Multi-Platform Performance Portability for QCD Simulations

Peter Boyle
High Energy Theory
Brookhaven National Laboratory
and University of Edinburgh

®  Will discuss:

Extreme Scaling system for QCD simulation (2018, upgrade 208)
Portability to future hardware
Convergence of HPC and Al needs

+%, =
O ecr

EXASCALE COMPUTING PROJECT



Data motion is the rate determining step

® Floating point is now free
® Data motion is now key

® Quality petaflops, not Linpack petaflops!

0.1-1.0flops per byte:

Typicaly < 2 flops per byte

8 —Hopper
- : -
2 —Mira
%1 <
z actc
g n % e
b 4 miniDFT
e 4 miniGhost
116 e
A R— Do s v snap
(BLAS) ves .
6 s 14 12 1 2 4 8 16 AAMG
o) (o) o)

Operational Intensity (Flops/Byte)
® Berkely roofline model: Flops/Second = (Flops/ Byte)x ( Bytes/Second)
® One dimensional - only memory bandwidth is considered
® Arithmetic intensity = (Flops/ Byte)
®  With more care can categorise data references by origin
® Cache, Memory, Network



Requirements: scalable Quantum Chromodynamics
® Relativistic PDE for spin 1/2 fermion fields as engraved in St. Paul's crypt

N



QCD sparse matrix PDE solver communications

® L% local volume (space + time)

| Perasicaty mappod cmmunicaton

HHEH R HH

H
HHPH

® finite difference operator 8 point stencil |+»

* ~} of data references come from off node

Scaling QCD sparse matrix requires interconnect bandwidth for halo exchange

Binemor,
Bhetwork ~ Y xR

where R is the reuse factor obtained for the stencil in caches
® Aim: Distribute 1004 datapoints over 104 nodes



QCD on DiRAC BlueGene/Q (2012-2018)

Tesseract Extreme Scaling (2018,2019) is a replacement for:

‘Weak Scaling for DWF BAGEL CG inverter

o
6000 —*

—_ e

2 s000 -

o

£ oo .

5 /

g om -

2 o

(% 2000 A

A ,’f
1000 A M Lawrence Livermore {
/,/ National Laboratory (s A
o

# of BG/Q Nodes

e st the STFC funcs

Sustained 7.2 Pflop/s on 1.6 Million cores (Gordon Bell finalist SC 2013)
Edinburgh system 98,304 cores (installed 2012)



Immediate Big HPC roadmap

oo

o
o m % o o
9
c * 3 o
B, + 5 w0 uscoms &
x Bt
+
o o EQ e o w0 w2 “ho R ED e D = w2
System Processor Accelerator Network
Summit Power9 V100 x6 Mellanox EDR
N o Sierra Power9 V100 x4 Mellanox EDR
* Perlmutter AMD Nvidia Cray Slingshot
X acigcomn Aurora Intel Xeon Intel Xe Cray Slingshot
O s g Frontier AMD AMD Radeon Cray Slingshot
Fugaku Fujitsu/ARM - Fujitsu Tofu
EQ EQ e EQ ) ES

400x+ increase in SP node performance accompanied by NO increase in interconnect

® FP16 gain is 6x more again!

US exascale systems planned in 2021, 2022 (Aurora/Argonne, Frontier/ORNL)

Many different accelerated compute nodes, but multicore remains important




Grid QCD code

Design considerations

® Performance portable across multi and many core CPU'’s

SIMD ® OpenMP @ MPI

Performance portable to GPU’s
SIMT © offload @ MPI

N-dimensional cartesian arrays

Multiple grids

Data parallel C++ layer : Connection Machine inspired

Started in 2014 as Intel IPCC project
GPU portability studies with USQCD
Adopted as POR by USQCD in DOE Exascale Computing Project



Consistent emerging solution : advanced C+-+

Granularity exposed through ISA/Performance
= data structures must change with each architecture

OpenMP, OpenAcc do not address data layout

Several packages arriving at similar conclusions:
® Kokkos (Sandia)
® RAJA (Livermore)
* Grid (Edinburgh + DOE ECP)

