Grid on Vector Architectures

RIKEN R-CCS, LQCD Workshop
December 12, 2019

Peter Georg !, Benjamin Huth !, Nils Meyer !,

Dirk Pleiter !, Stefan Solbrig !, Tilo Wettig 1,
Yuetsu Kodama 2, Mitsuhisa Sato 2

I University of Regensburg (Regensburg, Germany)
2 RIKEN R-CCS (Kobe, Japan)



Introduction



e Open-source Lattice QCD framework written in C4++ 11
maintained by Peter Boyle (Edinburgh, BNL) and co-workers
GitHub: https://github.com/paboyle/Grid
arxiv: https://arxiv.org/abs/1512.03487

e Targets massively parallel architectures supporting MPI + OpenMP + SIMD
e Vectorization on CPUs using intrinsics

Intel SSE4 128 bits
AVX/AVX2 | 256 bits
AVX-512 512 bits

IBM  QPX 256 bits
Arm  NEONv8 128 bits
SVE 512 bits

e In addition, generic data types are supported (user-defined array length)
e New architecture — introduce new intrinsics layer (few 100 lines)
e For QPX and AVX-512: LQCD operators in assembly
e Comes with a series of tests and performance benchmarks
3/29


https://github.com/paboyle/Grid
https://arxiv.org/abs/1512.03487

e Grid decomposes local volume into “virtual nodes”

e Sites from different virtual nodes are assigned to same register (site fusing)
e This eliminates dependencies between register elements
e 100% SIMD efficiency

7>:.
SIMD vector

— Virtual nodes

Overdecomposed physical node

Intrinsics layer defines operations on arrays of size = SIMD width
e Arithmetics of real and complex numbers

e Intra- and inter-register permutations

e Memory prefetch and streaming memory access

e Conversion of floating-point precision

e Maximum array size in Grid is 512 bits

4/29



NEC SX-Aurora Tsubasa



NEC SX-Aurora Tsubasa

e SX-Aurora Tsubasa is the newest member of the NEC SX-series

e PCle card with Gen3 x16 interconnect called vector engine (VE)

Vector engine model l Type 10A Type 10B Type 10C
Clock frequency [GHz] 1.6 1.4 1.4
SP/DP peak performance [TFlops/s] 4.91/2.45 4.30/2.15 4.30/2.15
Memory capacity [GB] 48 48 24
Memory throughput [TB/s] 1.20 1.20 0.75

e Multiple platforms are available, ranging
from workstation to supercomputer

e Up to 64 vector engines interconnected by
InfiniBand fit into one NEC A500 rack,
delivering 157 TFlops/s peak in double

precision

6/29



Vector engine architecture

e Novel vector architecture with vector registers of 16 kbit size each
e Vector processor consists of 8 single-thread out-of-order cores, each with a

e scalar processing unit (SPU) with L1 and L2 caches

e vector processing unit (VPU), which processes the (optionally masked)
16-kbit vector registers in 8 chunks of 2 kbits each

e coherent last-level cache (LLC) directly accessible by the VPU

6 HBM2 stacks in-package

2d mesh network on chip for memory access

Ring bus for direct memory access (DMA) and PCle traffic

Core Core Core Core Core Core Core

Network on chip
| |

Memory Controller Memory Controller

DR (E e () (e

7/29



Grid on the NEC SX-Aurora Tsubasa

e Extending Grid to registers with 2" x 128 bits

e Due to implementation of shift/stencil operations, current maximum SIMD layout in
Grid is {2,2,2,1} (sites per dimension, complex single precision)

e For SX-Aurora we need, e.g., {4,4,4,4} — Implement shift/stencil with generalized
transformation, replacing original implementation

e Implementation should be 100% SIMD efficient

e lllustration: shift on 2d lattice with real numbers

e Lattice volume is {8,4}, SIMD width is 8 real numbers with layout {4,2}
e Data layout of lattice

