
Multi-Platform Performance Portability for QCD Simulations

Peter Boyle
High Energy Theory

Brookhaven National Laboratory
and University of Edinburgh

• Will discuss:
Extreme Scaling system for QCD simulation (2018, upgrade 208)

Portability to future hardware

Convergence of HPC and AI needs

Data motion is the rate determining step

• Floating point is now free

• Data motion is now key
• Quality petaflops, not Linpack petaflops!

4. Performance Results
4.1 STREAM
To measure the memory bandwidth performance, which can signif-
icantly impact many scientific codes, we ran the STREAM bench-
mark on each of the test platforms. For each platform, we config-
ured the test to utilize 60% of the on–node memory. For Hopper
and Edison, we ran separate copies of STREAM on each of the
NUMA domains and used enough OpenMP threads to fill each do-
main. For Mira, we only ran one instance of the benchmark and ran
with 64 OpenMP threads. The reported STREAM Triad results are
as follows: Hopper - 53.9 GB/s, Edison - 103.3 GB/s, Mira - 28.6
GB/s per node.

Knowing the relative magnitude of the memory bandwidth be-
tween machines can be useful when comparing the performance
of codes that are memory bandwidth sensitive. In Figure 3, we
show roofline models of the three test platforms using the mea-
sured STREAM values and the known peak gigaflops/s/core rate
defined by each platform’s CPU clock speed and peak flops/clock.
The roofline model [15] is a convenient visual means of identify-
ing if a code is compute bound or memory bandwidth bound and
can be used to guide optimization efforts. If a code makes good
use of spatial and temporal locality in its memory references, the
memory subsystem should be able to keep the vector units of the
CPU full and thus the code should operate at near the peak floating
point rate (compute bound). If not, a code’s performance will be
limited by the memory bandwidth (memory bandwidth bound). In
the roofline model, these two variables, floating point performance
and memory bandwidth, are assumed to be related through opera-
tional intensity, i.e the number of floating point operations per byte
of DRAM traffic. Thus, the roofline of a platform is defined by the
following formula

PeakGFlops/s = MIN(

PeakF loatingPointPerformance

PeakMemoryBandwidth � OperationalIntensity)

The roofline for each compute platform can be seen to be divided
into two segments. The horizontal segment represents the upper
floating point limit imposted by the architecture. The sloped portion
of the roofline represents the upper limit of performance imposed
by the peak memory bandwidth of the system.

If we now measure the compute intensity and gigaflops/s rate
of a code we can plot them in the figure. Codes which tend to
fall on the horizontal portion of the roofline for a platform are
considered to be compute bound as their performance is limited by
the number of floating point operations that a CPU can execute each
clock cycle. Codes which fall on the sloping part of the roofline are
considered to be limited by memory bandwidth.

Figure 3 shows the measured performance of each of the Trin-
ity/NERSC8 applications when running each application’s ‘large’
test case on Hopper using an MPI-only execution model. The oper-
ational intensity for each code was measured using Cray’s Craypat
performance analysis tool and the gflops/s rates were determined
using the floating point counts reported from IPM performance
analysis tool and the run time values returned by each application.
The results in this figure point out that the applications in the pro-
curement, and those studied in more detail in this paper, are limited
in performance by the rate that the memory subsystem can feed the
processor. Simply adding more floating point capability will not in-
crease performance. The other observation is that all of the bench-
marks have relatively low computational intensity (<1), though it
must be stressed that that the data points shown are for the entire
code and not for any individual kernel which may show higher per-
formance. Because of this, it will be difficult for any of these appli-
cations to attain a platform’s peak floating point performance. This

fact may have an impact on both machine intercomparisons and the
selection of systems for procurement. In the former case, architec-
tures become compared based largely on their peak memory band-
width and not the inherent computational advantages available on
each processor. In the latter case, application developers and sys-
tem procurement teams may find it easier to choose machines with
higher peak memory bandwidth rather than refactoring their appli-
cations, or researching new algorithms, to better use the CPU. As
CPUs increase in core count and complexity these issues may be-
come increasingly prominent.

