
Programming Guide
(Tuning)

Mar. 2023

v2.2

FUJITSU LIMITED

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED1

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

Preface

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ This document describes how to tune
applications for the A64FX processor.

⚫ Note
⚫ Because of the different compilers in Fortran, C/C++,

Trad Mode and Clang Mode, there may be different
tuning methods or no corresponding tuning method.

⚫ In the case of similar tuning methods in Trad Mode
and Clang Mode, the tuning in Clang Mode is omitted.

⚫ In addition to this document, also see the
following:
⚫ Fortran User's Guide

⚫ C/C++ User's Guide

⚫ Programming Guide - Processors

⚫ Programming Guide - Integrated Programming Guide

⚫ Programming Guide – Fortran

⚫ This document was written with reference
to the following documentation:
⚫ A64FX Logic Specifications

⚫ A64FX® Microarchitecture Manual

⚫ ARM® Architecture Reference Manual
(ARMv8, ARMv8.1, ARMv8.2, ARMv8.3)

⚫ ARM® Architecture Reference Manual Supplement -
The Scalable Vector Extension

⚫ Trademarks
⚫ Linux® is a trademark or registered trademark of

Linus Torvalds in the United States and other
countries.

⚫ Red Hat is a trademark or registered trademark of
Red Hat Inc. in the United States and other countries.

⚫ ARM is a trademark or registered trademark of ARM
Ltd. in the United States and other countries.

⚫ Proper names such as the product name mentioned
are trademark or registered trademark of each
company.

⚫ Trademark symbols such as ® and ™ may be
omitted from system names and product names in
this document.

2

Scope of This Document

The tuning of applications has the following aspects and corresponding
points. This document describes CPU tuning and thread parallelization
tuning.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

1-Core
Tuning

Thread
Parallelization

Tuning

Process
Parallelization

Tuning

Ultra-High
Parallelization

Tuning

Tuning
points

✓ Reduce I/O
✓ Reduce operational

amount
✓ Facilitate

SIMDization
✓ Reduce memory

access
✓ Improve cache

usage

✓ Increase
parallelization ratio

✓ Increase
parallelization
granularity

✓ Reduce cost of
synchronization
between threads

✓ Equalize load
balance

✓ Increase
parallelization ratio

✓ Increase
parallelization
granularity

✓ Reduce cost of
communication
between processes

✓ Equalize load
balance

✓ Increase
parallelization ratio

✓ Increase
parallelization
granularity

✓ Reduce cost of
communication
between processes

✓ Equalize load
balance

✓ Reduce global
communication
cost

Scope of this document

3

Contents (1/2)

⚫ Investigating Bottlenecks

⚫ CPU Performance Analysis Report: Overview

⚫ CPU Performance Analysis Report: What is
Cycle Accounting?

⚫ Bottleneck Extraction Using Cycle Accounting

⚫ (Bandwidth) Bottleneck Extraction Using
Various Busy Times

⚫ Tuning Methods Using Cycle Accounting

⚫ Tuning Map

⚫ 1-Core Tuning

⚫ Data Access Wait Time (Increased Data
Locality)

⚫ Strip Mining

⚫ Loop Blocking

⚫ Sector Cache

⚫ Loop Interchange

⚫ Loop Fusion

⚫ Array Merge (Indirect Access)

⚫ Array Dimension Shift

⚫ Unroll-and-Jam

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Data Access Wait Time (Hidden Latency)

⚫ Indirect Access Prefetch

⚫ Using Software Prefetch to Access Non-
Sequential Data

⚫ Data Access Wait Time (Reduced Access
Amount)

⚫ High-Speed Store (ZFILL)

⚫ Data Access Wait Time (Improved
Thrashing)

⚫ Padding That Increases Array Elements in the
First Dimension

⚫ Padding That Increases Array Elements in the
Second Dimension

⚫ Padding With Dummy Arrays

⚫ Padding With Dummy Arrays (Arrays of
Different Sizes)

⚫ Array Merge (Improved Thrashing)

⚫ Loop Fission (Improved Thrashing)

⚫ Padding Using the Large Page Environment
Variable

4

Contents (2/2)

⚫ Operation Wait
(Facilitation of SIMDization)

⚫ Loop Peeling

⚫ Loops With an Unclear Defining Relationship

⚫ Loops Containing Pointer Variables

⚫ Operation Wait (Hidden Latency)

⚫ Loop Fission (Facilitation of software
pipelining)

⚫ Specifying the Appropriate Number of
Unrolls and Suppressing Software Pipelining

⚫ Specifying the Number of Striping
(Interleaving) Expansions and Suppressing
Software Pipelining

⚫ Software Pipelining in an Outer Loop

⚫ Rerolling

⚫ Loop Unswitching

⚫ Microarchitecture-Dependent Bottlenecks

⚫ Avoiding the Scatter Store Instruction

⚫ Facilitating Gathering by the Gather Load
Instruction

⚫ Avoiding Excessive SFI

⚫ Using the Multiple Structures Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Adjusting the Hardware Prefetch Distance

⚫ SVE Vector Register Size (SIMD Width)

⚫ Using the Half-Precision Real Type

⚫ Thread Parallelization Tuning

⚫ Improving the Thread Parallelization Ratio

⚫ Loops With an Unclear Relationship Between
Definition and Citation

⚫ Loops Containing Pointer Variables

⚫ Loops With Data Dependency

⚫ Improving Thread Parallelization Execution
Efficiency

⚫ Improving False Sharing

⚫ Loops With Irregular Throughput

⚫ Parallelization in the Appropriate Parallelization
Dimension

⚫ Improving Execution Efficiency by Setting
Large Pages

⚫ Specifying a Large Page Paging Policy

⚫ Changing the Lock Type

⚫ Reduced memory usage

⚫ Rewriting OMP SINGLE to OMP MASTER

5

Investigating Bottlenecks

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED6

CPU Performance Analysis Report: Overview

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

We recommend using the CPU performance analysis report to extract performance
bottlenecks.

With the CPU performance analysis report, you can measure a rich variety of PA (Performance Analysis) events as
shown below and also check the CPU operation states during application program execution.

Statistical information Cycle accounting

Memory/Cache busy status

Cache miss status

Instruction mix

Hardware
prefetch information

Performance
information

Other performance
information

Power
consumption

Inter-CMG data transfer
status

7

CPU Performance Analysis Report: What is Cycle
Accounting?

Cycle accounting is a means to analyze performance bottleneck factors.

The CPU performance analysis report displays cycle accounting information at the upper right.

Cycle accounting divides the total time (number of CPU cycles) taken to execute an application
program into CPU operation states and shows this information graphically. Since CPU bottlenecks can
be identified from the resulting graphs, you can finely analyze performance and fine-tune the
program.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No instruction commit
because SP (store port)
is full

No instruction commit
waiting for an
instruction to be fetched

Other

No instruction commit
waiting for a floating-
point instruction to be
completed

No instruction commit
due to memory access

No instruction commit
due to cache access

4

3

1

0

E
x
e
c
u

ti
o
n

 t
im

e
 (

m
e
a
s
u

re
d
)

Instruction commit count Execution time constraint

Other instruction commit

2 instruction commit

1 instruction commit

0 instruction commit

Instruction commit count: Time when N instructions were executed in 1 machine cycle
0 instruction commit: Time when an instruction stalled due to some factor

2

Other

4 instruction commit

3 instruction commit

1 instruction commit

2 instruction commit

Other instruction commit

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

No instruction
commit waiting for a
floating-point
instruction to be
completed

4 instruction commit

3 instruction commit

1 instruction commit

2 instruction commit

Other instruction commit
4 instruction commit

3 instruction commit

8

Bottleneck Extraction Using Cycle Accounting

⚫ Identifying bottlenecks

Identifying bottlenecks is fundamental for tuning.

You can determine bottlenecks in the evaluated section after cycle accounting.

⚫ Utilization for tuning

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

- What measures must be taken to improve bottlenecks?
- How much can they be improved?
To answer these questions,
the people making the analysis should break down the section into loops.

Loops

Procedure

Entire evaluated section of interest

Bottleneck

4 instructions
commit

1 instruction
commit

No instruction
commit waiting
for a floating-
point instruction
to be completed

Loop[Seconds]

2 instructions
commit

3 instructions
commit

Bottleneck

Entire evaluated section

4 instruction commit

2 instruction commit

1 instruction commit

No instruction commit
waiting for a floating-
point instruction to be
completed

No instruction commit
due to L2 cache access
for a floating-point
load instruction

[Seconds]

Bottleneck

3 instruction commit

9

(Bandwidth) Bottleneck Extraction Using Various Busy
Times

⚫ The cycle accounting graph on the left shows

the following busy time information. You can
thereby identify various bandwidth
bottlenecks.

• Instruction busy time

• L1/L2 cache busy time

• Memory busy time

• Execution time breakdown of each thread

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Execution time breakdown

Memory busy time

L2 busy time

L1 busy time

Instruction busy time

⚫ Memory busy time
Occurs when the amount of data to transfer to
memory is large.

⚫ L1/L2 cache busy time
Occurs when the amount of data to transfer to
the L1/L2 cache is large.

⚫ Instruction busy time
Occurs when the operational amount is large.

10

Tuning Methods Using Cycle Accounting

⚫ Select a means of tuning, based on cycle accounting results.
The following figure shows the main means of tuning.
For details, see the tuning map.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

E
x
e
c
u
ti
o
n
 t

im
e
 (

m
e
a
su

re
d
)

Instruction
commit
(operation
execution)

Operation
wait

Cache wait

Memory wait

Execution time breakdown Main means of tuning

⚫ Facilitating instruction scheduling/software pipelining
◼ Loop unrolling and loop fission
◼ Loop unswitching

⚫ Optimizing L2 cache usage
◼ Loop blocking
◼ Loop fusion and outer loop unrolling

⚫ Hiding memory latency
◼ L2 prefetch (stride/list access)

⚫ Optimizing L1 cache usage
◼ Padding, array merge, loop fission, and loop fusion

⚫ Hiding L2 cache latency
◼ L1 prefetch (stride/list access)

⚫ Facilitating optimization to reduce the number of instructions
◼ SIMDization
◼ Common subexpression elimination

11

Tuning Map: Classification and States

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Bottleneck
Classification

High Cost Seen on PA Graph High Cost Seen in PA Information Situation

Memory bottleneck

No instruction commit due to memory access
for a floating-point load instruction

-
Memory latency is a bottleneck.

No instruction commit due to memory access
for an integer load instruction

-

No instruction commit because SP (store port)
is full

-

The cost of store instructions is a bottleneck.

No instruction commit because memory cache
is busy

-

Memory throughput is a bottleneck.

- High memory busy rate

-
High L2 miss rate
High L2 miss dm rate

Memory latency is a bottleneck.

L2 cache bottleneck

No instruction commit due to L2 cache access
for a floating-point load instruction

-
L2 cache latency is a bottleneck.

No instruction commit due to L2 cache access
for an integer load instruction

-

- High L2 busy rate
L2 cache throughput is a bottleneck.

-
High L1D miss rate
High L1D miss dm rate

L2 cache latency is a bottleneck.

L1 cache bottleneck

No instruction commit due to L1D cache access
for a floating-point load instruction

-
L1 cache latency is a bottleneck.

No instruction commit due to L1D cache access
for an integer load instruction

-

- High L1 busy rate L1 cache throughput is a bottleneck.

Scheduling
bottleneck

No instruction commit waiting for a floating-
point instruction to be completed

-
Operation instruction latency is a bottleneck.

No instruction commit waiting for an integer
instruction to be completed

-

No instruction commit waiting for a branch
instruction to be completed

-
A branch instruction is a bottleneck.

Parallelization
bottleneck

Synchronous waiting time between threads -
A part with no thread parallelization is a bottleneck.

Load imbalance
bottleneck

Synchronous waiting time between threads
Large max-min difference in
instruction balance

Load balance between threads is a bottleneck.

TLB bottleneck
- High mDTLB miss rate

TLB misses or thrashing is a bottleneck.

- High uDTLB miss rate TLB misses are a bottleneck.

Instruction fetch
No instruction commit waiting for an instruction
to be fetched

-

Instruction cache misses or thrashing is a bottleneck.

Bottleneck due to
number of
instructions

Instruction
commit

Other instruction commit

-

The number of instructions is a bottleneck.

4 instruction commit
3 instruction commit
2 instruction commit

1 instruction commit

Other No instruction commit for other reasons - PA data may not have been properly collected.

12

Tuning Map 1/4

⚫ Throughput bottlenecks

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

High Cost Seen on
PA Graph

High Cost Seen in PA
Information

Situation Proposed Tuning

No instruction
commit because
memory cache is
busy

- Memory throughput is a
bottleneck.

Improve the data access wait time.
- Array dimension shift
- Loop blocking
- Strip Mining
- High-speed store (ZFILL)

- High memory busy rate Memory throughput is a
bottleneck.

Improve the data access wait time.
- Array dimension shift
- Loop blocking
- Strip Mining
- High-speed store (ZFILL)

- High L2 miss rate
High L2 miss dm rate

Memory latency is a bottleneck. Improve the data access wait time.
- Array dimension shift
- Loop blocking
- Strip Mining
- Sector Cache
- Prefetch-related improvement
- Improved Thrashing

High L2 busy rate L2 cache throughput is a
bottleneck.

Improve the data access wait time.
- Array dimension shift
- Loop blocking
- Strip Mining

High L1 busy rate L1 cache throughput is a
bottleneck.

Improve the data access wait time.
- Algorithm review

13

Tuning Map 2/4

⚫ Latency bottlenecks

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

High Cost Seen on
PA Graph

High Cost Seen in PA
Information

Situation Proposed Tuning

No instruction commit due
to memory access for a
floating-point load
instruction

Memory latency is a bottleneck. Improve the data access wait time.
- Array dimension shift
- Prefetch-related improvement
- Loop blocking

No instruction commit due
to memory access for an
integer load instruction

No instruction commit due
to L2 cache access for a
floating-point load
instruction

L2 cache latency is a bottleneck. Improve the data access wait time.
- Array dimension shift
- Unroll-and-Jam
- Prefetch-related improvement

No instruction commit due
to L2 cache access for an
integer load instruction

- High 1D miss rate
High L1D miss dm rate

Improve the data access wait time.
- Array dimension shift
- Improved Thrashing

No instruction commit due
to L1D cache access for a
floating-point load
instruction

L1 cache latency is a bottleneck. Improve instruction scheduling.
Improve microarchitecture-
dependent bottlenecks.

No instruction commit due
to L1D cache access for an
integer load instruction

No instruction commit
waiting for a floating-point
instruction to be completed

Operation instruction latency is
a bottleneck.

Improve instruction scheduling.

No instruction commit
waiting for an integer
instruction to be completed

14

Tuning Map 3/4

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

High Cost Seen on
PA Graph

High Cost Seen in PA
Information

Situation Proposed Tuning

In
st

ru
c
ti
o
n
 c

o
m

m
it

Other
instruction
commit

The number of instructions is a
bottleneck.

Improve bottlenecks due to the
number of instructions.
- Facilitation of SIMDization
- Facilitation of software pipelining
- Prefetch-related improvement
- Inline expansion

4 instruction
commit

3 instruction
commit

2 instruction
commit

1 instruction
commit

High Cost Seen on
PA Graph

High Cost Seen in PA
Information

Situation Proposed Tuning

- High mDTLB miss rate TLB misses or thrashing is a
bottleneck.

Improve TLB bottlenecks.
- Thrashing elimination
- Change of the area used
- Optimization with the large page

option

- High uDTLB miss rate TLB misses are a bottleneck. Improve TLB bottlenecks.
- Expansion of the page size

⚫ Bottleneck due to the number of instructions

⚫ TLB bottlenecks

15

Tuning Map 4/4

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

High Cost Seen on
PA Graph

High Cost Seen in PA
Information

Situation Proposed Tuning

No instruction
commit because SP
(store port) is full

The cost of store instructions is
a bottleneck.

Improve the data access wait time.
- Array dimension shift
- Prefetch-related improvement
- High-speed store (ZFILL)

No instruction
commit waiting for a
branch instruction to
be completed

A branch instruction is a
bottleneck.

Improve instruction scheduling.
- Elimination of IF statements
- Masked SIMD

Synchronous waiting
time between
threads

A part with no thread
parallelization is a bottleneck.

Improve thread parallelization.

Large max-min
difference in instruction
balance

Load balance between threads
is a bottleneck.

Improve the efficiency of parallel
thread execution.

No instruction
commit waiting for
an instruction to be
fetched

Instruction cache misses or
thrashing is a bottleneck.

Improve instruction fetch.
- Loop body reduction
- Algorithm review
- Thrashing elimination

⚫ Other

16

1-Core Tuning
• Data Access Wait Time (Increased Data Locality)

• Data Access Wait Time (Hidden Latency)

• Data Access Wait Time (Reduced Access Amount)

• Data Access Wait Time (Improved Thrashing)

• Operation Wait (Facilitation of SIMDization)

• Operation Wait (Hidden Latency)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED17

What is Data Locality?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Data locality refers to the degree that data reference and access are
concentrated in a narrow range.
Data in cache memory is not effectively used when data locality is
low, resulting in a high memory access load.

By improving data locality through source tuning, you can improve
the data access wait time to reduce the memory access load.

The following means are effective at increasing data locality:

• Strip Mining
• Loop Blocking
• Sector Cache

• Loop Interchange
• Loop Fusion
• Array Merge (Indirect Access)
• Array Dimension Shift

• Unroll-and-Jam

18

• What is Strip Mining?

• Strip Mining (Before Improvement)

• Effect of Strip Mining (Source Tuning)

Strip Mining

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED19

What is Strip Mining?

Strip mining is a means to increase cache efficiency through
fragmentation of a loop into smaller segments or strips.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

integer n,m

real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m)

do j=1,m

do i=1,n

a(i,j)=b(i,j)+c(i,j)

enddo

do i=1,n-100

d(i,j)=a(i,j)+e(i,j)

enddo

enddo

Example: Source Before Improvement
integer n,m

real*8 a(n,m),b(n,m),c(n,m),d(n,m),e(n,m)

blki=10*1024/8

do j=1,m

do ii=1,n,blki

do i=ii,min(ii+blki-1,n)

a(i,j)=b(i,j)+c(i,j)

enddo

do i=ii,min(ii+blki-1,n-100)

d(i,j)=a(i,j)+e(i,j)

enddo

enddo

enddo

Example: Source After Improvement

Data in Array a remains
in the cache, causing a
cache hit.

Since the number of
iterations is large, the
data in Array a in the
cache is overwritten.

Block size

Array a causes a cache
miss.

n=100*1000/8
m=20

Array access sequence

Block size

Array size

Cache hit

,1) ・・・a(1280,1) ・・・・ a(n,1)

1

Loop 1

Number of loop iterations:
n

1 n-100

Loop 2

Cache miss

・・・a(1280,1) ・・・

a(1,1)

a(1,1)

Cache miss

1) ・・・a(1280,1) ・・・ a(n,1)

1

Loop 1

Number of loop iterations:
n

1 n-100

Loop 2

Cache miss

・・・a(1280,1) ・・・

a(1,1)

a(1,1)

Loop 1

Loop 2

Loop 1

Loop 2

20

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

L1D miss hardware
prefetch rate (%)

(/L1D miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before 0.00 2.08E+09 4.23E+08 0.20 7.61% 92.40% -0.01% 4.23E+08 0.20 5.17% 95.41% 0.00%

Strip Mining (Before Improvement)

Array data cannot be fully cached and thus cannot be reused in Loop 2 because the number
of iterations of Loop 1 is large. Consequently, the "No instruction commit because memory
cache is busy" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

32 !$omp parallel do reduction(+:s1)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< d, c, b, a, e

<<< Loop-information End >>>

33 1 p do j=1,m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, a, d

<<< Loop-information End >>>

34 2 p 8v do i=1,n

35 2 p 8v s1 = s1 + a(i,j) * (s3 * b(i,j) + c(i,j) * (s2 + s3 * d(i,j)))

36 2 p 8v enddo

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, a, d, c, e

<<< Loop-information End >>>

37 2 p 2v do i=1,n-100

38 2 p 2v e(i,j) = s2 * (a(i,j) + b(i,j) * (s3 + c(i,j) * d(i,j)))

39 2 p 2v enddo

40 1 p enddo

Source Before Improvement

Cache

Loop 1

Number of loop iterations: 375,000
Total array size: 12 MB
Since number of iterations is large,
array data cannot be fully cached

Array access causes cache miss

Loop 2
Data cannot be reused, so the L1D and L2
miss rates are around 0.20, which is the
theoretical value of stream access.

No instruction
commit because
memory cache is
busy

No instruction
commit due to
memory access for
a floating-point
load instruction

Before

[Seconds]

Fortran

21

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

Before 0.00 2.08E+09 4.23E+08 0.20 7.61%

After 0.00 1.95E+09 2.35E+08 0.12 15.24%

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

4.23E+08 0.20 5.17%

2.35E+08 0.12 7.84%

Effect of Strip Mining (Source Tuning)

Strip mining increases cache efficiency, resulting in improvement of the "No
instruction commit because memory cache is busy" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

32 blki=4*1024/8

33

34 !$omp parallel do reduction(+:s1)

35 1 p do j=1,m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< d, c, b, a, e

<<< Loop-information End >>>

36 2 p do ii=1,n,blki

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, a, d

<<< Loop-information End >>>

37 3 p 8v do i=ii,min(ii+blki-1,n)

38 3 p 8v s1 = s1 + a(i,j) * (s3 * b(i,j) + &

39 3 c(i,j) * (s2 + s3 * d(i,j)))

40 3 p 8v enddo

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, a, d, c, e

<<< Loop-information End >>>

41 3 p 2v do i=ii,min(ii+blki-1,n-100)

42 3 p 2v e(i,j) = s2 * (a(i,j) + &

43 3 b(i,j) * (s3 + c(i,j) * d(i,j)))

44 3 p 2v enddo

45 2 p enddo

46 1 p enddo

Source After Improvement

Cache

Block size: 4 KB
4 KB x 4 streams = 16 KB
-> Size in L1 cache

Array access causes
cache hit

Loop 2

Loop 1

No instruction
commit because
memory cache is
busy

No instruction
commit due to
memory access
for a floating-
point load
instruction

L1D and L2 misses
reduced

[Seconds]

Before After

Effect of
1.62 times

Fortran

22

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.17E+09 4.23E+08 0.19 9.14% 90.86% 0.00% 4.23E+08 0.19 5.42% 95.53% 0.00%

Strip Mining (Before Improvement)

Array data cannot be fully cached and thus cannot be reused in Loop 2 because the number
of iterations of Loop 1 is large. Consequently, the "No instruction commit because memory
cache is busy" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

35 #pragma omp parallel for reduction(+:s1)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

36 p for(j=0;j<m;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

37 p 8v for(i=0;i<n;i++) {

38 p 8v s1 = s1 + a[j][i] * (s3 * b[j][i] + c[j][i] * (s2 + s3 * d[j][i]));

39 p 8v }

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

40 p 2v for(i=0;i<n-100;i++) {

41 p 2v e[j][i] = s2 * (a[j][i] + b[j][i] * (s3 + c[j][i] * d[j][i]));

42 p 2v }

43 p }

44 }

Source Before Improvement

Loop 1

Loop 2

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前

[Seconds]

No instruction
commit because
memory cache is
busy

No instruction
commit due to
memory access for a
floating-point load
instruction

C/C++

Number of loop iterations: 375,000
Total array size: 12 MB
Since number of iterations is large,
array data cannot be fully cached

Array access causes cache miss

Data cannot be reused, so the L1D and L2
miss rates are around 0.20, which is the
theoretical value of stream access.

Before

23

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

4.23E+08 0.19 5.42%

2.35E+08 0.12 7.77%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前 改善後

[Seconds]

Effect of Strip Mining (Source Tuning)

Strip mining increases cache efficiency, resulting in improvement of the
"No instruction commit because memory cache is busy" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

37 blki=4*1024/8;

38

39 #pragma omp parallel for reduction(+:s1)

40 p for(j=0;j<m;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

41 p for(ii=0;ii<n;ii+=blki) {

42 p int min1=MIN(ii+blki,n);

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

43 p 8v for(i=ii;i<min1;i++) {

44 p 8v s1 = s1 + a[j][i] * (s3 * b[j][i] + c[j][i] * (s2 + s3 * d[j][i]));

45 p 8v }

46 p int min2=MIN(ii+blki,n-100);

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

47 p 2v for(i=ii;i<min2;i++) {

48 p 2v e[j][i] = s2 * (a[j][i] + b[j][i] * (s3 + c[j][i] * d[j][i]));

49 p 2v }

50 p }

51 p }

52 }

Source After Improvement

Loop 2

Loop 1

Effect of
1.63 times

Cache

L1I miss
rate

(/Effective
instruction)

Load-store
instruction

L1D miss

L1D miss
rate (/Load-

store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

Before 0.00 2.17E+09 4.23E+08 0.19 9.14%

After 0.00 1.99E+09 2.35E+08 0.12 19.90%

C/C++

L1D and L2 misses
reduced

No instruction
commit due to
memory access for
a floating-point
load instruction

No instruction
commit
because
memory cache
is busy

Before After

Block size: 4 KB
4 KB x 4 streams = 16 KB
-> Size in L1 cache

Array access causes
cache hit

24

• What is Loop Blocking?

• Loop Blocking (Before Improvement)

• Effect of Loop Blocking (Source Tuning)

• Adverse Effect on Hardware Prefetch

Loop Blocking

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED25

What is Loop Blocking?

Loop blocking executes source code divided by the specified blocking
size in order to increase cache efficiency.

This can be considered as strip mining in two or more dimensions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

subroutine sub(a,b,m,n)
integer n,m
real*8 a(m,n),b(n,m)
do j=1,m
do i=1,n
b(i,j)=a(j,i)

enddo
enddo

end subroutine

Example: Source Before Improvement

subroutine sub(a,b,m,n)
parameter(blki=96,blkj=16)
integer n,m
real*8 a(m,n),b(n,m)
do jj=1,m,blkj
do ii=1,n,blki
do j=jj,min(jj+blkj-1,m)
do i=ii,min(ii+blki-1,n)
b(i,j)=a(j,i)

enddo
enddo

enddo
enddo

end subroutine

Example: Source After Improvement

Array a: Stride access
Array b: Sequential access

Block size:
12 KB per array
(= 96 x 16 x 8 bytes)

26

What is Loop Blocking?

⚫ Array access (before improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

i-axis direction

j-
a
x
is

 d
ir

e
c
ti

o
n

1,1 1,2 … 1,1
6

1,1
7

1,1
8

… 1,24
0

1,24
1

… … 1,n

2,1

…

16,
1

17,
1

18,
1

…

32,
1

…

m,1

Memory is accessed every time i is updated because Array a has a stride access pattern. As a
result, the data cached at a(1,1) is expelled before a(2,1) is accessed.

M
e
m

o
ry

S
e
q

u
e
n

tia
l d

ire
c
tio

n

Array a(m,n) access sequence and cache miss situation

(3) in right
diagram

(1) in right
diagram

(2) in right
diagram

Array access sequence

Block size

Cache line

Cache miss

Cache hit

Overwritten data

Expelled data

L1 cache (64 KB) state

a(1,1) a(1,2) a(1,3) ・・・ ・・・ a(1,240)

a(2,1) a(2,2) a(2,3) ・・・ ・・・ a(2,240)

： ： ： ・・・ ・・・ ：

： ： ： ・・・ ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ ・・・ a(32,240)

a(1,1) a(1,241) a(1,2) a(1,3) ・・・ ・・・ a(1,240)

a(2,1) a(2,241) a(2,2) a(2,3) ・・・ ・・・ a(2,240)

: ： ： ： ・・・ ・・・ ：

: ： ： ： ・・・ ・・・ ：

a(32,1) a(32,241) a(32,2) a(32,3) ・・・ ・・・ a(32,240)

a(1,241) a(1,1) a(1,242) a(1,243) ・・・ ・・・ a(1,480)

a(2,241) a(2,1) a(2,242) a(2,243) ・・・ ・・・ a(2,480)

: ： ： ： ・・・ ・・・ ：

: ： ： ： ・・・ ・・・ ：

a(32,241) a(32,1) a(32,242)a(32,243) ・・・ ・・・ a(32,480)

(1) When j=1, i=240

(2) When j=1, i=241

(3) When j=2, i=1

Data not overwritten
until this point

Old data expelled when
overwritten by new data

Cache
miss

Expelled
data still
reusable

Cache miss occurs
because a(2,1) data
was already
expelled

subroutine sub(a,b,m,n)
integer n,m
real*8 a(m,n), b(n,m)
do j=1,m

do i=1,n
b(i,j)=a(j,i)

enddo
enddo

end subroutine

Example: Source Before Improvement

27

What is Loop Blocking?

⚫ Array access (after improvement) Block size: 96 x 16

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache hit occurs
because data is
still in cache

The array is accessed one block at a time in loop blocking. As a result, cache
efficiency increases because a(2,1) access now hits the cache.

i-axis direction

j-
a
x
is

 d
ir

e
c
ti

o
n

1,1 1,2 … 1,96 1,97 1,98 … 1,19
2

1,19
3

1,19
4

… 1,n

2,1

…

16,1

17,1

18,1

…

32,1

…

m,1

M
e
m

o
ry

S
e
q
u
e
n
tia

l d
ire

c
tio

n

Access to
next block

(1) in right
diagram

(2) in right
diagram

Array access sequence

Block size

Cache line

Cache miss

Cache hit

L1 cache (64 KB) state
Array a(m,n) access sequence and cache miss situation

a(1,1) a(1,2) a(1,3) ・・・ a(1,96)

a(2,1) a(2,2) a(2,3) ・・・ a(2,96)

： ： ： ・・・ ：

： ： ： ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ a(32,96)

a(1,1) a(1,2) a(1,3) ・・・ a(1,96)

a(2,1) a(2,2) a(2,3) ・・・ a(2,96)

： ： ： ・・・ ：

： ： ： ・・・ ：

a(32,1) a(32,2) a(32,3) ・・・ a(32,96)

(1) When j=1, i=96

(2) When j=2, i=1

Cache hit

Array data
cached

subroutine sub(a,b,m,n)

parameter(blki=96,blkj=16)

integer n,m

real*8 a(m,n),b(n,m)

do jj=1,m, blkj

do ii=1,n, blki

do j=jj,min(jj+blkj-1,m)

do i=ii,min(ii+blki-1,n)

b(i,j)=a(j,i)

enddo

enddo

enddo

enddo

end subroutine

Example: Source After Improvement

Point:
Loop blocking may have a negative impact on data
continuity, possibly disabling hardware prefetch.
In such cases, use software prefetch.
For details, see Adverse Effect on Hardware Prefetch.

28

Loop Blocking (Before Improvement)

Cache efficiency is low because Array a has a stride access pattern. Consequently, the "No
instruction commit due to memory access for a floating-point load instruction" event occurs
many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Before

No
instruction
commit
due to
memory
access for
a floating-
point load
instruction

[Seconds]

48 1 !$omp do
<<< Loop-information Start >>>

<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

49 2 p do j=1,n2
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.72, ITR: 176, MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

50 3 p 2v do i=1,n1
51 3 p 2v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*
52 3 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*
53 3 & (c8 + a(j,i)*c9))))))))
54 3 p 2v enddo
55 2 p enddo
56 1 !$omp enddo

Source Before Improvement

Cache

L1I miss
rate

(/Effective
instruction)

Load-store
instruction

L1D miss

L1D miss
rate (/Load-

store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware
prefetch
rate (%)

(/L1D miss)

L1D miss
software
prefetch
rate (%)

(/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand
rate (%)

(/L2 miss)

L2 miss
hardware
prefetch
rate (%)

(/L2 miss)

L2 miss
software
prefetch
rate (%)

(/L2 miss)

Before 0.00 4.06E+08 1.28E+09 3.16 98.85% 1.15% 0.00% 1.31E+09 3.24 29.75% 71.85% 0.00%

Array a data is cached once in L1D at
iteration i, but the data is expelled at the
next j iteration(s). Consequently, a cache
miss occurs.

Fortran

29

Effect of Loop Blocking (Source Tuning)

Loop blocking increases cache efficiency by reusing Array a data. The result is
improvement of the "No instruction commit due to memory access for a floating-
point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Before After

Effect of
3.55 times

No
instruction
commit
due to
memory
access for
a floating-
point load
instruction

[Seconds]

55 1 !$omp do
56 2 p do jj=1,n2,16
57 3 p do ii=1,n1,96
58 4 p do j=jj,min(jj+16-1,n2)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.72, ITR: 176, MVE: 6, POL: S)
<<< Loop-information End >>>

59 5 p 2v do i=ii,min(ii+96-1,n1)
60 5 p 2v b(i,j) = c0 + a(j,i)*(c1 + a(j,i)*(c2 + a(j,i)*(c3 + a(j,i)*
61 5 & (c4 + a(j,i)*(c5 + a(j,i)*(c6 + a(j,i)*(c7 + a(j,i)*
62 5 & (c8 + a(j,i)*c9))))))))
63 5 p 2v enddo
64 4 p enddo
65 3 p enddo
66 2 p enddo
67 1 !$omp enddo

Source After Improvement (Source Tuning)

Applying loop blocking
Since the L1 cache size is 64 KB,
the size of each block in the
cache is 12 KB (96 x 16 x 8), and
the size required for processing
each block is 24 KB (12 x 2
blocks).
The purpose is to increase the
use efficiency of the L1D cache
and L2 cache.

L1I miss
rate

(/Effective
instruction)

Load-store
instruction

L1D miss

L1D miss
rate (/Load-

store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware
prefetch
rate (%)

(/L1D miss)

L1D miss
software
prefetch
rate (%)

(/L1D miss)

L2 miss

L2 miss rate
(/Load-

store
instruction)

L2 miss
demand
rate (%)

(/L2 miss)

L2 miss
hardware
prefetch
rate (%)

(/L2 miss)

L2 miss
software
prefetch
rate (%)

(/L2 miss)

Before 0.00 4.06E+08 1.28E+09 3.16 98.85% 1.15% 0.00% 1.31E+09 3.24 29.75% 71.85% 0.00%

After 0.00 8.26E+08 1.69E+08 0.20 95.18% 4.82% 0.00% 1.56E+08 0.19 45.06% 61.56% 0.00%

L1D and L2 misses reduced
significantly

Cache

Fortran

30

Loop Blocking (Before Improvement)

Cache efficiency is low because Array a has a stride access pattern. Consequently, the "No
instruction commit due to memory access for a floating-point load instruction" event occurs
many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

43 #pragma omp parallel
44 {
45 for(k=0;k<iter;k++) {
46 #pragma omp for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

47 p for(j=0;j<n2;j++) {
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.08, ITR: 128, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

48 p 2v for(i=0;i<n1;i++) {
49 p 2v b[j][i] = c0 + a[i][j]*(c1 + a[i][j]*(c2 + a[i][j]*(c3 + a[i][j]*
50 (c4 + a[i][j]*(c5 + a[i][j]*(c6 + a[i][j]*(c7 + a[i][j]*
51 (c8 + a[i][j]*c9))))))));
52 p 2v }
53 p }
54 }
55 }
56 }

Source Before Improvement

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[Seconds]

No
instruction
commit due
to memory
access for a
floating-
point load
instruction

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.00E+08 1.28E+09 3.21 98.53% 1.47% 0.00% 1.33E+09 3.32 28.24% 73.08% 0.00%

C/C++

Before

Array a data is cached once in L1D at
iteration i, but the data is expelled at the
next j iteration(s). Consequently, a cache
miss occurs.

31

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.00E+08 1.28E+09 3.21 98.53% 1.47% 0.00% 1.33E+09 3.32 28.24% 73.08% 0.00%

After 0.00 4.93E+08 1.70E+08 0.35 93.66% 6.34% 0.00% 1.40E+08 0.28 49.47% 53.12% 0.00%

Effect of Loop Blocking (Source Tuning)

Loop blocking increases cache efficiency by reusing Array a data. The result is improvement of the "No
instruction commit due to memory access for a floating-point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

45 #pragma omp parallel
46 {
47 for(k=0;k<iter;k++) {
48 #pragma omp for
49 p for(jj=0;jj<n2;jj=jj+16) {
50 p for(ii=0;ii<n1;ii=ii+96) {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

51 p for(j=jj;j<MIN(jj+16-1,n2);j++) {
52 p int st = MIN(ii+96-1,n1);

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.25, ITR: 128, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

53 p 2v for(i=ii;i<st;i++) {
54 p 2v b[j][i] = c0 + a[i][j]*(c1 + a[i][j]*(c2 + a[i][j]*(c3 + a[i][j]*
55 (c4 + a[i][j]*(c5 + a[i][j]*(c6 + a[i][j]*(c7 + a[i][j]*
56 (c8 + a[i][j]*c9))))))));
57 p 2v }
58 p }
59 p }
60 p }
61 }
62 }
63 }

Source After Improvement (Source Tuning)

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前 改善後

[Second]

Effect of
4.80 times

C/C++

Before After

No
instruction
commit due
to memory
access for a
floating-
point load
instruction

Applying loop blocking
Since the L1 cache size is 64 KB,
the size of each block in the
cache is 12 KB (96 x 16 x 8), and
the size required for processing
each block is 24 KB (12 x 2
blocks).
The purpose is to increase the
use efficiency of the L1D cache
and L2 cache.

L1D and L2 misses reduced
significantly

32

Adverse Effect on Hardware Prefetch

⚫ Loop blocking, outer loop prefetch, and other means have a negative impact
on data continuity by reducing the block size, possibly disabling hardware

prefetch. In such cases, you will need to use software prefetch.

⚫ For details on how to specify software prefetch, see Using Software Prefetch.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache miss

Cache hit

Prefetch

Area not accessed by
program

If there is a gap (unaccessed area) equal to or
greater than 1 cache line, a cache miss occurs.

Memory arrangement

⚫ Software prefetch
Software (compiler) analyzes programs and prefetches data by generating
a prefetch instruction. Alternatively, from a specified instruction line, it
generates a prefetch instruction for the relevant part.

⚫ Hardware prefetch
Hardware prefetches data by predicting data access based on the
regularity of memory access by programs.
If there is a gap equal to or greater than one cache line between data,
prefetch may fail.

33

• What is the Sector Cache?

• How to Use the Sector Cache

• Sector Cache: Case 1 (Before Improvement)

• Sector Cache: Case 1 (Source Tuning)

• Sector Cache: Case 2 (Before Improvement)

• Sector Cache: Case 2 (Source Tuning)

Sector Cache

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED34

What is the Sector Cache?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

The sector cache is a cache mechanism that can prevent non-reusable data from
expelling reusable data from the cache. An application can allocate reusable data
and non-reusable to different sectors. (Reusable arrays use Sector 1, and others
use Sector 0.)

Sector 1Sector 0

4 10

256 bytes/line

2
,0

4
8

 lin
e
s

Core #0-#11
Setting by application

Conceptual image of L2 cache usage

◼ Sector cache details
⚫ You can set multiple sectors in both the L1D cache and L2

cache. The maximum number of sectors is 4 (※1) in L1D and
2 in L2.

⚫ The number of ways specifies the capacity of each sector.
⚫ The capacity works as a target value.

