
Programming Guide
(Programming common
part)

Mar. 2023

V1.6

FUJITSU LIMITED

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED0

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

Introduction

⚫ This document is intended for
application developers and tuning
engineers for the A64FX processor.

⚫ Refer to the following in conjunction
with this document.

⚫ Fortran User’s Guide

⚫ C User’s Guide

⚫ C++ User’s Guide

⚫ Profiler User's Guide

⚫ Programming Guide(Processors)

⚫ Programming Guide(Tuning)

⚫ Programming Guide(Fortran)

⚫ Manuals provided by Technical Computing
Suite Job Operation Software

⚫ The following abbreviation is used in
this document:​
⚫ A64FX Logic Specifications

⚫ A64FX ® Microarchitecture Manual

⚫ ARM® Architecture Reference Manual
(ARMv8 , ARMv8.1 , ARMv8.2 , ARMv8.3)

⚫ ARM® Architecture Reference Manual Supplement
The Scalable Vector Extension

⚫ Trademarks
⚫ Linux® is a trademark or registered trademark of

Linus Torvalds in the United States and other
countries.

⚫ Red Hat is a trademark or registered trademark of
Red Hat Inc. in the United States and other countries.

⚫ ARM is a trademark or registered trademark of ARM
Ltd. in the United States and other countries.

⚫ Proper names such as the product name mentioned
are trademark or registered trademark of each
company.

⚫ Trademark symbols such as ® and ™ may be
omitted from system names and product names in
this document.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED1

Programming common part - Contents (1)

⚫ Program Development Environment
Overview

⚫ Program Development Environment System

⚫ Language Specification

⚫ MPI Acceleration

⚫ Faster Math Libraries

⚫ Development Support Tools

⚫ Recommended Compiler Options

⚫ Fortran, C/C++ Trad Mode

⚫ Performance Focused

⚫ Precision Focused

⚫ C/C++ Clang Mode

⚫ C/C++ Trad Mode and Clang Mode

⚫ Assumed Usage Scenarios

⚫ Overview of clang Mode External
Specifications

⚫ Comparison of Microarchitecture (Including
ISA) Support

⚫ Compiler Function (General, Loop
Optimization) Comparison

⚫ Compiler Function (Listing Optimization
Information) Comparison

⚫ C/C++ Support for SVE ACLE

⚫ Fixed-length and Variable-length for SVE
SIMD Width

⚫ Compatibility Between Objects Generated
by Fujitsu Compiler and Those by Other
Compilers

⚫ Compatibility of Objects

⚫ Precautions on Linking

⚫ Compile Options and Optimization
Specifiers Supported in Clang Mode

⚫ Compile Option System of Clang Mode

⚫ Optimization Specifier System of Clang Mode

⚫ Options Supported in Clang Mode

⚫ Optimization Specifiers Supported in Clang
Mode

⚫ Two OpenMP Libraries

⚫ LLVM OpenMP Library and Fujitsu OpenMP
Library

⚫ LLVM OpenMP Library (-Nlibomp)

⚫ Fujitsu OpenMP Library (-Nfjomplib)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED2

Programming common part - Contents (2)

⚫ Migration From Existing System

⚫ New Options Added in A64FX

⚫ Options With Changed Specifications in
A64FX

⚫ Options Deleted From A64FX

⚫ A64FX Compatibility With K
Computer/FX10/FX100

⚫ MPI Extension Functions and Data Types

⚫ Endian

⚫ Acceleration With Compiler

⚫ Prefetch

⚫ About Prefetch

⚫ Hardware Prefetch

⚫ Software Prefetch

⚫ Harmonization of Prefetch

⚫ Built-in Prefetch

⚫ SIMD Vectorization (SIMDization)

⚫ Basic Principles of SIMDization

⚫ Example of SIMDization of Consecutive
Data

⚫ Confirmation of SIMDization

⚫ SIMDizable Loops

⚫ Software Pipelining

⚫ Basic Principles of Software Pipelining

⚫ Confirmation of Software Pipelining

⚫ Loop Optimization and Instruction Scheduling

⚫ Order of Optimization

⚫ Unrolling Behavior

⚫ Striping Behavior

⚫ Flow of Loop Optimization and Control

⚫ Optimization for Loops

⚫ About Loop Optimization

⚫ Loop Interchange

⚫ Loop Fusion

⚫ Loop Unrolling

⚫ Loop Collapse

⚫ Automatic Parallelization

⚫ Simple Loop Slice

⚫ Loop Slice by Reduction

⚫ Determining Whether Automatic
Parallelization is Possible

⚫ Verification of Automatic Parallelization

⚫ Pipeline Parallelism

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED3

Programming common part - Contents (3)

⚫ Debug Functions for Fortran and C/C++
Trad Mode

⚫ Built-in debug function

⚫ Debug function for abnormal termination

⚫ Hook function

⚫ Large Page

⚫ About Large Page

⚫ Large Page Specifications

⚫ Environment Variables for Large Page
Settings

⚫ Precautions (Side Effects) Related to Memory
Usage

⚫ Paging policy of Large Page

⚫ Lock type of Large Page

⚫ Behavior of Large Page Shortage(Fugaku
only)

⚫ Timers Supported by Fortran

⚫ Timer Specifications

⚫ Timer Precision

⚫ Main Entry Names in Compiler Runtime
Library

⚫ Variations in Elapsed Time of Operation
Region

⚫ Causes of Variations in Elapsed Time of
Operation Region

⚫ Effects of Node OS Jitter

⚫ Latency Due to Differences in L2 Cache
Access Latency

⚫ Performance Impact Due to Directory
Path Name Change

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED4

• Program Development Environment System

• Language Specification

• MPI Acceleration

• Faster Math Libraries

• Development Support Tools

Program Development Environment
Overview

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED5

Program Development Environment System

Fujitsu Development Studio

Fortran

OpenMP

COARRAY

BLAS

LAPACK

SSL II

MPI

C/C++

OpenMP

ScaLAPACK

SSL II/MPI

IDE

Profilers

DebuggerInter-node

Each node

Development
assistance toolsMath librariesCompiler runtime

Single core

⚫ Fujitsu Development Studio configuration

⚫ Fujitsu Development Studio provides a cross compiler that runs on the PRIMERGY
and a native compiler that runs on the A64FX. These two types of compiler can
support various forms of use.

⚫ The C/C++ compiler can run in clang mode, which is compatible with Clang/LLVM.
By using clang mode, users can easily run open source applications.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED6

Language Specification

Supported Standards

Language Supported Standards/Specifications

Fortran

Part of ISO/IEC 1539-1:2018 (Fortran 2018 standard)

ISO/IEC 1539-1:2010 (Fortran 2008 standard)

ISO/IEC 1539-1:2004, JIS X 3001-1:2009 (Fortran 2003 standard)

ISO/IEC 1539-1:1997, JIS X 3001-1:1998 (Fortran 95 standard)

Fortran 90 and Fortran 77 standards

C

ISO/IEC 9899:2011 (C11 standard)
ISO/IEC 9899:1999 (C99 standard)
ISO/IEC 9899:1990 (C89 standard)
* Extension specifications of the GNU compiler are also supported.

C++

Part of ISO/IEC 14882:2017 (C++17 standard)
ISO/IEC 14882:2014 (C++14 standard)
ISO/IEC 14882:2011 (C++11 standard)
ISO/IEC 14882:2003 (C++03 standard)
* Extension specifications of the GNU compiler are also supported.

OpenMP
Part of OpenMP API Version 5.0
OpenMP API Version 4.5

MPI Part of Message-Passing Interface Standard Version 3.1 and 4.0

⚫ Compliance with the latest standards and industry standard specifications

⚫ Fujitsu Development Studio complies with the latest standards and industry
standard specifications, enabling application development with the latest standards
and also making it easy to run open source applications on the A64FX.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED7

⚫ Faster MPI with support for network layers

⚫ The A64FX has four mounted CMGs (core memory groups) and employs the
NUMA (non-uniform memory access) architecture to connect these CMGs
through a ring bus.

⚫ In process parallelization across CMGs, links on the layered network topology
are made using the Tofu Interconnect D and the ring bus within the A64FX.

⚫ The Alltoall algorithm implements an algorithm optimized to minimize
communication path conflicts in the ring bus, delivering higher speeds.

MPI Acceleration

⚫ Faster MPI using the Tofu Interconnect D

⚫ The significant enhancement of communication capabilities from conventional
four-way simultaneous communication to six-way simultaneous communication
has improved collective communication algorithms (including Allgather and
Bcast), which require a wide communication bandwidth for each node.

Interconnect Number of Network Interfaces Target Machine

Tofu 4 (1 node) FX10

Tofu2 4 (1 node) FX100

Tofu Interconnect D 6 (1 node) A64FX

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED8

Faster Math Libraries (1/2)

⚫ Faster math libraries using internal core speed-up functions

⚫ Internal core speed-up functions have been applied to the following fast math
libraries provided by Fujitsu Development Studio: BLAS and LAPACK are well-
known in the linear algebra field; Fujitsu math library SSL II is used by a wide
range of R&D users in Japan because its algorithms cover many fields; and the
fast quadruple-precision basic math library delivers higher speeds by handling
quadruple-precision values in the double-double format.

⚫ Applications can be faster simply by calling these math libraries.

Sequential Libraries (Thread Safe)

BLAS, LAPACK
These linear algebra libraries developed in the United States and released by Netlib are

de facto standards. BLAS has about 80 routines, and LAPACK has about 400 routines.

Some BLAS routines independently support FP16.

SSL II Library containing about 300 Fortran routines covering a wide range of fields

C-SSL II C interface for SSL II

Fast quadruple-
precision basic
math library

This library represents and calculates quadruple-precision values in the double-
double format. Some thread parallelization routines are included.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED9

Faster Math Libraries (2/2)

⚫ Faster math libraries using the thread parallelization function
⚫ Fujitsu Development Studio provides BLAS, LAPACK, and SSL II as fast math libraries having

thread parallelization.

⚫ Applications can be faster with thread parallelization by calling these math libraries.

⚫ Faster math libraries using the MPI parallelization function
⚫ Fujitsu Development Studio provides ScaLAPACK and SSL II/MPI as fast math libraries

having MPI parallelization.

⚫ Acceleration can be faster with MPI parallelization by calling these math libraries.

Sequential Libraries (Thread Safe)

BLAS, LAPACK
The interface is the same as for the sequential libraries. Also included is PLASMA, which is a

task parallel version of LAPACK. They can also be used from Python (NumPy, SciPy).

SSL II thread

parallelization function
Thread parallel versions of about 80 important routines. The interface is different from that of

the sequential library SSL II, so they can be used concurrently.

C-SSL II thread
parallelization function

C interface for the SSL II thread parallelization function

MPI Parallelization Libraries

ScaLAPACK
MPI parallelization library of BLAS and LAPACK functions. The library has about 200

routines.

SSL II/MPI MPI parallel version of 3D FFT functions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED10

Development Support Tools

⚫ Application development support tools

⚫ Fujitsu Development Studio provides an integrated development environment,
profilers, and a parallel execution debugger as application development support
tools.

⚫ Users of these tools can develop applications efficiently.

Application Development Support Tools

Integrated

development

environment

Assistance in development tasks (editing and compiling source code, submitting

jobs, checking the job status, retrieving/displaying performance information, etc.)

- Eclipse

- Parallel Tools Platform (PTP)

Profilers

Assistance in application performance analysis

- Instant Performance Profiler

- Advanced Performance profiler

- CPU performance analysis report

Parallel
execution
debugger

Assistance in investigating trouble (abnormal end, deadlock, etc.) that
occurs during large-scale parallel processing
- Abnormal end investigation function
- Deadlock investigation function
- Debug function using command files

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED11

• Fortran, C/C++ Trad Mode

• Performance Focused

• Precision Focused

• C/C++ Clang Mode

Recommended Compiler Options

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED12

Compile command

⚫ Compile command(not MPI)

⚫ Compile command(MPI)

Kind Language Compile command Description

Cross compiler

Fortran frtpx The command
used on the login
node.

C fccpx

C++ FCCpx

Native compiler

Fortran frt The command
used on the
compute node.

C fcc

C++ FCC

Kind Language Compile command Description

Cross compiler

Fortran mpifrtpx The command
used on the login
node.

C mpifccpx

C++ mpiFCCpx

Native compiler

Fortran mpifrt The command
used on the
compute node.

C mpifcc

C++ mpiFCC

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED13

Fortran, C/C++ Trad Mode(Performance Focused)

Recommended Options
(Performance Focused: Fortran, C/C++ Trad Mode)

Concept
Specify this option to draw out the full performance of the A64FX. For example, with the option, you
can make full use of cores through thread parallelization or SVE through SIMDization, improve
instruction-level parallelism by software pipelining, change the operation order by optimization, and
use the reciprocal approximation operation.

Compiler Options Induced From -Kfast
⚫ Fortran

-O3 -Keval,fp_contract,fp_relaxed,fz,ilfunc,mfunc,omitfp,simd_packed_promotion

⚫ C/C++
-O3 -Keval,fast_matmul,fp_contract,fp_relaxed,fz,ilfunc,mfunc,omitfp,simd_packed_promotion

-Kfast,openmp[,parallel]

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED14

Compiler Options Induced From -Kfast

Induced Option Language Meaning

-O3 Common

Optimization level 3.

SIMD and software pipelining operations run at -O2.

An additional operation is optimization, such as for unrolling of
nested loops.

-Keval Common
Executes optimization to change how operations are evaluated in a
program.

-Kfast_matmul C/C++ Converts a matrix multiplication loop to a high-speed library call.

-Kfp_contract Common
Executes optimization for conversion to multiply-add operation
instructions.

-Kfp_relaxed Common
Executes conversion of single- or double-precision floating-point
division or the SQRT function to an instruction sequence using a
reciprocal approximation operation instruction.

-Kfz Common Enables flush-to-zero mode.

-Kilfunc Common Inline-expands the intrinsic functions and operations in a program.

-Kmfunc Common
Converts intrinsic functions and operations to multi-operation
functions.

This is intended for functions that cannot be used with -Kilfunc.

-Komitfp Common
Optimizes procedure calls. Consequently, the frame pointer register
cannot be guaranteed.

-Ksimd_packed_promotion Common

Promotes SIMDization with 16-element vectors, assuming that the
index computation of array elements made up of single-precision
real numbers and also 4-byte integers will not exceed the 4-byte
range.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED15

Fortran, C/C++ Trad Mode(Precision Focused)

Recommended Options
(Precision Focused: Fortran, C/C++ Trad Mode)

Concept
Use this option when you want to obtain the same precision as -O0 while optimizing performance as
much as possible. Specify the new option -Kfp_precision, which suppresses all optimizations that
affect precision, as an option appended to the recommended option focused on performance.
This suppresses multiple optimizations that significantly affect performance.

Compiler Options Induced From -Kfp_precision
⚫ Fortran

-Knoeval,nofp_contract,nofp_relaxed,nofz,noilfunc,nomfunc,parallel_fp_precision

⚫ C/C++
-Knoeval,nofast_matmul,nofp_contract,nofp_relaxed,nofz,noilfunc,nomfunc,parallel_fp_precision

-Kfast,openmp[,parallel],fp_precision

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED16

Compiler Options Induced From -Kfp_precision

Induced Option Language Meaning

-Knoeval Common
Suppresses optimization that changes how operations are evaluated in a
program.

-Knofast_matmul C/C++
Suppresses optimization that converts the loop of matrix multiplication
into a high speed library call(matmul).

-Knofp_contract Common
Suppresses the optimization used for conversion to multiply-add
operation instructions.

-Knofp_relaxed Common
Suppresses the conversion of single- or double-precision floating-point
division or the SQRT function to an instruction sequence using a
reciprocal approximation operation instruction.

-Knofz Common Disables flush-to-zero mode.

-Knoilfunc Common
Suppresses the inline expansion of the intrinsic functions and operations
in a program.

-Knomfunc Common
Suppresses the conversion of intrinsic functions and operations to multi-
operation functions.

-Kparallel_fp_precision Common
Suppresses optimization that may cause a computation error due to a
change in the number of parallel threads.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED17

C/C++ Clang Mode

Recommended Options (for C/C++ Clang Mode)

Concept
Specify this suitable compiler option for OSS compilation.

Compiler Options Induced From -Ofast
⚫ C/C++

-O3 -ffj-fast-matmul -ffast-math -ffp-contract=fast -ffj-fp-relaxed -ffj-ilfunc -fbuiltin -fomit-
frame-pointer -finline-functions

Features of clang mode
⚫ The faster execution performance with modern C code and C++ code is equal to or better than

in trad mode.
⚫ The higher usability (GCC compatibility) of OSS application compilation is equal to or better than

in trad mode.
⚫ ACLE and FP16 support clang mode only.

-Nclang -Ofast

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED18

Compiler Options Induced From -Ofast

Induced Option Language Meaning

-O3 Common

Optimization level 3.

The optimization such as loop optimization and inline expansion
is performed, as well as more advanced optimization.

-ffj-fast-matmul C/C++ Same as -Kfast_matmul.

-ffast-math Common Same as -Keval.

-ffp-contract=fast Common Same as -Kfp_contract.

-ffj-fp-relaxed Common Same as -Kfp_relaxed.

-ffj-ilfunc Common Same as -Kilfunc.

-fbuiltin Common

Same as -Klib.
Promotes optimization by recognizing the operation of standard
library functions

-fomit-frame-pointer Common Same as -Komitfp.

-finline-functions Common

Same as -x-.

Specifies to perform Inline expansion of function calls defined
in source code.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED19

• Assumed Usage Scenarios

• Overview of clang Mode External Specifications

• Comparison of Microarchitecture (Including ISA) Support

• Compiler Function (General, Loop Optimization) Comparison

• Compiler Function (Listing Optimization Information) Comparison

C/C++ Trad Mode and Clang Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED20

Assumed Usage Scenarios

⚫ Assumed usage scenarios (use cases)

⚫

⚫ Compiler structure

Usage Scenario
Compiler Suited to Scenario?

Trad Mode Clang Mode

Want to use the resources created on the K
computer/FX100 as they are

Yes No

Want tuning for HPC Yes
Yes

(Options must
be specified)

Want to use OSS No Yes

Want to use the new language standards C++17
Yes

(Partial
support)

Yes

fccpx/FCCpx ccpcompx

Clang LLVM
Option

switching

Clang Mode

Trad Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED21

Overview of Clang Mode External Specifications

⚫ Basic policy as Clang Mode

⚫ Clang/LLVM view is the base view.

⚫ Mode switching option

⚫ Use the -Nclang option to switch the compiler.
Example: FCCpx -Nclang test.cpp

⚫ Functions for compatibility with trad mode

⚫ Compile information output function (listing function)

➢ The output format (text format) of the current Fujitsu compiler is simple with
high readability.

⚫ Tool output information (loop-related information, etc.)

➢ Because optimization information for loops, etc. is effective for tuning

⚫ Major optimization options (-K options) and specification-related option (-N
options)

➢ Fujitsu’s Clang Mode considers portability when compiling K computer/FX100
resources.

Optimization options:

-Kfast, -Kilfunc, -Keval, -Kfp_contract, -Kfp_relaxed, etc.

Specification-related options:

-Nhook_time, -Nsrc, -Nlst, -Nline, etc.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED22

Comparison of Microarchitecture (Including ISA) Support

Item Trad Mode Clang Mode Remarks

Supports SVE Yes Yes SIMDization capabilities vary.

Supports fp16 No Yes

Specifies variable length for
SIMD width

Yes Yes
Clang Mode currently supports variable
lengths only.

Specifies fixed length for
SIMD width

Yes Yes

The default width for Trad Mode is 512
bits. For Clang Mode, see [clang Mode]
Specifying Fixed-length SVE SIMD
Width

Supports large pages Yes Yes

Supports instruction
scheduling latency

Yes Yes

Uses zfill Yes Yes

Uses sector cache Yes No

Uses intra-node barrier Yes Yes

Supports prefetch Yes Partly
Clang does not support prefetch in
some cases.

Utilizes structure instructions Yes Yes

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED23

Compiler Function (General, Loop Optimization) Comparison

Item Trad Mode Clang Mode Remarks

G
e
n
e
ra

l

OpenMP Supported Supported Clang Mode supports
OpenMP 4.5 (excluding
omp declare simd).

Automatic parallelization Supported Not supported

ACLE Not supported Supported

lto Not supported Supported

L
o
o
p
 o

p
ti
m

iz
a
ti
o
n

Software pipelining Supported Partly supported Specify the option for
Clang Mode.

Loop interchange of nested loops Supported Not supported

Loop collapse of nested loops Supported Not supported

Loop unrolling Supported Supported

Full unrolling Supported Supported

Loop fission Partly supported Partly supported Specify the option.

