
Multiple Right-hand-side Implementation for
DDαAMG

Shuhei Yamamoto
s.yamamoto@cyi.ac.cy

Simone Bacchio, Jacob Finkenrath

September 22, 2020

1 / 51

mailto:s.yamamoto@cyi.ac.cy


Outline
Introduction and Motivation

Overview of DDαAMG

SAP

Coarse-grid correction

Performance

Implementation of Multiple R.H.S.

Motivation

Implementation details

Scaling results

Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)

Basics

Parameters

Tuning plots

Outlook

2 / 51



QFT

In path-integral formulation, all physical predictions in QFT is the
generating functional:

Z =

∫
Dφe iS .

In particular, for QCD,

SQCD =

∫
d4xLQCD = Sψ + SG

where

Sψ =

∫
d4x

∑
f

ψ̄f (iγµDµ −mf )ψf and SG = SG (Aa
µ).

The expectation value of an observable can be computed using

〈O〉 =
1

Z

∫
DφO(φ)e iS .

3 / 51



Lattice QCD
Now the task is to evaluate 〈O〉. We do this non-perturbatively. To be
more specific,

I We perform Wick rotation from Minkovski to Eulcidean space-time
to obtain

〈O〉 =
1

Z

∫
DφO(φ)e−SE

where SE is a real-valued Euclidean action.

I Then, we use e−SE as a Monte-Carlo weight and have

〈O〉 = lim
N→∞

1

N

N∑
i

Oi ≈
1

N

N∑
i

Oi .

To make the computation doable on a computer,

I We discretize the space-time into the
lattice with its spacing a and dimension
L3 × T .

I Fermion fields, ψ, live on a lattice site, and
gauge fields are replaced by a link, Uµ,
connecting the adjacent points. 4 / 51



The Problem

As the fermion fields in the action are Grassmann numbers, using its
properties, we can take integration over fermion fields explicitly to
obtain

〈O〉 =
1

Z

∫
DUO(D−1,U)DetD(U)e−SG

where D is a Dirac matrix in Sψ = ψ̄Dψ =
∑

f ψ̄f

(
/DE + mf

)
ψf .

Evaluation of the expectation value requires

I computation of the inverse of the Dirac matrix repeatedly many
times

I generation of gauge configurations according to the weight
e−SGDetD(U) via importance sampling, e.g., HMC methods

In lattice QCD calculations, the main computational task is to solve the
system

Dx = b.

5 / 51



The Matrix
I Dirac matrix: D = /DE + m

I Wilson Dirac operator:
DW = 1

2

∑3
µ=0 (γµ(∆µ + ∆µ)− a∆µ∆µ) + m

a where

∆µψ =
1

a
(Uµ(x)ψ(x + µ̂)− ψ(x))

∆µψ =
1

a

(
ψ(x)− U†µ(x − µ̂)ψ(x − µ̂)− ψ(x)

)
.

6 / 51



The Matrix for Twisted Mass Fermions
I The clover-improved Wilson Dirac operator:

DcW = DW −
csw
32

3∑
µ,ν=0

(γµγν)⊗ (Qµν(x)− Qνµ(x))

where Qµν(x) =
∑3

n=0 U
	n

µν (x) and

Uµν(x) =Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)

U	
µν(x) =Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)Uµ(x)

I The degenerated twisted mass
operator:

DD(µ) = (DcW ⊗ I2) + iµ(Γ5 ⊗ τ3)

=

(
DTM(µ) 0

0 DTM(−µ)

)
where DTM(µ) = DcW + iµΓ5

7 / 51



Why do we need a linear solver?

I Typically, for modern simulations, the size of the lattice is
V = 128× 643 ∼ 3× 107.

I Then, a typical size of the matrix is n × n with
n = V × 4︸︷︷︸

spins

× 3︸︷︷︸
colors

× 2︸︷︷︸
complex

∼ 8× 108 ' 6.4GB

I For general matrix inversion, the computational cost is O(n2.376)
(Optimized CW-like algorithms)

I If we were to store all entries of the inverse, we need the memory
space of n × n ' 6.5× 1017 ' 5× 109GB = 5EB

I It is impractical in lattice computations to invert D explicitly and
store all its entries.

8 / 51



Why do we need a good linear solver?

I We switch to solving Dx = b.

I b is usually a random vector or a point source, i.e., b = δxa,yb where
x , y are lattice sites and a, b are internal quantum numbers.

I In practice, computation of point-to-all propagators, i.e., the
solutions of Dx = b with a point source, is often sufficient, e.g., for
two-point correlation functions.

