

# Programming Guide (Programming common part)

Mar. 2023

V1.6

FUJITSU LIMITED

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

# Introduction



- This document is intended for application developers and tuning engineers for the A64FX processor.
- Refer to the following in conjunction with this document.
  - Fortran User's Guide
  - C User's Guide
  - C++ User's Guide
  - Profiler User's Guide
  - Programming Guide(Processors)
  - Programming Guide(Tuning)
  - Programming Guide(Fortran)
  - Manuals provided by Technical Computing Suite Job Operation Software
- The following abbreviation is used in this document:
  - A64FX Logic Specifications
  - A64FX ® Microarchitecture Manual
  - ARM® Architecture Reference Manual (ARMv8, ARMv8.1, ARMv8.2, ARMv8.3)
  - ARM® Architecture Reference Manual Supplement The Scalable Vector Extension

#### Trademarks

- Linux<sup>®</sup> is a trademark or registered trademark of Linus Torvalds in the United States and other countries.
- Red Hat is a trademark or registered trademark of Red Hat Inc. in the United States and other countries.
- ARM is a trademark or registered trademark of ARM Ltd. in the United States and other countries.
- Proper names such as the product name mentioned are trademark or registered trademark of each company.
- Trademark symbols such as 
   ® and ™ may be omitted from system names and product names in this document.

## Programming common part - Contents (1)



- Program Development Environment System
- Language Specification
- MPI Acceleration
- Faster Math Libraries
- Development Support Tools
- Recommended Compiler Options
  - Fortran, C/C++ Trad Mode
    - Performance Focused
    - Precision Focused
- <u>C/C++ Clang Mode</u>
- C/C++ Trad Mode and Clang Mode
  - Assumed Usage Scenarios
  - Overview of clang Mode External Specifications
  - <u>Comparison of Microarchitecture (Including</u> <u>ISA) Support</u>
  - <u>Compiler Function (General, Loop</u> <u>Optimization) Comparison</u>
  - <u>Compiler Function (Listing Optimization</u> <u>Information) Comparison</u>

- <u>C/C++ Support for SVE ACLE</u>
- <u>Fixed-length and Variable-length for SVE</u> <u>SIMD Width</u>
- <u>Compatibility Between Objects Generated</u> by Fujitsu Compiler and Those by Other <u>Compilers</u>
  - <u>Compatibility of Objects</u>
  - Precautions on Linking
- <u>Compile Options and Optimization</u> <u>Specifiers Supported in Clang Mode</u>
  - <u>Compile Option System of Clang Mode</u>
  - Optimization Specifier System of Clang Mode
  - Options Supported in Clang Mode
  - Optimization Specifiers Supported in Clang Mode
- Two OpenMP Libraries
  - <u>LLVM OpenMP Library and Fujitsu OpenMP</u> <u>Library</u>
    - <u>LLVM OpenMP Library (-Nlibomp)</u>
    - Fujitsu OpenMP Library (-Nfjomplib)

## Programming common part - Contents (2)

# FUJITSU

- Migration From Existing System
  - New Options Added in A64FX
  - Options With Changed Specifications in <u>A64FX</u>
  - Options Deleted From A64FX
  - <u>A64FX Compatibility With K</u> <u>Computer/FX10/FX100</u>
  - MPI Extension Functions and Data Types
  - Endian
- Acceleration With Compiler
  - <u>Prefetch</u>
    - About Prefetch
    - Hardware Prefetch
    - Software Prefetch
    - Harmonization of Prefetch
    - Built-in Prefetch
  - SIMD Vectorization (SIMDization)
    - Basic Principles of SIMDization
    - Example of SIMDization of Consecutive Data
    - Confirmation of SIMDization
    - <u>SIMDizable Loops</u>

- Software Pipelining
  - Basic Principles of Software Pipelining
  - Confirmation of Software Pipelining
- Loop Optimization and Instruction Scheduling
  - Order of Optimization
  - Unrolling Behavior
  - Striping Behavior
  - Flow of Loop Optimization and Control
- Optimization for Loops
  - <u>About Loop Optimization</u>
  - Loop Interchange
  - Loop Fusion
  - Loop Unrolling
  - Loop Collapse
- <u>Automatic Parallelization</u>
  - Simple Loop Slice
  - Loop Slice by Reduction
  - Determining Whether Automatic
     Parallelization is Possible
  - Verification of Automatic Parallelization
  - <u>Pipeline Parallelism</u>

## Programming common part - Contents (3)

#### <u>Debug Functions for Fortran and C/C++</u> <u>Trad Mode</u>

- Built-in debug function
- Debug function for abnormal termination
- Hook function
- Large Page
  - <u>About Large Page</u>
  - Large Page Specifications
  - <u>Environment Variables for Large Page</u> <u>Settings</u>
  - Precautions (Side Effects) Related to Memory Usage
  - <u>Paging policy of Large Page</u>
  - Lock type of Large Page
  - <u>Behavior of Large Page Shortage(Fugaku</u> only)
- <u>Timers Supported by Fortran</u>
  - <u>Timer Specifications</u>
  - Timer Precision
- <u>Main Entry Names in Compiler Runtime</u> <u>Library</u>

- Variations in Elapsed Time of Operation Region
  - <u>Causes of Variations in Elapsed Time of</u> <u>Operation Region</u>
    - Effects of Node OS Jitter
    - Latency Due to Differences in L2 Cache <u>Access Latency</u>
    - <u>Performance Impact Due to Directory</u> <u>Path Name Change</u>



## Program Development Environment Overview

- Program Development Environment System
- Language Specification
- MPI Acceleration
- Faster Math Libraries
- <u>Development Support Tools</u>

## **Program Development Environment System**



- Fujitsu Development Studio configuration
  - Fujitsu Development Studio provides a cross compiler that runs on the PRIMERGY and a native compiler that runs on the A64FX. These two types of compiler can support various forms of use.
  - The C/C++ compiler can run in clang mode, which is compatible with Clang/LLVM. By using clang mode, users can easily run open source applications.



## Language Specification



- Compliance with the latest standards and industry standard specifications
  - Fujitsu Development Studio complies with the latest standards and industry standard specifications, enabling application development with the latest standards and also making it easy to run open source applications on the A64FX.

|          | Supported Standards                                                                                                                                                                                                                                                         |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Language | Supported Standards/Specifications                                                                                                                                                                                                                                          |
| Fortran  | Part of ISO/IEC 1539-1:2018 (Fortran 2018 standard)<br>ISO/IEC 1539-1:2010 (Fortran 2008 standard)<br>ISO/IEC 1539-1:2004, JIS X 3001-1:2009 (Fortran 2003 standard)<br>ISO/IEC 1539-1:1997, JIS X 3001-1:1998 (Fortran 95 standard)<br>Fortran 90 and Fortran 77 standards |
| С        | ISO/IEC 9899:2011 (C11 standard)<br>ISO/IEC 9899:1999 (C99 standard)<br>ISO/IEC 9899:1990 (C89 standard)<br>* Extension specifications of the GNU compiler are also supported.                                                                                              |
| C++      | Part of ISO/IEC 14882:2017 (C++17 standard)<br>ISO/IEC 14882:2014 (C++14 standard)<br>ISO/IEC 14882:2011 (C++11 standard)<br>ISO/IEC 14882:2003 (C++03 standard)<br>* Extension specifications of the GNU compiler are also supported.                                      |
| OpenMP   | Part of OpenMP API Version 5.0<br>OpenMP API Version 4.5                                                                                                                                                                                                                    |
| MPI      | Part of Message-Passing Interface Standard Version 3.1 and 4.0                                                                                                                                                                                                              |

## **MPI Acceleration**



#### • Faster MPI using the Tofu Interconnect D

 The significant enhancement of communication capabilities from conventional four-way simultaneous communication to six-way simultaneous communication has improved collective communication algorithms (including Allgather and Bcast), which require a wide communication bandwidth for each node.

| Interconnect        | Number of Network Interfaces | Target Machine |
|---------------------|------------------------------|----------------|
| Tofu                | 4 (1 node)                   | FX10           |
| Tofu2               | 4 (1 node)                   | FX100          |
| Tofu Interconnect D | 6 (1 node)                   | A64FX          |

- Faster MPI with support for network layers
  - The A64FX has four mounted CMGs (core memory groups) and employs the NUMA (non-uniform memory access) architecture to connect these CMGs through a ring bus.
  - In process parallelization across CMGs, links on the layered network topology are made using the Tofu Interconnect D and the ring bus within the A64FX.
  - The Alltoall algorithm implements an algorithm optimized to minimize communication path conflicts in the ring bus, delivering higher speeds.

