Communication with Double Buffering

Issaku Kanamori (RIKEN)

December 12, 2019 at R-CCS
Fugaku QCD Coding workshop

@ o e

RIK=N R-CCS Computational Science

Introduction
Algorithm with Double Buffering

Benchmark (A64FX 1 node)
Conclusions

=00 D

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 2/16

1. Introduction
2. Algorithm with Double Buffering
3. Benchmark (A64FX 1 node)

4. (Conclusions

Acknowledgments
this talk is based on discussion with the codesign team for LQCD

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 2/16

Introduction

Performance Bottle Neck on Lattice QCD

e the most time consuming: mult of D in the solver
e memory bandwidth
e communication bandwidth

e neighboring communication in D: need to wait for boundary
data comes

e overlapping communication and computation: as
computation becomes faster, it becomes more difficult to
hide communication

double buffering algorithm | may reduce the comm. overhead
(implementation: RDMA through the uTofu interface)

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 3/16

Algorithm with Double Buffering

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 4/16

Neighboring Communication

process 1 (send)

1 // 1st iter. send buffer
2 | start receiving
3 | pack the boundary data
4 | start sending
5 computation: bulk
6 | wait for the boundary data comes
7 | computation: boundary
8 | wait for sending is done
9 // 2nd iter.
10 start receiving
11 pack the boundary data
12 | start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 | wait for sending is done
17

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 5/16

00 NO O WD =

T U G G G g
NOoO ok~ WD = O

Neighboring Communication

process 1 (send)

// 1st iter. send buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

process 2 (recv.)

0O N OV~ WO =

—_ . .
NOoO ok~ W NN = O o

// 1st iter. recv. buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

5/16

0O N OV A~ WD =

T U G G G g
NOoO ok~ WD = O

Neighboring Communication

process 1 (send)

// 1st iter. send buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

send buf.
recv. buf. R

process 2 (recv.)

0O N OV~ WO =

—_ . .
NOoO ok~ W NN = O o

// 1st iter. recv. buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

5/16

0O N OV A~ WD =

T U G G G g
NOoO ok~ WD = O

Neighboring Communication

process 1 (send)

// 1st iter. send buffer
start receiving |

pack the boundary data P

start sending S

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

send buf.
recv. buf. R

process 2 (recv.)

0O N OV~ WO =

—_ . .
NOoO ok~ W NN = O o

// 1st iter. recv. buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

5/16

00 NO O WD =

T U G G G g
NOoO ok~ WD = O

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

Neighboring Communication

process 1 (send)

// 1st iter. send buffer | 1 // 1st iter. recv. buffer
start receiving 2 | start receiving
pack the boundary data 3 pack the t
S @eneling | 4| start senc OVerlap btw. comm. and comp.
computation: bulk 5 Wﬁ
wait for the boundary data comes 6 | wait for the boundary data comes
computation: boundary 7 | computation: boundary
wait for sending is done 8 | wait for sending is done
// 2nd iter. 9 // 2nd iter.
start receiving 10 | start receiving
pack the boundary data 11 pack the boundary data
start sending 12 start sending
computation: bulk 13 computation: bulk
wait for the boundary data comes 14 | wait for the boundary data comes
computation: boundary 15 | computation: boundary
wait for sending is done 16 | wait for sending is done

17

send buf.
recv. buf. R

process 2 (recv.)

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

5/16

0O N OV A~ WD =

T U G G G g
NOoO ok~ WD = O

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

Neighboring Communication

process 1 (send)

send buffer

|

// 1st iter. 1
start receiving 2
pack the boundary data 3
start sending —4 |
computation: bulk 5
wait for the boundary data comes 6
computation: boundary S 7
wait for sending is done 8
// 2nd iter. 9
start receiving 10
pack the boundary data 11
start sending 12
computation: bulk 13
wait for the boundary data comes 14
computation: boundary 15
wait for sending is done 16

17

send buf.
recv. buf. R

process 2 (recv.)

computation:
wait for the boundary data comes
computation: boundary

// 1st iter. recv. buffer

start receiving

packhe ! overlap btw. comm. and comp.