Use advanced C++11 features, inline header template library, auto, decltype etc..
® Discipline and coding standards are required. C++ can be inefficient otherwise
® Hide data layout in opaque container class
® Device lambda capture key enabling feature (CUDA, SyCL), or OpenMP 5.0

accelerator_for(iterator, range, {
body;
b



GRID data parallel template library

www.github.com /paboyle/Grid, arXiv:1512.03487, arxiv:1711.04883 1

Ordering Layout Vectorisation Data Reuse
Microprocessor Array-of-Structs (AoS) Hard Maximised
Vector Struct-of-Array (SoA) Easy Minimised
Grid Array-of-structs-of-short-vectors (AoSoSV) Easy Maximised

Automatically transform layout of arrays of mathematical objects using vSIMD template parameter

Conformable array operations are data parallel on the same Grid layout

Internal type can be SIMD vectors or scalars

LatticeColourMatrix A(Grid);
LatticeColourMatrix B(Grid);
LatticeColourMatrix C(Grid);
LatticeColourMatrix dC_dy(Grid);

C = AB;
const int Ydim = 1;

dC_dy = 0.5%Cshift(C,Y¥dim, 1 )
- 0.5%Cshift(C,Ydim,-1 );

High-level data parallel code gets 65% of peak on AVX2

Single data parallelism model targets BOTH SIMD and threads efficiently.

Expression template engine is only 400 lines (but pretty dense code!)

® USQCD QDP++/PETE C++98 code is less flexible, over 105 lines of code

L Also: good, flexible C++ object serialisation using variadic macros. IDL’s not required.



Capturing SIMT and SIMD under a single Kernel

The struct-of-array (SoA) portability problem:
® Scalar code: CPU needs struct memory accesses struct calculation
® SIMD vectorisation: CPU needs SoA memory accesses and SoA calculation

® SIMT coalesced reading: GPU needs SoA memory accesses struct calculation

GPU data structures in memory and data structures in thread local calculations differ

Model Memory Thread
Scalar Complex Spinor[4][3] Complex Spinor[4][3]
SIMD Complex Spinor[4][3][N Complex Spinor[4][3][N]
SIMT Complex Spinor[4][3][N Complex Spinor[4][3]
Hybrid? Complex Spinor[4][3][Nm][Nt] Complex Spinor[4][3][Nt]

How to program portably?

Use operator() to transform memory layout to per-thread layout.

Two ways to access for read

operator]] returns whole vector

® operator() returns SIMD lane threadldx.y in GPU code
operator() is a trivial identity map in CPU code

Use coalescedWrite to insert thread data in lane threadldx.y of memory layout.



Single coding style for the above

WAS

LatticeFermionView a,b,c;
accelerator_for(ss,volume, {
alss] = blss] + clss] ;

s
NOowW

LatticeFermionView a,b,c;
accelerator_for(ss,volume,Spinor::Nsimd(), {
coalescedWrite(alss], b(ss) + c(ss) );

b

On GPU accelerator for sets up a volume x Nsimd thread grid.
® Each thread is responsible for one SIMD lane
On CPU accelerator for sets up a volume OpenMP loop.
® Each thread is responsible for Nsimd() SIMD lanes
Per-thread datatypes inside these loops cannot be hardwired.

C++ auto and decltype use the return type of operator () to work out computation variables in architecture dependent way.



Single coding style for the above

Introduce for GPU
®  vobj::scalar_object coalescedRead (vobj) ;

® vobj::scalar_object coalescedReadPermute (vobj,int ptype) ;

®  coalescediirite(vobj &,vobj::scalar_object &) ;

Under the hood operator [1 and () behave differently:

vobj & Lattice<vobj>::operator[] (Integer site) return odata[site:

#ifdef GRID_SIMT

const vobj::scalar_object Lattice<vobj>::operator() (Integer site) {
return extractLane(odatal[site],threadIdx.y);

#else
const vobj & Lattice<vobj>::operator() (Integer site) {
return odata[site];

#endif

® C++11 auto and decltype used to infer the internal thread datum

® Sequence transforms with the architecture:

accelerator_for(sss,nloop,nsimd,{
uint64_t ss= sss*Ls;
typedef decltype(coalescedRead(psi[0])) spinor; // <- type is arch dependent
spinor tmpl, tmp2; // <- these live in stack on GPU
for(int s=0;s<Ls;s++){
uint64_t idx_u = ss+((s+1)YLs);
uint64_t idx_1 = ss+((s+Ls-1)%Ls);
spProj5m(tmpl,psi(idx_u)); // psi() accesses coalesce
spProj5p (tmp2,psi(idx_1));
coalescedWrite(chi[ss+s],diag[s]#phi(ss+s)+upper [s]*tmpl+lower [s]*tmp2);

b



Grid single node performance

Architecture Cores GF/s (Ls x Dw)  peak

Intel Knight's Landing 7250 68 770 6100
Intel Knight's Corner 60 270 2400
Intel Skylakex2 48 1200 9200

