solvers has turned out to be very
successful (Luscher 2007b; Luscher 2007a; Osborn et al. 2010; R. Babich
et al. 2010; Frommer et al. 2013).

Several of the implementations for clover Wilson fermions that are openly
available includes

> A two-level multigrid approach based on Liischers inexact deflation
(Luscher 2007b) available as OpenQCD at
http://luscher.web.cern.ch/luscher/openQCD/

» Multigrid with generalized conjugate residual (MG-GCR)
(J. Brannick et al. 2008; Clark et al. 2008; Ronald Babich et al.
2009; R. Babich et al. 2010) available as part of the USQCD package
QOPQDP at https://github.com/usqcd-software/qopqdp and
QUDA at http://lattice.github.io/quda/

> An aggregation-based domain decomposition multigrid (DDaAMG)
approach (Frommer et al. 2013) available at
https://github.com/DDalphaAMG/DDalphaAMG.
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Extending Multigrid Solvers

Extension of DDaAMG to twisted mass fermions:

» C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer, F. Kahl, and
M. Rottmann, Adaptive Aggregation-based Domain Decomposition
Multigrid for Twisted Mass Fermions, Phys. Rev. D 94, 11 (2016)

» The generalization to non-degenerate twisted mass fermions is
discussed in (Alexandrou, Bacchio, and Finkenrath )

» Publicly available at https://github.com/sbacchio/DDalphaAMG

» A version with new features at
https://github.com/sy3394/DDalphaAMG

Extension to other fermions:
» MG-GCR to domain-wall fermions in (Cohen et al. )

» DDaAMG to overlap fermions in (James Brannick et al. )
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DDaAMG - Basics

>

Adaptive Aggregation-based Domain Decomposition Multigrid
method

» The algorithm is designed to invert a large sparse matrix effectively

In particular, the algorithm is applied to Dirac matrices for Wilson or
twisted mass fermions

It takes advantage of the sparse structure of the Dirac matrix.
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DDaAMG - Preconditioners

» To circumvent the issue of critical slowing down and effectively
invert the large sparse matrix, DDaAMG uses two preconditioners: a
smoother and coarse grid correction

» For a smoother, we use red-black Schwarz Alternating Procedure
(SAP) (Luscher 2007a).

> For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).
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Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556
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SAP

» The lattice is divided into red blocks and black blocks in a
chessboard manner.

» Due to nearest neighbor interactions, block of a color couples to a
block of the other color

D rr

» After reordering, D = <
Dbr
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SAP

» In SAP, we neglect off-diagonal parts, D,s, Dp, i.e., inter-block
interactions.

» Then, within each group of blocks, we visit blocks sequentially and
invert the block matrix locally.
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SAP

Depending on when we perform the global residual update, error
propagates differently.

In additive SAP, residual update, r < b — Dx, is done once before
local inversion over blocks.

€+ (/—Zoflo>g

In multiplicative SAP, residual update is done every time before local
inversion on each block.

€+ lH(/ — D'D)

i

3

Information spread faster with multiplicative SAP.
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SAP

In red-black SAP, within a group of blocks of each color, additive
SAP is adopted, and over groups of blocks, multiplicative SAP is

used.
Define )
D;> 0 (0 0
Brr = < 0 0) and Bbb = <0 Dbb1> .
Then, error propagation is given by

e+ (I — MD)e = (I — B,D)(I — By,D)e.

Since local block matrices live on a single MPI rank, their inversion
does not call for global reduction so that SAP is suitable for
parallelization.
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SAP

» As it involves inversion of local block matrices, it removes UV-modes

from the residual
Smoother (SAP)

[J( =M D) vi ||/ ||l

0 500 1000 1500 2000 2500 300C
number i of eigenvalue A;
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Coarse Grid Correction

Basic Ideas:
» Start with Dx = b
» Restrict the problem onto a coarse grid
» Solve D.x. = r,

» Prolong the solution back to the original grid

VAN,

Smooth

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs550
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MG

To perform coarse-grid correction, we use a multigrid method. For that,
we need

» the restriction operator, R, which maps the problem from a finer
lattice to a coarser lattice

» the prolongation operator, P, which maps the problem from a
coarser lattice to a finer lattice

> RIP = |,

The coarsened problem is significantly cheaper to solve.
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MG

Using those two operators, we construct a coarse-grid Dirac matrix,
D. = RDP, and coarse-grid vectors, x. = Rx, ro = R(b — Dx). Then,

» Coarse-grid inversion: D¢x. = e
» Coarse-grid correction: x < x + PD-'R(b — Dx)
» Error propagation: € < (I — PD-*RD)e

In multi-level approaches, we generalize the coarse-grid correction to

> RiLiP =11

» D1 = RD/P; with Dy =D

» Diy1xi11 = rp1 = Ri(b — Dix)
> x; < x + PiD;}Ri(b — Dix;)
>

| (I[ — P/DllllR[D/)&‘/
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AMG

» For a standard MG methods, restriction and prolongation are defined
geometrically, for example using block aggregation.