## Faster Math Libraries (1/2)



- Faster math libraries using internal core speed-up functions
  - Internal core speed-up functions have been applied to the following fast math libraries provided by Fujitsu Development Studio: BLAS and LAPACK are wellknown in the linear algebra field; Fujitsu math library SSL II is used by a wide range of R&D users in Japan because its algorithms cover many fields; and the fast quadruple-precision basic math library delivers higher speeds by handling quadruple-precision values in the double-double format.
  - Applications can be faster simply by calling these math libraries.

|                                                    | Sequential Libraries (Thread Safe)                                                                                                                                                                                         |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLAS, LAPACK                                       | These linear algebra libraries developed in the United States and released by Netlib are de facto standards. BLAS has about 80 routines, and LAPACK has about 400 routines. Some BLAS routines independently support FP16. |
| SSL II                                             | Library containing about 300 Fortran routines covering a wide range of fields                                                                                                                                              |
| C-SSL II                                           | C interface for SSL II                                                                                                                                                                                                     |
| Fast quadruple-<br>precision basic<br>math library | This library represents and calculates quadruple-precision values in the double-<br>double format. Some thread parallelization routines are included.                                                                      |

## Faster Math Libraries (2/2)



- Faster math libraries using the thread parallelization function
  - Fujitsu Development Studio provides BLAS, LAPACK, and SSL II as fast math libraries having thread parallelization.
  - Applications can be faster with thread parallelization by calling these math libraries.

|                                          | Sequential Libraries (Thread Safe)                                                                                                                                                |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLAS, LAPACK                             | The interface is the same as for the sequential libraries. Also included is PLASMA, which is a task parallel version of LAPACK. They can also be used from Python (NumPy, SciPy). |
| SSL II thread parallelization function   | Thread parallel versions of about 80 important routines. The interface is different from that of the sequential library SSL II, so they can be used concurrently.                 |
| C-SSL II thread parallelization function | C interface for the SSL II thread parallelization function                                                                                                                        |

- Faster math libraries using the MPI parallelization function
  - Fujitsu Development Studio provides ScaLAPACK and SSL II/MPI as fast math libraries having MPI parallelization.
  - Acceleration can be faster with MPI parallelization by calling these math libraries.

| MPI Parallelization Libraries |                                                                                               |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| ScaLAPACK                     | MPI parallelization library of BLAS and LAPACK functions. The library has about 200 routines. |  |  |
| SSL II/MPI                    | MPI parallel version of 3D FFT functions                                                      |  |  |

## **Development Support Tools**



- Application development support tools
  - Fujitsu Development Studio provides an integrated development environment, profilers, and a parallel execution debugger as application development support tools.
  - Users of these tools can develop applications efficiently.

| Application Development Support Tools    |                                                                                                                                                                                                                                                |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Integrated<br>development<br>environment | Assistance in development tasks (editing and compiling source code, submitting jobs, checking the job status, retrieving/displaying performance information, etc.) - Eclipse - Parallel Tools Platform (PTP)                                   |  |  |
| Profilers                                | Assistance in application performance analysis<br>- Instant Performance Profiler<br>- Advanced Performance profiler<br>- CPU performance analysis report                                                                                       |  |  |
| Parallel<br>execution<br>debugger        | Assistance in investigating trouble (abnormal end, deadlock, etc.) that<br>occurs during large-scale parallel processing<br>- Abnormal end investigation function<br>- Deadlock investigation function<br>- Debug function using command files |  |  |



# **Recommended Compiler Options**

- Fortran, C/C++ Trad Mode
  - Performance Focused
  - Precision Focused
- <u>C/C++ Clang Mode</u>



## • Compile command(not MPI)

| Kind            | Language  | Compile command | Description                   |
|-----------------|-----------|-----------------|-------------------------------|
|                 | Fortran   | frtpx           | The command used on the login |
| Cross compiler  | С         | fccpx           |                               |
|                 | C++ FCCpx |                 | node.                         |
|                 | Fortran   | frt             | The command                   |
| Native compiler | С         | fcc             | used on the                   |
|                 | C++       | FCC             | compute node.                 |

## Compile command(MPI)

| Kind            | Language | Compile command | Description       |  |
|-----------------|----------|-----------------|-------------------|--|
|                 | Fortran  | mpifrtpx        | The command       |  |
| Cross compiler  | С        | mpifccpx        | used on the login |  |
|                 | C++      | mpiFCCpx        | node.             |  |
|                 | Fortran  | mpifrt          | The command       |  |
| Native compiler | С        | mpifcc          | used on the       |  |
|                 | C++      | mpiFCC          | compute node.     |  |

Recommended Options (Performance Focused: Fortran, C/C++ Trad Mode)

-Kfast,openmp[,parallel]

#### <u>Concept</u>

Specify this option to draw out the full performance of the A64FX. For example, with the option, you can make full use of cores through thread parallelization or SVE through SIMDization, improve instruction-level parallelism by software pipelining, change the operation order by optimization, and use the reciprocal approximation operation.

#### Compiler Options Induced From -Kfast

Fortran

-O3 -Keval,fp\_contract,fp\_relaxed,fz,ilfunc,mfunc,omitfp,simd\_packed\_promotion

#### • C/C++

-O3 -Keval,fast\_matmul,fp\_contract,fp\_relaxed,fz,ilfunc,mfunc,omitfp,simd\_packed\_promotion

14

## **Compiler Options Induced From -Kfast**



| Induced Option          | Language | Meaning                                                                                                                                                                                                 |
|-------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -03                     | Common   | Optimization level 3.<br>SIMD and software pipelining operations run at -O2.<br>An additional operation is optimization, such as for unrolling of<br>nested loops.                                      |
| -Keval                  | Common   | Executes optimization to change how operations are evaluated in a program.                                                                                                                              |
| -Kfast_matmul           | C/C++    | Converts a matrix multiplication loop to a high-speed library call.                                                                                                                                     |
| -Kfp_contract           | Common   | Executes optimization for conversion to multiply-add operation instructions.                                                                                                                            |
| -Kfp_relaxed            | Common   | Executes conversion of single- or double-precision floating-point division or the SQRT function to an instruction sequence using a reciprocal approximation operation instruction.                      |
| -Kfz                    | Common   | Enables flush-to-zero mode.                                                                                                                                                                             |
| -Kilfunc                | Common   | Inline-expands the intrinsic functions and operations in a program.                                                                                                                                     |
| -Kmfunc                 | Common   | Converts intrinsic functions and operations to multi-operation functions.<br>This is intended for functions that cannot be used with -Kilfunc.                                                          |
| -Komitfp                | Common   | Optimizes procedure calls. Consequently, the frame pointer register cannot be guaranteed.                                                                                                               |
| -Ksimd_packed_promotion | Common   | Promotes SIMDization with 16-element vectors, assuming that the index computation of array elements made up of single-precision real numbers and also 4-byte integers will not exceed the 4-byte range. |

Recommended Options (Precision Focused: Fortran, C/C++ Trad Mode)

-Kfast,openmp[,parallel],fp\_precision

#### <u>Concept</u>

Use this option when you want to obtain the same precision as -O0 while optimizing performance as much as possible. Specify the new option -Kfp\_precision, which suppresses all optimizations that affect precision, as an option appended to the recommended option focused on performance. This suppresses multiple optimizations that significantly affect performance.

#### Compiler Options Induced From -Kfp precision

Fortran

-Knoeval,nofp\_contract,nofp\_relaxed,nofz,noilfunc,nomfunc,parallel\_fp\_precision

• C/C++

-Knoeval,nofast\_matmul,nofp\_contract,nofp\_relaxed,nofz,noilfunc,nomfunc,parallel\_fp\_precision

16

## **Compiler Options Induced From -Kfp\_precision**



| Induced Option          | Language | Meaning                                                                                                                                                                                  |
|-------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Knoeval                | Common   | Suppresses optimization that changes how operations are evaluated in a program.                                                                                                          |
| -Knofast_matmul         | C/C++    | Suppresses optimization that converts the loop of matrix multiplication into a high speed library call(matmul).                                                                          |
| -Knofp_contract         | Common   | Suppresses the optimization used for conversion to multiply-add operation instructions.                                                                                                  |
| -Knofp_relaxed          | Common   | Suppresses the conversion of single- or double-precision floating-point division or the SQRT function to an instruction sequence using a reciprocal approximation operation instruction. |
| -Knofz                  | Common   | Disables flush-to-zero mode.                                                                                                                                                             |
| -Knoilfunc              | Common   | Suppresses the inline expansion of the intrinsic functions and operations in a program.                                                                                                  |
| -Knomfunc               | Common   | Suppresses the conversion of intrinsic functions and operations to multi-<br>operation functions.                                                                                        |
| -Kparallel_fp_precision | Common   | Suppresses optimization that may cause a computation error due to a change in the number of parallel threads.                                                                            |



#### Recommended Options (for C/C++ Clang Mode)

-Nclang -Ofast

#### <u>Concept</u>

Specify this suitable compiler option for OSS compilation.

#### Compiler Options Induced From -Ofast

• C/C++

-O3 -ffj-fast-matmul -ffast-math -ffp-contract=fast -ffj-fp-relaxed -ffj-ilfunc -fbuiltin -fomitframe-pointer -finline-functions

#### Features of clang mode

- The faster execution performance with modern C code and C++ code is equal to or better than in trad mode.
- The higher usability (GCC compatibility) of OSS application compilation is equal to or better than in trad mode.