Loop fusion Supported Not supported

Unswitching Supported Supported

Multi-versioning Partly supported Partly supported Both support only their
individual functions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED24

Compiler Function
(Listing Optimization Information) Comparison

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Item Trad Mode Clang Mode Remarks

L
is

ti
n
g
 o

p
ti
m

iz
a
ti
o
n
 d

is
p
la

y

SIMD Supported Supported

Unrolling (Number of expansions) Supported Supported

Full unrolling Supported Supported

Software pipelining Supported Supported

Striping/Interleave Supported Supported
Trad Mode: STRIPING
Clang Mode: INTERLEAVE

Unswitching Supported Supported

Loop versioning Supported Not supported

Clone Supported Supported

Prefetch (hardware) Supported Not supported

Prefetch (software) Supported Supported

Spills Supported Supported

Fused Supported Not supported

Collapsed Supported Not supported

Interchanged Supported Not supported

Fission Supported Supported

Multi-operation function Supported Not supported

Pattern matching (matmul) Supported Supported

Parallelization information Supported Not supported

Optimization messages Supported Partly supported

clang mode outputs
messages for SIMD,
unrolling, and unswitching.

25

• C/C++ Support for SVE ACLE

C/C++ Support for SVE ACLE

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED26

C/C++ Support for SVE ACLE

⚫ The table below shows C/C++ compiler support for SVE ACLE in relation to
modes (Trad/Clang).

SVE FP16
SVE ACLE

(including FP16)

Fujitsu
compiler

Trad Mode ✔ ｘ ｘ

Clang Mode ✔ ✔ ✔ *1

Other
compilers

Arm compiler (19.2) ✔ ✔ ✔ *1

gcc 9.1.0 ✔ ✔
*2 ｘ

✔ : Supported, P: Partly supported, ｘ: Not supported

*1 Support Version 00bet1
https://developer.arm.com/documentation/100987/latest/
(Check the difference from “1.1. 2 change history”)

*2 _Float16 for C++ is not supported.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED27

https://developer.arm.com/documentation/100987/latest/

• Fixed-length and Variable-length for SVE SIMD Width

• [Clang Mode] Specifying Fixed-length SVE SIMD Width

Fixed-length and Variable-length for
SVE SIMD Width

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED28

Fixed-length and Variable-length for SVE SIMD Width

⚫SVE SIMD width (vector register size)
Implemented SIMD widths of SVE depend on CPU (A64FX: max. 512 bits).

The Fujitsu compiler supports options for both fixed- and variable-length
SVE SIMD width.

⚫Variable-length SIMD width (Trad Mode: -Ksimd_reg_size=agnostic,
Clang Mode: -msve-vector-bits=scalable)

The SVE SIMD width is not considered to be a specific value at compile time,
and the executable program decides the SIMD width at execution time. The
executable program can be run regardless of SIMD widths implemented in CPUs.
This is the default of Clang Mode of C/C++.

⚫Fixed-length SIMD width (Trad Mode: -Ksimd_reg_size={128|256|512},
Clang Mode: -msve-vector-bits=512)

The SVE vector register is considered to be a specific value at compile time. The
following optimizations are expected to be promoted. This is the default of
Fortran and Trad Mode of C/C++. In Clang Mode of C/C++, the option for fixed-
length SVE SIMD width is induced by -ffj-swp and -ffj-zfill.

✓ Software pipelining ✓ Loop interleaving

✓ zfill

✓ Loop unrolling (etc.)

✓ Inline expansion of
math functions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED29

[Clang Mode] Specifying Fixed-length SVE SIMD Width (1/2)

⚫Examples of programs which expect better performance by
specifying fixed-length SIMD width

Whether better performance can be achieved using fixed-length SIMD
width depends on operations in kernel loops. For example, each
optimization will be promoted in the following kernel loops.

for(i = 0; i < n; i = i+3) {
y[i] = x1[i] * x2[i];

}

for (i = 0; i < n; i++) {

b[i] = 0.9 + a[i] * (0.1 + a[i] *
(0.2 + a[i] * (0.3 + a[i] *
(0.4 + a[i] * (0.5 + a[i])))));

}
}

＊ Stride access
Loop interleaving and software pipelining
will be promoted

＊ No dependences across iterations
Software pipelining will be promoted

double *x, *y;
for(i = 0; i < n; i++) {

x[i] = sin(y[i]);
}

＊ Calling a math function
Inline expansion of a math function and
software pipelining will be promoted

Kernel loop: loop which represents characteristics of a program

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED30

[Clang Mode] Specifying Fixed-length SVE SIMD Width (2/2)

⚫Notes on specifying fixed-length SIMD width
The following points should be considered when specifying fixed-length
SIMD width with Clang Mode.

⚫When the program is executed with a SIMD width which is different
from one specified at compile time, the result of executions is not
guaranteed

⚫The -fslp-vectorize option is disabled

⚫SIMD built-in functions cannot be used

⚫When the -flto option is enabled, fixed-length SIMD width gets disabled

⚫For following cases, specifying variable-length SIMD width will generate
better-performance code

✓If there are loads/stores of neighboring members of a structure or a
complex number in a kernel loop, the “load/store multiple structures”
instruction will be exploited for better performance

✓If the number of loop iterations is low, the remainder loop (iterations
which run over the SIMD width) is also SIMDized

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED31

• Compatibility of Objects

• Precautions on Linking

Compatibility Between Objects
Generated by Fujitsu Compiler and
Those by Other Compilers

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED32

Compatibility of Objects

⚫ Whether objects can be linked
⚫ The table below shows whether or not objects generated by the Fujitsu compiler can be

linked to objects generated by other compilers.
⚫ If incompatible objects are linked, an error occurs at the link time.

*1 Even if objects are generated using the Fujitsu compiler, when linking an object file generated by C++ Clang Mode and an object file
generated by C++ Trad Mode, refer to notes in C++ User’s Guide 9.6.1.

⚫ Note

⚫ When using the Profiler or the Debugger for Parallel Applications, use the
compile commands of the Fujitsu compiler to compile and link your programs.
You cannot use the Profiler or the Debugger for Parallel Applications when
using the compile commands of other compilers, such as the GNU compiler.

Compiler

Fujitsu Compiler (The Fujitsu compiler is used for linking.)

Language Fortran

C
* It is not necessary to

distinguish between Trad
and Clang modes.

C++

Trad Mode Clang Mode

ARM

Fortran ｘ ✔ ｘ ✔

C ✔ ✔ ✔*1 ✔*1

C++ ｘ ✔ ｘ ✔

LLVM

Fortran ｘ ✔ ｘ ✔

C ✔ ✔ ✔*1 ✔*1

C++ ｘ ✔ ｘ ✔

GNU

Fortran ｘ ✔ ｘ ✔

C ✔ ✔ ✔*1 ✔*1

C++ ｘ ✔ ｘ ✔

✔: Can be linked,
ｘ: Cannot be linked

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED33

Precautions on Linking (1/3)

⚫ Precautions on linking with the Arm compiler

Fujitsu Compiler
* The Fujitsu compiler is used for linking.

Language Fortran

C
* It is not necessary to

distinguish between trad
and clang modes.

C++

ARM

Fortran -
Linking not allowed for a
program written for another
compiler using its own libraries

In both trad and clang modes, linking not
allowed for a program written for another
compiler using its own libraries

C

With thread parallelization,
the -Nlibomp option has to
be specified for the Fujitsu
compiler. (Linking not
allowed when the -Nfjomplib
option is used)

With thread parallelization, the
-Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not allowed
when the -Nfjomplib option is
used)

In both trad and clang modes, with thread
parallelization, the -Nlibomp option has to be
specified for the Fujitsu compiler. (Linking not
allowed when the -Nfjomplib option is used)

C++ -

With thread parallelization, the
-Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not allowed
when the -Nfjomplib option is
used)

In clang mode only:
- With thread parallelization, the -Nlibomp
option has to be specified for the Fujitsu
compiler. (Linking not allowed when the -
Nfjomplib option is used)
- STL (C++ standard library) has to be the
same one used by the compiler from another
manufacturer.

- If "-stdlib=libc++" is specified for compiling
by another manufacturer's compiler, "-
stdlib=libc++" has to be specified for the
Fujitsu compiler too.
- If "-stdlib=libstdc++" is specified for
compiling by another manufacturer's
compiler, "-stdlib=libstdc++" has to be
specified for the Fujitsu compiler too.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED34

Precautions on Linking (2/3)

⚫ Precautions on linking with the LLVM compiler

Fujitsu Compiler
* The Fujitsu compiler is used for linking.

Language Fortran

C
* It is not necessary to

distinguish between trad
and clang modes.

C++

LLVM

Fortran -
Linking not allowed for a
program written for another
compiler using its own libraries

In both trad and clang modes, linking not
allowed for a program written for another
compiler using its own libraries

C

With thread parallelization,
the -Nlibomp option has to
be specified for the Fujitsu
compiler. (Linking not
allowed when the -Nfjomplib
option is used)

With thread parallelization, the
-Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not allowed
when the -Nfjomplib option is
used)

In both trad and clang modes, with thread
parallelization, the -Nlibomp option has to be
specified for the Fujitsu compiler. (Linking not
allowed when the -Nfjomplib option is used)

C++ -

With thread parallelization, the
-Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not allowed
when the -Nfjomplib option is
used)

In clang mode only:
- With thread parallelization, the -Nlibomp
option has to be specified for the Fujitsu
compiler. (Linking not allowed when the -
Nfjomplib option is used)
- STL (C++ standard library) has to be the
same one used by the compiler from another
manufacturer.

- If "-stdlib=libc++" is specified for compiling
by another manufacturer's compiler, "-
stdlib=libc++" has to be specified for the
Fujitsu compiler too.
- If "-stdlib=libstdc++" is specified for
compiling by another manufacturer's
compiler, "-stdlib=libstdc++" has to be
specified for the Fujitsu compiler too.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED35

Precautions on Linking (3/3)

⚫ Precautions on linking with the GNU compiler

Fujitsu Compiler
* The Fujitsu compiler is used for linking.

Language Fortran

C
* It is not necessary to

distinguish between trad
and clang modes.

C++

GNU

Fortran -

Linking not allowed for a
program written for
another compiler using
its own libraries

In both trad and clang modes,
linking not allowed for a program
written for another compiler using its
own libraries

C

With thread
parallelization, the -
Nlibomp option has to
be specified for the
Fujitsu compiler.
(Linking not allowed
when the -Nfjomplib
option is used)

With thread
parallelization, the -
Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not
allowed when the -
Nfjomplib option is used)

In both trad and clang modes, with
thread parallelization, the -Nlibomp
option has to be specified for the
Fujitsu compiler. (Linking not allowed
when the -Nfjomplib option is used)

C++ -

With thread
parallelization, the -
Nlibomp option has to be
specified for the Fujitsu
compiler. (Linking not
allowed when the -
Nfjomplib option is used)

In clang mode only:
- With thread parallelization, the -
Nlibomp option has to be specified
for the Fujitsu compiler. (Linking not
allowed when the -Nfjomplib option
is used)
- "-stdlib=libstdc++" has to be
specified for the Fujitsu compiler.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED36

• Compile Option System of Clang Mode

• Optimization Specifier System of Clang Mode

• Options Supported in Clang Mode

• Optimization Specifiers Supported in Clang Mode

Compile Options and Optimization
Specifiers Supported in Clang Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED37

Compile Option System of Clang Mode

⚫ Support policy for compile options

⚫ Support useful options in the -K and -N series for the Fujitsu compiler.

⚫ Considering the characteristics (fewer loop cycles, etc.) of modern C code and
OSS applications, support those options while prioritizing options for
optimization of individual instructions and optimization for mathematical
functions.

⚫ Support options in the Clang/LLVM format while prioritizing GCC-compatible
options and focusing on compiling and executing OSS applications.

⚫ System supporting compile options

⚫ -K and -N series of options for the Fujitsu compiler

⚫ If Clang/LLVM has equivalent options

✓ The options in the -K and -N series are converted to the equivalent options (options in
the -f series) for Clang/LLVM.

⚫ If Clang/LLVM does not have equivalent options

✓ New functions and new options (-ffj series of options) are added to convert the options in
the -K and -N series to options in the -ffj series.

✓ Future extension of new functions and new options (-ffj series of options) is planned.

⚫ Options in the Clang/LLVM format

⚫ The manual for clang mode describes the range of support.

✓ The manual does not describe unsupported options, which however can still be used.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED38

Optimization Specifier System of Clang Mode

⚫ Support policy for optimization specifiers

⚫ Support useful optimization specifiers for the Fujitsu compiler in addition to
Clang/LLVM optimization specifiers.

⚫ System supporting optimization specifiers

⚫ Clang/LLVM optimization specifiers

⚫ The manual for Clang Mode describes the range of support.

✓ The manual does not describe unsupported specifiers, which however can still be
used.

⚫ Fujitsu’s own optimization specifiers

⚫ Fujitsu’s own optimization specifiers in the #pragma fj format are supported.

✓ The support for the #pragma fj format even in trad mode ensures compatibility
between Clang Mode and Trad Mode.

✓ Extension of the range of support is planned, depending on improvements in
compatibility with trad mode and on functional extensions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED39

Options Supported in Clang Mode (1/7)

⚫ Optimization-related options (same as Clang/LLVM)

Option in Clang Mode Outline Option in Trad Mode

-Ofast
To create an object program for fast execution on the target
machine

-Kfast

-f{builtin|no-builtin}
Whether or not to recognize the actions of standard library
functions to promote optimization

-K{lib|nolib}

-f{lto|no-lto} Whether or not to execute optimization at the link time -K{lto|nolto}

-f{vectorize|no-vectorize}
Whether or not to generate an object by using the SIMD
extension instruction in an intra-loop operation

-K{simd|nosimd}

-f{strict-aliasing|
no-strict-aliasing}

Whether or not to execute optimization considering
overlapping memory areas in accordance with the strict
aliasing rule stipulated in the language standard

-K{strict_aliasing|
nostrict_aliasing}

-f{unroll-loops|
no-unroll-loops}

Whether or not to execute optimization for loop unrolling -K{unroll|nounroll}

-f{exceptions|
no-exceptions}

Whether or not to define the predefined macro
__EXCEPTIONS

-N{exceptions|
noexceptions}

-f{omit-frame-pointer|
no-omit-frame-pointer}

Whether or not to execute optimization where the frame
pointer register is not guaranteed for function calls

-K{omitfp|noomitfp}

-f{inline-functions|
no-inline-functions}

Whether or not inline expansion includes the functions defined
in the source program

{-x-|-x0}

-f{fast-math|no-fast-math}
Whether or not to execute optimization to change how
operations are evaluated

-K{eval|noeval}

-ffp-contract={fast|off}
Whether or not to execute optimization using floating-point
multiply-add/subtract operation instructions

-K{fp_contract|
nofp_contract}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED40

Options Supported in Clang Mode (/7)

⚫ Optimization-related options (same as Clang/LLVM)

Option in Clang Mode Outline Option in Trad Mode

-msve-vector-bits={512|scalable}

Specifies the size of the SVE
vector register. (Units are
bits.)

(None)

-f{finite-math-only|no-finite-math-only}

To promote the optimization
of floating point arithmetic
based on the assumption that
the argument or operation
result is only a finite
numerical value.

(None)

-f{reroll-loops|no-reroll-loops} To apply loop rerolling. (None)

-f{signed-char|unsigned-char}
To treat char type variable as
singed char type.

(None)

-f{slp-vectorize|no-slp-vectorize}

To apply SLP(Superword Level
Parallelism) using SIMD
instructions.

(None)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED41

Options Supported in Clang Mode (3/7)

⚫ Optimization-related options (Fujitsu-specific, except the prefetch group)

Option in Clang Mode Outline Option in Trad Mode

-f{fj-eval-concurrent|
fj-no-eval-concurrent}

Whether or not to prioritize instruction
parallelism in tree-height-reduction
optimization

-K{eval_concurrent|
eval_noconcurrent}

-f{fj-fast-matmul|
fj-no-fast-matmul}

Whether or not to convert a matrix
multiplication loop to a high-speed
library call

-K{fast_matmul|
nofast_matmul}

-f{fj-fp-relaxed|
fj-no-fp-relaxed}

Whether or not to execute reciprocal
approximation operation instructions
and reciprocal approximation operations
using floating-point multiply-
add/subtract instructions, for single-
precision floating-point division, double-
precision floating-point division, and the
sqrt function

-K{fp_relaxed|nofp_relaxed}

-f{fj-ilfunc[={loop|procedure}]|
fj-no-ilfunc}

Whether or not to inline-expand a math
function

-K{ilfunc[={loop|procedure}]|
noilfunc}

-f{fj-ocl|fj-no-ocl}
Whether or not to enable optimization
control lines specific to the Fujitsu
compiler

-K{ocl|noocl}

-f{fj-preex|fj-no-preex}
Whether or not to optimize preceeding
evaluation of invariants

-K{preex|nopreex}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED42

⚫ Optimization-related options (Fujitsu-specific, except the prefetch group)

Options Supported in Clang Mode (4/7)

Option in Clang Mode Outline Option in Trad Mode

-f{fj-fp-precision|
fj-no-fp-precision}

To induce the combination of
optimization options that do not cause
calculation errors in floating-point
operations.

-K{fp_precision|
nofp_precision}

-f{fj-hpctag|fj-no-hpctag}
To use the HPC tag address override
feature of the A64FX processor.

-K{hpctag|nohpctag}

-f{fj-interleave-loop-insns[=N]|
fj-no-interleave-loop-insns}

To apply loop interleaving to SIMD
applied loops using SVE. (N is the
interleaving count)

(None)

-f{fj-loop-fission|
fj-no-loop-fission}

To perform the automatic loop fission
optimization for the software pipelining,
SIMDization, and
the resolution of register shortage.

-K{loop_fission|
loop_nofission}

-f{fj-optlib-string|
fj-no-optlib-string}

To link the optimized version of the
library in the string manipulation
function.

-K{optlib_string|
nooptlib_string}

-f{fj-swp|fj-no-swp} To perform software pipelining. -K{swp|noswp}

-f{fj-zfill[=N]| fj-no-zfill} To perform zfill optimization. -K{zfill[=N]|nozfill}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED43

Options Supported in Clang Mode (5/7)

⚫ Optimization-related options (Fujitsu-specific, prefetch group)

Option in Clang Mode Outline Option in Trad Mode
-ffj-prefetch-cache-level=

{1|2|all}
Which cache level to prefetch data to

-Kprefetch_cache_level=
{1|2|all}

-f{fj-prefetch-conditional|
fj-no-prefetch-conditional}

Whether or not to generate prefetch instructions for the array
data used in the blocks included in an if statement or switch
statement

-K{prefetch_conditional|
prefetch_noconditional}

-ffj-prefetch-iteration=N To target the data extracted after N cycles of a loop, when
generating a prefetch instruction (for the primary cache)

-Kprefetch_iteration=N

-ffj-prefetch-iteration-L2=N To target the data extracted after N cycles of a loop, when
generating a prefetch instruction (for the secondary cache)

-Kprefetch_iteration_L2=N

-ffj-prefetch-line=N
To target the corresponding data that is prefetched N cache lines
ahead, when generating a prefetch instruction (for the primary
cache)

-Kprefetch_line=N

-ffj-prefetch-line-L2=N
To target the corresponding data that is prefetched N cache lines
ahead, when generating a prefetch instruction (for the secondary
cache)

-Kprefetch_line_L2=N

-f{fj-prefetch-sequential
[={auto|soft}]|

fj-no-prefetchsequential}

Whether or not to generate prefetch instructions for the array
data used in loops and accessed sequentially

-K{prefetch_sequential
[={auto|soft}]|

prefetch_nosequential}

-f{fj-prefetch-stride|
fj-no-prefetch-stride}

Whether or not to generate prefetch instructions for the array
data accessed with an even longer stride than the line size of the
cache used in a loop

-K{prefetch_stride|
prefetch_nostride}

-f{fj-prefetch-strong|
fj-no-prefetch-strong}

Whether or not to generate a strong prefetch instruction when
generating a prefetch instruction (for the primary cache)

-K{prefetch_strong|
prefetch_nostrong}

-f{fj-prefetch-strong-L2|
fj-no-prefetch-strong-L2}

Whether or not to generate a strong prefetch instruction when
generating a prefetch instruction (for the secondary cache)

-K{prefetch_strong_L2|
prefetch_nostrong_L2}

-ffj-no-prefetch To not generate prefetch instructions -Knoprefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED44

Options Supported in Clang Mode (6/7)

⚫ CPU/Architecture-related, code generation-related, and OpenMP-related
options

Option in Clang Mode Outline Option in Trad Mode

-mcpu=a64fx
To output the object file for the A64FX
processor

-KA64FX

-mcpu=generic
To output the object file for the Arm
(universal) processor

-KGENERIC_CPU

-march=
arm{v8|v8.1|v8.2|v8.3}-a+sve

To use Armv8.x-A instructions and SVE
instructions

-KARCH -KSVE

-march=
arm{v8|v8.1|v8.2|v8.3}-a+nosve

To use Armv8.x-A instructions
(SVE instructions not used)

-KARCH -KNOSVE

-mcmodel={small|large}
Maximum value for the code area and
static data area

-Kcmodel={small|large}

-f{PIC|pic}
To generate position-independent code
(PIC)

-K{PIC|pic}

-f{fj-largepage|fj-no-largepage}
Whether or not to use the large page
function

-K{largepage|nolargepage}

-f{openmp|no-openmp}
Whether or not to accept directives of
OpenMP specifications

-K{openmp|noopenmp}

-f{openmp-simd|no-openmp-simd}
Whether or not to enable only the simd
construct and the declare simd construct
of OpenMP specifications

-K{openmp_simd|noopenmp_simd}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED45

