Readme.md 2025-02-12

Hands-on: SIMD in loops with if statements

® Choose either C/C++ (cpp) or Fortran () samples. Both of them are fine, as well.
C/C++
How to compile and how to execute
1. Run a script of creating working space

* See in
© I|tindicates a list of the settings of compile options.

© Before running , please modify to the adequate
resource group in the

* Running , the executable file () is generated in directory.
© This directory is also automatically generated.
© When you desire to use the own compiler, set variable in from
to
* Example:
$ cd cpp
$ bash create_project.sh

$ 1s
Obj _clang O0bj clang.novec

2. Run program

* A job script to execute the program is located in
® You can run the program either:

To run as a batch job

$ cd Obj_clang/results

$ pjsub task.sh

Or, to run in an interactive job
$ cd Obj_clang/results

$ bash task.sh

® Each of the samples in the Exercises will be completed within 1 minutes.
© For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A
® E1: Check the compiler reports () about or . Are the
loops of the kernels (, , and) successfully vectorized?

Readme.md 2025-02-12

e E2: Compare the performance (Elapsed time) in to that in , to consider
whether vectorization is effective even in the presence of if statements inside a loop.

Exercises B (advanced)

® E3: Set the second argument of as @ (Thus, the if statements in are always false).
Then, check the elapsed time.
® E4: Test the case of , in which the main part is compiled with Clang mode but a part of
(renamed by) with Trad mode.
Note

* We summarize the main compiler options of each Makefile.

Makefile.clang #Clang mode. Auto-vectorization with scalable vector length
and interleaving are allowed.
Makefile.clang.512 #Clang mode. Auto-vectorization with 512-bit is allowed.

Makefile.clang.novec #Clang mode, without vectorization.
Makefile.trad.nosimd #Trad mode, without vectorization.

Makefile.trad.simd #Trad mode. Auto-vectorization with -Ksimd=auto is allowed.
Makefile.trad.simd2 #Trad mode. Auto-vectorization with -Ksimd=2 is allowed.
Fortran

1. Run a script of creating working space

e See in

© Itindicates a list of the settings of compile options.

o Before running , please modify to the adequate
resource group in the
* Running , the executable file () is generated in directory.
© This directory is also automatically generated.
© When you desire to use the own compiler, set variable in from
to
* Example:

$ cd fortran

$ bash create_project.sh

$ 1s

Obj _nosimd Obj_simd Obj_simd2

2. Run program

* A job script to execute the program is located in
® You can run the program either:

2/3

Readme.md 2025-02-12

To run as a batch job

$ cd Obj simd/results

$ pjsub task.sh

Or, to run in an interactive job
$ cd Obj_simd/results

$ bash task.sh

* Each of the samples in the Exercises will be completed within 1 minutes.
© For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A
® E1: Check the compiler reports () about and . Are the loops of
the kernels (, , and) successfully vectorized?
® E2: Compare the performance (Elapsed time) in to that in or , to

consider whether vectorization is effective even in the presence of if statements inside a loop.
Exercises B (advanced)

® E3: Set the second argument of as @ (Thus, the if statements in are always false).
Then, check the elapsed time.

Note

* We summarize the main compiler options of each Makefile.

Makefile.nosimd #Auto-vectorization is not allowed.
Makefile.simd #Auto-vectorization with -Ksimd=auto is allowed.
Makefile.simd2 #Auto-vectorization with -Ksimd=2 is allowed.

3/3