0 8 1 9 2 10 3 U| swm2[1 9 2 20 3 1. 0 8
16 24 17 25 18 26 19 27 | MRt |47 25 18 26 19 27 16 24
4 12 5 13 6 14 7 15 — 5 13 6 14 7 15 4 12
20 28 21 29 22 30 23 31 21 29 22 30 23 31 20 28

e Data layout in memory
[01 23456 7] =mp [12 30|56 7 4]

e Need (same) permutations of partial vectors

8/29



SX-Aurora details

e C/C++ compiler capabilities

Compiler ‘ Auto-vec. ‘ Intrinsics ‘ Notes
NEC clang/LLVM VE X v
NEC ncc v X

open source, alpha stage
closed source

e Current focus on generic C/C++ and on auto-vectorization using ncc
e Future: implement intrinsics

(we have contacts to NEC team responsible for clang/LLVM VE)

e Complex numbers

e Grid stores complex numbers as array of two-element structures (re, im)
e Complex multiplication then needs intra-register permutations

e SX-Aurora supports strided load instruction, which is applied twice to load re and im
parts into separate registers (strided store analoguous)

o Complex multiplication then no longer needs intra-register permutations

e Auto-vectorization yields strided load/store

9/29



Optimal array size

e Test case: SU(3) MMM on SX-Aurora Type 10B and Intel KNL

Single-thread SU(3) MM multiplication Single-thread SU(3) MM multiplication
" (custom implementation, w/o OpenMP) (custom impl. vs. Grid with extensions, w/o OpenMP)
)
g 200 T ; ; S 80 T T ; ; T
o clang/LLVM VE (intrinsics) —+— c NEC SX-Aurora, clang/LLVM VE (intr.), custom —+—
g NEC compiler (auto-vec.) —— o NEC SX-Aurora, NEC compiler (auto-vec.), Grid ——
O 150 9 E 60 - Intel KNL 7210, clang/LLVM (intr.), Grid B
S (<]
@ 100 | 1 S a0 L —~——t——
2 =%
E 50 - é 20 e ey w e o o o
S Q
= 0 e Il Il ° 0 Il Il Il Il Il
] B
a 16 64 256 1024 4096 16384 0.25 1 4 16 64

o KNLL2 o SX-Aurora LLC
Array size in bytes cachesize  Data size in MB cache size

e Optimal array size in Grid is 4 kB due to strided load/store
(register size is 2 kB)

e Custom implementation of SU(3) MMM using intrinsics with strided load/store
outperforms auto-vectorization of SU(3) MMM in Grid

e Using clang, strided load/store requires explicit calls to intrinsics

e Auto-vectorization by ncc performs poorly due to sub-optimal register allocation
(excessive load/store operations)

10/29



Status of porting Grid to SX-Aurora

e Shift/stencil operations are generalized to support 2" X 128-bit arrays and
auto-vectorization by ncc yields good performance

e ncc has matured and some issues have been resolved recently, e.g.,
issues compiling Grid with OpenMP support

e Grid tests and benchmarks functionally correct using
full vector length (4 kB arrays) and OpenMP on 8 cores

e clang introduces function call overhead compiling with OpenMP,
thereby limiting performance

e MPI communications (ongoing work)

e Intrinsics implementation (future work)

e Optimization of LQCD operators (future work)

e GitHub: https://github.com/benjaminhuth/Grid /tree/feature/sx-aurora-0.8.2

11/29


https://github.com/benjaminhuth/Grid/tree/feature/sx-aurora-0.8.2

ARM Scalable Vector Extension (SVE)



SVE toolchain

e C/C++ compiler capabilities

compiler ‘ Auto-vec. VLA ‘ Auto-vec. fixed-size ‘ Intrinsics
armclang 19 v X v
(Arm) gcc 8 v v X
Fujitsu fccpx 4.0.0 v v [

e We currently focus on armclang VLA compiler (research contract with Arm UK;
direct contact to armclang and Arm gcc compiler developers)

e We continue to stimulate SVE compiler support for fixed-size intrinsic vector data types
o Fujitsu compiler [l I NN I N N I NN BN BN BB