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

5/16

0O N OV A~ WD =

T U G G G g
NOoO ok~ WD = O

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

Neighboring Communication

process 1 (send)

// 1st iter. send buffer 1
start receiving 2
pack the boundary data 3
start sending —4 |
computation: bulk 5
wait for the boundary data comes 6
computation: boundary S 7
wait for sending is done | 8
// 2nd iter. 9
start receiving 10
pack the boundary data 11
start sending 12
computation: bulk 13
wait for the boundary data comes 14
computation: boundary 15
wait for sending is done 16
17

send buf.
recv. buf. R

process 2 (recv.)

// 1st iter. recv. buffer

start receiving
packhe ! overlap btw. comm. and comp.
computati
wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

5/16

00 NO O WD =

T U G G G g
NOoO ok~ WD = O

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

Neighboring Communication

process 1 (send)

// 1st iter. send buffer

start receiving
pack the boundary data

start sending —4 |

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

send buf.
recv. buf. R

process 2 (recv.)

B— =

// 1st iter. recv. buffer

start receiving
packhe ! overlap btw. comm. and comp.
computati
wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

compuftatior:
wait for the boundary data comes
computation: boundary

wait for sending is done

[R]

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

5/16

00 NO O WD =

T U G G G g
NOoO ok~ WD = O

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

Neighboring Communication

process 1 (send)

// 1st iter. send buffer

start receiving
pack the boundary data

start sending —4 |

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

send buf.
recv. buf. R

process 2 (recv.)

B— =

// 1st iter. recv. buffer

start receiving
packhe ! overlap btw. comm. and comp.
computati
wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

compuftatior:
wait for the boundary data comes
computation: boundary

wait for sending is done

[R]

I3 : Packed B : Sending
. Receiving, I : Receiving done, M : being Used

5/16

0O NO OV AW =

G U G G Y
~NOoO ok~ WD =+ O

Neighboring Communication, cont’d

If the receiving process delays....

// 1st iter. send buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

0O N O~ WO —

NN MDD NOND - g a4 a a4
WN = OO0 NO O P~ WDND =~ O ©

// 1st iter. recv. buffer

start receiving

pack the boundary data
start sending
computation: bulk

wait for the boundary data comes

computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

0O NO OV AW =

G U G G Y
~NOoO ok~ WD =+ O

Neighboring Communication, cont’d

If the receiving process delays....

// 1st iter. send buffer

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

0O N O~ WO —

NN MDD NOND - g a4 a a4
WN = OO0 NO O P~ WDND =~ O ©

// 1st iter. recv. buffer

start receiving

pack the boundary data
start sending
computation: bulk

wait for the boundary data comes

computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 | / 1stiter. send buffer 1| / 1stiter. recv. buffer
2 | start receiving E 2 | start receiving @
3 | pack the boundary data 3 pack the boundary data
4 | start sending 4 | start sending
5 computation: bulk 5 | computation: bulk
6 | wait for the boundary data comes 6
7 | computation: boundary 7 | wait for the boundary data comes
8 | wait for sending is done 8
9 | //2nditer. 9 | computation: boundary
10 start receiving 10
11 pack the boundary data 11
12 | start sending 12 | wait for sending is done
13 computation: bulk 13
14 wait for the boundary data comes 14
15 computation: boundary 15 // 2nd iter.
16 | wait for sending is done 16 | start receiving
17 17 pack the boundary data
18 start sending
19 computation: bulk
20 | wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 | / 1stiter. send buffer 1| / 1stiter. recv. buffer
2 | start receiving L 2 | start receiving @
3 | pack the boundary data P 3 pack the boundary data
4 | start sending S 4 | start sending
5 computation: bulk 5 | computation: bulk
6 | wait for the boundary data comes 6
7 | computation: boundary 7 | wait for the boundary data comes
8 | wait for sending is done 8
9 | //2nditer. 9 | computation: boundary
10 start receiving 10
11 pack the boundary data 11
12 | start sending 12 | wait for sending is done
13 computation: bulk 13
14 wait for the boundary data comes 14
15 computation: boundary 15 // 2nd iter.
16 | wait for sending is done 16 | start receiving
17 17 pack the boundary data
18 start sending
19 computation: bulk
20 | wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

0O NO OV AW =

G U G G Y
~NOoO ok~ WD =+ O

Neighboring Communication, cont’d

If the receiving process delays....