» In algebraic multigrid approaches, we do not base the definition of P
and R on geometry of the lattice.

» Instead, we use eigenvectors of the Dirac operator with small
eigenvalues to define P and R based on partition of the lattice into

aggregates.
» This constructed P effectively captures the low-modes of D due to
local coherence (Luscher )-
A
&)
... lwy,) = — P=

I,
LI 25 /51



AMG

So in AMG, we define a coarse-grid Dirac matrix directly from the Dirac
matrix on the fine lattice.
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AMG

Coarse-grid correction removes low-modes from the residual.

POl Il
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Coarse grid correction
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number i of eigenvalue A;
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SAP+AMG

So when we combine the two preconditioners as follows,

er (I — MiD)*(l — iDL RiD) (I — MiDyYey,

the low-modes and high-modes of the error are both suppressed.

DD-cAMG

[E2g Vi I/ [1vi ]

02| ]

0 1 1 ! 1 1 1
0 500 1000 1500 2000 2500 3000
number i of eigenvalue A;
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DDaAMG with SAP and AMG

> Iterative adaptive setup phase:
® We construct P and so the coarse Dirac operator at each level.

® |nstead of applying eigensolver to D to get a few approximate
eigenvectors with small eigenvalues, we construct them in an
adaptive manner using two preconditioners.

® First, start with a set of random vectors, v;'s, solve Dv; = 0 using
only smoother to reduce the high modes from v;, and construct
initial multigrid hierarchy.

® Then, compute Dflv; with post-smoothing at each level and update
v; as well as P and D..
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DDaAMG with SAP and AMG

» Solver phase:

® We combine coarse-grid correction and Krylov method with a cycling
strategy called " K-cycle”" to obtain a recursive Krylov solver.

® Residuals, max Krylov space size, and a number of restarts can be
set to different values at different levels.

® In particular, the residual of 107" is sufficient at the bottom even
when the goal residual at the top is 107,

° o~

......... Satisﬁed?
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DDaAMG - Performance

» MG solvers outperforms traditional Krylov subspace solvers like the

conjugate gradient solver at small quark masses

» DDalphaAMG for twisted mass fermions is two orders of magnitude

faster than CG

= w
= w o o
w 15) =3 =] S

Time for solving Q24?2 [core-hrs]
-

My,d Mg Mc

T r —
L e CG 4

®  DD-aAMG
. ]
—m
B —5 m u

0.001 0.003 0.01 0.03 0.1 0.3

Twisted mass parameter (u)
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DDaAMG - Performance

» HMC simulation:

106
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o
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DDaAMG - Scaling

» Bottlenneck of Multigrid methods is the scalability

» Ideal scaling breaks down, and performance stagnates for
parallelization above 125 Skylake nodes in case of a 3-level MG
approach

» With the current hardware trends higher core counts per node the
scalability window will even shrink further

PDaIphaAMG - Strong scaling - V = 160x80x80x80
0

10° [Goem e
0
£
»
)
g
5
© O 0 ¢
S0t ©
o o]
E
4 @
g
8
z
0
10
10° 10t 102 10°

SuperMUC-NG - SKL Nodes

Figure 2: A scaling plot on the ensemble of Ny =2 + 1 4 1 twisted mass clover
with a ~ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon (" Skylake”)) at LRZ
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Multiple R.H.S. - Objectives

Originally,
» the code inverted each rhs one by one

» also, loops are vectorized manually using instruction sets for a
specific SIMD extension

However,
» We can perform multiple inversions more efficiently.

» We also want to improve portability of our code letting compilers
perform optimization analysis and vectorization.

Thus,

» We solve the system of equations with multiple right-hand sides
(rhs) simultaneously (b — b).
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Multiple R.H.S. - Implementation

» We define a new data structure for a bundle of vectors.

» Vectors in the bundle are ordered in such a way that the index on
vectors runs the fastest.

» All low-level routines are rewrited to respect the new structure.

» We process a bundle of right-hand vectors simultaneously using
SIMD vectorization of loops.