Figure 3: Roofline model of test systems with NERSC8/Trinity
benchmarks. For each of the test systems, the plot shows a roofline
model (colored lines) constructed from the peak floating point
performance per core of each system and the measured memory
bandwidth from the STREAM benchmark. Each colored triangular
symbol marks the results obtained from Hopper for test cases that
run on order 1000 nodes.

4.2 NERSC-6 Applications on Hopper and Edison
While the majority of this paper focuses on performance analysis of
codes selected from the Trinity-NERSC8 benchmark suite, we also
present results for the NERSC-6 application benchmarks[2] to fa-
cilitate comparison to previous benchmarking work on other com-
putational platforms. Like the Trinity-NERSC8 suite, the NERSC-
6 benchmarks were selected to span an appropriate cross-section of
scientific domains and algorithms. The Community Atmospheric
Model (CAM) is a significant component of the climate science
workload; it uses 3-dimensional finite volume methods to simu-
late dynamical (e.g. fluid flow) and physical (e.g. precipitation)
processes in the atmosphere. GAMESS implements a broad range
of ab initio models of quantum chemistry. IMPACT-T is a rela-
tivistic particle-in-cell code used to simulate accelerator physics.
MAESTRO is an astrophysics code that uses algebraic multigrid
methods to simulate pre-ignition phases of Type-IA supernovae.
PARATEC is a plane-wave density functional theory code used for
materials science; its functionality and performance characteristics
are quite similar to MiniDFT, which has supplanted it in the Trinity-
NERSC8 benchmark suite. GTC and MILC are included in both
benchmark suites and were described in Section 3. Detailed de-
scriptions of the NERSC-6 codes and inputs are available in ref. [2].

One feature that distinguishes Edison’s Ivy Bridge processors
from Hopper’s Magny–Cours processors is the availability of Hy-
perthreading Technology. When hyperthreading is enabled, each
physical core presents itself to the OS as two logical cores. The log-
ical cores share some resources of the physical core (such as cache,
memory bandwidth and FPUs), but have independent architectural
states. Hyperthreading has the potential to increase resource uti-
lization if an application cannot exhaust a critical shared resource

4

• Berkely roofline model: Flops/Second = (Flops/ Byte)⇥ (Bytes/Second)
• One dimensional - only memory bandwidth is considered
• Arithmetic intensity = (Flops/ Byte)

• With more care can categorise data references by origin
• Cache, Memory, Network

Requirements: scalable Quantum Chromodynamics

• Relativistic PDE for spin 1/2 fermion fields as engraved in St. Paul’s crypt:

ig ·∂y = i /∂y =my

QCD sparse matrix PDE solver communications

• L
4 local volume (space + time)

• finite di↵erence operator 8 point stencil

• ⇠ 1
L

of data references come from o↵ node

Scaling QCD sparse matrix requires interconnect bandwidth for halo exchange

Bnetwork ⇠ Bmemory

L
⇥R

where R is the reuse factor obtained for the stencil in caches
• Aim: Distribute 1004 datapoints over 104 nodes

QCD on DiRAC BlueGene/Q (2012-2018)

Tesseract Extreme Scaling (2018,2019) is a replacement for:

0

1000

2000

3000

4000

5000

6000

7000

0 25000 50000 75000 100000

Weak Scaling for DWF BAGEL CG inverter

S
p

e
e
d

u
p

 (
T

F
lo

p
s)

of BG/Q Nodes

Code%developed%by%Peter%Boyle%at%the%STFC%funded%DiRAC%facility%at%Edinburgh

Sustained 7.2 Pflop/s on 1.6 Million cores (Gordon Bell finalist SC 2013)
Edinburgh system 98,304 cores (installed 2012)