[ I N N ] N

I 1§ 1 11

e Auto-vectorization of Grid for 512-bit SVE

e armclang introduces VLA overhead and SIMD efficiency is limited
e (Arm) gcc 8 did not compile Grid due to ambiguous function calls

e Fixed in Grid just recently, initial tests indicate poor performance

o Fujitsu compiler [N NN 1N AN I I NN IO N

13/29



cmult using armclang 18 VLA compiler

e Test case: auto-vectorization of complex multiplication

e Array of std::complex, layout: (rei,imi,rez,imo,...)

constexpr int n = COMPLEX_DOUBLES_FITTING_IN_VECTOR_REGISTER;
std::complex<double> x[n]l, yl[nl, z[nl;
for(int i = 0; i != n; ++i)

z[i]l = x[i]l * y[il;

e Massive overhead, branch is never taken

e VLA not sensible for Grid, need workaround mov X8, xzr
. . whilelo p0.d, xzr, x0
suitable for armclang VLA compiler ptrue  pi.d
.LOOP

1sl X9, x8, #1
1ld2d {z0.d, z1.d}, po/z, [...

* No FCMLA ld2d  {z2.d, z3.d}, po/z, [...]
incd x8

e Structure |oad/5tore whilelo p2.d, x8, x0

fmul z4.d, z2.d, z1.d
fmul z5.d, z3.d, zi.d

e real arithmetics, no permutations movprfx z7, z4
0 . fmla z7.d, pi/m, z3.d, z0.d
e only 50% SIMD efficiency movprfx z6, z5

fnmls z6.d, p1/m, z2.d, z0.d
st2d {z6.d, z7.d}, po, [...
brkns p2.b, p1/z, p0.b, p2.b
mov pO.b, p2.b
[re]reJreJreJOJ0JO0TJo0] b.mi .LOOP

[re]imJre[im[re]im[re]im]

[imJimJim[imJoJoJoJo]

14 /29



Porting Grid to SVE ACLE

e Implementation details of Grid (example: AVX-512)

Data layout determined by SIMD width using sizeof (SIMD data type)
Architecture-specific data types as function arguments and return type
Load/store generated by compiler

Example: cmult using permutations and real arithmetics (DP)

struct MultComplex {
inline m512d operator()(__m512d a, m512d b) {

m512d tmp = _mm512_permute_pd(b, 0x55)

m512d a_real = _mm512_shuffle_pd(a, a, 0x00);

m512d a_imag = _mm512_shuffle_pd(a, a, OxFF);

_imag = _mm512_mul_pd(a_imag, tmp);

__m512d out = _mm512_fmaddsub_pd(a_real, b, a_imag);

PLLI

return out;

}
Y

e SVE ACLE: we must respect restrictions on usage of sizeless types

e Sizeless types allowed in member function headers, bodies and as return types,
but we need explicit entry/exit points to/from SIMD land
(compiler-generated loads and stores not feasible for Grid)

e Sizeless types not allowed as member data of classes/structures/unions

e sizeof () not applicable to sizeless types

15/29



Porting Grid to SVE ACLE

e Grid SVE ACLE implementation

Define SIMD width at compile time

Ordinary C-arrays of size = SIMD width as member data

Sizeless types only in member function bodies

Explicit loads and stores for well-defined entry/exit points to/from SIMD land
e Compatible with armclang compiler

e Example: complex multiplication using FCMLA (SP + DP)

template <typename T>

struct vec {
alignas(SVE_VECTOR_SIZE) T V[SVE_VECTOR_SIZE / sizeof(T)];

struct MultComplex {
template <typename T>
inline vec<T> operator()(const vec<T> &x, const vec<T> &y) {

svbool_t pgl = acle<T>::pgl();
typename acle<T>::vt x_v = svldi(pgl, x.v);
typename acle<T>::vt y v = svldi(pgl, y.v);

typename acle<T>::vt z_v = acle<T>::zero();
typename acle<T>::vt r_v;

r_v = svemla_x(pgl, z_v, x_v, y_v, 90);
r_v = svemla_x(pgl, r_v, x.v, y.v, 0);

vec<T> out;
svsti(pgl, out.v, r_v);
return out;