Options Supported in Clang Mode (7/7)

⚫ Other options

Option in Clang Mode Outline Option in Trad Mode

-f{fj-fjcex|fj-no-fjcex}
Whether or not to use the Fujitsu extension functions
provided in clang mode

-N{fjcex|nofjcex}

-f{fj-fjprof|fj-no-fjprof} Whether or not to enable the profiler function -N{fjprof|nofjprof}

-f{fj-line|fj-no-line}
Whether or not to generate the additional information
required for the sampling function during execution as
provided by the profiler

-N{line|noline}

-f{fj-hook-time|
fj-no-hook-time}

Whether or not to use the hook function with calls
from specific locations

-N{hook_time|nohook_time}

-ffj-lst[=p]
To output the source list and statistical information as
compiled information to a file

-Nlst[=p]

-ffj-lst=t
To output the source list, statistical information, and
more detailed optimization information as compiled
information to a file

-Nlst=t

-ffj-lst-out=file
To output compiled information to the specified file
named file

-Nlst_out=file

-ffj-src To output the source list to the standard output -Nsrc

-Rpass=.*
To output optimization information to the standard
error output

-Koptmsg=2

--version
To output the compiler version and copyright
information to the standard output

-V

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED46

Optimization Specifiers Supported in Clang Mode (1/3)

⚫ Same as Clang/LLVM

Optimization Specifier in
Clang Mode

Outline
Optimization Specifier

in Trad Mode

clang fp contract(fast) To use FMA instructions (None)

clang fp contract(on)
To use FMA instructions
(Equivalent to #pragma STDC
FP_CONTRACT ON)

(None)

clang fp contract(off) To not use FMA instructions (None)

clang loop unroll(enable)

To unroll loops

loop unroll

clang loop unroll(full) loop unroll full

clang loop unroll_count(n) loop unroll(n)

clang loop unroll(disable) To not unroll loops loop nounroll

clang loop vectorize(enable) To SIMDize loops loop simd

clang loop vectorize(disable) To not SIMDize loops loop nosimd

Leading "#pragma" omitted

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED47

Optimization Specifiers Supported in Clang Mode (2/3)

⚫ Fujitsu-specific specifiers (except the prefetch group)

Optimization Specifier in
Clang Mode

Outline
Optimization Specifier

in Trad Mode

fj loop eval_concurrent
To prioritize instruction parallelism in
tree-height-reduction optimization

loop eval_concurrent

fj loop eval_noconcurrent
To suppress instruction parallelism and
prioritize use of FMA instructions in tree-
height-reduction optimization

loop eval_noconcurrent

fj loop preex To speculatively evaluate invariants loop preex

fj loop nopreex To not speculatively evaluate invariants loop nopreex

Leading "#pragma" omitted

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED48

Optimization Specifiers Supported in Clang Mode (3/3)

⚫ Fujitsu-specific specifiers (prefetch group)

Clang Mode
Optimization Specifier

Outline
Trad Mode

Optimization Specifier

fj loop prefetch To enable the automatic prefetch function of the
compiler

loop prefetch

fj loop noprefetch To disable the automatic prefetch function of the
compiler

loop noprefetch

fj loop prefetch_sequential
[auto|soft]

To generate prefetch instructions for the array
data accessed sequentially

loop prefetch_sequential
[auto|soft]

fj loop prefetch_nosequential To not generate prefetch instructions for the
array data accessed sequentially

loop prefetch_nosequential

fj loop prefetch_stride
To generate prefetch instructions for the array
data accessed with an even longer stride than the
line size of the cache used in a loop

loop prefetch_stride

fj loop prefetch_nostride To not generate prefetch instructions for stride
access

loop prefetch_nostride

fj loop prefetch_strong To set the prefetch instructions generated for the
primary cache as strong prefetch.

loop prefetch_strong

fj loop prefetch_nostrong To not set the prefetch instructions generated for
the primary cache as strong prefetch.

loop prefetch_nostrong

fj loop prefetch_strong_L2 To set the prefetch instructions generated for the
secondary cache as strong prefetch.

loop prefetch_strong_L2

fj loop prefetch_nostrong_L2 To not set the prefetch instructions generated for
the secondary cache as strong prefetch.

loop prefetch_nostrong_L2

Leading "#pragma" omitted

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED49

• LLVM OpenMP Library and Fujitsu OpenMP Library

• LLVM OpenMP Library (-Nlibomp)

• Fujitsu OpenMP Library (-Nfjomplib)

Two OpenMP Libraries

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED50

LLVM OpenMP Library and Fujitsu OpenMP Library
(1/2)

⚫ The LLVM OpenMP library is an OpenMP library based on the LLVM
OpenMP Runtime Library extended for the A64FX.

OpenMP Library Option Supported Functions

LLVM OpenMP library
-Nlibomp
(default)

OpenMP 4.5 and Parts of 5.0
Hardware barrier(Default is Software barrier)
Sector cache
Bind to core (default)

Fujitsu OpenMP library -Nfjomplib

OpenMP 3.1
Hardware barrier
Sector cache
Bind to core (Default when execute on job)

⚫ Compiler combination
⚫ The object files(.o) are common in Fortran and C/C++ Trad Mode, and libraries

used can be specified with the –Nlibomp/-Nfjomplib option.
(If Clang Mode object files are included, only –Nlibomp option is available)

Option Fortran
C/C++

Trad Mode Clang Mode

-Nlibomp Available Available Available

-Nfjomplib Available Available Not available

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED51

LLVM OpenMP Library and Fujitsu OpenMP Library
(2/2)

⚫ Selection method

⚫ Specify in compiler option when linking.

⚫-Nlibomp (default) : Use LLVM OpenMP Library

⚫-Nfjomplib : Use Fujitsu OpenMP Library

⚫ Difference in specifications

⚫ Thread stack size

⚫ Environment variables

⚫The following environment variables are not supported by libomp (be ignored if specified):

⚫PARALLEL, FLIB_FASTOMP, THREAD_STACK_SIZE, FLIB_SPINWAIT, FLIB_CPU_AFFINITY,
FLIB_NOHARDBARRIER, FLIB_HARDBARRIER_MESSAGE, FLIB_CNTL_BARRIER_ERR, FLIB_PTHREAD,
FLIB_CPUBIND, FLIB_USE_ALLCPU, FLIB_USE_CPURESOURCE

⚫ Shared libraries

⚫The following shared libraries will be linked by libomp.

⚫ libfjomp.so, libfjompcrt.so, libfjomphk.so

Option Default size
Environment

variables for resizing

-Nlibomp • 8MiB OMP_STACKSIZE

-Nfjomplib

• Inherit the process stack size.
• If the stack size of the process is specified as

unlimited.
(Memory size / Number of threads) / 5

OMP_STACKSIZE
or THREAD_STACK_SIZE

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED52

LLVM OpenMP Library (-Nlibomp) (1/2)

⚫ By default, the software barrier/sector cache is available.

⚫ To use the hardware barrier, specify the FLIB_BARRIER environment
variable.

⚫ FLIB_BARRIER=HARD : Use the hardware barrier.

⚫ FLIB_BARRIER=SOFT ：Use the software barrier.(default)

⚫ Precautions on using the hardware barrier

⚫ The number of threads (omp_set_num_threads(), num_threads clause) cannot be
controlled.

⚫ Thread affinity (proc_bind clause, OMP_PLACES, OMP_PROC_BIND) cannot be
controlled.

⚫ Nesting (omp_set_nested(), OMP_NESTED) cannot be controlled.

⚫ An undeferred task is always generated for a task construct, and the task will not
be parallelized.

⚫ Cancellation is disabled.

⚫ Supports part of OpenMP 5.0 in addition to OpenMP 4.5. Use this library to
use the latest OpenMP standard.

⚫ Select the software barrier when using the main functions of OpenMP
4.5/5.0, such as a task or cancellation.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED53

LLVM OpenMP Library (-Nlibomp) (2/2)

⚫ To bind the initial thread to a specific core, use numactl or taskset.
This does not affect the upper limit on the number of threads in the
program.

⚫ For MPI programs, you can use the function of parallelizing memory copy
processing in MPI library with threads. Specify -Nlibomp and at least one
of the -Kparallel and -Kopenmp as options of a compilation/linkage
command.

⚫ mpifrtpx –Kopenmp –Nlibomp a.f90

⚫ The following environment variables specific to the Fujitsu OpenMP library
cannot be used (and will be ignored):
◼ PARALLEL
◼ FLIB_FASTOMP
◼ THREAD_STACK_SIZE
◼ FLIB_SPINWAIT
◼ FLIB_CPU_AFFINITY
◼ FLIB_NOHARDBARRIER

◼ FLIB_HARDBARRIER_MESSAGE
◼ FLIB_CNTL_BARRIER_ERR
◼ FLIB_PTHREAD
◼ FLIB_CPUBIND
◼ FLIB_USE_ALLCPU
◼ FLIB_USE_CPURESOURCE

#!/bin/sh -ex
:

export FLIB_BARRIER=HARD # Use the hardware barrier
#(Use the software barrier when FLIB_BARRIER is SOFT or not set)

numactl -C12 ./a.out # Fix the initial thread to C12

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED54

Fujitsu OpenMP Library (-Nfjomplib)

⚫ Details are omitted since they are the same for existing systems
(K computer/FX100).

⚫ By default, the hardware barrier/sector cache is available.

⚫ There is no restriction on generating undeferred tasks while using the
hardware barrier.

⚫ OpenMP 3.1 support.

⚫ Specify -Nfjomplib when compiling with the C/C++ compiler in Trad Mode
or with the Fortran compiler.

⚫ Fortran

⚫ frtpx -Kopenmp -Nfjomplib main.f90

⚫ C/C++ Trad Mode

⚫ fccpx -Kopenmp -Nfjomplib main.c

⚫ –Nfjomplib cannot be used with the C/C++ compiler in Clang Mode.

⚫ To bind to core when execute on job. The environment variable
FLIB_CPU_AFFINITY can be used to control the bind to core when not
execute on job.

⚫ The following environment variable specific to the LLVM OpenMP library
cannot be used (and will be ignored):

⚫ FLIB_BARRIER

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED55

Check the Performance

⚫OpenMP Microbench (Fortran, 12 threads execute)

Directive

[Reference]
Skylake

(2.7GHz)

libomp fjomplib

Hardware Barrier
Ratio

(libomp/fjomplib)

Skylake Ratio
(libomp(hard)

/Skylake)

Software
Barrier

Hardware
Barrier

Hardware
Barrier

Elapse time
(㎲)

Elapse time
(㎲)

Elapse time
(㎲)

Elapse time
(㎲)

PARALLEL 1.10 2.95 2.24 0.43 5.25 2.03

DO/FOR 0.82 1.60 0.13 0.13 0.97 0.16

PARALLEL_DO/FOR 1.12 2.95 2.23 0.45 5.00 2.00

BARRIER 0.76 1.55 0.12 0.12 1.00 0.16

SINGLE 1.18 1.68 1.37 0.60 2.26 1.16

CRITICAL 0.28 0.32 0.32 0.66 0.49 1.14

LOCK/UNLOCK 0.29 0.32 0.32 0.48 0.67 1.12

ORDERED 0.26 0.32 0.32 0.28 1.12 1.22

ATOMIC 0.19 0.65 0.69 0.69 1.00 3.65

REDUCTION 2.25 4.63 2.59 0.95 2.72 1.15

In using libomp library,

Check PARALLEL directives.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED56

• New Options Added in A64FX

• Options With Changed
Specifications in A64FX

• Options Deleted From A64FX

• A64FX Compatibility With K
Computer/FX10/FX100

• Fortran compatibility

• C compatibility

• C++ compatibility

• MPI compatibility

• Math library compatibility

• MPI Extension Functions and
Data Types

• Endian

Migration From Existing System

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED57

New Options Added in A64FX (1/8)

Compiler Option Language Meaning

-Kswp_weak Common

Specifies a software pipelining adjustment and a reduction in overlapping
executable statements within a loop. Software pipelining is applied to routes
at the execution time, and the required number of loop iterations passing
through the routes is small. For this reason, performance can be expected to
improve in cases where the number of loop iterations is small but not known
at the compile time.

-Kswp_freg_rate=N
-Kswp_ireg_rate=N
-Kswp_preg_rate=N

Common

Changes the application conditions regarding the registers for software
pipelining. N is an integer value between 1 and 1,000, specifying the
percentage of registers available for software pipelining. When the specified
value is larger than 100, an increase in the number of actual registers may
be determined, and software pipelining may be applied with them. However,
execution performance may decrease due to insufficient registers since this
shortage increases the number of instructions saved to memory and
restored.
- freg: Floating-point register and SVE vector register
- ireg: Integer register
- preg: SVE predicate register

-Kloop_fission_threashold=N Common

Specifies the threshold value that determines the loop granularity (number of
instructions or registers in a loop, etc.) after loop fission. N is a value ranging
from 1 to 100. The default is 50. The smaller the value for N, the smaller the
loops after fission and the greater the number of splits.

-Kloop_fission_
stripmining[={N|L1|L2}]
-Kloop_fission_nostripmining

Common

-Kloop_fission_stripmining[={N|L1|L2}]
Specifies strip mining optimization during loop fission.
N is a value ranging from 1 to 100,000,000, specifying the strip length. If
the characters L1 or L2 are specified, the specified cache is adjusted to
match the expected length. If neither is specified, the compiler automatically
makes a determination.

Option you should take note of

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED58

New Options Added in A64FX (2/8)

Compiler Option Language Meaning

-Kassume
={shortloop|
memory_bandwidth|
time_consuming_compilation}

Common

Specifies an option to work at -O1 or higher.
-Kassume=shortloop
Controls optimization by assuming a low number of cycles when
the number of innermost loop cycles in a program is not known.
-Kassume=memory_bandwidth
Controls optimization by assuming the innermost loop in a
program is a bottleneck due to memory bandwidth.
-Kassume=time_consuming_compilation
Controls optimization to shorten the compile time. (As with -O
level control, rather than specific functions being disabled, the
optimization is more restricted/suppressed as the program grows
larger.)

-Keval_[no]concurrent Common

-Keval_concurrent
Makes a transformation to prioritize operation instruction
parallelism in tree-height-reduction optimization. The option is
specified to work at -O1 or higher together with -Keval.
Performance is likely to improve when this option is applied to
loops having many operations that cannot be software pipelined.
By default, -Keval_noconcurrent considers linkage with software
pipelining, suppresses instruction parallelism, and makes a
transformation to prioritize the use of FMA instructions.

-Kloop_[no]perfect_nest Common

-Kloop_noperfect_nest
Specifies suppression of optimization that fissions imperfectly
nested loops into perfectly nested loops. This option turns
currently running functions into optional functions.
The default at -O2 or lower is -Kloop_noperfect_nest.
The default at -O3 is -Kloop_perfect_nest.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED59

New Options Added in A64FX (3/8)

Compiler Option Language Meaning

-K[no]optlib_string Common

-Koptlib_string
Links the optimized library of character string manipulation
functions.
The default is -Knooptlib_string.

-K[no]preload Common

-Kpreload
Runs optimization aimed at speeding up executable modules by
speculatively executing a load instruction before the if condition is
determined from the then/else clause of an if statement.
The default is -Knopreload.

-K[no]sibling_calls Common
-Ksibling_calls
Optimizes trailing calls. The default actions are at -O2 or higher.

-Ksimd_reg_size
={128|256|512|agnostic}

Common

Generates instructions with an assumption that the specified value
is the SVE vector register size.
If agnostic is specified, executable instructions are generated
irrespective of the size of the SVE vector register of the CPU.

-Ksimd_[no]use_multiple
_structures

Common

-Ksimd_nouse_multiple_structures
Specifies not to use the load/store multiple-structures instruction
of SVE.
This option is available only when -Ksimd and -KSVE are enabled.
The default is -Ksimd_use_multiple_structures.

-Ksimd_[no]uncounted_loop Common

-Ksimd_uncounted_loop
Implementation of SIMD "do while" loops, "do until" loops, and
"do" loops containing a loop ending statement (only a limited
range is optimized).
The default is -Ksimd_nouncounted_loop.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED60

New Options Added in A64FX (4/8)

Compiler Option Language Meaning

-K[no]sch_pre_ra Common

-Knosch_pre_ra
Suppresses register preallocation instruction scheduling. -Ksch_pre_ra
is applied at –O1 or higher. Performance is likely to improve when this
option is used where many spills occur.

-K[no]sch_post_ra Common
-Knosch_post_ra
Suppresses register post-allocation instruction scheduling.
-Ksch_post_ra is applied at -O1 or higher.

-Kunroll_and_jam[=N]
-Knounroll_and_jam

Common

-Kunroll_and_jam[=N]
Optimizes unrolling and jamming (outer loop unrolling). N is a value
ranging from 2 to 1,000, setting an upper limit on the number of loop
expansions. An option is specified to work at -O2 or higher.

-K{align_loops[=N]
|noalign_loops}

Common

-Kalign_loops[=N]
Aligns the top alignment of loops to an N-byte boundary, where is N is
a power of 2.
N is a value ranging from 0 to 32,768 (powers of 2), specifying a byte
boundary for the top alignment of loops. If N is omitted or N=0 is
specified, the compiler automatically makes a determination.
The default actions are at -O2 or higher.

-Kopenmp_[no]collapse
_except_innermost

Common

-Kopenmp_collapse_except_innermost
Excludes the innermost loop from collapse processing. This may
prevent collapse processing from causing execution performance to
deteriorate. This option is enabled when -Kopenmp is specified.
The default is -Kopenmp_nocollapse_except_innermost.

-K[no]openmp_simd Common
-Kopenmp_simd
Enables only the SIMD construct and DECLARE SIMD construct of
OpenMP specifications.

-Kcmodel={small|large} Common Specifies the memory model. The default is small.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED61

New Options Added in A64FX (5/8)

Compiler Option Language Meaning

-K[no]pc_relative_
literal_loads

Common

-Kpc_relative_literal_loads
Handles the code area within a procedure as 1 MB or less, and
accesses a literal pool with a single instruction.
The default is -Knopc_relative_literal_loads.

-K[no]plt Common

-Kplt
Specifies whether to use the procedure linkage table (PLT) to
access the external symbols in position-independent code
(PIC). This option has meaning only together with -K{pic|PIC}.
The default is -Kplt.

-Ktls_size={12|24|32|48} Common
Specifies the required offset size for access to thread-local
storage. The unit is bits.

-KARM{V8_A|V8_1_A|
V8_2_A|V8_3_A}

Common
Generates an object file containing the specified instruction set.
The default is -KARMV8_3_A.

-K[NO]SVE Common
Specifies whether to use SVE extension instructions. The
default is -KSVE.

-KA64FX Common
Specifies that objects be generated for the A64FX processor
(default).

.-KGENERIC_CPU Common
Specifies that objects be generated for the universal ARM
processor.

-K[no]hpctag Common

-Khpctag
Specifies the use of the HPC tag address override function of
the A64FX processor. The HPC tag address override function
enables the sector cache function and hardware prefetch assist
function (hardware prefetch function for stride access, etc.).
For the Fugaku supercomputer, this is enabled by default.
-Knohpctag is used to batch suppress the above-described
functions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED62

New Options Added in A64FX (6/8)

Compiler Option Language Meaning

-K[no]array_declaration_opt Common
Specifies to perform the optimization such as SIMDization
assuming that the array subscript does not exceed the range of
the array declaration. The default actions are at -O1 or higher.

-K[no]extract_stride_store Common
Specifies to use scalar instructions for stride access store in the
target loop when using SIMD extensions.
The default is -Knoextract_stride_store.

-K[no]fp_precision Common
Specifies to induce the combination of optimization options that do
not cause calculation errors in floating-point operations.
The default is -Knofp_precision.

-K[no]subscript_opt F

These options specify whether or not to perform optimizations to
prioritize neighboring data regarding array subscript, which is
applicable to stencil calculation.
The default is -Knosubscript_opt.

-Kswp_policy=
{ auto | small | large }

Common

Specifies a policy to select an instruction scheduling algorithm
used in software pipelining.
The default is -Kswp_policy=auto.
swp_policy=auto
The compiler automatically selects a fit algorithm for each loop.
swp_policy=small
An algorithm fit for a small loop, such as a loop with low register
pressure, is used.
swp_policy=large
An algorithm fit for a large loop, such as a loop with high register
pressure, is used.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED63

New Options Added in A64FX (7/8)

Compiler Option Language Meaning

-X08 F
Fortran 2008 language specification level option.
This is induced in compilation of a.f08, a.F08, a.for, and a.FOR.

-std={c11|gnu11} C Compiles with GNU11. (default)

-std={c++17|gnu++17} C++ Compiles with GNU++17.

-N[no]clang C/C++ Runs the Clang/LLVM-based compiler (Clang Mode).

-N[no]coverage
--[no-]coverage

Common
-Ncoverage / --coverage
Generates information to use the code coverage function.
The default is -Nnocoverage / --no-coverage.

-Nnocheck_global F

-Nnocheck_global
Adds the negative option of -Ncheck_global.
-Ncheck_global is induced from -Nquickdbg and -Eg, without compile
error detection, to support cases that require error detection only at
the execution time.
This is specified as -Nquickdbg -Nnocheck_global.