Immediate Big HPC roadmap

0.1

1

10

100

1000

2010 2012 2014 2016 2018 2020 2022

PF
/s
ys
te
m

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS
IBM/Nvidia/Summit/Sierra

Intel-KNH/Aurora
Fujitsu-ARM/post-K

Frontier/ORNL

0.1

1

10

100

1000

2010 2012 2014 2016 2018 2020 2022

SP
TF
/n
od
e

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS

IBM/Nvidia/Summit

0.1

1

10

100

1000

2010 2012 2014 2016 2018 2020 2022

co
m
m
s
G
B/
s
/n
od
e

IBM-BGQ/Mira
Intel-Broadwell/Cori1

Intel-KNL/Cori2
Intel-KNL/Oakforest PACS
IBM/Nvidia/Summit/Sierra

System Processor Accelerator Network
Summit Power9 V100 x6 Mellanox EDR
Sierra Power9 V100 x4 Mellanox EDR

Perlmutter AMD Nvidia Cray Slingshot
Aurora Intel Xeon Intel Xe Cray Slingshot
Frontier AMD AMD Radeon Cray Slingshot
Fugaku Fujitsu/ARM - Fujitsu Tofu

• 400x+ increase in SP node performance accompanied by NO increase in interconnect

• FP16 gain is 6x more again!

• US exascale systems planned in 2021, 2022 (Aurora/Argonne, Frontier/ORNL)

• Many di↵erent accelerated compute nodes, but multicore remains important

Grid QCD code

Design considerations
• Performance portable across multi and many core CPU’s

SIMD⌦OpenMP⌦MPI

• Performance portable to GPU’s
SIMT⌦offload⌦MPI

• N-dimensional cartesian arrays

• Multiple grids

• Data parallel C++ layer : Connection Machine inspired

Started in 2014 as Intel IPCC project
GPU portability studies with USQCD
Adopted as POR by USQCD in DOE Exascale Computing Project

Consistent emerging solution : advanced C++

Granularity exposed through ISA/Performance
) data structures must change with each architecture

OpenMP, OpenAcc do not address data layout

Several packages arriving at similar conclusions:
• Kokkos (Sandia)

• RAJA (Livermore)

• Grid (Edinburgh + DOE ECP)

Use advanced C++11 features, inline header template library, auto, decltype etc..
• Discipline and coding standards are required. C++ can be ine�cient otherwise

• Hide data layout in opaque container class

• Device lambda capture key enabling feature (CUDA, SyCL), or OpenMP 5.0

accelerator_for(iterator, range, {
body;

});

GRID data parallel template library

• www.github.com/paboyle/Grid, arXiv:1512.03487, arxiv:1711.04883 1

Ordering Layout Vectorisation Data Reuse
Microprocessor Array-of-Structs (AoS) Hard Maximised

Vector Struct-of-Array (SoA) Easy Minimised
Grid Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

• Automatically transform layout of arrays of mathematical objects using vSIMD template parameter

• Conformable array operations are data parallel on the same Grid layout

• Internal type can be SIMD vectors or scalars

LatticeColourMatrix A(Grid);
LatticeColourMatrix B(Grid);
LatticeColourMatrix C(Grid);
LatticeColourMatrix dC_dy(Grid);

C = A*B;

const int Ydim = 1;

dC_dy = 0.5*Cshift(C,Ydim, 1)
- 0.5*Cshift(C,Ydim,-1);

• High-level data parallel code gets 65% of peak on AVX2

• Single data parallelism model targets BOTH SIMD and threads e�ciently.

• Expression template engine is only 400 lines (but pretty dense code!)

• USQCD QDP++/PETE C++98 code is less flexible, over 105 lines of code

1Also: good, flexible C++ object serialisation using variadic macros. IDL’s not required.

Capturing SIMT and SIMD under a single Kernel

The struct-of-array (SoA) portability problem:

• Scalar code: CPU needs struct memory accesses struct calculation

• SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation

• SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

• GPU data structures in memory and data structures in thread local calculations di↵er

Model Memory Thread
Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N] Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N] Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?

• Use operator() to transform memory layout to per-thread layout.

• Two ways to access for read

• operator[] returns whole vector
• operator() returns SIMD lane threadIdx.y in GPU code
• operator() is a trivial identity map in CPU code

• Use coalescedWrite to insert thread data in lane threadIdx.y of memory layout.

