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QFT

In path-integral formulation, all physical predictions in QFT is the
generating functional:

Z =

∫
Dφe iS .

In particular, for QCD,

SQCD =

∫
d4xLQCD = Sψ + SG

where

Sψ =

∫
d4x

∑
f

ψ̄f (iγµDµ −mf )ψf and SG = SG (Aa
µ).

The expectation value of an observable can be computed using

〈O〉 =
1

Z

∫
DφO(φ)e iS .
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Lattice QCD
Now the task is to evaluate 〈O〉. We do this non-perturbatively. To be
more specific,

I We perform Wick rotation from Minkovski to Eulcidean space-time
to obtain

〈O〉 =
1

Z

∫
DφO(φ)e−SE

where SE is a real-valued Euclidean action.

I Then, we use e−SE as a Monte-Carlo weight and have

〈O〉 = lim
N→∞

1

N

N∑
i

Oi ≈
1

N

N∑
i

Oi .

To make the computation doable on a computer,

I We discretize the space-time into the
lattice with its spacing a and dimension
L3 × T .

I Fermion fields, ψ, live on a lattice site, and
gauge fields are replaced by a link, Uµ,
connecting the adjacent points. 4 / 51



The Problem

As the fermion fields in the action are Grassmann numbers, using its
properties, we can take integration over fermion fields explicitly to
obtain

〈O〉 =
1

Z

∫
DUO(D−1,U)DetD(U)e−SG

where D is a Dirac matrix in Sψ = ψ̄Dψ =
∑

f ψ̄f

(
/DE + mf

)
ψf .

Evaluation of the expectation value requires

I computation of the inverse of the Dirac matrix repeatedly many
times

I generation of gauge configurations according to the weight
e−SGDetD(U) via importance sampling, e.g., HMC methods

In lattice QCD calculations, the main computational task is to solve the
system

Dx = b.
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The Matrix
I Dirac matrix: D = /DE + m

I Wilson Dirac operator:
DW = 1

2

∑3
µ=0 (γµ(∆µ + ∆µ)− a∆µ∆µ) + m

a where

∆µψ =
1

a
(Uµ(x)ψ(x + µ̂)− ψ(x))

∆µψ =
1

a

(
ψ(x)− U†µ(x − µ̂)ψ(x − µ̂)− ψ(x)

)
.
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The Matrix for Twisted Mass Fermions
I The clover-improved Wilson Dirac operator:

DcW = DW −
csw
32

3∑
µ,ν=0

(γµγν)⊗ (Qµν(x)− Qνµ(x))

where Qµν(x) =
∑3

n=0 U
	n

µν (x) and

Uµν(x) =Uµ(x)Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)

U	
µν(x) =Uν(x + µ̂)U†µ(x + ν̂)U†ν(x)Uµ(x)

I The degenerated twisted mass
operator:

DD(µ) = (DcW ⊗ I2) + iµ(Γ5 ⊗ τ3)

=

(
DTM(µ) 0

0 DTM(−µ)

)
where DTM(µ) = DcW + iµΓ5
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Why do we need a linear solver?

I Typically, for modern simulations, the size of the lattice is
V = 128× 643 ∼ 3× 107.

I Then, a typical size of the matrix is n × n with
n = V × 4︸︷︷︸

spins

× 3︸︷︷︸
colors

× 2︸︷︷︸
complex

∼ 8× 108 ' 6.4GB

I For general matrix inversion, the computational cost is O(n2.376)
(Optimized CW-like algorithms)

I If we were to store all entries of the inverse, we need the memory
space of n × n ' 6.5× 1017 ' 5× 109GB = 5EB

I It is impractical in lattice computations to invert D explicitly and
store all its entries.
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Why do we need a good linear solver?

I We switch to solving Dx = b.

I b is usually a random vector or a point source, i.e., b = δxa,yb where
x , y are lattice sites and a, b are internal quantum numbers.

I In practice, computation of point-to-all propagators, i.e., the
solutions of Dx = b with a point source, is often sufficient, e.g., for
two-point correlation functions.

I The inversion needs to be done a lot of times.

I For example, computation of nucleon structure requires
4︸︷︷︸

spins

× 3︸︷︷︸
colors

× 2︸︷︷︸
flavors

× 5︸︷︷︸
proj

× 200︸︷︷︸
src pos

× 400︸︷︷︸
configs

∼ 107 inversions.

