
Communication with Double Buffering

Issaku Kanamori (RIKEN)

December 12, 2019 at R-CCS

Fugaku QCD Coding workshop

Outline

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 2/16

1. Introduction

2. Algorithm with Double Buffering

3. Benchmark (A64FX 1 node)

4. Conclusions

Outline

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 2/16

1. Introduction

2. Algorithm with Double Buffering

3. Benchmark (A64FX 1 node)

4. Conclusions

Acknowledgments

this talk is based on discussion with the codesign team for LQCD

Introduction

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 3/16

Performance Bottle Neck on Lattice QCD

• the most time consuming: mult of D in the solver

• memory bandwidth

• communication bandwidth

• neighboring communication in D: need to wait for boundary

data comes

• overlapping communication and computation: as

computation becomes faster, it becomes more difficult to

hide communication

double buffering algorithm may reduce the comm. overhead

(implementation: RDMA through the uTofu interface)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 4/16

Algorithm with Double Buffering

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send)

1 // 1st iter. send buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 Rwait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

overlap btw. comm. and comp.

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 Rwait for the boundary data comes
7 Ucomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

overlap btw. comm. and comp.

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 Rwait for the boundary data comes
7 Ucomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

overlap btw. comm. and comp.

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 Rwait for the boundary data comes
7 Ucomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 Rstart receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 Rwait for the boundary data comes
15 Ucomputation: boundary
16 wait for sending is done
17 ...

overlap btw. comm. and comp.

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

process 1 (send) process 2 (recv.)

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 Rwait for the boundary data comes
7 Ucomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 Rstart receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 Rwait for the boundary data comes
15 Ucomputation: boundary
16 wait for sending is done
17 ...

overlap btw. comm. and comp.

send buf. P : Packed P : Sending

recv. buf. R : Receiving, R : Receiving done, U : being Used

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 wait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 start receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 wait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 start sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 wait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 wait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 computation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 computation: boundary
10

11

12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 wait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 Ucomputation: boundary
10 U
11 U
12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

cannot receive yet

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 Swait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 Ucomputation: boundary
10 U
11 U
12 wait for sending is done
13

14

15 // 2nd iter.
16 start receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

cannot receive yet

takes time before finish sending

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 Swait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 Ucomputation: boundary
10 U
11 U
12 wait for sending is done
13

14

15 // 2nd iter.
16 Rstart receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 Rwait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23 ...

cannot receive yet

takes time before finish sending

Neighboring Communication, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

If the receiving process delays....

1 // 1st iter. send buffer

2 start receiving
3 Ppack the boundary data
4 Sstart sending
5 computation: bulk
6 wait for the boundary data comes
7 Scomputation: boundary
8 wait for sending is done
9 // 2nd iter.

10 start receiving
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 Swait for sending is done
17 ...

1 // 1st iter. recv. buffer

2 Rstart receiving
3 pack the boundary data
4 start sending
5 computation: bulk
6

7 Rwait for the boundary data comes
8

9 Ucomputation: boundary
10 U
11 U
12 wait for sending is done
13

14

15 // 2nd iter.
16 Rstart receiving
17 pack the boundary data
18 start sending
19 computation: bulk
20 Rwait for the boundary data comes
21 Ucomputation: boundary
22 wait for sending is done
23 ...

cannot receive yet

takes time before finish sending

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 pack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 pack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 pack the boundary data
3

4 start sending
5 computation: bulk
6

7

8 wait for the boundary data comes
9 computation: boundary

10

11

12

13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 start sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 pack the boundary data
3

4 start sending
5 computation: bulk
6

7

8 wait for the boundary data comes
9 computation: boundary

10

11

12

13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 pack the boundary data
3

4 start sending
5 computation: bulk
6

7

8 wait for the boundary data comes
9 computation: boundary

10

11

12

13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 computation: boundary

10

11

12

13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 computation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 Scomputation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 pack the boundary data
12 start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

NEW!