Hardware controls sectors so that they approach
the specified capacity at the line replacement time.
-> Not forcibly disabled even when over the capacity

⚫ Use the LRU (least recently used) algorithm to control
expulsion within a sector.

⚫ Applications can decide the usage of sectors 0 and 1.
However, Sector 0 stores instruction sequences.

⚫ In a secondary cache, the assistant core always uses two
ways.

14 ways
(※1) The L1D cache currently has 2 sectors. This specification is
designed for easy use by customers.

35

How to Use the Sector Cache (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache

Data with unclear reusability

Pseudo local
memory

Data not to be reused Data to be reused

Normal
cache

Sector 0 Sector 1

Example using compiler instruction lines to
specify the sector cache

!OCL SCACHE_ISOLATE_WAY(L2=10)

!OCL SCACHE_ISOLATE_ASSIGN(a)

do j=1,m
do i=1,n

a(i) = a(i) + b(i,j)＊c(i,j)
enddo

enddo

!OCL END_SCACHE_ISOLATE_ASSIGN

!OCL END_SCACHE_ISOLATE_WAY

<Purpose>
To prevent Array a, which is reusable, from being expelled from
the cache due to access to Arrays b and c during the loop

◼ Sector cache: Pseudo local memory
Software can use sectors separately
according to data reusability.
⚫ Data used -> Use Sector 1
⚫ Other data -> Use Sector 0
⚫ Data in Sector 1 is not expelled by other

data.
⚫ Instruction lines can specify the arrays

stored in Sector 1.

!OCL CACHE_SECTOR_SIZE(4,10)

!OCL CACHE_SUBSECTOR_ASSIGN(a)

do j=1,m
do i=1,n

a(i) = a(i) + b(i,j)＊c(i,j)
enddo

enddo

!OCL END_CACHE_SUBSECTOR

!OCL END_CACHE_SECTOR_SIZE

How they are specified under the old specifications
(K computer, FX100)

36

How to Use the Sector Cache (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

SCACHE_ISOLATE_WAY(L2=n1[,L1=n2])

END_SCACHE_ISOLATE_WAY

Specifies the maximum number of ways
for Sector 1 of the primary cache and
secondary cache.

Yes No Yes No

SCACHE_ISOLATE_ASSIGN(array1[,array2]…)

END_SCACHE_ISOLATE_ASSIGN

Specifies the arrays stored in Sector 1
of the cache.

Yes No Yes No

To use the sector cache, specify the following optimization control lines.

◼ Note
⚫ In the secondary cache, the assistant core always uses two ways. Therefore, the ranges of values that can be

specified in n1 and n2 are as follows:
0 ≦ n1 ≦ maximum number of ways of secondary cache - 2
0 ≦ n2 ≦ maximum number of ways of primary cache

⚫ For a CMG that contains an assistant core, the
assistant core uses part (2 ways = 1 MiB) of the
L2 cache. Therefore, for the CMG,
the maximum number of ways of the secondary
cache is 14 and the size is 7 MiB.

⚫ Sector Cache optimization is not available in Clang Mode.

A64FX Specifications

Number of CMGs 4

L1I cache size 64 KiB/4 ways

L1D cache size 64 KiB/4 ways

L2 cache size 32 MiB/16 ways (8 MiB/CMG)

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line
Specifiable?

global procedure loop statement

scache＿isolate＿way(L2=n1[,L1=n2])

end_scache_isolate_way

Specifies the maximum number of ways
for Sector 1 of the primary cache and
secondary cache.

No Yes No Yes

scache_isolate_assign(array1[,array2]…)

end_scache_isolate_assign

Specifies the arrays stored in Sector 1
of the cache.

No Yes No Yes

37

Sector Cache: Case 1 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Array b data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit due to L2 cache access for a floating-point load instruction" event occurs many times.

Before

[Seconds]

No instruction
commit due to L2
cache access for a
floating-point load
instruction

66 parameter(n=8*1024*1024, m=9*512*1024/8)

67 real*8 a(n), b(m), s

68 integer*8 c(n)

69 real*8 dummy1(140),dummy2(140)

70 common /data/a,dummy1,c,dummy2,b

71

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 843

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 176, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

72 1 pp 2v do i=1,n

73 1 p 2v a(i) = a(i) + s * b(c(i))

74 1 p 2v enddo

Source Before Improvement

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 4.76E+09 7.89E+08 0.17 0.89% 99.11% 0.00% 7.34E+08 0.15 0.77% 100.00% 0.00%

Memory throughput
(GB/s)

Before 203.11
Memory throughput is bottleneck High L2 cache miss rate

Array size
a: 64 MiB
b: 4.5 MiB
c: 64 MiB

Fortran

38

Sector Cache: Case 1 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Storing Array b in Sector 1 increases cache efficiency. The result is improvement of the "No
instruction commit due to L2 cache access for a floating-point load instruction" event.

Before

[Seconds]

After

Effect of
1.08 times

58 parameter(n=8*1024*1024, m=9*512*1024/8)

59 real*8 a(n), b(m), s

60 integer*8 c(n)

61 real*8 dummy1(140),dummy2(140)

62 common /data/a,dummy1,c,dummy2,b

63

64 !OCL SCACHE_ISOLATE_WAY(L2=10)

65 !OCL SCACHE_ISOLATE_ASSIGN(b)

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 843

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 176, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

66 1 pp 2v do i=1,n

67 1 p 2v a(i) = a(i) + s * b(c(i))

68 1 p 2v enddo

69 !OCL END_SCACHE_ISOLATE_ASSIGN

70 !OCL END_SCACHE_ISOLATE_WAY

Source After Improvement (Optimization Control Line Tuning)

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 4.76E+09 7.89E+08 0.17 0.89% 99.11% 0.00% 7.34E+08 0.15 0.77% 100.00% 0.00%

After 0.00 5.19E+09 7.93E+08 0.15 1.19% 98.81% 0.01% 5.99E+08 0.12 1.93% 99.69% 0.00%

L2 misses reduced

Memory throughput
(GB/s)

Before 203.11

After 188.07

Fortran

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

39

Statistics
Memory

throughput
(GB/s)

Before 167.47

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.85E+09 7.89E+08 0.16 1.07% 98.92% 0.01% 7.39E+08 0.15 0.78% 100.00% 0.00%

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

改善前

[Seconds]

Sector Cache: Case 1 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

56 void sub(double s) {

57 long long int i;

58

59 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.33, ITR: 160,

MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

60 p 2v for(i=0;i<n;i++) {

61 p 2v a[i] = a[i] + s * b[c[i]];

62 p 2v }

63 }

Source Before Improvement

High L2 cache miss rate

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Array declaration: size
double a[8388608]: 64MiB
double b[589824]: 4.5MiB
long long int c[8388608]: 64MiB

C/C++

High memory throughput

Array b data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit due to L2 cache access for a floating-point load instruction" event occurs many times.

Before

40

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.85E+09 7.89E+08 0.16 1.07% 98.92% 0.01% 7.39E+08 0.15 0.78% 100.00% 0.00%

After 0.00 5.03E+09 7.91E+08 0.16 1.23% 98.78% 0.00% 5.48E+08 0.11 1.99% 98.64% 0.00%

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

改善前 改善後

[Seconds]

Sector Cache: Case 1 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Effect of
1.15 times

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

56 void sub(double s){

57 long long int i;

58 #pragma statement scache_isolate_way L2=10

59 #pragma statement scache_isolate_assign b

60 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.33, ITR: 160,

MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

61 p 2v for(i=0;i<n;i++) {

62 p 2v a[i] = a[i] + s * b[c[i]];

63 p 2v }

64 #pragma statement end_scache_isolate_assign

65 #pragma statement end_scache_isolate_way

66 }

Source After Improvement (Optimization Control Line Tuning)

L2 misses reduced

Array declaration: size
double a[8388608]: 64MiB
double b[589824]: 4.5MiB
long long int c[8388608]: 64MiB

Statistics Memory throughput (GB/s)

Before 167.47

After 155.55

C/C++

Storing Array b in Sector 1 increases cache efficiency. The result is improvement of the "No
instruction commit due to L2 cache access for a floating-point load instruction" event.

Before After

41

Sector Cache: Case 2 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Array u data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit because memory cache is busy" event occurs many times.

Memory throughput
(GB/s)

Before 215.62

167 1 s do iter = 1, niter

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

168 2 pp do k=1,n3-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

169 3 p do j=1,n2-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.71, ITR: 136, MVE: 9, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

170 4 p v do i=1,n1-2

171 4 p v unew(i,j,k) = &

172 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

173 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

174 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

175 4 -rhs(i,j,k)) * hhhinv

176 4 p v end do

177 3 p end do

178 2 p end do

179 1 end do

Source Before Improvement

Preferably, Array u is cached
so that dimensions i and j
of Array u are reusable.

Before improvement

[Seconds]

Memory throughput is
bottleneck

No instruction
commit
because
memory cache
is busy

Cache L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before 2.46E+08 0.15 2.57% 98.19% 0.00%

Array size
unew: 60.5 MB
u: 60.5 MB
rhs: 60.5 MB

n1=452
n2=52
n3=322

Fortran

42

Sector Cache: Case 2 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Storing part of dimension k of Array u in Sector 1 increases cache efficiency. The result
is improvement of the "No instruction commit because memory cache is busy" event.

166 !OCL SCACHE_ISOLATE_WAY(L2=13)

167 !OCL SCACHE_ISOLATE_ASSIGN(u)

168 1 s do iter = 1, niter

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

169 2 pp do k=1,n3-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

170 3 p do j=1,n2-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.71, ITR: 136, MVE: 9, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

171 4 p v do i=1,n1-2

172 4 p v unew(i,j,k) = &

173 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

174 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

175 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

176 4 -rhs(i,j,k)) * hhhinv

177 4 p v end do

178 3 p end do

179 2 p end do

180 1 end do

181 !OCL END_SCACHE_ISOLATE_ASSIGN

182 !OCL END_SCACHE_ISOLATE_WAY

Source After Improvement

Array u reusability
increased

Before

[Seconds]

After

Effect of
1.15 times

Memory throughput
(GB/s)

Before 215.62

After 205.39

No instruction
commit due to
memory cache
busy

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate

(%) (/L2 miss)

Before 2.46E+08 0.15 2.57% 98.19% 0.00%

After 1.95E+08 0.10 13.43% 87.39% 0.00%

L2 misses reduced

Fortran

43

Cache L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 2.46E+08 0.15 2.38% 98.32% 0.00%

Statistics
Memory

throughput
(GB/s)

Before 173.23

Sector Cache: Case 2 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

107 for (iter=0; iter<niter; iter++){

108 #pragma omp parallel for private(i,j,k)

109 p for(k=1;k<=n3-2; k++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

110 p for(j=1;j<=n2-2;j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.12, ITR: 120, MVE: 8, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

111 p v for(i=1;i<=n1-2;i++){

112 p v unew[k][j][i] =

113 ((u[k][j][i+1] + u[k][j][i-1]) * h1sqinv

114 +(u[k][j+1][i] + u[k][j-1][i]) * h2sqinv

115 +(u[k+1][j][i] + u[k-1][j][i]) * h3sqinv

116 -rhs[k][j][i]) * hhhinv;

117 p v }

118 p }

119 p }

120

121 }

Source Before Improvement

n1=452
n2=52
n3=322

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善前

[Seconds]

Preferably, Array u is cached
so that dimensions i and j
of Array u are reusable.

Array size
unew: 60.5MB
u: 60.5MB
rhs: 60.5MB

C/C++

High memory throughput

No instruction
commit due to
memory cache
busy

Before

Array u data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit because memory cache is busy" event occurs many times.

44

Cache L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 2.46E+08 0.15 2.38% 98.32% 0.00%

After 1.99E+08 0.12 13.90% 86.99% 0.00%

Sector Cache: Case 2 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

107 #pragma statement scache_isolate_way L2=13

108 #pragma statement scache_isolate_assign u

109 for (iter=0; iter<niter; iter++){

110 #pragma omp parallel for private(i,j,k)

111 p for(k=1;k<=n3-2; k++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

112 p for(j=1;j<=n2-2;j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.12, ITR: 120, MVE: 8, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

113 p v for(i=1;i<=n1-2;i++){

114 p v unew[k][j][i] =

115 ((u[k][j][i+1] + u[k][j][i-1]) * h1sqinv

116 +(u[k][j+1][i] + u[k][j-1][i]) * h2sqinv

117 +(u[k+1][j][i] + u[k-1][j][i]) * h3sqinv

118 -rhs[k][j][i]) * hhhinv;

119 p v }

120 p }

121 p }

122

123 }

124 #pragma statement end_scache_isolate_assign

125 #pragma statement end_scache_isolate_way

Source After Improvement

L2 misses reduced

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

改善前 改善後

[Seconds]

Effect of
1.14 times

Statistics
Memory

throughput
(GB/s)

Before 173.23

After 167.47

C/C++

Before After

No instruction
commit due to
memory cache
busy

Storing part of dimension k of Array u in Sector 1 increases cache efficiency. The result
is improvement of the "No instruction commit because memory cache is busy" event.

Array u reusability
increased

45

• What is Loop Interchange?

• Loop Interchange (Before Improvement)

• Loop Interchange Tuning Details

• Effect of Loop Interchange (Source Tuning)

Loop Interchange

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED46

What is Loop Interchange?

Loop interchange is a means to increase data access efficiency by changing the order of
loops in a multi-loop task.
In Fortran, arrays are stored in column-major order. Therefore, operation will be faster
when the order of loops is changed as shown below for sequential access.

(In C, arrays are stored in row-major order, so the order is reversed compared to Fortran.)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do j=1,n1
do i=1,n2

a(j,i) = b(j,i) * c(j,i)
enddo

enddo

Example: Source Before Improvement

do i=1,n2
do j=1,n1

a(j,i) = b(j,i) * c(j,i)
enddo

enddo

Example: Source After Improvement

Low cache efficiency since
Arrays a, b, and c have
stride access patterns

Cache efficiency improved by
changing order of loops
to sequential access

◼ Points
⚫ Note that if the number of iterations of the innermost loop is small, software

pipelining may not be performed.
However, if the innermost loop can be fixed at the SIMD length, software
pipelining is performed in its outer loops.

⚫ If the access direction is different between stored and loaded arrays, performance
will increase more through sequential access to the stored array.

◼ Note
⚫ Loop interchange optimization is not available in Clang Mode.

47

Loop Interchange Tuning Details

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do j=1,n1
do i=1,n2

a(j,i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
enddo

enddo

do j=1,n1
do i=2,n2

b(j,i) = a(j,i) / (s2 + s1 / a(j,i-1))
enddo

enddo

(2) Loops 1 and 2 Separated

do j=1,n1
do i=1,n2

a(i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
enddo
do i=2,n2

b(j,i) = a(i) / (s2 + s1 / a(i-1))
enddo

enddo

Source Before Improvement

Loop 1

Loop 2

Low cache efficiency since
Arrays b, c, and d have stride
access pattern

do i=1,n2
do j=1,n1

a(j,i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
enddo

enddo

do j=2,n2
do j=1,n1

b(j,i) = a(j,i) / (s2 + s1 / a(j,i-1))
enddo

enddo

(3) Loops Interchanged

Cache efficiency improved since
Arrays b, c, and d now have
sequential access patterns

do j=1,n1
do i=1,n2

a(j,i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
enddo
do i=2,n2

b(j,i) = a(j,i) / (s2 + s1 / a(j,i-1))
enddo

enddo

(1) Array a Converted to 2-Dimensional Array

Eliminated dependency
on Array a, which

inhibited loop fission

48

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss

L1D miss
rate (/Load-

store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 3.60E+08 3.89E+08 1.08 98.28% 1.72% 0.00% 1.07E+04 0.00 62.54% 46.87% 0.00%

Loop Interchange (Before Improvement)

Cache efficiency is low because Arrays b, c, and d have stride access patterns.
Consequently, the "No instruction commit due to access for a floating-point load
instruction" events occur many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

45 real*8 a(n2),b(n1,n2),c(n1,n2),d(n1,n2)
46 real*8 s1,s2
47 integer n1,n2
48 !$omp parallel
49 !$omp do private(a)
50 1 p do j=1,n1

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.96, ITR: 112, MVE: 3, POL: S)
<<< Loop-information End >>>

51 2 p 2v do i=1,n2
52 2 p 2v a(i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
53 2 p 2v enddo

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.27, ITR: 96, MVE: 2, POL: S)
<<< Loop-information End >>>

54 2 p 2v do i=2,n2
55 2 p 2v b(j,i) = a(i) / (s2 + s1 / a(i-1))
56 2 p 2v enddo
57 1 p enddo
58 !$omp end do
59 !$omp end parallel

Source Before Improvement

Low cache efficiency since
Arrays b, c, and d have stride
access pattern

Loop 1

Loop 2

High L1D miss rates

Before

[Seconds]

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

Fortran

49

Effect of Loop Interchange (Source Tuning)

Loop interchange increases cache efficiency through sequential access to arrays. The result is improvement
of the "No instruction commit due to access for a floating-point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss

L1D miss
rate (/Load-

store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 3.60E+08 3.89E+08 1.08 98.28% 1.72% 0.00% 1.07E+04 0.00 62.54% 46.87% 0.00%

After 0.00 1.94E+08 2.15E+07 0.11 9.28% 90.72% 0.00% 8.66E+03 0.00 17.98% 87.84% 0.00%

45 real*8 a(n1,n2),b(n1,n2),c(n1,n2),d(n1,n2)
46 real*8 s1,s2
47 integer n1,n2
48 !$omp parallel
49 !$omp do
50 1 p do i=1,n2

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.13, ITR: 112, MVE: 2, POL: S)
<<< Loop-information End >>>

51 2 p 2v do j=1,n1
52 2 p 2v a(j,i) = s1 + c(j,i) / (s1 + s2 / d(j,i))
53 2 p 2v enddo
54 1 p enddo
55 !$omp end do
56 !$omp do
57 1 p do i=2,n2

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.04, ITR: 96, MVE: 2, POL: S)
<<< Loop-information End >>>

58 2 p 2v do j=1,n1
59 2 p 2v b(j,i) = a(j,i) / (s2 + s1 / a(j,i-1))
60 2 p 2v enddo
61 1 p enddo
62 !$omp end do
63 !$omp end parallel

Source After Improvement

Tuning details
(1) Array a converted to
2-dimensional array
(2) Loops 1 and 2 separated
(3) Loops interchanged

Effect of
5.91 times

Number of L1D misses reduced significantly

Before After

[Seconds]

No
instruction
commit due
to L1D
cache
access for a
floating-
point load
instruction

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

Fortran

50

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.87E+09 3.89E+08 0.21 97.94% 2.06% 0.00% 2.18E+04 0.00 71.23% 38.77% 0.00%

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

改善前

[Seconds]

Loop Interchange (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

33 void sub(int n,int m,double s1,double s2) {
34 double a[n2];
35 int i,j;
36

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

37 for(j=0;j<n1;j++) {
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.92, ITR: 112, MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :

<<< a
<<< Loop-information End >>>

38 2v for(i=0;i<n2;i++) {
39 2v a[i] = s1 + c[i][j] / (s1 + s2 / d[i][j]);
40 2v }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.18, ITR: 96, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

41 2v for(i=1;i<n2;i++) {
42 2v b[i][j] = a[i] / (s2 + s1 / a[i-1]);
43 2v }
44 }
45 }

Source Before Improvement

Loop 1

Loop 2

C/C++

Cache efficiency is low because Arrays b, c, and d have stride access patterns.
Consequently, the "No instruction commit due to access for a floating-point load
instruction" events occur many times.

Low cache efficiency since
Arrays b, c, and d have stride
access pattern

Before

High L1D miss rates

No
instruction
commit due
to L1D
cache
access for a
floating-
point load
instruction

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

51

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.87E+09 3.89E+08 0.21 97.94% 2.06% 0.00% 2.18E+04 0.00 71.23% 38.77% 0.00%

After 0.00 1.87E+09 2.27E+07 0.01 14.23% 85.77% 0.00% 3.63E+04 0.00 42.14% 62.84% 0.00%

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

改善前 改善後

[Seconds]

Effect of Loop Interchange (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

34 void sub(int n1,int n2,double s1,double s2)
35 {
36 double a[m][n];
37 int i,j;
38

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< d, c, a
<<< Loop-information End >>>

39 for(i=0;i<n2;i++) {
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.88, ITR: 96, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, d, a
<<< Loop-information End >>>

40 2v for(j=0;j<n1;j++) {
41 2v a[i][j] = s1 + c[i][j] / (s1 + s2 / d[i][j]);
42 2v }
43 }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

44 for(i=0;i<n2;i++) {
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.09, ITR: 96, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

45 2v for(j=0;j<n1;j++) {
46 2v b[i][j] = a[i][j] / (s2 + s1 / a[i-1][j]);
47 2v }
48 }
49 }

Source After Improvement

Effect of
6.31 times

C/C++

Loop interchange increases cache efficiency through sequential access to arrays. The result is improvement
of the "No instruction commit due to access for a floating-point load instruction" event.

Tuning details
(1) Array a converted to
2-dimensional array
(2) Loops 1 and 2 separated
(3) Loops interchanged

Before After

Number of L1D misses reduced significantly

No
instruction
commit due
to L1D
cache
access for a
floating-
point load
instruction

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

52

• What is Loop Fusion?

• Loop Fusion (Before Improvement)

• Loop Fusion (Source Tuning)

Loop Fusion

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED53

i=1
…xxx…

do i=2, n
…xxx…

enddo

do i=2, n
…yyy…

enddo

What is Loop Fusion?

Loop fusion is a means to connect loops to achieve the following effects:

• Data localization: To reuse arrays

• Higher parallelism at instruction level: To increase the number of instructions
in a loop to increase parallelism at the instruction level

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do i=1, n
…xxx…

enddo

do i=2, n
…yyy…

enddo

i=1
…xxx…

do i=2, n
…xxx…
…yyy…

enddo

Peeling
Loop fusion

◼ Points

⚫ The compiler automatically fuses loops that have the same loop length.

⚫ Software pipelining may not be facilitated when a loop contains too many operations.

do i=1,n
do j=1, n

…xxx…
enddo

enddo

do i=2,n
do j=1, n

…yyy…
enddo

enddo

i=1
do j=1,n

…xxx…
enddo

do i=2, n
do j=1,n

…xxx…
enddo
do j=1,n

…yyy…
enddo

enddo

do i=2, n
do j=1,n

…xxx…
…yyy…

enddo
enddo

Loop fusion

Single Loop Double Loop

Do not do if operations in loop
become too large in quantity

Loop
fusion

Peeling

54

Loop Fusion (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Array data is not fully cached and cannot be reused in Loop 2 because Loop 1 has a large number of
iterations. Consequently, the "No instruction commit because memory cache is busy" event occurs many
times.

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss hardware
prefetch rate (%)

(/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 8.57E+08 2.09E+08 0.24 0.64% 99.35% 0.01% 2.09E+08 0.24 0.66% 99.50% 0.00%

42 1 pp v do j=1,m-1

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

43 2 p do i=1,n

44 2 p v s1 = s1 + a(i,j) * (s3 * b(i,j) + c(i,j) * (s2 + s3 * d(i,j)))

45 2 p v enddo

46 1 p v enddo

47

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 572

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, a, d, c, e

<<< Loop-information End >>>

48 1 pp 2v do j=1,m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

49 2 p 2 do i=1,n

50 2 p 2v e(i,j) = s2 * (a(i,j) + b(i,j) * (s3 + c(i,j) * d(i,j)))

51 2 p 2v enddo

52 1 p enddo

Source Before Improvement

The L1 and L2 cache miss rates are 0.24, which is the
theoretical value of stream access. However, misses
occur in both Loops 1 and 2. This means Loop 2
cannot use the data cached in Loop 1.

Loop 1

Loop 2

Total array data: Approx.
200 MB
Array data not fully cached

Array access causes
cache miss

Before

[Seconds]

No instruction
commit
because
memory cache
is busy

m = 50
n = 150,000
Array type: real*8

Fortran

55

Loop Fusion (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Loop fusion increases cache efficiency. The result is improvement of the "No instruction commit
because memory cache is busy" event.

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 8.57E+08 2.09E+08 0.24 0.64% 99.35% 0.01% 2.09E+08 0.24 0.66% 99.50% 0.00%

After 0.00 4.92E+08 1.18E+08 0.24 0.36% 99.63% 0.00% 1.17E+08 0.24 0.41% 99.75% 0.00%

42 1 pp v do j=1,m-1

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

43 2 p do i=1,n

44 2 p v s1 = s1 + a(i,j) * (s3 * b(i,j) + c(i,j) * (s2 + s3 * d(i,j)))

45 2 p v e(i,j) = s2 * (a(i,j) + b(i,j) * (s3 + c(i,j) * d(i,j)))

46 2 p v enddo

47 1 p v enddo

:

49 1 s do j=m,m

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 364

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, a, d, c, e

<<< Loop-information End >>>

50 2 pp 2v do i=1,n

51 2 p 2v e(i,j) = s2 * (a(i,j) + b(i,j) * (s3 + c(i,j) * d(i,j)))

52 2 p 2v enddo

53 1 p enddo

Source After Improvement (Source Tuning)

Peeling

Loop fusion

Array access causes
cache hit

Cutting out (peeling)
for loop fusion

do j=1, m-1
do i=1, n

…xxx…
enddo

enddo

do j=1, m
do i=1, n

…yyy…
enddo

enddo

do j=1, m-1
do i=1, n

…xxx…
…yyy…

enddo
enddo

do j= m,m
do i=1, n

…yyy…
enddo

enddo

Image of loop fusiondo j=1, m-1
do i=1, n

…xxx…
enddo

enddo

do j=1, m-1
do i=1, n

…yyy…
enddo

enddo

do j= m,m
do i=1, n

…yyy…
enddo

enddo

Peeling

Loop fusion

Number of L1D and L2 misses
reduced significantly

Before After

Effect of
1.62 times

No
instruction
commit
because
memory
cache is
busy

Fortran

56

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

改善前

[Seconds]

Loop Fusion (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

39 #pragma omp parallel for

40 p for (j=0;j<m-1;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

41 p 8v for (i=0;i<n;i++) {

42 p 8v *s1 = *s1 + a[j][i] * (*s3 * b[j][i] + c[j][i] * (*s2 + *s3 * d[j][i]));

43 p 8v }

44 p }

45

46 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

47 p for (j=0;j<m;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.30, ITR: 96, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

48 p 2v for (i=0;i<n;i++) {

49 p 2v e[j][i] = *s2 * (a[j][i] + b[j][i]* (*s3 + c[j][i] * d[j][i]));

50 p 2v }

51 p }

Source Before Improvement

Loop 1

Loop 2

m = 50
n = 150000
Array type : double

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 9.87E+08 2.10E+08 0.21 9.82% 90.20% -0.02% 2.10E+08 0.21 5.83% 95.03% 0.00%

C/C++

Total array data: Approx. 200 MB
Array data not fully cached

Array access causes
cache miss

The L1 and L2 cache miss rates are 0.21, which is the
theoretical value of stream access. However, misses
occur in both Loops 1 and 2. This means Loop 2
cannot use the data cached in Loop 1.

No instruction
commit because
memory cache is
busy

Before

Array data is not fully cached and cannot be reused in Loop 2 because Loop 1 has a large number of
iterations. Consequently, the "No instruction commit because memory cache is busy" event occurs many
times.

57

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

改善前 改善後

[Seconds]

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 9.87E+08 2.10E+08 0.21 9.82% 90.20% -0.02% 2.10E+08 0.21 5.83% 95.03% 0.00%

After 0.00 1.94E+09 1.19E+08 0.06 2.55% 97.54% -0.09% 1.18E+08 0.06 1.46% 98.73% 0.00%

Loop Fusion (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 p for (j=0;j<m-1;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 1.98, ITR: 192, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< ・・・

<<< Loop-information End >>>

41 p 8v for (i=0;i<n;i++) {

42 p 8v *s1 = *s1 + a[j][i] * (*s3 * b[j][i] + c[j][i] * (*s2 + *s3 * d[j][i]));

43 p 8v e[j][i] = *s2 * (a[j][i] + b[j][i]* (*s3 + c[j][i] * d[j][i]));

44 p 8v }

45 p }

・・・

48 p for (j=m-1;j<m;j++) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.83, ITR: 176, MVE: 3, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< ・・・

<<< Loop-information End >>>

49 p 2v for (i=0;i<n;i++) {

50 p 2v e[j][i] = *s2 * (a[j][i] + b[j][i]* (*s3 + c[j][i] * d[j][i]));

51 p 2v }

52 p }

Source After Improvement (Source Tuning)

Peeling

Loop Fusion

Effect of
1.34 times

for(j=0;j<m-1;j++){
for(i=0;i<n;i++){

...xxx...
}

}

for(j=0;j<m;j++){
for(i=0;i<n;i++){

...yyy...
}

}

Image of loop fusion

for(j=0;j<m-1;j++){
for(i=0;i<n;i++){

...xxx...
}

}

for(j=0;j<m-1;j++){
for(i=0;i<n;i++){

...yyy...
}

}

for(j=m-1;j<m;j++){
for(i=0;i<n;i++){

...yyy...
}

}

for(j=0;j<m-1;j++){
for(i=0;i<n;i++){

...xxx...

...yyy...
}

}

for(j=m-1;j<m;j++){
for(i=0;i<n;i++){

...yyy...
}

}

Loop Fusion

Peeling

C/C++

Before After

Array access causes
cache hit

Cutting out (peeling)
for loop fusion

Number of L1D and L2 misses
reduced significantly

Loop fusion increases cache efficiency. The result is improvement of the "No instruction commit
because memory cache is busy" event.

No
instruction
commit
because
memory
cache is busy

58

• What is Array Merge?

• Array Merge (Before Improvement)

• Effect of Array Merge (Source Tuning)

Array Merge (Indirect Access)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED59

parameter(n=1000000)

real*8 a(n), b(n), c(n)

integer d(n+10)

：

do iter = 1, 100

do i = 1 , n

a(d(i)) = b(d(i))

+ scalar * c(d(i))

enddo

enddo

：

parameter(n=1000000)

real*8 abc(3, n)

integer d(n+10)

：

do iter = 1, 100

do i = 1 , n

abc(1, d(i)) = abc(2, d(i))

+ scalar * abc(3, d(i))

enddo

enddo

：

What is Array Merge?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Array merge is a means to merge multiple arrays in the same loop
into one only if they have a common access pattern. Data access
becomes sequential, which increases cache efficiency.

abc(1, d(i))

abc(2, d(i))

abc(3, d(i))

・・・

abc(1, d(i+1))

abc(2, d(i+1))

abc(3, d(i+1))

・・・

b(d(i))

・・・

c(d(i+1))

・・・

・・・

a(d(i))

・・・

a(d(i+1))

・・・

b(d(i+1))

・・・

c(d(i))

Array merge

Access to different
cache lines
(when array d values are
not sequential)

Access to same
cache line

(L1D cache)

(L1D cache)

Source Before Improvement Source After Improvement

60

Array Merge (Before Improvement)

Cache use efficiency is low (indirect access) because the L1D miss rate is high. Consequently,
the "No instruction commit due to L2 cache access for a floating-point load instruction"
event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand
rate (%)

(/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 6.44E+08 1.27E+09 1.97 99.98% 0.01% 0.00% 4.82E+07 0.07 60.81% 50.33% 0.00%

1 parameter(n=2*1000*1000/8)
2 real*8 a(n),b(n),c(n),e(n),f(n),s
3 integer d(n)
:

14 1 s call sub(a,b,c,d,e,f,s,n)
:

25 subroutine sub(a,b,c,d,e,f, s, n)
26 real*8 a(n),b(n),c(n),e(n),f(n),s
27 integer d(n), ii
28
29 !$omp parallel do schedule (static,96)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.07, ITR: 80, MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< d
<<< Loop-information End >>>

30 1 p 2v do i = 1 , n
31 1 p 2v ii = d(i)
32 1 p 2v a(ii) = s / (s + f(ii) / (s + e(ii) / (b(ii) + s / c(ii))))
33 1 p 2v enddo
34 !$omp end parallel do

Source Before Improvement

Before

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

[Seconds]

Fortran

61

Effect of Array Merge (Source Tuning)

Array merge increases cache efficiency by merging the list access arrays. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 6.44E+08 1.27E+09 1.97 99.98% 0.01% 0.00% 4.82E+07 0.07 60.81% 50.33% 0.00%

After 0.00 3.19E+08 2.97E+08 0.93 99.68% 0.32% 0.00% 1.58E+04 0.00 63.74% 54.78% 0.00%

1 parameter(n=2*1000*1000/8)
2 real*8 abcef(5,n),s
3 integer d(n)
:

14 1 s call sub(abcef,d,s,n)
:

24 subroutine sub(abcef,d, s, n)
25 real*8 abcef(5,n),s
26 integer d(n), ii
27
28 !$omp parallel do schedule (static,96)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.09, ITR: 80, MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< d
<<< Loop-information End >>>

29 1 p 2v do i = 1 , n
30 1 p 2v ii = d(i)
31 1 p 2v abcef(1,ii) = s / (s + abcef(5,ii) / (s + abcef(4,ii)
32 1 * / (abcef(2,ii) + s / abcef(3,ii))))
33 1 p 2v enddo
34 !$omp end parallel do

Source After Improvement (Source Tuning)

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

L1D miss rates reduced
significantly

Effect of
2.3 times

Before After

Fortran

62

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前

[Seconds]

Array Merge (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

24 void sub(double (* restrict a),double (* restrict b),
double (* restrict c),int (* restrict d),double (* restrict e),
double (* restrict f),double s,int n) {

25 int i,ii;
26
27 #pragma omp parallel for schedule (static,96)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.33, ITR: 112, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

28 p 2v for(i=0;i<n;i++) {
29 p 2v ii = d[i];
30 p 2v a[ii] = s / (s + f[ii] / (s + e[ii] / (b[ii] + s / c[ii])));
31 p 2v }
32 }

Source Before Improvement

Array declaration
double a[250000];
double b[250000];
double c[250000];
double e[250000];
double f[250000];

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 6.58E+08 1.27E+09 1.93 99.94% 0.06% 0.00% 4.24E+07 0.06 56.24% 56.98% 0.00%

C/C++

Cache use efficiency is low (indirect access) because the L1D miss rate is high. Consequently,
the "No instruction commit due to L2 cache access for a floating-point load instruction"
event occurs many times.

Before

No instruction
commit due to
L2 cache
access for a
floating-point
load instruction

63

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 6.58E+08 1.27E+09 1.93 99.94% 0.06% 0.00% 4.24E+07 0.06 56.24% 56.98% 0.00%

After 0.00 3.67E+08 2.94E+08 0.80 99.69% 0.30% 0.00% 1.41E+04 0.00 76.45% 61.05% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前 改善後

[Seconds]

Effect of Array Merge (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

24 void sub(double (* restrict abcef)[5],int (* restrict d),double s,int n) {
25 int i,ii;
26
27 #pragma omp parallel for schedule (static,96)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.36, ITR: 112, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

28 p 2v for(i=0;i<n;i++) {
29 p 2v ii = d[i];
30 p 2v abcef[ii][0] = s / (s + abcef[ii][4] / (s + abcef[ii][3] /

(abcef[ii][1] + s / abcef[ii][2])));
31 p 2v }
32 }

Source After Improvement (Source Tuning)

Effect of
2.04 times

Array declaration
double a[250000];
double b[250000];
double c[250000];
double e[250000];
double f[250000];

C/C++

Before AfterL1D miss rates reduced
significantly

Array merge increases cache efficiency by merging the list access arrays. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

64

• What is Array Dimension Shift?

• Array Dimension Shift (Before Improvement)

• Effect of Array Dimension Shift (Source Tuning)

• Effect of Array Dimension Shift (Compiler Option Tuning)

Array Dimension Shift

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED65

parameter(n=96,m=100)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

do i = 1 , n

a(i, j, 1) = a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

a(i, j, 5) + a(i, j, 6) + a(i, j, 7) +

a(i, j, 8)

enddo

enddo

What is Array Dimension Shift?

Array dimension shift is a tuning method that changes the access dimension of an
array to improve cache utilization.

As shown in the following example, shifting the changed dimension inward can
increase cache use efficiency.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 256, 1)

a(1, 1, 2)

・・・

a(256, 256, 2)

(Cache line)

(Data location in memory)

a(1, 1, 3)

・・・

a(256, 256, 3)

a(1, 1, 4)

・・・

a(256, 256, 4)

a(1, 1, 5)

・・・

a(1, 1, 1)

a(2, 1, 1)

・・・

a(1, 256, 1)

(Data location in memory)

・・・

・・・

a(1, 2, 1)

a(2, 256, 1)

a(1, 1, 2)

a(2, 1, 2)

a(3, 1, 2)

a(4, 1, 2)

・・・

a(8, 256, 256)

Can use data effectively since
all 8 pieces of data are on
same cache line

256 x 256 x 8 B

= 32 x 16 KB

Distant access

a(1, 1, 6)

・・・

a(1, 1, 7)

・・・

a(1, 1, 8)

・・・

a(256, 256, 8)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

・・・

a(1, 3, 1)

・・・

a(1, 8, 1)

・・・

a(3, 256, 1)

a(4, 256, 1)

◼ Before improvement ◼ After improvement

parameter(n=96,m=100)

real*8 a(n, 8, m)

common /com/a

do j = 1 , m

do i = 1 , n

a(i, 1, j) = a(i, 2, j) + a(i, 3, j) + a(i, 4, j) +

a(i, 5, j) + a(i, 6, j) + a(i, 7, j) +

a(i, 8, j)

enddo

enddo

Example of Source

Store in cache Memory access order

Example of Source

66

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.12E+10 8.20E+08 0.04 78.62% 21.38% 0.00% 5.45E+03 0.00 87.63% 20.43% 0.00%

Array Dimension Shift (Before Improvement)

Data locality for access in the innermost loop of Array a is low. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event occurs.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

16 real(8)::a(N,M,8)

:

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

21 2 p do j=1,M

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.87, ITR: 56,

MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

22 3 p v do i=1,N

23 3 p v a(i,j,1)=a(i,j,2)+a(i,j,3)+a(i,j,4)+&

24 3 a(i,j,5)+a(i,j,6)+a(i,j,7)+a(i,j,8)

25 3 p v enddo

26 2 p enddo

Source Before Improvement

Cache

N = 96
M = 100

Before

[Seconds]

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Fortran

67

Effect of Array Dimension Shift (Source Tuning)

Array dimension shift increases data locality. The result is improvement of the "No
instruction commit due to L2 cache access for a floating-point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

16 real(8)::a(N,8,M)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

21 2 p do j=1,M

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.87, ITR: 56,

MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

22 3 p v do i=1,N

23 3 p v a(i,1,j)=a(i,2,j)+a(i,3,j)+a(i,4,j)+&

24 3 a(i,5,j)+a(i,6,j)+a(i,7,j)+a(i,8,j)

25 3 p v enddo

26 2 p enddo

Source After Improvement (Source Tuning)

Cache

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.12E+10 8.20E+08 0.04 78.62% 21.38% 0.00% 5.45E+03 0.00 87.63% 20.43% 0.00%

After 0.00 2.11E+10 7.39E+07 0.00 99.99% 0.01% 0.00% 4.12E+03 0.00 80.75% 32.43% 0.00%

Before

[Seconds]

After

Effect of
1.38 times

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

N = 96
M = 100

Fortran

68

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[Seconds]

Array Dimension Shift (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

36 void sub(int N,int M,int ITER, double (* restrict a)[M][N])

37 {

38 int i,j,k;

39 #pragma omp parallel private(i,j,k)

40 {

41 for(k=0; k<ITER; k++)

42 {

43 #pragma omp for nowait

<<< Loop-information Start >>>

:

<<< Loop-information End >>>

44 p for(j=0; j<M; j++)

45 p {

<<< Loop-information Start >>>

:

<<< Loop-information End >>>

46 p v for(i=0; i<N; i++)

47 p v {

48 p v a[0][j][i]=a[1][j][i]+a[2][j][i]+a[3][j][i]+

49 a[4][j][i]+a[5][j][i]+a[6][j][i]+a[7][j][i];

50 p v }

51 p }

52 }

53 }

55 return;

56 }

Source Before Improvement

N=96
M=100

Array declaration
double a[8][M][N];

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.18E+10 8.20E+08 0.04 82.13% 17.87% 0.00% 1.49E+04 0.00 81.54% 38.68% 0.00%

C/C++

Data locality for access in the innermost loop of Array a is low. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event occurs.