-Nfmtl
={serial|SSL2|parallel|SS
L2BLAMP}

C++

Specifies the use of the Fujitsu matrix template library.
- serial: Sequential version
- SSL2: High-speed sequential version using the SSL2 library
- parallel: Thread parallel version
- SSL2BLAMP: High-speed thread parallel version using the SSL2
library

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED64

New Options Added in A64FX (8/8)

Compiler Option Language Meaning

-Nfjomplib Common
Uses the OpenMP library specific to Fujitsu as a library used
for parallel processing.

-Nlibomp Common
Uses the LLVM OpenMP library as a library used for parallel
processing.
In clang mode, -Nlibomp is always specified.

-N[no]reordered_variable_stack Common

-Nreordered_variable_stack
Allocates automatic variables to the stack area in ascending
order of data size.
The default is -Nnoreorederd_variable_stack, which allocates
variables in the order of program declaration statements.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED65

Options With Changed Specifications in A64FX (1/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-Kfast Common

Creates an object program
for fast execution on the
target machine.
To pursue universal
performance
improvements.
-Kprefetch_conditional
may cause performance
deterioration and was thus
deleted. This change was
made along with
specification changes of
other functions.

Fortran
-O3 -Kdalign,eval,
fp_contract,fp_relaxed,
ilfunc,mfunc,ns,omitfp,prefet
ch_conditional
C/C++
-O3 -Kdalign,eval,
fast_matmul,fp_contract,
fp_relaxed,ilfunc,lib,mfunc,ns,
omitfp,prefetch_conditional,
rdconv -x-

Fortran
-O3 -Keval,fp_contract,
fp_relaxed,fz,ilfunc,mfunc,omit
fp,simd_packed_promotion
C/C++
-O3 -Keval,fast_matmul,
fp_contract,fp_relaxed,
fz,ilfunc,mfunc,omitfp,
simd_packed_promotion

-Kauto F

Allocates the local
variables, excluding those
with the SAVE attribute or
an initial value, on the
stack.
To speed up with the
default

Individually specified to work Works by default from -O0

-Ktemparraystack F

Allocates the interim
results of array operations
and the evaluation results
of mask expressions on
the stack.
To speed up with the
default

Individually specified to work Works by default from -O0

-Kautoobjstack F

Allocates automatically
allocated data objects on
the stack.
To speed up with the
default

Individually specified to work Works by default from -O0

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED66

Options With Changed Specifications in A64FX (2/7)

Compiler
Option

Language
Meaning
Reason for Change

Old Specification New Specification

-Klib C/C++

Recognizes sin, etc. as
standard library functions
rather than user-defined
functions.
To adapt to industry
standards

Enabled at -O1 or higher
Induced from –Kfast

Enabled at -O0 or higher
Works by default from -O1

-x- C/C++
Performs inline expansion.
Changed according to the
defaulting to –Xg

Induced from -Kfast Induced from -O3

-x=quick C++

Uses inline to prevent
enormous functions.
For the expected positive
effects generally

-x=noquick (default) -x=quick (default)

-Xg C/C++

Specifies compiling based on
the language specification of
GNU C/C++ compilers.
To accept the extended
specifications of GNU C/C++
compilers by default

3 language specification
modes: -Xa, -Xc, -Xg
Default is -Xa, and others
are optional
* Announced
obsolescence of old
specifications, compile
continuing in GNU
C/C++-compatible mode

Deletes -Xa and -Xc, and
defaults to -Xg

-Klto(F)
-flto(C/C++)

Common

LTO (link time optimization)
• ipo and lto integration with
lto

• LTO behavior in Fortran

-Kipo (C only)
(Note) Warning about old
specifications, compile
continuing

-Klto (F)
-flto (C/C++ Clang Mode)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED67

Options With Changed Specifications in A64FX (3/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-Kzfill Common

Speeds up store instructions.
This is very similar to prefetch
of the store area except that
data is not loaded from
memory and only a cache
location is allocated.
Changed based on architecture
specifications

-KXFILL
("X" means fill, which
is indeterminate
value)
* Warning about old
specifications, compile
continuing

-Kzfill
("z" means zero fill)

-Kilfunc
[={loop|procedure}]

Common

Inline-expands intrinsic
functions and operations.
For the expected positive
effects in various applications

Default for -Kilfunc is
-Kilfunc=loop

Default for -Kilfunc is
-Kilfunc=procedure

-Kprefetch_stride
[={soft|hard_auto|

hard_always}]

Common

Generates a prefetch
instruction for the array data
accessed with an even longer
stride than the cache line size
in a loop.
To add a function making use
of the microarchitecture

-Kprefetch_stride

Enables use of
hardware stride
prefetch function
-Kprefetch_stride
[={soft|hard_auto|hard
_always}]

-Kprefetch_
strong[_L2]

Common

Specifies that L1/L2 prefetch
be a strong prefetch instruction.
Specifications changed based
on the microarchitecture

Default is
-Kprefetch_nostrong

Default is
-Kprefetch_strong

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED68

Options With Changed Specifications in A64FX (4/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-Kassume=shortloop Common

Specifies optimization control
assuming a low number of
innermost loop cycles in a
program.
To integrate into the
optimization control option
based on application features

-Kshortloop
(Note) Warning about
old specifications,
compile continuing

-Kassume=shortloop

-Kloop_part_simd Common

Implementation of SIMD
parts of a loop by splitting the
parts that can be SIMDized
from the parts that cannot.
To have part of the SIMD
function rather than a split

-Kloop_part_simd
works as part of -
Kloop_fission function

Works when -Ksimd is
enabled

-Kloop_part_parallel Common

Parallelizes the threads in
parts of a loop by splitting the
parts that can be thread-
parallelized from the parts
that cannot.
To have part of the
parallelization function rather
than a split

-Kloop_part_parallel
works as part of
-Kloop_fission function

Works when
-Kparallel is enabled

-Koptions F

Treats lines that begin with
the !options line as compiler
directive lines.
Though deletion was initially
considered, it was decided to
keep only -O[1-3] (without
OCL).

!options -O[1-3]
Compiler option with
part of !options

!options -O[1-3]

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED69

Options With Changed Specifications in A64FX (5/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-Krdconv[={1|2}] C/C++

Executes optimization
assuming signed integer-
type expressions of 4
bytes or less do not
overflow and unsigned
integer-type expressions
of 4 bytes or less do not
wrap around.
To break up the -Krdconv
function and provide the
default option as an
industry standard
specification

-Krdconv
Promotes optimization
assuming 4-byte signed
variables do not overflow

-Krdconv derives -Krdconv=1.
Derivations from -Kfast
deleted since -Krdconv is
enabled at -O2
-Krdconv=1
Promotes optimization
assuming 4-byte signed
integer-type expressions do
not overflow
-Krdconv=2
Promotes optimization
assuming 4-byte unsigned
integer-type expressions do
not wrap around

-Kstrict_aliasing C/C++

Specifies optimization
considering overlapping
memory areas in
accordance with the strict
aliasing rule.
To change to the industry
standard level of
specifications (including
option names)

-Kmemalias
* Recommendation
against, planned
obsolescence of, and
warning about old
specifications, -
Krestrict_aliasing
announcement, compile
continuing

-Kstrict_aliasing

-Kfz Common

Specifies the use of flush-
to-zero mode.
Changed based on
architecture specifications

-Kns
(NS bit for SPARC)
* Obsolescence
announcement, compile
continuing

-Kfz
(FZ bit for ARM)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED70

Options With Changed Specifications in A64FX (6/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-Kalign_commons F

Specifies adjustment of
the 8-byte boundary on
8-byte integer-type,
double/quadruple-
precision, real/complex-
number-type data in
allocation processing of
variables belonging to
common blocks to
storage space.
To split older functions
and change to only those
specifications required
considering industry
standards

-Kdalign
(Default is -Knodalign)
-Kdalign has 2 functions:
(1) Function to align
members of common
variables.
(2) Function in SPARC to
specify whether to use ldd
instruction -> Not required
* Warning about old
specifications, compile
continuing

Fortran
-Kalign_commons(default)
C/C++
Deleted

-Nline C/C++

Generates the additional
information required for
the sampling function
during execution as
provided by the profiler.
To prioritize user
convenience on the K
computer/FX100

-Nline
(-Xa(default), together
with -Xc)

-Nnoline
(together with -Xg)

Default is -Nline when -Xg
becomes default

-std=
{c++14|gnu++14}

C++

Compiles with GNU++14.
Specifications changed
according to full support
for C++14

C++14 optional Default is C++14

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED71

Options With Changed Specifications in A64FX (7/7)

Compiler Option Language
Meaning
Reason for Change

Old Specification New Specification

-gdwarf[-4] Common

Supports DWARF
version 4.
Changed according to
DWARF4 support

-gdwarf-2
(DWARF version 2)
* Obsolescence
announcement for old
specifications, compile
continuing

-gdwarf[-4]
(DWARF version 4)

-Ncheck_std=
{03d|03e|03o|03s}

-Ncheck_std=
|08d|08e|08o|08s}

F

Executes the
language standard
test on the source
program.
•Option name change
preferred since it
may have been
confusing due to the
use of the -v option
for different features
by other
manufacturers
•Support of the
Fortran 2008
standard

-v{03d|03e|03o|03s}
* Warning about old
specifications, compile
continuing

-Ncheck_std=
{03d|03e|03o|03s|08d|
08e|08o|08s}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED72

Options Deleted From A64FX (1/2)

Compiler Option Language Reason for Deletion Behavior

-KHPC_ACE[2] Common
Because the option is used in the K computer/FX100
SIMD extension instruction set

Warns, and continues
compile

-K[NO]FLTLD Common
Because the option is intended for the K
computer/FX100 architecture

Warns, and continues
compile

-K[NO]GREG_APPLI C/C++
Because the option is for intended for the SPARC-series
architecture

Warns, and continues
compile

-Kadr{44|64} Common
Because the option is intended for the SPARC
architecture

Warns, and continues
compile

-K[no]fed Common
Because the option is intended for the FX100
architecture

Warns, and continues
compile

-Kfuncalign=N C
Because the option is intended for the K
computer/FX100 architecture

Warns, and continues
compile

-Kloop_[no]fission_if Common

This function fissions a loop containing an IF statement
but had few users and may have had a risk of
performance decrease. Since it was replaced by a new
loop fission function that fissions a loop after branching
by SIMDization, the option was deleted.

Warns, and continues
compile

-K[no]nf Common
Because the option is intended for the FX100
architecture

Warns, and continues
compile

-Kopenmp_tls Common
Because the threadprivate implementation of OpenMP
was changed from a Fujitsu-specific method to TLS
only, which is the industry standard

Announces deletion, and
continues compile

-Ksimd_[no]separate_stride Common
Because the option is in the stride SIMD instruction for
the FX100.

Warns, and continues
compile

-K[no]uxsimd Common
Deleted because the option served as a 2-element
vector SIMD function for the K computer/FX10

Warns, and continues
compile

-Kvppocl F
Because the option is a compatibility option for
conventional vector machines no longer used by
anyone

Announces deletion, and
continues compile

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED73

Options Deleted From A64FX (2/2)

Compiler Option Language Reason for Deletion Behavior

-Nrt_tune_io C/C++

The Fugaku supercomputer has a
performance analysis tool that outputs the
input/output information that was output
as a runtime output function.

Warns, and
continues
compile

-Nstl={500|521|500fast}
-Kstl_fast_new

C++
Because STLport-series STL was deleted
and libc++ was changed to the default STL

Warns, and
continues
compile

-fcall_used_g7
-ffixed-g{4|5}

Common
Because the option is intended for the
SPARC architecture

Warns, and
continues
compile

-fvisibility=
{default|internal|hidden|pr
otected}

C/C++
Eliminated in Trad Mode only, because it can be
substituted by the same name option in Clang
Mode.

Warns, and
continues
compile

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED74

A64FX Compatibility With K Computer/FX10/FX100 (1/11)

⚫ Fortran compatibility (1/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

1 [K computer/FX10/FX100] Defaulting to the -Kauto option

2 [K computer/FX10/FX100] Defaulting to the -Ktemparraystack option

3 [K computer/FX10/FX100] Defaulting to the -Kautoobjstack option

4 [FX100] Change in the handling of options when the -Klto option is specified together with the -S or -Wa option

5 [K computer/FX10] Changed default value for the level in the -Ksimd[=level] option

6 [K computer/FX10/FX100] Results of intrinsic functions of the GAMMA type

7 [K computer/FX10/FX100] Output results of G-format editing

8 [K computer/FX10/FX100] Return value for the IOSTAT specifier at the execution time of a nonadvancing output statement

9 [K computer/FX10/FX100] Changed specifications of the runtime information output function

10 [K computer/FX10/FX100] LLVM OpenMP library installation

11 [K computer/FX10/FX100] Unsupported items in Fortran

12 [K computer/FX10/FX100] Changed values for predefined version macros

13 [K computer/FX10/FX100] Object compatibility when using OpenMP

14 [K computer/FX10/FX100] Compile error testing compliant with Fortran standards

15 [K computer/FX10/FX100]
New/Changed specifications of Fortran standards, and kind type parameters for real numbers and complex numbers
(extended specifications)

16 [K computer/FX10/FX100] Compile error testing according to co-arrays and OpenMP specifications

17 [K computer/FX10/FX100] Message output at the execution time of a program having an error when the compile option -H is enabled

18 [K computer/FX10/FX100] Change from -X03 to -X08 in the language specification level options induced from the file suffixes .F, .f, .FOR, and .for

19 [K computer/FX10/FX100] Runtime message output in accordance with Fortran standards

20 [K computer/FX10/FX100] Change of the -v03d, -v03e, -v03o, and -v03s options to -Ncheck_std=

21 [K computer/FX10/FX100] Changes in values for macros and named constants along with support for the OpenMP API version 4.0 specifications

22 [K computer/FX10/FX100] Deleted compile option -K{openmp_tls|openmp_notls}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED75

A64FX Compatibility With K Computer/FX10/FX100 (2/11)

⚫ Fortran compatibility (2/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

23 [K computer/FX10/FX100] Error testing for the OpenMP THREADPRIVATE directive

24 [K computer/FX10/FX100] Deleted options specific to the SPARC instruction set architecture

25 [K computer/FX10/FX100] Deleted compile options specific to HPC-ACE and HPC-ACE2

26 [FX100] Changed specifications dependent on the instruction set architecture

27 [K computer/FX10/FX100] Deleted -Kvppocl option

28 [K computer/FX10/FX100] Compile error testing for OpenMP directives

29 [K computer/FX10/FX100] Deleted compiler command line "!options" and -Koptions option

30 [K computer/FX10/FX100] Deleted -Nuse_rodata option, and changed inductive relationship

31 [K computer/FX10/FX100] Deleted -Q option

32 [K computer/FX10/FX100] Changed -K{XFILL|NOXFILL} option, optimization specifier {XFILL|NOXFILL}, and optimization information output

33 [K computer/FX10/FX100] Changed specifications of traceback of procedures containing an ENTRY statement

34 [K computer/FX10/FX100] Deleted -K{shortloop=N|noshortloop} option and optimization specifier {SHORTLOOP(n)|NOSHORTLOOP}

35 [K computer/FX10/FX100] Deleted -K{uxsimd|nouxsimd} option and optimization specifier {UXSIMD|NOUXSIMD}

36 [K computer/FX10/FX100] Changed specification for the -Kswp and -Kswp_strong options

37 [K computer/FX10/FX100] Changed display format of compiled information (SIMDization)

38 [K computer/FX10/FX100] Changed display format of compiler messages (loop fission)

39 [K computer/FX10/FX100] Changed display format of compiled information (loop fission)

40 [K computer/FX10/FX100] Changed display format of compiled information (software pipelining)

41 [K computer/FX10/FX100] Deleted -Kdalign option

42 [K computer] Changed deduction relationship between the optimization level and the compile option -Kloop_fission

43 [K computer/FX10/FX100] Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD

44 [K computer/FX10/FX100] Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED76

A64FX Compatibility With K Computer/FX10/FX100 (3/11)

⚫ Fortran compatibility (3/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

45 [K computer/FX10/FX100] Deleted compile option -K{loop_fission_if|loop_nofission_if}

46 [K computer/FX10/FX100] Change of -Kprefetch_strong to default

47 [K computer/FX10/FX100] Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2

48 [K computer] Deleted compile options specific to the K computer

49 [FX10] Deleted compile options specific to the FX10

50 [FX100]
Defaulting to the SIMDization function through multiple redundant executions with the SIMD length, and
deleted optimization specifier simd_redundant_vl

51 [K computer/FX10/FX100] Modified runtime messages

52 [K computer/FX10/FX100] Changed behavior when a specified option is unrecognizable

53 [K computer/FX10/FX100] Changed options induced from the compile option -Kfast

54 [K computer/FX10/FX100]
Changed execution results of formatted sequential access input/output and formatted nonadvancing
input/output

55 [K computer/FX10/FX100] Runtime messages that are output during parallel processing

56 [FX10/FX100] Type conversion option in the LLVM OpenMP library

57 [K computer/FX10/FX100] IO buffer parallel transmission with the LLVM OpenMP library

58 [K computer/FX10/FX100] Runtime messages that are output when capturing floating-point exceptions

59 [K computer/FX10/FX100] Changed Japanese message for jwd8205o-i

60 [K computer/FX10/FX100] Changed Fortran 2008 specifications for the intrinsic procedures FRACTION, RRSPACING, and SPACING

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED77

A64FX Compatibility With K Computer/FX10/FX100 (4/11)

⚫ C compatibility (1/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

1 [K computer/FX10/FX100] Defaulting to the -Klib option

2 [K computer/FX10/FX100] Deleted -Kipo option

3 [FX100] Change in the handling of options when the -Klto option is specified together with the -S or -Wa option

4 [K computer/FX10] Changed default value for the level in the -Ksimd[=level] option

5 [K computer/FX10/FX100] Changed specifications of the runtime information output function

6 [K computer/FX10/FX100] LLVM OpenMP library installation

7 [K computer/FX10/FX100] Deleted -gdwarf-2 option, and added -gdwarf and -gdwarf-4 options

8 [K computer/FX10/FX100] Deleted compile option -noansi

9 [K computer/FX10/FX100] Changed default value for the compile option -f{signed-char|unsigned-char}

10 [K computer/FX10/FX100] Changed values for predefined version macros

11 [K computer/FX10/FX100] Deleted compile option -X (The language specification mode is GNU-compatible mode only.)

12 [K computer/FX10/FX100] Changed GNU C compatible version

13 [K computer/FX10/FX100] Changed default value for the compile option -std

14 [K computer/FX10/FX100] Changed definitions of the macros __STRICT_ANSI__, linux, unix, and __STDC_VERSION__

15 [K computer/FX10/FX100] Change of the language specification level when the compile option -ansi or -std is enabled

16 [K computer/FX10/FX100] Changed behavior when the compile options -Dname and -Uname are specified together

17 [K computer/FX10/FX100] Changed behavior when the compile option -P is specified

18 [K computer/FX10/FX100] Changed default value for the compile option -N{line|noline}

19 [K computer/FX10/FX100] Object compatibility when using OpenMP

20 [K computer/FX10/FX100] Deleted compile option -K{openmp_tls|openmp_notls}

21 [K computer/FX10/FX100] Deleted options specific to the SPARC instruction set architecture

22 [K computer/FX10/FX100] Deleted GNU C compatible options specific to the SPARC instruction set architecture

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED78

A64FX Compatibility With K Computer/FX10/FX100 (5/11)

⚫ C compatibility (2/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

23 [K computer/FX10/FX100] Deleted compile options specific to HPC-ACE and HPC-ACE2

24 [FX100] Changed specifications dependent on the instruction set architecture

25 [K computer/FX10/FX100] Changed specifications of options related to -Kstrict_aliasing

26 [K computer/FX10/FX100] Deleted -Kfuncalign=N option

27 [K computer/FX10/FX100] Deleted -Nuse_rodata option, and changed inductive relationship

28 [K computer/FX10/FX100] Changed options induced from the compiler options -O2 and -O3

29 [K computer/FX10/FX100] Changed -K{XFILL|NOXFILL} option, optimization specifier {XFILL|NOXFILL}, and optimization information output

30 [K computer/FX10/FX100] Deleted -K{shortloop=N|noshortloop} option and optimization specifier {SHORTLOOP(n)|NOSHORTLOOP}

31 [K computer/FX10/FX100] Deleted -K{uxsimd|nouxsimd} option and optimization specifier {UXSIMD|NOUXSIMD}

32 [K computer/FX10/FX100] Changed specifications of the -Kswp and -Kswp_strong options

33 [K computer/FX10/FX100] Changed display format of compiled information (SIMDization)

34 [K computer/FX10/FX100] Changed display format of compiler messages (loop fission)

35 [K computer/FX10/FX100] Changed display format of compiled information (loop fission)

36 [K computer/FX10/FX100] Changed display format of compiled information (software pipelining)

37 [K computer/FX10/FX100] Deleted -Kdalign option

38 [K computer/FX10/FX100] Changed specifications of the built-in functions __sync_fetch_and_nand and __sync_nand_and_fetch

39 [K computer] Changed deduction relationship between the optimization level and the compile option -Kloop_fission

40 [K computer/FX10/FX100] Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD

41 [K computer/FX10/FX100] Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL

42 [K computer/FX10/FX100] Deleted compile option -K{loop_fission_if|loop_nofission_if}

43 [K computer/FX10/FX100] Change of -Kprefetch_strong to default

44 [K computer/FX10/FX100] Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED79

A64FX Compatibility With K Computer/FX10/FX100 (6/11)

⚫ C compatibility (3/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

45 [K computer] Deleted compile options specific to the K computer

46 [FX10] Deleted compile options specific to the FX10

47 [FX100]
Defaulting to the SIMDization function through multiple redundant executions with the SIMD length,
and deleted optimization specifier simd_redundant_vl

48 [K computer/FX10/FX100] Modified runtime messages

49 [K computer/FX10/FX100] Changed behavior when a specified option is unrecognizable

50 [K computer/FX10/FX100] Changed options induced from the compile option -Kfast

51 [K computer/FX10/FX100] Runtime messages that are output during parallel processing

52 [K computer/FX10/FX100] Runtime messages that are output when capturing floating-point exceptions

53 [K computer/FX10/FX100] Changed Japanese message for jwd8205o-i

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED80

A64FX Compatibility With K Computer/FX10/FX100 (7/11)

⚫ C++ compatibility (1/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

1 [K computer/FX10/FX100] Defaulting to the -Klib option

2 [FX100] Change in the handling of options when the -Klto option is specified together with the -S or -Wa option

3 [K computer/FX10] Changed default value for the level in the -Ksimd[=level] option

4 [K computer/FX10/FX100] Changed specifications of the runtime information output function

5 [K computer/FX10/FX100] LLVM OpenMP library installation

6 [K computer/FX10/FX100] Deleted -gdwarf-2 option, and added -gdwarf and -gdwarf-4 options

7 [K computer/FX10/FX100] Change of the standard template library (STL) in the C++03 specifications or C++11 specifications

8 [K computer/FX10/FX100] Deleted compile options -stdlib and -Nstl

9 [K computer/FX10/FX100] Deleted compile option -K{stl_fast_new|nostl_fast_new}

10 [K computer/FX10/FX100] Changed default value for the compile option -f{signed-char|unsigned-char}

11 [K computer/FX10/FX100] Changed values for predefined version macros

12 [K computer/FX10/FX100] Deleted compile option -X (The language specification mode is GNU-compatible mode only.)