}
Y

e After expansion of expression templates the compiler must remove superfluous
instructions, e.g., load/store and predication

16 /29



Porting options

Relevant details of the A64FX architecture are still unknown

e Performance signatures of SVE instructions
e Performance signatures of the memory hierarchy

e SVE instruction set allows for 3 implementations for complex multiplication:
1. Ordinary load/store (Id1/stl) and FCMLA
(not supported by RIKEN Fugaku processor simulator)
2. Ordinary load/store (Id1/stl), intra-register permutations and real arithmetics

3. Structure load/store (Id2/st2) and real arithmetics

Which instruction mix performs best?

What is the best performance achievable on simulator/hardware?
e Auto-vectorization vs. SVE ACLE

e Future: sizeless vs. fixed-size data types

17 /29



Status of porting Grid to SVE ACLE

e 512-bit SVE support using 512-bit arrays

e Ordinary load/store (Id1/stl) and FCMLA, 100% SIMD efficiency: done

e Ordinary load/store (Id1/stl), permutations
and real arithmetics for complex multiplication, 100% SIMD efficiency: done

e Structure load/store (Id2/st2), real arithmetics for complex multiplication,
50% SIMD efficiency, mixing of ordinary and structure load/store otherwise:
done, but mixing of SVE ACLE data types might not be good

e All implementations compile using armclang, verified using ArmIE and gemu

e Further optimizations to be applied once hardware is available

e GitHub: https://github.com/nmeyer-ur/Grid/tree/feature/arm-sve

e Options for future work

e 512-bit SVE using 1024-bit arrays

e Grid extension for NEC SX-Aurora serves as a template

e 100% SIMD efficiency with structure load/store (Id2/st2)
e Implement fixed-size data types

e Compiler-generated load/store (hopefully)
e Potential fix for excessive copy operations

o [N I N A ujicsu compiler: N I N

e Optimization of LQCD operators

18/29


https://github.com/nmeyer-ur/Grid/tree/feature/arm-sve

RIKEN Fugaku Processor Simulator and
A64FX Prototype Benchmarks



Grid benchmark

e Test case: Grid SU(3) MMM AVX-512 on Intel KNL 7210 vs. 512-bit SVE in
RIKEN Fugaku processor simulator

e clang 5.0 (AVX-512 intrinsics)
e armclang 19.2 (512-bit arrays, SVE ACLE intrinsics)
e fccpx auto-vectorization (512-bit arrays)

Single-thread SU(3) MM multiplication

T T
16 Intel KNL 7210, clang (AVX-512 intr.) —— |

Performance in GFlops/s

L L
0.1 1 10
Total data volume in MB

e Intel KNL _ RIKEN Fugaku processor simulator

o 1d1/st1 | NIEENN I R 000 Si\viD cfficiency
[ ] [ |

o |d2/st2 50% SIMD efficiency

[ ]
e J: 1 1 || ] ] |

20/29




Schonauer vector triad micro-benchmark

Schénauer vector triad

for (i=0; i<R; i++) // R = number of repetitions
for(j=0; j<N; j+=ILOOP) // vector triad kernel
for(k=j; k<j+ILOOP; k++)
Alk] = B[k] + C[k] * D[k];

o We test 64-bit double and 128-bit double _Complex
(two-element structure of real and imaginary part)