Single coding style for the above

WAS

LatticeFermionView a,b,c;
accelerator_for(ss,volume, {

a[ss] = b[ss] + c[ss] ;
});

NOW

LatticeFermionView a,b,c;
accelerator_for(ss,volume,Spinor::Nsimd(), {

coalescedWrite(a[ss], b(ss) + c(ss));
});

On GPU accelerator for sets up a volume ⇥ Nsimd thread grid.

• Each thread is responsible for one SIMD lane

On CPU accelerator for sets up a volume OpenMP loop.

• Each thread is responsible for Nsimd() SIMD lanes

Per-thread datatypes inside these loops cannot be hardwired.

C++ auto and decltype use the return type of operator () to work out computation variables in architecture dependent way.

Single coding style for the above

Introduce for GPU

• vobj::scalar_object coalescedRead (vobj) ;

• vobj::scalar_object coalescedReadPermute (vobj,int ptype) ;

• coalescedWrite(vobj &,vobj::scalar_object &) ;

Under the hood operator [] and () behave di↵erently:

vobj & Lattice<vobj>::operator[] (Integer site) return odata[site]
#ifdef GRID_SIMT
const vobj::scalar_object Lattice<vobj>::operator() (Integer site) {

return extractLane(odata[site],threadIdx.y);
}
#else
const vobj & Lattice<vobj>::operator() (Integer site) {

return odata[site];
}
#endif

• C++11 auto and decltype used to infer the internal thread datum

• Sequence transforms with the architecture:

accelerator_for(sss,nloop,nsimd,{
uint64_t ss= sss*Ls;
typedef decltype(coalescedRead(psi[0])) spinor; // <- type is arch dependent
spinor tmp1, tmp2; // <- these live in stack on GPU
for(int s=0;s<Ls;s++){

uint64_t idx_u = ss+((s+1)%Ls);
uint64_t idx_l = ss+((s+Ls-1)%Ls);
spProj5m(tmp1,psi(idx_u)); // psi() accesses coalesce
spProj5p(tmp2,psi(idx_l));
coalescedWrite(chi[ss+s],diag[s]*phi(ss+s)+upper[s]*tmp1+lower[s]*tmp2);

}
});

Grid single node performance

Architecture Cores GF/s (Ls x Dw) peak
Intel Knight’s Landing 7250 68 770 6100

Intel Knight’s Corner 60 270 2400
Intel Skylakex2 48 1200 9200

Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400
Intel Ivybridgex2 24 270 920
AMD EPYCx2 64 590 3276

AMD Interlagosx4 32 (16) 80 628
Nvidia Volta 84 SMs 1500 15700

• Dropped to inline assembly for key kernel in KNL and BlueGene/Q

• EPYC is MCM; ran 4 MPI ranks per socket, one rank per die

• Also: ARM Neon and ARM SVE port

Common source accelerator port.

• Assumed Unified Virtual Memory (not restriction to Nvidia as Intel and AMD GPU’s support under OpenCL/Linux)

• CUDA; considering OpenMP 5.0 and SyCL for AMD & Intel accelerator portability

Exploiting locality: multiple chips/GPUs per node

Multi-socket servers: NUMA aware code
• Hybrid OpenMP + MPI

• Use 1:1 mapping between MPI ranks and sockets

• Unix shared memory between sockets/NUMA domains (over UPI)

• Reserve MPI transfers for inter-node

Multi-GPU servers: NVlink aware code
• Use 1:1 mapping between MPI ranks and GPU’s

• Peer2peer used between GPUs (over NVlink)

• Reserve MPI transfers for inter-node, direct to GPU if possible

09/02/2017, 11)59Isometric Drawing Tool

Page 1 of 2https://illuminations.nctm.org/activity.aspx?id=4182

GRADE:

3-5, 6-8, 9-

12

STANDARDS:
MATH CONTENT:

Geometry

Use this interactive tool
to create dynamic
drawings on isometric

dot paper. Draw figures using edges, faces, or cubes. You can shift, rotate, color, decompose, and view in 2‑D or 3‑D. Start by
clicking on the cube along the left side; then, place cubes on the grid where you would like them.