I The inversion needs to be done a lot of times.

I For example, computation of nucleon structure requires
4︸︷︷︸

spins

× 3︸︷︷︸
colors

× 2︸︷︷︸
flavors

× 5︸︷︷︸
proj

× 200︸︷︷︸
src pos

× 400︸︷︷︸
configs

∼ 107 inversions.

We need a good solver!

9 / 51



Krylov Solver

I Due to sparse nature of the matrix, the computational cost for
matrix-vector multiplication is O(n)

I We use a Krylov method, which consists of constructing a Krylov
subspace Kk = span{b,Db,D2b,D3b, · · · ,Dk−1b}, projecting the
system onto K, and solving the projected system to obtain an
approximate solution xk .

I As it is a projection-based method, it does not require a large
memory space.

10 / 51



Krylov Solver - Critical Slowing Down
I The condition number for D is roughly proportional to the inverse of

the mass.

I The matrix D becomes singular as the mass approaches its critical
value mcritc.

I Convergence to the solution slows down.

I Inversion on and generation of gauge configuration at physical light
quark masses leads to a larger condition number and thus increasing
solver time.

11 / 51



Outline
Introduction and Motivation

Overview of DDαAMG

SAP

Coarse-grid correction

Performance

Implementation of Multiple R.H.S.

Motivation

Implementation details

Scaling results

Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)

Basics

Parameters

Tuning plots

Outlook

12 / 51



Multigrid Solvers
Among various solvers, a class of solvers based on multigrid approaches
in preconditioning Krylov subspace solvers has turned out to be very
successful (Luscher 2007b; Luscher 2007a; Osborn et al. 2010; R. Babich
et al. 2010; Frommer et al. 2013).

Several of the implementations for clover Wilson fermions that are openly
available includes

I A two-level multigrid approach based on Lüschers inexact deflation
(Luscher 2007b) available as OpenQCD at
http://luscher.web.cern.ch/luscher/openQCD/

I Multigrid with generalized conjugate residual (MG-GCR)
(J. Brannick et al. 2008; Clark et al. 2008; Ronald Babich et al.
2009; R. Babich et al. 2010) available as part of the USQCD package
QOPQDP at https://github.com/usqcd-software/qopqdp and
QUDA at http://lattice.github.io/quda/

I An aggregation-based domain decomposition multigrid (DDαAMG)
approach (Frommer et al. 2013) available at
https://github.com/DDalphaAMG/DDalphaAMG.

13 / 51

http://luscher.web.cern.ch/luscher/openQCD/
https://github.com/usqcd-software/qopqdp
http://lattice.github.io/quda/
https://github.com/DDalphaAMG/DDalphaAMG


Extending Multigrid Solvers

Extension of DDαAMG to twisted mass fermions:

I C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer, F. Kahl, and
M. Rottmann, Adaptive Aggregation-based Domain Decomposition
Multigrid for Twisted Mass Fermions, Phys. Rev. D 94, 11 (2016)

I The generalization to non-degenerate twisted mass fermions is
discussed in (Alexandrou, Bacchio, and Finkenrath 2019)

I Publicly available at https://github.com/sbacchio/DDalphaAMG

I A version with new features at
https://github.com/sy3394/DDalphaAMG

Extension to other fermions:

I MG-GCR to domain-wall fermions in (Cohen et al. 2011)

I DDαAMG to overlap fermions in (James Brannick et al. 2016)

14 / 51

https://github.com/sbacchio/DDalphaAMG
https://github.com/sy3394/DDalphaAMG


DDαAMG - Basics

I Adaptive Aggregation-based Domain Decomposition Multigrid
method

I The algorithm is designed to invert a large sparse matrix effectively

I In particular, the algorithm is applied to Dirac matrices for Wilson or
twisted mass fermions

I It takes advantage of the sparse structure of the Dirac matrix.

15 / 51



DDαAMG - Preconditioners
I To circumvent the issue of critical slowing down and effectively

invert the large sparse matrix, DDαAMG uses two preconditioners: a
smoother and coarse grid correction

I For a smoother, we use red-black Schwarz Alternating Procedure
(SAP) (Luscher 2007a).

I For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556
16 / 51



SAP

I The lattice is divided into red blocks and black blocks in a
chessboard manner.

I Due to nearest neighbor interactions, block of a color couples to a
block of the other color

I After reordering, D =

(
Drr Drb

Dbr Dbb

)

17 / 51



SAP

I In SAP, we neglect off-diagonal parts, Drb, Dbr , i.e., inter-block
interactions.

