Readme.md 2025-02-12

Hands-on: Polynomials with many floating-point
operations

® Choose either C/C++ (cpp) or Fortran () samples. Both of them are fine, as well.
C/C++
How to compile and how to execute
1. Run a script of creating working space

* See in .
© I|tindicates a list of the settings of compile options.

© Before running , please modify to the adequate
resource group in the

* Running , the executable file () is generated in directory.
© This directory is also automatically generated.
© When you desire to use the own compiler, set variable in from
to
* Example:
$ cd cpp
$ bash create_project.sh

$ 1s
Obj clang Obj clang.512.swp Obj clang.inlv2 Obj clang.novec

2. Run program

* A job script to execute the program is located in
® You can run the program either:

To run as a batch job

$ cd Obj_clang/results

$ pjsub task.sh

Or, to run in an interactive job
$ cd Obj_clang/results

$ bash task.sh

® Each of the samples in the Exercises will be completed within 1-2 minutes.
© For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A

Readme.md

* E1: Check differences between and
the compiler options related to the differences.

2025-02-12

. Examine the meaning of

® E2: Check which of options are related to generating a compiler report in FJ () and diagnosis
message.

® E3: Read the compiler report () in each of directories. Also, check the diagnosis message
in a log file of the compiler ().

® E4: Compare the performance (FLOP/s) in to that in . You can find the

value of FLOP/s in the standard output of the executable file.

® E5: Check the behaviors when setting the compiler options related to optimization on instruction

scheduling.
© Repeat the above exercises, when using and
© Compare the performance (FLOP/s) to that in . Which of the compiler options is the

best? Furthermore, compare the best result to the peak FLOP/s of a single core in A64FX.

Exercises B (advanced)

® E6: Test the cases when superword-level parallelism (SLP) vectorization is enable (i.e.,

).

® E7: Test the cases when using Trad mode (e.g.,).

® E8: Measure the cases in . Here, we use a C++ template technique,

Expression Template. This technique includes a sort of inlining functions in compiling time.

* E9 In , performance the basic CPUPA analysis using
accounting change varying compiler options?

Note

* We summarize the main compiler options of each Makefile.

Makefile.clang #Clang mode. Auto-vectorization
is allowed.
Makefile.clang.512 #Clang mode. Auto-vectorization

is allowed.

Makefile.clang.512.swp #Clang mode. Auto-vectorization
and software pipelining are allowed.
Makefile.clang.inlv2 #Clang mode. Auto-vectorization
and interleaving with count=2 are allowed.

. How does the data of cycle

with scalable vector length
with 512-bit vector length
with 512-bit vector length

with scalable vector length

Makefile.clang.novec #Clang mode, without vectorization.
Makefile.trad #Trad mode. Auto-vectorization (w/ 512-bit vector length)

is allowed, but software pipelining is not allowed.

Makefile.trad.nosimd #Trad mode, without vectorization.
Makefile.trad.swp #Trad mode. Auto-vectorization (w/ 512-bit vector length)

and software pipelining are allowed.

Fortran

How to compile and how to execute

2/4

Readme.md 2025-02-12
1. Run a script of creating working space

* See in .
© Itindicates a list of the settings of compile options.

© Before running , please modify to the adequate
resource group in the

* Running , the executable file () is generated in directory.
© This directory is also automatically generated.
© When you desire to use the own compiler, set variable in from
to
* Example:

$ cd fortran

$ bash create_project.sh

$ 1s

Obj nosimd Obj simd Obj_ swp

2. Run program

* A job script to execute the program is located in
® You can run the program either:

To run as a batch job

$ cd Obj_simd/results

$ pjsub task.sh

Or, to run in an interactive job
$ cd Obj_simd/results

$ bash task.sh

® Each of the samples in the Exercises will be completed within 1-2 minutes.
© For safety, we set the upper limit of job elapsed time as 3 minutes.

Exercises A

* E1: Check differences between and . Examine the meaning of the
compiler options related to the differences.

e E2: Check which of options are related to generating a compiler report in FJ () and diagnosis
message.

® E3: Read the compiler report () in each of directories. Also, check the diagnosis message
in a log file of the compiler ().

® E4: Compare the performance (FLOP/s) in to that in . You can find the value of

FLOP/s in the standard output of the executable file.
® E5: Check the behaviors when setting the compiler options related to optimization on instruction
scheduling.
© Repeat the above exercises, when using

3/4

Readme.md 2025-02-12

© Compare the performance (FLOP/s) to that in . Which of the compiler options is the
best? Furthermore, compare the best result to the peak FLOP/s of a single core in A64FX.

Exercises B (advanced)

* E6: Test the cases when the policy of software pipelining is changed; and
, for example.
e E7: Measure the cases in . Here, we use statement in Fortran
2008 standard.
* E8: Measure the cases in . Here, we write the kernel in a modern Fortran
manner.
e E9:In , performance the basic CPUPA analysis using . How does the data of cycle

accounting change, varying compiler options?

Note

* We summarize the main compiler options of each Makefile.

Makefile.nosimd #Auto-vectorization is not allowed.
Makefile.simd #Auto-vectorization is allowed.
Makefile.swp #Auto-vectorization and software pipelining are allowed.

4/4

