Zero-temperature phase structure of the $1+1$ dimensional Thirring model from matrix product states

C.-J. David Lin

National Chiao-Tung University, Taiwan
with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer Kao (National Taiwan Univ.), Yu-Ping Lin (Univ. of Colorado, Boulder),

David T.-L. Tan (National Chaio-Tung Univ.)
arXiv: 1908.04536 (submitted to Phys. Rev. D)
RIKEN R-CCS, Kobe, Japan
09/10/2019

Outline

- Preliminaries: motivation and introduction
- Lattice formulation and the MPS
- Simulations and numerical results: Phase structure of the Thirring model
- Remarks and outlook (spectrum, real-time dynamics)

Preliminaries

Logic flow

Hamiltonian formalism for QFT

Quantum spin model

MPS \& variational method for obtaining the ground state \dagger
Compute correlators and excited state spectrum

Motivation

- New formulation for lattice field theory
- No sign problem
- Real-time dynamics
- Future quantum computers?

In this talk: BKT phase transition

The $1+1$ dimensional Thirring model

$$
S_{\mathrm{Th}}[\psi, \bar{\psi}]=\int d^{2} x\left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi-\frac{g}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\bar{\psi} \gamma^{\mu} \psi\right)\right]
$$

* Conformality of the massless theory
* Duality with the sine-Gordon theory

Bosonisation and duality

- Basic ingredients from free field theories

$$
\left\langle\prod_{i=1}^{n} \mathrm{e}^{i \kappa_{i} \phi(x)}\right\rangle_{\text {ren. }}=\prod_{i<j}\left(\mu\left|x_{i}-x_{j}\right|\right)^{\kappa_{i} \kappa_{j} / 2 \pi}, \text { where }\left[\mathrm{e}^{i \kappa_{i} \phi(x)}\right]_{\text {bare }}=(\Lambda / \mu)^{-\kappa_{i}^{2} / 4 \pi}\left[\mathrm{e}^{i \kappa_{i} \phi(x)}\right]_{\mathrm{ren} .}
$$

And similar power law for $\bar{\psi} \psi$ correlators.
Works in the zero-charge sector

- The dictionary (zero total fermion number)

$$
\begin{aligned}
& S_{\mathrm{Th}}[\psi, \bar{\psi}]=\int d^{2} x\left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m_{0} \bar{\psi} \psi-\frac{g}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}\right]
\end{aligned} \underbrace{S_{\mathrm{SG}}[\phi]=\frac{1}{t} \int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\alpha_{0} \cos (\phi(x))\right]}_{\text {field redifinition, anomaly }} \begin{aligned}
& \bar{\psi} \gamma_{\mu} \psi \leftrightarrow \frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\nu} \phi, \\
& \bar{\psi} \psi \leftrightarrow \frac{\Lambda}{\pi} \cos \phi, \\
& \frac{4 \pi}{t}=1+\frac{g}{\pi} . \\
& \frac{\alpha_{0}}{t}=\frac{m_{0} \Lambda}{\pi} . \\
& m_{0}=m(\mu / \Lambda)^{g /(g+\pi)} \\
& \alpha_{0}=\alpha(\mu / \Lambda)^{-t / 4 \pi}
\end{aligned}
$$

Dualities and phase structure

Thirring	sine-Gordon	XY
g	$\frac{4 \pi^{2}}{t}-\pi$	$\frac{T}{K}-\pi$

* The K-T phase transition at $T \sim K \pi / 2$ in the XY model.

$$
g \sim-\pi / 2, \text { Coleman's instability point }
$$

\star The phase boundary at $t \sim 8 \pi$ in the sine-Gordon theory.
\rightarrow The cosine term becomes relevant or irrelevant.

