◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Lattice QCD Approach to HVP and Muon g-2

Kohtaroh Miura (GSI Helmholtz-Instute Mainz, Nagoya-Univ. KMI)

RIKEN Seminar August 27, 2019, RIKEN-KOBE

Budapest-Marseille-Wuppertal (BMW) Collab. Refs:

- Phys. Rev. Lett. 121, no. 2, 022002 (2018).
- Phys. Rev. D 96, no. 7, 074507 (2017).
- With some updates and preliminary results.

Discussions: Lattice vs Pheno

Summary and Perspective

Muon Anomalous Magnetic Moment $a_{\ell=e,\mu,\tau}$

• Dirac Eq. with B:

$$i\hbar\frac{\partial\psi}{\partial t} = \left[\boldsymbol{lpha}\cdot\left(-i\hbar\boldsymbol{c}\nabla-\boldsymbol{eA}\right)+\beta\boldsymbol{c}^{2}\boldsymbol{m}_{\ell}+\boldsymbol{eA}_{0}\right]\psi,$$

• Nonlelativistic Limit, Pauli Eq.:

$$i\hbar \frac{\partial \phi}{\partial t} = \Big[\frac{(-i\hbar c \nabla - e\mathbf{A})^2}{2m_\ell c} - \mathbf{M}_\ell \cdot \mathbf{B} + e\mathbf{A}_0 \Big] \phi ,$$

- Magnetic Moment: $\mathbf{M}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}c} \frac{\hbar\sigma}{2}$,
- In Dirac Theory:

 $g_\ell=2\ ,\quad a_\ell\equiv (g_\ell-2)/2=0\ ,\quad \omega_{
m cyc}=\omega_{
m prec}.$

• In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): $a_e^{SM} = 1\ 159\ 652\ 180.07(6)(4)(77) \times 10^{-12} \quad (\mathcal{O}(\alpha^5)),$ $a_e^{exp} = 1\ 159\ 652\ 180.73(0.28) \times 10^{-12} \quad [0.24ppb].$

$$oldsymbol{a}_{\mu}^{oldsymbol{exp.}}=oldsymbol{a}_{\mu}^{ extsf{sm}}$$
?

Discussions: Lattice vs Pheno

Summary and Perspective

Muon Anomalous Magnetic Moment $a_{\ell=e,\mu,\tau}$

• Dirac Eq. with B:

$$i\hbar \frac{\partial \psi}{\partial t} = \left[oldsymbol{lpha} \cdot \left(-i\hbar oldsymbol{c}
abla - oldsymbol{e} \mathbf{A}
ight) + eta oldsymbol{c}^2 m_\ell + oldsymbol{e} A_0
ight] \psi \; ,$$

• Nonlelativistic Limit, Pauli Eq.:

$$i\hbar \frac{\partial \phi}{\partial t} = \Big[\frac{(-i\hbar c \nabla - e\mathbf{A})^2}{2m_\ell c} - \mathbf{M}_\ell \cdot \mathbf{B} + e\mathbf{A}_0 \Big] \phi ,$$

- Magnetic Moment: $\mathbf{M}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}c} \frac{\hbar\sigma}{2}$,
- In Dirac Theory:

 $g_\ell=2\ ,\quad a_\ell\equiv (g_\ell-2)/2=0\ ,\quad \omega_{
m cyc}=\omega_{
m prec}.$

• In QFT (with Loops) for Electron (M.Knecht ,NPPP2015): $a_e^{SM} = 1\ 159\ 652\ 180.07(6)(4)(77) \times 10^{-12} \quad (\mathcal{O}(\alpha^5)),$ $a_e^{exp} = 1\ 159\ 652\ 180.73(0.28) \times 10^{-12} \quad [0.24ppb].$

$$a_{\mu}^{ extsf{exp.}}=a_{\mu}^{ extsf{sm}}$$
?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