Before

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

69

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前 改善後

[Seconds]

Effect of Array Dimension Shift (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

36 void sub(int N,int M,int ITER, double (* restrict a)[8][N]) {

38 int i,j,k;

39 #pragma omp parallel private(i,j,k)

40 {

41 for(k=0; k<ITER; k++) {

43 #pragma omp for nowait

<<< Loop-information Start >>>

:

<<< Loop-information End >>>

44 p for(j=0; j<M; j++) {

<<< Loop-information Start >>>

:

<<< Loop-information End >>>

46 p v for(i=0; i<N; i++) {

48 p v a[j][0][i]=a[j][1][i]+a[j][2][i]+a[j][3][i]+

49 a[j][4][i]+a[j][5][i]+a[j][6][i]+a[j][7][i];

50 p v }

51 p }

52 }

53 }

55 return;

56 }

Source After Improvement (Source Tuning)

Effect of
1.45 times

N=96
M=100

Array declaration
double a[8][M][N];

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.18E+10 8.20E+08 0.04 82.13% 17.87% 0.00% 1.49E+04 0.00 81.54% 38.68% 0.00%

After 0.00 2.09E+10 8.63E+07 0.00 99.97% 0.02% 0.00% 1.56E+04 0.00 86.83% 39.15% 0.00%

C/C++

Array dimension shift increases data locality. The result is improvement of the "No
instruction commit due to L2 cache access for a floating-point load instruction" event.

Before After

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

70

Effect of Array Dimension Shift (Compiler Option Tuning)

You can obtain an effect equivalent to that of source tuning by specifying the

following compiler options (Fortran-specific).

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-Karray_subscript Specifies a dimensional shift in an allocatable array of 4 or more
dimensions or in an array of 4 or more dimensions with 10 or fewer
elements in the last dimension and 100 or more elements in the other
dimensions.

-Karray_subscript_element=100,
-Karray_subscript_elementlast=10,

and -Karray_subscript_rank=4 too are enabled at the same time.

-Karray_subscript_element=N
(2≦N≦2,147,483,647)

Specifies N or more as the number of elements in dimensions other than
the last dimension in the array undergoing the dimensional shift. This
option is valid when the -Karray_subscript option is enabled. However, this
option is not valid for allocatable arrays.

-Karray_subscript_elementlast=N
(2≦N≦2,147,483,647)

Specifies N or less as the number of elements in the last dimension in the
array undergoing the dimensional shift. This option is valid when the -
Karray_subscript option is enabled. However, this option is not valid for
allocatable arrays.

-Karray_subscript_rank=N

(2≦N≦30)

Specifies N or more as the number of dimensions in the array undergoing
the dimensional shift. This option is valid when the -Karray_subscript
option is enabled.

◼ Use example (for source before improvement)
$frtpx –Kfast,parallel sample.f90

–Karray_subscript,array_subscript_rank=2,array_subscript_element=2

◼ Note
⚫ These options must be specified in all source code using the target array.
⚫ The effect of the shift varies depending on the program.
⚫ If not used correctly, computational results may vary.

Fortran

71

• What is Unroll-and-Jam?

• Unroll-and-Jam (Before Improvement)

• Effect of Unroll-and-Jam (Optimization Control Line Tuning)

Unroll-and-Jam

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED72

What is Unroll-and-Jam?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Unroll-and-jam is the optimization to unroll an outer loop of a
nested loop n times and jam the unrolled statements into the inner
loop as loop fusion.

!OCL UNROLL_AND_JAM_FORCE(2)

DO J=1, 128

DO I=1, 128

A(I, J) = B(I, J) + B(I, J+1)

...

END DO

END DO

：

DO J=1, 128, 2

DO I=1, 128

A(I, J) = B(I, J) + B(I, J+1)

A(I, J+1) = B(I, J+1) + B(I, J+2)

...

END DO

END DO

Unrolling of an
outer loop

Source Before Improvement Source After Improvement

Fusion of an inner loop

(removing common
expression)

Unroll-and-jam promotes removing common expression and
improves the execution performance. The increase of data stream
and change of the order of data access may decrease the cache
efficiency and the execution performance.

73

What is Unroll-and-Jam?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization
Specifier (Fortran)

Meaning
Optimization Control Line Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

UNROLL_AND_JAM[(n)]
Enables unroll-and-jam for loops to be as effectively
optimized as determined for the loops. n is a decimal number
(2 to 100) that represents the number of unrolls (multiplicity).

Yes Yes No No

UNROLL_AND_JAM_FO
RCE[(n)]

Enables unroll-and jam. n is a decimal number (2 to 100) that
represents the number of unrolls (multiplicity).

No Yes No No

NOUNROLL_AND_JAM Disables unroll-and-jam. Yes Yes No No

◼ Note

⚫ The UNROLL_AND_JAM specifier does not result in optimization in cases where no effect can be expected from
optimization or there is data dependency across iterations.

⚫ If the UNROLL_AND_JAM_FORCE specifier is mistakenly specified (there is data dependency across iterations), the
execution results are not guaranteed.

⚫ The innermost loop is not subject to unroll-and-jam.

⚫ If the number of iterations of the innermost loop is small, cache use efficiency and execution performance may drop,
depending on an increase in the number of data streams or changes in the data access sequence.

⚫ Prefetch may compensate for an increase in cache misses, improving the situation.

Specify the following optimization control lines.

Optimization
Specifier (C/C++)

Meaning
Optimization Control Line Specifiable?

global procedure loop statement

unroll_and_jam[(n)]
Enables unroll-and-jam for loops to be as effectively
optimized as determined for the loops. n is a decimal number
(2 to 100) that represents the number of unrolls (multiplicity).

Yes Yes Yes No

unrool_and_jam_force[
(n)]

Enables unroll-and jam. n is a decimal number (2 to 100) that
represents the number of unrolls (multiplicity).

No No Yes No

nounroll_and_jam Disables unroll-and-jam. Yes Yes Yes No

74

What is Unroll-and-Jam?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-K{ unroll_and_jam[=N] |
nounroll_and_jam }

2 ≦ N ≦ 100

Specifies whether or not to perform unroll-and-jam optimization. You
can specify a value from 2 to 100 in N to set the upper limit on the
number of loop unrolls. If N is not specified, the compiler automatically
decides the best value. The default is -Knounroll_and_jam.
Applying unroll-and-jam facilitates the elimination of common
expressions and may raise execution performance. However, an
increase in the number of data streams or a change in the access
sequence may decrease cache use efficiency, resulting in a decrease in
execution performance.
In addition, the impact of unroll-and-jam optimization on execution
performance varies from loop to loop. Therefore, we recommend not
applying this optimization with the -Kunroll_and_jam[=N] option to an
entire program but instead applying it with the optimization specifier
UNROLL_AND_JAM or UNROLL_AND_JAM_FORCE to individual loops.

You can obtain an effect equivalent to that of optimization control
line tuning by specifying the following compiler option.

◼ Use example (for source before improvement)

$ frtpx -Kfast,parallel sample.f90 -Kunroll_and_jam

$ fccpx -Kfast,parallel sample.c -Kunroll_and_jam

◆Note

Unroll-and jam optimization is not available in Clang Mode.

75

Unroll-and-Jam (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate

(%) (/L1D miss)

L1D miss
hardware prefetch

rate (%) (/L1D
miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

Before 0.00 3.39E+09 3.82E+09 1.13 99.50% 0.50% 0.00% 1.15E+08 0.03 46.67%

Cache use efficiency is low because the L1D miss rate is high. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event
occurs many times.

11 DATA_TYPE,dimension(IMAX,JMAX,KMAX)::a
12 DATA_TYPE,dimension(JMAX,KMAX)::b
13 DATA_TYPE,dimension(JMAX,IMAX)::c

:
15 1 pp do k=1, KMAX
16 1
17 2 p do j=1, JMAX - 3

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.85, ITR: 80, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

18 3 p 2v do i =1, IMAX
19 3 p 2v a(i,j,k) = a(i,j+1,k) + a(i,j+2,k) + a(i,j+3,k) &
20 3 + (b(j+2,k) / c(j,i))
21 3 p 2v end do
22 2 p end do
23 1 p end do

Source Before Improvement

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

[Seconds]

#define DATA_TYPE real(kind=8)
#define IMAX 512
#define JMAX 512
#define KMAX 128

Low cache use efficiency
since Array c has stride
access pattern

Fortran

Before

76

Effect of Unroll-and-Jam (Optimization
Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate

(%) (/L1D miss)

L1D miss
hardware prefetch

rate (%) (/L1D
miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

Before 0.00 3.39E+09 3.82E+09 1.13 99.50% 0.50% 0.00% 1.15E+08 0.03 46.67%

After 0.00 2.68E+09 7.37E+08 0.27 89.34% 2.55% 8.12% 1.15E+08 0.04 44.44%

Unroll-and-jam increases cache use efficiency, reducing the number of the L1D misses. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load instruction"
event.

11 DATA_TYPE,dimension(IMAX,JMAX,KMAX)::a
12 DATA_TYPE,dimension(JMAX,KMAX)::b
13 DATA_TYPE,dimension(JMAX,IMAX)::c
:

15 1 pp do k=1, KMAX
16 1 !ocl unroll_and_jam_force(8)
17 2 p do j=1, JMAX - 3

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.85, ITR: 80, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< PREFETCH(SOFT) : 32
<<< SEQUENTIAL : 32
<<< a: 32
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 4
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 0 FILL 0
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

18 3 p 2v do i =1, IMAX
19 3 p 2v a(i,j,k) = a(i,j+1,k) + a(i,j+2,k) + a(i,j+3,k) &
20 3 + (b(j+2,k) / c(j,i))
21 3 p 2v end do
22 2 p end do
23 1 p end do

Source After Improvement (Optimization Control Line Tuning)

L1D misses reduced
significantly

#define DATA_TYPE
real(kind=8)
#define IMAX 512
#define JMAX 512
#define KMAX 128

No instruction
commit due
to L2 cache
access for a
floating-point
load
instruction

[Seco
nds]

Effect of
2.32 timesUnrolling of an outer loop reduced

instructions by eliminating the
common expressions of Array a and
increased the cache use efficiency of
Arrays a and c.

Fortran

Before After

77

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[Seconds]

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

Before 0.00 3.50E+09 3.68E+09 1.05 99.73% 0.26% 0.00% 1.16E+08 0.03 59.11%

Unroll-and-Jam (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

69 #pragma omp parallel for
70 p for (k=0;k<KMAX;k++){

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

71 p for (j=0;j<JMAX-3;j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.09, ITR: 80, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

72 p 2v for (i=0;i<IMAX;i++){
73 p 2v a[k][j][i] = a[k][j+1][i] + a[k][j+2][i] + a[k][j+3][i]
74 + (b[k][j+2] / c[i][j]);
75 p 2v }
76 p }
77 p }

Source Before Improvement

#define IMAX 512
#define JMAX 512
#define KMAX 128

Array declaration
double
a[KMAX][JMAX][IMAX],
b[KMAX][JMAX],
c[IMAX][JMAX];

C/C++

Before

Cache use efficiency is low because the L1D miss rate is high. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event
occurs many times.

No instruction
commit due
to L2 cache
access for a
floating-point
load
instruction

Low cache use efficiency
since Array c has stride
access pattern

78

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

Before 0.00 3.50E+09 3.68E+09 1.05 99.73% 0.26% 0.00% 1.16E+08 0.03 59.11%

After 0.00 2.42E+09 6.24E+08 0.26 82.30% 3.11% 14.60% 1.15E+08 0.05 39.17%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前 改善後

[Seconds]

Effect of Unroll-and-Jam (Optimization
Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

74 for (k=0;k<KMAX;k++){
75 #pragma loop unroll_and_jam_force 8

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

76 for (j=0;j<JMAX-3;j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.53, ITR: 3, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< PREFETCH(SOFT) : 32
<<< SEQUENTIAL : 32
<<< (unknown): 32
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 4
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 0 FILL 0
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

77 2v for (i=0;i<IMAX;i++){
78 2v a[k][j][i] = a[k][j+1][i] + a[k][j+2][i] + a[k][j+3][i]
79 + (b[k][j+2] / c[i][j]);
80 2v }
81 }
82 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
1.58 times

#define IMAX 512
#define JMAX 512
#define KMAX 128

Array declaration
double
a[KMAX][JMAX][IMAX],
b[KMAX][JMAX],
c[IMAX][JMAX];

C/C++

Before After

Unroll-and-jam increases cache use efficiency, reducing the number of the L1D misses. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load instruction"
event.

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

L1D misses reduced
significantly

Unrolling of an outer loop reduced
instructions by eliminating the
common expressions of Array a and
increased the cache use efficiency of
Arrays a and c.

79

• Indirect Access Prefetch

• Using Software Prefetch to Access Non-Sequential Data

Data Access Wait Time (Hidden
Latency)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED80

• What is Prefetch?

• Indirect Access Prefetch (Optimization Control Line)

• Effect of Indirect Access Prefetch (Compiler Option Tuning)

• Indirect Access Prefetch (Before Improvement)

• Effect of Indirect Access Prefetch (Optimization Control Line Tuning)

Indirect Access Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED81

What is Prefetch?

Prefetch is a mechanism that raises performance by loading data into
the cache before the data is required by an executed instruction.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache miss

Cache hit

Prefetch

Memory allocation

The two types of prefetch are hardware prefetch and software prefetch.

◼ Hardware prefetch

Hardware prefetches data by predicting data access based on the regularity of memory
access by programs.

The cache efficiency of a program may degrade significantly because data is also prefetched
from areas not accessed by the program. In such cases, use software prefetch.

◼ Software prefetch

Software (compiler) prefetches data by analyzing programs and generating a prefetch
instruction.

Cache miss

Cache hit

Prefetch

Area not accessed
by program

Data in unaccessed areas is also prefetched.
If there is a gap equal to or greater than 1 cache
line, a cache miss occurs.

Memory allocation

82

Indirect Access Prefetch (Optimization Control Line)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◆Note
Prefetch with the compiler option -Kprefetch_sequential, -Kprefetch_stride,
-Kprefetch_indirect, or -Kprefetch_conditional enabled may degrade
execution performance, depending on the cache efficiency of loops, whether
they have any branches, and the complexity of subscripts.

◆Supplementary information

The prefetch optimization specifier is equivalent to specifying the following compiler
option:

-Kprefetch_sequential,prefetch_stride,prefetch_indirect,prefetch_conditional,
prefetch_cache_level=all

Specify the following optimization control line.

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

PREFETCH Enables the automatic prefetch function of the compiler. Yes Yes No No

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line
Specifiable?

global procedure loop statement

prefetch Enables the automatic prefetch function of the compiler. Yes Yes Yes No

83

Effect of Indirect Access Prefetch (Compiler Option Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-Kprefetch_indirect Specifies whether or not to generate an object using a prefetch
instruction for the array data that is used in a loop and accessed
indirectly (list-accessed).

This option is valid when the -O1 or higher option is enabled.

The default is -Kprefetch_noindirect.

◆Note

Although data is prefetched, the intended effect may not be obtained
depending on the cache efficiency of loops, whether they have any IF
clauses, and the complexity of subscripts.

Indirect prefetch optimization is not available in Clang Mode.

You can obtain an effect equivalent to that of optimization control
line tuning by specifying the following compiler option.

◼Use example (for source before improvement)

$ frtpx –Kfast,parallel sample.f90 -Kprefetch_indirect

$ fccpx –Kfast,parallel sample.c -Kprefetch_indirect

84

Indirect Access Prefetch (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Latency is apparent in memory access because the recommended option does
not generate prefetch in cases of indirect access (list access). Consequently,
the "No instruction commit due to L2 cache access for a floating-point load
instruction" event occurs many times.

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 9.01E+09 3.77E+09 0.42 98.23% 1.77% 0.00% 4.29E+08 0.05 54.19% 75.86% 0.00%

Memory throughput
(GB/s)

Before 32.67

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 572

<<< [OPTIMIZATION]

<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 18, MVE: 3, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< e, d, a

<<< Loop-information End >>>

52 1 pp 2 do i = 1 , n

53 1 p 2 a(i) = b(d(i)) + scalar * c(e(i))

54 1 p 2 enddo

Source Before Improvement

The L1D and L2 miss dm rates are high, which means prefetch is not
working. Performance may be higher because memory throughput
is more than sufficient to raise performance.

Arrays b and c have
indirect access patterns

No instruction
commit due to L2
cache access for a
floating-point load
instruction

Before

[Seconds]

Fortran

85

Effect of Indirect Access Prefetch (Optimization
Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Specify the prefetch specifier to generate prefetch for indirect access (list access). The
result is improvement of the "No instruction commit due to L2 cache access for a floating-
point load instruction" event.

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand
rate (%)

(/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand
rate (%)

(/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 9.01E+09 3.77E+09 0.42 98.23% 1.77% 0.00% 4.29E+08 0.05 54.19% 75.86% 0.00%

After 0.00 1.66E+10 3.82E+09 0.23 2.94% 2.94% 94.12% 1.77E+09 0.11 2.02% 6.20% 91.78%

51 !ocl prefetch

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 572

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< e, d, a

<<< PREFETCH(SOFT) : 8

<<< INDIRECT : 8

<<< c: 4, b: 4

<<< Loop-information End >>>

52 1 pp 2 do i = 1 , n

53 1 p 2 a(i) = b(d(i)) + scalar * c(e(i))

54 1 p 2 enddo

Source After Improvement

The L1D and L2 miss dm rates were reduced by the generated
prefetch instruction for indirect access (Arrays b and c).

Memory
throughput (GB/s)

Before 32.67

After 183.71

Prefetch generated
for indirect access
(Arrays b and c)

Before After

[Seconds]

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

Effect of
1.49 times

Fortran

86

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 8.65E+09 3.78E+09 0.44 98.01% 1.99% 0.00% 4.30E+08 0.05 47.96% 100.00% 0.00%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前

[Seconds]

Indirect Access Prefetch (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

53 void sub(double * restrict a, double * restrict b,

double * restrict c, int * restrict d, int * restrict e,

double scalar, int n){

54 int i;

56 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SOFTWARE PIPELINING(IPC: 2.83, ITR: 12, MVE: 2, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

57 p 2 for (i = 0; i < n; i++){

58 p 2 a[i] = b[d[i]] + scalar * c[e[i]];

59 p 2 }

60 }

Source Before Improvement

Statistics
Memory throughput

(GB/s)

Before 31.24

C/C++

Latency is apparent in memory access because the recommended option does not
generate prefetch in cases of indirect access (list access). Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event
occurs many times.

The L1D and L2 miss dm rates are high, which means prefetch is not
working. Performance may be higher because memory throughput
is more than sufficient to raise performance.

Arrays b and c have
indirect access patterns

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Before

87

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 8.65E+09 3.78E+09 0.44 98.01% 1.99% 0.00% 4.30E+08 0.05 47.96% 100.00% 0.00%

After 0.00 1.70E+10 3.83E+09 0.22 2.99% 2.94% 94.08% 1.70E+09 0.10 1.80% 6.41% 91.79%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

改善前 改善後

[Seconds]

Effect of Indirect Access Prefetch
(Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

53 void sub(double * restrict a, double * restrict b,

double * restrict c, int * restrict d,

int * restrict e, double scalar, int n){

54 int i;

56 #pragma loop prefetch

57 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< PREFETCH(SOFT) : 8

<<< INDIRECT : 8

<<< (unknown): 8

<<< Loop-information End >>>

58 p 2 for (i = 0; i < n; i++){

59 p 2 a[i] = b[d[i]] + scalar * c[e[i]];

60 p 2 }

61 }

Source Before Improvement

Effect of
1.42 times

Statistics
Memory throughput

(GB/s)

Before 31.24

After 159.90

C/C++

Specify the prefetch specifier to generate prefetch for indirect access (list access). The
result is improvement of the "No instruction commit due to L2 cache access for a floating-
point load instruction" event.

The L1D and L2 miss dm rates were reduced by the generated
prefetch instruction for indirect access (Arrays b and c).

Prefetch generated
for indirect access
(Arrays b and c)

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

Before After

88

• Using Software Prefetch to Access Non-Sequential Data

• Using Software Prefetch to Access Non-Sequential Data (Before Improvement)

• Using Software Prefetch to Access Non-Sequential Data (1) (Optimization
Control Line Tuning)

• Using Software Prefetch to Access Non-Sequential Data (2) [Recommended]
(Optimization Control Line Tuning)

Using Software Prefetch to
Access Non-Sequential Data

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED89

Using Software Prefetch to Access Non-Sequential Data

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache misses occur easily with hardware prefetch in accessing
non-sequential data or data with short sequential parts. In such cases,
use software prefetch to raise performance.

To use software prefetch, use either the PREFETCH_READ and
PREFETCH_WRITE specifiers, which are described later, or the
following compiler options.

Compiler Option Functional Description

-Kprefetch_sequential
=auto

Sets the compiler to automatically select whether to use hardware
prefetch or output a prefetch instruction for the array data used in
a loop and accessed sequentially. This option is valid when the -O1
or higher option is enabled. If the -O2 or higher option is enabled,
the default is -Kprefetch_sequential=auto.

-Kprefetch_sequential
=soft

Outputs a prefetch instruction for the array data used in a loop
and accessed sequentially, rather than using hardware prefetch.
This option is valid when the -O1 or higher option is enabled.

-Kprefetch_nosequent
ial

Generates an object, rather than using a prefetch instruction, for
the array data used in a loop and accessed sequentially. If
the -O0 or -O1 option is enabled, the default is -
Kprefetch_nosequential.

90

Using Software Prefetch to Access Non-
Sequential Data

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do j=1,n

do i=1,isize

a(i,j) = b(i,j) + scalar * c(i,j)

enddo

enddo

Before
do j=1,n

do i=1,isize
!OCL PREFETCH_WRITE(a(i,j+1),level=1)
!OCL PREFETCH_READ(b(i,j+1),level=1)
!OCL PREFETCH_READ(c(i,j+1),level=1)

a(i,j) = b(i,j) + scalar * c(i,j)
enddo

enddo

After Improvement (1) (Software Prefetch Element Specified)

do j=1,n
!OCL PREFETCH_WRITE(a(1:isize,j+1),level=1)
!OCL PREFETCH_READ(b(1:isize,j+1),level=1)
!OCL PREFETCH_READ(c(1:isize,j+1),level=1)

do i=1,isize
a(i,j) = b(i,j) + scalar * c(i,j)

enddo
enddo

After Improvement (2) (Software Prefetch Vector Specified)

Specify the PREFETCH_READ and PREFETCH_WRITE specifiers as described below.

Optimization Specifier Meaning

Optimization Control Line
Specifiable?

By Program By DO loop By Statement
By Array

Assignment
Statement

PREFETCH_READ(name[,level={1|2}][,st
rong={0|1}])

Specifies that a prefetch instruction be
generated for the referenced data.

name is an array element name, level is the cache level
used for prefetch, and strong is whether or not to
perform strong prefetch.

Yes No Yes No

PREFETCH_WRITE(name[,level={1|2}][,
strong={0|1}])

Specifies that a prefetch instruction be
generated for the defined data.

Yes No Yes No

Array elements are specified in vector format.
Since multiple prefetch instructions can be
generated simultaneously, performance is
even higher than when each element is
individually specified.

Recommended

Fortran

91

Using Built-in Prefetch to Access Non-
Sequential Data

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

for (j = 0; j < n; j++) {

for (i = 0; i < isize; i++) {

a[j][i] = b[j][i] + scalar * c[j][i];

}

}

Before

for (j = 0; j < n; j++) {
for (i = 0; i < isize; i++) {

__builtin_prefetch(&a[j+1][0], 1, 3);
__builtin_prefetch(&b[j+1][0], 0, 3);
__builtin_prefetch(&c[j+1][0], 0, 3);
__builtin_prefetch(&a[j+1][32], 1, 3);

:
a[j][i] = b[j][i] + scalar * c[j][i];

}
}

After (1) (Built-in prefetch Element Specified)

for (j = 0; j < n; j++) {
__builtin_prefetch(&a[j+1][0], 1, 3);
__builtin_prefetch(&a[j+1][32], 1, 3);
__builtin_prefetch(&a[j+1][64], 1, 3);
__builtin_prefetch(&b[j+1][0], 0, 3);
__builtin_prefetch(&b[j+1][32], 0, 3);
__builtin_prefetch(&b[j+1][64], 0, 3);
__builtin_prefetch(&c[j+1][0], 0, 3);

:
for (i = 0; i < isize; i++) {

a[j][i] = b[j][i] + scalar * c[j][i];
}

}

After (2) (Built-in prefetch Vector Specified)

Built-in prefetch function is used as described below. Refer to the GNU
C/C++ compiler websites for specifications.

Performance is improved by reducing
the number of prefetching.

C/C++

Recommended

92

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00
1.75E+0

9
2.64E+08 0.15 70.94% 29.46% -0.40% 1.26E+08 0.07 39.28% 83.10% 0.00%

Using Software Prefetch to Access Non-
Sequential Data (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Access is not sequential because the number of iterations of the innermost loop is small and the array
size is larger than the number of iterations. The cost of prefetch startup is quite apparent in normal
prefetch. Consequently, the "No instruction commit due to access for a floating-point load instruction"
event occurs many times.

Flow direction of inner loop

F
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

42 parameter(n=1200)

43 integer n

44 real*8 a(n,n),b(n,n),c(n,n),scalar

45 common /com/a,b,c

46

47 !$omp parallel do

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< Loop-information End >>>

48 1 p do j=1,n

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.40, ITR: 128, MVE: 3, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< Loop-information End >>>

49 2 p 2v do i=1,isize

50 2 p 2v a(i,j) = b(i,j) + scalar * c(i,j)

51 2 p 2v enddo

52 1 p enddo

Source Before Improvement

The high L1D miss dm rate means prefetch is not working.

Number of elements in 1st
dimension of array: 1,200

Number of loop iterations (isize):
128

Access continuity broken when
outer loop j is incremented

Before

[Seconds]

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction commit due to
L2 cache access for a
floating-point load instruction

No instruction commit due
to memory access for a
floating-point load
instruction

Fortran

93

Using Software Prefetch to Access Non-Sequential
Data (1) (Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Use the PREFETCH_READ and PREFETCH_WRITE specifiers to generate prefetch for arrays in the outer
loops to hide the prefetch startup cost. The result is improvement of the "No instruction commit due to L2
cache access for an integer load instruction" event.

42 parameter(n=1200)

43 integer n

44 real*8 a(n,n),b(n,n),c(n,n),scalar

45 common /com/a,b,c

46

47 !$omp parallel do

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< PREFETCH(SOFT) : 18

<<< SPECIFIED : 18

<<< a: 6, c: 6, b: 6

<<< Loop-information End >>>

48 1 p do j=1,n

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.25, ITR: 88, MVE: 6, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< PREFETCH(SOFT) : 18

<<< SPECIFIED : 18

<<< c: 6, b: 6, a: 6

<<< Loop-information End >>>

49 2 p v do i=1,isize

50 2 p !OCL PREFETCH_WRITE(a(i,j+1),level=1)

51 2 p !OCL PREFETCH_READ(b(i,j+1),level=1)

52 2 p !OCL PREFETCH_READ(c(i,j+1),level=1)

53 2 p v a(i,j) = b(i,j) + scalar * c(i,j)

54 2 p v enddo

55 1 p enddo

Source After Improvement

Cache
Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

Before 1.75E+09 2.64E+08 0.15 70.94% 29.46% -0.40%

After 1.13E+09 1.90E+08 0.17 4.57% 0.44% 94.99%

L1D miss dm rate reduced

Prefetch in array at 1
iteration ahead in
outer loop

Before

[Seconds]

After

Effect of
2.14 times

Flow direction of inner loopF
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction commit due
to L2 cache access for an
integer load instruction

No instruction
commit due to
memory access for
a floating-point
load instruction

Fortran

94

Using Software Prefetch to Access Non-Sequential Data (2)
[Recommended] (Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

You can reduce the number of instructions of the innermost loop and raise performance by specifying the
PREFETCH_READ and PREFETCH_WRITE specifiers for an array in an outer loop.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< PREFETCH(SOFT) : 3
<<< SPECIFIED : 3
<<< a: 1, c: 1, b: 1
<<< Loop-information End >>>

48 1 p do j=1,n
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(SOFT) : 4
<<< SPECIFIED : 4
<<< a: 4
<<< Loop-information End >>>

49 1 p 4s !OCL PREFETCH_WRITE(a(1:isize,j+1),level=1)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(SOFT) : 4
<<< SPECIFIED : 4
<<< b: 4
<<< Loop-information End >>>

50 1 p 4s !OCL PREFETCH_READ(b(1:isize,j+1),level=1)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(SOFT) : 4
<<< SPECIFIED : 4
<<< c: 4
<<< Loop-information End >>>

51 1 p 4s !OCL PREFETCH_READ(c(1:isize,j+1),level=1)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.40, ITR: 128, MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

52 2 p 2v do i=1,isize
53 2 p 2v a(i,j) = b(i,j) + scalar * c(i,j)
54 2 p 2v enddo
55 1 p enddo

Source After Improvement

Cache
Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D miss)

L1D miss hardware
prefetch rate
(%) (/L1D miss)

L1D miss software
prefetch rate (%)

(/L1D miss)

Before 1.75E+09 2.64E+08 0.15 70.94% 29.46% -0.40%

After 9.22E+08 1.93E+08 0.21 23.46% 1.65% 74.90%

L1D miss dm rate reduced

Prefetch of entire array
at 1 iteration ahead in
outer loop

Before

[Seconds]

After

Effect of
2.82 times

Flow direction of inner loopF
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction commit
due to L2 cache access for
a floating-point load
instruction

No instruction
commit due to
memory access for
a floating-point load
instruction

Fortran

95

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 2.18E+09 2.57E+08 0.12 73.77% 26.27% -0.04% 6.67E+07 0.03 42.40% 82.13% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

改善前

[Seconds]

Using Built-in Prefetch to Access Non-Sequential Data
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 void sub(double scalar, int isize){

41 int i, j;

42

43 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< Loop-information End >>>

44 p for (j = 0; j < n; j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 144, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< Loop-information End >>>

45 p 2v for (i = 0; i < isize; i++){

46 p 2v a[j][i] = b[j][i] + scalar * c[j][i];

47 p 2v }

48 p }

49 }

Source Before Improvement

C/C++

Flow direction of inner loop

F
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

The high L1D miss dm rate means prefetch is not working.

Number of elements in 1st dimension of
array: 1,200

Number of loop iterations (isize): 128

Access continuity broken when outer
loop j is incremented

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction commit due to
L2 cache access for a
floating-point load instruction

No instruction commit due
to memory access for a
floating-point load
instruction

Before

Access is not sequential because the number of iterations of the innermost loop is small and the array
size is larger than the number of iterations. The cost of prefetch startup is quite apparent in normal
prefetch. Consequently, the "No instruction commit due to access for a floating-point load instruction"
event occurs many times.

96

41 void sub(double scalar, int isize){

42 int i, j;

43

44 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, a

<<< PREFETCH(SOFT) : 48

<<< SPECIFIED : 48

<<< a: 16, c: 16, b: 16

<<< Loop-information End >>>

45 p for (j = 0; j < n; j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.62, ITR: 56, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a, b

<<< PREFETCH(SOFT) : 48

<<< SPECIFIED : 48

<<< b: 16, c: 16, a: 16

<<< Loop-information End >>>

46 p v for(i = 0; i < isize; i++){

47 p v __builtin_prefetch(&a[j+1][0], 1, 3);

48 p v __builtin_prefetch(&b[j+1][0], 0, 3);

49 p v __builtin_prefetch(&c[j+1][0], 0, 3);

50 p v __builtin_prefetch(&a[j+1][32], 1, 3);

51 p v __builtin_prefetch(&b[j+1][32], 0, 3);

52 p v __builtin_prefetch(&c[j+1][32], 0, 3);

53 p v __builtin_prefetch(&a[j+1][64], 1, 3);

54 p v __builtin_prefetch(&b[j+1][64], 0, 3);

55 p v __builtin_prefetch(&c[j+1][64], 0, 3);

56 p v __builtin_prefetch(&a[j+1][96], 1, 3);

57 p v __builtin_prefetch(&b[j+1][96], 0, 3);

58 p v __builtin_prefetch(&c[j+1][96], 0, 3);

59 p v a[j][i] = b[j][i] + scalar * c[j][i];

60 p v }

61 p }

62 }

Source After Improvement

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

改善前 改善後

[Seconds]

Using Built-in Prefetch to Access Non-Sequential Data (1)
(Optimization Control Line Tuning)

Cache
Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 2.18E+09 2.57E+08 0.12 73.77% 26.27% -0.04%

After 1.16E+09 1.93E+08 0.17 14.76% 1.20% 84.04%

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

C/C++

Use the built-in prefetch functions to generate prefetch for arrays in the outer loops to hide the prefetch
startup cost. The result is improvement of the "No instruction commit due to L2 cache access for an
integer load instruction" event.

L1D miss dm rate reduced

Prefetch in array at 1
iteration ahead in
outer loop

Flow direction of inner loop

F
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction
commit due to L2
cache access for
an integer load
instruction

No instruction
commit due to
memory access for
a floating-point
load instruction

Effect of
2.28 times

Before After

97

41 void sub(double scalar, int isize){
42 int i, j;
43
44 #pragma omp parallel for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< PREFETCH(SOFT) : 12
<<< SPECIFIED : 12
<<< a: 4, b: 4, c: 4
<<< Loop-information End >>>

45 p for (j = 0; j < n; j++){
46 p __builtin_prefetch(&a[j+1][0], 1, 3);
47 p __builtin_prefetch(&a[j+1][32], 1, 3);
48 p __builtin_prefetch(&a[j+1][64], 1, 3);
49 p __builtin_prefetch(&a[j+1][96], 1, 3);
50 p __builtin_prefetch(&b[j+1][0], 0, 3);
51 p __builtin_prefetch(&b[j+1][32], 0, 3);
52 p __builtin_prefetch(&b[j+1][64], 0, 3);
53 p __builtin_prefetch(&b[j+1][96], 0, 3);
54 p __builtin_prefetch(&c[j+1][0], 0, 3);
55 p __builtin_prefetch(&c[j+1][32], 0, 3);
56 p __builtin_prefetch(&c[j+1][64], 0, 3);
57 p __builtin_prefetch(&c[j+1][96], 0, 3);

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 14
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

58 p 2v for (i = 0; i < isize; i++){
59 p 2v a[j][i] = b[j][i] + scalar * c[j][i];
60 p 2v }
61 p }
62 }

Source After Improvement

Cache
Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 2.18E+09 2.57E+08 0.12 73.77% 26.27% -0.04%

After 1.17E+09 1.94E+08 0.17 23.67% 1.43% 74.90%

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

改善前 改善後

[Seconds]

Using Built-in Prefetch to Access Non-Sequential Data (2)
[Recommended] (Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

C/C++

L1D miss dm rate reduced

Prefetch of entire array
at 1 iteration ahead in
outer loop

Flow direction of inner loopF
lo

w
 d

ire
c
tio

n
 o

f o
u

te
r lo

o
p

i=1 i=isize i=1,200

j=1

j=1,200

Prefetch
Cache hit
Cache miss
Area not accessed by code

No instruction
commit due to L2
cache access for a
floating-point load
instruction

No instruction
commit due to
memory access for
a floating-point load
instruction

Effect of
2.83 times

You can reduce the number of instructions of the innermost loop and raise performance by specifying the
built-in prefetch functions for an array in an outer loop.

Before After

98

• High-Speed Store (ZFILL)

Data Access Wait Time (Reduced
Access Amount)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED99

• What is High-Speed Store (ZFILL)?

• ZFILL (Before Improvement)

• Effect of ZFILL (Optimization Control Line Tuning)

High-Speed Store (ZFILL)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED100

What is High-Speed Store (ZFILL)?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ What is high-speed store (ZFILL)?

ZFILL is a function that secures a cache line (containing undefined values) for
writing in the cache. The function can reduce cache line read from memory to
improve the performance of a program whose bottleneck is memory throughput.

◼ Operating conditions

◼ The array to be stored has no
dependency across iterations.

◼ Arrays with definitions have no
references.

◼ Memory access is sequential.

t

Example:
DO I = 1, N

A(I) = B(I) + C(I)
END DO

Register

Cache

Memory

Read B Read C

Read A on
cache line

Write A

ZFILL not used

Total number of memory accesses: 4

t

Read B

Register

Cache

Memory

Read C

Secure
cache line

for A
(ZFILL)

Write A

ZFILL used

Total number of memory accesses: 3

Eliminated reading
of A from memory

Read C
on cache

line

Read B on
cache line

Write back
A on cache

line

Write
back A on
cache line

Read C on
cache line

Read B on
cache line

101

What is ZFILL? (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Note

⚫ The ZFILL instruction is output for the array data stored in a loop. However, it is not output for
arrays with references in the same loop, arrays that are not sequentially accessed, and arrays
stored under IF statements.

⚫ No prefetch instruction to the secondary cache is output when the ZFILL instruction is output.

⚫ To definitely store the loop together with the cache line secured by the ZFILL instruction, the loop
is transformed. Consequently, the following optimizations cannot be applied. This may degrade
execution performance.

✓ Loop unrolling

✓ Loop striping

⚫ Execution performance may also degrade in the following cases:

✓ Loop with a small number of iterations

✓ Data is in the primary or secondary cache

Specify the following optimization control lines.

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

ZFILL[(m1)]

Specifies that a ZFILL instruction be generated. m1 is a
decimal number (1 to 100) representing the number of
cache lines.

No Yes No Yes

NOZFILL Specifies that no ZFILL instruction be generated. No Yes No Yes

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line
Specifiable?

global procedure loop statement

zfill[(m1)]

Specifies that a ZFILL instruction be generated. m1 is a
decimal number (1 to 100) representing the number of
cache lines.