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 Scomputation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 wait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 clear the received flag
14 wait for sending is done
15

16

17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 computation: bulk
22 wait for the boundary data comes
23 computation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

sending to the 2nd buf.

NEW!

Neighboring Communication: Double Buffering (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

1 // 1st iter. send buffer

2 Ppack the boundary data
3 Sstart sending
4 computation: bulk
5 wait for the boundary data comes
6 Scomputation: boundary
7 clear the received flag
8 wait for sending is done
9 switch the buffer to send

10 // 2nd iter.
11 Ppack the boundary data
12 Sstart sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 Swait for sending is done
18 switch the buffer to send
19 ...

1 // 1st iter. recv. buffers

2 R Rpack the boundary data
3 R R
4 R Rstart sending
5 R Rcomputation: bulk
6 R R
7 R R
8 R Rwait for the boundary data comes
9 U Rcomputation: boundary

10 U R
11 U R
12 U R
13 R Rclear the received flag
14 R Rwait for sending is done
15 R R
16 R R
17 switch the buffer to send
18 // 2nd iter.
19 pack the boundary data
20 start sending
21 R Rcomputation: bulk
22 R Rwait for the boundary data comes
23 R Ucomputation: boundary
24 wait for sending is done
25 switch the buffer to send
26 ...

sending to the 2nd buf.

NEW!

Remote Direct Memory Access (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

we use “put” in sending

it directly writes to the memory on the remote process

• send: put (directly memory on the remote process)

boundary data + watchdog flag

• Wait (recv.): check the flag is updated

after the boundary computation, the flag is reset

Remote Direct Memory Access (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

we use “put” in sending

it directly writes to the memory on the remote process

• send: put (directly memory on the remote process)

boundary data + watchdog flag

• Wait (recv.): check the flag is updated

after the boundary computation, the flag is reset

NOTE 1: 2 buffers are enough: “sending proc.” also receives data

from “receiving proc.” automatic synchronization

Remote Direct Memory Access (RDMA)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

we use “put” in sending

it directly writes to the memory on the remote process

• send: put (directly memory on the remote process)

boundary data + watchdog flag

• Wait (recv.): check the flag is updated

after the boundary computation, the flag is reset

NOTE 1: 2 buffers are enough: “sending proc.” also receives data

from “receiving proc.” automatic synchronization

NOTE 2: one can alternatively use MPI (persistent) communication

to implement double buffering.

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 9/16

Benchmark

Test detail: Jacobi method for 2-dim system

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 10/16

base: http://theo.phys.sci.hiroshima-u.ac.jp/˜ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

target system: Mx = b with

(Mx)(i, j) =
(4 +m2)x(i, j)
︸ ︷︷ ︸

≡Dx

−x(i+ 1, j)− x(i− 1, j)− x(i, j + 1)− x(i, j − 1)
︸ ︷︷ ︸

≡Hx

cont. limit
−−−−−−→ (m2 − ∂2)x

Jacobi method

x(k) → x(k+1) = D−1(b−Hx(k))
Only the hopping H contains the communication

• fixed number of iterations: 10

• local lattice size: 60× 60
• communication buffer: needed size + dummy (+ flag)

s =
needed + dummy

needed
, 1 ≤ s ≤ 8192

http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

Hopping (Mult of H)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

Hopping (Mult of H)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

comm.

Hopping (Mult of H)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

comm.

overlap

Hopping (Mult of H)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

comm.

overlap

send wait

Hopping (Mult of H)

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

1. packing the boundary data

2. start sending/receiving the boundary data

3. calculate: internal area

4. wait for receiving

5. calculate: boundary area

6. wait for sending finished

comm.

overlap

send wait

non-overlap = comm. − overlap

= start sending/receiving + wait for receiving

Estimated Bandwidth and uTofu Interface

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 12/16

uTofu

• Low level interface to use Tofu Interconnect

• It allows to specify Tofu Network Interface (TNI) to use

tuning with the optimal TNI assignment for QCD

• 6 TNI/node, 6.8GB/s for each TNI

Bandwidth estimate

• 1 node with 4 MPI proc.

