
Readme.md 2025-02-12

1 / 3

Hands-on: Matrix-matrix product: Well-tuned DGEMM
vs. others

Choose either C/C++ (c) or Fortran (fortran) samples. Both of them are fine, as well.

C/C++

How to compile and how to execute

1. Run a script of creating working space

See objst in create_project.sh.
It indicates a list of the settings of compile options.
Before running create_project.sh, please modify [resource_group] to the adequate
resource group in the task.sh.

Running create_project.sh, the executable file (run.x) is generated inObj_*** directory.
This directory is also automatically generated.
When you desire to use the own compiler, set MAKE_DIR variable in create_project.sh from
config to config.own.

Example:

$ cd c
$ bash create_project.sh
$ ls
Obj_fj-ssl2 Obj_fj-ssl2so

2. Run program

A job script to execute the program is located in Obj_***/results.
You can run the program either:

To run as a batch job
$ cd Obj_fj-ssl2/results
$ pjsub task.sh
Or, to run in an interactive job
$ cd Obj_fj-ssl2/results
$ bash task.sh

Each of the samples in the Exercises will be completed within 2 minutes.
For safety, we set the elapsed time of the job script as 4 minutes.
One job script contains the execution with different kinds of matrix dimension. We treat only
square matrices.

On the other hand, in c.fapp we fix a single specific matrix dimension.

Readme.md 2025-02-12

2 / 3

Exercises A

E1: Examine difference between a direct use of DGEMM and other implementations of matrix-matrix
product in main.c.
E2: Compare the performance (GFlop/s) of DGEMM to that in the others when changing matrix
dimension, in Obj_fj-ssl2/.

Also, compare those to the peak value of GFlop/s of the single core in A64FX.

Exercises B (advanced)

E3: Try to use the dynamic library of Fujitsu SSL2, instead of the static one. Check
config/Makefile.fj-ssl2so.
E4: In c.fapp, perform the basic CPUPA analysis using fapp. Using the CPUPA reports, compare dgemm
to dgemv from the viewpoints of use of cache.

On the basic CPUPA, fapp-measurements are performed five times (i.e., -Hevent=pa1, -
Hevent=pa2, -Hevent=pa3, -Hevent=pa4, and -Hevent=pa5).
Run the job with task-Bpa.sh. After the job completion, perform analyses using perf.sh. Using
the resultant CSV files and cpu_pa_report.xlsm, you can obtain the CPUPA report.
Indeed, you can find that there are various kinds of difference between dgemm and dgemv, other
than cache.

Fortran

How to compile and how to execute

1. Run a script of creating working space

See objst in create_project.sh.
It indicates a list of the settings of compile options.
Before running create_project.sh, please modify [resource_group] to the adequate
resource group in the task.sh.

Running create_project.sh, the executable file (run.x) is generated inObj_*** directory.
This directory is also automatically generated.
When you desire to use the own compiler, set MAKE_DIR variable in create_project.sh from
config to config.own.

Example:

$ cd fortran
$ bash create_project.sh
$ ls
Obj_fj-ssl2 Obj_fj-ssl2.fast Obj_fj-ssl2so

2. Run program

A job script to execute the program is located in Obj_***/results.
You can run the program either:

Readme.md 2025-02-12

3 / 3

To run as a batch job
$ cd Obj_fj-ssl2/results
$ pjsub task.sh
Or, to run in an interactive job
$ cd Obj_fj-ssl2/results
$ bash task.sh

Each of the samples in the Exercises will be completed within 2 minutes.
For safety, we set the elapsed time of the job script as 4 minutes.
One job script contains the execution with different kinds of matrix dimension. We treat only
square matrices.

On the other hand, in fortran.fapp we fix a single specific matrix dimension.

Exercises A

E1: Examine difference between a direct use of DGEMM and other implementations of matrix-matrix
product in main.F90.
E2: Compare the performance (GFlop/s) of DGEMM to that in the others when changing matrix
dimension, in Obj_fj-ssl2/. Also, compare those to the peak value of GFlop/s of the single core in
A64FX.
E3: Try the case of fortran/Obj_fj-ssl2.fast, in which -Kfast option is used. Are there any
differences from the case of Obj_fj-ssl2?

Exercises B (advanced)

E4: Try to use the dynamic library of Fujitsu SSL2, instead of the static one. Check
confing/Makefile.fj-ssl2so.
E5: In fortran.fapp, perform the basic CPUPA analysis using fapp. Using the CPUPA reports, compare
dgemm to dgemv from the viewpoints of use of cache.

On the basic CPUPA, fapp-measurements are performed five times (i.e., -Hevent=pa1, -
Hevent=pa2, -Hevent=pa3, -Hevent=pa4, and -Hevent=pa5).
Run the job with task-Bpa.sh. After the job completion, perform analyses using perf.sh. Using
the resultant CSV files and cpu_pa_report.xlsm, you can obtain the CPUPA report.
Indeed, you can find that there are various kinds of difference between dgemm and dgemv, other
than cache.

E6: Consider the case of using Fortran matmul function as a matrix-matrix-product routine.
See fortran/config/Makefile.fj-ssl2.mamul. We have two cases:

matmul with -Nalloc_assign -O3 option. The job execution time might become longer.
(~10 minutes)
matmul with -Kfast, but not specifying -Nalloc_assign.