This interactive is optimized for your desktop and tablet.

Activity Instructions Exploration Related Resources Print All

Select the cube, face, or segment along the left navigation.
Then, place the object on the grid where you want it. If your selection is red, on the grid, then it is a location where you can not place the object.

HINT

Draw your shape from back to front and from bottom to top, to assure proper alignment of cubes.
When adding adjacent cubes, be sure to click on the face of the cube you want to be touching.

Create Mode

There are two ways to move objects:

1. Using the Arrow. Simply select and drag the object(s) to a new location.
2. Unit Movement Buttons

The other buttons along the top navigation serve various functions:

 Rotate the entire figure by dragging the image or by using the sliders.

Isometric Drawing Tool

Exploiting locality: hypercube network

• Small project with SGI/HPE on Mellanox EDR networks (James Southern)

• Embed 2n QCD torus inside hypercube so that nearest neigbour comms travels single hop
4x speed up over default MPI Cartesian communicators on large systems

) Customise HPE 8600 (SGI ICE-XA) to use 16 = 24 nodes per leaf switch

DiRAC HPE ICE-XA hypercube network

• Edinburgh HPE 8600 system (Installed March 2018, 2 days ahead of schedule)

• Low end Skylake Silver 4116, 12 core parts
• Single rail Omnipath interconnect
• Relatively cheap node: high node count and scalability

• Improve price per core, bandwidth per core, reduce power

Tesseract performance per node vs nodes, volume

G
F/

s
pe

r n
od

e

0.0

150.0

300.0

450.0

600.0

Nodes

1 16 32 64 128 256

12^4 16^4 24^4

• 16 nodes (single switch) delivers bidirectional 25GB/s to every node (wirespeed)

• 512 nodes topology aware bidirectional 19GB/s

• 76% wirespeed using every link in system concurrently

HPC and AI

What do fundamental physics and AI have in common?
• On the surface very little!!!

• But present similar computational problems and solutions

• Both MCMC and AI Training are serial, tightly coupled problem
• Data motion is key in a large distributed memory computer
• Enormous floating point requirement, with mixed precision tolerance

AI is a nonlinear optimisation problem:

Cost(Weights) = Â
i

|Network(Weights,Sample
i
)�Referencei |2

Most common approach, Stochastic Gradient Descent iterates:
1. Choose random B subset (batch) of samples

2. Evaluate Gradient = —
W Âi2B Costi (W)

3. Update W !W �aW

Di↵erent sample costs are independent and parallelisable; must reduce the gradient across machine

Desperately seeking Bandwidth

• Collaboration w. Intel, Brookhaven Lab: concurrency in Intel MPI and Omnipath software

• With thanks to Joe Curley, Larry Meadows & Michael Chuvalev

• Reentrancy to MPI needed with hybrid threads + MPI when many HFI’s
• Avoid 4KB pages due to per page software overhead

https://arxiv.org/pdf/1711.04883.pdf
• EDI + BNL + CU + Intel paper

Accelerating HPC codes on Intel® Omni-Path Architecture networks: From particle
physics to Machine Learning

Peter Boyle,1 Michael Chuvelev,2 Guido Cossu,3 Christopher Kelly,4 Christoph Lehner,5 and Lawrence Meadows2

1The University of Edinburgh and Alan Turing Institute
2Intel

3The University of Edinburgh
4Columbia University

5Brookhaven National Laboratory

We discuss practical methods to ensure near wirespeed performance from clusters with either one or two
Intel® Omni-Path host fabric interfaces (HFI) per node, and Intel® Xeon Phi(TM) 72xx (Knight’s Landing)
processors, and using the Linux operating system.