(4 directions) × (4 ranks) = 16 comm.

(each comm. has the same size)

• Using 4 TNI: each TNI is used 4 times

6.8 × 4 = 27.2 GB/s

• Using 6 TNI: each TNI is used 2 or 3 times

6.8 × 6 ×
16
18

= 36.3 GB/s 16 comm.
︷ ︸︸ ︷

︸ ︷︷ ︸

1st.

︸ ︷︷ ︸

2nd.

︸ ︷︷ ︸

3rd.

Performance: mult of H on A64fx 1 node

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 13/16

NOTE: result on the evaluation environment, it does not guarantee the

performance on the actual Fugaku

 0.01

 0.1

 1

 10

 1x106 1x107 1x108

msec.

byte

MPI

mult
comm. non-overlap

0.61
theoretical BW (as 6 TNI)

 0.01

 0.1

 1

 10

 1x106 1x107 1x108

msec.

byte

uTofu: 4 TNI

mult
comm. non-overlap

0.61
theoretical BW (as 4 TNI)

• comm. overlap ≃ 0.61 msec. (replaced with a line in the plots)

• both show good scaling for large communication data size

• uTofu interface has a smaller overhead

• TNI for uTofu — 0:+x, 1:−x, 2:+y, 3:−y

Performance: mult of H on A64fx 1 node

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 13/16

NOTE: result on the evaluation environment, it does not guarantee the

performance on the actual Fugaku

 0.01

 0.1

 1

 10

 1x106 1x107 1x108

msec.

byte

MPI

mult
comm. non-overlap

0.61
theoretical BW (as 6 TNI)

 0.01

 0.1

 1

 10

 1x106 1x107 1x108

msec.

byte

uTofu: 6 TNI

mult
comm. non-overlap

0.61
theoretical BW (as 6 TNI)

• comm. overlap ≃ 0.61 msec. (replaced with a line in the plots)

• both show good scaling for large communication data size

• uTofu interface has a smaller overhead

• TNI for uTofu
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3

+x −x +y −y +x −x +y −y +x −x +y −y +x −x +y −y

︸ ︷︷ ︸

rank 1

︸ ︷︷ ︸

rank 2

︸ ︷︷ ︸

rank 3

︸ ︷︷ ︸

rank 4

Performance: mult of H on A64fx 1 node, cont’d

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 14/16

NOTE: result on the evaluation environment, it does not guarantee the
performance on the actual Fugaku

 0

 5

 10

 15

 20

 25

 30

 1x108 2x108 3x108 4x108 5x108 6x108 7x108

msec.

byte

mult only

uTofu (4 TNI)
MPI

uTofu (6 TNI)
theoretical BW (as 4 TNI)
theoretical BW (as 6 TNI)

large comm. size

time for mult

≃ time for comm.

saturation of the network bandwidth

• MPI: 32.4 GB/s

• uTofu (4 TNI): 25.8 GB/s cf. 6.8 × 4 = 27.2 GB/s

• uTofu (6 TNI): 33.0 GB/s cf. 6.8 ×16/18 = 36.3 GB/s

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 15/16

Conclusions

Conclusions

I. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 16/16

to accelerate neighboring communication, we have implemented

double buffering algorithm

test with a simple 2-dim system

• using uTofu interface seems promising

Future: to do (or on going) for Fugaku

• implement double buffering+uTofu to QCD code

qws: Nakamura-san’s talk

• multi nodes, proper TNI settings,...

• official predicted performance for LQCD (vs. K-computer): x25+

“+” will be how much????

	Outline
	Introduction
	
	Neighboring Communication
	Neighboring Communication, cont'd
	Neighboring Communication: Double Buffering (RDMA)
	Remote Direct Memory Access (RDMA)
	
	Test detail: Jacobi method for 2-dim system
	Hopping (Mult of H)
	Estimated Bandwidth and uTofu Interface
	Performance: mult of H on A64fx 1 node
	Performance: mult of H on A64fx 1 node, cont'd
	
	Conclusions