18

• ACLE and FP16 support clang mode only.

## **Compiler Options Induced From -Ofast**



| Induced Option       | Language | Meaning                                                                                                              |
|----------------------|----------|----------------------------------------------------------------------------------------------------------------------|
|                      |          | Optimization level 3.                                                                                                |
| -03                  | Common   | The optimization such as loop optimization and inline expansion is performed, as well as more advanced optimization. |
| -ffj-fast-matmul     | C/C++    | Same as -Kfast_matmul.                                                                                               |
| -ffast-math          | Common   | Same as -Keval.                                                                                                      |
| -ffp-contract=fast   | Common   | Same as -Kfp_contract.                                                                                               |
| -ffj-fp-relaxed      | Common   | Same as -Kfp_relaxed.                                                                                                |
| -ffj-ilfunc          | Common   | Same as -Kilfunc.                                                                                                    |
| -fbuiltin            | Common   | Same as -Klib.<br>Promotes optimization by recognizing the operation of standard<br>library functions                |
| -fomit-frame-pointer | Common   | Same as -Komitfp.                                                                                                    |
|                      | Common   | Same as -x                                                                                                           |
| -finline-functions   |          | Specifies to perform Inline expansion of function calls defined in source code.                                      |



# C/C++ Trad Mode and Clang Mode

- <u>Assumed Usage Scenarios</u>
- Overview of clang Mode External Specifications
- <u>Comparison of Microarchitecture (Including ISA) Support</u>
- Compiler Function (General, Loop Optimization) Comparison
- <u>Compiler Function (Listing Optimization Information) Comparison</u>

## **Assumed Usage Scenarios**



#### Assumed usage scenarios (use cases)

| Usage Scenario                                                        | Compiler Suited to Scenario? |                                       |  |
|-----------------------------------------------------------------------|------------------------------|---------------------------------------|--|
|                                                                       | Trad Mode                    | Clang Mode                            |  |
| Want to use the resources created on the K computer/FX100 as they are | Yes                          | No                                    |  |
| Want tuning for HPC                                                   | Yes                          | Yes<br>(Options must<br>be specified) |  |
| Want to use OSS                                                       | No                           | Yes                                   |  |
| Want to use the new language standards C++17                          | Yes<br>(Partial<br>support)  | Yes                                   |  |



## **Overview of Clang Mode External Specifications**



- Basic policy as Clang Mode
  - Clang/LLVM view is the base view.
- Mode switching option
  - Use the -Nclang option to switch the compiler.
     Example: FCCpx -Nclang test.cpp
- Functions for compatibility with trad mode
  - Compile information output function (listing function)
    - The output format (text format) of the current Fujitsu compiler is simple with high readability.
  - Tool output information (loop-related information, etc.)
    - > Because optimization information for loops, etc. is effective for tuning
  - Major optimization options (-K options) and specification-related option (-N options)
    - Fujitsu's Clang Mode considers portability when compiling K computer/FX100 resources.

Optimization options:

-Kfast, -Kilfunc, -Keval, -Kfp\_contract, -Kfp\_relaxed, etc.

Specification-related options:

```
-Nhook_time, -Nsrc, -Nlst, -Nline, etc.
```

#### Comparison of Microarchitecture (Including ISA) Support



| Item                                     | Trad Mode | Clang Mode | Remarks                                                                                                                       |
|------------------------------------------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------|
| Supports SVE                             | Yes       | Yes        | SIMDization capabilities vary.                                                                                                |
| Supports fp16                            | No        | Yes        |                                                                                                                               |
| Specifies variable length for SIMD width | Yes       | Yes        | Clang Mode currently supports variable lengths only.                                                                          |
| Specifies fixed length for<br>SIMD width | Yes       | Yes        | The default width for Trad Mode is 512<br>bits. For Clang Mode, see [clang Mode]<br>Specifying Fixed-length SVE SIMD<br>Width |
| Supports large pages                     | Yes       | Yes        |                                                                                                                               |
| Supports instruction scheduling latency  | Yes       | Yes        |                                                                                                                               |
| Uses zfill                               | Yes       | Yes        |                                                                                                                               |
| Uses sector cache                        | Yes       | No         |                                                                                                                               |
| Uses intra-node barrier                  | Yes       | Yes        |                                                                                                                               |
| Supports prefetch                        | Yes       | Partly     | Clang does not support prefetch in some cases.                                                                                |
| Utilizes structure instructions          | Yes       | Yes        |                                                                                                                               |

### Compiler Function (General, Loop Optimization) Comparison



|                   | Item                             | Trad Mode        | Clang Mode       | Remarks                                                            |
|-------------------|----------------------------------|------------------|------------------|--------------------------------------------------------------------|
| General           | OpenMP                           | Supported        | Supported        | Clang Mode supports<br>OpenMP 4.5 (excluding<br>omp declare simd). |
|                   | Automatic parallelization        | Supported        | Not supported    |                                                                    |
|                   | ACLE                             | Not supported    | Supported        |                                                                    |
|                   | lto                              | Not supported    | Supported        |                                                                    |
| Loop optimization | Software pipelining              | Supported        | Partly supported | Specify the option for Clang Mode.                                 |
|                   | Loop interchange of nested loops | Supported        | Not supported    |                                                                    |
|                   | Loop collapse of nested loops    | Supported        | Not supported    |                                                                    |
|                   | Loop unrolling                   | Supported        | Supported        |                                                                    |
|                   | Full unrolling                   | Supported        | Supported        |                                                                    |
|                   | Loop fission                     | Partly supported | Partly supported | Specify the option.                                                |
|                   | Loop fusion                      | Supported        | Not supported    |                                                                    |
|                   | Unswitching                      | Supported        | Supported        |                                                                    |
|                   | Multi-versioning                 | Partly supported | Partly supported | Both support only their individual functions.                      |

#### Compiler Function (Listing Optimization Information) Comparison



|                       | Item                             | Trad Mode | Clang Mode       | Remarks                                                                 |
|-----------------------|----------------------------------|-----------|------------------|-------------------------------------------------------------------------|
|                       | SIMD                             | Supported | Supported        |                                                                         |
|                       | Unrolling (Number of expansions) | Supported | Supported        |                                                                         |
|                       | Full unrolling                   | Supported | Supported        |                                                                         |
|                       | Software pipelining              | Supported | Supported        |                                                                         |
|                       | Striping/Interleave              | Supported | Supported        | Trad Mode: STRIPING<br>Clang Mode: INTERLEAVE                           |
|                       | Unswitching                      | Supported | Supported        |                                                                         |
| 5                     | Loop versioning                  | Supported | Not supported    |                                                                         |
| 5                     | Clone                            | Supported | Supported        |                                                                         |
| ולמ                   | Prefetch (hardware)              | Supported | Not supported    |                                                                         |
| 5                     | Prefetch (software)              | Supported | Supported        |                                                                         |
| 5                     | Spills                           | Supported | Supported        |                                                                         |
| יייש<br>דיי           | Fused                            | Supported | Not supported    |                                                                         |
|                       | Collapsed                        | Supported | Not supported    |                                                                         |
|                       | Interchanged                     | Supported | Not supported    |                                                                         |
|                       | Fission                          | Supported | Supported        |                                                                         |
|                       | Multi-operation function         | Supported | Not supported    |                                                                         |
|                       | Pattern matching (matmul)        | Supported | Supported        |                                                                         |
|                       | Parallelization information      | Supported | Not supported    |                                                                         |
| Optimization messages |                                  | Supported | Partly supported | clang mode outputs<br>messages for SIMD,<br>unrolling, and unswitching. |



# C/C++ Support for SVE ACLE

• C/C++ Support for SVE ACLE

## C/C++ Support for SVE ACLE

- FUĴITSU
- The table below shows C/C++ compiler support for SVE ACLE in relation to modes (Trad/Clang).
  - $\checkmark$  : Supported, P: Partly supported, X : Not supported

|                     |                     | SVE          | FP16         | SVE ACLE<br>(including FP16) |
|---------------------|---------------------|--------------|--------------|------------------------------|
| Fujitsu<br>compiler | Trad Mode           | $\checkmark$ | x            | X                            |
|                     | Clang Mode          | $\checkmark$ | $\checkmark$ | ✓ *1                         |
| Other<br>compilers  | Arm compiler (19.2) | $\checkmark$ | $\checkmark$ | ✓ *1                         |
|                     | gcc 9.1.0           | $\checkmark$ | *2 <b>√</b>  | x                            |

- \*1 Support Version 00bet1 <u>https://developer.arm.com/documentation/100987/latest/</u> (Check the difference from "1.1. 2 change history")
- \*2 \_Float16 for C++ is not supported.



# Fixed-length and Variable-length for SVE SIMD Width

- Fixed-length and Variable-length for SVE SIMD Width
- [Clang Mode] Specifying Fixed-length SVE SIMD Width



## • SVE SIMD width (vector register size)

Implemented SIMD widths of SVE depend on CPU (A64FX: max. 512 bits). The Fujitsu compiler supports options for both fixed- and variable-length SVE SIMD width.