No No Yes No

nozfill Specifies that no ZFILL instruction be generated. No No Yes No

102

What is ZFILL? (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-K{ zfill[=N] | nozfill }

1 ≦ N ≦ 100

Specifies that an instruction (ZFILL instruction) be
generated for the array data written only in a loop in
order to secure a cache line for writing in the cache
rather than loading data from memory.
Specify N to target the data located N cache lines
ahead of the ZFILL instruction.
You can specify N in a range from 1 to 100. If N is not
specified, the compiler automatically decides a value.
This option is valid when -O2 or higher option is
enabled. The default is -Knozfill.

You can obtain an effect equivalent to that of optimization control
line tuning by specifying the following compiler option.

◼Use example (for source before improvement)

$ frtpx -Kfast,parallel sample.f90 -Kzfill

$ fccpx -Kfast,parallel sample.f90 –Kzfill

103

ZFILL (Before Improvement)

Memory throughput is a bottleneck because the memory access load of
the program is high. Consequently, the data access wait time is long.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

38 real*8 a(n),b(n),c(n),d
39

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 1000
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 144,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

40 1 pp 2v do i=1,n
41 1 p 2v a(i) = b(i) + c(i)*d
42 1 p 2v enddo

Source Before Improvement

Cache

Memory
Throughput (GB/s)

Before 211.59
Memory throughput is bottleneck

Before

[Seconds]

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.90E+08 9.39E+07 0.24 27.78% 72.21% 0.01% 9.38E+07 0.24 12.72% 88.66% 0.00%

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

No instruction
commit
because
memory cache
is busy

No instruction
commit due to
memory access

Fortran

104

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.90E+08 9.39E+07 0.24 27.78% 72.21% 0.01% 9.38E+07 0.24 12.72% 88.66% 0.00%

After 0.00 4.38E+08 9.39E+07 0.21 16.80% 49.98% 33.22% 6.25E+07 0.14 1.15% 98.98% 0.00%

Effect of ZFILL (Optimization Control Line
Tuning)

Specify the ZFILL specifier to eliminate cache line reading from memory according to a store
instruction and to reduce the number of L2 misses. This results in an improved data access
wait time.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

38 real*8 a(n),b(n),c(n),d
39 !ocl zfill

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 1000
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.55, ITR: 128,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b
<<< PREFETCH(SOFT) : 2
<<< SEQUENTIAL : 2
<<< a: 2
<<< ZFILL :
<<< a
<<< Loop-information End >>>

40 1 pp v do i=1,n
41 1 p v a(i) = b(i) + c(i)*d
42 1 p v enddo

Source After Improvement (Optimization Control Line Tuning)

Number of L2 misses reduced by 1/3, though
memory throughput is still bottleneck even
after improvement

Before After

Effect of
1.32 times

[Seconds]

Memory
Throughput (GB/s)

Before 211.59

After 209.96

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

No
instruction
commit
because
memory
cache is
busy

Memory
access wait

Fortran

105

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

2.0E-01

改善前

[Seconds]

ZFILL (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

38 void sub(double * restrict a, double * restrict b,
double * restrict c, double d, int n){

39 int i;
40
41 #pragma omp parallel for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 144,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

42 p 2v for (i = 0; i < n; i++){
43 p 2v a[i] = b[i] + c[i]*d;
44 p 2v }
45 }

Source Before Improvement

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.95E+08 9.40E+07 0.24 41.24% 58.75% 0.01% 9.39E+07 0.24 19.15% 83.83% 0.00%

Statistics
Memory throughput

(GB/s)

Before 175.68

C/C++

The data access wait time is long because the memory access load of the program is high.

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

No instruction
commit because
memory cache is
busy

Memory
access wait

Before

106

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.95E+08 9.40E+07 0.24 41.24% 58.75% 0.01% 9.39E+07 0.24 19.15% 83.83% 0.00%

After 0.00 4.31E+08 9.40E+07 0.22 30.94% 35.79% 33.27% 6.26E+07 0.15 4.59% 95.79% 0.00%

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

1.6E-01

1.8E-01

2.0E-01

改善前 改善後

[Seconds]

Effect of ZFILL
(Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

37 void sub(double * restrict a, double * restrict b,
double * restrict c, double d, int n){

38 int i;
39
40 #pragma omp parallel for
41 #pragma loop zfill

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.55, ITR: 128,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< PREFETCH(SOFT) : 2
<<< SEQUENTIAL : 2
<<< (unknown): 2
<<< ZFILL :
<<< (unknown)
<<< Loop-information End >>>

42 p v for (i = 0; i < n; i++){
43 p v a[i] = b[i] + c[i]*d;
44 p v }
45 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
1.29 times

Statistics
Memory throughput

(GB/s)

Before 175.68

After 170.27

C/C++

Specify the ZFILL specifier to eliminate cache line reading from memory according to a store instruction and
to reduce the number of L2 misses. This results in an improved data access wait time.

Number of L2 misses reduced by 1/3

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

No
instruction
commit
because
memory
cache is
busy

Memory
access wait

Before After

107

• What is Cache Thrashing?

• Padding That Increases Array Elements in the First Dimension

• Padding That Increases Array Elements in the Second Dimension

• Padding With Dummy Arrays

• Padding With Dummy Arrays (Arrays of Different Sizes)

• Array Merge (Improved Thrashing)

• Loop Fission (Improved Thrashing)

• Padding Using the Large Page Environment Variable

Data Access Wait Time (Improved
Thrashing)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED108

What is Cache Thrashing?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache thrashing is a phenomenon where only data with specific indexes
(location information) in the cache is frequently overwritten.
This phenomenon occurs easily when the array size is a power of 2 (multiple
of 16 KB), since the size per way is 16 KB, and when the number of streams in
a loop is large.

Note: A stream is a series of data referenced and defined in association with loop iterations.

In this example, 8 pieces of data
are assigned to the same index
because a(1,1,1) to a(1,1,8) are
32 x 16 KB apart from each other
(on a 16 KB boundary). Therefore,
the 1st and 2nd pieces of data are
overwritten by the 5th and 6th
pieces of data.

Execution order (1) to (7)

(L1D cache)

(Data location in memory)

a(1, 1, 1)
・ ・ ・

a (32, 1, 1)

・ ・ ・
a(1, 1, 2)

・ ・ ・
a (32, 1, 2)

・ ・ ・

・ ・ ・
a(1, 1, 4)

・ ・ ・
a (32, 1, 4)

・ ・ ・

Execution
order

(1)

(2)

WAY 1

64

entries

WAY 4

Store in cache

Store in cache (conflict)
◼ L1D cache thrashing guideline

(for 512-bit SVE access instructions and sequential access)

L1D miss rate
(/Load-store instruction)

0.25 or higher

Single precision: 64/256

Double precision: 64/256

WAY 2 WAY 3

a(1, 1, 5)

・ ・ ・
a (32, 1, 5)

・ ・ ・
a(1, 1, 6)

・ ・ ・
a (32, 1, 6

・ ・ ・
a(1, 1, 7)

・ ・ ・
a (32, 1, 7

・ ・ ・
a(1, 1, 8)

・ ・ ・
a (32, 1, 8)

・ ・ ・

a(1, 1, 3)

・ ・ ・
a (32, 1, 3)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

(3)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

(4)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

(5)

256 x 256 x 8 B

=32×16 KB

Distant access

(6)
256 x 256 x 8 B

= 32 x 16 KB

Distant access

(7)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

subroutine sub(a, n, m) *n=256, m=256

real*8 a(n,m,8)

do j= 1 , m

do i= 1 , n

a(i,j,8)=a(i,j,1)+a(i,j,2)+a(i,j,3)+a(i,j,4)+

a(i,j,5)+a(i,j,6)+a(i,j,7)

enddo

enddo

end

Example of Source

109

• What is Padding?

• Padding That Increases Array Elements in the First Dimension

• Padding That Increases Array Elements in the Second Dimension

• Padding With Dummy Arrays

• Padding With Dummy Arrays (Arrays of Different Sizes)

Padding

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED110

parameter(n=256,m=256)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

do i = 1 , n

a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) +

a(i, j, 4) + a(i, j, 5) + a(i, j, 6) +

a(i, j, 7)

enddo

enddo

Example of Source

parameter(n=257,m=256)

real*8 a(n, m, 8)

common /com/a

do j = 1 , m

do i = 1 , n

a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) +

a(i, j, 4) + a(i, j, 5) + a(i, j, 6) +

a(i, j, 7)

enddo

enddo

Example of Source

What is Padding?
Padding is a means to insert a dummy area between arrays or into an array.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Use conditions
Multiple streams of the same array exist
or
multiple arrays exist.

◼ Purpose
To create a temporary area to shift addresses

◼ Adverse effect
The amount of padding must change every time that
the scale of the problem changes.

Store in cache Store in cache (conflict) Memory access sequence

(L1D cache)

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 1, 1)

a(1, 1, 2)

a(2, 1, 2)

・・・

(Data location in memory)

a(257, 256, 1)

Example where multiple streams of the same array exist

L1D cache
thrashing does
not occur since
storage
location has
shifted ・・・

a(257, 1, 1)

a(256, 256, 1)L1D cache
thrashing

occurs

a(1, 1, 1)

a(2, 1, 1)

・・・

a(256, 256, 1)

a(1, 1, 2)

・・・

a(256, 256, 2)

(L1D cache)

(Data location in memory)

a(1, 1, 3)

・・・

a(256, 256, 3)

a(1, 1, 4)

・・・

a(256, 256, 4)

a(1, 1, 5)

・・・

256 x 256 x 8 B

= 32 x 16 KB

Distant access

a(1, 1, 6)

・・・

a(1, 1, 7)

・・・

a(1, 1, 8)

256 x 256x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

a(257, 256, 2)

a(256, 256, 2)

a(1, 1, 3)

a(2, 1, 3)

・・・

Padding shifts
storage location in
cache

a(256, 1, 2)

・・・

a(257, 1, 2)

◼ Before improvement

◼ After improvement

111

• Padding That Increases Array Elements in the First Dimension (Before
Improvement)

• Padding That Increases Array Elements in the First Dimension (After
Improvement)

• Effect of Padding That Increases Array Elements in the First Dimension
(Compiler Option Tuning)

Padding That Increases Array
Elements in the First Dimension

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED112

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.08E+09 1.30E+09 0.42 67.73% 32.27% 0.00% 1.50E+04 0.00 37.70% 72.22% 0.00%

Padding That Increases Array Elements in
the First Dimension (Before Improvement)

Each stream of Array a is on a 16 KB boundary. L1D cache thrashing occurs. Consequently,
the "No instruction commit due to L2 cache access for a floating-point load instruction"
event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 parameter(n=256,m=256)

43 real*8 a(n, m, 8)

44 common /com/a

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104,

MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

45 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

46 2 p do i = 1 , n

47 2 p v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + &

48 2 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

49 2 p v enddo

50 1 p enddo

Source Before Improvement

Cache

Streams of
same array

Array size
256 x 256 x 8 B =

32 x 16 KB
(16 KB boundary)

Before

[Seconds]

No
instruction
commit due
to L2 cache
access for a
floating-point
load
instruction

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Fortran

113

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.08E+09 1.30E+09 0.42 67.73% 32.27% 0.00% 1.50E+04 0.00 37.70% 72.22% 0.00%

After 0.00 2.62E+09 4.58E+08 0.17 8.20% 91.80% 0.00% 9.69E+03 0.00 46.19% 58.89% 0.00%

Padding That Increases Array Elements in
the First Dimension (After Improvement)

Add padding (+1) to the first dimension of each stream of Array a to prevent L1D cache thrashing. The
result is improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 parameter(n=257,m=256)

43 real*8 a(n, m, 8)

44 common /com/a

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104,

MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

45 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

46 2 p do i = 1 , n

47 2 p v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + &

48 2 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

49 2 p v enddo

50 1 p enddo

Source After Improvement

1 added to n to shift data
from 16 KB boundary

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

Before

[Seconds]

After

Effect of
2.48 times

L1D misses reduced

◼ Note
An overly large padding count may have a negative impact
on data continuity, disabling hardware prefetch.

Fortran

Cache

114

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.08E+09 1.33E+09 0.43 68.32% 31.68% 0.00% 2.65E+04 0.00 49.48% 60.25% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前

[Seconds]

Padding That Increases Array Elements in the Final
Dimension (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 void sub(void){

31 int i, j;

32

33 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

34 p v for (j = 0; j < m; j++){

35 p v for (i = 0; i < n; i++){

36 p v a[7][j][i] = a[0][j][i] + a[1][j][i] + a[2][j][i] + a[3][j][i] +

a[4][j][i] + a[5][j][i] + a[6][j][i];

37 p v }

38 p v }

39 }

Source Before Improvement

Array declaration
double a[8][256][256];

Array a size
256×256×8B=
32×16 KB(16 KB boundary)

C/C++

Each stream of Array a is on a 16 KB boundary. L1D cache thrashing occurs. Consequently,
the "No instruction commit due to L2 cache access for a floating-point load instruction"
event occurs many times.

Streams of
same array

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Before

115

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.08E+09 1.33E+09 0.43 68.32% 31.68% 0.00% 2.65E+04 0.00 49.48% 60.25% 0.00%

After 0.00 2.67E+09 4.60E+08 0.17 8.50% 91.50% 0.00% 2.26E+04 0.00 22.14% 83.91% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前 改善後

[Seconds]

Padding That Increases Array Elements in the Final
Dimension (After Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 void sub(void){

31 int i, j;

32

33 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

34 p v for (j = 0; j < m; j++){

35 p v for (i = 0; i < n; i++){

36 p v a[7][j][i] = a[0][j][i] + a[1][j][i] + a[2][j][i] +

a[3][j][i] + a[4][j][i] + a[5][j][i] + a[6][j][i];

37 p v }

38 p v }

39 }

Source After Improvement

Effect of
2.49 times

Array declaration
double a[8][256][257];

Shift from the 16 KB
boundary by increasing
(+1) the elements of the
final dimension of array a.

C/C++

Add padding (+1) to the final dimension of each stream of Array a to prevent L1D cache thrashing. The
result is improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

L1D misses reduced

◼ Note
An overly large padding count may have a negative impact
on data continuity, disabling hardware prefetch.

Before After

116

Effect of Padding That Increases Array Elements in
the First Dimension (Compiler Option Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-Karraypad_const[=N]

(1≦N≦2,147,483,647)

Pads N elements in arrays whose 1st dimension has an explicit
upper/lower bound that has a constant upper/lower bound
expression. If N is not specified, the compiler decides the
amount of padding for each target array. The purpose of
padding is to create a gap in an array.

-Karraypad_expr=N

(1≦N≦2,147,483,647)

Pads N elements in arrays whose 1st dimension has an explicit
upper/lower bound regardless of whether the upper/lower
bound expression is a constant expression.

You can obtain an effect equivalent to that of source tuning by
specifying the following compiler options (Fortran-specific).

◼Use example (for source before improvement)

$ frtpx -Kfast,parallel sample.f90 -Karraypad_expr=1

◼ Note
⚫ These options must be specified for all source code using a target array.
⚫ The effect of padding varies depending on the program.
⚫ If not used correctly, computational results may differ.
⚫ The -Karraypad_const [=N] and -Karray_expr=N options cannot be

specified at the same time.

Padding is applied to the automatically selected target arrays.

Fortran

117

• Case of No Improvement by Padding That Increases Array Elements in the First
Dimension

• Padding That Increases Array Elements in the Second Dimension

• Padding That Increases Array Elements in the Second Dimension (Before
Improvement)

• Effect of Padding That Increases Array Elements in the Second Dimension
(Source Tuning)

Padding That Increases Array
Elements in the Second
Dimension

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED118

Case of No Improvement by Padding That Increases
Array Elements in the First Dimension

Depending on the array size, adding padding (+1) to array elements in the first dimension
may not result in improvement.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

parameter(k=32,l=2048)
real*8 a(k, l, 8)
common /com/a
do j = 1 , l
do i = 1 , k

a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + &
a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

enddo
enddo
end

Source Before Improvement

a(1,1,1) ・・・・・・・・・・・・・・・・・・・・・・・・・ a(1,2048,1)

a(32,1,1)・・・・・・・・・・・・・・・・・・・・・・・・・a(32,2048,1)

a(i,j,1) area

a(i,j,2) area

a(1,1,2)

j-axis direction

i-axis
direction

32

2048

a(1,1,1) ・・・・・・・・・・・・・・・・・・・・・・・・・ a(1,2048,1)

a(32,1,1) ・・・・・・・・・・・・・・・・・・・・・・・・・a(32,2048,1)

a(i,j,1) area

a(i,j,2) area

a(1,1,2)

j-axis direction

32

2048

Padding+1

Address = 0 2048ｘ8B=16KB

Address
= 32ｘ16KB

(2048ｘ8 B)

Address = 0 2048ｘ8B=16KB

Address
= 32ｘ16KB+16KB
(2048ｘ8 B)

Thrashing occurs since Array a is still on 16 KB boundary

i-axis
direction

L1I miss
rate

(/Effective
instruction) L1D miss

L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

Before 0.00 1.04E+07 0.39 68.52

After 0.00 1.32E+07 0.52 75.20

Padding

Before padding After padding

[Seconds]

Cannot prevent thrashing

Address continuous
in i-axis direction

Address continuous
in i-axis direction

119

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)

・
・
・

a(32,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(32,2048,1)

a(1,1,2)

a(i,j,1) area

a(i,j,2) area

Padding

a(1,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(1,2048,1)
・
・
・

a(32,1,1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ a(32,2048,1)
a(1,1,2)

a(i,j,1) area

a(i,j,2) area

33 parameter(k=32,l=2048)

34 real*8 a(k, l, 8)

35 common /com/a

36 do j = 1 , l

37 do i = 1 , k

38 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

39 enddo

40 enddo

41 end

Source Before Improvement

33 parameter(k=32,l=2048)

34 real*8 a(k, l+1, 8)

35 common /com/a

36 do j = 1 , l

37 do i = 1 , k

38 a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + a(i, j, 4) +

a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

39 enddo

40 enddo

41 end

Source After Improvement

Padding That Increases Array Elements in the Second
Dimension
L1D cache thrashing is prevented by adding padding (+1) to the second
dimension to destroy 16 KB boundaries.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Address
= 32 x 16 KB + 0.256 KB

Padding to 2nd dimension of Array a

Thrashing prevented because 16 KB boundary destroyed

I
-a

x
is

 d
ire

c
tio

n

32

J-axis direction
2048

+1

I
-a

x
is

 d
ire

c
tio

n

2048 x 8 B
= 16 KB

Address
= 64 x 16 KB

(2048 x 8 B)

32

Thrashing occurs due to 16 KB boundary

32 x 8 B
= 0.5 KB

J-axis direction
2048

Address
= 0

Address
= 0

Address continuous
in i-axis direction

Address continuous
in i-axis direction

120

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.88E+08 1.63E+08 0.42 67.76% 32.22% 0.01% 1.01E+04 0.00 71.17% 39.65% 0.00%

Padding That Increases Array Elements in the
Second Dimension (Before Improvement)

Each stream of Array a is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

38 parameter(n=32,m=2048)

39 real*8 a(n, m, 8)

40 common /com/a

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104,

MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

41 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

42 2 p do i = 1 , n

43 2 p v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + &

44 2 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

45 2 p v enddo

46 1 p enddo

Source Before Improvement

Streams of
same array

Array size
32 x 2048 x 8 B =

32 x 16 KB
(16 KB boundary)

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Before

[Seconds]

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Fortran

121

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

L1D miss hardware
prefetch rate (%)

(/L1D miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before 0.00 3.88E+08 1.63E+08 0.42 67.76% 32.22% 0.01% 1.01E+04 0.00 71.17% 39.65% 0.00%

After 0.00 3.26E+08 1.07E+08 0.33 51.02% 48.98% 0.00% 9.13E+03 0.00 72.77% 33.09% 0.00%

Effect of Padding That Increases Array Elements
in the Second Dimension (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Add padding (+1) to the second dimension of each stream of Array a to prevent L1D cache
thrashing. The result is improvement of the "No instruction commit due to L2 cache access
for a floating-point load instruction" event.

39 parameter(n=32,m=2048)

40 real*8 a(n, m+1, 8)

41 common /com/a

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104,

MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

42 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

43 2 p do i = 1 , n

44 2 p v a(i, j, 8) = a(i, j, 1) + a(i, j, 2) + a(i, j, 3) + &

45 2 a(i, j, 4) + a(i, j, 5) + a(i, j, 6) + a(i, j, 7)

46 2 p v enddo

47 1 p enddo

Source After Improvement

1 added to m to shift data
from 16 KB boundary

Before

[Seconds]

After

Effect of
1.65 times

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

L1D misses reduced

Fortran

122

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.92E+08 1.66E+08 0.42 68.39% 31.61% 0.00% 2.04E+04 0.00 39.77% 72.33% 0.00%

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

8.0E-02

9.0E-02

1.0E-01

改善前

[Seconds]

Padding That Increases Array Elements in the Second
Dimension (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 void sub(void){

31 int i, j;

32

33 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

34 p v for (j = 0; j < m; j++){

35 p v for (i = 0; i < n; i++){

36 p v a[7][j][i] = a[0][j][i] + a[1][j][i] + a[2][j][i]

+ a[3][j][i] + a[4][j][i] + a[5][j][i] + a[6][j][i];

37 p v }

38 p v }

39 }

Source Before Improvement

Array declaration
double a[8][2048][32];

Array a size
32×2048×8B=
32×16 KB(16 KB boundary)

C/C++

Streams of
same array

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Each stream of Array a is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No
instruction commit due to L2 cache access for a floating-point load instruction" event occurs many times.

Before

123

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.92E+08 1.66E+08 0.42 68.39% 31.61% 0.00% 2.04E+04 0.00 39.77% 72.33% 0.00%

After 0.00 3.44E+08 1.07E+08 0.31 51.12% 48.88% 0.00% 2.21E+04 0.00 19.24% 84.94% 0.00%

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

7.0E-02

8.0E-02

9.0E-02

1.0E-01

改善前 改善後

[Seconds]

Effect of Padding That Increases Array Elements in the
Second Dimension (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 void sub(void){

31 int i, j;

32

33 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< a

<<< Loop-information End >>>

34 p v for (j = 0; j < m; j++){

35 p v for (i = 0; i < n; i++){

36 p v a[7][j][i] = a[0][j][i] + a[1][j][i] + a[2][j][i] + a[3][j][i]

+ a[4][j][i] + a[5][j][i] + a[6][j][i];

37 p v }

38 p v }

39 }

Source After Improvement

Effect of
1.63 times

Array declaration
double a[8][2049][32];

Shift from the 16 KB
boundary by increasing
(+1) the elements of the
second dimension of
array a.

C/C++

L1D misses reduced

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

Add padding (+1) to the second dimension of each stream of Array a to prevent L1D cache
thrashing. The result is improvement of the "No instruction commit due to L2 cache access
for a floating-point load instruction" event.

Before After

124

• Padding With Dummy Arrays (Before Improvement)

• Padding With Dummy Arrays (Source Tuning)

• Effect of Padding With Dummy Arrays (Compiler Option Tuning)

Padding With Dummy Arrays

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED125

Padding With Dummy Arrays
(Before Improvement)

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

1 parameter(n=256,m=256)

2 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)

3 character (1),parameter :: null0=z'00'

4 common /test/a,b,c,d,e,f,g,h

:

27 1 s s call sub()

:

34 subroutine sub()

35 parameter(n=256,m=256)

36 real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),f(n,m),g(n,m),h(n,m)

37 common /test/a,b,c,d,e,f,g,h

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< Loop-information End >>>

38 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

39 2 p do i = 1 , n

40 2 p v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i ,j) + g(i ,j) + h(i ,j)

41 2 p v enddo

42 1 p enddo

Source After Improvement

Cache

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Array size
256 x 256 x 8 B =

32 x 16 KB
(16 KB boundary)

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

L1D miss hardware
prefetch rate (%)

(/L1D miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before 0.00 3.05E+09 1.30E+09 0.43 67.76% 32.24% 0.00% 8.35E+03 0.00 86.64% 19.76% 0.00%

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

No instruction commit
waiting for an instruction to
be fetched

Before

[Seconds]

Fortran

126

Padding With Dummy Arrays (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Shift arrays from 16 KB boundaries by adding dummy arrays between them to prevent L1D
cache thrashing. The result is improvement of the "No instruction commit due to L2 cache
access for a floating-point load instruction" event.

Cache

1 parameter(n=256,m=256)

2 real*8 a(n, m),dummy1(64),b(n,m),dummy2(64),&
c(n,m),dummy3(64),d(n,m),dummy4(64)

3 real*8 e(n, m),dummy5(64),f(n,m),dummy6(64),&
g(n,m),dummy7(64),h(n,m)

4 character (1),parameter :: null0=z'00'

:

28 1 s s call sub()

:

35 subroutine sub()

:

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7)

<<< Loop-information End >>>

40 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

41 2 p do i = 1 , n

42 2 p v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i,j) + g(i,j) + h(i,j)

43 2 p v enddo

44 1 p enddo

Source After Improvement

Arrays shifted from
16 KB boundaries by
adding dummy arrays

between them

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

Before 3.05E+09 1.30E+09 0.43 67.76%

After 2.79E+09 6.06E+08 0.22 31.03%

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

No instruction commit
waiting for an
instruction
to be fetched

L1D miss and L1D miss dm rates improved

Effect of
1.97 times

Before After

[Seconds]

Fortran

127

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.12E+09 1.33E+09 0.43 68.30% 31.70% 0.00% 2.34E+04 0.00 46.43% 66.98% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前

[Seconds]

Padding With Dummy Arrays
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

35 void sub(void){

36 int i, j;

37

38 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

39 p v for (j = 0; j < m; j++){

40 p v for (i = 0; i < n; i++){

41 p v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

42 p v }

43 p v }

44 }

Source After Improvement

Array declaration
double a[256][256],
b[256][256], c[256][256],
d[256][256], e[256][256],
f[256][256], g[256][256],
h[256][256];

Array size 256×256×8B=
32×16 KB(16 KB boundary)

C/C++

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

No instruction commit
waiting for an
instruction
to be fetched

Before

128

Cache
Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

Before 3.12E+09 1.33E+09 0.43 68.30%

After 2.67E+09 4.56E+08 0.17 8.37%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前 改善後

[Seconds]

Padding With Dummy Arrays (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

36 void sub(void){

37 int i, j;

38

39 #pragma omp parallel for collapse(2)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

40 p v for (j = 0; j < m; j++){

41 p v for (i = 0; i < n; i++){

42 p v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

43 p v }

44 p v }

Source After Improvement

Effect of
2.47 times

Shift from 16 KB boundary by
adding a dummy array declaration
of double type with 64 elements
(e.g., dummy[64]) between each
of arrays a, b, c, d, e, f, g, h.

Array declaration
double a[256][256], dummy1[64],
b[256][256], dummy2[64],
c[256][256], dummy3[64],
d[256][256], dummy4[64],
e[256][256], dummy5[64],
f[256][256], dummy6[64],
g[256][256], dummy7[64],
h[256][256];

C/C++

Shift arrays from 16 KB boundaries by adding dummy arrays between them to prevent L1D
cache thrashing. The result is improvement of the "No instruction commit due to L2 cache
access for a floating-point load instruction" event.

L1D miss and L1D miss dm rates improved

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

No instruction commit
waiting for an
instruction
to be fetched

Before After

129

Effect of Padding With Dummy Arrays
(Compiler Option Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

You can obtain an effect equivalent to that of source tuning by
specifying the following compiler option (Fortran-specific).

Compiler Option Functional Description

-Kcommonpad[=N]

(4≦N≦2,147,483,644)

Specifies that a gap be placed between areas of
variables in the common block to improve data cache
use efficiency.

If N is not specified, the compiler automatically
decides the best value.

◼ Automatically selecting target arrays -> Applying padding

◼ Note

⚫ To compile separately when you specify the compiler option -Kcommonpad for
a file containing a common block, you need to also specify it for other files
containing the common block of the same name.

⚫ To compile with the compiler option -Kcommonpad=N specified for multiple
files, the value of N must be the same.

⚫ If you use the same common block name but change its elements when
specifying the compiler option -Kcommonpad, the program may not run
properly.

◼Use example (for source before improvement)

$ frtpx -Kfast,parallel sample.f90 -Kcommonpad=512

Fortran

130

• Conflict Between Arrays of Different Sizes

• Padding With Dummy Arrays (Arrays of Different Sizes: Before Improvement)

• Padding With Dummy Arrays (Arrays of Different Sizes: Source Tuning)

Padding With Dummy Arrays
(Arrays of Different Sizes)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED131

In general, cache thrashing does not regularly occur with arrays of different sizes.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Conflict Between Arrays of Different Sizes (1/2)

Counting up in second dimension:

address of Array a(1,2) is address of a(1,1) + 256 x 8 B

address of Array b(1,2) is address of b(1,1) + 256 x 8 B

: : :

address of Array h(1,2) is address of h(1,1) + 2560 x 8 B

If address of Array a(1,1) is 0, then:

address of Array a(1,1) is 0 (16 KB x 0)

address of Array b(1,1) is 256 x 256 x 8 (16 KB x 32)

: : :

address of Array h(1,1) is 256 x 256 x 8 x 7 (16 KB x 224)

Cache thrashing occurs since addresses
are assigned to 16 KB boundaries.

+18 KB

Arrays a, b, c, d, e, f, and g remain on 16 KB
boundaries, but the address of Array h is not

on a 16 KB boundary.

In general, cache thrashing does not regularly
occur with arrays of different sizes.

256 x 8 B + 18 KB

j-axis direction

a(i,j) b(i,j) h(i,j)

i-a
x
is d

ire
c
tio

n

1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256
2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256
3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256
： ： ： ： ： ： ‥ ： ： ： ： ：

256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256

257,1 257,2 ‥ 257,256

： ： ： ：
2560,1 2560,2 ‥ 2560,256

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

parameter(n=256,m=256)

parameter(k=2560,l=256)

real*8 a(n,m), b(n,m), c(n,m),

d(n,m), e(n,m), f(n,m),

g(n,m), h(k,l)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

do i = 1 , n

a(i, j) = b(i, j) + c(i, j) + d(i, j) +

e(i, j) + f(i, j) + g(i, j) +

h(i, j)

enddo

enddo

Example of Source

132

Even arrays of different sizes may remain on 16 KB boundaries, depending on the array size.
In that case, cache thrashing regularly occurs.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Conflict Between Arrays of Different Sizes (2/2)

parameter(n=256,m=256)

parameter(k=2304,l=256)

real*8 a(n,m), b(n,m), c(n,m),

d(n,m), e(n,m), f(n,m),

g(n,m), h(k,l)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

do i = 1 , n

a(i, j) = b(i, j) + c(i, j) + d(i, j) +

e(i, j) + f(i, j) + g(i, j) +

h(i, j)

enddo

enddo

Example of Source

Counting up in second dimension:

address of Array a(1,2) is address of a(1,1) + 256 x 8 B

address of Array b(1,2) is address of b(1,1) + 256 x 8 B

: : :

address of Array h(1,2) is address of h(1,1) + 2304 x 8 B

If address of Array a(1,1) is 0, then:

address of Array a(1,1) is 0 (16 KB x 0)

address of Array b(1,1) is 256 x 256 x 8 (16 KB x 32)

: : :

address of Array h(1,1) is 256 x 256 x 8 x 7 (16 KB x 224)

Cache thrashing occurs since addresses
are assigned to 16 KB boundaries.

Arrays a, b, c, d, e, f, g, and h all
remain on 16 KB boundaries.

Measures against thrashing are required
for arrays of all sizes, including Array h.

256 x 8 B + 16 KB

+16 KB

j-axis direction

a(i,j) b(i,j) h(i,j)

i-a
x
is d

ire
c
tio

n

1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256 1,1 1,2 ‥ 1,256
2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256 2,1 2,2 ‥ 2,256
3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256 3,1 3,2 ‥ 3,256
： ： ： ： ： ： ‥ ： ： ： ： ：

256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256 256,1 256,2 ‥ 256,256

257,1 257,2 ‥ 257,256

： ： ： ：
2304,1 2304,2 ‥ 2304,256

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥
‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥ ‥

133

52 integer k,l,n,m

53 parameter(n=256,m=256)

54 parameter(k=2304,l=256)

55

56 real*8 a(n,m), b(n,m), c(n,m), d(n,m), &

e(n,m), f(n,m), g(n,m), h(k,l)

57 common /test/a,b,c,d,e,f,g,h

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

58 1 pp do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.83, ITR: 112,

MVE: 13, POL: S)

<<< Loop-information End >>>

59 2 p v do i = 1 , n

60 2 p v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) +

f(i, j) + g(i, j) + h(i, j)

61 2 p v enddo

62 1 p enddo

Padding With Dummy Arrays (Arrays of
Different Sizes: Before Improvement)

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Source Before Improvement

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Interval between arrays remains
16 KB even after counting up

in second dimension

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.00E+09 1.39E+09 0.46 70.14% 29.86% 0.00% 3.34E+04 0.00 34.30% 77.94% 0.00%

[Seconds]

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

No instruction commit
waiting for an instruction
to be fetched

Before

Fortran

134

Padding With Dummy Arrays (Arrays of Different
Sizes: Source Tuning)

Shift arrays from 16 KB boundaries by adding dummy arrays them to prevent L1D cache thrashing. The
result is improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

52 integer k,l,n,m

53 parameter(n=256,m=256)

54 parameter(k=2304,l=256)

55

56 real*8 a(n,m),dummy1(64),b(n,m),dummy2(64), &

57 c(n,m),dummy3(64),d(n,m),dummy4(64), &

58 e(n,m),dummy5(64),f(n,m),dummy6(64), &

59 g(n,m),dummy7(64),h(k,l)

60 common /test/a,dummy1,b,dummy2,c,dummy3,d,dummy4,e,

dummy5,f,dummy6,g,dummy7,h

61

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

62 1 pp do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.83, ITR: 112, MVE: 13, POL: S)

<<< Loop-information End >>>

63 2 p v do i = 1 , n

64 2 p v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j) + f(i, j) + g(i, j) + h(i, j)

65 2 p v enddo

66 1 p enddo

Source After Improvement

Dummy arrays placed
between arrays

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.00E+09 1.39E+09 0.46 70.14% 29.86% 0.00% 3.34E+04 0.00 34.30% 77.94% 0.00%

After 0.00 2.57E+09 6.90E+08 0.27 38.70% 61.31% 0.00% 2.54E+04 0.00 29.53% 80.62% 0.00%

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

No instruction commit
waiting for an instruction
to be fetched

Effect of
1.97 times

Before After

[Seconds]

L1D miss and L1D miss dm rates improved

Fortran

135

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.62E+09 1.38E+09 0.38 71.21% 28.78% 0.01% 1.04E+05 0.00 91.27% 10.77% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前

[Seconds]

24 void sub(void){

25 int i, j;

26

27 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

28 p for (j = 0; j < m; j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 13, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

29 p v for (i = 0; i < n; i++){

30 p v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

31 p v }

32 p }

33 }

Padding With Dummy Arrays (Arrays of
Different Sizes: Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Source Before Improvement

Interval between arrays
remains 16 KB even after

counting up in second
dimension

Array declaration
double a[256][256],
b[256][256], c[256][256],
d[256][256], e[256][256],
f[256][256], g[256][256],
h[256][2304];

Array a size: 256×256×8B=
32×16 KB(16 KB boundary)

C/C++

No instruction
commit due
to L2 cache
access for a
floating-point
load
instruction

No instruction commit
waiting for an instruction
to be fetched

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Before

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

136

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.62E+09 1.38E+09 0.38 71.21% 28.78% 0.01% 1.04E+05 0.00 91.27% 10.77% 0.00%

After 0.00 2.69E+09 4.81E+08 0.18 17.67% 82.33% 0.00% 1.20E+05 0.00 54.33% 62.57% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

改善前 改善後

[Seconds]

Padding With Dummy Arrays (Arrays of
Different Sizes: Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

25 void sub(void){

26 int i, j;

27

28 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

29 p for (j = 0; j < m; j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 13, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

30 p v for (i = 0; i < n; i++){

31 p v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

32 p v }

33 p }

34 }

Source After Improvement

Effect of
2.53 times

Shift from 16 KB boundary
by adding a dummy array
declaration of double type
with 64 elements (e.g.,
dummy[64]) between each
of arrays a, b, c, d, e, f, g, h.

配列宣言
double a[256][256],
dummy1[64], b[256][256],
dummy2[64], c[256][256],
dummy3[64], d[256][256],
dummy4[64], e[256][256],
dummy5[64], f[256][256],
dummy6[64], g[256][256],
dummy7[64], h[256][2304];

C/C++

Before After

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

No instruction commit
waiting for an instruction
to be fetched

Shift arrays from 16 KB boundaries by adding dummy arrays them to prevent L1D cache thrashing. The
result is improvement of the "No instruction commit due to L2 cache access for a floating-point load
instruction" event.

L1D miss and L1D miss dm rates improved

137

• What is Array Merge?

• Array Merge (Improved Thrashing) (Before Improvement)

• Array Merge (Improved Thrashing) (Source Tuning)

• Array Merge (Compiler Option Tuning)

Array Merge (Improved
Thrashing)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED138

Example of Source

What is Array Merge?

Array merge is a tuning method that merges multiple arrays into one.