1 addition and 1 multiplication (real), or
4 additions and 4 multiplications (complex) per triad

4 or 8 triads computed in parallel using 512-bit vectors

3 loads and 1 store per vector triad
e Peak performance is 32 Flops/cycle (dual-issue FMA, DP)

— Poster session

21/29



Schonauer vector triad: real numbers

RIKEN Fugaku processor simulator

Schonauer Vector Triad in Fugaku simulator (real numbers;

107 160

--e-- () armclang auto-vectorization, ILOOP = 16 150
J --a=- (b) Arm gcc auto-vectorization, ILOOP = 16 140
s --¥--  (¢) feepx auto-vectorization, w/o kernel loop nesting 130

120
110
100
90
80
70
60
50
40

>

A64FX prototype

s a

Performance in Flops/cycle
@

Throughput in bytes/cycle

2 REY

. i 20
64 kB L1 cache i 8 MB L2 cache 10

21 o ) > 7 » o B

Total data volume in kB

e armclang auto-vectorization generates VLA loop, performs poorly
e Arm gcc and fcepx auto-vectorization perform loop unrolling

e RIKEN Fugaku processor simulator and A64FX prototype performance

e Achieves up to about 90 bytes/cycle in simulator (5.5 Flopsicycle, 17% peak)

e Achieves up to about on prototype

22/29



Simple pipeline model: real numbers

e Minimal A64FX pipeline model: 2 load ports, 1 store port, 2 FPUs (FPO, FP1)

e 2 . 512-bit load xor 1 - 512-bit store from/to L1 per cycle

e |oads take precedence over stores, no limitations otherwise

e Assume counters, branches and prefix operations (FMA4) are hidden
e Assume latency of 1 clock cycle for each instruction

e Id1/stl for load/store of 512-bit vector operands B;, C;, D; and A;

Cycle LOADO LOAD1 STORE FPO FP1

1| B B,

2 || a @

3 || by D,

4 || B; B, A « By +Ci - Dy
5 || & @ Ay« By + G- Dy
6 D3 Dy

7 A A3 « B3+ G3 - D3
8 Ao Ay < By + Cy - Dy
9 Az
10 Ay

e Vector triad performance limited by load/store throughput

e 4 vector triads saturate load/store ports
e 12 .512-bit loads + 4 - 512-bit stores in 10 cycles: 102.4 bytes/cycle
e 4.8 FMA (DP) in 10 cycles: 6.4 Flops/cycle (20% peak)

23/29



Cache access models: real numbers

e RF — L1 (RF = register file)
o AG4FX core: 2 - 512-bit load xor 1 - 512-bit store from/to L1 per cycle

e Expected peak throughput RF — L1 for Schénauer vector triad is 102.4 bytes/cycle,
assuming optimal use of load and store ports

e RF-L1-1L2

e Assume L1 misses for all loads

e Assume exclusive access to L1 by either RF or L2
— Cache line (CL) transfers between RF, L1 and L2 caches proceed sequentially

e 12 ordinary loads (1d1d) of 64 bytes each (6 cache lines) from L2 via L1 to RF take
12 + 6 cycles, 4 ordinary stores (st1d, 1 cache line) from RF to L1 take 4 cycles, and
eviction to L2 takes 8 cycles

e Peak throughput is 16 - 64 bytes/30 cycles = 34.1 bytes/cycle

e Model predicts peak throughput in good approximation

3 CL, 3 cycles 3 CL, 6 cycles
RF L1 L2
1 CL, 2 cycles 1 CL, 4 cycles

24 /29



Schonauer vector triad: complex numbers

RIKEN Fugaku processor simulator

1,Grhiinam‘r Vector Triad in Fugaku si (complex numbers’ 120

14| - (@) armelang auto-vectorization (Id2d /st2d, VLA), ILOOP =16 | 0

13] ~-a— (b) Arm gec auto-vectorization (Id1d/stld/tbl/trn), ILOOP = 16
© 12| ¥ (0 fecpx auto-vectorization (142d/s2d), w/o kernel loop nesting |0 @
% 11{ --<- (d) armclang, intrinsics (Id2d/st2d), ILOOP = 16 90 %
o (&) armelan ntinsis (4245124, 5 pipelining), ILOOP =16 g0
2 9 2
£ 3 AG64FX prototype
g &
g 7 5
g 6 £
g . )
s H
3! Z
& 3 =