We need a good solver!
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Krylov Solver

I Due to sparse nature of the matrix, the computational cost for
matrix-vector multiplication is O(n)

I We use a Krylov method, which consists of constructing a Krylov
subspace Kk = span{b,Db,D2b,D3b, · · · ,Dk−1b}, projecting the
system onto K, and solving the projected system to obtain an
approximate solution xk .

I As it is a projection-based method, it does not require a large
memory space.
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Krylov Solver - Critical Slowing Down
I The condition number for D is roughly proportional to the inverse of

the mass.

I The matrix D becomes singular as the mass approaches its critical
value mcritc.

I Convergence to the solution slows down.

I Inversion on and generation of gauge configuration at physical light
quark masses leads to a larger condition number and thus increasing
solver time.
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Multigrid Solvers
Among various solvers, a class of solvers based on multigrid approaches
in preconditioning Krylov subspace solvers has turned out to be very
successful (Luscher 2007b; Luscher 2007a; Osborn et al. 2010; R. Babich
et al. 2010; Frommer et al. 2013).

Several of the implementations for clover Wilson fermions that are openly
available includes

I A two-level multigrid approach based on Lüschers inexact deflation
(Luscher 2007b) available as OpenQCD at
http://luscher.web.cern.ch/luscher/openQCD/

I Multigrid with generalized conjugate residual (MG-GCR)
(J. Brannick et al. 2008; Clark et al. 2008; Ronald Babich et al.
2009; R. Babich et al. 2010) available as part of the USQCD package
QOPQDP at https://github.com/usqcd-software/qopqdp and
QUDA at http://lattice.github.io/quda/

I An aggregation-based domain decomposition multigrid (DDαAMG)
approach (Frommer et al. 2013) available at
https://github.com/DDalphaAMG/DDalphaAMG.
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Extending Multigrid Solvers

Extension of DDαAMG to twisted mass fermions:

I C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer, F. Kahl, and
M. Rottmann, Adaptive Aggregation-based Domain Decomposition
Multigrid for Twisted Mass Fermions, Phys. Rev. D 94, 11 (2016)

I The generalization to non-degenerate twisted mass fermions is
discussed in (Alexandrou, Bacchio, and Finkenrath 2019)

I Publicly available at https://github.com/sbacchio/DDalphaAMG

I A version with new features at
https://github.com/sy3394/DDalphaAMG

Extension to other fermions:

I MG-GCR to domain-wall fermions in (Cohen et al. 2011)

I DDαAMG to overlap fermions in (James Brannick et al. 2016)
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DDαAMG - Basics

I Adaptive Aggregation-based Domain Decomposition Multigrid
method

I The algorithm is designed to invert a large sparse matrix effectively

I In particular, the algorithm is applied to Dirac matrices for Wilson or
twisted mass fermions

I It takes advantage of the sparse structure of the Dirac matrix.
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DDαAMG - Preconditioners
I To circumvent the issue of critical slowing down and effectively

invert the large sparse matrix, DDαAMG uses two preconditioners: a
smoother and coarse grid correction

I For a smoother, we use red-black Schwarz Alternating Procedure
(SAP) (Luscher 2007a).

I For coarse grid correction, we use Algebraic MultiGrid (AMG)
(Wesseling 1995).

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs556
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SAP

I The lattice is divided into red blocks and black blocks in a
chessboard manner.

I Due to nearest neighbor interactions, block of a color couples to a
block of the other color

I After reordering, D =

(
Drr Drb

Dbr Dbb

)
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SAP

I In SAP, we neglect off-diagonal parts, Drb, Dbr , i.e., inter-block
interactions.

I Then, within each group of blocks, we visit blocks sequentially and
invert the block matrix locally.
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SAP

I Depending on when we perform the global residual update, error
propagates differently.

I In additive SAP, residual update, r ← b − Dx , is done once before
local inversion over blocks.

ε←

(
I −

∑
i

D−1
i D

)
ε

I In multiplicative SAP, residual update is done every time before local
inversion on each block.

ε←

[∏
i

(I − D−1
i D)

]
ε

I Information spread faster with multiplicative SAP.
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SAP

I In red-black SAP, within a group of blocks of each color, additive
SAP is adopted, and over groups of blocks, multiplicative SAP is
used.

I Define

Brr =

(
D−1

rr 0
0 0

)
and Bbb =

(
0 0
0 D−1

bb

)
.