As shown in the following example, you can store data on the same
cache line by reducing the number of arrays.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

a(256, 256)

b(1, 1)

・・・

(L1D cache)

(Data location in memory)

c(1, 1)

・・・

d(1, 1)

・・・

L1D cache
thrashing occurs

abcd(1, 1, 1)

abcd(2, 1, 1)

・・・

abcd(1,256, 1)

(L1D cache)

(Data location in memory)

・・・

・・・

abcd(1, 2, 1)

abcd(4,256,256)Store in cache Store in cache (conflict) Memory access sequence

256 x 256x 8 B

= 32 x 16 KB

Distant access

a(1, 1)

・・・

f(1, 1)

・・・

g(1, 1)

・・・

h(1, 1)

・・・

h(256, 256)

e(1, 1)

・・・

a(2, 1)

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

256 x 256 x 8 B

= 32 x 16 KB

Distant access

・・・

abcd(1, 4, 1)

・・・

efgh(1, 1, 1)

abcd(1, 2, 1)

abcd(2,256, 1)

abcd(3,256, 1)

abcd(4,256, 1)

・・・

subroutine sub()

parameter(n=256,m=256)

real*8 a(n, m),b(n,m),c(n,m),d(n,m),e(n,m),

f(n,m),g(n,m),h(n,m)

common /test/a,b,c,d,e,f,g,h

do j = 1 , m

do i = 1 , n

a(i, j) = b(i,j)+c(i,j)+d(i,j)+ &

e(i,j)+f(i,j)+g(i,j)+h(i,j)

enddo

enddo

End

subroutine sub()

parameter(n=256,m=256)

real*8 abcd(n,4,m),efgh(n,4,m)

common /test/abcd,efgh

do j = 1 , m

do i = 1 , n

abcd(i,1,j)=abcd(i,2,j)+abcd(i,3,j)+ &

abcd(i,4,j)+ &

efgh(i,1,j)+ efgh(i,2,j)+ &

efgh(i,3,j)+ efgh(i,4,j)

enddo

enddo

Example of Source

◼ Before improvement ◼ After improvement

・・・

efgh(1, 4, 1)

・・・

Can use data effectively since all
8 pieces of data are on same
cache line

139

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.40E+10 1.33E+10 0.39 68.21% 31.79% 0.00% 1.12E+04 0.00 72.56% 37.92% 0.00%

Array Merge (Improved Thrashing)
(Before Improvement)

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 parameter(n=256,m=256)

41 real*8 a(n, m),b(n,m),c(n,m),d(n,m),&

e(n,m),f(n,m),g(n,m),h(n,m)

42 common /test/a,b,c,d,e,f,g,h

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 433

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104,

MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

43 1 pp v do j = 1 , m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

44 2 p do i = 1 , n

45 2 p v a(i,j)=b(i,j)+c(i,j)+d(i,j)+e(i,j)+f(i,j)+g(i,j)+h(i,j)

46 2 p v enddo

47 1 p enddo

Source Before Improvement

Cache

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Before

[Seconds]

Array size
256 x 256 x 8 B =

32 x 16 KB
(16 KB boundary)

Fortran

140

Array Merge (Improved Thrashing)
(Source Tuning)

Array merge reduces the number of streams from 8 to 2, preventing L1D cache thrashing. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load instruction"
event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

44 parameter(n=256,m=256)

45 real*8 abcd(n,4,m),efgh(n,4,m)

46 common /test/abcd,efgh

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< efgh, abcd

<<< Loop-information End >>>

47 1 pp do j = 1,m

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.28, ITR: 112,

MVE: 13, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< efgh, abcd

<<< Loop-information End >>>

48 2 p v do i = 1,n

49 2 p v abcd(i,1,j)=abcd(i,2,j)+abcd(i,3,j)+abcd(i,4,j)+&

50 2 efgh(i,1,j)+efgh(i,2,j)+efgh(i,3,j)+efgh(i,4,j)

51 2 p v enddo

52 1 p enddo

Source After Improvement (Source Tuning)

8 arrays merged
into 2 (4 arrays each)

L1D misses reduced

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

L1D miss hardware
prefetch rate (%)

(/L1D miss)

L1D miss software
prefetch rate (%)

(/L1D miss)
L2 miss

L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before 0.00 3.40E+10 1.33E+10 0.39 68.21% 31.79% 0.00% 1.12E+04 0.00 72.56% 37.92% 0.00%

After 0.00 2.54E+10 4.40E+09 0.17 84.98% 15.03% 0.00% 1.70E+04 0.00 69.93% 46.61% 0.00%

Effect of
2.44 times

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

Before

[Seconds]

After

Fortran

141

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.32E+10 1.36E+10 0.41 69.48% 30.52% 0.00% 1.16E+05 0.00 86.19% 26.53% 0.00%

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善前

[Seconds]

Array Merge (Improved Thrashing)
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

31 void sub(void)

32 {

33 int i,j;

34 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

35 p for(j=0;j<m;j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, c, f, e, g, h, d, a

<<< Loop-information End >>>

36 p v for(i=0;i<n;i++){

37 p v a[j][i]=b[j][i]+c[j][i]+d[j][i]+e[j][i]+f[j][i]+g[j][i]+h[j][i];

38 p v }

39 p }

40 }

Source Before Improvement

Array declaration
double a[256][256],
b[256][256], c[256][256],
d[256][256], e[256][256],
f[256][256], g[256][256],
h[256][256];

Array a size: 256×256×8B=
32×16 KB(16 KB boundary)

C/C++

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

High L1D miss rates despite sequential array access
-> L1D cache thrashing occurs

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No instruction commit
due to L2 cache access for a floating-point load instruction" event occurs many times.

Before

142

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.32E+10 1.36E+10 0.41 69.48% 30.52% 0.00% 1.16E+05 0.00 86.19% 26.53% 0.00%

After 0.00 2.63E+10 4.40E+09 0.17 90.03% 9.98% -0.01% 4.45E+04 0.00 80.52% 35.47% 0.00%

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

8.0E+00

改善前 改善後

[Seconds]

Array Merge (Improved Thrashing)
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

31 void sub(void)

32 {

33 int i,j;

34 #pragma omp parallel for

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< efgh, abcd

<<< Loop-information End >>>

35 p for(j=0;j<m;j++){

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.28, ITR: 112, MVE: 8, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< efgh, abcd

<<< Loop-information End >>>

36 p v for(i=0;i<n;i++){

37 p v abcd[j][0][i]=abcd[j][1][i]+abcd[j][2][i]+abcd[j][3][i]+

efgh[j][0][i]+efgh[j][1][i]+efgh[j][2][i]+efgh[j][3][i];

38 p v }

39 p }

40 }

Source After Improvement (Source Tuning)

Effect of
2.47 times

Array declaration
double abcd[256][4][256],
efgh[256][4][256];

8 arrays merged into 2 (4 arrays
each)

C/C++

No
instruction
commit
due to L2
cache
access for
a floating-
point load
instruction

Array merge reduces the number of streams from 8 to 2, preventing L1D cache thrashing. The result is
improvement of the "No instruction commit due to L2 cache access for a floating-point load instruction"
event.

Before After

L1D misses reduced

143

Array Merge (Compiler Option Tuning)

You can obtain an effect equivalent to that of source tuning by
specifying the following compiler options (Fortran-specific).

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-Karray_merge_common
[=name]

Specifies the merging of multiple arrays in a common block. You
can specify the common block name in name. If name is not
specified, the arrays in all the common blocks with names are
subject to this option.

-Karray_merge_local Specifies the merging of multiple local arrays.
-Karray_merge_local_size=1000000 is also enabled at the same
time.

-Karray_merge_local_size=N
(2≦N≦2,147,483,647)

Specifies N or more bytes as the size of local arrays merged. This
option is valid when the -Karray_merge_local option is enabled.

-Karray_merge This option is equivalent to specifying the -Karray_merge_local and
-Karray_merge_common options.

◼ Use example (for source before improvement)
$frtpx –Kfast,parallel sample.f90 –Karray_merge_common

◼ Note
⚫ These options must be specified in all source code using a target array.
⚫ The effect of the merge varies depending on the program.
⚫ If not used correctly, computational results may vary.
⚫ They cannot be used with a debug option (-g or -H).

Fortran

144

• What is Loop Fission?

• Loop Fission (Improved Thrashing) (Before Improvement)

• Effect of Loop Fission (Improved Thrashing) (Source Tuning)

• Effect of Loop Fission (Optimization Control Line Tuning)

Loop Fission (Improved
Thrashing)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED145

What is Loop Fission?

⚫ Loop fission is a means to split a loop into multiple smaller loops
mainly for the following purposes:

• To facilitate software pipelining

• To improve cache memory use efficiency

• To eliminate a register shortage

Loop fission reduces the number of arrays accessed in a loop, and thus may be able to facilitate software

pipelining and prevent cache thrashing.

However, note that efficient use of data in the cache may no longer be possible, depending on how the loop
is split.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

parameter(n=65536)
real*8 a(n),b(n),c(n),d(n),e(n),f(n),
g(n),h(n)
common /com/a,b,c,d,e,f,g,h
do i=1,n

a(i) = s / b(i)
c(i) = s / d(i)
e(i) = s / f(i)
g(i) = s / h(i)

enddo

Source Before Improvement

parameter(n=65536)
real*8 a(n),b(n),c(n),d(n),e(n),f(n),
g(n),h(n)
common /com/a,b,c,d,e,f,g,h
!OCL LOOP_NOFUSION
do i=1,n

a(i) = s / b(i)
c(i) = s / d(i)

enddo
do i=1,n

e(i) = s / f(i)
g(i) = s / h(i)

enddo

Source After Improvement

Loop fusion suppressed

Loop fission
Suppress cache thrashing

Cache thrashing occur

146

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.25E+08 3.85E+07 0.31 57.48% 42.52% 0.01% 1.84E+04 0.00 31.49% 72.74% 0.00%

Loop Fission (Improved Thrashing)
(Before Improvement)

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No
instruction commit due to access for a floating-point load instruction" event occurs many
times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

46 parameter(n=65536)
47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)
48 common /com/a,b,c,d,e,f,g,h
49

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 220
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.90, ITR: 56,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< f, d, b, h, g, e, c, a
<<< Loop-information End >>>

50 1 pp v do i=1,n
51 1 p v a(i) = s / b(i)
52 1 p v c(i) = s / d(i)
53 1 p v e(i) = s / f(i)
54 1 p v g(i) = s / h(i)
55 1 p v enddo

Source Before Improvement

Array size
65536 x 8 B =

32 x 16 KB
(16 KB boundary)

Cache
High L1D miss and L1 miss dm rates despite
sequential array access
-> L1D cache thrashing occurs

Before

No instruction
commit due to L2
cache access for
a floating-point
load instruction

[Seconds]

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

Fortran

147

Effect of Loop Fission (Improved Thrashing)
(Source Tuning)

Loop fission reduces the number of streams from 8 to 4, preventing L1D cache thrashing.
The result is improvement of the "No instruction commit due to L2 cache access for a
floating-point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

46 parameter(n=65536)
47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)
48 common /com/a,b,c,d,e,f,g,h
49
50 !OCL LOOP_NOFUSION

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 411
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.36, ITR: 80,

MVE: 2, POL: S)
<<< Loop-information End >>>

51 1 pp 2v do i=1,n
52 1 p 2v a(i) = s / b(i)
53 1 p 2v c(i) = s / d(i)
54 1 p 2v enddo

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 411
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.45, ITR: 80,

MVE: 2, POL: S)
<<< Loop-information End >>>

55 1 pp 2v do i=1,n
56 1 p 2v e(i) = s / f(i)
57 1 p 2v g(i) = s / h(i)
58 1 p 2v enddo

Source After Improvement

Loop fission

Loop fusion suppressed

[Seconds]

Before After

Effect of
1.77 times

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

No instruction
commit due to
L1D cache access
for a floating-
point load
instruction

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.25E+08 3.85E+07 0.31 57.48% 42.52% 0.01%

After 0.00 1.10E+08 1.78E+07 0.16 8.37% 91.63% 0.00%

L1D miss and L1D miss dm rates reduced

Fortran

148

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.17E+08 3.93E+07 0.34 58.44% 41.56% 0.00% 1.94E+04 0.00 16.93% 87.92% 0.00%

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

改善前

[Seconds]

Loop Fission (Improved Thrashing)
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

45 void sub(double s)
46 {
47 int i;
48
49 #pragma omp parallel for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]

<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.90, ITR: 56,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< f, d, b, h, g, e, c, a
<<< Loop-information End >>>

50 p v for(i=0;i<n; i++)
51 p v {
52 p v a[i] = s / b[i];
53 p v c[i] = s / d[i];
54 p v e[i] = s / f[i];
55 p v g[i] = s / h[i];
56 p v }
57
58 return;
59 }

Source Before Improvement

Array declaration
double a[65536], b[65536],
c[65536], d[65536],
e[65536], f[65536],
g[65536], h[65536];

Array a,b,c,d,e,f,g,h
size: 65536 x 8B=
32x16 KB(16 KB boundary)

C/C++

Each array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the "No
instruction commit due to access for a floating-point load instruction" event occurs many
times.

No instruction
commit due to L2
cache access for a
floating-point
load instruction

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

Before

High L1D miss and L1 miss dm rates despite
sequential array access
-> L1D cache thrashing occurs

149

45 void sub(double s)
46 {
47 int i;
48
49 #pragma omp parallel for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]

<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.09, ITR: 64,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< d, b, c, a
<<< Loop-information End >>>

50 p 2v for(i=0;i<n; i++)
51 p 2v {
52 p 2v a[i] = s / b[i];
53 p 2v c[i] = s / d[i];
54 p 2v }
55
56 #pragma omp parallel for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.09, ITR: 64,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< h, f, g, e
<<< Loop-information End >>>

57 p 2v for(i=0;i<n; i++)
58 p 2v {
59 p 2v e[i] = s / f[i];
60 p 2v g[i] = s / h[i];
61 p 2v }
62 return;
63 }

Source After Improvement

Loop fission

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.17E+08 3.93E+07 0.34 58.44% 41.56% 0.00%

After 0.00 1.51E+08 1.86E+07 0.12 12.30% 87.72% -0.02%

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

改善前 改善後

[Seconds]

Effect of Loop Fission (Improved Thrashing)
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Effect of
1.50 times

Array declaration
double a[65536],
b[65536], c[65536],
d[65536], e[65536],
f[65536], g[65536],
h[65536];

C/C++

Loop fission reduces the number of streams from 8 to 4, preventing L1D cache thrashing.
The result is improvement of the "No instruction commit due to L2 cache access for a
floating-point load instruction" event.

L1D miss and L1D miss dm rates reduced

Before After

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

No instruction
commit due to
L1D cache access
for a floating-
point load
instruction

150

Effect of Loop Fission (Optimization Control
Line Tuning)

You can obtain an effect equivalent to that of source tuning by specifying the following optimization control line option.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier
(Fortran)

Meaning

Optimization Control Line Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

FISSION_POINT[(n1)]
(n1 is a decimal number
from 1 to 6.)

Specifies fission of a loop at the specified point in
the loop. The n1-fold nested multiloop is looped. (n1
is counted from the innermost loop.)

No No Yes No

46 parameter(n=65536)
47 real*8 a(n),b(n),c(n),d(n),e(n),f(n),g(n),h(n)
48 common /com/a,b,c,d,e,f,g,h
49

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 411
<<< [OPTIMIZATION]
<<< FISSION(num: 2)
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.45, ITR: 80, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, d, c, a, f, h, g, e
<<< Loop-information End >>>

50 1 pp 2v do i=1,n
51 1 p 2v a(i) = s / b(i)
52 1 p 2v c(i) = s / d(i)
53 1 !ocl fission_point(1)
54 1 p 2v e(i) = s / f(i)
55 1 p 2v g(i) = s / h(i)
56 1 p 2v enddo
57 end subroutine sub
58
Diagnostic messages: program name(sub)
jwd8212o-i "a.f90", line 50: Loop was split into two.

Source After Improvement (Optimization Control Line Tuning)

Optimization Specifier
(C/C++: Trad Mode)

Meaning
Optimization Control Line Specifiable?

global procedure loop statement

fission_point[(n1)]
(n1 is a decimal number
from 1 to 6.)

Specifies fission of a loop at the specified point in
the loop. The n1-fold nested multiloop is looped. (n1
is counted from the innermost loop.)

No No No Yes

151

• XOS_MMM_L_FORCE_MMAP_THRESHOLD

• Padding Using the Large Page Environment Variable (Before Improvement)

• Padding Using the Large Page Environment Variable (After Improvement)

Padding Using the Large Page
Environment Variable

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED152

XOS_MMM_L_FORCE_MMAP_THRESHOLD

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Environment
Variable Name

Specified Value

(_ indicates default)
Description

XOS_MMM_L_FORCE
_MMAP_THRESHOLD

0 | 1

Sets whether or not to give priority to mmap(2) when acquiring
memory with a size equal to or greater than
MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).
"0" means priority is not given to mmap(2). First, the heap area
is searched for space. If there is space, the free memory of the
heap area is returned. mmap(2) is used to acquire memory only
when space is not found in the heap area. "1" means priority is
given to mmap(2). mmap(2) is used to acquire memory without
searching the heap area for space (even when there is space).

153

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 1.34.E+10 3.44.E+09 0.26 51.52% 48.28% 0.20% 1.61.E+03 0.00 73.10% 53.55% 0.00%

Padding Using the Large Page Environment
Variable (Before Improvement)

Each stream of the dynamic array is on a 16 KB boundary. L1D cache thrashing occurs.
Consequently, the "No instruction commit due to L2 cache access for a floating-point load
instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

3 parameter(n=256,m=256)

4 real*8,allocatable :: a(:,:),b(:,:),c(:,:),d(:,:),

e(:,:),f(:,:),g(:,:),h(:,:)

6 allocate(a(n,m))

7 allocate(b(n,m))

8 allocate(c(n,m))

9 allocate(d(n,m))

10 allocate(e(n,m))

11 allocate(f(n,m))

12 allocate(g(n,m))

13 allocate(h(n,m))

: ・・・・・・

36 1 p do j = 1 , m

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.44, ITR: 56, MVE: 2,
POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, b, d, e, f, g, h, a

<<< Loop-information End >>>

37 2 p v do i = 1 , n

38 2 p v a(i, j) = b(i, j) + c(i, j) + d(i, j) + e(i, j)

+ f(i ,j) + g(i ,j) + h(i ,j)

39 2 p v enddo

40 1 p enddo

Source Before Improvement

Cache

Streams of same size

Array size
256 x 256 x 8 B =
32 x 16 KB (16 KB boundary)

Before

High L1D miss rates
-> L1D cache thrashing occurs

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

[Seconds]

No instruction
commit due to L2
cache access for a
floating-point load
instruction

Fortran

154

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before 0.00 1.34.E+10 3.44.E+09 0.26 51.52% 48.28% 0.20% 1.61.E+03 0.00 73.10% 53.55% 0.00%

After 0.00 1.35.E+10 1.81.E+09 0.13 9.47% 90.51% 0.02% 2.43.E+03 0.00 68.31% 58.01% 0.00%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Padding Using the Large Page Environment
Variable (After Improvement)

Specify the MALLOC_MMAP_THRESHOLD_=204800 environment variable to change the address alignment
of each array to prevent L1D cache thrashing. The result is improvement of the "No instruction commit due
to L2 cache access for a floating-point load instruction" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Cache

After

[Seconds]

L1D miss and L1D miss dm rates improved

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

ProcessBefore

[Seconds]

No instruction commit due to
L2 cache access for a
floating-point load instruction

Fortran

155

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.39E+10 5.24E+09 0.38 69.38% 30.62% 0.01% 7.49E+04 0.00 68.31% 44.20% 0.00%

Source Before Improvement
62 void sub(int n, int m, double (* restrict a)[n], double (* restrict b)[n],

double (* restrict c)[n], double (* restrict d)[n], double (* restrict e)[n],

double (* restrict f)[n], double (* restrict g)[n], double (* restrict h)[n])

63 {

64 int i,j;

65 #pragma omp parallel for private(i)

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

66 p for(j = 0; j<m; j++)

67 p {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 104, MVE: 7, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< (unknown)

<<< Loop-information End >>>

68 p v for(i = 0; i<n; i++)

69 p v {

70 p v a[j][i] = b[j][i] + c[j][i] + d[j][i] + e[j][i] + f[j][i] + g[j][i] + h[j][i];

71 p v }

72 p }

73 return;

74 }

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Padding Using the Large Page Environment
Variable (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Streams of same size
改善前

[Seconds]

Array declaration
double a[256][256],
b[256][256], c[256][256],
d[256][256], e[256][256],
f[256][256], g[256][256],
h[256][256];

Array a size: 256×256×8B=
32×16 KB(16 KB boundary)

C/C++

Each stream of the dynamic array is on a 16 KB boundary. L1D cache thrashing occurs. Consequently, the
"No instruction commit due to L2 cache access for a floating-point load instruction" event occurs many
times.

No instruction
commit due to L2
cache access for a
floating-point load
instruction

Before

High L1D miss rates
-> L1D cache thrashing occurs

156

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.39E+10 5.24E+09 0.38 69.38% 30.62% 0.01% 7.49E+04 0.00 68.31% 44.20% 0.00%

After 0.00 1.25E+10 1.80E+09 0.14 9.31% 90.69% 0.00% 2.98E+04 0.00 49.45% 57.41% 0.00%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Padding Using the Large Page Environment
Variable (After Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

改善後

[Seconds]

改善前

[Seconds]

C/C++

AfterBefore

Specify the MALLOC_MMAP_THRESHOLD_=204800 environment variable to change the address alignment
of each array to prevent L1D cache thrashing. The result is improvement of the "No instruction commit due
to L2 cache access for a floating-point load instruction" event.

No instruction commit due to
L2 cache access for a
floating-point load instruction

L1D miss and L1D miss dm rates improved

157

• Loop Peeling

• Loops With an Unclear Defining Relationship

• Loops Containing Pointer Variables

Operation Wait
(Facilitation of SIMDization)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED158

• What is Loop Peeling?

• Loop Peeling (Before Improvement)

• Loop Peeling (Source Tuning)

Loop Peeling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED159

What is Loop Peeling?

Loop peeling is a means to separate part of processing from a loop.

SIMDization or effective software pipelining may not be performed when a loop
contains data dependency.

As shown below, you can address the problem of dependency in a loop by
peeling the loop to separate only the dependency part from the loop.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do j = 1, n
a[j] = a[j] + a[1]

enddo

Source Before Improvement

a[1] = a[1] + a[1]
do j = 2, n

a[j] = a[j] + a[1]
enddo

Source After Improvement

The example on the left shows partial dependency, because a[1] defined when j=1
is used when 2 ≤ j ≤ n.

The example on the right shows that the dependency in the loop can be removed
by peeling the loop only in cases where j=1.

160

Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 1.49E+11 14.61%

Loop Peeling (Before Improvement)

SIMDization is not performed effectively because Array a has a data dependency. The
dependency is that what is defined at i=1 is referenced at i=2 or higher.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, (unknown)
<<< Loop-information End >>>

8 2 p do j = 1, m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.38, ITR: 144,

MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b, (unknown)
<<< Loop-information End >>>

9 3 p 2m do i = 1, n
10 3 p 2m a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*
11 3 & (c4 + b(I,j)*(c5 + b(I,j)*(c6 + b(I,j)*(c7 + b(I,j)*
12 3 & (c8 + b(i,j)*c9))))))))
13 3 p v end do
14 2 p end do

Source Before Improvement

SIMD

Array a has a dependency
between the load side and
store side when i=1.

SIMDization only
partially done

Before

[Seconds]

4 instruction
commit

2 instruction
commit

1 instruction commit

Fortran

161

Loop Peeling (Source Tuning)

SIMDization is facilitated by loop peeling at one iteration. This results in a reduced total
number of effective instructions, reduced instruction commits, and higher performance.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

8 2 p do j = 1, m
9 2 p i = 1

10 2 p a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*
11 2 & (c4 + b(i,j)*(c5 + b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)*
12 2 & (c8 + b(i,j)*c9))))))))

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.23, ITR: 128,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

13 3 p 2v do i = 2, n
14 3 p 2v a(i,j) = c0 + a(1,j)*(c1 + b(i,j)*(c2 + b(i,j)*(c3 + b(i,j)*
15 3 & (c4 + b(i,j)*(c5 + b(i,j)*(c6 + b(i,j)*(c7 + b(i,j)*
16 3 & (c8 + b(i,j)*c9))))))))
17 3 p 2v end do
18 2 p end do

Source After Improvement (Source Tuning)

Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 1.49E+11 14.61%

After 2.96E+10 81.26%

SIMD

Before

[Seconds]

After

Effect of
2.87 times

Peeling of
dependency part

SIMDization facilitated since
dependency was removed

4 instruction
commit

2 instruction
commit

1 instruction
commit

Fortran

162

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[Seconds]

Loop Peeling (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 #pragma omp parallel
41 for(k=0;k<1000000;k++){
42 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

43 p for(j=0;j<m;j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.27, ITR: 144, MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

44 p 2m for(i=0;i<n;i++){
45 p 2m a[j][i] = c0 + a[j][0]*(c1 + b[j][i]*(c2 + b[j][i]*(c3 + b[j][i]*
46 (c4 + b[j][i]*(c5 + b[j][i]*(c6 + b[j][i]*(c7 + b[j][i]*
47 (c8 + b[j][i]*c9))))))));
48 p v }
49 p }
50 }
51 }

Source Before Improvement

Statistics Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 1.33E+11 16.32%

C/C++

4 instruction
commit

2 instruction
commit

1 instruction
commit

Before

Array a has a dependency
between the load side and
store side when i=0.

SIMDization only
partially done

SIMDization is not performed effectively because Array a has a data dependency. The
dependency is that what is defined at i=0 is referenced at i=1 or higher.

163

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前 改善後

[Seconds]

Loop Peeling (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 #pragma omp parallel
41 for(k=0;k<1000000;k++){
42 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

43 p for(j=0;j<m;j++){
44 p i=0;
45 p a[j][i] = c0 + a[j][0]*(c1 + b[j][i]*(c2 + b[j][i]*(c3 + b[j][i]*
46 (c4 + b[j][i]*(c5 + b[j][i]*(c6 + b[j][i]*(c7 + b[j][i]*
47 (c8 + b[j][i]*c9))))))));

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.23, ITR: 128, MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

48 p 2v for(i=1;i<n;i++){
49 p 2v a[j][i] = c0 + a[j][0]*(c1 + b[j][i]*(c2 + b[j][i]*(c3 + b[j][i]*
50 (c4 + b[j][i]*(c5 + b[j][i]*(c6 + b[j][i]*(c7 + b[j][i]*
51 (c8 + b[j][i]*c9))))))));
52 p 2v }
53 p }
54 }
55 }

Source After Improvement (Source Tuning)

Effect of
2.75 times

Statistics Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 1.33E+11 16.32%

After 2.79E+10 86.10%

C/C++

4 instruction
commit

2 instruction
commit

1 instruction
commit

AfterBefore

Peeling of dependency part

SIMDization facilitated since
dependency was removed

SIMDization is facilitated by loop peeling at one iteration. This results in a reduced total
number of effective instructions, reduced instruction commits, and higher performance.

164

• Loops With an Unclear Defining Relationship (Before Improvement)

• Loops With an Unclear Defining Relationship (Optimization Control Line Tuning)

• Loops With an Unclear Defining Relationship (Optimization Control Line)

Loops With an Unclear Defining
Relationship

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED165

Loops With an Unclear Defining Relationship
(Optimization Control Line)

Specify the following optimization control line.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

NORECURRENCE
[(array1[,array2]...)]

Notifies the main processing system
that the elements of arrays targeted
by operations in a DO loop are not
defined and cited across iterations.
(Loops can be sliced for the specified
arrays.)
array1, array2, and so on are array
names.

Yes Yes No Yes

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line
Specifiable?

global procedure loop statement

norecurrence
[(array1[,array2]...)]

Notifies the main processing system
that the elements of arrays targeted
by operations in a loop are not
defined and cited across iterations.
(Loops can be sliced for the specified
arrays.)
array1, array2, and so on are array
names.

Yes Yes No Yes

166

Loops With an Unclear Defining Relationship
(Before Improvement)

SIMDization and software pipelining are not performed effectively because data dependency
is unclear in Array a. Consequently, the "No instruction commit waiting for an integer
instruction to be completed" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 2
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, x, l
<<< Loop-information End >>>

53 1 pp do j=1,n1
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.56, ITR: 3,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< l, b, x
<<< Loop-information End >>>

54 2 p s do i=1,n2
55 2 p m a(l(i),j)=a(x(i),j)/b(i,j)
56 2 p v end do
57 1 p end do

Source Before Improvement

Dependency
between the load
side and store side
of Array a is unclear.

Software pipelining is not performed
effectively because data dependency
across iterations in Array a is unclear.

SIMD

Before

[Seconds]

Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 7.10E+10 0.00%

No instruction
commit waiting for
an integer
instruction to be
completed

Fortran

167

Loops With an Unclear Defining Relationship
(Optimization Control Line Tuning)

Use the NORECURRENCE specifier to explicitly specify no data dependency in order to
facilitate SIMDization and software pipelining. The result is significant improvement of the
"No instruction commit waiting for an integer instruction to be completed" event.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

53 !ocl norecurrence(a)
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 2
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x, b, l
<<< Loop-information End >>>

54 1 pp do j=1,n1
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 2.72, ITR: 288,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x, b, l
<<< Loop-information End >>>

55 2 p 2v do i=1,n2
56 2 p 2v a(l(i),j)=a(x(i),j)/b(i,j)
57 2 p 2v end do
58 1 p end do

Source After Improvement (Optimization Control Line Tuning)

Compiler notified about no
data dependency between
a(l(i) , j) and a(x(i) , j)

Effect of
2.13 times

Before After

[Seconds]

SIMD
Effective

instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 7.10E+10 0.00%

After 1.91E+10 10.08%

No instruction
commit waiting for
an integer
instruction to be
completed

SIMDization and
software pipelining done
effectively

Fortran

168

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前

[Seconds]

Loops With an Unclear Defining Relationship
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

48 #pragma omp parallel
49 {
50 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

51 p for(j=1; j<n1; j++)
52 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.39, ITR: 6,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

53 p 2s for(i=0; i<n2; i++)
54 p 2v {
55 p 2m a[j][l[i]]=a[j][x[i]]/b[j][i];
56 p 2v }
57 p }
58 }
60 return;
61 }

Source Before Improvement

Statistics
Effective

instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 8.49E+10 0.00%

C/C++

Dependency
between the load
side and store side
of Array a is unclear.

Software pipelining is not performed
effectively because data dependency across
iterations in Array a is unclear.

SIMDization and software pipelining are not performed effectively because data dependency
is unclear in Array a. Consequently, the "No instruction commit waiting for an integer
instruction to be completed" event occurs many times.

No instruction
commit waiting
for an integer
instruction to
be completed

Before

169

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

改善前 改善後

[Seconds]

Loops With an Unclear Defining Relationship
(Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

48 #pragma omp parallel
49 {
50 #pragma omp for nowait
51 #pragma loop norecurrence

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

52 p for(j=1; j<n1; j++)
53 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)

<<< SOFTWARE PIPELINING(IPC: 2.27,ITR: 256,
MVE: 3, POL: S)

<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

54 p 2v for(i=0; i<n2; i++)
55 p 2v {
56 p 2v a[j][l[i]]=a[j][x[i]]/b[j][i];
57 p 2v }
58 p }
59 }
61 return;
62 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
2.21 times

Statistics
Effective

instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 8.49E+10 0.00%

After 2.74E+10 5.49%

C/C++

Use the norecurrence specifier to explicitly specify no data dependency in order to facilitate
SIMDization and software pipelining. The result is significant improvement of the "No
instruction commit waiting for an integer instruction to be completed" event.

Compiler notified about no
data dependency between
a[j, l[i]] and a[j, x[i]]

SIMDization and
software pipelining done
effectively

No instruction
commit waiting
for an integer
instruction to
be completed

AfterBefore

170

• What is a Loop Containing a Pointer Variable?

• Loops Containing Pointer Variables (Before Improvement)

• Loops Containing Pointer Variables (Optimization Control Line Tuning)

• Loops Containing Pointer Variables (contiguous Attribute Specified)

Loops Containing Pointer
Variables

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED171

What is a Loop Containing a Pointer
Variable?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

By specifying the NOALIAS specifier, you can judge at the compile time that different pointer variables do
not point to the same storage area. This facilitates optimization related to pointer variables.

However, if the combined state of pointer variables changes within the loop, optimization may not be
facilitated even though the optimization specifier is specified.

real,dimension(100),target::x
real,dimension(:),pointer::a,b
a=>x(1:10)
b=>x(11:20)
do i=1,10000

a(i)=2.0/b(i)+1.0
end do

Example of Source Code

Optimization may not be facilitated for a loop containing a pointer variable since which
storage area part is occupied by the pointer variable is determined at execution.

real,dimension(100),target::x
real,dimension(:),pointer::a,b

!ocl noalias
a=>x(1:10)
b=>x(11:20)
do i=1,10000

a(i)=2.0/b(i)+1.0
end do

Example of Source Code

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

NOALIAS
Specifies that a pointer variable not share a
storage area with other variables.

Yes Yes No Yes

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line Specifiable?

global procedure loop statement

noalias
Specifies that a pointer variable not share a
storage area with other variables.

Yes Yes Yes No

172

What is a Loop Containing a Pointer Variable?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option Functional Description

-Knoalias [=spec] Specifies optimization that assumes no pointer variable or
pointer component combines a storage area with another
variable.
You can specify s in spec. If S is specified, the compiler
performs optimization that assumes no entity with the Fortran
pointer attribute is combined with another variable.
In the following contexts, entities with the pointer attribute
may combine with other variables:
- Pointer assignment statement
- Derived-type assignment statement with a pointer

component
- ALLOCATE statement where SOURCE=specifier shows a

derived type with a pointer component
- Dummy argument with a pointer attribute or component
- Initial setting for variables with a pointer attribute or

component

You can obtain an effect equivalent to that of optimization control
line tuning by specifying the following compiler option.

◼Use example (for source before improvement)

$ frtpx -Kfast,parallel sample.f90 -Knoalias

Fortran

173

Loops Containing Pointer Variables
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Statistics
Effective

instruction
SIMD instruction rate (%)

(/Effective instruction)

Before 1.10E+11 0.00%

SIMDization is not facilitated because it is not clear that Pointer Variables a and b point to different
storage areas. Consequently, the "No instruction commit waiting for an integer instruction to be
completed" event occurs many times.

3 real,dimension(100000),target::x
4 integer :: kmax
5 real,dimension(:),pointer::a,b
:
9 a=>x(1:10000)
10 b=>x(10001:20000)
11 kmax = 1000000
12 !$omp parallel
13 1 do k=1,kmax
14 1 !$omp do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.19, ITR: 8, MVE: 2, POL: L)
<<< Loop-information End >>>

15 2 p 2s do i=1,10000
16 2 p 2s a(i)=2.0/b(i)+1.0
17 2 p 2s end do
18 1 !$omp enddo nowait
19 1 end do
20 !$omp end parallel

Source Before Improvement

No SIMDization

[Seconds]

No instruction
commit waiting
for an integer
instruction to
be completed

Before

Fortran

174

Loops Containing Pointer Variables
(Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

[Seconds]

Statistics
Effective

instruction
SIMD instruction rate (%)

(/Effective instruction)

Before 1.10E+11 0.00%

After 1.26E+10 40.83%

Use the NOALIAS specifier to explicitly specify no data dependency in order to facilitate
SIMDization and software pipelining. The result is significant improvement of the "No
instruction commit waiting for an integer instruction to be completed" event and other
events.

3 real,dimension(100000),target::x
4 integer :: kmax
5 real,dimension(:),pointer::a,b
:
9 a=>x(1:10000)
10 b=>x(10001:20000)
11 kmax = 1000000
12 !$omp parallel
13 1 do k=1,kmax
14 1 !$omp do

15 1 !ocl noalias
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 0.19, ITR: 96,

MVE: 2, POL: L)
<<< Loop-information End >>>

16 2 p 2v do i=1,10000
17 2 p 2v a(i)=2.0/b(i)+1.0
18 2 p 2v end do
19 1 !$omp enddo nowait
20 1 end do
21 !$omp end parallel

Source After Improvement (Optimization Control Line Tuning)

Compiler notified
about no dependency
between a(i) and b(i)

SIMDization reduced total
number of effective

instructions

No instruction
commit waiting
for an integer
instruction to be
completed

Effect of 1.13 times

Before After

Fortran

175

Instruct
ion

Load-store instruction

Load instruction Store instruction

SIMD Non-SIMD SIMD Non-SIMD

Single vector
contiguous load

instruction

Non-
contiguous
gather load
instruction

Non-SIMD
load

instruction

Single vector
contiguous

store instruction

Non-
contiguous
scatter store
instruction

Non-SIMD
store

instruction

After
(noalias)

1.10E+01 6.36E+08 1.08E+09 1.56E+02 6.36E+08 1.33E+08

After
(noalias+c
ontiguous)

6.36E+08 0.00E+00 5.00E+08 6.36E+08 0.00E+00 3.70E+07

Loops Containing Pointer Variables
(contiguous Attribute Specified)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Data continuity is explicitly specified when the contiguous attribute is specified, which changes non-contiguous
instructions into contiguous instructions. The result is facilitated optimization and significant improvement of the
"No instruction commit due to L1D cache access for a floating-point load instruction," "No instruction commit
waiting for a floating-point instruction to be completed," and other events.

3 real,dimension(100000),target::x
4 integer :: kmax
5 real,dimension(:),pointer,contiguous::a,b

:
9 a=>x(1:10000)
10 b=>x(10001:20000)
11 kmax = 1000000
12 !$omp parallel

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

13 1 do k=1,kmax
14 1 !$omp do
15 1 !ocl noalias

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 2.62, ITR: 352,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

16 2 p 2v do i=1,10000
17 2 p 2v a(i)=2.0/b(i)+1.0
18 2 p 2v end do
19 1 !$omp enddo nowait
20 1 end do
21 !$omp end parallel

Source After Improvement (contiguous Attribute Specified)
[Seconds]

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

No instruction
commit waiting for
a floating-point
instruction to be
completed Effect of 8.57 times

Non-contiguous
instructions changed

into contiguous
instructions

Compiler notified about
no dependency

between a(i) and b(i)

Compiler notified about
pointer arrays a and b
in separate contiguous

areas

After After

Fortran

176

Loops Containing Pointer Variables
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

17 #pragma omp parallel
18 {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

19 for(k=0; k<kmax; k++)
20 {
21 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.21, ITR: 8, MVE: 2, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

22 p 2s for(i=0; i<10000; i++)
23 p 2s {
24 p 2s a[i]=2.0/b[i]+1.0;
25 p 2s }
26 }
27 }

Source Before Improvement

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[Seconds]

Statistics Effective instruction
SIMD instruction

rate (%) (/Effective
instruction)

Before 1.50E+11 0.00%

C/C++

SIMDization is not facilitated because it is not clear that Pointer Variables a and b point to different
storage areas. Consequently, the "No instruction commit waiting for an integer instruction to be
completed" event occurs many times.

Before

No instruction
commit waiting for
an integer
instruction to be
completed

No SIMDization

177

Statistics Effective instruction
SIMD instruction

rate (%) (/Effective
instruction)

Before 1.50E+11 0.00%

After 2.27E+10 72.14%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前 改善後

[Seconds]

Loops Containing Pointer Variables
(Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

17 #pragma omp parallel
18 {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

19 for(k=0; k<kmax; k++)
20 {
21 #pragma omp for nowait
22 #pragma loop noalias

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 0.18, ITR: 64,

MVE: 2, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

23 p 2v for(i=0; i<10000; i++)
24 p 2v {
25 p 2v a[i]=2.0/b[i]+1.0;
26 p 2v }
27 }
28 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
4.01 times

C/C++

Compiler notified
about no dependency
between a[i] and b[i]

SIMDization reduced total
number of effective

instructions

AfterBefore

No instruction
commit
waiting for an
integer
instruction to
be completed

Use the noalias specifier to explicitly specify no data dependency in order to facilitate
SIMDization and software pipelining. The result is significant improvement of the "No
instruction commit waiting for an integer instruction to be completed" event and other
events.

178

• Loop Fission (Facilitation of software pipelining)

• Specifying the Appropriate Number of Unrolls and Suppressing Software
Pipelining

• Specifying the Number of Striping (Interleaving) Expansions and
Suppressing Software Pipelining

• Software Pipelining in an Outer Loop

• Rerolling

• Loop Unswitching

Operation Wait (Hidden Latency)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED179

• Loop Fission (Facilitation of software pipelining) (Before Improvement)

• Loop Fission (Facilitation of software pipelining) (Source Tuning)

Loop Fission (Facilitation of
software pipelining)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED180

Loop Fission (Facilitation of software pipelining)
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 7.69E+06 1.61E+03 0.00 71.62% 27.38% 1.00% 1.32E+02 0.00 48.92% 59.71% 0.00

Optimization of scheduling such as SWPL is not possible because a long chain of
operations requires many registers. Consequently, the "No instruction commit waiting for
a floating-point instruction to be completed" event occurs many times.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, y
<<< Loop-information End >>>

18 2 2v do i = 1, n
19 2 2v y(i) = c0 / x1(i) / c1 / x1(i) &
20 2 / c2 / x1(i) / c3 / x1(i) / c4 / x1(i)
21 2 2v end do

Source Before Improvement

Cache

Event appears large since scheduling is not
optimized Before

No instruction
commit
waiting for a
floating-point
instruction to
be completed

[Seconds]

Software pipelining cannot be applied because
long operation chain uses many registers

* Compiler option
-Knoeval specified

Fortran

181

Loop Fission (Facilitation of software pipelining)
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Loop fission shortens the chain of operations, reducing the registers used by a single loop.
As a result, scheduling such as SWPL is optimized and the event is improved.