2

1 64kB L1 cache i 8 MB L2 cache

21 o » » 7 » o Pt

Total data volume in kB

e armclang auto-vec. generates structure load/store (Id2/st2), performs poorly

e Arm gcc auto-vec. generates ordinary load/store (Id1/stl) and perm., performs poorly
fccpx auto-vec. generates structure load/store (Id2/st2), loop unrolling and schedules the
instructions (software pipelining), performs best

e Intrinsics using structure load/store and two-fold loop unrolling

e Software pipelining outperforms naive loop unrolling

e RIKEN Fugaku processor simulator and A64FX prototype - -
e Achieves up to about 70 bytes/cycle in simulator (9 Flops/cycle, 30% peak)
e Achieves up to about

on prototype

e No adequate pipeline model available due to unknown instruction characteristics
25/29



Simple pipeline model: complex numbers

e Minimal A64FX pipeline model: 2 load ports, 1 store port, 2 FPUs (FPO, FP1)

e 2 - 512-bit load xor 1 - 512-bit store from/to L1 per cycle
e Loads take precedence over stores, no limitations otherwise
e Assume counters and branches are hidden
e Assume latency of 1 clock cycle for each instruction

e |d2/st2 for load/store of 512-bit vector operands re/im(B;), same for C;, D; and A;

Cycle || LOADO | LOAD1 | STORE | FPO FP1
=
2 || DY Dy _ .
3 || B Bim A CP DY A cle . pim
4 || ce G AF — AF —C™ D" | A« A"+ " - D
5 || D oy AF — AF + B A — A 4 BT
o | B | &P | Megoop larcceoon
: : fe _ cim | pim i fm . ¢im | pre
7 Al AlF — A — Cm - Db ot — AT+ G - DY
8 Aim Al A 4 Bl A o A 4 pIm
re
1 pi
2

e Vector triad performance limited by load/store throughput

e 2 vector triads saturate load/store ports
e 12 . 512-bit loads + 4 - 512-bit stores in 10 cycles: 102.4 bytes/cycle
e 4.8 MULT, 4-8 FMA and 4 -8 ADD (DP) in 10 cycles: 12.8 Flops/cycle (40% peak)

26 /29



Summary and Outlook



Summary and Outlook

e Good progress porting Grid to vector architectures

e Enables support for registers with 2" x 128 bits when done

e Diversity of compiler capabilities results in high development effort

e NEC SX-Aurora
e Current focus is on auto-vectorization of 4 kB arrays using NEC compiler
e Future work: intrinsics support using strided load/store

e Fujitsu A64FX: multiple implementation options feasible
e |Implementations using 512-bit arrays

e Ordinary load/store and permutations done, but yields poor performance
e Structure load/store done, but results in limited SIMD performance
e We expect 1024-bit arrays and structure load/store to be most efficient
e Grid extension for SX-Aurora serves as a template
e Implementation of fixed-size data types reasonable once available
e Compiler-generated load/store (hopefully)
e Potential fix for excessive copy operations

e Future work: optimization of LQCD operators

28 /29



The result of the RIKEN Post-K processor simulator is just an estimated value, and it
does not guarantee the performance of the supercomputer Fugaku at the start of its
operation. We use the processor simulator compiled on 11th of September 2019. The
Fujitsu fccpx compiler is a pre-release version under development.

We acknowledge support from the HPC tools team at Arm.