SM contribution	$a_{\mu}^{ m contrib.} imes 10^{10}$	Ref.
QED [5 loops]	11658471.8951 ± 0.0080	[Aoyama et al '12]
HVP-LO (pheno.)	692.6 ± 3.3	[Davier et al '16]
	694.9 ± 4.3	[Hagiwara et al '11]
	681.5 ± 4.2	[Benayoun et al '16]
	688.8 ± 3.4	[Jegerlehner '17]
HVP-NLO (pheno.)	-9.84 ± 0.07	[Hagiwara et al '11]
		[Kurz et al '11]
HVP-NNLO	1.24 ± 0.01	[Kurz et al '11]
HLbyL	10.5 ± 2.6	[Prades et al '09]
Weak (2 loops)	15.36 ± 0.10	[Gnendiger et al '13]
SM tot [0.42 ppm]	11659180.2 ± 4.9	[Davier et al '11]
[0.43 ppm]	11659182.8 \pm 5.0	[Hagiwara et al '11]
[0.51 ppm]	11659184.0 ± 5.9	[Aoyama et al '12]
Exp [0.54 ppm]	11659208.9 \pm 6.3	[Bennett et al '06]
Exp – SM	28.7 ± 8.0	[Davier et al '11]
	26.1 ± 7.8	[Hagiwara et al '11]
	24.9 ± 8.7	[Aoyama et al '12]

 $a_{\mu}^{\text{LO-HVP}}|_{\textit{NoNewPhys}} \times 10^{10} \simeq 720 \pm 7,$ FNAL E989: 0.14-ppm (first data 0.5-ppm: 2019-Dec.?)), J-PARC E34: 0.1-ppm

a_ℓ in QFT

 \boldsymbol{n}

• QFT Def. for a_ℓ :

n'

$$\sum_{\boldsymbol{\rho}}^{q,\mu} = \langle \bar{\ell}^{-}(\boldsymbol{\rho}) | \mathcal{J}^{\mu} | \ell^{-}(\boldsymbol{\rho}') \rangle = \bar{u}(\boldsymbol{\rho}) \Gamma^{\mu}(\boldsymbol{\rho}, \boldsymbol{\rho}') u(\boldsymbol{\rho}')$$
(1)

$$\Gamma^{\mu}(q=p-p')=\gamma^{\mu}F_{1}(q^{2})+\frac{i\sigma^{\mu\nu}q_{\nu}}{2m_{\mu}}F_{2}(q^{2})+\cdots, \qquad (2)$$

$$F_2(0) = a_\ell = (g_\ell - 2)/2$$
 (3)

• Standard Model, Loop Corr.:

$$a_\ell = lpha/(2\pi) + \cdots$$
.

ヘロト 人間 トイヨト 人用 トーヨー

990

• BSM = MSSM (Padley et.al.'15) or TC (Kurachi et.al. '13) etc.:

 $\propto (m_\ell/\Lambda_{BSM})^2.$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Really $a_{\mu}^{exp.} \neq a_{\mu}^{SM}$?

The Hadronic Vacuum Polarization (HVP) contributions to a_{μ} is a bottle-neck to answer for this question.

Phenomenology of HVP

Use (Bouchiat et al 61) optical theorem (unitarity)

$$Im[$$
 $m[$ $m[$ $m] \propto |$ mm hadrons $|^2$

$$\mathrm{Im}\Pi(s) = -\frac{R(s)}{12\pi}, \qquad R(s) \equiv \frac{\sigma(e^+e^- \to \mathrm{had})}{4\pi\alpha(s)^2/(3s)}$$

and a once subtracted dispersion relation (analyticity)

$$\hat{\Pi}(Q^2) = \int_0^\infty ds \, \frac{Q^2}{s(s+Q^2)} \frac{1}{\pi} \, \mathrm{Im}\Pi(s)$$
$$= \frac{Q^2}{12\pi^2} \int_0^\infty ds \, \frac{1}{s(s+Q^2)} R(s)$$

⇒ $\hat{\Pi}(Q^2)$ from data: sum of exclusive $\pi^+\pi^$ etc. channels from CMD-2&3, SND, BES, KLOE '08,'10&'12, BABAR '09, etc.