[Seconds]

Effect of
1.83 times

No
instruction
commit
waiting for
a floating-
point
instruction
to be
completed

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 7.69E+06 1.61E+03 0.00 71.62% 27.38% 1.00%

After 0.00 3.65E+07 1.73E+03 0.00 70.79% 28.98% 0.23%

Event improved

AfterBefore

20 1 !ocl loop_nofusion
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.02, …
<<< PREFETCH(HARD) Expected by compiler :
<<< y, x1
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 0
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 0 FILL 27
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

21 2 2v do i = 1, n
22 2 2v y(i) = c2 / x1(i) / c3 / x1(i) / c4 / x1(i)
23 2 2v end do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.08, …
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, y
<<< Loop-information End >>>

24 2 2v do i = 1, n
25 2 2v y(i) = c0 / x1(i) / c1 / x1(i) / y(i)
26 2 2v end do

Source After Improvement

Loop fission

Loop fusion suppressed

* Compile option -Knoeval specified

Fortran

182

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

改善前

[Seconds]

Loop Fission (Facilitation of software pipelining)
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

18 for (iter = 0; iter < 10000; iter++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

19 2v for (i = 0; i < n; i++){
20 2v y[i] = c0 / x1[i] / c1 / x1[i] / c2 / x1[i] / c3 / x1[i] / c4 / x1[i];
21 2v }
22 }

Source Before Improvement

※compile option: -Knoeval

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.11E+09 1.72E+06 0.00 99.92% 0.08% -0.01% 4.01E+03 0.00 86.58% 26.24% 0.00%

C/C++
Trad Mode

Optimization of scheduling such as SWPL is not possible because a long chain of
operations requires many registers. Consequently, the "No instruction commit waiting for
a floating-point instruction to be completed" event occurs many times.

Event appears large since scheduling is not optimized

Software pipelining cannot be applied because
long operation chain uses many registers

No instruction
commit
waiting for a
floating-point
instruction to
be completed

Before

183

0.0E+00

2.0E-02

4.0E-02

6.0E-02

8.0E-02

1.0E-01

1.2E-01

1.4E-01

改善前 改善後

[Seconds]

Loop Fission (Facilitation of software pipelining)
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

18 for (iter = 0; iter < 10000; iter++){
19 #pragma loop loop_nofusion

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.02, ITR: 112, MVE: 3, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 0
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 0 FILL 27
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

20 2v for (i = 0; i < n; i++){
21 2v y[i] = c2 / x1[i] / c3 / x1[i] / c4 / x1[i];
22 2v }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.08, ITR: 64, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

23 2v for (i = 0; i < n; i++){
24 2v y[i] = c0 / x1[i] / c1 / x1[i] / y[i];
25 2v }
26 }

Source After Improvement

※compile option: -Knoeval

Effect of
1.83 times

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.11E+09 1.72E+06 0.00 99.92% 0.08% -0.01%

After 0.00 6.46E+08 9.82E+05 0.00 99.88% 0.11% 0.00%

C/C++
Trad Mode

Loop fission shortens the chain of operations, reducing the registers used by a single loop.
As a result, scheduling such as SWPL is optimized and the event is improved.

Loop fusion suppressed

Loop fission

Event improved

No
instruction
commit
waiting for
a floating-
point
instruction
to be
completed

AfterBefore

184

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

改善前

[Seconds]

Loop Fission (Facilitation of software pipelining)
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

19 for (iter = 0; iter < 10000; iter++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8 Interleave: 1)
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 0
<<< SIMD&FP : SPILL 0 FILL 8
<<< SCALABLE : SPILL 4 FILL 6
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

20 v for (i = 0; i < n; i++){
21 y[i] = sin(x1[i]*c0)
22 +cos(x1[i]*c1)
23 +atan(x1[i]*c2)
24 +log(x1[i]*c3);
25 }
26 }

Source Before Improvement

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 1.76E+09 2.04E+06 0.00 99.85% 0.14% 0.01% 9.95E+03 0.00 88.46% 18.51% 0.00%

※Based on the compiler's characteristics, the example is
made using mathematical functions.

C/C++
Clang Mode

Optimization of scheduling such as SWPL is not possible because a long chain of
operations requires many registers. Consequently, the "No instruction commit waiting for
a floating-point instruction to be completed" event occurs many times.

Event appears large since scheduling is not optimized

Software pipelining cannot be applied because
long operation chain uses many registers

No instruction
commit
waiting for a
floating-point
instruction to
be completed

Before

185

Loop Fission (Facilitation of software pipelining)
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

19 for (iter = 0; iter < 10000; iter++){
20 #pragma loop loop_nofusion

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8 Interleave: 1)
<<< SOFTWARE PIPELINING
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 0
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 8 FILL 17
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

21 v for (i = 0; i < n; i++){
22 y[i] = sin(x1[i]*c0);
23 }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
・・・
<<< Loop-information End >>>

24 v for (i = 0; i < n; i++){
25 y[i] += cos(x1[i]*c1);
26 }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
・・・
<<< Loop-information End >>>

27 v for (i = 0; i < n; i++){
28 y[i] += atan(x1[i]*c2);
29 }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
・・・
<<< Loop-information End >>>

30 v for (i = 0; i < n; i++){
31 y[i] += log(x1[i]*c3);
32 }
33 }

Source After Improvement

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

改善前 改善後

[Seconds]

Effect of
1.51 times

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss demand
rate (%) (/L1D

miss)

L1D miss
hardware prefetch

rate (%) (/L1D
miss)

L1D miss software
prefetch rate (%)

(/L1D miss)

Before 0.00 1.76E+09 2.04E+06 0.00 99.85% 0.14% 0.01%

After 0.00 2.67E+09 2.39E+06 0.00 99.91% 0.10% -0.01%

※ Based on the compiler's characteristics, the example is
made using mathematical functions.

C/C++
Clang Mode

Loop fission shortens the chain of operations, reducing the registers used by a single loop.
As a result, scheduling such as SWPL is optimized and the event is improved.

Loop fusion suppressed

Loop fission

Event improved

No
instruction
commit
waiting for
a floating-
point
instruction
to be
completed

AfterBefore

186

• Loop Execution Operation After Software Pipelining

• Specifying the Appropriate Number of Unrolls and Suppressing Software
Pipelining (Before Improvement)

• Specifying the Appropriate Number of Unrolls and Suppressing Software
Pipelining (Optimization Control Line Tuning)

• Specifying the Appropriate Number of Unrolls and Suppressing Software
Pipelining (Optimization Control Line)

Specifying the Appropriate Number
of Unrolls and Suppressing
Software Pipelining

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED187

Loop Execution Operation After Software Pipelining

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Software pipelining determines
processing routes as follows
according to the number of loop
iterations.

SWPL
+ unrolled loop

Unrolled loop

Original loop

Loop structure diagram

<<< Loop-information Start >>>
:

<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.50, ITR: 144,

MVE: 4, POL: S)
<<< Loop-information End >>>

17 1 pp 2v do i=1,N
18 1 p 2v b(i)=a(i)+c
19 1 p 2v enddo

Example

if (number of iterations corresponds to value presented by SWPL (144 or more iterations), then

if (number of iterations excluding number of iterations immediately above is multiple of 16), then

if (number of iterations excluding number of iterations immediately above is multiple of 8), then

8 (SIMD)
In the loop in the example, the remaining iterations from i=305 to i=312 are executed in this loop.

In the above structural diagram of
loops generated by the compiler in a
multiplex manner, the higher in the
hierarchy, the higher the parallelism at
the instruction level.

Assumptions in example
Number of loop iterations n = 312
Number of unrolls = 2
SWPL
8SIMD

As described above, the processing route is determined according to
the number of loop iterations. Therefore, if the number of loop iterations
is small, loops with high parallelism at the instruction level are not
executed, so instruction scheduling has a small effect.

Parallelism: High

Parallelism: Low

2 unrolls x 8 (SIMD) = 16
In the loop in the example, iterations from i=289 to i=304 are executed in this loop.

software pipelining will be applied to the loop selected at execution when
the number of loop iterations is 144 or more.
In the loop in the example, iterations from i=1 to i=288 are executed in this loop.

Poor
efficiency

Good
efficiency

Excellent
efficiency

188

Specifying the Appropriate Number of Unrolls and
Suppressing Software Pipelining (Before Improvement)

Unrolling and software pipelining are not working effectively because the number of iterations is small.
Consequently, the "No instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events occur many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 552
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.62, ITR: 176,

MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

39 1 pp 2v do i = 1 , n
40 1 p 2v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*
41 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*
42 1 & (c8 + a(i)*c9))))))))
43 1 p 2v enddo

Source Before Improvement

Before

[Seconds]

Number of loop iterations n
= 40, while number of
unrolls = 2

Problem: Small number of loop iterations

- Software-pipelined loop not executed
The software pipelining condition "ITR: 176" is not satisfied.

- Inappropriate number of unrolls
2 unrolls x 8 (SIMD) = 16
The original loop is executed for 8 iterations.

The execution of the original loop greatly affects
performance.

No instruction
commit
waiting for a
floating-point
instruction to
be completed

No instruction
commit waiting for an
integer instruction to
be completed

Fortran

189

Specifying the Appropriate Number of Unrolls and Suppressing
Software Pipelining (Optimization Control Line Tuning)

Suppress software pipelining and specify a number of unrolls appropriate to the number of
iterations to appropriately schedule instructions. The result is reduction of the "No
instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

39 !ocl unroll(5)
40 !ocl noswp

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 552
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

41 1 pp 5v do i = 1 , n
42 1 p 5v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*
43 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*
44 1 & (c8 + a(i)*c9))))))))
45 1 p 5v enddo

Source After Improvement (Optimization Control Line Tuning)

Before

[Seconds]

After

Software pipelining
suppressed

5 specified as
number of unrolls

Specifying 5 as the number of unrolls results in

5 unrolls x 8 (SIMD) = 40.

The unrolled loop is executed for all 40 iterations.

Effect of
1.54 times

No
instruction
commit
waiting for a
floating-
point
instruction
to be
completed

No instruction
commit waiting for
an integer instruction
to be completed

Fortran

190

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

改善前

[Seconds]

Specifying the Appropriate Number of Unrolls and
Suppressing Software Pipelining (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.62, ITR: 176,

MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

31 2v for (i = 0; i < n; i++){
32 2v b[i] = c0 + a[i]*(c1 + a[i]*(c2 + a[i]*(c3 + a[i]*
33 (c4 + a[i]*(c5 + a[i]*(c6 + a[i]*(c7 + a[i]*
34 (c8 + a[i]*c9))))))));
35 2v }
36 }

Source Before Improvement

C/C++

Unrolling and software pipelining are not working effectively because the number of iterations is small.
Consequently, the "No instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events occur many times.

Number of loop iterations n
= 40, while number of
unrolls = 2

Problem: Small number of loop iterations

- Software-pipelined loop not executed
The software pipelining condition "ITR: 176" is not satisfied.

- Inappropriate number of unrolls
2 unrolls x 8 (SIMD) = 16
The original loop is executed for 8 iterations.

The execution of the original loop greatly affects
performance.

No instruction
commit waiting for
a floating-point
instruction to be
completed

No instruction commit
waiting for an integer
instruction to be
completed

Before

191

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

改善前 改善後

[Seconds]

Specifying the Appropriate Number of Unrolls and Suppressing
Software Pipelining (Optimization Control Line Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

31 #pragma loop unroll 5
32 #pragma loop noswp

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

33 5v for (i = 0; i < n; i++){
34 5v b[i] = c0 + a[i]*(c1 + a[i]*(c2 + a[i]*(c3 + a[i]*
35 (c4 + a[i]*(c5 + a[i]*(c6 + a[i]*(c7 + a[i]*
36 (c8 + a[i]*c9))))))));
37 5v }
38 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
1.77 times

C/C++

Suppress software pipelining and specify a number of unrolls appropriate to the number of
iterations to appropriately schedule instructions. The result is reduction of the "No
instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events.

Software pipelining
suppressed

5 specified as
number of unrolls

Specifying 5 as the number of unrolls results in

5 unrolls x 8 (SIMD) = 40.

The unrolled loop is executed for all 40 iterations.

No instruction
commit waiting
for a floating-
point
instruction to
be completed

No instruction
commit
waiting for an
integer
instruction to
be completed

AfterBefore

192

Specifying the Appropriate Number of Unrolls and
Suppressing Software Pipelining (Optimization Control Line)

Specify the following optimization specifiers. Alternatively, you can specify compiler options.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization
Specifier

(Fortran)

Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

UNROLL(n)
Unrolls a DO loop. n is a decimal number (2 to 100) that
represents the number of unrolls (multiplicity).

No Yes No No

NOSWP Disables the software pipelining function. Yes Yes No Yes

Compiler Option Functional Description

-Kunroll[=N]
(2≦N≦100)

Specifies optimization of loop unrolling. N specifies the upper limit on the number of loop unrolls.
If N is not specified, the compiler automatically decides the best value. If the -O0 or -O1 option is
enabled, the default is -Knounroll. If the -O2 or higher option is enabled, the default is -Kunroll.

-Knoswp Specifies that software pipelining not be optimized.

◼Use example
$ frtpx -Kfast,parallel sample.f90 -Kunroll=5,noswp

$ fccpx -Kfast,parallel sample.f90 -Kunroll=5,noswp

Optimization
Specifier

(C/C++)

Meaning

Optimization Control Line
Specifiable?

global procedure loop statement

unroll(n)
Unrolls a loop. n is a decimal number (2 to 100) that
represents the number of unrolls (multiplicity).

No No Yes No

noswp Disables the software pipelining function. Yes Yes Yes No

◆Note

Unrolling optimization is not available in Clang Mode.

193

• Loop Expansion

• Specifying the Number of Striping (Interleaving) Expansions and Suppressing
Software Pipelining (Before Improvement)

• Specifying the Number of Striping (Interleaving) Expansions and Suppressing
Software Pipelining (Optimization Control Line Tuning)

• Specifying the Number of Striping (Interleaving) Expansions and Suppressing
Software Pipelining (Optimization Control Line)

Specifying the Number of Striping
(Interleaving) Expansions and
Suppressing Software Pipelining

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED194

Loop Expansion

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ The two types of loop expansion are as follows:

⚫ Unrolling

⚫ Striping

⚫ Points

⚫ Since coordination with SIMDization and software pipelining can be expected to
have an effect, we recommend first applying unrolling. If there is no effect, apply

striping.

⚫ Striping uses more registers than unrolling. Therefore, execution performance
may degrade when the stripe length n is increased.

⚫ If the -Kstriping and -Kunroll options are concurrently specified, the one specified
later is enabled.

DO I=1,N
A(I) = B(I) + C(I)

ENDDO

DO I=1,N,2
TMP_B1 = B(I)
TMP_B2 = B(I+1)
TMP_C1 = C(I)
TMP_C2 = C(I+1)
TMP_A1 = TMP_B1 + TMP_C1
TMP_A2 = TMP_B2 + TMP_C2
A(I) = TMP_A1
A(I+1) = TMP_A2

ENDDO

◼ 2 striping expansions

DO I=1,N,2
TMP_B1 = B(I)
TMP_C1 = C(I)
TMP_A1 = TMP_B1 + TMP_C1
A(I) = TMP_A1
TMP_B2 = B(I+1)
TMP_C2 = C(I+1)
TMP_A2 = TMP_B2 + TMP_C2
A(I+1) = TMP_A2

ENDDO

◼ 2 unrolling expansionsDifference between unrolling and striping

Different manner of
expansion

Red: 1st
expansion
Blue: 2nd
expansion

195

Specifying the Number of Striping (Interleaving)
Expansions and Suppressing Software Pipelining
(Before Improvement)

Unrolling and software pipelining are not working effectively because the number of iterations is small.
Consequently, the "No instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events occur many times.

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 552
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.62, ITR: 176,

MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

39 1 pp 2v do i = 1 , n
40 1 p 2v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*
41 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*
42 1 & (c8 + a(i)*c9))))))))
43 1 p 2v enddo

Source Before Improvement

Before

[Seconds]

Number of loop iteration
n = 40, while number of

unrolls = 2

Problem: Small number of loop iterations

- Software-pipelined loop not executed
The software pipelining condition "ITR: 176" is not satisfied.

- Inappropriate number of unrolls
2 unrolls x 8 (SIMD) = 16
The original loop is executed for 8 iterations.

The execution of the original loop greatly affects
performance.

No instruction
commit waiting
for a floating-
point instruction
to be completed

No instruction commit waiting
for an integer instruction to be
completed

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Fortran

196

Specifying the Number of Striping (Interleaving)
Expansions and Suppressing Software Pipelining
(Optimization Control Line Tuning)

Suppress software pipelining and specify a number of striping expansions appropriate to the number of
iterations to appropriately schedule instructions. The result is reduction of the "No instruction commit
waiting for a floating-point instruction to be completed" and "No instruction commit waiting for an integer
instruction to be completed" events.

39 !ocl striping(5)
40 !ocl nounroll
41 !ocl noswp

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 552
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

42 1 pp 5v do i = 1 , n
43 1 p 5v b(i) = c0 + a(i)*(c1 + a(i)*(c2 + a(i)*(c3 + a(i)*
44 1 & (c4 + a(i)*(c5 + a(i)*(c6 + a(i)*(c7 + a(i)*
45 1 & (c8 + a(i)*c9))))))))
46 1 p 5v enddo

Source After Improvement (Optimization Control Line Tuning)

Before

[Seconds]

After

Unrolling and software
pipelining suppressed

5 specified as
number of striping

expansions

Specifying 5 as the number of striping expansions
results in

5 striping expansions x 8 (SIMD) = 40.

The striped loop is executed for all 40 iterations.

Effect of
1.48 times

No instruction
commit
waiting for a
floating-point
instruction to
be completed

No instruction commit
waiting for an integer
instruction to be
completed

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Fortran

197

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

改善前

[Seconds]

Specifying the Number of Striping (Interleaving)
Expansions and Suppressing Software Pipelining
(Before Improvement)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.62, ITR: 176,

MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

33 2v for (i = 0; i < n; i++){
34 2v b[i] = c0 + a[i]*(c1 + a[i]*(c2 + a[i]*(c3 + a[i]*
35 (c4 + a[i]*(c5 + a[i]*(c6 + a[i]*(c7 + a[i]*
36 (c8 + a[i]*c9))))))));
37 2v }
38 }

Source Before Improvement

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

C/C++

Unrolling and software pipelining are not working effectively because the number of iterations is small.
Consequently, the "No instruction commit waiting for a floating-point instruction to be completed" and "No
instruction commit waiting for an integer instruction to be completed" events occur many times.

Before

Number of loop iteration
n = 40, while number of

unrolls = 2

Problem: Small number of loop iterations

- Software-pipelined loop not executed
The software pipelining condition "ITR: 176" is not satisfied.

- Inappropriate number of unrolls
2 unrolls x 8 (SIMD) = 16
The original loop is executed for 8 iterations.

The execution of the original loop greatly affects
performance.

No instruction
commit waiting
for a floating-
point instruction
to be completed

No instruction commit
waiting for an integer
instruction to be
completed

198

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

改善前 改善後

[Seconds]

Specifying the Number of Striping (Interleaving)
Expansions and Suppressing Software Pipelining
(Optimization Control Line Tuning)

33 #pragma loop striping 5
34 #pragma loop nounroll
35 #pragma loop noswp

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< STRIPING
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

36 v for (i = 0; i < n; i++){
37 v b[i] = c0 + a[i]*(c1 + a[i]*(c2 + a[i]*(c3 + a[i]*
38 (c4 + a[i]*(c5 + a[i]*(c6 + a[i]*(c7 + a[i]*
39 (c8 + a[i]*c9))))))));
40 v }
41 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
1.62 times

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

C/C++

Suppress software pipelining and specify a number of striping expansions appropriate to the number of
iterations to appropriately schedule instructions. The result is reduction of the "No instruction commit
waiting for a floating-point instruction to be completed" and "No instruction commit waiting for an integer
instruction to be completed" events.

Unrolling and
software pipelining

suppressed

5 specified as
number of striping

expansions

Specifying 5 as the number of striping expansions
results in

5 striping expansions x 8 (SIMD) = 40.

The striped loop is executed for all 40 iterations.

No instruction
commit
waiting for a
floating-point
instruction to
be completed

No instruction
commit waiting
for an integer
instruction to be
completed

AfterBefore

199

Specifying the Number of Striping (Interleaving) Expansions and
Suppressing Software Pipelining (Optimization Control Line)

Specify the following optimization specifiers. Alternatively, you can specify compiler options.

Optimization Specifier

(Fortran)
Meaning

Optimization Control Line Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

STRIPING[(n)]
Enables the loop striping function. n is a
decimal number (2 to 100) that represents
the number of expansions (multiplicity).

Yes Yes No Yes

NOSWP Disables the software pipelining function. Yes Yes No Yes

Compiler Option Functional Description

-Kstriping[=N]
(2≦N≦100)

Specifies whether or not to optimize loop striping. You can specify the stripe length (number
of expansions) in N. N can be a value from 2 to 100. If no value is specified in N, the compiler
automatically decides a value. If the number of loop iterations in the source program is known
and the value specified in N exceeds the number of iterations, the number of expansions
automatically decided by the compiler is valid. The default is -Knostriping.

-Knoswp Specifies that software pipelining not be optimized.

◼Use example

$ frtpx -Kfast,parallel sample.f90 -Kstriping=5,noswp

$ fccpx -Kfast,parallel sample.f90 -Kstriping=5,noswp

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

(C/C++)
Meaning

Optimization Control Line Specifiable?

global procedure loop statement

striping[(n)]
Enables the loop striping function. n is a
decimal number (2 to 100) that represents
the number of expansions (multiplicity).

Yes Yes Yes No

noswp Disables the software pipelining function. Yes Yes Yes No

◆Note

Striping optimization is not available in Clang Mode.

200

• What is Software Pipelining in an Outer Loop?

• Software Pipelining in an Outer Loop (Before Improvement)

• Software Pipelining in an Outer Loop (Source Tuning)

• Software Pipelining in an Outer Loop (Using CLONE)

• Software Pipelining in an Outer Loop (Using CLONE) (Before Improvement)

• Software Pipelining in an Outer Loop (Using CLONE) (Source Tuning)

Software Pipelining in an Outer
Loop

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED201

What is Software Pipelining in an Outer Loop?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ If the number of iterations of the innermost loop is small, you can facilitate software
pipelining in its outer loops through strip mining or other means to make the number of
iterations equal to the SIMD length.

Data Type SIMD Length

Double-precision type 8

Single-precision type 16

Half-precision type 32

1-byte type 64

24 3 p do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

25 4 p 2v do i=1,N
26 4 p 2v a(i,j,k)=a(i,j,k)+c*b(i,j,k)
27 4 p 2v enddo
28 3 p enddo

Source Before Improvement

25 3 p do ii=1,N,blk
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.31, ITR: 192,

MVE: 2, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

26 4 p 8 do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< FULL UNROLLING
<<< Loop-information End >>>

27 5 p fv do i=ii,ii+blk-1
28 5 p fv a(i,j,k)=a(i,j,k)+c*b(i,j,k)
29 5 p fv enddo
30 4 p 8 enddo
31 3 p enddo

Source After Improvement

The above example is valid for fixed-length SIMD.
The SIMD lengths when the SIMD width is 512 [bits] are
as follows.

SIMD lengths when SIMD width (vector length) = 512 [bits]

202

Software Pipelining in an Outer Loop
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=16,M=200,L=48
:

18 real(8)::a(N,M,L),b(N,M,L)
19 real(8),parameter::c=0.5
20 !$omp parallel private(iter,i,j,k)
21 1 do iter=1,itmax
22 1 !$omp do
23 2 p do k=1,L

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

24 3 p do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

25 4 p 2v do i=1,N
26 4 p 2v a(i,j,k)=a(i,j,k)+c*b(i,j,k)
27 4 p 2v enddo
28 3 p enddo
29 2 p enddo
30 1 !$omp enddo nowait
31 1 enddo
32 !$omp end parallel

Source Before Improvement

Before

[Seconds]

Software pipelining is not applied because the number (N) of iterations of the
innermost loop is small compared with the software pipelining condition.

GFLOPS Effective instruction

Before 50.98 7.53E+10

4 instruction commit

3 instruction commit

2 instruction commit

1 instruction commit

Does not enter software
pipelining route because number
(N) of iterations of innermost
loop is smaller than ITR:192

N = 16

Fortran

203

Software Pipelining in an Outer Loop
(Source Tuning)

Strip mining fixes the innermost loop at the SIMD length. The result is facilitated software pipelining in its
outer loops, improved operation efficiency, and more effective instructions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=16,M=200,L=48
:
18 real(8)::a(N,M,L),b(N,M,L)
19 real(8),parameter::c=0.5
20 integer,parameter::blk=8
21 !$omp parallel private(iter,ii,i,j,k)
22 1 do iter=1,itmax
23 1 !$omp do
24 2 p do k=1,L

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

25 3 p do ii=1,N,blk
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.31, ITR: 192, MVE: 2, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

26 4 p 8 do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< FULL UNROLLING
<<< Loop-information End >>>

27 5 p fv do i=ii,ii+blk-1
28 5 p fv a(i,j,k)=a(i,j,k)+c*b(i,j,k)
29 5 p fv enddo
30 4 p 8 enddo
31 3 p enddo
32 2 p enddo
33 1 !$omp enddo nowait
34 1 enddo
35 !$omp end parallel

Source After Improvement

Before

[Seconds]

After

Effect of
1.14 times

Number of innermost
loop iterations is fixed
at SIMD length

GFLOPS Effective instruction

Before 50.98 7.53E+10

After 57.95 3.19E+10

4 instruction
commit

3 instruction commit

2 instruction commit

1 instruction
commit

No instruction
commit due to L2
cache access for a
floating-point load
instruction

M = 200

Software pipelining
applied

Fortran

204

Software Pipelining in an Outer Loop (Using CLONE)

If the number of iterations of the innermost loop is a small fixed value, you can also use
clone tuning.

⚫ What is clone tuning?
A tuning method that facilitates optimizations such as full unrolling by using the CLONE
specifier to generate a conditional branch based on a variable value for the loop

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!ocl clone(N==8)
do i=1,N

A(i) = i
enddo

Example of Source If (N==8) then
do i=1,8

A(i)=i
endo

else
do i=1,N

A(i)=i
enddo

endif

After Optimization (Image of Source)

Loop cloned when N==8, which
fixes loop length and

facilitates other optimizations

Optimization
Specifier

(Fortran)

Meaning

Optimization Control Line Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

CLONE(var==n1
[,n2]…)

Specifies that a conditional branch be generated as specified in arguments,
assuming the variable var is invariable in the loop, and that optimization
that clones the loop in an IF clause be performed. The conditional
expression has equality with the variable var in the 1st argument and the
values n1[,n2] and so on specified in the 2nd and subsequent arguments.

No Yes No Yes

Optimization
Specifier

(C/C++)

Meaning

Optimization Control Line Specifiable?

global procedure loop statement

clone(var==n1[,n
2]…)

Specifies that a conditional branch be generated as specified in arguments,
assuming the variable var is invariable in the loop, and that optimization
that clones the loop in an IF clause be performed. The conditional
expression has equality with the variable var in the 1st argument and the
values n1[,n2] and so on specified in the 2nd and subsequent arguments.

No No Yes No

205

Software Pipelining in an Outer Loop
(Using CLONE) (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=8,M=240,L=48
:
18 real(8)::a(N,M,L),b(N,M,L)
19 real(8),parameter::c=0.5
20 !$omp parallel private(iter,i,j,k)
21 1 do iter=1,itmax
22 1 !$omp do
23 2 p do k=1,L

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

24 3 p do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

25 4 p 2v do i=1,N
26 4 p 2v a(i,j,k)=a(i,j,k)+c*b(i,j,k)
27 4 p 2v enddo
28 3 p enddo
29 2 p enddo
30 1 !$omp enddo nowait
31 1 enddo
32 !$omp end parallel

Source Before Improvement

Before

[Seconds]

A condition for applying software pipelining is not satisfied because the
number (N) of iterations of the innermost loop is small.

GFLOPS
Effective

instruction

Before 29.51 6.18E+10

4 instruction
commit

3 instruction
commit

1 instruction
commit

N = 8

Does not enter software
pipelining route because
number (N) of innermost
loop iterations is smaller
than ITR:192

Fortran

206

Software Pipelining in an Outer Loop
(Using CLONE) (Source Tuning)

CLONE fixes the number of iterations of the innermost loop at the SIMD length. The result is facilitated
software pipelining in its outer loops, improved operation efficiency, and more effective instructions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=8,M=240,L=48
:
18 real(8)::a(N,M,L),b(N,M,L)
19 real(8),parameter::c=0.5
20 integer NN
21 NN = N
22 !$omp parallel private(iter,i,j,k)
23 1 do iter=1,itmax
24 1 !$omp do
25 1 !ocl clone(NN==8)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< CLONE
<<< Loop-information End >>>

26 2 p do k=1,L
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 3.75, ITR: 208,

MVE: 6, POL: S)
<<< Loop-information End >>>

27 3 p 2 do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< Loop-information End >>>

28 4 p 2v do i=1,NN
29 4 p 2v a(i,j,k)=a(i,j,k)+c*b(i,j,k)
30 4 p 2v enddo
31 3 p 2 enddo
32 2 p enddo
33 1 !$omp enddo nowait
34 1 enddo
35 !$omp end parallel

Source After Improvement (Source Tuning)

Before

[Seconds]

After

Effect of
2.29 times

Number of innermost
loop iterations is fixed
at SIMD length GFLOPS Effective instruction

Before 29.51 6.18E+10

After 67.60 1.44E+10

4 instruction
commit

3 instruction
commit

1 instruction
commit

No instruction
commit due to L2
cache access for a
floating-point load
instruction

M = 240

Software pipelining
applied

Fortran

207

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

改善前

[Seconds]

Software Pipelining in an Outer Loop
(Using CLONE) (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

35 #pragma omp parallel private(iter,i,j,k)
36 {
37 for (iter = 0; iter < itmax; iter++){
38 #pragma omp for nowait
39 p for (k = 0; k < L; k++){

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

40 p for (j = 0; j < M; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

41 p 2v for (i = 0; i < N; i++){
42 p 2v a[k][j][i] = a[k][j][i] + c * b[k][j][i];
43 p 2v }
44 p }
45 p }
46 }
47 }

Source Before Improvement

Statistics GFLOPS
Effective

instruction

Before 33.39 4.87E+10

C/C++

Before

A condition for applying software pipelining is not satisfied because the
number (N) of iterations of the innermost loop is small.

4 instruction
commit

3 instruction
commit

1 instruction
commit

N = 8

Does not enter software
pipelining route because
number (N) of innermost
loop iterations is smaller
than ITR:192

208

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

改善前 改善後

[Seconds]

Software Pipelining in an Outer Loop
(Using CLONE) (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

37 #pragma omp parallel private(iter,i,j,k)
38 {
39 for (iter = 0; iter < itmax; iter++){
40 #pragma omp for nowait
41 #pragma loop clone NN==8

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< CLONE
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

42 p for (k = 0; k < L; k++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 176,

MVE: 6, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

43 p 2 for (j = 0; j < M; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

44 p 2v for (i = 0; i < NN; i++){
45 p 2v a[k][j][i] = a[k][j][i] + c * b[k][j][i];
46 p 2v }
47 p 2 }
48 p }
49 }
50 }

Source After Improvement (Source Tuning)

Effect of
1.97 times

Statistics GFLOPS
Effective

instruction

Before 33.39 4.87E+10

After 65.89 1.50E+10

C/C++

CLONE fixes the number of iterations of the innermost loop at the SIMD length. The result is facilitated
software pipelining in its outer loops, improved operation efficiency, and more effective instructions.

Before After

Number of innermost
loop iterations is fixed
at SIMD length

4 instruction
commit

3 instruction
commit

1 instruction
commit

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

M = 240

Software pipelining
applied

209

• What is Rerolling?

• Rerolling (Before Improvement)

• Rerolling (Source Tuning)

Rerolling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED210

What is Rerolling?

Rerolling is a tuning method that facilitates the
optimization of a loop by restoring unrolled statements to
loop statements.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

do k=1,m
do j=1,n

do i=1,8
a(i,j,k) = b(i,j,k) + a(i,j,k)

enddo
enddo

enddo

Normal Loop

do k=1,m
do j=1,n

a(1,j,k) = b(1,j,k) + a(1,j,k)
a(2,j,k) = b(2,j,k) + a(2,j,k)
a(3,j,k) = b(3,j,k) + a(3,j,k)
a(4,j,k) = b(4,j,k) + a(4,j,k)
a(5,j,k) = b(5,j,k) + a(5,j,k)
a(6,j,k) = b(6,j,k) + a(6,j,k)
a(7,j,k) = b(7,j,k) + a(7,j,k)
a(8,j,k) = b(8,j,k) + a(8,j,k)

enddo
enddo

Manual Unrolling

Unrolling
Frequent tuning of code that does not
assume SIMDization

Rerolling
Restoring unrolled loop to original loop

do k=1,m
do j=1,n

do i=1,8
a(i,j,k) = b(i,j,k) + a(i,j,k)

enddo
enddo

enddo

Rerolling

Downside of unrolled code
Many Gather Load and Scatter Store
instructions due to distant access

211

Rerolling (Before Improvement)

A loop is manually unrolled. The result is a lot of Gather Load and Scatter Store
instructions. Consequently, the "No instruction commit due to L1D cache access for a
floating-point load instruction" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 real(8) :: a(8,N,M),b(8,N,M)
41

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 2
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

42 1 pp DO K=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.04, ITR: 40,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

43 2 p v DO J=1,N
44 2 p v a(1,J,K) = b(1,J,K) + a(1,J,K)
45 2 p v a(2,J,K) = b(2,J,K) + a(2,J,K)
46 2 p v a(3,J,K) = b(3,J,K) + a(3,J,K)
47 2 p v a(4,J,K) = b(4,J,K) + a(4,J,K)
48 2 p v a(5,J,K) = b(5,J,K) + a(5,J,K)
49 2 p v a(6,J,K) = b(6,J,K) + a(6,J,K)
50 2 p v a(7,J,K) = b(7,J,K) + a(7,J,K)
51 2 p v a(8,J,K) = b(8,J,K) + a(8,J,K)
52 2 p v ENDDO
53 1 p ENDDO

Source Before Improvement

Before

No
instruction
commit
due to L1D
cache
access for
a floating-
point load
instruction

[Seconds]
N = 128
M = 250

Fortran

212

Rerolling (Source Tuning)

Data access becomes sequential due to rerolling (restoring to a loop), which facilitates
optimizations such as effective software pipelining, SIMDization, and loop unrolling.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

40 real(8) :: a(8,N,M),b(8,N,M)
41

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 889
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

42 1 pp 2v DO K=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< Loop-information End >>>

43 2 p 2 DO J=1,N
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< Loop-information End >>>

44 3 p 2 DO I=1,8
45 3 p 2v a(I,J,K) = b(I,J,K) + a(I,J,K)
46 3 p 2v ENDDO
47 2 p ENDDO
48 1 p ENDDO

Source After Improvement (Source Tuning)

Before After

Transformation
into 1 loop

Effect of
3.01 times

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

[Seconds]

SIMDization and
loop unrolling facilitated

Fortran

213

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前

[Seconds]

Rerolling (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

50 #pragma omp parallel for private(j)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

51 p for(k=0;k<M; k++)
52 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.04, ITR: 40,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

53 p v for(j=0; j<N; j++)
54 p v {
55 p v a[k][j][0] = b[k][j][0] + a[k][j][0];
56 p v a[k][j][1] = b[k][j][1] + a[k][j][1];
57 p v a[k][j][2] = b[k][j][2] + a[k][j][2];
58 p v a[k][j][3] = b[k][j][3] + a[k][j][3];
59 p v a[k][j][4] = b[k][j][4] + a[k][j][4];
60 p v a[k][j][5] = b[k][j][5] + a[k][j][5];
61 p v a[k][j][6] = b[k][j][6] + a[k][j][6];
62 p v a[k][j][7] = b[k][j][7] + a[k][j][7];
63 p v }
64 p }
65
66 return;
67 }

Source Before Improvement

N=128
M=250

C/C++

A loop is manually unrolled. The result is a lot of Gather Load and Scatter Store
instructions. Consequently, the "No instruction commit due to L1D cache access for a
floating-point load instruction" event occurs many times.

Before

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

214

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前 改善後

[Seconds]

Rerolling (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

50 #pragma omp parallel for private(i,j) collapse(3)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

51 p 2v for (k=0; k< M; k++)
52 2 {
53 p 2 for(j=0; j<N; j++)
54 2 {
55 p 2 for(i=0; i<8; i++)
56 p 2v {
57 p 2v a[k][j][i] = b[k][j][i] + a[k][j][i];
58 p 2v }
59 p 2v }
60 p 2v }
61
62 return;
63 }

Source After Improvement (Source Tuning)

Effect of
2.50 times

C/C++

Data access becomes sequential due to rerolling (restoring to a loop), which facilitates
optimizations such as effective software pipelining, SIMDization, and loop unrolling.

Before After

Transformation into 1 loop

No
instruction
commit due
to L1D cache
access for a
floating-
point load
instruction

SIMDization and
loop unrolling facilitated

215

• What is Loop Unswitching?

• Effect of Loop Unswitching (Before Improvement)

• Effect of Loop Unswitching (After Improvement)

Loop Unswitching

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED216

Loops may contain IF statements that have branches of invariant states. This optimization takes those
IF statements out of the loops and creates loops for cases where the IF statement conditions are
satisfied/not satisfied.

What is Loop Unswitching?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!$omp do

do i=1,n1

!ocl unswitching

if (n1 >= q) then

processing 1

endif

!ocl unswitching

if(n1 > r) then

processing 2

endif

!ocl unswitching

if(n1 < s) then

processing 3

endif

enddo

!$omp enddo

Source Code !pattern (5)

if((con1 false).and.(con2 true).and.(con3 true))then

do i=1,n1

processing 2

processing 3

enddo

endif

!pattern (6)

if((con1 false).and.(con2 true).and.(con3 false))then

do i=1,n1

processing 2

enddo

endif

!pattern(7)

if((con1 false).and.(con2 false).and.(con3 true))then

do i=1,n1

processing 3

enddo

endif

!pattern(8)

if((con1 false).and.(con2 false).and.(con3 false))then

do i=1,n1

enddo

endif

Optimization Image

!pattern (1)

if((con1 true).and.(con2 true).and.(con3 true))then

do i=1,n1

processing 1

processing 2

processing 3

enddo

endif

!pattern (2)

if((con1 true).and.(con2 true).and.(con3 false))then

do i=1,n1

processing 1

processing 2

enddo

endif

!pattern (3)

if((con1 true).and.(con2 false).and.(con3 true))then

do i=1,n1

processing 1

processing 3

enddo

Endif

!pattern (4)

if((con1 ture).and.(con2 false).and.(con3 false))then

do i=1,n1

processing 1

enddo

endif

Unrolled to 8 IF statements (DO statements)

217

Effect of Loop Unswitching
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

SIMDization and software pipelining are not performed effectively because the innermost
loop contains an IF statement. Consequently, the "No instruction commit waiting for a
floating-point instruction to be completed" event occurs many times.