 Variable-length SIMD width (Trad Mode: -Ksimd\_reg\_size=agnostic, Clang Mode: -msve-vector-bits=scalable)

The SVE SIMD width is not considered to be a specific value at compile time, and the executable program decides the SIMD width at execution time. The executable program can be run regardless of SIMD widths implemented in CPUs. This is the default of Clang Mode of C/C++.

 Fixed-length SIMD width (Trad Mode: -Ksimd\_reg\_size={128|256|512}, Clang Mode: -msve-vector-bits=512)

The SVE vector register is considered to be a specific value at compile time. The following optimizations are expected to be promoted. This is the default of Fortran and Trad Mode of C/C++. In Clang Mode of C/C++, the option for fixed-length SVE SIMD width is induced by -ffj-swp and -ffj-zfill.

- ✓ Software pipelining
- ✓ zfill
- ✓ Loop unrolling

- ✓ Loop interleaving
- ✓ Inline expansion of math functions (etc.)

[Clang Mode] Specifying Fixed-length SVE SIMD Width (1/2) FUJr

 Examples of programs which expect better performance by specifying fixed-length SIMD width

Whether better performance can be achieved using fixed-length SIMD width depends on operations in kernel loops. For example, each optimization will be promoted in the following kernel loops.



• Notes on specifying fixed-length SIMD width

The following points should be considered when specifying fixed-length SIMD width with Clang Mode.

- When the program is executed with a SIMD width which is different from one specified at compile time, the result of executions is not guaranteed
- The -fslp-vectorize option is disabled
- SIMD built-in functions cannot be used
- When the -flto option is enabled, fixed-length SIMD width gets disabled
- For following cases, specifying variable-length SIMD width will generate better-performance code
- ✓ If there are loads/stores of neighboring members of a structure or a complex number in a kernel loop, the "load/store multiple structures" instruction will be exploited for better performance
- ✓ If the number of loop iterations is low, the remainder loop (iterations which run over the SIMD width) is also SIMDized



# **Compatibility Between Objects Generated by Fujitsu Compiler and Those by Other Compilers**

- <u>Compatibility of Objects</u>
- Precautions on Linking

## **Compatibility of Objects**

#### Whether objects can be linked

- The table below shows whether or not objects generated by the Fujitsu compiler can be Inked to objects generated by other compilers.
  If incompatible objects are linked, an error occurs at the link time.

 $\checkmark$ : Can be linked, x : Cannot be linked

Fujitsu Compiler (The Fujitsu compiler is used for linking.) C++ Compiler \* It is not necessary to Language Fortran Trad Mode Clang Mode distinguish between Trad and Clang modes.  $\checkmark$  $\checkmark$ Fortran Х Х  $\sqrt{1}^{*1}$ **√**\*1 ARM С  $\checkmark$  $\checkmark$ C++ $\checkmark$  $\checkmark$ Х Х Fortran  $\checkmark$  $\checkmark$ Х Х LLVM **J**\*1 **J**\*1 С  $\checkmark$ J C++  $\checkmark$ Х  $\checkmark$ Х Fortran 1  $\checkmark$ Х Х **J**\*1 **√**\*1 GNU С  $\checkmark$  $\checkmark$ C++  $\checkmark$  $\checkmark$ Х Х

\*1 Even if objects are generated using the Fujitsu compiler, when linking an object file generated by C++ Clang Mode and an object file generated by C++ Trad Mode, refer to notes in C++ User's Guide 9.6.1.

#### Note

When using the Profiler or the Debugger for Parallel Applications, use the compile commands of the Fujitsu compiler to compile and link your programs. You cannot use the Profiler or the Debugger for Parallel Applications when using the compile commands of other compilers, such as the GNU compiler.



## Precautions on Linking (1/3)



• Precautions on linking with the Arm compiler

|     |          | Fujitsu Compiler<br>* The Fujitsu compiler is used for linking.                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Language | Fortran                                                                                                                                                                | C<br>* It is not necessary to<br>distinguish between trad<br>and clang modes.                                                                                          | C++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Fortran  | -                                                                                                                                                                      | Linking not allowed for a program written for another compiler using its own libraries                                                                                 | In both trad and clang modes, linking not<br>allowed for a program written for another<br>compiler using its own libraries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ARM | С        | With thread parallelization,<br>the -Nlibomp option has to<br>be specified for the Fujitsu<br>compiler. (Linking not<br>allowed when the -Nfjomplib<br>option is used) | With thread parallelization, the<br>-Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not allowed<br>when the -Nfjomplib option is<br>used) | In both trad and clang modes, with thread<br>parallelization, the -Nlibomp option has to be<br>specified for the Fujitsu compiler. (Linking not<br>allowed when the -Nfjomplib option is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | C++      | -                                                                                                                                                                      | With thread parallelization, the<br>-Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not allowed<br>when the -Nfjomplib option is<br>used) | <ul> <li>In clang mode only:</li> <li>With thread parallelization, the -Nlibomp option has to be specified for the Fujitsu compiler. (Linking not allowed when the - Nfjomplib option is used)</li> <li>STL (C++ standard library) has to be the same one used by the compiler from another manufacturer.</li> <li>If "-stdlib=libc++" is specified for compiling by another manufacturer's compiler, "- stdlib=libc++" has to be specified for the Fujitsu compiler too.</li> <li>If "-stdlib=libstdc++" is specified for compiling by another manufacturer's compiler, "- stdlib=libstdc++" has to be specified for the Fujitsu compiler too.</li> </ul> |

## **Precautions on Linking (2/3)**



#### • Precautions on linking with the LLVM compiler

|      |          | Fujitsu Compiler<br>* The Fujitsu compiler is used for linking.                                                                                                        |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Language | Fortran                                                                                                                                                                | C<br>* It is not necessary to<br>distinguish between trad<br>and clang modes.                                                                                          | C++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LLVM | Fortran  | -                                                                                                                                                                      | Linking not allowed for a program written for another compiler using its own libraries                                                                                 | In both trad and clang modes, linking not<br>allowed for a program written for another<br>compiler using its own libraries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | С        | With thread parallelization,<br>the -Nlibomp option has to<br>be specified for the Fujitsu<br>compiler. (Linking not<br>allowed when the -Nfjomplib<br>option is used) | With thread parallelization, the<br>-Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not allowed<br>when the -Nfjomplib option is<br>used) | In both trad and clang modes, with thread parallelization, the -Nlibomp option has to be specified for the Fujitsu compiler. (Linking not allowed when the -Nfjomplib option is used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | C++      | -                                                                                                                                                                      | With thread parallelization, the<br>-Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not allowed<br>when the -Nfjomplib option is<br>used) | In clang mode only:<br>- With thread parallelization, the -Nlibomp<br>option has to be specified for the Fujitsu<br>compiler. (Linking not allowed when the -<br>Nfjomplib option is used)<br>- STL (C++ standard library) has to be the<br>same one used by the compiler from another<br>manufacturer.<br>- If "-stdlib=libc++" is specified for compiling<br>by another manufacturer's compiler, "-<br>stdlib=libc++" has to be specified for the<br>Fujitsu compiler too.<br>- If "-stdlib=libstdc++" is specified for<br>compiling by another manufacturer's<br>compiler, "-stdlib=libstdc++" has to be<br>specified for the Fujitsu compiler too. |
## **Precautions on Linking (3/3)**



#### • Precautions on linking with the GNU compiler

|     |          | Fujitsu Compiler<br>* The Fujitsu compiler is used for linking.                                                                                                               |                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Language | Fortran                                                                                                                                                                       | C<br>* It is not necessary to<br>distinguish between trad<br>and clang modes.                                                                                               | C++                                                                                                                                                                                                                                                                     |
| GNU | Fortran  | -                                                                                                                                                                             | Linking not allowed for a<br>program written for<br>another compiler using<br>its own libraries                                                                             | In both trad and clang modes,<br>linking not allowed for a program<br>written for another compiler using its<br>own libraries                                                                                                                                           |
|     | С        | With thread<br>parallelization, the -<br>Nlibomp option has to<br>be specified for the<br>Fujitsu compiler.<br>(Linking not allowed<br>when the -Nfjomplib<br>option is used) | With thread<br>parallelization, the -<br>Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not<br>allowed when the -<br>Nfjomplib option is used) | In both trad and clang modes, with<br>thread parallelization, the -Nlibomp<br>option has to be specified for the<br>Fujitsu compiler. (Linking not allowed<br>when the -Nfjomplib option is used)                                                                       |
|     | C++      | -                                                                                                                                                                             | With thread<br>parallelization, the -<br>Nlibomp option has to be<br>specified for the Fujitsu<br>compiler. (Linking not<br>allowed when the -<br>Nfjomplib option is used) | In clang mode only:<br>- With thread parallelization, the -<br>Nlibomp option has to be specified<br>for the Fujitsu compiler. (Linking not<br>allowed when the -Nfjomplib option<br>is used)<br>- "-stdlib=libstdc++" has to be<br>specified for the Fujitsu compiler. |