Lo [ n ] » [——fufu]w]u]u]w]e]u]e]
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Multiple R.H.S. - Implementation

» Instead of manually vectorizing the loops using instruction sets, we
auto-vectorize the loops using pragmas: _Pragma(”unroll”),
_Pragma("vector aligned"), and Pragma(”ivdep”).

» These pragmas are applied to a for-loop of a pre-determined
iteration length: for( jj=0; jj<num_loop; jj++).

» The number of rhs are assumed to be multiple of num_loop.

» This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix | SP Flops | DP Flops | SP Flops | DP Flops | SP Flops | DP Flops
128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table 1: Vectorization Reports
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Scaling

Conclusion:

» Breakdown of strong scaling can be pushed to higher parallelization,
mutiple rhs shows scalability up to 512 nodes

10° 10°
O 1rhs O 1rhs
O 4rhs k] O 4rhs
8 rhs 5 8 rhs
o 10% 8102
S 3 A
: 6 &
& 401 aqg! Opo
10 510
°
(5]
I3
10° < w1o°
10° 102 104 10° 102 104
# nodes # nodes
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Incorporating Block Krylov Solver

> Fast Accurate Block Linear krylOv Solver (Fabulous) is an external
library implementing block Krylov solvers such as GMRES and GCR
(Robbé and Sadkane ; Morgan ; Agullo, Giraud, and Jing

)

» |t combines BGMRES with detection of inexact breakdown,
deflation, and incremental QR factorization.

» It provides several different orthogonalization schemes.

» We linked the DDaAMG code to Fabulous and make it available
non-block GMRES or one of the solvers provided via fabulous library
at each level as a solver.

» Our implementation of multiple r.h.s. stultifies inexact breakdown.
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Parameters

For Fabulous,

> Solvers: BGMRES, BGCR, BGMRES with deflated restarting (DR),
BGMRES with incremental QR factorization (QR), BGMRES with
DR and QR (DRQR)

» The number of deflating eigenvectors (for DR methods).

» Orhogonalization schemes: Classical Gram-Schmidt (CGS), Modified
Gram-Schmidt (MGS), Iterative CGS (ICGS), lterative MGS, each
possibly with blocking

For DDaAMG,
» 0'M-level (bottom) and 1%t-level (intermediate) residuals

» 0'“-level (bottom) and 1%t-level (intermediate) max Krylov space
size and number of restarts
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Tuning Constants

The systems used for tuning:
» Lattice: 483 x 98 at physical point
» System: Cyclone (Intel Xeon Gold 6248) at The Cyprus Institute
> Used 6 nodes with 32 cores each
Fixed solver parameters:
» (The number of levels) = 3.
» The solver at the top: FGMRES
» The solver at the level 1: FGMRES
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Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

280
. CGS
260 ®  Block CGS
+  MGS
240 A ICGS
V¥ Block ICGS
220 < IMGS
0 + q Block IMGS
2 200 I
£ M
180 - A
A
1601 o + AV
v
140 ¢
|

0 2 4 6 8 10 12 14
Orthoscheme iter
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Tuning Solvers

Best Solver: BGMRES with QR and DR

. o BGMRES
160 | T eem
. DR
150 1 ° QR
. QRDR
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Tuning Residuals

Solver: BGMRES

time (s)

1000 A

800 A

600

400 A

200 A

Residual at the bottom

rp=5.1e-01
r =2.6e-01
r=1.4e-01
ry =6.9e-02
r =3.6e-02
r=1.8e-02
r; =9.4e-03
r=4.8e-03
r=2.5e-03
r; =1.3e-03
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Tuning Max Krylov Space Size

Solver: BGMRES with QR

—— #restarts=2
300 1 —— #restarts=4
—— #restarts=8
—— #restarts=9
250 4 —— #restarts=20
—— #restarts=40
w
P
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Tuning Mu Factor

» The mu factor is the factor multiplying g in Dy at the bottom
(1= 0up)

Solver: BGMRES with QR

240 A
220 A

200 1

time (s)

160 A

140 A
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8 10
Mu Factor

12 14
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Preliminary Tuning Results
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Outlook

» Scalability is extended by around a factor 5.

We also want to test out code on different architectures like AMD
Epyc's and ARM chips, e.g., Fujitsu A64FX.

» We will test reusable deflation space

» We consider a pipeline version of the solver to speed up the coarse
grid correction for extending the scaling region

» DDaAMG using a fabulous solver at the bottom showed a promising
result.

» We need to tune with more right-hand sides to confirm the trend.
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Thank you!
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