13 [K computer/FX10/FX100] Changed GNU C++ compatible version

14 [K computer/FX10/FX100] Changed default value for the compile option -std

15 [K computer/FX10/FX100] Changed definitions of the macros __STRICT_ANSI__, linux, unix, and __cplusplus

16 [K computer/FX10/FX100] Changed behavior when the compile options -Dname and -Uname are specified together

17 [K computer/FX10/FX100] Changed behavior when the compile option -P is specified

18 [K computer/FX10/FX100] Changed default value for the compile option -N{line|noline}

19 [K computer/FX10/FX100] Object compatibility when using OpenMP

20 [K computer/FX10/FX100] Deleted compile option -K{openmp_tls|openmp_notls}

21 [K computer/FX10/FX100] Deleted options specific to the SPARC instruction set architecture

22 [K computer/FX10/FX100] Deleted GNU C++ compatible options specific to the SPARC instruction set architecture

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED81

A64FX Compatibility With K Computer/FX10/FX100 (8/11)

⚫ C++ compatibility (2/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

23 [K computer/FX10/FX100] Deleted compile options specific to HPC-ACE and HPC-ACE2

24 [FX100] Changed specifications dependent on the instruction set architecture

25 [K computer/FX10/FX100] Changed specifications of options related to -Kstrict_aliasing

26 [K computer/FX10/FX100] Deleted -Nuse_rodata option, and changed inductive relationship

27 [K computer/FX10/FX100] Changed options induced from the compiler options -O2 and -O3

28 [K computer/FX10/FX100] Changed -K{XFILL|NOXFILL} option, optimization specifier {XFILL|NOXFILL}, and optimization information output

29 [K computer/FX10/FX100] Deleted -K{shortloop=N|noshortloop} option and optimization specifier {SHORTLOOP(n)|NOSHORTLOOP}

30 [K computer/FX10/FX100] Deleted -K{uxsimd|nouxsimd} option and optimization specifier {UXSIMD|NOUXSIMD}

31 [K computer/FX10/FX100] Changed specifications of the -Kswp and -Kswp_strong options

32 [K computer/FX10/FX100] Changed display format of compiled information (SIMDization)

33 [K computer/FX10/FX100] Changed display format of compiler messages (loop fission)

34 [K computer/FX10/FX100] Changed display format of compiled information (loop fission)

35 [K computer/FX10/FX100] Changed display format of compiled information (software pipelining)

36 [K computer/FX10/FX100] Deleted -Kdalign option

37 [K computer/FX10/FX100] Changed specifications of the built-in functions __sync_fetch_and_nand and __sync_nand_and_fetch

38 [K computer] Changed deduction relationship between the optimization level and the compile option -Kloop_fission

39 [K computer/FX10/FX100] Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD

40 [K computer/FX10/FX100] Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL

41 [K computer/FX10/FX100] Deleted compile option -K{loop_fission_if|loop_nofission_if}

42 [K computer/FX10/FX100] Change of -Kprefetch_strong to default

43 [K computer/FX10/FX100] Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2

44 [K computer] Deleted compile options specific to the K computer

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED82

A64FX Compatibility With K Computer/FX10/FX100 (9/11)

⚫ C++ compatibility (3/3)

⚫ For details, ask your system administrator.

No. Target Machine Item

45 [FX10] Deleted compile options specific to the FX10

46 [FX100]
Defaulting to the SIMDization function through multiple redundant executions with the SIMD length,
and deleted optimization specifier simd_redundant_vl

47 [K computer/FX10/FX100] Modified runtime messages

48 [K computer/FX10/FX100] Changed behavior when a specified option is unrecognizable

49 [K computer/FX10/FX100] Changed options induced from the compile option -Kfast

50 [K computer/FX10/FX100] Runtime messages that are output during parallel processing

51 [K computer/FX10/FX100] Runtime messages that are output when capturing floating-point exceptions

52 [K computer/FX10/FX100] Changed Japanese message for jwd8205o-i

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED83

A64FX Compatibility With K Computer/FX10/FX100 (10/11)

⚫ MPI compatibility (1/2)

⚫ For details, ask your system administrator.

No. Target Machine Item

1 [K computer/FX10/FX100] Deleted Hasty Rendezvous communication function

2 [K computer/FX10/FX100] Deleted MCA parameter dpm_ple_socket_timeout

3 [K computer/FX10/FX100] Deleted extension RDMA interface

4 [K computer/FX10/FX100] Changed rank query interface

5 [K computer/FX10/FX100] Changed output of error messages related to the mpiexec command

6 [K computer/FX10/FX100] Changed specifications for output of an error message when the mpiexec command is executed with no option specified

7 [K computer/FX10/FX100] Changed error message for insufficient memory

8 [K computer/FX10/FX100] Changed and deleted error messages

9 [K computer/FX10/FX100] Changed warning messages

10 [K computer/FX10/FX100] Deleted signal SIGCHLD

11 [K computer/FX10/FX100] MPI functions in C no longer hooked, since the profiling interface of Fortran is used

12 [K computer/FX10/FX100] Change of the MCA parameter orte_abort_print_stack to opal_abort_print_stack

13 [K computer/FX10/FX100] Changed restrictions when generating processes from within MPI programs

14 [FX100] Changed default value for the MCA parameter common_tofu_packet_mtu from 1792 to 1920

15 [K computer/FX10/FX100] Changed error message [mpi::common-tofu::tofu-signal-*]

16 [FX100/FX10] Deleted -nompi option of the mpiexec command

17 [FX100/FX10] Changed name of the MCA parameter dpm_ple_no_establish_connection

18 [K computer/FX10/FX100] Changed algorithm of the reduction operation used for group communication

19 [K computer/FX10/FX100] Changed default value for the MCA parameter coll_tbi_use_on_max_min

20 [K computer/FX10/FX100] Changed conditions for applying the barrier communication function in the MPI_REDUCE routine and MPI_ALLREDUCE routine

21 [K computer/FX10/FX100] Deleted MCA parameters coll_tuned_use_6d_algorithm and coll_tuned_scatterv_use_linear_sync

22 [FX100] Changed behavior when the specified value for the MCA parameter opal_progress_thread_mode is invalid (other than 0 to 3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED84

A64FX Compatibility With K Computer/FX10/FX100 (11/11)

⚫ MPI compatibility (2/2)

⚫ For details, ask your system administrator.

No. Target Machine Item

23 [K computer]
Changed MCA parameter names and error messages related to the communication timeout setting
function

24 [FX10/FX100] Deleted MCA parameters mpi_deadlock_timeout and mpi_deadlock_timeout_delay

⚫ Math library compatibility

⚫ For details, ask your system administrator.

No. Target Machine Item

1 [FX100] Update of the BLAS header file cblas.h to the latest version

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED85

• MPI Extension Functions and Data Types

MPI Extension Functions and Data
Types

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED86

MPI Extension Functions and Data Types

⚫ Extension functions

Function Name A64FX Behavior FX700 Behavior

FJMPI_Collection_*
Interval-specified MPI statistical

information

Neither collects information nor

displays results.

FJMPI_Progress_*
Promotes communication using

assistant cores.

Does not allow communication and

computing to overlap. (Same as not

being called)

FJMPI_Prequest_*
Extended persistent

communication request

Works as a wrapper for

MPI_Send_init, etc.

FJMPI_Topology_* Obtains Tofu coordinates.

Returns a value that simulates a 1-

dimensional Tofu job, based on the

rank number.

FJMPI_Mswk_* Master-worker function Same as the A64FX

MPIX_*_init
Preliminarily implements

persistent collective

communication requests.

Same as the A64FX

⚫ Data types

⚫Half-precision data types are added.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED87

• Endian

Endian

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED88

Endian

⚫Endian

⚫Automatic conversion during execution (Fujitsu Fortran)
⚫Using runtime options (-Wl,-Tu_num) in Fujitsu Fortran, you can input and

output big-endian data.

⚫Only one device number can be specified. If the device number is omitted,
the target is all device numbers connected to the unformatted file.

Example: Runtime option (Device number = 10)

Example: Environment variable (Device number = 10)

Node Type K Computer A64FX

Compute node Big endian Little endian

Login node (IA server) Little endian Little endian

./a.out -Wl,-T10

export FORT90L="-Wl,-T10"
./a.out

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED89

• Prefetch

• SIMDization

• Software Pipelining

• Loop Optimization and Instruction Scheduling

• Optimization for Loops

• Automatic Parallelization

Acceleration With Compiler

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED90

• About Prefetch

• Hardware Prefetch

• Software Prefetch

• Harmonization of Prefetch

Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED91

• What is Prefetch?

• About Prefetch

• [Reference] What is Latency Masking?

About Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED92

What is Prefetch?

Prefetch is a mechanism that raises performance by loading data into the cache
before the data is required by an executed instruction.

Cache miss

Cache hit

Prefetch

Memory allocation

The two types of prefetch are hardware prefetch and software prefetch.

⚫ Hardware prefetch

Hardware prefetches data by predicting data access based on the regularity of memory
access by programs.

The cache efficiency of a program may degrade significantly because data is also prefetched
from areas not accessed by the program. In such cases, use software prefetch.

⚫ Software prefetch

Software (compiler) prefetches data by analyzing programs and generating a prefetch
instruction.

Cache miss

Cache hit

Prefetch

Area not accessed
by program

Data in unaccessed areas is also prefetched.
If there is a gap equal to or greater than 1 cache
line, a cache miss occurs.

Memory allocation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED93

About Prefetch (1/2)

⚫The A64FX supports the following new functions as hardware and
software prefetch:

⚫Hardware prefetch (HWPF)

⚫Hardware prefetch distance setting function

⚫Hardware stride prefetch function

⚫Software prefetch (SWPF)

⚫Automatic adjustment of the prefetch distance

⚫SVE Gather prefetch instruction support

⚫By using these prefetch functions, you can mask data access latency
to speed up application execution. (Latency masking)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED94

About Prefetch (2/2)

⚫ Prefetch distance
Hardware prefetch and software prefetch perform data
prefetching on the lines ahead as indicated below.

⚫When tuning loop blocking or outer loop unrolling, be aware that
the hardware prefetch may not work if the inner loop length
decreases.

Hardware Prefetch Software Prefetch

L1 Prefetch L2 Prefetch L1 Prefetch L2 Prefetch

FX100 2 lines Up to 16 lines 3 lines 15 lines

A64FX Up to 6 lines Up to 40 lines Automatic Automatic

The hardware prefetch distance
can also be set by users.

The distance is automatically
adjusted for software prefetch.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED95

[Reference] What is Latency Masking?

⚫ Latency masking hides data access latency (period from a data
transmission request until a response returns) by using prefetch. There
are three types of data access: L1D cache, L2 cache, and memory. The
prefetch target for latency masking is the L2 cache and memory.

⚫ Data access latency measurement results from LMbench (at integer access)

1.00

10.00

100.00

1000.00

0.00 0.02 0.05 0.16 0.44 7.00 72.00

L
a
te

n
c
y
 (

n
s
)

Data size (MiB)

L1D cache

L2 cache

Memory

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED96

• Hardware Prefetch Behavior

• Hardware Prefetch Distance Setting Function

• Hardware Stride Prefetch Function

Hardware Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED97

Hardware Prefetch Behavior

⚫ Conditions of hardware prefetch behavior
⚫ Cause: L1 miss

⚫ L1 miss that proceeds sequentially by cache line

⚫ Algorithm of hardware prefetch behavior
1. A miss occurs on cache line A, resulting in registration of the lines A+1/A-1 as a new

entry in a 16-entry FIFO queue called PFQ (prefetch queue). (Figure 1)

2. When the line A+1 is accessed in subsequent access, the result is a hit of the
registered A+1 entry in PFQ, and the access is determined as ascending stream access.
Then, HWPF begins in ascending order. Also, A+1 in PFQ is updated to A+2. (Figure 2)

3. After the above-described detection of stream access, L2 prefetch fetches 2 lines of
data at a time to extend to 40 lines ahead. In the A64FX, L1 prefetch also fetches 2
lines of data at a time, like L2 prefetch, to extend to 6 lines ahead. (Figure 3)

PFQ-hit L2HWPF-ADRS L1PHWF-ADRS

A+ 1 A+ 2, A+ 3

A+ 2 A+ 4, A+ 5 A+ 2, A+ 3

A+ 3 A+ 6, A+ 7 A+ 4, A+ 5

A+ 4 A+ 8, A+ 9 A+ 6, A+ 7

A+ 5 A+10, A+11 A+ 8, A+ 9

A+ 6 A+12, A+13 A+10

A+ 7 A+14, A+15 A+11

A+ 8 A+16, A+17 A+12

A+ 9 A+18, A+19 A+13

A+10 A+20 A+14

A+11 A+21 A+15

A+12 A+22 A+16

A+13 A+23 A+17

A+14 A+24 A+18

A+15 A+25 A+19

◼ Outlines of prefetch

◼ Correspondence between PFQ and
prefetch addresses

Figure 1 Figure 2 Figure 3

Note: The numbers in the table
represent lines. In byte representation,
read 1 line as equal to 256 bytes.

+1

/

- 1

L1 miss

A PFQ - miss

A

Entry

PFQ

:

+1

L1 miss

A+2

L2

prefetch

A+3

L2

prefetch

A+1

Change

L2PF

PFQ

:

+1

A+3 L1 prefetch

A+4 L2 prefetch

A+5 L2 prefetch

A+2

Change

PFQ

:

A+2,
A+3

L1PFL2PFL1PF L2PF

A+4,

A+5

A+2

L1PF

L1 miss

A+1 / A-1 A+1 -> A+2 A+2 -> A+3
A+1 PFQ - hit A+2 PFQ - hit

A+2 L1 prefetch

A+3

* L2PF=10 lines ahead, L1PF=4 lines ahead

Functional extension on A64FX
(fixed distance per line on FX100)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED98

⚫ Command (hwpfctl) for setting the hardware prefetch distance

⚫ Example of using the command (hwpfctl) for setting the hardware prefetch distance

Hardware Prefetch Distance Setting Function

Item Details

Format

hwpfctl [--disableL1] [--disableL2] [--distL1 lines_l1] [--distL2 lines_l2] [--weakL1] [--weakL2] [--verbose]
command {arguments ...}

hwpfctl --default [--verbose] command {arguments ...}
hwpfctl --reset [--verbose]
hwpfctl –-help

Description The hwpfctl command changes the behavior of the hardware prefetch (stream detect mode) mechanism mounted on the A64FX.

The CPU core to be changed is chosen based on process affinity.

Option

--disableL1
--disableL2

Disables hardware prefetch on the L1/L2 cache. If omitted, hardware prefetch is enabled.
--distL1=lines_l1
--distL2=lines_l2

Specifies the cache lines to prefetch on the L1/L2 cache. The prefetch of this number of cache lines starts on the cache
line where a cache miss occurred. In lines_l1, you can specify a value from 1 to 15 lines to be prefetched on the L1
cache. In lines_l2, you can specify a value from 1 to 60 lines to be prefetched on the L2 cache. However, the value
specified in lines_l2 is rounded up to a multiple of 4, which is then written to the system register. If 0 is specified, the
behavior follows the default value of the CPU. If omitted or the specified value is invalid, 0 is assumed specified.

--weakL1
--weakL2

Specifies "weak" for the priority of prefetch requests to the L1/L2 cache. If omitted, "strong" is assumed.
--default

Runs the command with the default settings. Options other than --verbose are ignored.
--reset

Initializes the system register values. Options other than --verbose are ignored.
--verbose

Outputs the system register values before and after changes.
--help

Displays instructions.

hwpfctl –distL1=6 –distL2=40 a.out

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED99

Hardware Stride Prefetch Function

⚫ The A64FX supports the hardware stride prefetch function.

⚫This function is an extension of the -Kprefetch_stride option.

-K{prefetch_stride[={soft|hard_auto|hard_always}]|prefetch_nostride}

The option specifies whether to prefetch the array data accessed with an even longer stride than the line size of the cache
used in a loop.

This includes loops with the addresses for prefetching not yet determined at the compile time.

If the -Kprefetch_stride option is specified, the function is executed. If omitted, the -Kprefetch_nostride option is applied.

If ={soft|hard_auto|hard_always} is omitted from -Kprefetch_stride, the -Kprefetch_stride=soft option is applied.

The -Kprefetch_stride=soft option and -Kprefetch_nostride option are valid when the -O1 option or higher is enabled.

The -Kprefetch_stride=hard_auto option and -Kprefetch_stride=hard_always option are valid when the -Khpctag option and
-O1 option or higher are enabled.

-Kprefetch_stride=soft
Generate a prefetch instruction for prefetching.

-Kprefetch_stride=hard_auto
Use the hardware stride prefetcher for prefetching.
If this option is specified, the hardware stride prefetcher is set to prefetch only data that is not on the cache.

-Kprefetch_stride=hard_always
Use the hardware stride prefetcher for prefetching.
If this option is specified, the hardware stride prefetcher is set to always prefetch data, unlike the
-Kprefetch_stride=hard_auto option.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED100

• Automatic Adjustment of Prefetch Distance

• [Reference] Prefetch Instructions Provided by A64FX

• Prefetch Options

• Prefetch Optimization Specifiers (OCL)

Software Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED101

Automatic Adjustment of Prefetch Distance

⚫ What is automatic adjustment of the prefetch distance?

⚫ In general, the prefetch distance may be as long as the possible extent of latency
masking.

⚫However, a longer distance than required has the following negative effects:

⚫ Iterations near the start of loops that do not prefetch the referenced areas

⚫ Increase in the number of lines that should be cached concurrently

⚫The appropriate prefetch distance varies by loop, according to the execution
period and cache usage per iteration of the loop. Until now, if not specified by the
user, the prefetch distance uses a longer fixed value, which could cause the above-
described negative effects.

* The function for automatic adjustment of the prefetch distance works
when the prefetch distance is not explicitly specified.

The A64FX heuristically determines the appropriate prefetch
distance for every loop, taking the following conditions into
consideration, when no value is specified by the user:

⚫ Number of streams

⚫ Loop length

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED102

[Reference] Prefetch Instructions Provided by
A64FX
⚫ Prefetch instructions provided by the A64FX

(1) ARMv8 prefetch instruction

Prefetch instruction supporting sequential load/store instructions (no consideration of prefetch across lines)

(2) SVE Contiguous prefetch instruction

Prefetch instruction supporting sequential load/store instructions (consideration of prefetch across lines)

(3) SVE Gather prefetch instruction
Prefetch instruction supporting scattered access instructions (Gather/Scatter)

256 bytes 256 bytes 256 bytes 256 bytes

256 bytes 256 bytes 256 bytes 256 bytes

Only the first line is prefetched when the
prefetch target spans two lines.

Both lines are prefetched when the prefetch
target spans two lines.

256 bytes

256 bytes 256 bytes

Instruction used for sequential access:
(1) ARMv8 prefetch instruction, and
(2) SVE Contiguous prefetch instruction

256 bytes 256 bytes 256 bytes

256 bytes 256 bytes 256 bytes 256 bytes

Instruction used for indirect access:
(3) SVE Gather prefetch instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED103

Prefetch Options (1/3)

Option Format Functional Outline

-Knoprefetch Specifies not to generate objects using a prefetch instruction.