## **Compile Options and Optimization Specifiers Supported in Clang Mode**

- <u>Compile Option System of Clang Mode</u>
- Optimization Specifier System of Clang Mode
- Options Supported in Clang Mode
- Optimization Specifiers Supported in Clang Mode

## **Compile Option System of Clang Mode**



- Support policy for compile options
  - Support useful options in the -K and -N series for the Fujitsu compiler.
    - Considering the characteristics (fewer loop cycles, etc.) of modern C code and OSS applications, support those options while prioritizing options for optimization of individual instructions and optimization for mathematical functions.
  - Support options in the Clang/LLVM format while prioritizing GCC-compatible options and focusing on compiling and executing OSS applications.
- System supporting compile options
  - -K and -N series of options for the Fujitsu compiler
    - If Clang/LLVM has equivalent options
      - ✓ The options in the -K and -N series are converted to the equivalent options (options in the -f series) for Clang/LLVM.
    - If Clang/LLVM does not have equivalent options
      - New functions and new options (-ffj series of options) are added to convert the options in the -K and -N series to options in the -ffj series.
      - ✓ Future extension of new functions and new options (-ffj series of options) is planned.
  - Options in the Clang/LLVM format
    - The manual for clang mode describes the range of support.
      - $\checkmark$  The manual does not describe unsupported options, which however can still be used.

## **Optimization Specifier System of Clang Mode**



- Support policy for optimization specifiers
  - Support useful optimization specifiers for the Fujitsu compiler in addition to Clang/LLVM optimization specifiers.
- System supporting optimization specifiers
  - Clang/LLVM optimization specifiers
    - The manual for Clang Mode describes the range of support.
      - The manual does not describe unsupported specifiers, which however can still be used.
  - Fujitsu's own optimization specifiers
    - Fujitsu's own optimization specifiers in the *#*pragma fj format are supported.
      - The support for the #pragma fj format even in trad mode ensures compatibility between Clang Mode and Trad Mode.
      - Extension of the range of support is planned, depending on improvements in compatibility with trad mode and on functional extensions.

## **Options Supported in Clang Mode (1/7)**



### • Optimization-related options (same as Clang/LLVM)

| <b>Option in Clang Mode</b>                      | Outline                                                                                                                                                           | Option in Trad Mode                       |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| -Ofast                                           | To create an object program for fast execution on the target machine                                                                                              | -Kfast                                    |
| -f{builtin no-builtin}                           | Whether or not to recognize the actions of standard library functions to promote optimization                                                                     | -K{lib nolib}                             |
| -f{lto no-lto}                                   | Whether or not to execute optimization at the link time                                                                                                           | -K{lto nolto}                             |
| -f{vectorize no-vectorize}                       | Whether or not to generate an object by using the SIMD extension instruction in an intra-loop operation                                                           | -K{simd nosimd}                           |
| -f{strict-aliasing <br>no-strict-aliasing}       | Whether or not to execute optimization considering<br>overlapping memory areas in accordance with the strict<br>aliasing rule stipulated in the language standard | -K{strict_aliasing <br>nostrict_aliasing} |
| -f{unroll-loops <br>no-unroll-loops}             | Whether or not to execute optimization for loop unrolling                                                                                                         | -K{unroll nounroll}                       |
| -f{exceptions <br>no-exceptions}                 | Whether or not to define the predefined macroEXCEPTIONS                                                                                                           | -N{exceptions <br>noexceptions}           |
| -f{omit-frame-pointer <br>no-omit-frame-pointer} | Whether or not to execute optimization where the frame pointer register is not guaranteed for function calls                                                      | -K{omitfp noomitfp}                       |
| -f{inline-functions <br>no-inline-functions}     | Whether or not inline expansion includes the functions defined in the source program                                                                              | {-x- -x0}                                 |
| -f{fast-math no-fast-math}                       | Whether or not to execute optimization to change how operations are evaluated                                                                                     | -K{eval noeval}                           |
| -ffp-contract={fast off}                         | Whether or not to execute optimization using floating-point multiply-add/subtract operation instructions                                                          | -K{fp_contract <br>nofp_contract}         |

## **Options Supported in Clang Mode (/7)**



#### Optimization-related options (same as Clang/LLVM)

| Option in Clang Mode                     | Outline                                                                                                                                                                 | Option in Trad Mode |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -msve-vector-bits={512 scalable}         | Specifies the size of the SVE vector register. (Units are bits.)                                                                                                        | (None)              |
| -f{finite-math-only no-finite-math-only} | To promote the optimization<br>of floating point arithmetic<br>based on the assumption that<br>the argument or operation<br>result is only a finite<br>numerical value. | (None)              |
| -f{reroll-loops no-reroll-loops}         | To apply loop rerolling.                                                                                                                                                | (None)              |
| -f{signed-char unsigned-char}            | To treat char type variable as singed char type.                                                                                                                        | (None)              |
| -f{slp-vectorize no-slp-vectorize}       | To apply SLP(Superword Level<br>Parallelism) using SIMD<br>instructions.                                                                                                | (None)              |

## **Options Supported in Clang Mode (3/7)**



### • Optimization-related options (Fujitsu-specific, except the prefetch group)

| Option in Clang Mode                              | Outline                                                                                                                                                                                                                                                                                                          | Option in Trad Mode                        |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| -f{fj-eval-concurrent <br>fj-no-eval-concurrent}  | Whether or not to prioritize instruction parallelism in tree-height-reduction optimization                                                                                                                                                                                                                       | -K{eval_concurrent <br>eval_noconcurrent}  |
| -f{fj-fast-matmul <br>fj-no-fast-matmul}          | Whether or not to convert a matrix multiplication loop to a high-speed library call                                                                                                                                                                                                                              | -K{fast_matmul <br>nofast_matmul}          |
| -f{fj-fp-relaxed <br>fj-no-fp-relaxed}            | Whether or not to execute reciprocal<br>approximation operation instructions<br>and reciprocal approximation operations<br>using floating-point multiply-<br>add/subtract instructions, for single-<br>precision floating-point division, double-<br>precision floating-point division, and the<br>sqrt function | -K{fp_relaxed nofp_relaxed}                |
| -f{fj-ilfunc[={loop procedure}] <br>fj-no-ilfunc} | Whether or not to inline-expand a math function                                                                                                                                                                                                                                                                  | -K{ilfunc[={loop procedure}] <br>noilfunc} |
| -f{fj-ocl fj-no-ocl}                              | Whether or not to enable optimization<br>control lines specific to the Fujitsu<br>compiler                                                                                                                                                                                                                       | -K{ocl noocl}                              |
| -f{fj-preex fj-no-preex}                          | Whether or not to optimize preceeding evaluation of invariants                                                                                                                                                                                                                                                   | -K{preex nopreex}                          |

## **Options Supported in Clang Mode (4/7)**



### Optimization-related options (Fujitsu-specific, except the prefetch group)

| Option in Clang Mode                                             | Outline                                                                                                                                        | Option in Trad Mode                   |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| -f{fj-fp-precision <br>fj-no-fp-precision}                       | To induce the combination of<br>optimization options that do not cause<br>calculation errors in floating-point<br>operations.                  | -K{fp_precision <br>nofp_precision}   |
| -f{fj-hpctag fj-no-hpctag}                                       | To use the HPC tag address override feature of the A64FX processor.                                                                            | -K{hpctag nohpctag}                   |
| -f{fj-interleave-loop-insns[=N] <br>fj-no-interleave-loop-insns} | To apply loop interleaving to SIMD<br>applied loops using SVE. (N is the<br>interleaving count)                                                | (None)                                |
| -f{fj-loop-fission <br>fj-no-loop-fission}                       | To perform the automatic loop fission<br>optimization for the software pipelining,<br>SIMDization, and<br>the resolution of register shortage. | -K{loop_fission <br>loop_nofission}   |
| -f{fj-optlib-string <br>fj-no-optlib-string}                     | To link the optimized version of the library in the string manipulation function.                                                              | -K{optlib_string <br>nooptlib_string} |
| -f{fj-swp fj-no-swp}                                             | To perform software pipelining.                                                                                                                | -K{swp noswp}                         |
| -f{fj-zfill[=N]  fj-no-zfill}                                    | To perform zfill optimization.                                                                                                                 | -K{zfill[=N] nozfill}                 |