// 1st iter.

start receiving

pack the boundary data
start sending
computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

send buffer

ol

// 1st iter.

start receiving

pack the boundary data
start sending
compufiatiom:

wait for the boundary data comes

computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

recv. buffer

[R]

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 // 1st iter. send buffer |
2 | start receiving
3 | pack the boundary data
4 | start sending
5 computation: bulk
6 | wait for the boundary data comes
7 | computation: boundary
8 | wait for sending is done
9 | //2nditer.
10 start receiving
11 pack the boundary data
12 | start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 | wait for sending is done
17

// 1st iter.

start receiving

pack the boundary data
start sending
compufiatiom:

wait for the boundary data comes

computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

recv. buffer

[R]

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 // 1st iter. send buffer |
2 | start receiving
3 | pack the boundary data
4 | start sending
5 computation: bulk
6 | wait for the boundary data comes
7 | computation: boundary
8 | wait for sending is done |
9 | //2nditer.

10 start receiving

11 pack the boundary data

12 | start sending

13 computation: bulk

14 wait for the boundary data comes

15 computation: boundary

16 | wait for sending is done

17

// 1st iter.

start receiving

pack the boundary data
start sending
compufiatiom:

wait for the boundary data comes

computation: boundary

wait for sending is done

// 2nd iter.

start receiving

pack the boundary data

start sending

computation: bulk

wait for the boundary data comes
computation: boundary

wait for sending is done

recv. buffer

[R]

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 | / 1stiter. send buffer | 1| / 1stiter. recv. buffer
2 | start receiving 2 | start receiving @
3 | pack the boundary data 3 pack the boundary data
4 | start sending ———4 | start sending
5 computation: bulk 5 | computatiorm:
6 | wait for the boundary data comes 6
7 | computation: boundary 7 | wait for the boundary data comes E
8 | wait for sending is done | 8
9 | //2nd iter. 9 | computation: boundary U
10 | start receiving 10 U
11 | pack the boundary data 11 J
12 | start sending S 12 | wait for sendir = :
13 | computation: bulk 13 cannot recelive yet
14 wait for the boundary data comes 14
15 computation: boundary 15 // 2nd iter.
16 | wait for sending is done 16 | start receiving
17 17 pack the boundary data
18 start sending
19 computation: bulk
20 | wait for the boundary data comes
21 computation: boundary
22 wait for sending is done
23

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 // 1st iter.
2 | start receiving
3 | pack the boundary data
4 | start sending
5 computation: bulk
6 | wait for the boundary data comes
7 | computation: boundary
8 | wait for sending is done
9 | //2nditer.
10 start receiving
11 pack the boundary data
12 | start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 | wait for sending is done
17

send buffer

I
1

2

w

0 N O O

9
10

recv. buffer

[R]

// 1st iter.

start receiving

pack the boundary data
start sending
compufiatiom:

wait for the boundary data comes

computation: boundary

o mnTj

T
12
13
14
15
16

17

20
21
22
23

wait for sendir

cannot receive yet

// 2nd iter.
start receiving
nack the boundary data

takes time before finish sending !sending

outation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 // 1st iter.
2 | start receiving
3 | pack the boundary data
4 | start sending
5 computation: bulk
6 | wait for the boundary data comes
7 | computation: boundary
8 | wait for sending is done
9 | //2nditer.
10 start receiving
11 pack the boundary data
12 | start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 | wait for sending is done
17

send buffer

I
1

2

w

0 N O O

9
10

recv. buffer

[R]

// 1st iter.

start receiving

pack the boundary data
start sending
compufiatiom:

wait for the boundary data comes

computation: boundary

o mnTj

T
12
13
14
15
16

17

20
21
22
23

wait for sendir

cannot receive yet

// 2nd iter.
start receiving
nack the boundary data

[R]

takes time before finish sending !sending

outation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

6/16

Neighboring Communication, cont’d

If the receiving process delays....