I Then, within each group of blocks, we visit blocks sequentially and
invert the block matrix locally.

18 / 51



SAP

I Depending on when we perform the global residual update, error
propagates differently.

I In additive SAP, residual update, r ← b − Dx , is done once before
local inversion over blocks.

ε←

(
I −

∑
i

D−1
i D

)
ε

I In multiplicative SAP, residual update is done every time before local
inversion on each block.

ε←

[∏
i

(I − D−1
i D)

]
ε

I Information spread faster with multiplicative SAP.

19 / 51



SAP

I In red-black SAP, within a group of blocks of each color, additive
SAP is adopted, and over groups of blocks, multiplicative SAP is
used.

I Define

Brr =

(
D−1

rr 0
0 0

)
and Bbb =

(
0 0
0 D−1

bb

)
.

I Then, error propagation is given by

ε← (I −MD)ε = (I − BrrD)(I − BbbD)ε.

I Since local block matrices live on a single MPI rank, their inversion
does not call for global reduction so that SAP is suitable for
parallelization.

20 / 51



SAP

I As it involves inversion of local block matrices, it removes UV-modes
from the residual

21 / 51



Coarse Grid Correction

Basic Ideas:

I Start with Dx = b

I Restrict the problem onto a coarse grid

I Solve Dcxc = rc

I Prolong the solution back to the original grid

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs550
22 / 51



MG

To perform coarse-grid correction, we use a multigrid method. For that,
we need

I the restriction operator, R, which maps the problem from a finer
lattice to a coarser lattice

I the prolongation operator, P, which maps the problem from a
coarser lattice to a finer lattice

I RIP = Ic

The coarsened problem is significantly cheaper to solve.

23 / 51



MG

Using those two operators, we construct a coarse-grid Dirac matrix,
Dc = RDP, and coarse-grid vectors, xc = Rx , rc = R(b − Dx). Then,

I Coarse-grid inversion: Dcxc = rc

I Coarse-grid correction: x ← x + PD−1
c R(b − Dx)

I Error propagation: ε← (I − PD−1
c RD)ε

In multi-level approaches, we generalize the coarse-grid correction to

I Rl IlPl = Il+1

I Dl+1 = RlDlPl with D1 = D

I Dl+1xl+1 = rl+1 = Rl(bl − Dlxl)

I xl ← xl + PlD
−1
l+1Rl(b − Dlxl)

I εl ← (Il − PlD
−1
l+1RlDl)εl

24 / 51



AMG
I For a standard MG methods, restriction and prolongation are defined

geometrically, for example using block aggregation.

I In algebraic multigrid approaches, we do not base the definition of P
and R on geometry of the lattice.

I Instead, we use eigenvectors of the Dirac operator with small
eigenvalues to define P and R based on partition of the lattice into
aggregates.

I This constructed P effectively captures the low-modes of D due to
local coherence (Luscher 2007b).

25 / 51



AMG

So in AMG, we define a coarse-grid Dirac matrix directly from the Dirac
matrix on the fine lattice.

26 / 51



AMG

Coarse-grid correction removes low-modes from the residual.

27 / 51



SAP+AMG

So when we combine the two preconditioners as follows,

εl ← (I −MlDl)
k(Il − PlD

−1
l+1RlDl)(Il −MlDl)

jεl ,

the low-modes and high-modes of the error are both suppressed.

28 / 51



DDαAMG with SAP and AMG

I Iterative adaptive setup phase:

• We construct P and so the coarse Dirac operator at each level.

• Instead of applying eigensolver to D to get a few approximate
eigenvectors with small eigenvalues, we construct them in an
adaptive manner using two preconditioners.

• First, start with a set of random vectors, vi ’s, solve Dvi = 0 using
only smoother to reduce the high modes from vi , and construct
initial multigrid hierarchy.

• Then, compute D−1
l vi with post-smoothing at each level and update

vi as well as P and Dc .

29 / 51



DDαAMG with SAP and AMG

I Solver phase:

• We combine coarse-grid correction and Krylov method with a cycling
strategy called ”K-cycle” to obtain a recursive Krylov solver.

• Residuals, max Krylov space size, and a number of restarts can be
set to different values at different levels.

• In particular, the residual of 10−1 is sufficient at the bottom even
when the goal residual at the top is 10−10.