## **Options Supported in Clang Mode (5/7)**



### Optimization-related options (Fujitsu-specific, prefetch group)

| Option in Clang Mode                                                      | Outline                                                                                                                                                | Option in Trad Mode                                                 |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| -ffj-prefetch-cache-level=<br>{1 2 all}                                   | Which cache level to prefetch data to                                                                                                                  | -Kprefetch_cache_level=<br>{1 2 all}                                |
| -f{fj-prefetch-conditional <br>fj-no-prefetch-conditional}                | Whether or not to generate prefetch instructions for the array data used in the blocks included in an if statement or switch statement                 | -K{prefetch_conditional <br>prefetch_noconditional}                 |
| -ffj-prefetch-iteration= <b>N</b>                                         | To target the data extracted after $\mathbf{N}$ cycles of a loop, when generating a prefetch instruction (for the primary cache)                       | -Kprefetch_iteration= <b>N</b>                                      |
| -ffj-prefetch-iteration-L2=N                                              | To target the data extracted after $\mathbf{N}$ cycles of a loop, when generating a prefetch instruction (for the secondary cache)                     | -Kprefetch_iteration_L2= <b>N</b>                                   |
| -ffj-prefetch-line= <b>N</b>                                              | To target the corresponding data that is prefetched ${\bf N}$ cache lines ahead, when generating a prefetch instruction (for the primary cache)        | -Kprefetch_line= <b>N</b>                                           |
| -ffj-prefetch-line-L2= <b>N</b>                                           | To target the corresponding data that is prefetched ${\bf N}$ cache lines ahead, when generating a prefetch instruction (for the secondary cache)      | -Kprefetch_line_L2= <b>N</b>                                        |
| -f{fj-prefetch-sequential<br>[={auto soft}] <br>fj-no-prefetchsequential} | Whether or not to generate prefetch instructions for the array data used in loops and accessed sequentially                                            | -K{prefetch_sequential<br>[={auto soft}] <br>prefetch_nosequential} |
| -f{fj-prefetch-stride <br>fj-no-prefetch-stride}                          | Whether or not to generate prefetch instructions for the array data accessed with an even longer stride than the line size of the cache used in a loop | -K{prefetch_stride <br>prefetch_nostride}                           |
| -f{fj-prefetch-strong <br>fj-no-prefetch-strong}                          | Whether or not to generate a strong prefetch instruction when generating a prefetch instruction (for the primary cache)                                | -K{prefetch_strong <br>prefetch_nostrong}                           |
| -f{fj-prefetch-strong-L2 <br>fj-no-prefetch-strong-L2}                    | Whether or not to generate a strong prefetch instruction when generating a prefetch instruction (for the secondary cache)                              | -K{prefetch_strong_L2 <br>prefetch_nostrong_L2}                     |
| -ffj-no-prefetch                                                          | To not generate prefetch instructions                                                                                                                  | -Knoprefetch                                                        |

## **Options Supported in Clang Mode (6/7)**



# CPU/Architecture-related, code generation-related, and OpenMP-related options

| Option in Clang Mode                      | Outline                                                                                                  | Option in Trad Mode           |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|
| -mcpu=a64fx                               | To output the object file for the A64FX processor                                                        | -KA64FX                       |
| -mcpu=generic                             | To output the object file for the Arm (universal) processor                                              | -KGENERIC_CPU                 |
| -march=<br>arm{v8 v8.1 v8.2 v8.3}-a+sve   | To use Armv8.x-A instructions and SVE instructions                                                       | -KARCH -KSVE                  |
| -march=<br>arm{v8 v8.1 v8.2 v8.3}-a+nosve | To use Armv8.x-A instructions<br>(SVE instructions not used)                                             | -KARCH -KNOSVE                |
| -mcmodel={small large}                    | Maximum value for the code area and static data area                                                     | -Kcmodel={small large}        |
| -f{PIC pic}                               | To generate position-independent code (PIC)                                                              | -K{PIC pic}                   |
| -f{fj-largepage fj-no-largepage}          | Whether or not to use the large page function                                                            | -K{largepage nolargepage}     |
| -f{openmp no-openmp}                      | Whether or not to accept directives of<br>OpenMP specifications                                          | -K{openmp noopenmp}           |
| -f{openmp-simd no-openmp-simd}            | Whether or not to enable only the simd construct and the declare simd construct of OpenMP specifications | -K{openmp_simd noopenmp_simd} |

## **Options Supported in Clang Mode (7/7)**



### • Other options

| Option in Clang Mode                 | Outline                                                                                                                                     | Option in Trad Mode       |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| -f{fj-fjcex fj-no-fjcex}             | Whether or not to use the Fujitsu extension functions provided in clang mode                                                                | -N{fjcex nofjcex}         |
| -f{fj-fjprof fj-no-fjprof}           | Whether or not to enable the profiler function                                                                                              | -N{fjprof nofjprof}       |
| -f{fj-line fj-no-line}               | Whether or not to generate the additional information<br>required for the sampling function during execution as<br>provided by the profiler | -N{line noline}           |
| -f{fj-hook-time <br>fj-no-hook-time} | Whether or not to use the hook function with calls from specific locations                                                                  | -N{hook_time nohook_time} |
| -ffj-lst[=p]                         | To output the source list and statistical information as compiled information to a file                                                     | -Nlst[=p]                 |
| -ffj-lst=t                           | To output the source list, statistical information, and more detailed optimization information as compiled information to a file            | -Nlst=t                   |
| -ffj-lst-out= <b>file</b>            | To output compiled information to the specified file named <b>file</b>                                                                      | -Nlst_out= <b>file</b>    |
| -ffj-src                             | To output the source list to the standard output                                                                                            | -Nsrc                     |
| -Rpass=.*                            | To output optimization information to the standard error output                                                                             | -Koptmsg=2                |
| version                              | To output the compiler version and copyright information to the standard output                                                             | -V                        |

# Optimization Specifiers Supported in Clang Mode (1/3) FUJITSU

### • Same as Clang/LLVM

Leading "#pragma" omitted

| Optimization Specifier in<br>Clang Mode | Outline                                                                   | Optimization Specifier<br>in Trad Mode |
|-----------------------------------------|---------------------------------------------------------------------------|----------------------------------------|
| clang fp contract(fast)                 | To use FMA instructions                                                   | (None)                                 |
| clang fp contract(on)                   | To use FMA instructions<br>(Equivalent to #pragma STDC<br>FP_CONTRACT ON) | (None)                                 |
| clang fp contract(off)                  | To not use FMA instructions                                               | (None)                                 |
| clang loop unroll(enable)               |                                                                           | loop unroll                            |
| clang loop unroll(full)                 | To unroll loops                                                           | loop unroll full                       |
| clang loop unroll_count( <b>n</b> )     |                                                                           | loop unroll( <b>n</b> )                |
| clang loop unroll(disable)              | To not unroll loops                                                       | loop nounroll                          |
| clang loop vectorize(enable)            | To SIMDize loops                                                          | loop simd                              |
| clang loop vectorize(disable)           | To not SIMDize loops                                                      | loop nosimd                            |

# Optimization Specifiers Supported in Clang Mode (2/3) FUJITSU

### • Fujitsu-specific specifiers (except the prefetch group)

Leading "#pragma" omitted

| Optimization Specifier in<br>Clang Mode | Outline                                                                                                                 | Optimization Specifier<br>in Trad Mode |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| fj loop eval_concurrent                 | To prioritize instruction parallelism in tree-height-reduction optimization                                             | loop eval_concurrent                   |
| fj loop eval_noconcurrent               | To suppress instruction parallelism and<br>prioritize use of FMA instructions in tree-<br>height-reduction optimization | loop eval_noconcurrent                 |
| fj loop preex                           | To speculatively evaluate invariants                                                                                    | loop preex                             |
| fj loop nopreex                         | To not speculatively evaluate invariants                                                                                | loop nopreex                           |

# Optimization Specifiers Supported in Clang Mode (3/3) FUJITSU

### • Fujitsu-specific specifiers (prefetch group)

Leading "#pragma" omitted

| Clang Mode<br>Optimization Specifier       | Outline                                                                                                                                       | Trad Mode<br>Optimization Specifier     |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| fj loop prefetch                           | To enable the automatic prefetch function of the compiler                                                                                     | loop prefetch                           |
| fj loop noprefetch                         | To disable the automatic prefetch function of the compiler                                                                                    | loop noprefetch                         |
| fj loop prefetch_sequential<br>[auto soft] | To generate prefetch instructions for the array data accessed sequentially                                                                    | loop prefetch_sequential<br>[auto soft] |
| fj loop prefetch_nosequential              | To not generate prefetch instructions for the array data accessed sequentially                                                                | loop prefetch_nosequential              |
| fj loop prefetch_stride                    | To generate prefetch instructions for the array<br>data accessed with an even longer stride than the<br>line size of the cache used in a loop | loop prefetch_stride                    |
| fj loop prefetch_nostride                  | To not generate prefetch instructions for stride access                                                                                       | loop prefetch_nostride                  |
| fj loop prefetch_strong                    | To set the prefetch instructions generated for the primary cache as strong prefetch.                                                          | loop prefetch_strong                    |
| fj loop prefetch_nostrong                  | To not set the prefetch instructions generated for the primary cache as strong prefetch.                                                      | loop prefetch_nostrong                  |
| fj loop prefetch_strong_L2                 | To set the prefetch instructions generated for the secondary cache as strong prefetch.                                                        | loop prefetch_strong_L2                 |
| fj loop prefetch_nostrong_L2               | To not set the prefetch instructions generated for the secondary cache as strong prefetch.                                                    | loop prefetch_nostrong_L2               |