1 | / 1stiter. send buffer 1| / 1stiter. recv. buffer
2 | start receiving 2 | start receiving @
3 | pack the boundary data 3 pack the boundary data
4 | start sending T—————4 | start sending
5 computation: bulk 5 | computatiorm:
6 | wait for the boundary data comes 6
7 | computation: boundary 7 | wait for the boundary data comes E
8 | wait for sending is done | 8
9 | //2nditer. 9 | computation: boundary
10 start receiving 10
11 pack the boundary data 11
12 | start sending S 12 | wait for sendir = :
13 | computation: bulk 13 cannot receive yet
14 wait for the boundary data comes 14
15 computation: boundary 15 // 2nd iter.
16 | wait for sending is done 16 | start receiving @
17 17 nack the boundary data
takes time before finish sending !sending
outation: bulk
20 | wait for the boundary data comes
21 | computation: boundary U
22 wait for sending is done
23

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 6/16

Neighboring Communication: Double Buffering (RDMA)

1 // 1st iter. send buffer
2 | pack the boundary data
3 | start sending
4 computation: bulk
5 | wait for the boundary data comes
6 | computation: boundary
7 clear the received flag
8 | wait for sending is done
9 | switch the buffer to send
10 // 2nd iter.
11 pack the boundary data
12 | start sending
13 computation: bulk
14 wait for the boundary data comes
15 computation: boundary
16 clear the received flag
17 | wait for sending is done
18 | switch the buffer to send
19

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

0O N O~ WDN =

G G G G G QY
O 0O NO O, WD = O ©

Neighboring Communication: Double Buffering (RDMA)

// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

0O N O~ WO =

ND DO PMNDMNDD NN 2 2 a4 a4 a4 a9 a4 a4
OO Ok~ WOWDN 2O OW0ONOOOGLE WD - OO

// 1st iter. recv. buffers

pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

7/16

0O N O~ WDN =

G G G G G QY
O 0O NO O, WD = O ©

Neighboring Communication: Double Buffering (RDMA)

// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

0O N O~ WO =

ND DO PMNDMNDD NN 2 2 a4 a4 a4 a9 a4 a4
OO Ok~ WOWDN 2O OW0ONOOOGLE WD - OO

// 1st iter. recv. buffers

pack the boundary data

start sending
computation: bulk

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

7/16

00N OV~ WD =

G G G G G QY
O 0O NO O, WD = O ©

Neighboring Communication: Double Buffering (RDMA)

// 1st iter. send buffer

pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

// 1st iter.
pack the boundary data

start sending

W

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

recv. buffers

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

7/16

Neighboring Communication: Double Buffering (RDMA)

|
// 1st iter. send buffer 11/ 1stiter. recv. buffers

1
2 | pack the boundary data 2 | pack the boundary data R[R
3 | start sending 3 RIR
4 | computation: bulk start sending RIR
5 | wait for the boundary data comes 5 WR R
6 | computation: boundary 6 RIR
7 | clear the received flag 7 RIR
8 | wait for sending is done 8 | wait for the boundary data comes EE
9 | switch the buffer to send 9 | computation: boundary

10 // 2nd iter. 10

11 pack the boundary data 11

12 | start sending 12

13 computation: bulk 13 | clear the received flag

14 | wait for the boundary data comes 14 | wait for sending is done

15 computation: boundary 15

16 clear the received flag 16

17 | wait for sending is done 17 | switch the buffer to send

18 | switch the buffer to send 18 // 2nd iter.

