
Readme.md 2025-02-12

1 / 4

Hands-on: Polynomials with many floating-point
operations

Choose either C/C++ (cpp) or Fortran (fortran) samples. Both of them are fine, as well.

C/C++

How to compile and how to execute

1. Run a script of creating working space

See objst in create_project.sh.
It indicates a list of the settings of compile options.
Before running create_project.sh, please modify [resource_group] to the adequate
resource group in the task.sh.

Running create_project.sh, the executable file (run.x) is generated inObj_*** directory.
This directory is also automatically generated.
When you desire to use the own compiler, set MAKE_DIR variable in create_project.sh from
config to config.own.

Example:

$ cd cpp
$ bash create_project.sh
$ ls
Obj_clang Obj_clang.512.swp Obj_clang.inlv2 Obj_clang.novec

2. Run program

A job script to execute the program is located in Obj_***/results.
You can run the program either:

To run as a batch job
$ cd Obj_clang/results
$ pjsub task.sh
Or, to run in an interactive job
$ cd Obj_clang/results
$ bash task.sh

Each of the samples in the Exercises will be completed within 1-2 minutes.
For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A

Readme.md 2025-02-12

2 / 4

E1: Check differences between Makefile.clang and Makefile.clang.novec. Examine the meaning of
the compiler options related to the differences.
E2: Check which of options are related to generating a compiler report in FJ (*.lst) and diagnosis
message.
E3: Read the compiler report (*.lst) in each of Obj_*** directories. Also, check the diagnosis message
in a log file of the compiler (make.log).
E4: Compare the performance (FLOP/s) in Obj_clang to that in Obj_clang.novec. You can find the
value of FLOP/s in the standard output of the executable file.
E5: Check the behaviors when setting the compiler options related to optimization on instruction
scheduling.

Repeat the above exercises, when using Makefile.clang.inlv2 and
Makefile.clang.512.swp.
Compare the performance (FLOP/s) to that in Obj_clang. Which of the compiler options is the
best? Furthermore, compare the best result to the peak FLOP/s of a single core in A64FX.

Exercises B (advanced)

E6: Test the cases when superword-level parallelism (SLP) vectorization is enable (i.e., -fslp-
vectorize).
E7: Test the cases when using Trad mode (e.g., Makefile.trad.).
E8: Measure the cases in cpp_ExpressionTemplate. Here, we use a C++ template technique,
Expression Template. This technique includes a sort of inlining functions in compiling time.
E9: In cpp.fapp, performance the basic CPUPA analysis using fapp. How does the data of cycle
accounting change varying compiler options?

Note

We summarize the main compiler options of each Makefile.

Makefile.clang #Clang mode. Auto-vectorization with scalable vector length
is allowed.
Makefile.clang.512 #Clang mode. Auto-vectorization with 512-bit vector length
is allowed.
Makefile.clang.512.swp #Clang mode. Auto-vectorization with 512-bit vector length
and software pipelining are allowed.
Makefile.clang.inlv2 #Clang mode. Auto-vectorization with scalable vector length
and interleaving with count=2 are allowed.
Makefile.clang.novec #Clang mode, without vectorization.
Makefile.trad #Trad mode. Auto-vectorization (w/ 512-bit vector length)
is allowed, but software pipelining is not allowed.
Makefile.trad.nosimd #Trad mode, without vectorization.
Makefile.trad.swp #Trad mode. Auto-vectorization (w/ 512-bit vector length)
and software pipelining are allowed.

Fortran

How to compile and how to execute

Readme.md 2025-02-12

3 / 4

1. Run a script of creating working space

See objst in create_project.sh.
It indicates a list of the settings of compile options.
Before running create_project.sh, please modify [resource_group] to the adequate
resource group in the task.sh.

Running create_project.sh, the executable file (run.x) is generated inObj_*** directory.
This directory is also automatically generated.
When you desire to use the own compiler, set MAKE_DIR variable in create_project.sh from
config to config.own.

Example:

$ cd fortran
$ bash create_project.sh
$ ls
Obj_nosimd Obj_simd Obj_swp

2. Run program

A job script to execute the program is located in Obj_***/results.
You can run the program either:

To run as a batch job
$ cd Obj_simd/results
$ pjsub task.sh
Or, to run in an interactive job
$ cd Obj_simd/results
$ bash task.sh

Each of the samples in the Exercises will be completed within 1-2 minutes.
For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A

E1: Check differences between Makefile.simd and Makefile.nosimd. Examine the meaning of the
compiler options related to the differences.
E2: Check which of options are related to generating a compiler report in FJ (*.lst) and diagnosis
message.
E3: Read the compiler report (*.lst) in each of Obj_*** directories. Also, check the diagnosis message
in a log file of the compiler (make.log).
E4: Compare the performance (FLOP/s) in Obj_simd to that in Obj_nosimd. You can find the value of
FLOP/s in the standard output of the executable file.
E5: Check the behaviors when setting the compiler options related to optimization on instruction
scheduling.

Repeat the above exercises, when using Makefile.swp.

Readme.md 2025-02-12

4 / 4

Compare the performance (FLOP/s) to that in Obj_simd. Which of the compiler options is the
best? Furthermore, compare the best result to the peak FLOP/s of a single core in A64FX.

Exercises B (advanced)

E6: Test the cases when the policy of software pipelining is changed; -Kswp_policy=large and -
Kswp_policy=small, for example.
E7: Measure the cases in fortran_DoConcurrent. Here, we use do concurrent statement in Fortran
2008 standard.
E8: Measure the cases in fortran_AssumedShapeArray. Here, we write the kernel in a modern Fortran
manner.
E9: In fortran.fapp, performance the basic CPUPA analysis using fapp. How does the data of cycle
accounting change, varying compiler options?

Note

We summarize the main compiler options of each Makefile.

Makefile.nosimd #Auto-vectorization is not allowed.
Makefile.simd #Auto-vectorization is allowed.
Makefile.swp #Auto-vectorization and software pipelining are allowed.