# **Two OpenMP Libraries**

- LLVM OpenMP Library and Fujitsu OpenMP Library
  - <u>LLVM OpenMP Library (-Nlibomp)</u>
  - Fujitsu OpenMP Library (-Nfjomplib)

# LLVM OpenMP Library and Fujitsu OpenMP Library (1/2)

 The LLVM OpenMP library is an OpenMP library based on the LLVM OpenMP Runtime Library extended for the A64FX.

| OpenMP Library         | Option                | Supported Functions                                                                                                    |
|------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------|
| LLVM OpenMP library    | -Nlibomp<br>(default) | OpenMP 4.5 and Parts of 5.0<br>Hardware barrier(Default is Software barrier)<br>Sector cache<br>Bind to core (default) |
| Fujitsu OpenMP library | -Nfjomplib            | OpenMP 3.1<br>Hardware barrier<br>Sector cache<br>Bind to core (Default when execute on job)                           |

- Compiler combination
- The object files(.o) are common in Fortran and C/C++ Trad Mode, and libraries used can be specified with the -Nlibomp/-Nfjomplib option. (If Clang Mode object files are included, only -Nlibomp option is available)

| Option     | Fortran   | C/C++     |               |  |
|------------|-----------|-----------|---------------|--|
|            |           | Trad Mode | Clang Mode    |  |
| -Nlibomp   | Available | Available | Available     |  |
| -Nfjomplib | Available | Available | Not available |  |

# LLVM OpenMP Library and Fujitsu OpenMP Library (2/2)



- Selection method
  - Specify in compiler option when linking.
    - •-Nlibomp (default) : Use LLVM OpenMP Library
    - •-Nfjomplib : Use Fujitsu OpenMP Library
- Difference in specifications
  - Thread stack size

| Option     | Default size                                                                                                                                                       | Environment<br>variables for resizing |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| -Nlibomp   | • 8MiB                                                                                                                                                             | OMP_STACKSIZE                         |
| -Nfjomplib | <ul> <li>Inherit the process stack size.</li> <li>If the stack size of the process is specified as unlimited.<br/>(Memory size / Number of threads) / 5</li> </ul> | OMP_STACKSIZE<br>or THREAD_STACK_SIZE |

- Environment variables
  - •The following environment variables are not supported by libomp (be ignored if specified):
    - PARALLEL, FLIB\_FASTOMP, THREAD\_STACK\_SIZE, FLIB\_SPINWAIT, FLIB\_CPU\_AFFINITY, FLIB\_NOHARDBARRIER, FLIB\_HARDBARRIER\_MESSAGE, FLIB\_CNTL\_BARRIER\_ERR, FLIB\_PTHREAD, FLIB\_CPUBIND, FLIB\_USE\_ALLCPU, FLIB\_USE\_CPURESOURCE
- Shared libraries
  - The following shared libraries will be linked by libomp.
    - libfjomp.so, libfjompcrt.so, libfjomphk.so

## LLVM OpenMP Library (-Nlibomp) (1/2)



- By default, the software barrier/sector cache is available.
- To use the hardware barrier, specify the FLIB\_BARRIER environment variable.
  - FLIB\_BARRIER=HARD : Use the hardware barrier.
  - FLIB\_BARRIER=SOFT : Use the software barrier.(default)
- Precautions on using the hardware barrier
  - The number of threads (omp\_set\_num\_threads(), num\_threads clause) cannot be controlled.
  - Thread affinity (proc\_bind clause, OMP\_PLACES, OMP\_PROC\_BIND) cannot be controlled.
  - Nesting (omp\_set\_nested(), OMP\_NESTED) cannot be controlled.
  - An undeferred task is always generated for a task construct, and the task will not be parallelized.
  - Cancellation is disabled.
- Supports part of OpenMP 5.0 in addition to OpenMP 4.5. Use this library to use the latest OpenMP standard.

53

 Select the software barrier when using the main functions of OpenMP 4.5/5.0, such as a task or cancellation.

## LLVM OpenMP Library (-Nlibomp) (2/2)



 To bind the initial thread to a specific core, use numactl or taskset. This does not affect the upper limit on the number of threads in the program.

#!/bin/sh -ex
:
export FLIB\_BARRIER=HARD # Use the hardware barrier
#(Use the software barrier when FLIB\_BARRIER is SOFT or not set)
numactl -C12 ./a.out # Fix the initial thread to C12

- For MPI programs, you can use the function of parallelizing memory copy processing in MPI library with threads. Specify -Nlibomp and at least one of the -Kparallel and -Kopenmp as options of a compilation/linkage command.
  - mpifrtpx –Kopenmp –Nlibomp a.f90
- The following environment variables specific to the Fujitsu OpenMP library cannot be used (and will be ignored):
  - PARALLEL
  - FLIB\_FASTOMP
  - THREAD\_STACK\_SIZE
  - FLIB\_SPINWAIT
  - FLIB\_CPU\_AFFINITY
  - FLIB\_NOHARDBARRIER

- FLIB\_HARDBARRIER\_MESSAGE
- FLIB\_CNTL\_BARRIER\_ERR
- FLIB\_PTHREAD
- FLIB\_CPUBIND
- FLIB\_USE\_ALLCPU
- FLIB\_USE\_CPURESOURCE

## Fujitsu OpenMP Library (-Nfjomplib)



- Details are omitted since they are the same for existing systems (K computer/FX100).
- By default, the hardware barrier/sector cache is available.
- There is no restriction on generating undeferred tasks while using the hardware barrier.
- OpenMP 3.1 support.
- Specify -Nfjomplib when compiling with the C/C++ compiler in Trad Mode or with the Fortran compiler.
  - Fortran
    - frtpx -Kopenmp -Nfjomplib main.f90
  - C/C++ Trad Mode
    - fccpx -Kopenmp -Nfjomplib main.c
- -Nfjomplib cannot be used with the C/C++ compiler in Clang Mode.
- To bind to core when execute on job. The environment variable FLIB\_CPU\_AFFINITY can be used to control the bind to core when not execute on job.
- The following environment variable specific to the LLVM OpenMP library cannot be used (and will be ignored):
  - FLIB\_BARRIER

## **Check the Performance**

## FUJITSU

### • OpenMP Microbench (Fortran, 12 threads execute)

|                 | [Reference]         | libomp              |                     | fjomplib            |                           |                                |
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------------|--------------------------------|
| Directive       | Skylake (2.7GHz)    | Software<br>Barrier | Hardware<br>Barrier | Hardware<br>Barrier | Hardware Barrier<br>Ratio | Skylake Ratio<br>(libomp(hard) |
|                 | Elapse time<br>(µs) | Elapse time<br>(µs) | Elapse time<br>(µs) | Elapse time<br>(µs) | (libomp/fjomplib)         | /Skylake)                      |
| PARALLEL        | 1.10                | 2.95                | 2.24                | 0.43                | 5.25                      | 2.03                           |
| DO/FOR          | 0.82                | 1.60                | 0.13                | 0.13                | 0.97                      | 0.16                           |
| PARALLEL_DO/FOR | 1.12                | 2.95                | 2.23                | 0.45                | 5.00                      | 2.00                           |
| BARRIER         | 0.76                | 1.55                | 0.12                | 0.12                | 1.00                      | 0.16                           |
| SINGLE          | 1.18                | 1.68                | 1.37                | 0.60                | 2.26                      | 1.16                           |
| CRITICAL        | 0.28                | 0.32                | 0.32                | 0.66                | 0.49                      | 1.14                           |
| LOCK/UNLOCK     | 0.29                | 0.32                | 0.32                | 0.48                | 0.67                      | 1.12                           |
| ORDERED         | 0.26                | 0.32                | 0.32                | 0.28                | 1.12                      | 1.22                           |
| АТОМІС          | 0.19                | 0.65                | 0.69                | 0.69                | 1.00                      | 3.65                           |
| REDUCTION       | 2.25                | 4.63                | 2.59                | 0.95                | 2.72                      | 1.15                           |

In using libomp library, Check PARALLEL directives.