I Then, error propagation is given by

ε← (I −MD)ε = (I − BrrD)(I − BbbD)ε.

I Since local block matrices live on a single MPI rank, their inversion
does not call for global reduction so that SAP is suitable for
parallelization.
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SAP

I As it involves inversion of local block matrices, it removes UV-modes
from the residual
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Coarse Grid Correction

Basic Ideas:

I Start with Dx = b

I Restrict the problem onto a coarse grid

I Solve Dcxc = rc

I Prolong the solution back to the original grid

Picture Courtesy: Luke Olson, http://lukeo.cs.illinois.edu/cs550
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MG

To perform coarse-grid correction, we use a multigrid method. For that,
we need

I the restriction operator, R, which maps the problem from a finer
lattice to a coarser lattice

I the prolongation operator, P, which maps the problem from a
coarser lattice to a finer lattice

I RIP = Ic

The coarsened problem is significantly cheaper to solve.
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MG

Using those two operators, we construct a coarse-grid Dirac matrix,
Dc = RDP, and coarse-grid vectors, xc = Rx , rc = R(b − Dx). Then,

I Coarse-grid inversion: Dcxc = rc

I Coarse-grid correction: x ← x + PD−1
c R(b − Dx)

I Error propagation: ε← (I − PD−1
c RD)ε

In multi-level approaches, we generalize the coarse-grid correction to

I Rl IlPl = Il+1

I Dl+1 = RlDlPl with D1 = D

I Dl+1xl+1 = rl+1 = Rl(bl − Dlxl)

I xl ← xl + PlD
−1
l+1Rl(b − Dlxl)

I εl ← (Il − PlD
−1
l+1RlDl)εl
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AMG
I For a standard MG methods, restriction and prolongation are defined

geometrically, for example using block aggregation.

I In algebraic multigrid approaches, we do not base the definition of P
and R on geometry of the lattice.

I Instead, we use eigenvectors of the Dirac operator with small
eigenvalues to define P and R based on partition of the lattice into
aggregates.

I This constructed P effectively captures the low-modes of D due to
local coherence (Luscher 2007b).
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AMG

So in AMG, we define a coarse-grid Dirac matrix directly from the Dirac
matrix on the fine lattice.
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AMG

Coarse-grid correction removes low-modes from the residual.
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SAP+AMG

So when we combine the two preconditioners as follows,

εl ← (I −MlDl)
k(Il − PlD

−1
l+1RlDl)(Il −MlDl)

jεl ,

the low-modes and high-modes of the error are both suppressed.
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DDαAMG with SAP and AMG

I Iterative adaptive setup phase:

• We construct P and so the coarse Dirac operator at each level.

• Instead of applying eigensolver to D to get a few approximate
eigenvectors with small eigenvalues, we construct them in an
adaptive manner using two preconditioners.

• First, start with a set of random vectors, vi ’s, solve Dvi = 0 using
only smoother to reduce the high modes from vi , and construct
initial multigrid hierarchy.

• Then, compute D−1
l vi with post-smoothing at each level and update

vi as well as P and Dc .
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DDαAMG with SAP and AMG

I Solver phase:

• We combine coarse-grid correction and Krylov method with a cycling
strategy called ”K-cycle” to obtain a recursive Krylov solver.

• Residuals, max Krylov space size, and a number of restarts can be
set to different values at different levels.

• In particular, the residual of 10−1 is sufficient at the bottom even
when the goal residual at the top is 10−10.
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DDαAMG - Performance

I MG solvers outperforms traditional Krylov subspace solvers like the
conjugate gradient solver at small quark masses

I DDalphaAMG for twisted mass fermions is two orders of magnitude
faster than CG
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DDαAMG - Performance

I HMC simulation:
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DDαAMG - Scaling
I Bottlenneck of Multigrid methods is the scalability

I Ideal scaling breaks down, and performance stagnates for
parallelization above 125 Skylake nodes in case of a 3-level MG
approach

I With the current hardware trends higher core counts per node the
scalability window will even shrink further
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Figure 2: A scaling plot on the ensemble of Nf = 2 + 1 + 1 twisted mass clover
with a ∼ 0.07fm and V = 803x160 at physical point simulated on
SuperMUC-NG (Intel Xeon (”Skylake”)) at LRZ
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Multiple R.H.S. - Objectives

Originally,

I the code inverted each rhs one by one

I also, loops are vectorized manually using instruction sets for a
specific SIMD extension

However,

I We can perform multiple inversions more efficiently.