30 / 51



DDαAMG - Performance

I MG solvers outperforms traditional Krylov subspace solvers like the
conjugate gradient solver at small quark masses

I DDalphaAMG for twisted mass fermions is two orders of magnitude
faster than CG

31 / 51



DDαAMG - Performance

I HMC simulation:

32 / 51



DDαAMG - Scaling
I Bottlenneck of Multigrid methods is the scalability

I Ideal scaling breaks down, and performance stagnates for
parallelization above 125 Skylake nodes in case of a 3-level MG
approach

I With the current hardware trends higher core counts per node the
scalability window will even shrink further

10
0

10
1

10
2

10
310

0

10
1

10
2

SuperMUC-NG - SKL Nodes

re
l. 

sp
ee

du
p 

fo
r 

a 
si

ng
le

 r
hs

DDalphaAMG - Strong scaling - V = 160x80x80x80
single rhs - native

ideal scaling

Figure 2: A scaling plot on the ensemble of Nf = 2 + 1 + 1 twisted mass clover
with a ∼ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon (”Skylake”)) at LRZ

33 / 51



Outline
Introduction and Motivation

Overview of DDαAMG

SAP

Coarse-grid correction

Performance

Implementation of Multiple R.H.S.

Motivation

Implementation details

Scaling results

Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)

Basics

Parameters

Tuning plots

Outlook

34 / 51



Multiple R.H.S. - Objectives

Originally,

I the code inverted each rhs one by one

I also, loops are vectorized manually using instruction sets for a
specific SIMD extension

However,

I We can perform multiple inversions more efficiently.

I We also want to improve portability of our code letting compilers
perform optimization analysis and vectorization.

Thus,

I We solve the system of equations with multiple right-hand sides
(rhs) simultaneously (b → b).

35 / 51



Multiple R.H.S. - Implementation

I We define a new data structure for a bundle of vectors.

I Vectors in the bundle are ordered in such a way that the index on
vectors runs the fastest.

I All low-level routines are rewrited to respect the new structure.

I We process a bundle of right-hand vectors simultaneously using
SIMD vectorization of loops.

v0 v1 v2 v0 v1 v2 v0 v1 v2 v0 v1 v2

36 / 51



Multiple R.H.S. - Implementation

I Instead of manually vectorizing the loops using instruction sets, we
auto-vectorize the loops using pragmas: Pragma(”unroll”),
Pragma(”vector aligned”), and Pragma(”ivdep”).

I These pragmas are applied to a for-loop of a pre-determined
iteration length: for( jj=0; jj<num_loop; jj++).

I The number of rhs are assumed to be multiple of num_loop.

I This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix SP Flops DP Flops SP Flops DP Flops SP Flops DP Flops

128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table 1: Vectorization Reports

37 / 51



Scaling

Conclusion:

I Breakdown of strong scaling can be pushed to higher parallelization,
mutiple rhs shows scalability up to 512 nodes

# nodes

10
0

10
2

10
4

s
p
e
e
d
 u

p

10
0

10
1

10
2

10
3

1 rhs

4 rhs

8 rhs

# nodes

10
0

10
2

10
4

s
p
e
e
d
 u

p
 o

f 
c
o
a
rs

e
 g

ri
d

10
0

10
1

10
2

10
3

1 rhs

4 rhs

8 rhs

38 / 51



Outline
Introduction and Motivation

Overview of DDαAMG

SAP

Coarse-grid correction

Performance

Implementation of Multiple R.H.S.

Motivation

Implementation details

Scaling results

Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)

Basics

Parameters

Tuning plots

Outlook

39 / 51



Incorporating Block Krylov Solver

I Fast Accurate Block Linear krylOv Solver (Fabulous) is an external
library implementing block Krylov solvers such as GMRES and GCR
(Robbé and Sadkane 2006; Morgan 2005; Agullo, Giraud, and Jing
2014)

I It combines BGMRES with detection of inexact breakdown,
deflation, and incremental QR factorization.

I It provides several different orthogonalization schemes.

I We linked the DDαAMG code to Fabulous and make it available
non-block GMRES or one of the solvers provided via fabulous library
at each level as a solver.

I Our implementation of multiple r.h.s. stultifies inexact breakdown.

40 / 51



Parameters

For Fabulous,

I Solvers: BGMRES, BGCR, BGMRES with deflated restarting (DR),
BGMRES with incremental QR factorization (QR), BGMRES with
DR and QR (DRQR)

I The number of deflating eigenvectors (for DR methods).