Intel Broadwellx2 36 800 2700
Intel Haswellx2 32 640 2400

Intel lvybridgex2 24 270 920
AMD EPYCx2 64 590 3276

AMD Interlagosx4 32 (16) 80 628
Nvidia Volta 84 SMs 1500 15700

® Dropped to inline assembly for key kernel in KNL and BlueGene/Q
® EPYCis MCM; ran 4 MPI ranks per socket, one rank per die
® Also: ARM Neon and ARM SVE port

Common source accelerator port.
® Assumed Unified Virtual Memory (not restriction to Nvidia as Intel and AMD GPU's support under OpenCL /Linux )
® CUDA; considering OpenMP 5.0 and SyCL for AMD & Intel accelerator portability



Exploiting locality: multiple chips/GPUs per node

Multi-socket servers: NUMA aware code
Hybrid OpenMP + MPI
Use 1:1 mapping between MPI ranks and sockets

Unix shared memory between sockets/NUMA domains (over UPI)

Reserve MPI transfers for inter-node

Multi-GPU servers: NVlink aware code
® Use 1:1 mapping between MPI ranks and GPU'’s
® Peer2peer used between GPUs (over NVlink)

® Reserve MPI transfers for inter-node, direct to GPU if possible




Exploiting locality: hypercube network

Improvement over Default Process

Placement
Nodes Decomp Bandwidth

2 2x1x1x1 0.98

4 2x2x1x1 1.00

8 2x2x2x1 1.00

16 4x2x2x1 127

B 32 4x4x2x1 1.70

. 64 4x4x4x1 2.00

128 | 8x4xdxl 2.09
I 256 8x8x4x1 2.60
5: 512 8x8x8x1 330
. 1024 | 16x8x8x1 351

’ 2048 | 16x16x8x1 3.84

-Wmu = 4002 gl compace) 002 dua 22t

Small project with SGI/HPE on Mellanox EDR networks (James Southern)

Embed 2" QCD torus inside hypercube so that nearest neigbour comms travels single hop
4x speed up over default MPI Cartesian communicators on large systems
= Customise HPE 8600 (SGI ICE-XA) to use 16 = 2% nodes per leaf switch



DiRAC HPE ICE-XA hypercube network

® Edinburgh HPE 8600 system (Installed March 2018, 2 days ahead of schedule)

® Low end Skylake Silver 4116, 12 core parts
Single rail Omnipath interconnect
® Relatively cheap node: high node count and scalability

® Improve price per core, bandwidth per core, reduce power

W 1274 1674 2474
Tesseract performance per node vs nodes, volume
600.0
450.0
[0}
3
o
2
g 300.0
2
o]
) I I I I I
0.0
1 16 32 64 128 256

Nodes

® 16 nodes (single switch) delivers bidirectional 25GB/s to every node (wirespeed)
® 512 nodes topology aware bidirectional 19GB/s

® 76% wirespeed using every link in system concurrently



HPC and Al

What do fundamental physics and Al have in common?
® On the surface very little!!!

® But present similar computational problems and solutions

Both MCMC and Al Training are serial, tightly coupled problem
Data motion is key in a large distributed memory computer
Enormous floating point requirement, with mixed precision tolerance

Al is a nonlinear optimisation problem:

Cost(Weights) = Z [Network(Weights, Sample; ) — Reference; |?

