
Readme.md 2025-02-04

1 / 2

Hands-on: Understanding thread affinity via STREAM
Choose either C/C++ (c) or Fortran (fortran). Both of them are fine, as well.

C/C++

How to execute

1. Edit a job script

Before trying this hands-on, you need to do 00_stream to compile STREAM.
On c/ or ctrad/, We have two working directories, fj_zfill.close and fj_zfill.spread. Under
each of directories, you can find:

run.sh : a script to execute STREAM
task.sh: a job script to run STREAM with different kinds of settings

Edit BINDIR variable in run.sh before the execution. You need to write your installed location of
STREAM binary (e.g., stream.exe) there.

2. Run program

You can run the program either:

Here is an example of c/fj_zfill.close.
To run as a batch job
$ cd c/fj_zfill.close
$ pjsub task.sh
Or, to run in an interactive job
$ cd c/fj_zfill.close
$ bash task.sh

Each of the cases in the Exercises will be completed within 3-4 minutes.
For safety, we set the job elapsed time in the job scripts is 6 minutes.

Exercises A

E1: Check task.sh in c/fj_zfill.close and c/fj_zfill.spread. Alternatively, you can check the
files in ctrad/. You can find that the thread affinity is set by TAFF variable (See run.sh, as well).
E2: Run the STREAM benchmark (stream.exe). Check the behaviors of Triadd-based bandwidth with
change of the number of threads. In particular, we suggest that you observe the cases of 12, 24, and 48
threads.

Exercises B (advanced)

E3: Consider a difference between fj_zfill.close and any examples in 01_bandwidth from a core-
binding point of view.

Readme.md 2025-02-04

2 / 2

E4: Measure the case of setting TAFF variable as hbarrier (i.e., use of in-core hardware barrier); It
means that one uses the in-core hardware barrier in A64FX.
E5: Try a more direct manipulation of core-binding settings with GOMP_CPU_AFFINITY in run.sh.

Fortran

How to execute

1. Edit a job script

Before trying this hands-on, you need to do 00_stream to compile STREAM.
We have one working directory, fortran/fj_zfill.close. Under the directory, you can find:

run.sh : a script to execute STREAM
task.sh: a job script to run STREAM with different kinds of settings

Edit BINDIR variable in run.sh before the execution. You need to write your installed location of
STREAM binary (e.g., stream.exe) there.

2. Run program

You can run the program either:

Here is an example of fortran/fj_zfill.close.
To run as a batch job
$ cd fortran/fj_zfill.close
$ pjsub task.sh
Or, to run in an interactive job
$ cd fortran/fj_zfill.close
$ bash task.sh

Each of the cases in the Exercises will be completed within 3-4 minutes.
For safety, we set the job elapsed time in the job scripts is 6 minutes.

Exercises A

E1: Check task.sh in fortran/fj_zfill.close and fortran/fj_zfill.spread. You can find that
the thread affinity is set by TAFF variable (See run.sh, as well).
E2: Run the STREAM benchmark (stream.exe). Check the behaviors of Triadd-based bandwidth with
change of the number of threads. In particular, we suggest that you observe the cases of 12, 24, and 48
threads.

Exercises B (advanced)

E3: Consider a difference between fj_zfill.close and any examples in 01_bandwidth from a core-
binding point of view.
E4: Measure the case of setting TAFF variable as spread or hbarrier (i.e., use of in-core hardware
barrier); It means that one uses the in-core hardware barrier in A64FX.
E5: Try a more direct manipulation of core-binding settings with GOMP_CPU_AFFINITY in run.sh.