-Kprefetch_cache_level
= { 1 | 2 | all }

Specifies which cache level to prefetch data to.

-K{ prefetch_sequential[=kind]
| prefetch_nosequential }
kind: { auto | soft }

Specifies whether to generate objects using a prefetch
instruction for the array data used in a loop and accessed
sequentially.

-K{prefetch_stride
[={soft|hard_auto|hard_always}]
|prefetch_nostride}

Specifies whether to prefetch the array data accessed with an
even longer stride than the line size of the cache used in a
loop. This includes loops with the addresses for prefetching
not yet determined at the compile time. If the -
Kprefetch_stride option is specified, the function is executed.

-K{ prefetch_indirect |
prefetch_noindirect }

Specifies whether to generate objects using a prefetch
instruction for the array data used in a loop and accessed
indirectly (list access). (This option is valid when the -O1 or
higher option is enabled.)

-K{ prefetch_conditional |
prefetch_noconditional }

Specifies whether to generate a prefetch instruction for the
array data used in the blocks included in an IF construct or
CASE construct.

-K{ prefetch_infer |
prefetch_noinfer }

Specifies whether to generate a prefetch instruction for
sequential access even if the prefetch distance is not known.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED104

Prefetch Options (2/3)

Option Format Functional Outline

-K{ prefetch_strong |
prefetch_nostrong }

Specifies whether to generate a strong prefetch instruction when
generating a prefetch instruction for the primary cache.

-K{ prefetch_strong_L2 |
prefetch_nostrong_L2 }

Specifies whether to generate a strong prefetch instruction when
generating a prefetch instruction for the secondary cache.

-Kprefetch_iteration=N
1 ≦N ≦ 10000

Specifies the target as the data referenced or defined after N
cycles of a loop, when generating a prefetch instruction. For a
loop with SIMDization applied, specify N as the number of loop
iterations after SIMDization.

-Kprefetch_iteration_L2=N
1 ≦N ≦ 10000

Specifies the target as the data referenced or defined after N
cycles of a loop, when generating a prefetch instruction. For a
loop with SIMDization applied, specify N as the number of loop
iterations after SIMDization.

-Kprefetch_line=N
1 ≦N ≦ 100

Specifies the target as the corresponding data prefetched N cache
lines ahead, when generating a prefetch instruction .

-Kprefetch_line_L2=N
1 ≦N ≦ 100

Specifies the target as the corresponding data prefetched N cache
lines ahead, when generating a prefetch instruction.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED105

Prefetch Options (3/3)

Option Usage Example

-Kprefetch_indirect

Specify -Kprefetch_indirect in the following situation. Suppose you want to
output prefetch instructions like the optimization control line shown below.
Also, for list access, the array is written to the index like a(m(i)) in the
program below. However, the option may cause execution performance to
decrease depending on the cache efficiency of loops, the presence of
branches, or the complexity of the index.

-Kprefetch_stride

Specify -Kprefetch_stride in the following situation. Suppose you want to
output prefetch instructions like the following optimization control line. Also, in
stride access, the increment value for loops may be so large that the array
elements accessed in the current cycle and next cycle are not on the same
cache line as shown in the program below. However, the option may cause
execution performance to decrease depending on the cache efficiency of loops
or the presence of branches.

do i=1,N
/* Outputs L2 prefetch instruction on a(m(i+α)) */
/* Outputs L1 prefetch instruction on a(m(i+β)) */
b(i) = b(i) + a(m(i))

enddo

do i=1,N,100
/* Outputs L2 prefetch instruction on a(i+100*a) */
/* Outputs L1 prefetch instruction on a(i+100*β) */
/* Outputs L2 prefetch instruction on b(i+100*a) */
/* Outputs L1 prefetch instruction on b(i+100*β) */
b(i) = a(i) + 1.0

enddo

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED106

Prefetch Optimization Specifiers (OCL) (1/2)

Optimization
Specifier

Meaning

Specifiable in Following Units on
Optimization Control Line?

Program DO Loop Stmt.
Array

Assignme
nt Stmt.

PREFETCH
Enables the automatic prefetch function of the
compiler.

✔ ✔ ｘ ｘ

NOPREFETCH
Disables the automatic prefetch function of the
compiler.

✔ ✔ ｘ ｘ

PREFETCH_CACHE_LEVEL
(c-level)

Specifies c-level, the cache level of the data to be
prefetched.
c-level is 1, 2, or all.

✔ ✔ ｘ ✔

PREFETCH_INFER
Specifies that prefetch be output for sequential
access even if the prefetch distance is not known.

✔ ✔ ｘ ✔

PREFETCH_NOINFER
Specifies that prefetch not be output for sequential
access if the prefetch distance is not known.

✔ ✔ ｘ ✔

PREFETCH_ITERATION(n)

Specifies the target as the data referenced or
defined after n cycles of a loop, when generating a
prefetch instruction.
n is a decimal number from 1 to 10,000.

✔ ✔ ｘ ｘ

PREFETCH_ITERATION_L2(n)

Specifies the target as the data referenced or
defined after n cycles of a loop, when generating a
prefetch instruction.
However, this function targets only the prefetch
instructions for secondary cache prefetching.
n is a decimal number from 1 to 10,000.

✔ ✔ ｘ ✔

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED107

Prefetch Optimization Specifiers (OCL) (2/2)

Optimization
Specifier

Meaning

Specifiable in Following Units on
Optimization Control Line?

Progra
m

DO Loop Stmt.
Array

Assignm
ent Stmt.

PREFETCH_READ
(name[,level={1|2}]

[,strong={0|1}])

Specifies that prefetch instructions be generated for
the referenced data.
"name" is the name of an array element, "level" is
the cache level for prefetching, and "strong"
indicates whether to use strong prefetch.

ｘ ｘ ✔ ｘ

PREFETCH_WRITE
(name[,level={1|2}]

[,strong={0|1}])

Specifies that prefetch instructions be generated for
the defined data.
"name" is the name of an array element, "level" is
the cache level for prefetching, and "strong"
indicates whether to use strong prefetch.

ｘ ｘ ✔ ｘ

PREFETCH_SEQUENTIAL
[(AUTO|SOFT)]

Specifies that prefetch instructions be generated for
the array data accessed sequentially.

✔ ✔ ｘ ✔

PREFETCH_STRONG
Specifies that prefetch instructions for the primary
cache be generated as strong prefetch.

✔ ✔ ｘ ✔

PREFETCH_NOSTRONG
Specifies that prefetch instruction for the primary
cache not be generated as strong prefetch.

✔ ✔ ｘ ✔

PREFETCH_STRONG_L2
Specifies that prefetch instructions for the
secondary cache be generated as strong prefetch.

✔ ✔ ｘ ✔

PREFETCH_NOSTRONG_L2
Specifies that prefetch instructions for the
secondary cache not be generated as strong
prefetch.

✔ ✔ ｘ ✔

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED108

• Harmonization of Hardware and Software Prefetch

Harmonization of Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED109

Harmonization of Hardware and Software Prefetch

HWPF does not occur in the cases described below.
Complementation with SWPF can deliver optimum
performance.

⚫ Number of streams exceeds 16

-> This is automatically identified by the compiler for processing done

without the user's knowledge.

⚫ Block stride cases

⚫Loop blocking (Effective for array replacement, matrix operation, etc.)

⚫Unrolling in the outer loop

⚫ Access by masked SIMD
When masked SIMD accesses a stream having an if statement, the true

rate of the if statement may not allow sequential access. In this case,
HWPF does not occur.

"Harmonization of Hardware and Software Prefetch" means
complementation with SWPF in cases where HWPF does not occur.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED110

• Built-in Prefetch

Built-in Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED111

Built-in Prefetch

Built-in prefetch is supported in C/C++ clang mode.

⚫Specification method

⚫addr: Specify the memory address to be prefetched.

⚫rw: Specify the type of prefetch.
For read prefetch, specify 0. For write prefetch, specify 1.

⚫ localy: Specify 0 to 3.
For L1 cache prefetching, specify 3.
For L2 cache prefetching, specify 2.

__builtin_prefetch(*addr, rw, localy)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED112

• Basic Principles of SIMDization

• Example of SIMDization of Consecutive Data

• Confirmation of SIMDization

• SIMDizable Loops
• Assembler images from source code are used in descriptions of

load/store and other instructions.

SIMD Vectorization (SIMDization)
(Single Instruction Multiple Data)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED113

Basic Principles of SIMDization

⚫ SIMD (single instruction multiple data)
⚫ Parallel processing of multiple operations by a

single instruction

⚫ SIMD features of A64FX SVE
⚫ Supports SIMD widths of up to 512 bits

⚫ Supports variable-length SIMD widths

⚫ Supports various accesses and operation
instructions

⚫ Can execute two multiply-add operation
instructions simultaneously on one core

⚫ Can process 32 single-precision operations
simultaneously

⚫ Can SIMDize integer types too

SIMD

Memory

Application-friendly SIMD and faster
computational processing realized

With double-precision:
A single core can process 16* operations
simultaneously.

*8 SIMD width * 2 arithmetic pipeline
+

a[0] a[1] ... a[7] b[0]b[1] ... b[7]

c[0] c[1] ... c[7]

Registera[0] ... a[7] b[0] b[1] ... b[7]a[1]

Program example:

for (i=0;i<7;++i) {

c[i]=a[i]+b[i];

}

Cache

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED114

ldr d1, [x15, x7, lsl #3]

ldr x15, [x11]

fmul d1, d1, d0

str d1, [x15, x7, lsl #3]

Scalar
instruction

ld1d {z1.d}, p0/z, [x7, x1, lsl #3]

ld1d {z0.d}, p0/z, [x4, x1, lsl #3]

fmul z1.d, z0.d, z1.d

st1d {z1.d}, p0, [x2, x1, lsl #3]

SIMD
instruction

For the innermost loop of the array, the 8 repeated array
elements are SIMD ordered and the number of execution
instructions is decreased to 1/8 to speed up processing.

Not SIMDized

SIMDized

⚫ With data of the double-precision type

A single instruction processes
data consisting of 8 elements,

like b[i] [j] ... b[i] [j+7].

Example of SIMDization of Consecutive Data

Source code
void foo(double a[N][N],

const double b[N][N], const double c[N][N])

{

int i, j;

for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {

a[i][j] = b[i][j] * c[i][j] ;

}

}

}

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED115

(line-no.)(optimize)

1 #define N 1000

2 void foo(double a[N][N],const double b[N][N])

3 {

4 int i, j;

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

5 pp for (i = 0; i < N; ++i) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< Loop-information End >>>

6 p 2v for (j = 0; j < N; ++j) {

7 p 2v a[i][j] = b[i][j] * 2.0;

8 p 2v }

9 }

10 }

⚫ Example of compiled information output

SIMDization information on loops

v: SIMDized

m: Includes both SIMDized and not-SIMDized parts

s: Not SIMDized

Blank: Not SIMDization target

SIMDization information on executable statements

v: SIMDizable

m: Includes both SIMDizable and non-SIMDizable
parts

s: Not SIMDizable

SIMDized with 8-element vectors

Confirmation of SIMDization

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED116

⚫ Loop characteristics required in compiler SIMDization

⚫ The number of loop iterations can be determined before entering
a loop. (*1)

⚫No procedure/function is called inside a loop. (*2)

⚫No more than one exit of the loop.

⚫ No I/O statements in the loop.

⚫ Data definition or order of data references order does not differ from
serial execution.

*1 With SVE, this can also be a while loop.

*2 In some cases, SIMDization is possible through inline expansion.

SIMDizable Loops

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED117

• Basic Principles of Software Pipelining

• Confirmation of Software Pipelining

Software Pipelining

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED118

Before optimization

After optimization

⚫ Software pipelining improves instruction-level parallelism in a kernel
loop by overlapping the current and next iterations of the loop.

Latency of load = 3 cycles
Latency of add = 3 cycles
Latency of store = 1 cycle
Number of functional units for
load/store = 3
Number of commits = 4 (Up to 3
can be issued concurrently for
load/store)

load load

add

store

Kernel
entry point

Kernel exit
point

Kernel

Epilogue

Prologue

Program example

for (i=0 ; i < n ; i++) {
a[i] = b[i] + c[i];
}

Kernel
Improvement from
7 cycles to 1 cycle
per iteration

The loop that best represents the
features of the program is called a
kernel loop.

load load

load load

load load

add

add

add

store

store

store

load load

load load

load load

load load

load load

load load

add

add

add

add

add

add

store

store

store

store

store

store

The kernel is now able to execute 4 instructions in
1 cycle, and instruction commit waiting is
eliminated. As a result, performance improves.

Same color shows
instructions in
same iteration

Basic Principles of Software Pipelining

⚫ The descriptions of concepts assume the following machine model.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED119

(line-no.)(optimize)
：

<<< Loop-information Start >>>

<<< [PARALLELIZATION]
<<< Standard iteration count: 1067
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 144, MVE: 4, POL: S)

<<< Loop-information End >>>
6 s 2v for (i = 0; i < N-1; ++i) {
7 p 2v a[i] = b[i] + b[i+1];
8 p 2v }

：

⚫ Example of compiled information output

This indicates the loop was
software pipelined.

Confirmation of Software Pipelining

SOFTWARE PIPELINING(IPC: ipc, ITR: itr, MVE: mve, POL: pol)

- Where software pipelining is applied to a loop, ipc is the predicted value of
instructions per cycle for the loop.

- Where software pipelining is applied to a loop, which is selected at the
execution time, itr is the required number of loop iterations for the loop.
The same value is output in the compile message jwd8205o-i.

- mve is the number of loop expansions by software pipelining.

- pol is the applied instruction scheduling algorithm. `S` means that the
algorithm fit for a small loop is applied. `L` means that the algorithm fit
for a large loop is applied.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED120

• Order of Optimization

• Unrolling Behavior

• Striping Behavior

• Flow of Loop Optimization and Control

Loop Optimization and Instruction
Scheduling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED121

Order of Optimization

⚫ Optimization order and descriptions
⚫ SIMD

⚫ SIMDize.

⚫ Unrolling

⚫ Optimize by expanding all of the executable statements in
a loop by n times within the loop and reducing the number
of loop cycles to 1/n.

⚫ Striping

⚫ Optimize by expanding a specific number (stripe length) of
executable statements in a loop. Forcibly exchange
executable statements.

⚫ Software pipelining

⚫ Optimize by improving instruction-level parallelism in a
kernel loop by overlapping the current and next iterations
of the loop.

⚫ Local scheduler (Pre-scheduler)

⚫ Exchange instructions (scheduling) with consideration of
instruction latency and the live ranges of registers.

⚫ Register allocation

⚫ Allocate the registers used by variables and arrays.

⚫ Local scheduler (Post-scheduler)

⚫ Exchange instructions (scheduling) with consideration of
the instructions added (spills) in register allocation.

Register allocation

Assembler

Local scheduler
(Pre-scheduler)

Software pipelining

SIMD

Unrolling Striping

Local scheduler
(Post-scheduler)

Program source

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED122

Conceptual image of instructions

(-Kunroll=2)

Unrolling Behavior

⚫ Behavior of unrolling (without SWPL)

Sample
program

do i=1,n

A(i) = B(i) + C(i)

enddo

Cycle

1

2

3

4

5

6

7

load C(2)load B(2)

add(2)

load B(1) load C(1)

add(1)

store A(1)

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

store A(2)

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

waiting

8

9

10

11

12

13

14

Latency of load 3 cycles

Latency of add 3 cycles

Latency of store 1 cycle

Number of load pipes 2

Number of store pipes 1

Number of concurrent
instruction commits

4
instructions

Cycle

1

2

3

4

5

6

7

Original loop

load B(1) load C(1)

add(1)

store A(1)

waiting

waiting

waiting

waiting

waiting

waiting

Unrolling expands
instructions in
multiple iterations
(without scheduling
instructions)

i=2
iteration

i=1
iteration

⚫ The descriptions of concepts assume the
following machine model.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED123

◼ The descriptions of concepts assume the
following machine model.

Latency of load 3 cycles

Latency of add 3 cycles

Latency of store 1 cycle

Number of load pipes 2

Number of store pipes 1

Number of concurrent
instruction commits

4
instructions

Striping Behavior

⚫ Behavior of striping (without SWPL)

Cycle

1

2

3

4

5

6

7

Original loop

load B(1) load C(1)

add(1)

store A(1)

waiting

waiting

waiting

waiting

waiting

waiting

load C(2)

load B(2)

add(2)

store A(2)

load B(1)

load C(1)

add(1)

store A(1)

Conceptual image of instructions

(-Kstriping=2)

waiting

waiting

waiting

Sample program

do i=1,n

A(i) = B(i) + C(i)

enddo

Striping alternately
expands instructions
in multiple iterations
(partially scheduling
instructions)

waiting

waiting

waiting

waiting

waiting

Cycle

1

2

3

4

5

6

7

8

9

waiting waiting

i=1
iteration

i=2
iteration

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED124

Local scheduler
(Post-scheduler)

Local scheduler
(Post-scheduler)

Local scheduler
(Pre-scheduler)

Local scheduler
(Pre-scheduler)

Striping

Flow of Loop Optimization and Control

⚫ Software pipelining ⚫ Unrolling (without SWPL)
(+ local scheduler)

Register allocation

Assembler

Program source

Software pipelining

SIMD

Register allocation

Assembler

Program source

Software pipelining

SIMD

Register allocation

Assembler

Program source

Software pipelining

SIMD

Unrolling Unrolling Striping Unrolling Striping

⚫ Striping (without SWPL)
(+ local scheduler)

Local scheduler
(Pre-scheduler)

Local scheduler
(Post-scheduler)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED125

• About Loop Optimization

• Loop Interchange

• Loop Fusion

• Loop Unrolling

• Loop Collapse

Optimization for Loops

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED126

About Loop Optimization

⚫ Loop optimization

⚫ The table below lists typical loop optimization techniques automatically
employed by the compiler.

Type of Loop
Optimization/Transformation

Effect

Loop interchange
• Data localization
• Parallelization of outer loops (Larger granularity)

Loop fusion
• Data localization
• Improved instruction-level parallelism

Loop unrolling
• Fewer instructions
• Improved instruction-level parallelism

Loop collapse
• Increased scheduling efficiency
• Improved load balancing

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED127

Loop Interchange

Original Source Source Showing Compiler Optimization

double a[N][M];

const double b[N][N][M];

void foo()

{

int i, j, k;

for (j = 0; j < M; ++j) {

for (k = 0; k < N; ++k) {

for (i = 0; i < N; ++i) {

a[k][j] = a[k][j] + b[k][i][j];

}

}

}

}

double a[N][M];

const double b[N][N][M];

void foo()

{

int i, j, k;

for (k = 0; k < N; ++k) {

for (i = 0; i < N; ++i) {

for (j = 0; j < M; ++j) {

a[k][j] = a[k][j] + b[k][i][j];

}

}

}

}

⚫ Purpose

⚫ Data localization

⚫ Cache utilization efficiency increases with the adoption of sequential
access to array b.

Stride access Sequential access

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED128

(line-no.)(optimize)

：

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< INTERCHANGED(nest: 3)

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 192, MVE: 7, POL: S)

<<< Loop-information End >>>

8 p v for (j = 0; j < M; ++j) {

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< [OPTIMIZATION]

<<< INTERCHANGED(nest: 1)

<<< Loop-information End >>>

9 pp for (k = 0; k < N; ++k) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< INTERCHANGED(nest: 2)

<<< Loop-information End >>>

10 p 2v for (i = 0; i < N; ++i) {

11 p 2v a[k][j] = a[k][j] + b[k][i][j];

12 p 2v }

13 }

14 } ：

⚫ Example of compiled information output (Loop interchange)

Loop interchange changed:

- loop j to nest 3,

- loop k to nest 1, and

- loop i to nest 2.

Confirmation of Loop Interchange

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED129

Loop Fusion

Original Source Source Showing Compiler
Optimization

void sub()

{

int i;

for (i = 0; i < N; ++i) {

a[i] = b[i] + c[i];

}

for (i = 0; i < N; ++i) {

d[i] = a[i] + e[i];

}

}

void sub()

{

int i;

for (i = 0; i < N; ++i) {

a[i] = b[i] + c[i];

d[i] = a[i] + e[i];

}

}

⚫ Purpose

⚫ Data localization

⚫ Loop fusion enables reuse of array a.