97 1 !$omp do
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.31, ITR: 96,

MVE: 2, POL: L)
<<< UNSWITCHING
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

98 2 p 2v do i=1,n1
99 2
100 3 p 2v if (n1 >= q) then
101 3 p 2v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*(c3+b(i)*c4)))
102 3 p 2v endif
103 2
104 3 p 2v if(n1 > r) then
105 3 p 2v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/(c3*b(i)/c4)))
106 3 p 2v endif
107 2
108 3 p 2v if(n1 < s) then
109 3 p 2v a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/(c3+b(i)/c4)))
110 3 p 2v endif
111 2 p 2v enddo
112 1 !$omp enddo nowait

Source Before Improvement

SIMD

No instruction
commit waiting
for a floating-
point instruction
to be completed

Before

[Seconds]

Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 7.47E+10 94.18%

Fortran

218

Effect of Loop Unswitching
(After Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Specify loop unswitching for IF statements to eliminate branching and facilitate SIMDization
and software pipelining. The result is significant improvement of the "No instruction commit
waiting for a floating-point instruction to be completed" event.

97 1 !$omp do
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.04, ITR: 80,

MVE: 3, POL: S)
<<< UNSWITCHING
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

98 2 p 2v do i=1,n1
99 2 !ocl unswitching
100 3 p 2v if (n1 >= q) then
101 3 p 2v a(i) = c0+b(i)*(c1+b(i)*(c2+b(i)*(c3+b(i)*c4)))
102 3 p 2v endif
103 2 !ocl unswitching
104 3 p 2v if(n1 > r) then
105 3 p 2v a(i) = c0*b(i)/(c1*b(i)/(c2*b(i)/(c3*b(i)/c4)))
106 3 p 2v endif
107 2 !ocl unswitching
108 3 p 2v if(n1 < s) then
109 3 p 2v a(i) = c0+b(i)/(c1+b(i)/(c2+b(i)/(c3+b(i)/c4)))
110 3 p 2v endif
111 2 p 2v enddo
112 1 !$omp enddo nowait

Source After Improvement (Optimization Control Line Tuning)

No instruction
commit waiting
for a floating-
point
instruction to
be completed

SIMD

Effective
instruction

SIMD instruction
rate (%)

(/Effective
instruction)

Before 7.47E+10 94.18%

After 1.60E+10 75.83%

Before

[Seconds]

After

Effect of
5.68 times

Fortran

219

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前

[Seconds]

Effect of Loop Unswitching
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

91 #pragma omp for nowait
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< UNSWITCHING
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

92 p 2v for(i=0; i<n1; i++)
93 p 2v {
94 p 2v if (n1 >= q)
95 p 2v {
96 p 2v a[i] = c0+b[i]*(c0+b[i]*(c0+b[i]*(c0+b[i]*c0)));
97 p 2v }
98
99 p 2v if(n1 > r)
100 p 2v {
101 p 2v a[i] = c0*b[i]/(c0*b[i]/(c0*b[i]/(c0*b[i]/c0)));
102 p 2v }
103
104 p 2v if(n1 < s)
105 p 2v {
106 p 2v a[i] = c0+b[i]/(c0+b[i]/(c0+b[i]/(c0+b[i]/c0)));
107 p 2v }
108 p 2v }
109 }

Source Before Improvement

Statistics
Effective

instruction

SIMD
instruction
rate (%)

(/Effective
instruction)

Before 8.54E+10 89.49%

C/C++

SIMDization and software pipelining are not performed effectively because the innermost
loop contains an if statement. Consequently, the "No instruction commit waiting for a
floating-point instruction to be completed" event occurs many times.

No instruction
commit waiting
for a floating-
point instruction
to be completed

Before

220

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

改善前 改善後

[Seconds]

Effect of Loop Unswitching
(After Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

89 for(j=0; j<iter; j++)
90 {
91 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.12, ITR: 96, MVE: 3, POL: S)
<<< UNSWITCHING
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

92 p 2v for(i=0; i<n1; i++)
93 p 2v {
94 #pragma statement unswitching
95 p 2v if (n1 >= q)
96 p 2v {
97 p 2v a[i] = c0+b[i]*(c0+b[i]*(c0+b[i]*(c0+b[i]*c0)));
98 p 2v }
99

100 #pragma statement unswitching
101 p 2v if(n1 > r)
102 p 2v {
103 p 2v a[i] = c0*b[i]/(c0*b[i]/(c0*b[i]/(c0*b[i]/c0)));
104 p 2v }
105
106 #pragma statement unswitching
107 p 2v if(n1 < s)
108 p 2v {
109 p 2v a[i] = c0+b[i]/(c0+b[i]/(c0+b[i]/(c0+b[i]/c0)));
110 p 2v }
111 p 2v }
112 }

Source After Improvement (Optimization Control Line Tuning)

Effect of
10.31 times

Statistics
Effective

instruction

SIMD
instruction
rate (%)

(/Effective
instruction)

Before 8.54E+10 89.49%

After 1.68E+10 71.58%

C/C++

Specify loop unswitching for if statements to eliminate branching and facilitate SIMDization
and software pipelining. The result is significant improvement of the "No instruction commit
waiting for a floating-point instruction to be completed" event.

No
instruction
commit
waiting for a
floating-
point
instruction
to be
completed

Before After

221

• Avoiding the Scatter Store Instruction

• Facilitating Gathering by the Gather Load Instruction

• Avoiding Excessive SFI

• Using the Multiple Structures Instruction

• Adjusting the Hardware Prefetch Distance

• SVE Vector Register Size (SIMD Width)

• Using the Half-Precision Real Type

Microarchitecture-Dependent
Bottlenecks

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED222

• Avoiding the Scatter Store Instruction (Before Improvement)

• Avoiding the Scatter Store Instruction (Source Tuning)

Avoiding the Scatter Store
Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED223

Avoiding the Scatter Store Instruction
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 !$omp parallel
43 1 DO K=1, ITER
44 1 !$omp do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

45 2 p DO J=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.60, ITR: 80,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

46 3 p 2v DO I=1,M
47 3 p 2v a(J,I) = b(I,J)
48 3 p 2v ENDDO
49 2 p ENDDO
50 1 !$omp end do nowait
51 1 ENDDO
52 !$omp end parallel

Source Before Improvement

Before

[Seconds]

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.62E+09 1.50E+09 0.92 99.98% 0.02% 0.00%

High L1D miss rates

Performance degrades when the number of Scatter Store (non-sequential store) instructions is large.
Consequently, the "No instruction commit due to L1D cache access for a floating-point load instruction"
event occurs many times.

Store instruction

SIMD

Single vector
contiguous

store
instruction

Multiple
vector

contiguous
structure

store
instruction

Non-
contiguous

scatter store
instruction

Floating-point
register spill
instruction

Predicate
register spill
instruction

1.60E+01 0.00E+00 1.30E+08 1.07E+04 5.49E+03

SIMD

More Scatter Store instructions
than other instructions

Fortran

224

Avoiding the Scatter Store Instruction
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 !$omp parallel
43 1 DO K=1, ITER
44 1 !$omp do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

45 2 p DO J=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.87, ITR: 256,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

46 3 p 4v DO I=1,M
47 3 p 4v a(I,J) = b(J,I)
48 3 p 4v ENDDO
49 2 p ENDDO
50 1 !$omp end do nowait
51 1 ENDDO
52 !$omp end parallel

Source After Improvement

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.62E+09 1.50E+09 0.92 99.98% 0.02% 0.00%

After 0.00 3.64E+08 3.03E+06 0.01 99.97% 0.02% 0.01%

Before

[Seconds]

After

Effect of
51.9 times

Change the loop index to prevent the occurrence of Scatter Store instructions. The result is
significant improvement in L1D misses.

L1D misses significantly
improved

Store instruction

SIMD

Single vector
contiguous store

instruction

Multiple vector
contiguous

structure store
instruction

Non-contiguous
scatter store
instruction

Floating-point
register spill
instruction

Predicate register
spill instruction

1.60E+01 0.00E+00 1.30E+08 1.07E+04 5.49E+03

1.30E+08 0.00E+00 0.00E+00 6.40E+01 2.38E+02

Number of Scatter Store
instructions successfully reduced

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

Fortran

225

Single vector
contiguous

store
instruction

Multiple
vector

contiguous
structure

store
instruction

Non-
contiguous

scatter store
instruction

Floating-
point register

spill
instruction

Predicate
register spill
instruction

0.00E+00 0.00E+00 1.30E+08 1.17E+04 5.88E+03

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.58E+09 1.50E+09 0.95 100.00% 0.00% 0.00%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前

[Seconds]

Avoiding the Scatter Store Instruction
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

44 #pragma omp parallel
45 {
46 for(k=0; k<iter; k++)
47 {
48 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

49 p for(j=0; j<m; j++)
50 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.40, ITR: 80,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b
<<< Loop-information End >>>

51 p 2v for(i=0;i<m;i++)
52 p 2v {
53 p 2v a[i][j] = b[j][i];
54 p 2v }
55 p }
56 }
57 }

Source Before Improvement

C/C++

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

High L1D miss rates

Performance degrades when the number of Scatter Store (non-sequential store) instructions is large.
Consequently, the "No instruction commit due to L1D cache access for a floating-point load instruction"
event occurs many times.

More Scatter Store instructions
than other instructions

Before

226

Single vector
contiguous

store
instruction

Multiple
vector

contiguous
structure

store
instruction

Non-
contiguous

scatter store
instruction

Floating-
point register

spill
instruction

Predicate
register spill
instruction

0.00E+00 0.00E+00 1.30E+08 1.17E+04 5.88E+03

1.30E+08 0.00E+00 0.00E+00 3.20E+01 1.70E+01

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

Before 0.00 1.58E+09 1.50E+09 0.95 100.00% 0.00% 0.00%

After 0.00 4.13E+08 3.67E+06 0.01 99.35% 0.67% -0.01%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

改善前 改善後

[Seconds]

Avoiding the Scatter Store Instruction
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

44 #pragma omp parallel
45 {
46 for(k=0; k<iter; k++)
47 {
48 #pragma omp for nowait

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

49 p for(j=0; j<m; j++)
50 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.28, ITR: 96,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a
<<< Loop-information End >>>

51 p 4v for(i=0;i<m;i++)
52 p 4v {
53 p 4v a[j][i] = b[i][j];
54 p 4v }
55 p }
56 }
57 }

Source After Improvement

Effect of
47.7 times

C/C++

Change the loop index to prevent the occurrence of Scatter Store instructions. The result is
significant improvement in L1D misses.

L1D misses significantly
improved

Number of Scatter Store
instructions successfully reduced

No
instruction
commit due
to L1D cache
access for a
floating-point
load
instruction

Before After

227

• Gathering Function of the Gather Instruction

• Facilitating Gathering by the Gather Load Instruction (Before Improvement)

• Facilitating Gathering by the Gather Load Instruction (Source Tuning)

Facilitating Gathering by the
Gather Load Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED228

Gathering Function of the Gather Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

If two elements issued simultaneously from one FP are adjacent to each other, the Gather
instruction can process them at a high speed. If the addresses of the two adjacent elements
match each other within 128 bytes, the instruction can speed up processing by gathering the
elements and processing them in one flow.

◼ If two adjacent elements belong to the same 128-byte block, they are gathered and
processed in one flow. In the following address pattern examples, indicates the
gathered parts, and the two elements are processed in one L1D$ pipeline flow.

20 1 3

4 5

6 7

◆ Address pattern example 1

128B

128B

128B

128B

20 1

4

6 7

◆ Address pattern example 2

128B

128B

128B

128B

3

5

Gathered and processed in 1 flow

◼ What is the gathering function of the Gather instruction?

Pay attention when implementing the starting addresses
of arrays to make full use of the gathering function of the
Gather instruction.

229

Facilitating Gathering by the Gather Load
Instruction (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 real(kind=8),dimension(n,m) :: a

31 real(kind=8),dimension(n,m) :: b,c

32

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 1.94, ITR: 24, MVE: 2)

<<< Loop-information End >>>

33 1 v do i = 1, m

34 1 v a(1,i) = b(1,i) + c(1,i)

35 1 v a(2,i) = b(2,i) + c(2,i)

36 1 v a(3,i) = b(3,i) + c(3,i)

37 1 v a(4,i) = b(4,i) + c(4,i)

38 1 v a(5,i) = b(5,i) + c(5,i)

39 1 v a(6,i) = b(6,i) + c(6,i)

40 1 v a(7,i) = b(7,i) + c(7,i)

41 1 v a(8,i) = b(8,i) + c(8,i)

42 1 v a(9,i) = b(9,i) + c(9,i)

43 1 v a(10,i) = b(10,i) + c(10,i)

44 1 v a(11,i) = b(11,i) + c(11,i)

45 1 v a(12,i) = b(12,i) + c(12,i)

46 1 v a(13,i) = b(13,i) + c(13,i)

47 1 v a(14,i) = b(14,i) + c(14,i)

48 1 v a(15,i) = b(15,i) + c(15,i)

49 1 v a(16,i) = b(16,i) + c(16,i)

50 1 v end do

Load-store instruction

Load instruction Store instruction

Non-contiguous gather load
instruction

Non-contiguous scatter
store instruction

Before 9.60E+08 4.80E+08

L1 busy rate (%) L2 busy rate (%) Memory busy rate (%)

Before 76.29% 2.15% 0.00%

The Gather Load and Scatter Store instructions occur due to stride access, and the "No instruction
commit due to L1D cache access for a floating-point load instruction" event occurs many times.

Busy

The non-contiguous Gather Load
instruction is used, but 128 or more
bytes are between the addresses of 2
adjacent elements. Therefore, the
gathering function of the Gather
instruction is not working, resulting in a
high L1 busy rate.

Instruction

Although arrays a, b, and c are
sequentially accessed, each
array (a(1,i) etc.) is accessed
with a stride of 16 elements
(128 bytes) per iteration.
-> Since access is discrete, the
Gather instruction is used.

Gather instruction rate (%)

0 flow rate (%) 1 flow rate (%) 2 flow rate (%)

Before 0.00% 0.00% 100.00%

Extra

n = 16

Source Before Improvement

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

Fortran

Before

[Seconds]

230

Facilitating Gathering by the Gather Load
Instruction (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

30 real(kind=8),dimension(n,m) :: a1,a2,a3,a4

31 real(kind=8),dimension(n,m) :: b1,b2,b3,b4,c1,c2,c3,c4

32

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.01, ITR: 24, MVE: 2)

<<< Loop-information End >>>

33 1 v do i = 1, m

34 1 v a1(1,i) = b1(1,i) + c1(1,i)

35 1 v a1(2,i) = b1(2,i) + c1(2,i)

36 1 v a1(3,i) = b1(3,i) + c1(3,i)

37 1 v a1(4,i) = b1(4,i) + c1(4,i)

38 1 v a2(1,i) = b2(1,i) + c2(1,i)

39 1 v a2(2,i) = b2(2,i) + c2(2,i)

40 1 v a2(3,i) = b2(3,i) + c2(3,i)

41 1 v a2(4,i) = b2(4,i) + c2(4,i)

42 1 v a3(1,i) = b3(1,i) + c3(1,i)

43 1 v a3(2,i) = b3(2,i) + c3(2,i)

44 1 v a3(3,i) = b3(3,i) + c3(3,i)

45 1 v a3(4,i) = b3(4,i) + c3(4,i)

46 1 v a4(1,i) = b4(1,i) + c4(1,i)

47 1 v a4(2,i) = b4(2,i) + c4(2,i)

48 1 v a4(3,i) = b4(3,i) + c4(3,i)

49 1 v a4(4,i) = b4(4,i) + c4(4,i)

50 1 v end do

Gather instruction rate (%)

0 flow rate (%) 1 flow rate (%) 2 flow rate (%)

Before 0.00% 0.00% 100.00%
After 0.00% 75.00% 25.00%

Arrays were split so that there would be less than 128 bytes between the addresses of two adjacent
elements. The gathering function of the Gather function now works. The result is improvement of the
"No instruction commit due to L1D cache access for a floating-point load instruction" event.

Effect of
1.15 times

Busy

Instruction

Although arrays a, b, and c are
sequentially accessed, each array
(a1(1,i) and so on) is accessed with
a stride of 4 elements (32 bytes)
per iteration.
->
The gathering function of the Gather
instruction is working because there
are less than 128 bytes between the
addresses of pairs of adjacent
elements.

n = 4

L1 busy rate (%) L2 busy rate (%) Memory busy rate (%)

Before 76.29% 2.15% 0.00%

After 66.21% 2.84% 0.00%

The gathering function of the
Gather instruction is working, and
1 L1D$ pipeline flow is now
processing 2 adjacent elements.

Extra

Source After Improvement (Source Tuning)

Load-store instruction

Load instruction Store instruction

Non-contiguous gather load
instruction

Non-contiguous scatter store
instruction

Before 9.60E+08 4.80E+08
After 9.60E+08 4.80E+08

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

Fortran

Before

[Seconds]

After

231

Load-store instruction

Load instruction Store instruction

Non-contiguous gather load
instruction

Non-contiguous scatter
store instruction

Before 7.20E+08 3.60E+08

L1 busy rate (%) L2 busy rate (%) Memory busy rate (%)

Before 77.75% 2.77% 0.00%

Gather instruction rate (%)

0 flow rate (%) 1 flow rate (%) 2 flow rate (%)

Before 0.00% 0.00% 8.33%

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前

[Seconds]

Facilitating Gathering by the Gather Load
Instruction (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

50 void sub(int n, int m,double (* restrict a)[n],

double (* restrict b)[n],double (* restrict c)[n])

51 {

52 int i;

53

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.12, ITR: 32, MVE: 2, POL: S)

<<< Loop-information End >>>

54 v for(i=0; i<m; i++)

55 v {

56 v a[i][0] = b[i][0] + c[i][0];

57 v a[i][1] = b[i][1] + c[i][1];

58 v a[i][2] = b[i][2] + c[i][2];

59 v a[i][3] = b[i][3] + c[i][3];

60 v a[i][4] = b[i][4] + c[i][4];

61 v a[i][5] = b[i][5] + c[i][5];

62 v a[i][6] = b[i][6] + c[i][6];

63 v a[i][7] = b[i][7] + c[i][7];

64 v a[i][8] = b[i][8] + c[i][8];

65 v a[i][9] = b[i][9] + c[i][9];

66 v a[i][10] = b[i][10] + c[i][10];

67 v a[i][11] = b[i][11] + c[i][11];

68 v }

70 return;

71 }

Source Before Improvement

C/C++

The Gather Load and Scatter Store instructions occur due to stride access, and the "No instruction
commit due to L1D cache access for a floating-point load instruction" event occurs many times.

The non-contiguous Gather Load
instruction is used, but 128 or more
bytes are between the addresses of 2
adjacent elements. Therefore, the
gathering function of the Gather
instruction is not working, resulting in a
high L1 busy rate.

Although arrays a, b, and c are
sequentially accessed, each
array (a[i][1] etc.) is accessed
with a stride of 16 elements
(128 bytes) per iteration.
-> Since access is discrete, the
Gather instruction is used.

n = 16

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

Before

232

Gather instruction rate (%)

0 flow rate (%) 1 flow rate (%) 2 flow rate (%)

Before 0.00% 0.00% 8.33%
After 0.00% 100.00% 0.00%

L1 busy rate (%) L2 busy rate (%) Memory busy rate (%)

Before 77.75% 2.77% 0.00%

After 59.49% 1.07% 0.00%
Load-store instruction

Load instruction Store instruction

Non-contiguous gather load
instruction

Non-contiguous scatter store
instruction

Before 7.20E+08 3.60E+08
After 7.20E+08 3.60E+08

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

3.5E+00

4.0E+00

4.5E+00

5.0E+00

改善前 改善後

[Seconds]

Facilitating Gathering by the Gather Load
Instruction (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

73 void sub(int n, int m,double (* restrict a1)[n],double (* restrict a2)[n],

74 double (* restrict a3)[n],

75 double (* restrict b1)[n],double (* restrict b2)[n],

76 double (* restrict b3)[n],

77 double (* restrict c1)[n],double (* restrict c2)[n],

78 double (* restrict c3)[n])

79 {

80 int i;

81

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.61, ITR: 24, MVE: 2, POL: S)

<<< Loop-information End >>>

82 v for(i=0; i<m; i++)

83 v {

84 v a1[i][0] = b1[i][0] + c1[i][0];

85 v a1[i][1] = b1[i][1] + c1[i][1];

86 v a1[i][2] = b1[i][2] + c1[i][2];

87 v a1[i][3] = b1[i][3] + c1[i][3];

88 v a2[i][0] = b2[i][0] + c2[i][0];

89 v a2[i][1] = b2[i][1] + c2[i][1];

90 v a2[i][2] = b2[i][2] + c2[i][2];

91 v a2[i][3] = b2[i][3] + c2[i][3];

92 v a3[i][0] = b3[i][0] + c3[i][0];

93 v a3[i][1] = b3[i][1] + c3[i][1];

94 v a3[i][2] = b3[i][2] + c3[i][2];

95 v a3[i][3] = b3[i][3] + c3[i][3];

96 v }

98 return;

99 }

Effect of

1.31 times

Source After Improvement (Source Tuning)

C/C++

Arrays were split so that there would be less than 128 bytes between the addresses of two adjacent
elements. The gathering function of the Gather function now works. The result is improvement of the
"No instruction commit due to L1D cache access for a floating-point load instruction" event.

Although arrays a, b, and c are
sequentially accessed, each array
(a1[i][1] and so on) is accessed
with a stride of 4 elements (32
bytes) per iteration.
->
The gathering function of the Gather
instruction is working because there
are less than 128 bytes between the
addresses of pairs of adjacent
elements.

n = 4

The gathering function of the
Gather instruction is working, and
1 L1D$ pipeline flow is now
processing 2 adjacent elements.

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

Before After

Busy

Instruction

Extra

233

• What is Excessive SFI?

• Excessive SFI Occurrence Case 1

• Excessive SFI Occurrence Case 2

• Avoiding Excessive SFI (Before Improvement)

• Avoiding Excessive SFI (Source Tuning)

Avoiding Excessive SFI

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED234

What is Excessive SFI?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫What is SFI (Store Fetch Interlock)?
⚫If the preceding store instruction and the following load instruction have

different addresses, this control mechanism sets an interlock to prevent
the load operation from passing the store operation.

⚫Basically, only addresses for store are locked.

⚫Excessive SFI

Excessive SFI is a phenomenon where the above control locks excessive
addresses. This occurs in the following cases:

⚫ For masked SIMD, addresses whose mask determination value is 0 (do
not store) are locked.

⚫ If the gathering function of GatherLoad works, all the elements on a
cache line are subject to the SFI check for GatherLoad. In this case, SFI
may be detected from addresses that are not actually for load, and the

control may determine that they be locked.

235

Excessive SFI Occurrence Case 1

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

In the right example, SFI does not occur
when X=8, but addresses whose
mask value is 0 are locked when X=6,
resulting in excessive SFI.

1,
1

2,
1

3,
1

4,
1

5,
1

6,
1

7,
1

8,
1

1,
2

2,
2

3,
2

4,
2

5,
2

6,
2

7,
2

8,
2

3,
1

Array y ・・・

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

j=1 load mask

j=1 store mask

j=2 load mask

j=2 store mask

1,
1

2,
1

3,
1

4,
1

5,
1

6,
1

1,
2

2,
2

3,
2

4,
2

5,
2

6,
2

3,
1

3,
2

3,
3

3,
4

3,
5

Array y ・・・

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

j=1 load mask

j=1 store mask

j=2 load mask

j=2 store mask

Locked even when mask value is 0,
and SFI occurs in iteration j=2

No overlap, and
SFI does not occur

real*8 y(X,n), x1(X,n) <- X = 8 or 6
Do k = 1, iter
Do j = 1, n
Do i = 1, X <- X = 8 or 6
y(i,j) = y(i,j) + x1(i,j)

End Do
End Do

End Do

Source Code

◼ X = 8 (SFI does not occur)

◼ X = 6 (SFI occurs)

236

Excessive SFI Occurrence Case 1

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

SFI does not occur in cases of 5
or less because compiler decides
not to perform SIMDization
(FULLUNROLL)

SFI occurs in cases of 7 or 6

real*8 y(X,n), x1(X,n) <- X = 8 to 1
Do k = 1, iter
Do j = 1, n
Do i = 1, X <- X = 8 to 1
y(i,j) = y(i,j) + x1(i,j)

End Do
End Do

End Do

Source Code
In the right example, SFI occurs when
X=7 or 6. SFI does not occur when
X=5 or less because SIMDization
is not performed.

Elapsed time

237

Excessive SFI Occurrence Case 2

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

1,1 2,1 3,1 4,1 ・・・ ・・・ 15,1 16,1 1,2 2,2 ・・・Array y

Disabled Disabled ・・・ ・・・ Disabled Disabled ・・・Gather

Array y

No existing store operation is
subject to SFI, and excessive
SFI does not occur

1,1 1,2 1,3 1,4 ・・・ ・・・ 1,15 1,16i=1 to 16 store

1,17 1,18 ・・・i=17 or greater, load

i=17 or greater, store

1,17 1,18 ・・・

1,1 1,2 1,3 1,4 ・・・ ・・・ 1,15 1,16 1,17 1,18 ・・・

Enabled Enabled ・・・ ・・・ Enabled Enabled ・・・Gather

1,1 1,2 1,3 1,4 ・・・ ・・・ 1,15 1,16i=1 to 16 store

1,17 1,18 ・・・i=17 or greater, load

i=17 or greater, store
1,17 1,18 ・・・

Existing store operation
is subject to SFI, and
excessive SFI occurs

1,1 1,2 1,3 1,4 ・・・ ・・・ 1,15 1,16i=1 to 16 load

1,1 1,2 1,3 1,4 ・・・ ・・・ 1,15 1,16i=1 to 16 load

Gathering function of
GatherLD operating, and
cache line (all its elements)
is subject to SFI check

Gathering function of
GatherLD not operating

No gathering due to access with stride of 128 bytes

Gathering due to access with stride of 8 bytes

integer n <- 1 or 16
real*8 y(n, m), x1(n, m)

Do k = 1, iter
Do i = 1, m

y(1, i) = y(1, i) + x1(1, i)
End Do

End Do

Source CodeIn the right example, SFI does not occur
when X=1, but excessive SFI occurs
when X=16 because no existing store
operation is subject to SFI.

◼ X = 1 (SFI does not occur)

◼ X = 16 (SFI occurs)

238

Avoiding Excessive SFI
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

39 real(4) :: a(20,M), b(20,M)
40 integer(4) :: M, ITER
41 real(4),parameter :: c=0.5
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 304,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

46 2 p DO J=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< Loop-information End >>>

47 3 p v DO I=1,20
48 3 p v a(I,J) = a(I,J) + c * b(I,J)
49 3 p v ENDDO
50 2 p ENDDO

Source Before Improvement

Before

[Seconds]

No
instruction
commit due
to L1D cache
access for a
floating-
point load
instruction

SFI(Store Fetch
Interlock) rate

Before 0.44

Busy

The innermost loop applies to Case 1. Addresses with a mask value of 0 are
locked, and excessive SFI occurs. Point: The case has a small number of loop
iterations and no SWPL.

Fortran

239

Avoiding Excessive SFI (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

39 real(4) :: a(32,M), b(32,M)
40 integer(4) :: M, ITER
41 real(4),parameter :: c=0.5
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 304,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

46 2 p DO J=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< Loop-information End >>>

47 3 p v DO I=1,20
48 3 p v a(I,J) = a(I,J) + c * b(I,J)
49 3 p v ENDDO
50 2 p ENDDO

Source After Improvement

Before

[Seconds]

After

Effect of
3.94 times

No
instruction
commit
due to L1D
cache
access for
a floating-
point load
instruction

SFI(Store Fetch
Interlock) rate

Before 0.43

After 0.01

Busy

Excessive SFI was successfully avoided by changing the number of
array elements through padding to a multiple of the SIMD length.

Fortran

240

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前

[Seconds]

Avoiding Excessive SFI
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 void sfil1(float (* restrict a)[20], float (* restrict b)[20],
int m, int iter)

43 {
44 float c=0.5;
45 int i,j,k;
46
47 #pragma omp parallel
48 {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
49 for(k=0; k<iter; k++)
50 {
51 #pragma omp for nowait

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
52 p for(j=0; j<m; j++)
53 p {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
54 p v for(i=0; i< 20; i++)
55 p v {
56 p v a[j][i] = a[j][i] + c * b[j][i];
57 p v }
58 p }
59 }
60 }
62 return;
63 }

Source Before Improvement

Busy SFI(Store Fetch Interlock) rate

Before 0.44%

C/C++

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

The innermost loop applies to Case 1. Addresses with a mask value of 0 are locked, and
excessive SFI occurs. Point: The case has a small number of loop iterations and no SWPL.

Before

241

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

改善前 改善後

[Seconds]

Avoiding Excessive SFI (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 void sfil1(float (* restrict a)[32], float (* restrict b)[32],
int m, int iter)

43 {
44 float c=0.5;
45 int i,j,k;
46
47 #pragma omp parallel
48 {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
49 for(k=0; k<iter; k++)
50 {
51 #pragma omp for nowait

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
52 p for(j=0; j<m; j++)
53 p {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
54 p v for(i=0; i< 20; i++)
55 p v {
56 p v a[j][i] = a[j][i] + c * b[j][i];
57 p v }
58 p }
59 }
60 }
62 return;
63 }

Source After Improvement

Effect of
4.19 times

Busy SFI(Store Fetch Interlock) rate

Before 0.44%

After 0.01%

C/C++

Before After

No
instruction
commit due
to L1D cache
access for a
floating-
point load
instruction

Excessive SFI was successfully avoided by changing the number of
array elements through padding to a multiple of the SIMD length.

242

• Conditions for Applying the Multiple Structures Instruction

• Using the Multiple Structures Instruction (Before Improvement)

• Using the Multiple Structures Instruction (Source Tuning)

Using the Multiple Structures
Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED243

Conditions for Applying the Multiple
Structures Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Supported by Fortran and C/C++ (Trad mode/Clang mode)

⚫ Options can set on/off for Fortran and C/C++ (Trad mode).

⚫ For an array of structures (AoS), the instruction applies when the innermost
dimension consists of 2, 3, or 4 elements and all the elements are accessed. If
the innermost dimension contains 5 or more elements, the instruction does not
apply.

⚫ If higher performance through sequential load is expected from rewriting an
array of structures (AoS) to a structure of arrays (SoA), we recommend doing
so.

real*8 y(n), x (4,n)

Do j = 1, iter
Do i = 1, n

y(i) = x(1,i) + x(2,i) + x(3,i) + x(4,i)
End Do

End Do

-Ksimd_use_multiple_structures |
-Ksimd_nouse_multiple_structures

Default is -Ksimd_use_multiple_structures, and can
suppress with -Ksimd_nouse_multiple_structures

⚫ Example of applicable case(Fortran)： ⚫ Example of applicable case(C/C++)：

double y[n], x[N][4];

for (j = 0; j < iter; j++) {
for (i = 0; i < N; i++) {
y(i) = x[i][0] + x[i][1] + x[i][2] + x[i][3];

}
}

244

Using the Multiple Structures Instruction
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

An array of structures contains six elements and the Gather Load instruction is used (the
Multiple Structures instruction is not applicable). Consequently, the "No instruction commit
due to L1D cache access for a floating-point load instruction" event occurs many times.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.35, ITR: 96,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

22 2 p 2v do i=1,N
23 2 p 2v b(i)=a(1,i) + a(2,i) + a(3,i) + &

a(4,i) + a(5,i) + a(6,i)
24 2 p 2v enddo

Source Before Improvement

The Multiple Structures
instruction is not applicable
because Array a contains 6
elements.

Before

No
instruction
commit due
to L1D
cache
access for a
floating-
point load
instruction

[Seconds]

Fortran

245

Using the Multiple Structures Instruction
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 1.33, ITR: 56,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, a, b
<<< Loop-information End >>>

22 2 p v do i=1,N
23 2 p v b(i) = a(1,i) + a(2,i) + a(3,i) + &

c(1,i) + c(2,i) + c(3,i)
24 2 p v enddo

Source After Improvement (Source Tuning)

Applying the Multiple Structures instruction
Because Array a contained 6 elements,
Array c was added so that each array

contains 3 elements.

Through division to form arrays containing three elements each, applying the Multiple
Structures instruction reduces the "No instruction commit due to L1D cache access for a
floating-point load instruction" event.

Before After

No
instruction
commit due
to L1D cache
access for a
floating-
point load
instruction

Effect of
1.73 times

[Seconds]

Fortran

246

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

2.0E+00

改善前

[Seconds]

Using the Multiple Structures Instruction
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

33 void MultiStructure(int n, int m, int iter)
34 {
35 int i,k;
36
37 #pragma omp parallel
38 {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
39 for(k=0; k< iter; k++)
40 {
41 #pragma omp for nowait

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
42 p 2v for(i=0; i< n; i++)
43 p 2v {
44 p 2v b[i]=a[i][0] + a[i][1] + a[i][2]

+ a[i][3] + a[i][4] + a[i][5];
45 p 2v }
46 }
47 }
48
49 return;
50 }

Source Before Improvement

C/C++

An array of structures contains six elements and the Gather Load instruction is used (the
Multiple Structures instruction is not applicable). Consequently, the "No instruction commit
due to L1D cache access for a floating-point load instruction" event occurs many times.

The Multiple Structures instruction is not
applicable because Array a contains 6
elements.

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

Before

247

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

1.8E+00

2.0E+00

改善前 改善後

[Seconds]

Using the Multiple Structures Instruction
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

32 void MultiStructure(int n, int m, int iter)
33 {
34 int i,k;
35
36 #pragma omp parallel
37 {

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
38 for(k=0; k<iter; k++)
39 {
40 #pragma omp for nowait

<<< Loop-information Start >>>
:

<<< Loop-information End >>>
41 p v for(i=0; i<N; i++)
42 p v {
43 p v b[i] = a[i][0] + a[i][1] + a[i][2]

+ c[i][0] + c[i][1] + c[i][2];
44 p v }
45 }
46 }
47
48 return;
49 }

Source After Improvement (Source Tuning)

Effect of
1.62 times

C/C++

Applying the Multiple Structures instruction
Because Array a contained 6 elements, Array c was

added so that each array contains 3 elements.

Through division to form arrays containing three elements each, applying the Multiple
Structures instruction reduces the "No instruction commit due to L1D cache access for a
floating-point load instruction" event.

No
instruction
commit due
to L1D cache
access for a
floating-
point load
instruction

Before After

248

• Prefetch Distance

• Distance Setting Function for Hardware Prefetch

• Result of Hardware Prefetch Distance Adjustment (on L2)

• Result of Hardware Prefetch Distance Adjustment (on Memory)

Adjusting the Hardware Prefetch
Distance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED249

Prefetch Distance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼Hardware and software prefetch distances
◼Hardware prefetch and software prefetch are performed on data located on lines

ahead as shown below.

◼Prefetch distances are dependent on application access.
Thrashing may occur when prefetching cache lines far ahead. We
recommend prefetching nearby cache lines.

Hardware Prefetch Software Prefetch

L1 Prefetch L2 Prefetch L1 Prefetch L2 Prefetch

Up to 6 lines Up to 40 lines Automatic Automatic

Hardware prefetch
allows users to set
the distance.

Software prefetch
provides automatic
distance adjustment.

250

Distance Setting Function for Hardware
Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Command for setting the hardware prefetch distance (hwpfctl)

◼ Example of using the command for setting the hardware prefetch distance (hwpfctl)

Item Description

Syntax

hwpfctl [--disableL1] [--disableL2] [--distL1 lines_l1] [--distL2 lines_l2] [--weakL1] [--weakL2] [--verbose] command

{arguments ...}

hwpfctl --default [--verbose] command {arguments ...}

hwpfctl --reset [--verbose]

hwpfctl --help

Explanation
The hwpfctl command changes the prefetch behavior (stream detect mode) of hardware mounted on the A64FX.

Process affinity determines the CPU cores that are subject to the change.

Option

--disableL1

--disableL2

Disables hardware prefetch for the L1/L2 cache. If omitted, hardware prefetch is enabled.

--distL1=lines_l1

--distL2=lines_l2

Specifies the prefetched cache line in the L1/L2 cache, as a number of cache lines counted from the cache line where a cache miss

occurs. You can specify a value from 1 to 15 in lines_l1 to prefetch a line in the L1 cache, and a value from 1 to 60 in lines_l2 to

prefetch a line in the L2 cache. However, the specified lines_l2 value is rounded up to the nearest multiple of 4, and the resulting

value is written in the system register. If 0 is specified, the operation uses the default value of the CPU. If the option is omitted or the

specified value is invalid, 0 is assumed specified.

--weakL1

--weakL2

Sets "weak" as the priority of prefetch requests to the L1/L2 cache. If omitted, "strong" is the priority.

--default

Starts the command with the default settings. Options other than --verbose are ignored.

--reset

Initializes the system register values. Options other than --verbose are ignored.

--verbose

Outputs the values before and after a system register change.

--help

Displays usage instructions.

hwpfctl --distL1=6 --distL2=40 a.out
251

Result of Hardware Prefetch Distance Adjustment
(on L2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ L1 prefetch distance evaluation using Triad
(in L2 cache access)

!$omp parallel
Do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
End Do

!$omp end parallel

Triad

Performance when
distance not specified

Best
value

hwpfctl –distL1=3~10 a.out

Prefetch distances and throughputs
(Triad on L2)

The following figure shows the result of hardware prefetch distance
adjustment.

⚫ Setting command

252

Result of Hardware Prefetch Distance Adjustment
(on Memory)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ L2 prefetch distance evaluation using Triad
(in memory access)

* The values for these throughputs do
not include reading of the cache lines for
written data.

!$omp parallel
Do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
End Do

!$omp end parallel

Triad

Performance when
distance not specified

Best
value

hwpfctl –distL2=10~40 a.out

Prefetch distances and throughputs
(Triad on memory)

⚫ Setting command

253

• SVE Vector Register Size (SIMD Width)

• Effect on Optimization With -Ksimd_reg_size=agnostic Specified (Caution)

SVE Vector Register Size (SIMD
Width)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED254

SVE Vector Register Size (SIMD Width)

⚫SIMD widths supported by the processor
The ARM Scalable Vector Extension (SVE) allows the implementing system to freely
decide the vector length (SIMD width) in units of 128 bits within a range of 128 bits
to 2,048 bits.
The A64FX is implemented with a vector length of 512 bits.