19 19 pack the boundary data

20 start sending

21 computation: bulk

22 | wait for the boundary data comes
23 | computation: boundary

24 wait for sending is done

25 switch the buffer to send

26

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

Neighboring Communication: Double Buffering (RDMA)

1 // 1st iter. send buffer | 1 // 1st iter. recv. buffers
2 | pack the boundary data 2 | pack the boundary data R[R
3 | start sending 3 RIR
4 | computation: bulk start sending RIR
5 | wait for the boundary data comes 5 WR R
6 | computation: boundary 6 RIR
7 | clear the received flag 7 RIR
8 | wait for sending is done 8 | wait for the boundary data comes R
9 | switch the buffer to send 9 | computation: boundary R
10 | //2nd iter. 10 R
11 | pack the boundary data 11 R
12 | start sending 12 R
13 computation: bulk 13 | clear the received flag
14 | wait for the boundary data comes 14 | wait for sending is done
15 computation: boundary 15
16 clear the received flag 16
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 // 2nd iter.
19 19 pack the boundary data
20 start sending
21 computation: bulk
22 | wait for the boundary data comes
23 | computation: boundary
24 wait for sending is done
25 switch the buffer to send
26

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

0O N O~ WDN =

G G G G G QY
O 0O NO O, WD = O ©

Neighboring Communication: Double Buffering (RDMA)

// 1st iter.

pack the boundary data
start sending
computation: bulk

wait for the boundary data comes

computation: boundary

clear the received flag

wait for sending is done [l

switch the buffer to send N EW'
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
clear the received flag
wait for sending is done
switch the buffer to send

send buffer

w

0 N o O

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// 1st iter.

recv. buffers

pack the boundary data

start sending

W

wait for the boundary data comes
computation: boundary

clear the received flag
wait for sending is done

switch the buffer to send
// 2nd iter.
pack the boundary data
start sending
computation: bulk
wait for the boundary data comes
computation: boundary
wait for sending is done
switch the buffer to send

J0 |20 (3013013 [0

20170173020 (30|70 (33 |30 |33 (39|30

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS

7/16

Neighboring Communication: Double Buffering (RDMA)

1 // 1st iter. send buffer | 1 // 1st iter. recv. buffers
2 | pack the boundary data 2 | pack the boundary data R[R
3 | start sending 3 RIR
4 | computation: bulk start sending RIR
5 | wait for the boundary data comes 5 WR R
6 | computation: boundary 6 RIR
7 | clear the received flag 7 RIR
8 | wait for sending is done [l 8 | wait for the boundary data comes R
9 | switch the buffer to send NEW/! 9 | computation: boundary R
10 | //2nd iter. 10 R
11 pack the boundary data 11
12 | start sending S 12 R
13 computation: bulk 13 | clear the receiv l
14 wait for the boundary data comes 14 | wait for sendinSendlng tO the 2nd bUf
15 computation: boundary 15
16 clear the received flag 16
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 // 2nd iter.
19 19 pack the boundary data
20 start sending
21 computation: bulk
22 | wait for the boundary data comes
23 | computation: boundary
24 wait for sending is done
25 switch the buffer to send
26

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

Neighboring Communication: Double Buffering (RDMA)

1 // 1st iter. send buffer | 1 // 1st iter. recv. buffers
2 | pack the boundary data 2 | pack the boundary data R[R
3 | start sending 3 RIR
4 | computation: bulk start sending R[R
5 | wait for the boundary data comes 5 WR R
6 | computation: boundary 6 RIR
7 | clear the received flag 7 RIR
8 | wait for sending is done [l 8 | wait for the boundary data comes R
9 | switch the buffer to send NEW/! 9 | computation: boundary R
10 | //2nd iter. 10 R
11 pack the boundary data 11
12 | start sending S 12 R
13 computation: bulk 13 | clear the receiv l
14 | wait for the boundary data comes 14 | wait for sendinSendlng to the 2nd bUf
15 | computation: boundary 15 RIR
16 | clear the received flag 16 RIR
17 | wait for sending is done 17 | switch the buffer to send
18 | switch the buffer to send 18 // 2nd iter.
19 19 pack the boundary data
20 start sending
21 | computation: bulk R(R|
22 | wait for the boundary data comes | B liai
23 | computation: boundary = U
24 wait for sending is done
25 switch the buffer to send
26