I Orhogonalization schemes: Classical Gram-Schmidt (CGS), Modified
Gram-Schmidt (MGS), Iterative CGS (ICGS), Iterative MGS, each
possibly with blocking

For DDαAMG,

I 0th-level (bottom) and 1st-level (intermediate) residuals

I 0th-level (bottom) and 1st-level (intermediate) max Krylov space
size and number of restarts

41 / 51



Tuning Constants

The systems used for tuning:

I Lattice: 483 × 98 at physical point

I System: Cyclone (Intel Xeon Gold 6248) at The Cyprus Institute

I Used 6 nodes with 32 cores each

Fixed solver parameters:

I (The number of levels) = 3.

I The solver at the top: FGMRES

I The solver at the level 1: FGMRES

42 / 51



Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS

0 2 4 6 8 10 12 14
Orthoscheme iter

140

160

180

200

220

240

260

280
tim

e 
(s

)

 CGS
Block CGS
 MGS
 ICGS
Block ICGS
 IMGS
Block IMGS

43 / 51



Tuning Solvers

Best Solver: BGMRES with QR and DR

0 10 20 30 40
Deflating Eigvecs

110

120

130

140

150

160

tim
e 

(s
)

BGMRES
GCR
DR
QR
QRDR

44 / 51



Tuning Residuals

Solver: BGMRES

10 2 10 1

Residual at the bottom

200

400

600

800

1000

tim
e 

(s
)

r1 = 5.1e-01
r1 = 2.6e-01
r1 = 1.4e-01
r1 = 6.9e-02
r1 = 3.6e-02
r1 = 1.8e-02
r1 = 9.4e-03
r1 = 4.8e-03
r1 = 2.5e-03
r1 = 1.3e-03

45 / 51



Tuning Max Krylov Space Size

Solver: BGMRES with QR

10 15 20 25 30 35 40 45 50
Max Krylov Space Size

100

150

200

250

300

tim
e 

(s
)

#restarts=2
#restarts=4
#restarts=8
#restarts=9
#restarts=20
#restarts=40

46 / 51



Tuning Mu Factor

I The mu factor is the factor multiplying µ in DTM at the bottom
(µ→ δµµ)

Solver: BGMRES with QR

4 6 8 10 12 14
Mu Factor

120

140

160

180

200

220

240

tim
e 

(s
)

BGMRES with QR

47 / 51



Preliminary Tuning Results

4 r
hs 8rh

s

100

110

120

130

140

150

160
tim

e 
(s

)
Non-block Solver
Block Sovler

48 / 51



Outline
Introduction and Motivation

Overview of DDαAMG

SAP

Coarse-grid correction

Performance

Implementation of Multiple R.H.S.

Motivation

Implementation details

Scaling results

Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)

Basics

Parameters

Tuning plots

Outlook

49 / 51



Outlook

I Scalability is extended by around a factor 5.

I We also want to test out code on different architectures like AMD
Epyc’s and ARM chips, e.g., Fujitsu A64FX.

I We will test reusable deflation space

I We consider a pipeline version of the solver to speed up the coarse
grid correction for extending the scaling region

I DDαAMG using a fabulous solver at the bottom showed a promising
result.

I We need to tune with more right-hand sides to confirm the trend.

50 / 51



Thank you!
E. Agullo, L. Giraud, and Y.-F. Jing. “Block GMRES Method with Inexact Breakdowns and Deflated Restarting”. In: SIAM

Journal on Matrix Analysis and Applications 35.4 (2014), pp. 1625–1651. doi: 10.1137/140961912. eprint:
https://doi.org/10.1137/140961912. url: https://doi.org/10.1137/140961912.

Constantia Alexandrou, Simone Bacchio, and Jacob Finkenrath. “Multigrid approach in shifted linear systems for the

non-degenerated twisted mass operator”. In: Comput. Phys. Commun. 236 (2019), pp. 51–64. doi:
10.1016/j.cpc.2018.10.013. arXiv: 1805.09584 [hep-lat].

R. Babich et al. “Adaptive multigrid algorithm for the lattice Wilson-Dirac operator”. In: Phys. Rev. Lett. 105 (2010),

p. 201602. doi: 10.1103/PhysRevLett.105.201602. arXiv: 1005.3043 [hep-lat].

Ronald Babich et al. “The Role of multigrid algorithms for LQCD”. In: PoS LAT2009 (2009). Ed. by Chuan Liu and Yu Zhu,

p. 031. doi: 10.22323/1.091.0031. arXiv: 0912.2186 [hep-lat].