・ ロ ト ス 厚 ト ス 回 ト ・

ъ

Sac

Can also use $I(J^{PC}) = 1(1^{--})$ part of $\tau \rightarrow \nu_{\tau}$ + had and isospin symmetry + corrections

Introduction

Results 000000000 Discussions: Lattice vs Pheno

Summary and Perspective

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つの()~

Pion Contributions to a_{μ} from Experimental Data

Figure: Borrowed by BESIII, PLB'16: Some tension among experiments on pion contributions to a_{μ} .

THIS TALK

Lattice QCD for Muon g - 2

- First Principle Crosschecks of the dispersive results.
- First Principle Predictions for assessing SM with measurements by FermiLab/J-PARC experiments (0.1-ppm).

THIS TALK:

- Report BMW-Collab. results for muon g 2.
- Compare/Discuss various results from lattice QCD as well as dispersive method.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つんぐ

Table of Contents

Results

- Setup
- Continuum Extrapolations
- Comparison among LQCDs
- Discussions: Lattice vs Pheno 3

4 Summary and Perspective

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Table of Contents

Introduction

Results

- Setup
- Continuum Extrapolations
- Comparison among LQCDs

3 Discussions: Lattice vs Pheno

Simulation Setup (BMWc. PRD-2017 and PRL-2018)

BMW Ensemble PRD2017 and PRL2018 6-β, 15 simulation with all physical masses. Nf=(2+1+1) staggered quarks.

- Large Volume: $(L, T) \sim (6, 9 12)$ fm.
- AMA with 6000-9000 random-source meas. for disconnected.

β	<i>a</i> [fm]	Nt	Ns	#traj.	M_{π} [MeV]	M _K [MeV]	#SRC (l,s,c,d)
3.7000	0.134	64	48	10000	\sim 131	\sim 479	(768, 64, 64, 9000)
3.7500	0.118	96	56	15000	\sim 132	\sim 483	(768, 64, 64, 6000)
3.7753	0.111	84	56	15000	\sim 133	\sim 483	(768, 64, 64, 6144)
3.8400	0.095	96	64	25000	\sim 133	\sim 488	(768, 64, 64, 3600)
3.9200	0.078	128	80	35000	\sim 133	\sim 488	(768, 64, 64, 6144)
4.0126	0.064	144	96	04500	\sim 133	\sim 490	(768, 64, 64, -)

Observables and Objectives

$$\Pi_{\mu\nu}(Q) = (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2)\Pi(Q^2) = \int d^4x \ e^{iQx} \langle j_{\mu}(x)j_{\nu}(0)\rangle \ , \tag{4}$$

$$j_{\mu} = (2/3)\bar{u}\gamma_{\mu}u - (1/3)\bar{d}\gamma_{\mu}d - (1/3)\bar{s}\gamma_{\mu}s + (2/3)\bar{c}\gamma_{\mu}c + \cdots, \qquad (5)$$

$$\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0) = \sum_{t} t^2 \left[1 - \left(\frac{\sin[Qt/2]}{Qt/2}\right)^2 \right] \frac{1}{3} \sum_{i=1}^3 \langle j_i(t) j_i(0) \rangle .$$
 (6)

$$a_{\ell=e,\mu,\tau}^{\text{LO-HVP}} = \frac{\alpha^2}{\pi^2} \int_0^\infty dQ^2 \ \omega \left(\frac{Q^2}{m_{\ell=e,\mu,\tau}^2}\right) \hat{\Pi}(Q^2) \ . \tag{7}$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q @