⚫The A64FX supports the following vector lengths:

⚫ 512 bits

⚫ 256 bits

⚫ 128 bits

⚫Compiler option
⚫ -Ksimd_reg_size={ 128 | 256 | 512 | agnostic }

The default is -Ksimd_reg_size=512.

⚫ simd_reg_size={ 128 | 256 | 512 }
This option specifies the SVE vector register size in units of bits. The optimization by the compiler at the
compile time assumes that the value specified by this option is the SVE vector register size. However, the
generated executable program operates normally only in a CPU architecture implementing the SVE vector
register of the size specified by the option.

⚫ simd_reg_size=agnostic
This option specifies compilation with no specific size assumed for the SVE vector register to generate an
executable program that decides the SVE vector register size at execution. This executable program can
be executed independently from the size of the SVE vector register implemented in the CPU architecture.
However, execution performance may be worse (degraded) than when the -
Ksimd_reg_size={128|256|512} option is specified.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED255

Effect on Optimization With -Ksimd_reg_size=agnostic
Specified (Important Points)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

The optimization performed when -Ksimd_reg_size=agnostic is specified may not be equivalent to that
with -Ksimd_reg_size=512 (default). In that case, execution performance may degrade.

◼ Note

⚫ After compilation with -Ksimd_reg_size=agnostic specified, optimization that depends
on the SIMD width (software pipelining in the above example) is not performed.

24 2 p do k=1,L
25 3 p do ii=1,N,blk

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.31, ITR: 192,

MVE: 2, POL: L)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

26 4 p 8 do j=1,M
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< FULL UNROLLING
<<< Loop-information End >>>

27 5 p fv do i=ii,ii+blk-1
28 5 p fv a(i,j,k)=a(i,j,k)+c*b(i,j,k)
29 5 p fv enddo
30 4 p 8 enddo
31 3 p enddo
32 2 p enddo

Source With -Ksimd_reg_size=512 (default)

24 2 p do k=1,L
25 3 p do ii=1,N,blk
26 4 p do j=1,M

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: AGNOSTIC; VL: 2 in 128-bit)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

27 5 p 2v do i=ii,ii+blk-1
28 5 p 2v a(i,j,k)=a(i,j,k)+c*b(i,j,k)
29 5 p 2v enddo
30 4 p enddo
31 3 p enddo
32 2 p enddo

Source When -Ksimd_reg_size=agnostic is Specified

Software pipelining not applied

Since innermost loop corresponds
to SIMD length, software pipelining
applied in outer loop

512 agnostic

Degradation of
1.75 times

[Seconds]

blk = 8

Fortran

256

0.0E+00

5.0E-01

1.0E+00

1.5E+00

2.0E+00

2.5E+00

3.0E+00

512 agnostic

[Seconds]

Effect on Optimization With -Ksimd_reg_size=agnostic
Specified (Important Points)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

46 for(iter=1; iter<=itmax; iter++) {
48 #pragma omp for
49 p for(k=0;k<L; k++) {
51 p for(ii=0;ii<N;ii+=blk) {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]

:
<<< Loop-information End >>>

53 p for(j=0;j<M;j++) {
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 192,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

55 p 2v for(i=ii; i<ii+blk-1; i++) {
57 p 2v a[k][j][i]=a[k][j][i]+c*b[k][j][i];
58 p 2v }
59 p }
60 p }
61 p }
62 }

Source With -Ksimd_reg_size=512 (default)

46 for(iter=1; iter<=itmax; iter++) {
48 #pragma omp for
49 p for(k=0;k<L; k++) {
51 p for(ii=0;ii<N;ii+=blk) {
53 p for(j=0;j<M;j++) {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: AGNOSTIC; VL: 2 in 128-bit)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

55 p 2v for(i=ii; i<ii+blk-1; i++) {
57 p 2v a[k][j][i]=a[k][j][i]+c*b[k][j][i];
58 p 2v }
59 p }
60 p }
61 p }
62 }

Source When -Ksimd_reg_size=agnostic is Specified

C/C++

The optimization performed when -Ksimd_reg_size=agnostic is specified may not be equivalent to that
with -Ksimd_reg_size=512 (default). In that case, execution performance may degrade.

◼ Note

⚫ After compilation with -
Ksimd_reg_size=agnostic specified,
optimization that depends on the SIMD
width (software pipelining in the above
example) is not performed.

Software pipelining not applied

Since innermost loop corresponds
to SIMD length, software pipelining
applied in outer loop

Degradation of
1.40 times

blk = 8

257

• Using the Half-Precision Real Type (Before Improvement)

• Using the Half-Precision Real Type (Source Tuning)

Using the Half-Precision Real
Type

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED258

Using the Half-Precision Real Type
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=60000
:

19 real(8)::x1(N),x2(N),y(N)
20 real(8),parameter::c=0.5
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 144,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x2, x1, y
<<< Loop-information End >>>

24 2 p 2v do i=1,N
25 2 p 2v y(i) = x1(i) + c * x2(i)
26 2 p 2v enddo

Source Before Improvement

Before

[Seconds]

For double-precision real type data, the SIMD length is 8. However, by
reducing data precision, you can increase the SIMD length to effectively use
the bandwidth and functional unit.

GFLOPS
Floating-point
operation peak

ratio (%)

Before 51.52 6.71%

No instruction commit
due to L1D cache
access for a floating-
point load instruction

No
instruction
commit due
to L2 cache
access for a
floating-
point load
instruction

Data Type SIMD Length

Double-precision type 8

Single-precision type 16

Half-precision type 32

1-byte type 64

SIMD length when SIMD width (vector length)=512 [bits]

Fortran

259

Using the Half-Precision Real Type
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

2 integer,parameter::N=60000
:
19 real(2)::x1(N),x2(N),y(N)
20 real(2),parameter::c=0.5
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 32)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 576,

MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x2, x1, y
<<< Loop-information End >>>

24 2 p 2v do i=1,N
25 2 p 2v y(i) = x1(i) + c * x2(i)
26 2 p 2v enddo

Source After Improvement

Before

[Seconds]

After

Effect of
8.15 times

You can extend the SIMD length to 32 by using the half-precision real type, which has fewer digits.

The reduction in data volume results in improvement of the "No instruction commit due to access for a
floating-point load instruction" event.

GFLOPS
Floating-point

operation peak ratio
(%)

Before 51.52 6.71%

After 421.57 54.89%

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Fortran

260

For double-precision real type data, the SIMD length is 8. However, by
reducing data precision, you can increase the SIMD length to effectively use
the bandwidth and functional unit.

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

改善前

[Seconds]

Using the Half-Precision Real Type
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

34 double const c=0.5;
35 int i,k;
36
37 4 for(k=0;k<itmax; k++)
38 {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: AGNOSTIC;

VL: 2 in 128-bit Interleave: 1)
<<< Loop-information End >>>

39 v for(i=0;i<N; i++)
40 {
41 y[i] = x1[i] + c * x2[i];
42 }
43 }

Source Before Improvement

Statistics GFLOPS
Floating-point

operation

Before 5.79 1.20E+11

N = 60000
itmax = 1000000

Array declaration
double x1[N], x2[N], y[N];

C/C++
Clang Mode

Data Type SIMD Length

Double-precision type 8

Single-precision type 16

Half-precision type 32

1-byte type 64

SIMD length when SIMD width (vector length)=512 [bits]

No instruction
commit due to L1D
cache access for a
floating-point load
instruction

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Before

No instruction commit
waiting for an integer
instruction to be
completed

261

Using the Half-Precision Real Type
(Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

34 _Float16 c = 0.5f16;
35 int i,k;
36
37 4 for(k=0;k<itmax; k++)
38 {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: AGNOSTIC;

VL: 8 in 128-bit Interleave: 1)
<<< Loop-information End >>>

39 v for(i=0;i<N; i++)
40 {
41 y[i] = x1[i] + c * x2[i];
42 }
43 }

Source After Improvement

浮動小数点
ロードL1D
アクセス待ち

浮動小数点
ロードL2
アクセス待ち

◼ Note

⚫ Half-Precision Real Type is not
available in Trad Mode of C/C++.

0.0E+00

5.0E+00

1.0E+01

1.5E+01

2.0E+01

2.5E+01

改善前 改善後

[Seconds]

Statistics GFLOPS
Floating-point

operation

Before 5.79 1.20E+11

After 21.91 1.20E+11

N = 60000
itmax = 1000000

Array declaration
double x1[N], x2[N], y[N];

C/C++
Clang Mode

You can extend the SIMD length to 32 by using the half-precision real type, which has fewer digits.

The reduction in data volume results in improvement of the "No instruction commit due to access for a
floating-point load instruction" event.

Before After

No instruction
commit due to
L1D cache access
for a floating-
point load
instruction

No instruction
commit due to L2
cache access for
a floating-point
load instruction

Effect of
3.78 times

No instruction
commit waiting
for an integer
instruction to
be completed

262

Thread Parallelization Tuning
• Improving the Thread Parallelization Ratio

• Improving Thread Parallelization Execution Efficiency

• Improving Execution Efficiency by Setting Large Pages

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED263

• What is the Thread Parallelization Ratio?

• Increasing the Thread Parallelization Ratio

Improving the Thread
Parallelization Ratio

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED264

The thread parallelization ratio is a proportion of the part that can be executed in parallel during
one parallel execution.

What is the Thread Parallelization Ratio?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

Scalab
ility

Parallelization ratio

Scalability

()
n

p
p +−

=

1

1

At 1 parallel
execution

Parallel executable partSequential
execution

part

◼Amdahl's law

◼ p: Parallelization ratio

◼ n: Number of parallel executions

Amdahl's law can be used to express the relationship between the thread
parallelization ratio and scalability at the time of n parallel executions.

Important to increase
parallelization ratio to obtain
high scalability

At 2 parallel
executions

Parallel executable part
The part that can be executed in
parallel at 2 parallel executions is half of
that at 1 parallel execution.

Case where n = 16 (Ideal 16 parallel executions)

Sequential
execution

part

265

• Loops With an Unclear Relationship Between Definition and Citation

• Loops Containing Pointer Variables

• Loops With Data Dependency

Increasing the Thread
Parallelization Ratio

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED266

Loops With an Unclear Relationship Between
Definition and Citation
⚫ !OCL NORECURRENCE

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

In the following program, the main processing system cannot determine whether
loops can be sliced on Array a without problems, since the subscript expression of
Array a is another array element y(j). If the programmer knows that loops can be
sliced on Array a without problems, the programmer can parallelize loops by
specifying the NORECURRENCE specifier.

! Caution !

◼ If loops cannot be sliced on the array for which the NORECURRENCE specifier is specified,
the main processing system may incorrectly slice loops.

◼ If the array name is omitted, the specifier is enabled for all arrays within the scope.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 0.32, ITR: 6,

MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, y
<<< Loop-information End >>>

6 1 s 2s do i=1,160000
7 1 m 2m a(y(i))=a(y(i))+b(i)
8 1 p 2v end do
:

jwd5228p-i "a.f90", line 7: This DO loop cannot be parallelized
because the order of data definition and citation is different from that
of sequential execution.

jwd6228s-i "a.f90", line 7: SIMDization of this DO loop is not possible
because the order of data definition and citation may be different from
that of sequential execution.

Source Before Improvement

5 !ocl norecurrence(a)
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 762
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 2.33,

ITR: 416, MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< y, b
<<< Loop-information End >>>

6 1 pp 2v do i=1,160000
7 1 p 2v a(y(i))=a(y(i))+b(i)
8 1 p 2v end do

Source After Improvement

267

Loops Containing Pointer Variables

⚫ !OCL NOALIAS

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Since which storage area part is occupied by a pointer variable is determined at
execution, data dependency is unknown and parallelization is not possible. If the
programmer knows that pointer variables do not point to the same storage area, the
programmer can perform parallelization by specifying the NOALIAS specifier.

1 real,dimension(100000),target::x
2 real,dimension(:),pointer::a,b
3 a=>x(1:10000)
4 b=>x(10001:20000)
5
6

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x
<<< Loop-information End >>>

7 1 s 4s do i=1,100000
8 1 s 4s b(i) = a(i)+1.0
9 1 s 4s end do

jwd5228p-i "a.f90", line 8: This DO loop cannot be parallelized
because the order of data definition and citation is different from that
of sequential execution.

jwd6228s-i "a.f90", line 8: SIMDization of this DO loop is not possible
because the order of data definition and citation may be different from
that of sequential execution.

Source Before Improvement

1 real,dimension(100000),target::x
2 real,dimension(:),pointer::a,b
3 a=>x(1:10000)
4 b=>x(10001:20000)
5
6 !ocl noalias

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 1143
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 2.75,

ITR: 288, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

7 1 pp 2v do i=1,100000
8 1 p 2v b(i) = a(i)+1.0
9 1 p 2v end do

Source After Improvement

268

Loops With Data Dependency

⚫ Parallelization using peeling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

The following loop is not parallelized because it has dependency with regard to Array a
when i=1 and i=n. Take the beginning or end of the loop out of the loop to facilitate
parallelization.

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a
<<< Loop-information End >>>

4 1 s 2s do i=1,n
5 1 s 2m a(i)=a(1)+b(i)+a(n)
6 1 s 2v end do

jwd5202p-i "a.f90", line 5: This DO loop cannot be parallelized
because the order of data definition and citation is different from that
of sequential execution. (Name: a)

jwd5208p-i "a.f90", line 5: The order of definition and citation is
unknown. For this reason, the order of definition and citation may be
different from that of sequential execution, and this DO loop cannot be
parallelized. (Name: a)

Source Before Improvement

4 a(1)=a(1)+b(1)+a(n)
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 843
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 3.00,

ITR: 384, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, b
<<< Loop-information End >>>

5 1 pp 2v do i=2,n-1
6 1 p 2v a(i)=a(1)+b(i)+a(n)
7 1 p 2v enddo
8 a(n)=a(1)+b(n)+a(n)

Source Before Improvement

269

• Improving False Sharing

• Loops With Irregular Throughput

• Parallelization in the Appropriate Parallelization Dimension

Improving Thread Parallelization
Execution Efficiency

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED270

• What is False Sharing?

• False Sharing (Before Improvement)

• False Sharing (Source Tuning)

Improving False Sharing

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED271

What is False Sharing?
False sharing is a phenomenon where cache line invalidation and copy back between
threads are frequent occurrences.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

nj = 4

ni = 2000

Each thread reads same cache line containing s(1) to s(4)

s(1) to s(4)

Thread 0
(core 1)

Thread 1
(core 2)

Thread 2
(core 3)

Thread 3
(core 4)

L1
cache

L2 cache

s(1) to s(4) s(1) to s(4) s(1) to s(4)

Data cached in units of
cache lines

(1) Cache hit

(2) s(1) update completed by Thread 0

(3) Cache lines invalidated at Threads 1 to 3 to maintain data coherency
(Invalidate)

s(1) to s(4)

Thread 0
(Core 1)

Thread 1
(Core 2)

Thread 2
(Core 3)

Thread 3
(Core 4)

L1
cache

L2 cache

(2) Update

(3)Invalidate (3)Invalidate (3)Invalidate

(1) Cache miss

(2) Cache line copied from Thread 0 back to Thread 1

(3) s(2) update completed by Thread 1

(4) Cache line invalidated at Thread 0 to maintain data coherency (Invalidate)

Thread 0
(Core 1)

Thread 1
(Core 2)

Thread 2
(Core 3)

Thread 3
(Core 4)

L1
cache

L2 cache

s(1) to s(4)

(3) Update

(2) Copy
back

(4)Invalidate

◼ Initial state
◼ Thread 1 specifies s(2) update

Performance
degrades
because each
thread repeats
this condition

(1) Cache miss

Example where 4-thread parallelization is
assumed

InvalidateInvalidate

(1) Cache hit

◼ Thread 0 specifies s(1) update

1 subroutine sub(s,a,b,ni,nj)

2 real*8 a(ni,nj),b(ni,nj)

3 real*8 s(nj)

4

5 1 pp do j = 1, nj

6 1 p s(j)=0.0

7 2 p 8v do i = 1, ni

8 2 p 8v s(j)=s(j)+a(i,j)*b(i,j)

9 2 p 8v end do

10 1 p end do

11

12 end

Source Before Improvement

272

False Sharing (Before Improvement)

False sharing occurs because the number of iterations of the parallelization
dimension j is small (16 iterations) and Array a data shares a cache line between
threads. Consequently, the data access wait time is long.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

22 subroutine sub(flag)
23 integer*8 i,j,n
24 parameter(n=60000)
25 parameter(m=16)
26 real*8 a(m,n),b(m,n)
27 integer flag(m,n)
28 common /com/a,b
29
:
32 1 p do i=1,m

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.28, ITR: 128,

MVE: 3, POL: S)
<<< Loop-information End >>>

33 2 p 2v do j=1,n
34 3 p 2v if(flag(i,j).eq.1)then
35 3 p 2v a(i,j)=b(j,i)
36 3 p 2v endif
37 2 p 2v enddo
38 1 p enddo

Source Before Improvement

Cache

False sharing occurs

Number of
parallelization
dimensions: 16

Before

[Seconds]

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.57E+09 7.27E+08 0.20 9.39% 90.85% -0.23% 1.75E+04 0.00 21.82% 100.00% 0.00%

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

No instruction
commit due to L2
cache access for a
floating-point load
instruction

Fortran

273

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 3.57E+09 7.27E+08 0.20 9.39% 90.85% -0.23% 1.75E+04 0.00 21.82% 100.00% 0.00%

After 0.00 1.19E+09 5.29E+07 0.04 4.40% 84.91% 10.70% 1.61E+04 0.00 7.89% 85.83% 6.28%

False Sharing (Source Tuning)

False sharing can be avoided through loop interchange and outer parallelization. This results
in fewer L1 cache misses and an improved data access wait time.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

23 integer*8 i,j,n
24 parameter(n=60000)
25 parameter(m=16)
26 real*8 a(m,n),b(m,n)
27 integer flag(m,n)
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 1.32, ITR: 48,

MVE: 2, POL: S)
<<< PREFETCH(SOFT) : 4
<<< SEQUENTIAL : 4
<<< b: 4
<<< Loop-information End >>>

32 1 p 2 do j=1,n
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< FULL UNROLLING
<<< Loop-information End >>>

33 2 p fv do i=1,m
34 3 p fv if(flag(i,j).eq.1)then
35 3 p fv a(i,j)=b(j,i)
36 3 p fv endif
37 2 p fv enddo
38 1 p 2 enddo

Source After Improvement

False sharing
prevented

Loop interchange
and outer

parallelization

L1D misses reduced and performance raised
because false sharing prevented

Effect of
8.15 times

Before After

[Seconds]

No instruction
commit due to
L1D cache
access for a
floating-point
load
instruction

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

Fortran

274

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

9.0E-01

1.0E+00

改善前

[Seconds]

False Sharing (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 #pragma omp for
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a, (unknown)
<<< Loop-information End >>>

43 p for (i=0;i<M;i++)
44 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.00, ITR: 128,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< b, a, (unknown)
<<< Loop-information End >>>

45 p 2v for(j=0;j<N;j++)
46 p 2v {
47 p 2v if(flag[j][i]==1)
48 p 2v {
49 p 2v a[j][i]=b[i][j];
50 p 2v }
51 p 2v }
52 p }

Source Before Improvement
M=16
N=60000

Array declaration
double a[N][M],
b[N][M];

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.04E+09 7.28E+08 0.18 30.45% 69.61% 0.00% 3.94E+04 0.00 48.46% 58.66% 0.00%

C/C++

False sharing occurs because the number of iterations of the parallelization
dimension j is small (16 iterations) and Array a data shares a cache line between
threads. Consequently, the data access wait time is long.

False sharing occurs

Number of
parallelization
dimensions: 16

Before

No instruction
commit due to
L1D cache
access for a
floating-point
load instruction

No instruction
commit due to
L2 cache access
for a floating-
point load
instruction

275

Cache
L1I miss rate

(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D

miss)

L1D miss
hardware

prefetch rate
(%) (/L1D

miss)

L1D miss
software

prefetch rate
(%) (/L1D

miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate

(%) (/L2
miss)

L2 miss
hardware

prefetch rate
(%) (/L2

miss)

L2 miss
software

prefetch rate
(%) (/L2

miss)

Before 0.00 4.04E+09 7.28E+08 0.18 30.45% 69.61% 0.00% 3.94E+04 0.00 48.46% 58.66% 0.00%

After 0.00 1.27E+09 4.81E+07 0.04 6.15% 93.86% 0.00% 1.93E+04 0.00 15.65% 89.19% 0.00%

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

6.0E-01

7.0E-01

8.0E-01

9.0E-01

1.0E+00

改善前 改善後

[Seconds]

False Sharing (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 #pragma omp for
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SOFTWARE PIPELINING(IPC: 1.30, ITR: 48,

MVE: 3, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< a, (unknown)
<<< Loop-information End >>>

43 p for(j=0;j<N;j++)
44 p {

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< FULL UNROLLING
<<< Loop-information End >>>

45 p fv for (i=0;i<M;i++)
46 p fv {
47 p fv if(flag[j][i]==1)
48 p fv {
49 p fv a[j][i]=b[i][j];
50 p fv }
51 p fv }
52 p }

Source After Improvement

Effect of
9.43 times

M=16
N=60000

Array declaration
double a[N][M],
b[N][M];

C/C++

False sharing can be avoided through loop interchange and outer parallelization. This results
in fewer L1 cache misses and an improved data access wait time.

False sharing
prevented

Loop interchange
and outer

parallelization

L1D misses reduced and performance raised
because false sharing prevented

Before After

No
instruction
commit due
to L1D cache
access for a
floating-point
load
instruction

No instruction
commit due to
L2 cache
access for a
floating-point
load
instruction

276

• Loops With Irregular Throughput (Before Improvement)

• Loops With Irregular Throughput (OpenMP Tuning)

Loops With Irregular Throughput

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED277

Loops With Irregular Throughput
(Before Improvement)

If throughput is irregular, cyclic division with a static scheduling method causes a load imbalance. In the
following example, the "Synchronous waiting time between threads" event occurs many times due to the
load imbalance.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

1 subroutine init(a,b,ie,n)
:

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< FUSED
<<< Loop-information End >>>

8 1 do i=1,n
9 2 if (mod(i,2).eq.0) then
10 2 ie(i)=100000
11 2 endif
12 1 enddo
:
16 subroutine sub(a,b,s,ie,n)
17 real a(n),b(n),s
18 integer ie(n)
19 !$omp parallel do schedule(static,1)
20 1 p do j=1,n

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 3.50,

ITR: 448, MVE: 7, POL: S)
<<< Loop-information End >>>

21 2 p 2v do i=1,ie(j)
22 2 p 2v a(i) = a(i)*b(i)*s
23 2 p 2v enddo
24 1 p enddo
25 end subroutine sub
:

27 program main
28 parameter(n=1000000)
31 call init(a,b,ie,n)
:

33 call sub(a,b,2.0,ie,n)
:

35 end program main

Source Before Improvement

Sets value in array ie,
which has ending value of
evaluation loop, only at
even-numbered iterations

Evaluation loop

The innermost loop iterates
100,000 times only when the
control variable j is an even
number.

Before

Synchronous waiting time
between threads occurs
due to load imbalance

Fortran

278

Loops With Irregular Throughput
(OpenMP Tuning)

Change to a dynamic scheduling method so that the next processing can be done by a thread that finishes

processing earlier than other threads. The result is improvement in the load imbalance.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

1 subroutine init(a,b,ie,n)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< FUSED
<<< Loop-information End >>>

8 1 do i=1,n
9 2 if (mod(i,2).eq.0) then
10 2 ie(i)=100000
11 2 endif
12 1 enddo
:

16 subroutine sub(a,b,s,ie,n)
17 real a(n),b(n),s
18 integer ie(n)
19 !$omp parallel do schedule(dynamic,1)
20 1 p do j=1,n

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 448,

MVE: 7, POL: S)
<<< Loop-information End >>>

21 2 p 2v do i=1,ie(j)
22 2 p 2v a(i) = a(i)*b(i)*s
23 2 p 2v enddo
24 1 p enddo
25 end subroutine sub
:
27 program main
28 parameter(n=1000000)
31 call init(a,b,ie,n)
:
33 call sub(a,b,2.0,ie,n)

Source After Improvement

Before

After
dynamic specified so that
next processing is executed
by thread that completes
processing earlier

Load imbalance improved

Fortran

279

Loops With Irregular Throughput
(Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

28 void sub(int n, float (* restrict a)[n], float * restrict b,
float s, int * restrict ie){

29 int i, j;
30
31 #pragma omp parallel for schedule(static, 1)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

32 p for (j = 0; j < n; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 3.50,

ITR: 448, MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

33 p 2v for (i = 0; i < ie[j]; i++){
34 p 2v a[j][i] = a[j][i]*b[i]*s;
35 p 2v }
36 p }
37 }

Source Before Improvement

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

改善前

C/C++

If throughput is irregular, cyclic division with a static scheduling method causes a load imbalance. In the
following example, the "Synchronous waiting time between threads" event occurs many times due to the
load imbalance.

Evaluation loop

The innermost loop iterates
100,000 times when the
control variable j is an even
number. The innermost loop
iterates 1,000,000 times
when the control variable j is
an odd number.

Before

Synchronous waiting time
between threads occurs
due to load imbalance

280

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Loops With Irregular Throughput
(OpenMP Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

28 void sub(int n, float (* restrict a)[n],
float * restrict b, float s, int * restrict ie){

29 int i, j;
30
31 #pragma omp parallel for schedule(dynamic, 1)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

32 p for (j = 0; j < n; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 16)
<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 448,

MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

33 p 2v for (i = 0; i < ie[j]; i++){
34 p 2v a[j][i] = a[j][i]*b[i]*s;
35 p 2v }
36 p }
37 }

Source After Improvement

C/C++

Change to a dynamic scheduling method so that the next processing can be done by a thread that finishes

processing earlier than other threads. The result is improvement in the load imbalance.

Before

After

dynamic specified so that
next processing is executed
by thread that completes
processing earlier

Load imbalance improved

281

• Parallelization in the Appropriate Parallelization Dimension (Before
Improvement)

• Parallelization in the Appropriate Parallelization Dimension (Source Tuning)

• Parallelization in the Appropriate Parallelization Dimension (Compiler Option
Tuning)

• Parallelization in the Appropriate Parallelization Dimension (OpenMP Source
Tuning)

Parallelization in the Appropriate
Parallelization Dimension

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED282

Parallelization in the Appropriate Parallelization
Dimension (Before Improvement)

If the number of loop iterations in a parallelization dimension is small and unknown at the
compile time, a load imbalance occurs when there are fewer iterations than parallel threads
(12 in the example). Consequently, the "Synchronous waiting time between threads" event
occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 2
<<< Loop-information End >>>

32 1 pp do k=1,l
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

33 2 p do j=1,m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25,

ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

34 3 p 2v do i=1,n
35 3 p 2v a(i,j,k)=b(i,j,k)+c(i,j,k)
36 3 p 2v enddo
37 2 p enddo
38 1 p enddo

Source Before Improvement

l = 2
m = 512
n = 256

Load imbalance occurs because
number of iterations in
parallelization dimension k is 2

Before

Poor load balance among threads

Fortran

283

Parallelization in the Appropriate Parallelization
Dimension (Source Tuning)

Specify the SERIAL and PARALLEL specifiers to perform parallelization in the
appropriate dimension. The result is improvement in the load imbalance.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

31 !ocl serial
32 1 do k=1,l
33 1 !ocl parallel

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 4
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

34 2 pp do j=1,m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25,

ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

35 3 p 2v do i=1,n
36 3 p 2v a(i,j,k)=b(i,j,k)+c(i,j,k)
37 3 p 2v enddo
38 2 p enddo
39 1 enddo

Source After Improvement

l = 2
m = 512
n = 256

Executed in parallel
when number of loop j
iterations is 512 in
parallelization
dimension

Loop slicing
suppressed

Before

After

Fortran

284

Parallelization in the Appropriate Parallelization
Dimension (Compiler Option Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 2
<<< Loop-information End >>>

31 1 pp do k=1,l
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 4
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

32 2 pp do j=1,m
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 728
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25,

ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

33 3 pp 2v do i=1,n
34 3 p 2v a(i,j,k)=b(i,j,k)+c(i,j,k)
35 3 p 2v enddo
36 2 p enddo
37 1 p enddo

Source After Improvement

Specify the compiler option -Kdynamic_iteration to automatically select the appropriate parallelization
dimension at execution and improve the load imbalance.

l = 2
m = 512
n = 256

Despite attempt at parallel
execution from outer loop,
parallel execution is done in
inner loop j, which has 512
iterations, since loop k has
few iterations (2)

Before

After

Load imbalance improved

Fortran

285

Parallelization in the Appropriate Parallelization
Dimension (OpenMP Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

32 !$omp parallel do private(k,j,i) collapse(2)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

33 1 p do k=1,l
34 2 p do j=1,m

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25,

ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< c, b, a
<<< Loop-information End >>>

35 3 p 2v do i=1,n
36 3 p 2v a(i,j,k)=b(i,j,k)+c(i,j,k)
37 3 p 2v enddo
38 2 p enddo
39 1 p enddo
40 !$omp end parallel do

Source After Improvement

Specify the OpenMP COLLAPSE clause to transform outer loops into a single loop.
The result is improvement in the load imbalance.

l = 2
m = 512
n = 256

COLLAPSE clause transformed
loop k, which has few
iterations, and its inner loop
into single loop

Before

After

Load imbalance improved

◼ Note
⚫ Be careful not to COLLAPSE the SIMD

transformation axis (innermost loop).

Fortran

286

Parallelization in the Appropriate Parallelization
Dimension (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 #pragma omp parallel for
43 p for (k = 0; k < l; k++){

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

44 p for (j = 0; j < m; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00,

ITR: 144, MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

45 p 2v for (i = 0; i < n; i++){
46 p 2v a[k][j][i] = b[k][j][i] + c[k][j][i];
47 p 2v }
48 p }
49 p }

Source Before Improvement

l=2
m=512
n=256

0.0E+00

1.0E+00

2.0E+00

3.0E+00

4.0E+00

5.0E+00

6.0E+00

7.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

改善前

C/C++

If the number of loop iterations in a parallelization dimension is small and unknown at the
compile time, a load imbalance occurs when there are fewer iterations than parallel threads
(12 in the example). Consequently, the "Synchronous waiting time between threads" event
occurs many times.

Load imbalance occurs because
number of iterations in
parallelization dimension k is 2

Before

Poor load balance among threads

287

Parallelization in the Appropriate
Parallelization Dimension (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 #pragma omp parallel private(i,j,k)
43 {
44 for (k = 0; k < l; k++){
45 #pragma omp for

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

46 p for (j = 0; j < m; j++){
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00,

ITR: 144, MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

47 p 2v for (i = 0; i < n; i++){
48 p 2v a[k][j][i] = b[k][j][i] + c[k][j][i];
49 p 2v }
50 p }
51 }

Source After Improvement

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

l=2
m=512
n=256

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

C/C++

Specify the parallel for or parallel specifiers to perform parallelization in the
appropriate dimension. The result is improvement in the load imbalance.

Executed in parallel
when number of loop j
iterations is 512 in
parallelization
dimension

Loop slicing
suppressed Before

After

288

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Parallelization in the Appropriate Parallelization
Dimension (Compiler Option Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 3
<<< Loop-information End >>>

42 pp for (k = 0; k < n3; k++){
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 37
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

43 pp for (j = 0; j < n2; j++){
<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 552
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25,

ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

44 pp 2v for (i = 0; i < n1; i++){
45 p 2v a[k][j][i] = b[k][j][i] + c[k][j][i];
46 p 2v }
47 p }
48 p }

Source After Improvement

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

l=2
m=512
n=256

C/C++

Specify the compiler option -Kdynamic_iteration to automatically select the appropriate
parallelization dimension at execution and improve the load imbalance. The optimization is
not available in Clang Mode.

Despite attempt at parallel
execution from outer loop,
parallel execution is done in
inner loop j, which has 512
iterations, since loop k has
few iterations (2)

Before

After

Load imbalance improved

289

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

T
h
re

a
d
 0

T
h
re

a
d
 1

T
h
re

a
d
 2

T
h
re

a
d
 3

T
h
re

a
d
 4

T
h
re

a
d
 5

T
h
re

a
d
 6

T
h
re

a
d
 7

T
h
re

a
d
 8

T
h
re

a
d
 9

T
h
re

a
d
 1

0

T
h
re

a
d
 1

1

Process

0

Parallelization in the Appropriate Parallelization
Dimension (OpenMP Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

42 #pragma omp parallel for private(i,j,k) collapse(2)
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

43 p for (k = 0; k < l; k++){
44 p for (j = 0; j < m; j++){

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00,

ITR: 144, MVE: 5, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

45 p 2v for (i = 0; i < n; i++){
46 p 2v a[k][j][i] = b[k][j][i] + c[k][j][i];
47 p 2v }
48 p }
49 p }

Source After Improvement

0.0E+00

2.0E+00

4.0E+00

6.0E+00

8.0E+00

l=2
m=512
n=256

C/C++

Specify the OpenMP collapse clause to transform outer loops into a single loop.
The result is improvement in the load imbalance.

COLLAPSE clause transformed
loop k, which has few
iterations, and its inner loop
into single loop

Before

After

Load imbalance improved

◼ Note
⚫ Be careful not to COLLAPSE the SIMD

transformation axis (innermost loop).

290

• Specifying a Large Page Paging Policy

• Changing the Lock Type

Improving Execution Efficiency by
Setting Large Pages

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED291

• Large Page Paging Policy

• Effect of a Large Page Paging Policy (demand)

Specifying a Large Page Paging
Policy

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED292

Large Page Paging Policy

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ XOS_MMM_L_PAGING_POLICY=prepage:demand:prepage

⚫ Memory allocation is as follows when multiple CMGs are running for
thread parallelism:

⚫In prepaging, data comes from CMG0 at the start of the load module.

⚫In demand paging, data is put on the running CMG at the first access time.

⚫ Demand paging is recommended for processing across multiple CMGs.

Environment Variable
Name

Specifiable Value

(Default indicated
by _)

Description

XOS_MMM_L_PAGING_POLICY
[demand | prepage]:
[demand | prepage]:
[demand | prepage]

This setting selects the paging method (page allocation trigger) for
each memory area.
"demand" means the demand paging method, and "prepage" means
the prepaging method. This environment variable specifies paging
methods for three memory areas by delimiting them with a colon (:).
The 1st specification is for the .bss area for static data. ("prepage" is
always used for the .data area for static data. No other paging method
can be specified.)
The 2nd specification is for the stack area and thread stack area.
The 3rd specification is for the dynamic memory securing area.
If any specified value is not a specifiable value,
"prepage:demand:prepage" is assumed specified.

293

Effect of a Large Page Paging Policy (demand)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Since data comes from CMG0 in prepaging, performance cannot reach that of 48-thread streams.

With the method changed to demand paging, data is put on the running CMG, and performance is
significantly higher.

14 Subroutine sub(n,iter,x1,x2,y1)
15 real(8) :: x1(n), x2(n), y1(n),c0
16 integer n,i,k
17 c0=2.0
18
19 call fapp_start("sub",0,0)
20 1 do k=1,iter
21 1 !$omp parallel do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.45, ITR:

128, MVE: 2, POL: S)
<<< PREFETCH(SOFT) : 10
<<< SEQUENTIAL : 10
<<< x2: 4, x1: 4, y1: 2
<<< ZFILL :
<<< y1
<<< Loop-information End >>>

22 2 p v do i=1,n
23 2 p v y1(i) = x1(i) + c0 * x2(i)
24 2 p v end do
25 1 enddo
: ……
30 parameter(N=45000000,ITER=100)
31 real*8 x1(N),x2(N),y1(N)
32 call init(N,ITER,x1,x2,y1)
33 call sub(N,ITER,x1,x2,y1)

Source

Stream (Data size: About 1
GB)

Memory throughput (GB/s)

prepage (default) 93 GB/s

demand 804 GB/s

Compiler option: -Kfast,openmp
-Kprefetch_sequential=soft -Kprefetch_line=9
-Kprefetch_line_L2=70 -Kzfill=18

294

• What is the Lock Type (XOS_MMM_L_ARENA_LOCK_TYPE)?

• Effect of Changing the Lock Type

Changing the Lock Type

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED295

What is the Lock Type
(XOS_MMM_L_ARENA_LOCK_TYPE)?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ XOS_MMM_L_ARENA_LOCK_TYPE
◼ This is a setting related to the memory allocation policy.

◼ "0" gives priority to memory acquisition performance. This is the
recommended value when performing malloc in a parallel region.
(This may improve performance because memory is acquired/released
from an independent memory pool for each thread, reducing the cost of
exclusive control as compared to the default setting.)

◼ "1" (default) gives priority to memory use efficiency. This is the
recommended value when memory usage is high.

296

Effect of Changing the Lock Type

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

malloc performance is higher when XOS_MMM_L_ARENA_LOCK_TYPE=0 is specified.
(Reduced execution time from 0.56 seconds to 0.35 seconds, a performance increase of 1.60
times)

1 subroutine sub(n,m,iter,x1,x2,y2)
2 integer(8) :: pZ1(iter)
3 real(8) :: x1(n), x2(n), y2(n,m),c0
4 c0=2.0
5
6 !$omp parallel do shared(n,m,iter,x1,x2,c0,y2) private(pZ1,i,j,k) default(none)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

7 1 p do k=1,m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

8 2 p s do j=1,iter
9 2 p m pZ1(j) = malloc(8 * n)
10 2 p v end do
11 1

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

12 2 p 2v do i=1,n
13 2 p 2v y2(i,k) = x1(i) + c0 * x2(i)
14 2 p 2v end do
15 1
16 2 p s do j=1,iter
17 2 p s call free(pZ1(j))
18 2 p s end do
19 1 p end do
20 end subroutine sub
21
22 program main
23 parameter(N=1048512,ITER=80)
24 real*8 x1(N),x2(N),y2(N,12)
25 call sub(N,12,ITER,x1,x2,y2)
26 end program main

Source

297

• Rewriting OMP SINGLE to OMP MASTER

Reduced memory usage

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED298

Rewriting OMP SINGLE to OMP MASTER

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Reducing memory usage by rewriting
◼ Rewriting omp single to omp master and barrier, fixes the execution

thread and suppresses redundant use of memory space.

!$omp parallel
!$omp single

call loop(a,b,alpha,max);
!$omp end single
!$omp end parallel

Source Before Improvement

!$omp parallel
!$omp master

call loop(a,b,alpha,max);
!$omp end master
!$omp barrier
!$omp end parallel

Source After Improvement

299

Revision History

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Revision History
Version Date Details
1.0 Sep. 2020 - First published
1.3 Mar. 2021 - Correcting typographical errors and

expressions by reviewing articles
1.4 Aug. 2021 - Fixing differences by increasing the

number of software versions, and
correcting typographical errors and
expressions by reviewing articles

- Added “What is Unroll-and-Jam?” page
- Added “Rewriting OMP SINGLE to OMP

MASTER” page
2.1 Jul. 2022 - Added tuning in C/C++

- Format changed
- Correcting typographical errors and

expressions by reviewing articles
2.2 Mar. 2023 - Correcting typographical errors and

expressions by reviewing articles

300

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