Most common approach, Stochastic Gradient Descent iterates:
1. Choose random B subset (batch) of samples
2. Evaluate Gradient =V ¥ g Cost; (W)
3. Update W — W — aW

Different sample costs are independent and parallelisable; must reduce the gradient across machine



Desperately seeking Bandwidth

Collaboration w. Intel, Brookhaven Lab: concurrency in Intel MPI and Omnipath software

® With thanks to Joe Curley, Larry Meadows & Michael Chuvalev

Reentrancy to MPI needed with hybrid threads + MPI when many HFI's
® Avoid 4KB pages due to per page software overhead

Accelerating HPC codes on Intel® Omni-Path Architecture networks: From particle
physics to Machine Learning

https://arxiv.org/pdf/1711.04883.pdf P Byl Michael Chele. Guido CossChiristoher el Chistoph Lehne and Lawrnce Meadows®
® EDI + BNL + CU + Intel paper e i of

and Alan Turing Instivate
The

dinburgh

atonal Laborator

R —

DOR & hugemrag
ieD 151" malloc
DOR? 5 malloc

cBis

0
om0 Ta0®

Pt e fores) ® 10x acceleration of Baidu “optimised reduction” code

Brookhaven Lab dual rail KNL/OPA system http:/ /research.baidu.com, bringing-hpc-techniques-deep-learning/

® https://github.com/baidu-research/baidu-allreduce
® Thread scalable MPI reenter on multiple communicators.

® Who needs MPI endpoints?

https://www.nextplatform.com /2017 /11/29 /the-battle-of-the-infinibands/



Comparison: Summit

® ORNL, 4608 nodes, fastest in top500

® 6 V100 GPU's, 90TF /s single precision, 750TF /s half precision for Al
® 5000+ GB/s memory bandwidth

® Dual rail 50GB/s EDR exterior interconnect
® 100:1 memory to network ratio ®

Figura 26 The Power AGS22 servr model 635 GTW logical system diagram



Same tightly coupled problem on Summit

Use Nvidia QUDA code: This is a bad (apples to oranges) comparison at present for three reasons
1. Tesseract node is perhaps 1/2 price of a Volta GPU, currently 2x performance
.

But: GPU has 2x better price/performance for communication light code

2. Summit does not yet have Gpu Direct RDMA (GDR) enabling MPI from device memory

Anticipate a gain when GDR is enabled on Summit

Even if break even on price/performance for this (interconnect heavy) code, programming model simplicity swings it for
Tesseract

Partially address by using half precision preconditioner
Partially address by using domain decomposition preconditioner (2x wall clock gain, 10x flop/s increase)
® STFC wouldn't let me blow up the power budget this way for the 2x !

3. Many problems, even in QCD, are not so communication heavy (e.g. multigrid Wilson)

| 1204 W o1ena 240
Summit performance per V100 vs gpu count
2200

1650

1100

GF/s per GPU

550

1 6 12 48
GPU's (6= 1 node)



Low precision Al work

® Intel’'s US Patent Application 20190042544
(FP16-S7E8 MIXED PRECISION FOR DEEP LEARNING AND OTHER ALGORITHMS)

® Authors: Boyle (AT, Edinburgh), Sid Kashyap, Angus Lepper (Intel, former DiIRAC RSE's)

E Range with -5 Exponent 452

Range with FP16 SSE10 454

Bin Population

Sign 8-bit Exponent 7-bit Significand
A

A

( Y )
[1s]aa]e3[e2furfao[ o [ 7 6 5[4 3]2]1]0] Dﬂﬂ

R L L LA L L L A LA

S7E8 Format ’ Exponent

Resnet:50; STEB-FPI6 vs IEEE-FP1632
Nexnet; STES6916 vi IEE-FP16022

%,w e
’ Yy,
L it Yo,
———————

® Systematic study using Gnu Multi Precision library.
® BFP16 displays greater numerical stability for machine learning training.
® Understanding: histogramme of multiply results during SGD gradient calculations

® Patent application full text searchable on uspto.gov



Lessons learned & Dream machine

Cross platform, single source, performance portability is achievable.
1. Advanced C++ can give faster than FORTRAN performance if used judiciously
2. Use macros and _Pragma to mark up loops flexibly
3. Capture parallel loop bodies in a macro

4. Store memory arrays in an opaque template container
if you can hide the layout, you can change the layout with architecture

5. A per thread accessor () can hide the difference between SIMT and SIMD
Dream machine

® Aim to have accelerated nodes

® With 1:1 ratio between accelerators and 100Gbit/s HFI

Al Cray Slingshot systems planned for US look promising

® Avoid the Summit interconnect cliff
® Avoid lock in to any one accelerator vendor
® Wrapping acceleration primitives as described is key

® OpenMP 5.0 acceleration critical for general science community.

® OpenMP 5.0 does not address data layout; users must still think about code.

Ideal QCD machine and ideal Al training machine have similar requirements.