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 7/16

Remote Direct Memory Access (RDMA)

we use “put” in sending
it directly writes to the memory on the remote process

e send: put (directly memory on the remote process)
boundary data + watchdog flag
e Wait (recv.): check the flag is updated
after the boundary computation, the flag is reset

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

Remote Direct Memory Access (RDMA)

we use “put” in sending
it directly writes to the memory on the remote process

e send: put (directly memory on the remote process)
boundary data + watchdog flag
e Wait (recv.): check the flag is updated
after the boundary computation, the flag is reset

NOTE 1: 2 buffers are enough: “sending proc.” also receives data
from “receiving proc.” = automatic synchronization

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

Remote Direct Memory Access (RDMA)

we use “put” in sending
it directly writes to the memory on the remote process

e send: put (directly memory on the remote process)
boundary data + watchdog flag
e Wait (recv.): check the flag is updated
after the boundary computation, the flag is reset

NOTE 1: 2 buffers are enough: “sending proc.” also receives data
from “receiving proc.” = automatic synchronization

NOTE 2: one can alternatively use MPI (persistent) communication
to implement double buffering.

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 8/16

Benchmark

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 9/16

Test detail: Jacobi method for 2-dim system

base: http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

target system: Mx = b with

(Mzx)(i,5) =
@ +m*)z(i,§) —x(i+1,7) — 2@ - 1,5) — 2,5 +1) —2(i,j — 1)

cont. Iimi’[> (m2 o 82):1:

Jacobi method
k) — g+ = D=1(p — Hz®))
Only the hopping H contains the communication

e fixed number of iterations: 10
e |ocal lattice size: 60 x 60

e communication buffer: needed size + dummy (+ flag)

n
. eeded + dummy, | < 5 < 8192
needed

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 10/16

http://theo.phys.sci.hiroshima-u.ac.jp/~ishikawa/APL9WG/stencil_double_buffering_mpi-1.0.tar.gz

Hopping (Mult of H)

packing the boundary data

start sending/receiving the boundary data
calculate: internal area

wait for receiving

calculate: boundary area

wait for sending finished

A

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

Hopping (Mult of H)

packing the boundary data

start sending/receiving the boundary data
calculate: internal area
wait for receiving
calculate: boundary area
wait for sending finished

vy _comm.

A

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

Hopping (Mult of H)

calculate: boundary area
wait for sending finished

1. packing the boundary data

2. start sending/receiving the bound%ry data

3. calculate: internal area | overlap

4. wait for receiving N | comm
5. '
6.

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

Hopping (Mult of H)

1. packing the boundary data

2. start sending/receiving the bound%ry data
3. calculate: internal area | overlap

4. wait for receiving - | comm.
5. calculate: boundary area

6. wait for sending finished | send wait

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

Hopping (Mult of H)

1. packing the boundary data

2. start sending/receiving the bound%ry data
3. calculate: internal area | overlap

4. wait for receiving - | comm.
5. calculate: boundary area

6. wait for sending finished | send wait

non-overlap = comm. — overlap
= start sending/receiving + wait for receiving

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 11/16

Estimated Bandwidth and uTofu Interface

uTofu

e Low level interface to use Tofu Interconnect

e It allows to specify Tofu Network Interface (TNI) to use
tuning with the optimal TNI assignment for QCD

e 6 TNI/node, 6.8GB/s for each TNI

Bandwidth estimate

e 1 node with 4 MPI proc.
— (4 directions) x (4 ranks) = 16 comm.
(each comm. has the same size)
e Using 4 TNI: each TNI is used 4 times
6.8 x 4 =27.2 GB/s
e Using 6 TNI: each TNl is used 2 or 3 times

6.8 x 6 X% = 36.3 GB/s 16 comm.
1st. 2nd. 3rd.