The study evaluates the performance improvements achievable and the required programming approaches
in two distinct example problems: firstly in Cartesian communicator halo exchange problems, appropriate for
structured grid PDE solvers that arise in quantum chromodynamics simulations of particle physics; and sec-
ondly in gradient reduction appropriate to synchronous stochastic gradient descent for machine learning. As
an example, we accelerate a published Baidu Research reduction code and obtain a factor of ten speedup over
the original code using the techniques discussed in this paper. This displays how a factor of ten speedup in
strongly scaled distributed machine learning could be achieved when synchronous stochastic gradient descent
is massively parallelised with a fixed mini-batch size.

We find a significant improvement in performance robustness when memory is obtained using carefully (guar-
anteed) allocated 2MB “huge” virtual memory pages, implying that non-standard allocation routines should be
used for communication buffers. These can be easily accessed via a LD PRELOAD override in the manner
suggested by libhugetlbfs, or accessed by appropiate mmap calls. We make use of the Intel® MPI 2019 library
“Technology Preview” and underlying software to enable thread concurrency throughout the communication
software stack via multiple PSM2 endpoints per process and use of multiple independent MPI communicators.
When using a single MPI process per node, we find that this greatly accelerates delivered bandwidth in many
core Intel® Xeon Phi processors.

I. INTRODUCTION

Modern massively parallel supercomputers are composed of many (relatively) commodity computing elements, which
may communicate using a variety of interconnect technologies which are usually programmed through the now stan-
dard Message Passing Interface (MPI). State of the art interconnect technologies are able to offload the work of copying
memory resident data to and from the network, and enable zero copy direct memory access where data is read from or
deposited directly to user space buffers without any intermediate copy to kernel or device driver memory.

This study evaluates the performance improvements achievable and the required programming approaches: firstly
in Cartesian communicator halo exchange problems, appropriate for structured grid PDE solvers; and secondly in
gradient reduction appropriate to synchronous stochastic gradient descent for machine learning. The systems under test
will use either one or two Intel® Omni-Path(TM) [1, 2] host fabric interfaces (HFIs) per node, and Intel® Knight’s
Landing(TM) [3] processors, and use the Linux operating system which has become the dominant software platform
for High Performance Computing (HPC).

The structure of this paper is as follows: we will firstly discuss some background computer architecture, explaining
some underlying interconnect and operating system concepts at a basic level suitable to computational scientists who
are not experts in computer design; we will then present recommend techniques to introduce concurrent multithread
reentrancy through the Intel MPI 2019 Technology Preview; we will also show that whether or not the new MPI
library is used, there is a large improvement in the stability of the performance afforded by the reliable use of explicit
huge memory page allocations due to the suppression of per-page software overhead (which may depend on the page
fragmentation history of a node prior to job execution; something beyond the control of a user).

II. BACKGROUND

In order to understand the reason for the improvements discussed in this paper, some background knowledge of the
handling of virtual memory and device access by modern operating systems is required, and a brief summary is given

ar
X

iv
:1

71
1.

04
88

3v
1

 [c
s.D

C
]

13
 N

ov
 2

01
7

1000

10000

100000

100000 1x106 1x107

Bi
di
re
ct
io
na
lM

B/
s
pe
rK

N
L
no
de

Packet size (bytes)

Intel MPI 2019 huge pages, threaded
Intel MPI 2019 huge pages
Intel MPI 2018 huge pages

Intel MPI 2019 THP
Intel MPI 2018 THP

• Brookhaven Lab dual rail KNL/OPA system

• 10x acceleration of Baidu “optimised reduction” code

• http://research.baidu.com/bringing-hpc-techniques-deep-learning/

• https://github.com/baidu-research/baidu-allreduce

• Thread scalable MPI reenter on multiple communicators.

• Who needs MPI endpoints?

https://www.nextplatform.com/2017/11/29/the-battle-of-the-infinibands/

Comparison: Summit

• ORNL, 4608 nodes, fastest in top500
• 6 V100 GPU’s, 90TF/s single precision, 750TF/s half precision for AI
• 5000+ GB/s memory bandwidth

• Dual rail 50GB/s EDR exterior interconnect
• 100:1 memory to network ratio /

Chapter 2. System architecture 15

Figure 2-6 shows the logical system diagram for the Power AC922 server (8335-GTW) with
six connected GPUs, where the six NVLINK Bricks are divided into three groups of two
Bricks, enabling 100 GBps buses between GPUs, but enabling more connected GPUs.