J. Brannick et al. “Adaptive Multigrid Algorithm for Lattice QCD”. In: Phys. Rev. Lett. 100 (2008), p. 041601. doi:

10.1103/PhysRevLett.100.041601. arXiv: 0707.4018 [hep-lat].

James Brannick et al. “Multigrid Preconditioning for the Overlap Operator in Lattice QCD”. In: Numer. Math. 132.3 (2016),

pp. 463–490. doi: 10.1007/s00211-015-0725-6. arXiv: 1410.7170 [hep-lat].

M.A. Clark et al. “The Removal of critical slowing down”. In: PoS LATTICE2008 (2008). Ed. by Christopher Aubin et al.,

p. 035. doi: 10.22323/1.066.0035. arXiv: 0811.4331 [hep-lat].

Saul D. Cohen et al. “Multigrid Algorithms for Domain-Wall Fermions”. In: PoS LATTICE2011 (2011). Ed. by Pavlos Vranas,

p. 030. doi: 10.22323/1.139.0030. arXiv: 1205.2933 [hep-lat].

A. Frommer et al. “An adaptive aggregation based domain decomposition multilevel method for the lattice wilson dirac

operator: multilevel results”. In: (July 2013). arXiv: 1307.6101 [hep-lat].

Martin Luscher. “Deflation acceleration of lattice QCD simulations”. In: JHEP 12 (2007), p. 011. doi:

10.1088/1126-6708/2007/12/011. arXiv: 0710.5417 [hep-lat].

Martin Luscher. “Local coherence and deflation of the low quark modes in lattice QCD”. In: JHEP 07 (2007), p. 081. doi:

10.1088/1126-6708/2007/07/081. arXiv: 0706.2298 [hep-lat].

Ronald B. Morgan. “Restarted block-GMRES with deflation of eigenvalues”. In: Applied Numerical Mathematics 54.2 (2005).

6th IMACS, pp. 222–236. issn: 0168-9274. doi: https://doi.org/10.1016/j.apnum.2004.09.028. url:
http://www.sciencedirect.com/science/article/pii/S0168927404002016.

J.C. Osborn et al. “Multigrid solver for clover fermions”. In: PoS LATTICE2010 (2010). Ed. by Giancarlo Rossi, p. 037. doi:

10.22323/1.105.0037. arXiv: 1011.2775 [hep-lat].

Mickaël Robbé and Miloud Sadkane. “Exact and inexact breakdowns in the block GMRES method”. In: Linear Algebra and its

Applications 419.1 (2006), pp. 265–285. issn: 0024-3795. doi: https://doi.org/10.1016/j.laa.2006.04.018. url:
http://www.sciencedirect.com/science/article/pii/S0024379506002230.

P. Wesseling. INTRODUCTION TO MULTIGRID METHODS. Tech. rep. 1995.

51 / 51

https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1137/140961912
https://doi.org/10.1016/j.cpc.2018.10.013
https://arxiv.org/abs/1805.09584
https://doi.org/10.1103/PhysRevLett.105.201602
https://arxiv.org/abs/1005.3043
https://doi.org/10.22323/1.091.0031
https://arxiv.org/abs/0912.2186
https://doi.org/10.1103/PhysRevLett.100.041601
https://arxiv.org/abs/0707.4018
https://doi.org/10.1007/s00211-015-0725-6
https://arxiv.org/abs/1410.7170
https://doi.org/10.22323/1.066.0035
https://arxiv.org/abs/0811.4331
https://doi.org/10.22323/1.139.0030
https://arxiv.org/abs/1205.2933
https://arxiv.org/abs/1307.6101
https://doi.org/10.1088/1126-6708/2007/12/011
https://arxiv.org/abs/0710.5417
https://doi.org/10.1088/1126-6708/2007/07/081
https://arxiv.org/abs/0706.2298
https://doi.org/https://doi.org/10.1016/j.apnum.2004.09.028
http://www.sciencedirect.com/science/article/pii/S0168927404002016
https://doi.org/10.22323/1.105.0037
https://arxiv.org/abs/1011.2775
https://doi.org/https://doi.org/10.1016/j.laa.2006.04.018
http://www.sciencedirect.com/science/article/pii/S0024379506002230

	Introduction and Motivation
	Overview of DDAMG
	SAP
	Coarse-grid correction
	Performance

	Implementation of Multiple R.H.S.
	Motivation
	Implementation details
	Scaling results

	Tuning Fast Accurate Block Linear krylOv Solver (Fabulous)
	Basics
	Parameters
	Tuning plots

	Outlook
	References