Thirring	sine-Gordon
$\bar{\psi} \gamma_{\mu} \psi$	$\frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\nu} \phi$
$\bar{\psi} \psi$	$\frac{\Lambda}{\pi} \cos \phi$

RG flows of the Thirring model

$$
\begin{aligned}
& \text { Perturbative expansion in mass } \\
& \beta_{g} \equiv \mu \frac{d g}{d \mu}=-64 \pi\left(\frac{m}{\Lambda}\right)^{2}, \\
& \beta_{m} \equiv \mu \frac{d m}{d \mu}=m\left[\frac{-2\left(g+\frac{\pi}{2}\right)}{g+\pi}-\frac{256 \pi^{3}}{(g+\pi)^{2}}\left(\frac{m}{\Lambda}\right)^{2}\right]
\end{aligned}
$$

Lattice formulation and the MPS

Operator formalism and the Hamiltonian

- Operator formaliam of the Thirring model Hamiltonian
C.R. Hagen, 1967

$$
H_{\mathrm{Th}}=\int d x\left[-i \bar{\psi} \gamma^{1} \partial_{1} \psi+m_{0} \bar{\psi} \psi+\frac{g}{4}\left(\bar{\psi} \gamma^{0} \psi\right)^{2}-\frac{g}{4}\left(1+\frac{2 g}{\pi}\right)^{-1}\left(\bar{\psi} \gamma^{1} \psi\right)^{2}\right]
$$

- Staggering, J-W transformation $\left(S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}\right)$:
J. Kogut and L. Susskind, 1975; A. Luther, 1976

$$
\begin{gathered}
\bar{H}_{X X Z}=\nu(g)\left[-\frac{1}{2} \sum_{n}^{N-2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n+1}^{+} S_{n}^{-}\right)+a \tilde{m}_{0} \sum_{n}^{N-1}(-1)^{n}\left(S_{n}^{z}+\frac{1}{2}\right)+\Delta(g) \sum_{n}^{N-1}\left(S_{n}^{z}+\frac{1}{2}\right)\left(S_{n+1}^{z}+\frac{1}{2}\right)\right] \\
\nu(g)=\frac{2 \gamma}{\pi \sin (\gamma)}, \quad \tilde{m}_{0}=\frac{m_{0}}{\nu(g)}, \Delta(g)=\cos (\gamma), \text { with } \gamma=\frac{\pi-g}{2}
\end{gathered}
$$

Issue of large Hilbert space \& DMRG/MPS

S. White, 1992; M.B. Hasting, 2004; F. Verstraeten and I. Cirac, 2006; ..

For a spin system of size n and local dimension $d, \operatorname{dim}(\mathcal{H})=O\left(d^{n}\right)$.

Entanglement-based truncation of the Hilbert space
(Area law of the entanglement entropy)

Matrix product states in a nutshell

$|\psi\rangle=\sum_{j_{1}, \ldots, j_{n}=1}^{d} c_{j_{1}, \ldots, j_{n}}\left|j_{1}, \ldots, j_{n}\right\rangle=\sum_{j_{1}, \ldots, j_{n}=1}^{d} c_{j_{1}, \ldots, j_{n}}\left|j_{1}\right\rangle \otimes \cdots \otimes\left|j_{n}\right\rangle$

$$
c_{j_{1}, \ldots, j_{n}}=\sum_{\alpha, \ldots, \omega=1}^{D} A_{\alpha ; j_{1}}^{(1)} A_{\beta, \gamma ; i_{2}}^{(2)} \ldots A_{\omega ; j_{n}}^{(n)}=A_{j_{1}}^{(1)} A_{j_{2}}^{(2)} \ldots A_{j_{n}}^{(n)}
$$

Matrix Product Operator

$$
\begin{aligned}
& \hat{O}=\sum_{i}\left(\hat{A}_{i} \hat{B}_{i+1}+\hat{B}_{i} \hat{A}_{i+1}\right) \\
& =\hat{A} \otimes \hat{B} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} \\
& +\mathbb{1} \otimes \hat{A} \otimes \hat{B} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\cdots \\
& +\hat{B} \otimes \hat{A} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1} \\
& +\mathbb{1} \otimes \hat{B} \otimes \hat{A} \otimes \mathbb{1} \otimes \cdots \otimes \mathbb{1}+\cdots \\
& M=\left(\begin{array}{cccc}
\mathbb{1} & \hat{A} & \hat{B} & 0 \\
0 & 0 & 0 & \hat{B} \\
0 & 0 & 0 & \hat{A} \\
0 & 0 & 0 & \mathbb{1}
\end{array}\right)\left|b_{l-1} \longrightarrow\right| \\
& =\hat{O}=\sum_{b_{1}, \ldots, b_{L-1}} M_{1, b_{1}}^{\sigma_{1}, \sigma_{1}^{\prime}} M_{b_{1}, b_{2}}^{\sigma_{2}, \sigma_{2}^{\prime}} M_{b_{2}, b_{3}}^{\sigma_{3}, \sigma_{3}^{\prime}} \ldots M_{b_{L-3}, b_{L-1}}^{\sigma_{L-1}, \sigma_{L-1}^{\prime}} M_{b_{L-1}, 1}^{\sigma_{L}, \sigma_{L}^{\prime}}
\end{aligned}
$$

\longrightarrow matrix elements

It is simple to compute local operator matrix elements with canonical states.