⚫ Improved instruction-level parallelism

⚫ Loop fusion improves instruction-level parallelism by increasing the number
of instructions in a loop and scheduling the instructions.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED130

⚫ Example of compiled information output (Loop fusion)

Confirmation of Loop Fusion

(line-no.)(optimize)
：

<<< Loop-information Start >>>

<<< [PARALLELIZATION]
<<< Standard iteration count: 728
<<< [OPTIMIZATION]
<<< FUSED(lines: 6,9)
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.00, ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< d, c, e, a, b
<<< Loop-information End >>>

6 pp 2v for (i = 0; i < N; ++i) {
7 p 2v a[i] = b[i] + c[i];
8 p 2v }

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< FUSED
<<< Loop-information End >>>

9 p 2v for (i = 0; i < N; ++i) {
10 p 2v d[i] = a[i] + e[i];
11 p 2v }

：

Loops on lines 6 and 9 fused

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED131

Loop Unrolling

Original Source Source Showing Compiler Optimization

#define N 10000

double a[N], b[N];

void sub()

{

int i;

for (i = 0; i < N-3; ++i) {

a[i] = b[i] + b[i+1] + b[i+2];

}

}

#define N 10000

double a[N], b[N];

void sub()

{

int i;

double t;

for (i = 0; i < N-3; i += 2) {

t = b[i+1] + b[i+2];

a[i] = b[i] + t;

a[i+1] = t + b[i+3];

}

}

⚫ Purpose

⚫ Fewer instructions

⚫ Loop unrolling decreases the number of loop iterations, which in turn reduces branch
instructions.

⚫ A general formula for reducing instructions is B[i+1]+b[i+2].

⚫ Improved instruction-level parallelism

⚫ Increasing the number of instructions per cycle increases the scheduling capacity and
thus improves instruction-level parallelism.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED132

(line-no.)(optimize)
：

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 843
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.57, ITR: 96, MVE: 2, POL: S)

<<< Loop-information End >>>

6 pp 2v for (i = 0; i < N-3; ++i) {

7 p 2v a[i] = b[i] + b[i+1] + b[i+2];
8 p 2v }

：

⚫ Example of compiled information output (Loop unrolling)

Loop unrolled twice

Confirmation of Loop Unrolling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED133

Loop Collapse

Original Source Source Showing Compiler
Optimization

double a[M][N], c;

void sub()

{

int i,j;

c=1.0;

for (j = 0; j < M; ++j) {

for (i = 0; i < N; ++i) {

a[j][i] = a[j][i] + c;

}

}

}

double a[M*N], c;

void sub()

{

int i,j;

c=1.0;

for (ij = 0; ij < N*M; ++ij) {

a[ij] = a[ij] + c;

}

}

⚫ Purpose

⚫ Increased software pipelining efficiency

⚫ Loop collapse increases the number of loop iterations to increase software pipelining
efficiency.

⚫ Improved load imbalancing

⚫ Loop collapse raises the likelihood of improved load balancing independently of the M
value. For example, parallelization outside of the original source may have an adverse
effect when the M value is 1, 2, or so on.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED134

(line-no.)(optimize)

：

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 1231

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.25, ITR: 192, MVE: 7, POL: S)

<<< Loop-information End >>>

8 pp 2v for (j = 0; j < M; ++j) {

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< COLLAPSED

<<< Loop-information End >>>

9 p 2v for (i = 0; i < N; ++i) {

10 p 2v a[j][i] = a[j][i] + c;

11 p 2v }

12 } ：

⚫ Example of compiled information output (Loop collapse)

Loop collapsed

Confirmation of Loop Collapse

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED135

• Simple Loop Slice

• Loop Slice by Reduction

• Determination of Automatic Parallelization Possibility

• Verification of Automatic Parallelization

• Pipeline Parallelism

Automatic Parallelization

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED136

⚫ Parallelization follows the allocation of loop indexes to multiple threads.

for (i = N/2; i < N; ++i) {
a[i] += b[i];

}

for (i = 0; i < N/2; ++i) {
a[i] += b[i];

}

for (i = 0; i < N; ++i) {
a[i] += b[i];

}

⚫ An environment variable (PARALLEL) specifies the number of
parallel threads.

Core 1 Core 2

Serial processing Automatic parallelization

Core 1

(Example with 2 threads)

Simple Loop Slice

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED137

⚫ Parallelization for preventing data contention

for (i = 0; i < N; ++i) {

s += a[i];

}

Core 1 Core 2

Serial processing Automatic parallelization

Core 1

for (i = N/2; i < N; ++i) {

s2 += a[i];

}

for (i = 0; i < N/2; ++i) {

s1 += a[i];

}

s=s+s1+s2

s1 and s2 are held as thread-specific (private)
areas. Contention does not occur even when
core 1 and core 2 are simultaneously updated.

Note: A computation error may occur because the operation order differs from the
sequential order.

If -Knoeval or –Knoreduction option is specified, parallelization is not possible.

Loop Slice by Reduction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED138

double a[N][N], b[N][N];

void sub() {

for (int i = 0; i < 3; ++i) {

for (int j = 0; j < 3; ++j) {

a[i][j] = b[i][j] + 1.0;

}

}

}

⚫ The parallelization targets exclude the following cases:

(1) Loop with a low cost identified at the compile time

(2) Loop with a low cost identified at the execution time
* The compiler outputs dynamic control for parallelization only when the loop

cost is high.

(1) (2)

extern double a[3][3], b[3][3];

void sub(int n) {

for (int i = 0; i < n; ++i) {

for (int j = 0; j < n; ++j) {

a[i][j] = b[i][j]+1.0;

}

}

}

Determination of Automatic Parallelization
Possibility

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED139

⚫ Example of compiled information output

(line-no.)(optimize)

：

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 1000

<<< [OPTIMIZATION]

<<< SIMD(VL: 4)

<<< SOFTWARE PIPELINING

<<< Loop-information End >>>

5 pp 8v for (i = 0; i < N; ++i) {

6 p 8v a[i] = b[i] + b[i+1];

7 p 8v }

：

Parallelization information on executable statements

p: Parallelizable

m: Includes both parallelizable and not-parallelizable parts

s: Not parallelizable

Parallelization information on DO loops

pp: Parallelized

m: Includes both parallelized and not-parallelized parts

S: Not parallelized

Blank: Not parallelization target

Verification of Automatic Parallelization

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED140

void sub() {
for (int i = 0; i < N; ++i) {

for (int j = 0; j < 40; ++j) {
a[i][j] = a[i+1][j] + a[i][j+1];

}
}

}

Pipelines have data dependency across cycles
-> Normal parallelization not practical

Pipelines do not have diagonal data dependency
-> Parallelization by diagonally slicing

inner loops

i=0
j=0 to 9

i=1
j=0 to 9

i=2
j=0 to 9

i=0
j=10 to 19

i=1
j=10 to 19

i=2
j=10 to 19

i=0
j=20 to 29

i=1
j=20 to 29

i=0
j=30 to 39

Barrier

Barrier

Barrier

Barrier

thread-0 thread-1 thread-2 thread-3

i=3
j=0 to 9

Pipeline Parallelism

⚫ Pipeline parallelism

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED141

• Built-in debug function

• Debug function for abnormal termination

• Hook function

Debug Functions for
Fortran and C/C++ Trad Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED142

Built-in Debug Function (1/2)

Compiler Option -Nquickdbg

Test Item
subchk
heapchk

Output
Information

- Error message
- Line number where error occurred
- Variable name

Thread
Parallelization
Support

OpenMP and automatic parallelization
supported

⚫ You can use the following built-in debug function with the C/C++
compiler.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED143

⚫ Usage
Specify the following compiler option.

⚫ $ fccpx -Nquickdbg test.c

⚫ If not specified, the subparameters assume the following values:
–Nquickdbg=subchk –Nquickdbg=heapchk –Nquickdbg=inf_detail

⚫ Arguments (subparameters) for testing

⚫ Arguments (subparameters) for displaying diagnostic messages

Argument Test Description

subchk Checks of the range when referencing arrays

heapchk Checks of memory release and out-of-bounds write

-Nquickdbg [=subchk | heapchk | inf_detail | inf_simple]

Built-in Debug Function (2/2)

Argument Displayed Content

inf_detail Error message, line number, variable name

inf_simple Error message, line number * Reduced impact on execution performance *

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED144

Debug Function for Abnormal Termination (1/2)

⚫ If the program is terminated abnormally, you can output
information from the execution time to help in investigating the
cause.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option -NRtrap

Caught Signals SIGILL(04): Incorrect instruction executed
SIGFPE(08): Arithmetic exception
SIGBUS(10): Storage protection exception
SIGSEGV(11): Segmentation exception
SIGXCPU(30): CPU time interrupt

Output
Information

General
Abend

• Signal number
• Signal code for the abend cause
• Detailed information of signal code

SIGXCPU • Message

145

⚫ Instructions
Specify the following compiler option.

$ fccpx -NRtrap test.c

⚫ Output information

Signal No. Output Message

SIGILL
SIGBUS
SIGSEGV

jwe0019i-u The program was terminated abnormally with signal
number SSSSSSS.signal identifier = NNNNNNNNNNN,(Detailed
information.)

SSSSSSS: SIGILL, SIGBUS, or SIGSEGV
NNNNNNNNNNN: Signal code for the abend cause
(Detailed information.): Detailed information of signal code

SIGXCPU
jwe0017i-u The program was terminated with signal number
SIGXCPU.

-NRtrap

Debug Function for Abnormal Termination (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED146

Hook Function (1/2)

⚫ You can use a user-defined function to check program behavior
by calling the function from a specific point in the program.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Compiler Option -Nhook_func

User-Defined
Function Name

user_defined_proc

User-Defined
Function
Arguments

FLAG: Information on user-defined function call source
NAME: Function name at call source
LINE: Line number at call source
THREAD: Thread identification number

(for OpenMP/automatic parallelization)

User-Defined
Function Call
Location

• Program entry/exit point
• Function entry/exit point

If -Kopenmp or -Kparallel is enabled, you can call the
function from the following location in addition to
above:
• Parallel region (OpenMP/automatic parallelization)

entry/exit point

147

⚫ Instructions
Specify the following compiler option.

$ fccpx -Nhook_func test.c

⚫ User-defined function format
⚫ Format

⚫ Arguments

-Nhook_func

Hook Function (2/2)

#include "fjhook.h"

void user_defined_proc(int *FLAG, char *NAME, int *LINE, int *THREAD)

FLAG: Indicates the user-defined function call source.

0: Program entry point 1: Program exit point 2: Function entry point 3: Function exit point

4: Parallel region entry point 5: Parallel region exit point

6 to 99: System reserved 100: Available to users

NAME: Indicates the function name at the call source.
The argument can be referenced only when FLAG is 2, 3, 4, 5, or 100 or higher.

LINE: Indicates the line number at the call source.
The argument can be referenced only when FLAG is 2, 3, 4, 5, or 100 or higher.

THREAD: Indicates the identification number of the thread calling the user-defined function.
(OpenMP/automatic parallelization)

The argument can be referenced only when FLAG is 2, 3, 4, 5, or 100 or higher.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED148

• About Large Page

• Large Page Specifications

• Environment Variables for Large Page Settings

• Precautions (Side Effects) Related to Memory Usage

• Paging Policy of Large Page

• Lock Type of Large Page

• Behavior of Large Page Shortage(Fugaku only)

Large Page

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED149

About Large Page

⚫ What is a large page?

⚫ Allocating memory (large page) with a larger page size than a
normal page to applications handling data on a larger scale has
the following effects:

⚫ Reduces the overhead incurred by the CPU address translation
process

⚫ Improves memory access performance

⚫ In the A64FX system environment, the normal page size is 64
KiB, and the size available as a large page is 2 MiB.
⚫ You can set the following operations by setting environment variables:

⚫ Enabling/Disabling the large page allocation operation

⚫ Enabling/Disabling the large page allocation operation for the stack area

⚫ Selecting the paging method (page allocation trigger) for each memory
area

⚫ The various page sizes that can be used with McKernel 32 MiB, 1 GiB, 16 GiB
and etc.

*For details, see Chapter 3 Large Page Library in the "Job Operation Software End-
user's Guide for HPC Extensions".

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED150

Large Page Specifications

⚫ Large page specifications

Memory Area

MP10/FX10/
FX100

A64FX

Page
Size

Page Size
Paging
(Default is

Underlined)
Normal
Page

Large Page
Base

Large Page
Base+Stack

(Default)

Text
(.text)

8 KiB 64 KiB 64 KiB 64 KiB -

Static data
(.data)

4 MiB
(default),

8 KiB,
32 MiB,
256 MiB

64 KiB 2 MiB 2 MiB
Always
prepage

Static data
(.bss)

64 KiB 2 MiB 2 MiB
demand |
prepage

Stack (*1) 64 KiB 64 KiB 2 MiB
demand |
prepage

Dynamic
memory (*2)

64 KiB 2 MiB 2 MiB
demand |
prepage

Shared memory 64 KiB 64 KiB 64 KiB -

*1 This covers the process stack/main thread stack/thread stack area.
*2 This covers the process heap/main thread heap/thread heap/mmap area.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED151

Environment Variables for Large Page Settings (1/2)

⚫ Basic settings/Paging method settings

Environment
Variable Name

Specified Value
(Default is Underlined)

Description

XOS_MMM_L_HPAGE_TYPE hugetlbfs | none

With this setting, select whether to enable or disable the operation of
large page allocation using the large page library.
"hugetlbfs" enables large pages using HugeTLBfs.
"none" does not enable large pages using the large page library.

XOS_MMM_L_LPG_MODE base+stack | base

With this setting, select whether to enable or disable the operation of
large page allocation for the stack region and thread stack region.
"base+stack" enables large pages not only for the static data and
Dynamically allocated memory region but also for the stack region and
thread stack region.
"base" enables large pages only for the static data and dynamic
memory storage region. Large pages are not enabled for the stack
region and thread stack region.

XOS_MMM_L_PAGING_POLICY
[demand | prepage]:
[demand | prepage]:
[demand | prepage]

With this setting, select the paging method (page allocation trigger) for
each memory region.
"demand" represents the demand paging method, and "prepage"
represents the prepaging method. This variable specifies the paging
method for three memory region delimited by a colon (:).
The first specified method applies to the .bss region of static region.
(This specified paging method does not cover the .data region of static
data. "prepage" is always the value for this region.)
The second specified method applies to the stack region and thread
stack region.
The third specified method applies to Dynamically allocated memory
region.
If a value not in the Specified Value column is specified, the respective
value in "prepage:demand:prepage" is assumed specified.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED152

Environment Variables for Large Page Settings (2/2)

⚫ Settings for tuning (Environment variables specific to large pages)

Environment
Variable Name

Specified Value
(Default is Underlined)

Description

XOS_MMM_L_ARENA_
FREE

1 | 2
This setting relates to how to handle the heap area released by free(3).
Specify "1" to immediately release the memory that can be released. Specify "2" to never
release memory but instead pool all memory for reuse.

XOS_MMM_L_ARENA_
LOCK_TYPE

0 | 1
This setting relates to the memory allocation policy.
"0" means memory acquisition performance has priority. "1" means memory utilization
efficiency has priority.

XOS_MMM_L_MAX_
ARENA_NUM

Integer value between 1 and

INT_MAX
[decimal number]

Set the number of arenas that can be generated (total for the process heap area and
thread heap area). This setting is enabled when XOS_MMM_L_ARENA_LOCK_TYPE=0.

XOS_MMM_L_HEAP_S
IZE_MB

Integer value between
MALLOC_MMAP_THRESHOLD x

2 and ULONG_MAX <MiB>
[decimal number]

Set the size of memory acquired when generating and extending the thread heap area in
order to use the thread heap area.

XOS_MMM_L_COLORI
NG

0 | 1

With this setting, enable or disable cache coloring. Cache coloring mitigates L1 cache
conflicts of the processor. "0" does not enable cache coloring. "1" enables cache coloring
when the size of memory being acquired by mmap(2) is equal to or greater than
MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).

XOS_MMM_L_FORCE_
MMAP_THRESHOLD

0 | 1

Set whether to prioritize mmap(2) when the size of memory being acquired is equal to or
greater than MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).
"0" does not prioritize mmap(2). First, a search for free memory in the heap area returns
any free memory found in the area. Then, mmap(2) acquires memory only when no free
memory has been found in the heap area. "1" prioritizes mmap(2). Without a search for
free memory in the heap area, mmap(2) acquires memory (in spite of any free memory).

◼ For details on environment variables (MALLOC_MMAP_THRESHOLD_, etc.) for
glibc , see the user’s guide.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED153

Precautions (Side Effects) Related to Memory Usage

⚫Static data (.data) area

Both side effects 1 and 2 always occur.

⚫Static data (.bss) area

If the following conditions are met, side effects 1 and 2 occur.

a. The .dynsym section (dynamic section) has a symbol.

b. The symbol has an address within the range of the bss area
(bss_start, bss_end) of the main program.

c. The symbol is global (STB_GLOBAL) or weak (STB_WEAK).

d. The symbol type is variable (STT_OBJECT).

e. The size of the symbol is larger than 0.

⚫Side effects

1. A large page may use double or triple the memory area.

2. The prepaging method ("prepage") is the active method even when
the demand paging method ("demand") is set for the static data (.bss)
area in XOS_MMM_L_PAGING_POLICY.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED154

Paging Policy of Large Page
Since data comes from CMG0 in prepaging, performance cannot reach that of 48-thread
streams. With the method changed to demand paging, data is put on the running CMG, and
performance is significantly higher.

14 Subroutine sub(n,iter,x1,x2,y1)
15 real(8) :: x1(n), x2(n), y1(n),c0
16 integer n,i,k
17 c0=2.0
18
19 call fapp_start("sub",0,0)
20 1 do k=1,iter
21 1 !$omp parallel do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.45, ITR:

128, MVE: 2, POL: S)
<<< PREFETCH(SOFT) : 10
<<< SEQUENTIAL : 10
<<< x2: 4, x1: 4, y1: 2
<<< ZFILL :
<<< y1
<<< Loop-information End >>>

22 2 p v do i=1,n
23 2 p v y1(i) = x1(i) + c0 * x2(i)
24 2 p v end do
25 1 enddo
: ……
30 parameter(N=45000000,ITER=100)
31 real*8 x1(N),x2(N),y1(N)
32 call init(N,ITER,x1,x2,y1)
33 call sub(N,ITER,x1,x2,y1)

Source

Stream (Data size: About 1
GB)

Memory throughput (GB/s)

prepage (default) 93 GB/s

demand 804 GB/s

Compiler option: -Kfast,openmp
-Kprefetch_sequential=soft -Kprefetch_line=9
-Kprefetch_line_L2=70 -Kzfill=18

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED155

Lock Type of Large Page
malloc performance is higher when XOS_MMM_L_ARENA_LOCK_TYPE=0 is specified.
(Reduced execution time from 0.56 seconds to 0.35 seconds, a performance increase of 1.60
times)

1 subroutine sub(n,m,iter,x1,x2,y2)
2 integer(8) :: pZ1(iter)
3 real(8) :: x1(n), x2(n), y2(n,m),c0
4 c0=2.0
5
6 !$omp parallel do shared(n,m,iter,x1,x2,c0,y2) private(pZ1,i,j,k) default(none)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

7 1 p do k=1,m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

8 2 p s do j=1,iter
9 2 p m pZ1(j) = malloc(8 * n)
10 2 p v end do
11 1

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

12 2 p 2v do i=1,n
13 2 p 2v y2(i,k) = x1(i) + c0 * x2(i)
14 2 p 2v end do
15 1
16 2 p s do j=1,iter
17 2 p s call free(pZ1(j))
18 2 p s end do
19 1 p end do
20 end subroutine sub
21
22 program main
23 parameter(N=1048512,ITER=80)
24 real*8 x1(N),x2(N),y2(N,12)
25 call sub(N,12,ITER,x1,x2,y2)
26 end program main

Source

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED156

Behavior of Large Page Shortage (Fugaku only)

⚫ XOS_MMM_L_HUGETLB_FALLBACK

⚫ This setting specifies the behavior of large page shortage during malloc.

⚫ [1] causes try allocating memory shortage with normal pages.
If a normal page is unable to acquire memory to satisfy a malloc request, the process ends
with out of memory. This setting is effective for programs that operate for normal page
specification (XOS_MMM_L_HPAGE_TYPE=none) but fail to execute due to memory exhaustion
for large page specification. By enabling this setting, it is possible to make the program work
by using large pages as much as possible while compensating for the shortage with normal
pages and increasing the amount of memory that can be obtained with malloc.

⚫ [0] causes the process to terminate by out of memory when a large page shortage occurs.
(Default)

⚫ Note 1: The following settings are required to enable this setting.
I. XOS_MMM_L_HPAGE_TYPE=hugetlbfs and

II. XOS_MMM_L_PAGING_POLICY=any:any:prepage and

III. XOS_MMM_L_ARENA_LOCK_TYPE=1 and

IV. XOS_MMM_L_MAX_ARENA_NUM=1

These four conditions are the default settings for the large page library and do not need to be
explicitly specified unless otherwise specified.

⚫ Note 2: When this setting is enabled (Specify 1), a mixed malloc area of normal page and
large page is generated, but when this area is used as a communication buffer of Tofu, the
whole area is managed as normal page on Tofu. Therefore, the communication performance
when used as a communication buffer cannot be expected to be improved from the case of
normal page specification.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED157

• Timer Specifications

• Timer Precision

Timers Supported by Fortran

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED158

Timer Specifications (1/3)

⚫ Specifications of the major timer routines

No. Routine Name Function Format
What is

Measured

Unit
Returned

by Routine

1
DATE_AND_TIMEb

uilt-in subroutine
Obtains the date and time.