Figure 2-6 The Power AC922 server model 8335-GTW logical system diagram

2.2 Processor subsystem

This section introduces the current processor in the Power Systems product family and
describes its main characteristics and features in general.

The POWER9 processor in the Power AC922 server is the current generation of the POWER
processor family. Based on the 14 nm FinFET Silicon-On-Insulator (SOI) architecture, the
chip size is 685 mm x 685 mm and contains eight billion transistors.

POWER9
CPU 0

POWER9
CPU 1

X Bus
64 GBps

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVIDIA
Volta
GPU

NVLink 2.0

PCIe Gen4 x8
CAPIPCIe Gen4 x16 - CAPI PCIe Gen4 x16 - CAPI

PCIe Gen4 x4

PEX

Internal Storage
Controller

2 x 1Gbps Ethernet
Broadcom BMC

Front
USB

Internal
USB

Rear
USBVGAIPMI

USB

2 x
RJ-45

PCIe Gen2 x4

PCIe Gen2 x2 PCIe Gen2 x1

PCIe Gen2 x4 PCIe Gen2 x4

PCIe Gen4 x8PCIe Gen4 x8

15 GBps per channel

50 GBps per channel
(Brick)

100 GBps aggregated
bandwidth
(2 Bricks)

NVLink 2.0

Same tightly coupled problem on Summit

Use Nvidia QUDA code: This is a bad (apples to oranges) comparison at present for three reasons
1. Tesseract node is perhaps 1/2 price of a Volta GPU, currently 2x performance

• But: GPU has 2x better price/performance for communication light code

2. Summit does not yet have Gpu Direct RDMA (GDR) enabling MPI from device memory

• Anticipate a gain when GDR is enabled on Summit
• Even if break even on price/performance for this (interconnect heavy) code, programming model simplicity swings it for

Tesseract

• Partially address by using half precision preconditioner
• Partially address by using domain decomposition preconditioner (2x wall clock gain, 10x flop/s increase)

• STFC wouldn’t let me blow up the power budget this way for the 2x !

3. Many problems, even in QCD, are not so communication heavy (e.g. multigrid Wilson)

Summit performance per V100 vs gpu count

G
F/

s
pe

r G
PU

0

550

1100

1650

2200

GPU’s (6 = 1 node)

1 6 12 48

12^4 16^4 24^4

Low precision AI work

• Intel’s US Patent Application 20190042544
(FP16-S7E8 MIXED PRECISION FOR DEEP LEARNING AND OTHER ALGORITHMS)

• Authors: Boyle (ATI, Edinburgh), Sid Kashyap, Angus Lepper (Intel, former DiRAC RSE’s)

• Systematic study using Gnu Multi Precision library.

• BFP16 displays greater numerical stability for machine learning training.

• Understanding: histogramme of multiply results during SGD gradient calculations

• Patent application full text searchable on uspto.gov

Lessons learned & Dream machine

Cross platform, single source, performance portability is achievable.
1. Advanced C++ can give faster than FORTRAN performance if used judiciously

2. Use macros and Pragma to mark up loops flexibly

3. Capture parallel loop bodies in a macro

4. Store memory arrays in an opaque template container
if you can hide the layout, you can change the layout with architecture

5. A per thread accessor () can hide the di↵erence between SIMT and SIMD

Dream machine
• Aim to have accelerated nodes

• With 1:1 ratio between accelerators and 100Gbit/s HFI

• All Cray Slingshot systems planned for US look promising

• Avoid the Summit interconnect cli↵
• Avoid lock in to any one accelerator vendor
• Wrapping acceleration primitives as described is key

• OpenMP 5.0 acceleration critical for general science community.

• OpenMP 5.0 does not address data layout; users must still think about code.

Ideal QCD machine and ideal AI training machine have similar requirements.