Simulation details for the phase structure

- Matrix product operator for the Hamiltonian (bulk)

$$
\begin{aligned}
W^{[n]} & =\left(\begin{array}{cccccc}
1_{2 \times 2} & -\frac{1}{2} S^{+} & -\frac{1}{2} S^{-} & 2 \lambda S^{z} & \Delta S^{z} & \beta_{n} S^{z}+\alpha 1_{2 \times 2} \\
0 & 0 & 0 & 0 & 0 & S^{-} \\
0 & 0 & 0 & 0 & 0 & S^{+} \\
0 & 0 & 0 & 1 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & 1_{2 \times 2}
\end{array}\right) \\
\beta_{n} & =\Delta+(-1)^{n} \tilde{m}_{0} a-2 \lambda S_{\text {target }}, \alpha=\lambda\left(\frac{1}{4}+\frac{S_{\text {target }}^{2}}{N}\right)+\frac{\Delta}{4}
\end{aligned}
$$

- Simulation parameters
* Twenty values of $\Delta(g)$, ranging from -0.9 to 1.0
\star Fourteen values of $\tilde{m}_{0} a$, ranging from 0 to 0.4
\star Bond dimension $D=50,100,200,300,400,500,600$
* System size $N=400,600,800,1000$

Practice of MPS for DMRG

One step in a sweep of finite-size DMRG

Simulations and numerical results

Convergence of DMRG

- Start from random tensors at $\mathrm{D}=50$, then go up in D
- DMRG converges fast at $\tilde{m}_{0} a \neq 0$ and $\Delta(g) \gtrsim-0.7$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

Calabrese-Cardy scaling observed at all values of $\Delta(g)$ for $\tilde{m}_{0} a=0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

\star Calabrese-Cardy scaling observed at $\Delta(g) \lesssim-0.7$ for $\tilde{m}_{0} a \neq 0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

* Central charge is unity in the critical phase

Density-density correlators

Soliton correlators

Soliton (string) correlators

$$
C_{\text {string }}(x)=\left\langle\psi^{\dagger}\left(x_{0}+x\right) \psi\left(x_{0}\right)\right\rangle \xrightarrow{\text { JW trans }} \frac{1}{N_{x}} \sum_{n} S^{+}(n) S^{z}(n+1) \cdots S^{z}(n+x-1) S^{-}(n+x)
$$

try fitting to

$$
C_{\text {string }}^{\text {pow }}(x)=\beta x^{\alpha}+C \text { and } C_{\text {string }}^{\text {pow }-\exp }(x)=B x^{\eta} A^{x}+C
$$

\star Similar behaviour in A. Evidence for a critical phase

Chiral condensate

$$
\hat{\chi}=a|\langle\bar{\psi} \psi\rangle|=\frac{1}{N}\left|\sum_{n}(-1)^{n} S_{n}^{z}\right|
$$

\star Chiral condensate is not an order parameter

Probing the phase structure

Results for the phase structure

Conclusion and outlook

- Concluding results for phase structure
* KT-type transition observed using the MPS
- Current and future work
\star Excited-state spectrum and the continuum limit - Exploratory spectrum results presented at Lattice 2017
* Real-time dynamics and dynamical phase transition
- Exploratory results presented at Lattice 2019

Backup slides

Uniform MPS and real-time evolution

* Translational invariance in MPS
* Finding the infinite BC for amplitudes
(largest eigenvalue normalised to be 1)

H.N. Phien, G. Vidal and I.P. McCulloch, Phys. Rev. B86, 2012
\star Similar (more complicated) procedure in the variation search for the ground state

...V. Zauner-Stauber et al, Phys. Rev. B97, 2018
* Real-time evolution via time-dependent variational principle
$=$ Key: projection to MPS in $i \frac{d}{d t}|\Psi(A(t))\rangle=P_{|\Psi(A)\rangle} \hat{H}|\Psi(A(t))\rangle$

Dynamical quantum phase transition

* "Quenching" : Sudden change of coupling strength in time evolution

$$
H\left(g_{1}\right)\left|0_{1}\right\rangle=E_{0}^{(1)}\left|0_{1}\right\rangle \text { and } \quad|\psi(t)\rangle=\mathrm{e}^{-i H\left(g_{2}\right) t}\left|0_{1}\right\rangle
$$

\star Questions: Any singular behaviour? Related to equilibrium PT?