Discussions: Lattice vs Pheno

Observables and Objectives

$$\Pi_{\mu\nu}(Q) = (Q_{\mu}Q_{\nu} - \delta_{\mu\nu}Q^2)\Pi(Q^2) = \int d^4x \ e^{iQx} \langle j_{\mu}(x)j_{\nu}(0)\rangle \ , \tag{4}$$

$$j_{\mu} = (2/3)\bar{u}\gamma_{\mu}u - (1/3)\bar{d}\gamma_{\mu}d - (1/3)\bar{s}\gamma_{\mu}s + (2/3)\bar{c}\gamma_{\mu}c + \cdots, \qquad (5)$$

$$\hat{\Pi}(Q^2) = \Pi(Q^2) - \Pi(0) = \sum_{t} t^2 \left[1 - \left(\frac{\sin[Qt/2]}{Qt/2}\right)^2 \right] \frac{1}{3} \sum_{i=1}^3 \langle j_i(t) j_i(0) \rangle .$$
 (6)

$$\boldsymbol{a}_{\ell=e,\mu,\tau}^{\text{LO-HVP}} = \frac{\alpha^2}{\pi^2} \int_0^\infty dQ^2 \ \omega\left(\frac{Q^2}{m_{\ell=e,\mu,\tau}^2}\right) \hat{\Pi}(Q^2) \ . \tag{7}$$

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q @

Discussions: Lattice vs Pheno

Bounding [BMW PRD2017 and PRL2018]

Figure shows

$$\mathcal{C}^{ud}(t) = rac{5}{9} \sum_{\vec{x}} rac{1}{3} \sum_{i=1}^{3} \langle j_i^{ud}(\vec{x},t) j_i^{ud}(0) \rangle \; ,$$

by BMW Ensemble with a = 0.064 [fm] used in PRD2017/PRL2018.

- The connected-light correlator $C^{ud}(t)$ loses signal for t > 3fm. To control statistical error, consider $C^{ud}(t > t_c) \rightarrow C^{ud}_{up/low}(t, t_c)$, where $C^{ud}_{up}(t, t_c) = C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $C^{ud}_{low}(t, t_c) = 0.0$, with $\varphi(t) = \cosh[E_{2\pi}(T/2 - t)]$, and $E_{2\pi} = 2(M_{\pi}^2 + (2\pi/L)^2)^{1/2}$.
- Similarly, $C_{up/low}^{disc}(t) \rightarrow C_{up/low}^{disc}(t, t_c)$, $-C_{up}^{disc}(t > t_c) = 0.1 C^{ud}(t_c) \varphi(t)/\varphi(t_c)$, $-C_{low}^{disc}(t > t_c) = 0.0$.
- By construction, $C_{low}^{ud,disc}(t, t_c) \leq C^{ud,disc}(t) \leq C_{up}^{ud,disc}(t, t_c).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bounding [BMW PRL2018]

- Corresponding to $C_{up/low}^{ud,disc}(t_c)$, we obtain upper/lower bounds for muon g-2: $a_{\mu,up/low}^{ud,disc}(t_c)$.
- Two bounds meet around $t_c = 3fm$. Consider the average of bounds: $\bar{a}^{ud,disc}_{\mu}(t_c) = 0.5(a^{ud,disc}_{\mu,up} + a^{ud,disc}_{\mu,low})(t_c)$, which is stable around $t_c = 3fm$.
- We pick up such averages $\bar{a}_{\mu}^{ud,disc}(t_c)$ with 4-6 kinds of t_c around 3fm. The average of average is adopted as $a_{\mu,ud/disc}^{LO,HVP}$ to be analysed, and a fluctuation over selected t_c gives systematic error.
- A similar method is proposed by C.Lehner in Lattice2016 and used in RBC/UKQCD-PRL2018. Improved bounding method with GEVP:

[A. Meyer/C. Lehner, 27 Fri Hadron Structure].