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 12/16

Performance: mult of 7/ on A64fx 1 node

NOTE: result on the evaluation environment, it does not guarantee the
performance on the actual Fugaku

MP uTofu: 4 TNI
msec. _____ I I _ msec. _____ S I _
[mult X &(: I mult X &
comm. non-overlap () e comm. non-overlap () 5%
i i i &) i
104 0.61 &7 104 0.61 - :
i theoretical BW (as 6 TNI) 6 1 i theoretical BW (as 4 TNI) S
i % : i &
w %0 X
1k X © . 1k O .
X X X X] Y WY Y Y W X ‘
[. O] [7 > 7\ 7\ 7\ 7\
i o e] i 5]
01 1O o O~ . 0.1k .
o 0 O O O
0.01 Ll S S S 0.01 L—ul SN S
1x10° 1x10° 1x108 1x10° 1x10’ 1x10°8
byte byte

comm. overlap ~ 0.61 msec. (replaced with a line in the plots)
both show good scaling for large communication data size
uTofu interface has a smaller overhead

TNI for uTofu — O:+x, 1:—x, 2.4y, 3:—y

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 13/16

Performance: mult of 7/ on A64fx 1 node

NOTE: result on the evaluation environment, it does not guarantee the
performance on the actual Fugaku

MPI uTofu: 6 TNI
| comm. non-over:;;g é ®: V comm. non-over:::lg é @
101 0.61 & 101 0.61 &
i theoretical BW (as 6 TNI) 6 1 i theoretical BW (as 6 TNI) g
i D4] I 5
NORO) -
I X X X X >,§ O b e v W Y W v i E
: U : :/\ 7\ 7\ 7\ 7\ AN U
| o | ? :
0.1 O O Q i E 0.1 3 E
o0 0 9 0 0 ‘
0.01 bl]] e 0.01]]
1x10° 1x10" 1x108 1x10° 1x10’ 1x10°8
byte byte
e comm. overlap ~ 0.61 msec. (replaced with a line in the plots)
e both show good scaling for large communication data size
e UuTofu interface has a smaller overhead
o TN| for UTOfU +r —x +y —y +r —x +y —y +tr —x +y —y +xr —x +y —y

7\ 7\ J

ol1]2]3]4l5]o]1]2]3

\ - N\

Vg

rank 1 rank 2 rank 3 rank 4
|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 13/16

Performance: mult of 7/ on A64fx 1 node, cont’d

performance on the actual Fugaku

NOTE: result on the evaluation environment, it does not guarantee the

msec. mult Only
30

u%om(4TN6 X

MPI (O
25
uTofu 6 TNI) X X
theoretical BW (as 4 TNI)
20 theoretical BW (as 6 TNI)

15 -

10 -

XX X

5,

034

0 |

. large comm. size
=time for mult
~ time for comm.

1x108 2x108 3x10°8 4x108 5x108 6x108
byte

saturation of the network bandwidth

e MPI: 32.4 GB/s
e uTofu (4 TNI): 25.8 GB/s
e uTofu (6 TNI): 33.0 GB/s

7x108

cf. 6.8 x 4 =27.2 GB/s
cf. 6.8 x16/18 = 36.3 GB/s

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 14/16

Conclusions

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 15/16

Conclusions

to accelerate neighboring communication, we have implemented
double buffering algorithm
test with a simple 2-dim system

e using uTofu interface seems promising
Future: to do (or on going) for Fugaku

e implement double buffering+uTofu to QCD code
gws: Nakamura-san'’s talk
e multi nodes, proper TNI settings,...
e official predicted performance for LQCD (vs. K-computer): x25+
“+” will be how much????

|. Kanamori: Fugaku QCD Coding workshop, 2019 Dec 12, R-CCS 16/16

	Outline
	Introduction
	
	Neighboring Communication
	Neighboring Communication, cont'd
	Neighboring Communication: Double Buffering (RDMA)
	Remote Direct Memory Access (RDMA)
	
	Test detail: Jacobi method for 2-dim system
	Hopping (Mult of H)
	Estimated Bandwidth and uTofu Interface
	Performance: mult of H on A64fx 1 node
	Performance: mult of H on A64fx 1 node, cont'd
	
	Conclusions