* The Loschmidt echo and the return rate

$$
L(t)=\left\langle 0_{1}\right| \mathrm{e}^{-i H\left(g_{2}\right) t}\left|0_{1}\right\rangle \quad \& \quad g(t)=-\lim _{N \rightarrow \infty} \frac{1}{N} \ln L(t)
$$

\rightarrow c.f., the partition function and the free energy
\rightarrow In uMPS computed from the largest eigenvalue of the "transfer matrix"

$$
T_{i, j}(t)=i\left\{\begin{array}{c}
-\bar{A}_{0_{1}} \\
-(t)
\end{array}\right\} j
$$

Observing DQPT

DQPT is a "one-way" transition...

DQPT and eigenvalue crossing

\star D-dependence in the crossing points

"Universality" in DQPT?

Mass gap

$$
H_{\mathrm{eff}}[M]=\Pi_{M-1} \ldots \Pi_{0} H \Pi_{0} \ldots \Pi_{M-1}=H-\sum_{k=0}^{M-1} E_{k}\left|\Psi_{k}\right\rangle\left\langle\Psi_{k}\right|
$$

The Jordan-Wigner transformation

- The fermion fields satisfy

$$
\left\{c_{n}, c_{m}\right\}=\left\{c_{n}^{\dagger}, c_{m}^{\dagger}\right\}=0,\left\{c_{n}, c_{m}^{\dagger}\right\}=\delta_{n, m} .
$$

- The Jordan-Wigner transformation

$$
c_{n}=\exp \left(i \pi \sum_{j=1}^{n-1} S_{j}^{z}\right) S_{n}^{-}, c_{n}^{\dagger}=S_{n}^{+} \exp \left(-i \pi \sum_{j=1}^{n-1} S_{j}^{z}\right)
$$

expresses the the fermions fields in spins,

$$
S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}, \quad\left[S_{i}^{a}, S_{j}^{b}\right]=i \delta_{i, j} \epsilon^{a b c} S_{i}^{c} .
$$

The singular value decomposition

$$
|\Psi\rangle=\sum_{i=1}^{D_{A}} \sum_{j=1}^{D_{B}} \Psi_{i, j}|i\rangle \otimes|j\rangle
$$

$\Psi_{i, j}$ can be regarded as elements of a $D_{A} \times D_{B}$ (assuming $\left(D_{A} \geq D_{B}\right)$ matrix.

$$
\begin{gathered}
\text { SVD } \\
\begin{array}{l}
\Psi_{i, j}=\sum_{\alpha}^{D_{B}} U_{i, \alpha} \lambda_{\alpha}\left(V^{\dagger}\right)_{\alpha, j} \\
U^{\dagger} U=1, V V^{\dagger}=1
\end{array} \text { Discard small singular values } \Psi_{i, j}=\sum_{\alpha}^{D_{B}^{\prime}<D_{B}} U_{i, \alpha} \lambda_{\alpha}\left(V^{\dagger}\right)_{\alpha, j}
\end{gathered}
$$

Schmidt decomposition and entanglement

Reduced density matrices
$\rho_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|=\sum_{\alpha} \lambda_{\alpha}^{2}|\alpha\rangle_{A A}\langle\alpha|, \quad \rho_{B}=\operatorname{Tr}_{A}|\Psi\rangle\langle\Psi|=\sum_{\alpha} \lambda_{\alpha}^{2}|\alpha\rangle_{B}{ }_{B}\langle\alpha|$
von Neumann entanglement entropy

$$
S=-\operatorname{Tr}\left[\rho_{A} \log \left(\rho_{A}\right)\right]=-\operatorname{Tr}\left[\rho_{B} \log \left(\rho_{B}\right)\right]=-\sum_{\alpha} \lambda_{\alpha}^{2} \log \lambda_{\alpha}^{2}
$$

\star Truncating the Hilbert space by omitting small singular values
\longrightarrow Throwing away small-entanglement states