CALL DATE_AND_TIME ([DATE , TIME , ZONE , VALUES])
DATE: Sets the current date in the CCYYMMDD format.
(CC: century, YY: year, MM: month, DD: day)
TIME: Sets the current time in the hhmmss.sss format.
(hh: hour, mm: minute, ss.sss: second)
ZONE: Sets the time zone offset from UTC in the shhmm format.
(s: sign, hh: hour, mm: minute)
VALUES(1): Year
VALUES(2): Month
VALUES(3): Day
VALUES(4): Time zone offset from UTC in minutes
VALUES(5): Hour
VALUES(6): Minute
VALUES(7): Second
VALUES(8): Millisecond

Current

date/time

2
GETTIM

service subroutine
Obtains the current time.

CALL GETTIM (hour , minute , second , second1_100)
hour: Sets the current hour.
minute: Sets the current minute.
second: Sets the current second.
second1_100: Sets the current hundredth of a second.

Current time

3
FDATE

service subroutine

Obtains the current date and time by
converting them to ASCII code.

CALL FDATE (string)
string: Sets the current date and time in the order of day of the
week, month, day, time, and year.

Current date

and time

4
ITIME

service subroutine

Obtains the current hour, minute, and
second.

CALL ITIME (ia)
ia(1): Sets the current hour.
ia(2): Sets the current minute.
ia(3): Sets the current second.

Current hour,

minute, and

second

5
GETTOD
service subroutine

Obtains the current real time. The real time
is the time in microseconds elapsed since a
specific time point in the past. Usually, it
represents the time since system boot.

CALL GETTOD (g)
g: Sets the elapsed time in microseconds.

Wall clock
time

Microsecond

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED159

Timer Specifications (2/3)

⚫ Specifications of the major timer routines

No.
Routine

Name
Function Format

What is

Measured

Unit
Returned

by
Routine

6
GMTIME

service subroutine

Obtains the specified system clock time information to
show the second, minute, hour, day, month, year, day
of the week, total number of days since January 1, and
observation of daylight saving time according to
Greenwich Mean Time.

CALL GMTIME (time , t)
time: Specifies the system clock time.
The following array is set from the system clock time with the specified "time" value
according to Greenwich Mean Time:
t(1): Second
t(2): Minute
t(3): Hour
t(4): Day
t(5): Month
t(6): Total number of years since 1990
t(7): Total number of days since Sunday
t(8): Total number of days since January 1
t(9): The setting is 0 for standard time and 1 for daylight saving time.

Wall clock time

7
LTIME

service subroutine

Obtains the specified system clock time information to
show the second, minute, hour, day, month, year, day
of the week, total number of days since January 1, and
observation of daylight saving time according to the
local time.

CALL LTIME (time , t)
time: Specifies the system clock time.
The following array is set from the system clock time with the specified "time" value
according to the local time:
t(1): Second
t(2): Minute
t(3): Hour
t(4): Day
t(5): Month
t(6): Total number of years since 1990
t(7): Total number of days since Sunday
t(8): Total number of days since January 1
t(9): The setting is 0 for standard time and 1 for daylight saving time.

Wall clock time

8
omp_get_wtime

routine

Obtains the current real time. The real time is the time
in seconds elapsed since a specific time point in the
past. Usually, it represents the time since system boot.

y = omp_get_wtime ()
y: Returns the elapsed time in seconds. Wall clock time Second

9
SECNDS

service function

Obtains the number of seconds by subtracting the value
specified in the first argument from the number of
seconds elapsed since midnight in the system clock
time.

y = SECNDS (sec)
y: Returns the number of seconds obtained by subtracting the sec value from the
number of seconds elapsed since midnight in the system clock time.
sec: Specifies a value in seconds to subtract from the number of seconds elapsed since
midnight in the system clock time.

Wall clock time Second

10
SYSTEM_CLOCK
built-in
subroutine

Obtains the total time elapsed since midnight. The total
time is an elapsed time in seconds. Usually, it represents
the time since system boot.

CALL SYSTEM_CLOCK ([COUNT , COUNT_RATE , COUNT_MAX])
COUNT: Sets the time elapsed from midnight until the present time.
COUNT_RATE: Sets the rate of counting (=1000) per second by the processing system.
COUNT_MAX: Sets the maximum COUNT value (=86399999).

Wall clock time Millisecond

11
RTC
service function

Obtains the total number of seconds elapsed since 0:00
on January 1, 1970 in UTC.

y = RTC ()
y: Sets the total number of seconds elapsed since 0:00 on January 1, 1970. Wall clock time Second

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED160

Timer Specifications (3/3)

⚫ Specifications of the major timer routines

No.
Routine

Name
Function Format

What is

Measured

Unit Returned
by Routine

12
TIME

service

function

Obtains the time elapsed in seconds since 00:00:00 GMT (January 1, 1970).
iy = TIME ()
iy: Returns the elapsed time in seconds since 00:00:00 GMT
(January 1, 1970).

Wall clock time Second

13
TIMEF

service

function

Returns the elapsed time since the last called TIMEF service function.
y = TIMEF ()
y: Returns the elapsed time since the last executed TIMEF
service function.

Wall clock time Second

14
TIMER

service

subroutine

Obtains the time elapsed in hundredths of seconds since midnight.
CALL TIMER(ix)
ix: Sets the time elapsed in hundredths of seconds since
midnight.

Wall clock time Second

15
CLOCK
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CLOCK (g , i1 , i2)
g: Sets the CPU time in the unit specified in i1.
i1: Specifies the unit (second, millisecond, microsecond) for
the return value.
i2: Specifies the type of the variable specified in g.

CPU time used by
current processes and
their internal threads

Any of following units
depending on
specification:
- Second
- Millisecond
- Microsecond

16
CLOCKM
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CLOCKM (i)
i: Sets the CPU time in milliseconds.

CPU time used by
current processes and
their internal threads

Millisecond

17
CLOCKV
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.
The routine is compatible with vector machines.

CALL CLOCKV (g1 , g2 , i1 , i2)
g1: Always sets 0. * VU time is set in vector machines.
g2: Sets the CPU time in the unit specified in i1.
i1: Specifies the unit (second, millisecond, microsecond) for
the return value.
i2: Specifies the type of the variable specified in g2.

CPU time used by
current processes and
their internal threads

Any of following units
depending on
specification:
- Second
- Millisecond
- Microsecond

18
CPU_TIME
built-in

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CPU_TIME (TIME)
TIME: Sets the CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

19
DTIME
service

function

Obtains the CPU time from the last called DTIME service function. The CPU
time represents the time used by the processes executing the program and
all their internal threads.

y = DTIME (tm)
y: Returns the CPU time since the last called DTIME service
function.
tm(1): Sets the user CPU time in seconds.
tm(2): Sets the system CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

20
ETIME
service

function

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

y = ETIME (tm)
y: Returns the CPU time elapsed since the execution start of
an executable program.
tm(1): Sets the user CPU time in seconds.
tm(2): Sets the system CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

21
SECOND
service

function

Obtains the user CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

y = SECOND ()
y: Returns the user CPU time in seconds elapsed since the
execution start of an executable program.

CPU time used by
current processes and
their internal threads

Second

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED161

Timer Precision (1/2)

⚫ Precision of the major timer routines (Timer overhead)

No. Routine Name
Precision

Resolution
Overhead
(µs)

Thread
Safe

Implementation
GCC

Overhead
(µs)

Fujitsu/G

CC
Remarks

1
DATE_AND_TIME

built-in subroutine
1/1,000,000

77.37
(Improved

version)
47.27

✔
gettimeofday
localtime 163.13 0.47

2
GETTIM

service subroutine
1/1,000,000 38.37 ✔

gettimeofday
localtime

3
FDATE

service subroutine
1/1,000,000 18.58 ✔

time
ctime_r 78.71 0.24

4
ITIME

service subroutine
1/1,000,000 36.07 ✔

time
localtime 69.27 0.52

5
GETTOD
service subroutine

1/100,000,000 0.02 ✔

arm asm instruction
time stamp counter
gmtime_r
localtime_r

Resolution: Value of (1/cntfrq_el0)

6
GMTIME
service subroutine

5.72 ✔ gmtime_r 58.21 0.10

7
LTIME
service subroutine

10.81 ✔ localtime_r 67.59 0.16

8
omp_get_wtime
routine

FJOMP:
1/100,000,000
libomp:
1/1,000,000

1.00 ✔

FJOMP:
arm asm instruction time stamp
counter
libomp: gettimeofday
localtime

6.05 0.17 Resolution: Value of (1/cntfrq_el0)

9
SECNDS
service function

1/1,000,000 49.05 ✔
gettimeofday
localtime 77.31 0.63

10
SYSTEM_CLOCK
built-in subroutine

1/100,000,000

20.98
(Improved

version)
1.42

✔ arm asm instruction
time stamp counter 5.23

4.01
(Improve

d
version)

0.27

Resolution: Value of (1/cntfrq_el0)

11
RTC
service function

1/1,000,000 5.21 ✔ time

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED162

Timer Precision (2/2)

⚫ Precision of the major timer routines (Timer overhead)

No. Routine Name
Precision

Resolution
Overhead
(µs)

Thread
Safe

Implementation
GCC

Overhead
(µs)

Fujitsu/G

CC
Remarks

12
TIME

service function
1/1,000,000 5.28 ✔ time 5.03 1.05

13
TIMEF

service function
1/1,000,000 7.26 ✔ time

14
TIMER
service
subroutine

1/1,000,000 49.85 ✔
gettimeofday
localtime

15
CLOCK
service
subroutine

1/1,000,000 12.82 ✔ getrusage

16
CLOCKM
service
subroutine

1/1,000,000 13.70 ✔ getrusage

17
CLOCKV
service
subroutine

1/1,000,000 14.12 ✔ getrusage

18
CPU_TIME
built-in
subroutine

1/1,000,000 18.09 ✔ getrusage 5.39 3.36

19
DTIME
service function

1/1,000,000 14.12 ✔ getrusage 10.20 1.38

20
ETIME
service function

1/1,000,000 13.33 ✔ getrusage 9.37 1.42

21
SECOND
service function

1/1,000,000 14.27 ✔ getrusage 5.91 2.41

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED163

• Main Entry Names in Compiler Runtime Library

Main Entry Names in Compiler
Runtime Library

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED164

Main Entry Names in Compiler Runtime Library

Entry Name Functional Outline

__jwe_c Module called from the compiler (check routine, Fortran multi-phase processing, etc.)

__jwe_ca COARRAY

__jwe_d Intrinsic debugging, quick debugging

__jwe_e Error processing of the runtime library

__jwe_f Internal routine such as for operations and type conversion called from inside the runtime library

__jwe_hook HOOK function

__jwe_i Fortran IO processing

__jwe_o Parallel processing (mainly, OpenMP)

__jwe_p Parallel processing (parallel control, automatic parallelization)

__jwe_s Processing module of the Fortran service routine

__jwe_t Runtime information output function

__jwe_x Runtime library control (initialization, end, exception, area management, etc.)

__mpc__ C/C++ (trad mode) OpenMP

__f_ Fortran function (transformational function, array function, query function, etc.)

__g_ Floating-point math operation-related function

__plvla mfunc=1

__vm_ mfunc=2

__v_ mfunc=3

omp_ OpenMP routine

kmp_ LLVM OpenMP

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED165

• Causes of Variations in Elapsed Time of Operation Region

• Effects of Node OS Jitter

• Latency Due to Differences in L2 Cache Access Latency

• Performance Impact Due to Directory Path Name Change

Variations in Elapsed Time of
Operation Region

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED166

Causes of Variations in Elapsed Time of Operation Region

⚫A variation in the elapsed time may occur in some cases, even
for the same arithmetic processing. The potential causes are
as follows:

(1) Latency due to node OS jitter

(2) Use of other CMG memory
->The memory used may span across CMGs.

This is primarily due to the use of dynamic libraries.

(3) Difference in the accessed array address (physical address)

(4) Execution timing fluctuations due to an OoO operation
-> Bias of operation pipeline a or b, load and store pipeline control, etc.

(5) Differences in L2 cache access latency

(6) Performance impact due to a directory path name change

(1), (5), and (6) are explained on the subsequent pages.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED167

Effects of Node OS Jitter

⚫The Fugaku/FX1000 contain assistant cores in the CPUs.
The result is fewer OS jitter than in the FX700.

⚫The following graphs show the aggregate results of executing FWQ
using 48 cores (48 threads) in the node.

Existing assistant cores in
Fugaku/FX1000 suppress

frequency of OS jitter

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED168

⚫ Execution results⚫ Acquisition of L1D latency
After execution on all the cores in the CPU (12 threads
x 4 MPI execution), performance events were acquired
using the fapp command. The average latency of the
L1D cache miss processing of each core was calculated
from the following formula.

⚫ Latency formula

⚫ Validation code

Latency Due to Differences in L2 Cache Access
Latency

Average latency of L1D cache miss processing
= L1_MISS_WAIT / L1D_CACHE_REFILL

* Source: A64FX Microarchitecture Manual

39 !$omp parallel
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x2, x1, y
<<< Loop-information End >>>

40 1 DO j = 1, iter
41 1 !$omp do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.25, ITR: 144, MVE: 4,

POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x2, x1, y
<<< Loop-information End >>>

42 2 p 2v DO i = 1, n
43 2 p 2v y(i)=x1(i) + c0 * x2(i)
44 2 p 2v ENDDO
45 1 !$omp end do nowait
46 1 ENDDO
47 !$omp end parallel

Process 0 Process 1

Core 12: 60.3
Core 13: 61.4
Core 14: 61.4
Core 15: 60.2
Core 16: 61.8
Core 17: 59.6
Core 18: 61.9
Core 19: 60.7
Core 20: 63.1
Core 21: 62.8
Core 22: 63.3
Core 23: 66.3

Core 24: 67.2
Core 25: 50.2
Core 26: 68.6
Core 27: 67.8
Core 28: 50.3
Core 29: 68.5
Core 30: 53.8
Core 31: 68.8
Core 32: 54.9
Core 33: 69.7
Core 34: 59.3
Core 35: 71.0

Process 2 Process 3

Core 36: 60.3
Core 37: 61.5
Core 38: 61.5
Core 39: 60.2
Core 40: 61.8
Core 41: 59.6
Core 42: 61.9
Core 43: 60.7
Core 44: 63.1
Core 45: 62.8
Core 46: 63.3
Core 47: 66.3

Core 48: 60.3
Core 49: 61.4
Core 50: 61.4
Core 51: 60.2
Core 52: 61.8
Core 53: 59.6
Core 54: 61.8
Core 55: 60.7
Core 56: 63.1
Core 57: 62.7
Core 58: 63.3
Core 59: 66.3

About 7% slower
than slowest core
in other processes

Apparent difference in latency
between cores

Process 1 delayed in
evaluation environment

iter=12000

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED169

Performance Impact Due to Directory Path Name Change (1/3)

Local variable of function called from main function

argc=N+1

Local variable 2 of main function

Local variable 1 of main function

Address of argv[0] = arg0

Address of argv[1] = arg1

………………………….

………………………….

Address of argv[argc-1] = argN

Address of environ[0] = env0

Address of environ[1] = env1

……………………..……

Address of environ[M] = envM

…………………………..

arg0

arg1

……………………………

argN

env0

env1

……………………………

envM

High
address

Low
address Arrangement on stack at

application execution

⚫ Impact on performance
Changing the directory path name for a load
module location or adding an environment variable
at load module execution can have an impact on
performance during execution of the load module.

170

⚫ Cause of performance
irregularities

Changing a directory path name or adding an
environment variable at load module execution
may cause the location address of a local variable
defined within a function (located in the stack
region) to shift.

The stack is used from high addresses to low addresses.
The figure on the left shows the arrangement on the stack
at application execution. The order is environment
variables (env1 to envM), then arguments (arg1 to argN),
and then local variables.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED170

The set environment variables are different for each type of shell. The following explanation uses /bin/bash for an example.

The following three environment variables are special:

PWD Name of the current working directory

OLDPWD Name of the current working directory before a move by the cd command

_ Load module path name

The shifting of location addresses for the above three environment variables has the following six causes.

1. A full or relative path name has been specified for the execution of a load module, and the path name is set as is for the "_" environment
variable.

2. Only the load module file name has been specified for the execution of a load module, and the load module path name is complemented
by the PATH environment variable. However, the full path name is set for the "_" environment variable.

3. When the cd command moves to a directory, the OLDPWD environment variable is set to the directory name before the move. The
directory moved to by the cd command is set to the PWD environment variable.

4. For the above reasons, if the load module is specified with the full path name or if the full path name of the load module is
complemented by the PATH environment variable, the addresses of arguments shift slightly. As a result, the addresses of local variables
of functions called from the main function also shift.

5. Also, changing the length of the full path name will change the length of the full path name of the load module set in the "_"
environment variable. In turn, the length of the string stored as an environment variable increases, and the addresses of local variables
of functions called from the main function shift.

6. When the cd command moves from the current directory before load module execution, a special environment variable called "OLDPWD"
is set. In turn, the addresses of local variables of functions called from the main function shift.

⚫ Causes of shifting location addresses on stack

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Performance Impact Due to Directory Path Name Change (2/3)

171

(3) Load module placed in the load module storage directory of root (/root/bin). The full
path name is complemented by the PATH environment variable.

hellomodule4 1 2 3 4

hello, function call arg=function call argument address: 0x0000ffffffffea58

hello, function call local world: 0x0000ffffffffea80

hello, main argc=5: 0x0000ffffffffeadc

hello, main initialized function local world: 0x0000ffffffffeae0

hello, main not initialized local world: 0x0000ffffffffeb20

hello, hellomodule4: 0x0000ffffffffef50

hello, 1: 0x0000ffffffffef5d

hello, 2: 0x0000ffffffffef5f

hello, 3: 0x0000ffffffffef61

hello, 4: 0x0000ffffffffef63

......................................

hello, _=/root/bin/hellomodule4: 0x0000ffffffffffc8

⚫ Operation check results on actual device

(4) Load module placed in the os directory (/root/os) directly under the root home
directory (/root). The load module is executed with a relative path after a move to
/root/os.

cd os

./hellomodule4 1 2 3 4

hello, function call arg=function call argument address: 0x0000ffffffffea48

hello, function call local world: 0x0000ffffffffea70

hello, main argc=5: 0x0000ffffffffeacc

hello, main initialized function local world: 0x0000ffffffffead0

hello, main not initialized local world: 0x0000ffffffffeb10

hello, ./hellomodule4: 0x0000ffffffffef4e

hello, 1: 0x0000ffffffffef5d

hello, 2: 0x0000ffffffffef5f

hello, 3: 0x0000ffffffffef61

hello, 4: 0x0000ffffffffef63

,......................................

hello, _=./hellomodule4: 0x0000ffffffffffcb

hello, OLDPWD=/root: 0x0000ffffffffffdc

(1) Load module placed directly under root (/)

/hellomodule4 1 2 3 4

hello, function call arg=function call argument address: 0x0000ffffffffea68

hello, function call local world: 0x0000ffffffffea90

hello, main argc=5: 0x0000ffffffffeaec

hello, main initialized function local world: 0x0000ffffffffeaf0

hello, main not initialized local world: 0x0000ffffffffeb30

hello, /hellomodule4: 0x0000ffffffffef61

hello, 1: 0x0000ffffffffef6f

hello, 2: 0x0000ffffffffef71

hello, 3: 0x0000ffffffffef73

hello, 4: 0x0000ffffffffef75

.....................................

hello, _=/hellomodule4: 0x0000ffffffffffda

(2) Load module placed directly under the root home directory (/root)

/root/hellomodule4 1 2 3 4

hello, function call arg=function call argument address: 0x0000ffffffffea58

hello, function call local world: 0x0000ffffffffea80

hello, main argc=5: 0x0000ffffffffeadc

hello, main initialized function local world: 0x0000ffffffffeae0

hello, main not initialized local world: 0x0000ffffffffeb20

hello, /root/hellomodule4: 0x0000ffffffffef52

hello, 1: 0x0000ffffffffef65

hello, 2: 0x0000ffffffffef67

hello, 3: 0x0000ffffffffef69

hello, 4: 0x0000ffffffffef6b

......................................

hello, _=/root/hellomodule4: 0x0000ffffffffffd0

(1) Load module placed directly under root (/)

(2) Load module placed directly under the root home directory (/root) (16-byte shift relative to (1))

(3) Load module placed in the load module storage directory of root (/root/bin). The full path name is complemented by the PATH environment variable. (16-
byte shift relative to (1))

(4) Load module placed in the os directory (/root/os) directly under the root home directory (/root). The load module is executed with a relative path after a
move to /root/os. (32-byte shift relative to (1))

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Performance Impact Due to Directory Path Name Change (3/3)

172

Revision History

⚫ Revision History

Version Date Details

1.1 May 14, 2020 - First published

1.2 Sep 30, 2020
- Correcting typographical errors and

expressions by reviewing articles

1.3 Mar 31, 2021
- Correcting typographical errors and

expressions by reviewing articles

1.4 Aug. 2021

- Fixing differences by increasing the
number of software versions, and
correcting typographical errors and
expressions by reviewing articles

- Added “Behavior of Large Page
Shortage(Fugaku only)” page

- Added shared libraries information for
“LLVM OpenMP Library and Fujitsu
OpenMP Library (2/2)” page

1.5 Jul. 2022
- Correcting typographical errors and

expressions by reviewing articles

1.6 Mar. 2023
- Correcting typographical errors and

expressions by reviewing articles

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED173

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