Discussions: Lattice vs Pheno

Controlled Continuum Extrap. [BMW PRL2018]

- With 6 $\beta' s = 15 a^2 [fm^2]$ simulations, allowing full control over continuum limit.
- Get systematic uncertainty from various cuttings: no-cut, or cutting a ≥ 0.134, 0.111, or 0.095.
- Get good χ^2/dof with extrapolation linear in a^2 , and interpolation linear in M_K^2 (strange) or M_π^2 and $M_{\eta c}$ (charm).
- Strong a^2 dependences for $a_{\mu,ud/disc}^{\text{LO-HVP}}$ due to taste violations, and for $a_{\mu,c}^{\text{LO-HVP}}$ due to large m_c .

・ ロ ト ス 厚 ト ス 回 ト ・

ъ

500

Crosscheck of Continuum Extrapolation [BMW PRL2018]

- Red open-circles are raw lattice data and continuum-extrapolated (red filled-circle). Then finite-volume correction using XPT is added to get the green-square point.
- Similarly to HPQCD-PRD2017, raw data (red-circles) are first corrected with finite-volume and taste-partner effects to get blue open-triangles, which are continuum-extrapolated to get blue filled-triangle.

Various Corrections

- High Q^2 Control: The lattice data have enough overlap to perturbative regime even in tau case. $a_{\ell,f}^{\text{LO-HVP}} = a_{\ell,f}^{\text{LO-HVP}} (Q \le Q_{max}) + (\gamma_{\ell} \hat{\Pi}^f)(Q_{max}) + \Delta^{pert} a_{\ell,f}^{\text{LO-HVP}} (Q > Q_{max}).$
- Isospin/QED Collections: Model estimates amounts to 1.1% corrections (table thanks to F.Jegerlehner (& M. Benayoun)).

• FV Collections:

The dominant FV in I = 1, $\pi^+\pi^-$ loop channel is estimated by XPT (Aubin et al '16): $(a_{\mu,I=1}^{\text{LO-HVP}}(\infty) - a_{\mu,I=1}^{\text{LO-HVP}}(6fm))|_{\text{XPT}}$ = 13.42(13.42) × 10⁻¹⁰, (1.9%).

Effect	$\delta a_{\mu}^{ ext{LO-HVP}} imes ext{10}^{ ext{10}}$
$ ho-\omega$ mix.	2.71 ± 1.36
FSR	$\textbf{4.22} \pm \textbf{2.11}$
$M_{\pi} ightarrow M_{\pi\pm}$	-4.47 ± 4.47
$\pi^0\gamma$	4.64 ± 0.04
$\eta\gamma$	$\textbf{0.65} \pm \textbf{0.01}$
Total	$\textbf{7.8} \pm \textbf{5.1}$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Summary on $a_{\mu}^{\text{LO-HVP}}$ PRL2018

a^{LO-HVP} BMWc

<i>l</i> = 1	$582.9(6.7)_{st}(7.2)_{acut}(0.1)_{tcut}(0.0)_{qcut}(4.5)_{da}(13.5)_{fv}$
<i>l</i> = 0	$120.5(3.4)_{st}(3.5)_{acut}(0.2)_{tcut}(0.0)_{qcut}(1.0)_{da}$
total	$711.1(7.5)_{st}(8.0)_{acut}(0.2)_{tcut}(0.0)_{qcut}(5.5)_{da}(13.5)_{fv}(5.1)_{iso}$

- Our Lattice QCD results are consistent with both "No New Physics" and Dispersive Method.
- Total error in our LQCD result is 2.6%, dominated FV effects.

▲ロト ▲□ ト ▲ ヨ ト ▲ ヨ ト つんぐ

Discussions: Lattice vs Pheno

Summary and Perspective

イロト 不得 トイヨト イヨト

$a_{\mu}^{\text{LO-HVP}}$: flavor by flavor comparison

- The results do not yet converge in all flavors...
- "Disagreement" is particularly on $a_{\mu, ud}^{\text{LO-HVP}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Table of Contents