I We also want to improve portability of our code letting compilers
perform optimization analysis and vectorization.

Thus,

I We solve the system of equations with multiple right-hand sides
(rhs) simultaneously (b → b).
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Multiple R.H.S. - Implementation

I We define a new data structure for a bundle of vectors.

I Vectors in the bundle are ordered in such a way that the index on
vectors runs the fastest.

I All low-level routines are rewrited to respect the new structure.

I We process a bundle of right-hand vectors simultaneously using
SIMD vectorization of loops.

v0 v1 v2 v0 v1 v2 v0 v1 v2 v0 v1 v2
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Multiple R.H.S. - Implementation

I Instead of manually vectorizing the loops using instruction sets, we
auto-vectorize the loops using pragmas: Pragma(”unroll”),
Pragma(”vector aligned”), and Pragma(”ivdep”).

I These pragmas are applied to a for-loop of a pre-determined
iteration length: for( jj=0; jj<num_loop; jj++).

I The number of rhs are assumed to be multiple of num_loop.

I This shifts vectorization from 128 bit to 256 bit

Num. R.H.S. 1 rhs 4 rhs 8 rhs
Instruction Mix SP Flops DP Flops SP Flops DP Flops SP Flops DP Flops

128-bit 95.26% 86.59% 23.41% 4.99% 24.92% 3.60%
256-bit 2.58% 1.26% 60.68% 78.13% 74.02% 94.76%
Total 97.26% 84.03% 98.81%

Table 1: Vectorization Reports
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Scaling

Conclusion:

I Breakdown of strong scaling can be pushed to higher parallelization,
mutiple rhs shows scalability up to 512 nodes
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Incorporating Block Krylov Solver

I Fast Accurate Block Linear krylOv Solver (Fabulous) is an external
library implementing block Krylov solvers such as GMRES and GCR
(Robbé and Sadkane 2006; Morgan 2005; Agullo, Giraud, and Jing
2014)

I It combines BGMRES with detection of inexact breakdown,
deflation, and incremental QR factorization.

I It provides several different orthogonalization schemes.

I We linked the DDαAMG code to Fabulous and make it available
non-block GMRES or one of the solvers provided via fabulous library
at each level as a solver.

I Our implementation of multiple r.h.s. stultifies inexact breakdown.
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Parameters

For Fabulous,

I Solvers: BGMRES, BGCR, BGMRES with deflated restarting (DR),
BGMRES with incremental QR factorization (QR), BGMRES with
DR and QR (DRQR)

I The number of deflating eigenvectors (for DR methods).

I Orhogonalization schemes: Classical Gram-Schmidt (CGS), Modified
Gram-Schmidt (MGS), Iterative CGS (ICGS), Iterative MGS, each
possibly with blocking

For DDαAMG,

I 0th-level (bottom) and 1st-level (intermediate) residuals

I 0th-level (bottom) and 1st-level (intermediate) max Krylov space
size and number of restarts
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Tuning Constants

The systems used for tuning:

I Lattice: 483 × 98 at physical point

I System: Cyclone (Intel Xeon Gold 6248) at The Cyprus Institute

I Used 6 nodes with 32 cores each

Fixed solver parameters:

I (The number of levels) = 3.

I The solver at the top: FGMRES

I The solver at the level 1: FGMRES
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Tuning Orthogonalization Schemes

Solver: BGMRES, Best Orthogonalization Scheme: Block CGS
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Tuning Solvers

Best Solver: BGMRES with QR and DR
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Tuning Residuals

Solver: BGMRES
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Tuning Max Krylov Space Size

Solver: BGMRES with QR
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Tuning Mu Factor

I The mu factor is the factor multiplying µ in DTM at the bottom
(µ→ δµµ)

Solver: BGMRES with QR
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Preliminary Tuning Results
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Outlook

I Scalability is extended by around a factor 5.

I We also want to test out code on different architectures like AMD
Epyc’s and ARM chips, e.g., Fujitsu A64FX.

I We will test reusable deflation space

I We consider a pipeline version of the solver to speed up the coarse
grid correction for extending the scaling region

I DDαAMG using a fabulous solver at the bottom showed a promising
result.

I We need to tune with more right-hand sides to confirm the trend.
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