Introduction

2 Result

- Setup
- Continuum Extrapolations
- Comparison among LQCDs

Oiscussions: Lattice vs Pheno

Introduction

Results

Discussions: Lattice vs Pheno

Summary and Perspective

$\hat{\Pi}^{lat}(Q^2)$ vs $\hat{\Pi}^{pheno}(Q^2)$ for Various Q^2 Preliminary

 $\hat{\Pi}^{lat}(\omega^2) = \lim_{a \to 0} \sum_{t=0}^{T/2} t^2 \Big[1 - \operatorname{sinc}^2[\omega t/2] \Big] C(t) ,$ $\hat{\Pi}^{pheno}(Q^2) = \frac{Q^2}{12\pi^2} \int_0^\infty ds \frac{R_{had}(s)}{s(s+Q^2)} .$

Lat (BMWc) vs Pheno (alphaQEDc17 by Jegerlehner) for $\omega (Q^2/m_{\mu}^2)\hat{\Pi}(Q^2)$

- The contributions at $Q^2 \sim (m_{\mu}/2)^2$ are dominant, and the lattice and phemenology are consistent within the error-bars there.
- However, the lattice error gets larger at Q² ~ (m_μ/2)². More precise estimates are demanded and in progress.

Integrand of $a_{\mu,ud}^{\text{LO-HVP}}$ I

$$a_{\mu,\nu d}^{\text{LO-HVP}} = \sum_{t} W(t, m_{\mu}) C_{tot}(t) , \qquad (8)$$

c.f. $C_{tot}^{\text{pheno}}(t) = \int_{0}^{\infty} ds \sqrt{s} R_{had}(s) e^{-\sqrt{s}|t|} . \qquad (9)$

・ロト・日本・日本・日本・日本・日本

Integrand of $a_{\mu,ud}^{\text{LO-HVP}}$ II

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction

Integrand of $a_{\mu,ud}^{\text{LO-HVP}}$ III

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Window Method

UV:
$$S_{UV}(t) = 1.0 - (1.0 + \tanh[(t - t_0)/\Delta])/2$$
, (10)

IM:
$$S_{IM}(t) = \frac{1}{2} \Big(\tanh\left[(t-t_0)/\Delta\right] - \tanh\left[(t-t_1)/\Delta\right] \Big)$$
, (11)

IR:
$$S_{IR}(t) = (1.0 + \tanh[(t - t_1)/\Delta])/2$$
, (12)

We shall adopt $t_0 = 0.6 fm$, $t_1 = 1.5 fm$, $\Delta = 0.3 fm$. (13)

c.f. RBC-UKQCD (PRL2018), Aubin et.al. (1905.09307)

・ロト・西ト・ヨト・ヨト・日下

Discussions: Lattice vs Pheno

イロト 不得 トイヨト イヨト 二日

590

Continuum Extrapolation in Dominant Window Preliminary

For the most important window (0.6 - 1.5 fm), the lattice QCD provides very precise data with per-mil level precision.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Table of Contents

- Setup
- Continuum Extrapolations
- Comparison among LQCDs

4 Summary and Perspective

Summary and Perspective

- We have obtained $a_{\mu}^{\text{LO-HVP}}$ directly at physical point masses: $a_{\mu}^{\text{LO-HVP}} = 711.1(7.5)(17.4) \times 10^{-10}$.
- Full controlled continuum extrapolation and matching to perturbation theory. Model assumptions are put on only for small corrections from FV/QED/isospin breaking. Total error is 2.6%, dominated by FV.
- Our Lattice QCD results are consistent with "No New Physics" as well as Phenomenological Dispersive Methods with a conservative systematic errors.
- Lat-Pheno. comparisons are made for HVP: consistent at small Q^2 , but lattice tends to be larger, leading to larger $a_{\mu,lat}^{\text{LO-HVP}}$.
- Need \sim 0.2% precision to match Fermilab/J-PARC experiments!!
 - lat-pheno combined analyses: window method (on going, per-mil level precision at present statistics).
 - QED/SIB based on lattice QCD (on going, correction to Dashen's theorem as an exercise).
 - Scontrol FV effects directly based on the first-principle.