# Migration From Existing System

- <u>New Options Added in A64FX</u>
- <u>Options With Changed</u>
   <u>Specifications in A64FX</u>
- Options Deleted From A64FX
- A64FX Compatibility With K Computer/FX10/FX100
  - Fortran compatibility
  - <u>C compatibility</u>
  - <u>C++ compatibility</u>

- MPI compatibility
- <u>Math library compatibility</u>
- MPI Extension Functions and Data Types
  - <u>Endian</u>

•

## New Options Added in A64FX (1/8)



| Compiler Option                                                            | Language | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Kswp_weak                                                                 | Common   | Specifies a software pipelining adjustment and a reduction in overlapping<br>executable statements within a loop. Software pipelining is applied to routes<br>at the execution time, and the required number of loop iterations passing<br>through the routes is small. For this reason, performance can be expected to<br>improve in cases where the number of loop iterations is small but not known<br>at the compile time.                                                                                                                                                                                                                                                          |
| -Kswp_freg_rate=N<br>-Kswp_ireg_rate=N<br>-Kswp_preg_rate=N                | Common   | Changes the application conditions regarding the registers for software<br>pipelining. N is an integer value between 1 and 1,000, specifying the<br>percentage of registers available for software pipelining. When the specified<br>value is larger than 100, an increase in the number of actual registers may<br>be determined, and software pipelining may be applied with them. However,<br>execution performance may decrease due to insufficient registers since this<br>shortage increases the number of instructions saved to memory and<br>restored.<br>- freg: Floating-point register and SVE vector register<br>- ireg: Integer register<br>- preg: SVE predicate register |
| -Kloop_fission_threashold=N                                                | Common   | Specifies the threshold value that determines the loop granularity (number of instructions or registers in a loop, etc.) after loop fission. N is a value ranging from 1 to 100. The default is 50. The smaller the value for N, the smaller the loops after fission and the greater the number of splits.                                                                                                                                                                                                                                                                                                                                                                              |
| -Kloop_fission_<br>stripmining[={N L1 L2}]<br>-Kloop_fission_nostripmining |          | <ul> <li><u>-Kloop fission stripmining[={N L1 L2}]</u></li> <li>Specifies strip mining optimization during loop fission.</li> <li>N is a value ranging from 1 to 100,000,000, specifying the strip length. If the characters L1 or L2 are specified, the specified cache is adjusted to match the expected length. If neither is specified, the compiler automatically makes a determination.</li> </ul>                                                                                                                                                                                                                                                                                |

🔆 Option you should take note of

### New Options Added in A64FX (2/8)



| Compiler Option                                                              | Language | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Kassume<br>={shortloop <br>memory_bandwidth <br>time_consuming_compilation} | Common   | Specifies an option to work at -O1 or higher.<br><u>-Kassume=shortloop</u><br>Controls optimization by assuming a low number of cycles when<br>the number of innermost loop cycles in a program is not known.<br><u>-Kassume=memory bandwidth</u><br>Controls optimization by assuming the innermost loop in a<br>program is a bottleneck due to memory bandwidth.<br><u>-Kassume=time consuming compilation</u><br>Controls optimization to shorten the compile time. (As with -O<br>level control, rather than specific functions being disabled, the<br>optimization is more restricted/suppressed as the program grows<br>larger.) |
| -Keval_[no]concurrent                                                        | Common   | <u>-Keval concurrent</u><br>Makes a transformation to prioritize operation instruction<br>parallelism in tree-height-reduction optimization. The option is<br>specified to work at -O1 or higher together with -Keval.<br>Performance is likely to improve when this option is applied to<br>loops having many operations that cannot be software pipelined.<br>By default, -Keval_noconcurrent considers linkage with software<br>pipelining, suppresses instruction parallelism, and makes a<br>transformation to prioritize the use of FMA instructions.                                                                            |
| -Kloop_[no]perfect_nest                                                      | Common   | -Kloop_noperfect_nest<br>Specifies suppression of optimization that fissions imperfectly<br>nested loops into perfectly nested loops. This option turns<br>currently running functions into optional functions.<br>The default at -O2 or lower is -Kloop_noperfect_nest.<br>The default at -O3 is -Kloop_perfect_nest.                                                                                                                                                                                                                                                                                                                 |

## New Options Added in A64FX (3/8)



| Compiler Option                            | Language | Meaning                                                                                                                                                                                                                                              |
|--------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -K[no]optlib_string                        | Common   | <u>-Koptlib_string</u><br>Links the optimized library of character string manipulation<br>functions.<br>The default is -Knooptlib_string.                                                                                                            |
| -K[no]preload                              | Common   | <u>-Kpreload</u><br>Runs optimization aimed at speeding up executable modules by<br>speculatively executing a load instruction before the if condition is<br>determined from the then/else clause of an if statement.<br>The default is -Knopreload. |
| -K[no]sibling_calls                        | Common   | <u>-Ksibling_calls</u><br>Optimizes trailing calls. The default actions are at -O2 or higher.                                                                                                                                                        |
| -Ksimd_reg_size<br>={128 256 512 agnostic} | Common   | Generates instructions with an assumption that the specified value<br>is the SVE vector register size.<br>If <b>agnostic</b> is specified, executable instructions are generated<br>irrespective of the size of the SVE vector register of the CPU.  |
| -Ksimd_[no]use_multiple<br>_structures     | Common   | <u>-Ksimd_nouse_multiple_structures</u><br>Specifies not to use the load/store multiple-structures instruction<br>of SVE.<br>This option is available only when -Ksimd and -KSVE are enabled.<br>The default is -Ksimd_use_multiple_structures.      |
| -Ksimd_[no]uncounted_loop                  | Common   | <u>-Ksimd_uncounted_loop</u><br>Implementation of SIMD "do while" loops, "do until" loops, and<br>"do" loops containing a loop ending statement (only a limited<br>range is optimized).<br>The default is -Ksimd_nouncounted_loop.                   |

### New Options Added in A64FX (4/8)



| Compiler Option                            | Language | Meaning                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -K[no]sch_pre_ra 🔀                         | Common   | <u>-Knosch pre ra</u><br>Suppresses register preallocation instruction schedulingKsch_pre_ra<br>is applied at -O1 or higher. Performance is likely to improve when this<br>option is used where many spills occur.                                                                                                                                                                                            |
| -K[no]sch_post_ra                          | Common   | <u>-Knosch post ra</u><br>Suppresses register post-allocation instruction scheduling.<br>-Ksch_post_ra is applied at -O1 or higher.                                                                                                                                                                                                                                                                           |
| -Kunroll_and_jam[=N]<br>-Knounroll_and_jam | Common   | <u>-Kunroll and jam[=N]</u><br>Optimizes unrolling and jamming (outer loop unrolling). N is a value<br>ranging from 2 to 1,000, setting an upper limit on the number of loop<br>expansions. An option is specified to work at -O2 or higher.                                                                                                                                                                  |
| -K{align_loops[=N]<br> noalign_loops}      | Common   | <ul> <li><u>-Kalign loops[=N]</u></li> <li>Aligns the top alignment of loops to an N-byte boundary, where is N is a power of 2.</li> <li>N is a value ranging from 0 to 32,768 (powers of 2), specifying a byte boundary for the top alignment of loops. If N is omitted or N=0 is specified, the compiler automatically makes a determination.</li> <li>The default actions are at -O2 or higher.</li> </ul> |
| -Kopenmp_[no]collapse<br>_except_innermost | Common   | <u>-Kopenmp_collapse_except_innermost</u><br>Excludes the innermost loop from collapse processing. This may<br>prevent collapse processing from causing execution performance to<br>deteriorate. This option is enabled when -Kopenmp is specified.<br>The default is -Kopenmp_nocollapse_except_innermost.                                                                                                   |
| -K[no]openmp_simd                          | Common   | <u>-Kopenmp_simd</u><br>Enables only the SIMD construct and DECLARE SIMD construct of<br>OpenMP specifications.                                                                                                                                                                                                                                                                                               |
| -Kcmodel={small large}                     | Common   | Specifies the memory model. The default is small.                                                                                                                                                                                                                                                                                                                                                             |

## New Options Added in A64FX (5/8)



| Compiler Option                      | Language | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -K[no]pc_relative_<br>literal_loads  | Common   | <u>-Kpc_relative_literal_loads</u><br>Handles the code area within a procedure as 1 MB or less, and<br>accesses a literal pool with a single instruction.<br>The default is -Knopc_relative_literal_loads.                                                                                                                                                                                                                |
| -K[no]plt                            | Common   | <u>-Kplt</u><br>Specifies whether to use the procedure linkage table (PLT) to<br>access the external symbols in position-independent code<br>(PIC). This option has meaning only together with -K{pic PIC}.<br>The default is -Kplt.                                                                                                                                                                                      |
| -Ktls_size={12 24 32 48}             | Common   | Specifies the required offset size for access to thread-local storage. The unit is bits.                                                                                                                                                                                                                                                                                                                                  |
| -KARM{V8_A V8_1_A <br>V8_2_A V8_3_A} | Common   | Generates an object file containing the specified instruction set.<br>The default is -KARMV8_3_A.                                                                                                                                                                                                                                                                                                                         |
| -K[NO]SVE                            | Common   | Specifies whether to use SVE extension instructions. The default is -KSVE.                                                                                                                                                                                                                                                                                                                                                |
| -KA64FX                              | Common   | Specifies that objects be generated for the A64FX processor (default).                                                                                                                                                                                                                                                                                                                                                    |
| KGENERIC_CPU                         | Common   | Specifies that objects be generated for the universal ARM processor.                                                                                                                                                                                                                                                                                                                                                      |
| -K[no]hpctag                         | Common   | <u>-Khpctag</u><br>Specifies the use of the HPC tag address override function of<br>the A64FX processor. The HPC tag address override function<br>enables the sector cache function and hardware prefetch assist<br>function (hardware prefetch function for stride access, etc.).<br>For the Fugaku supercomputer, this is enabled by default.<br>-Knohpctag is used to batch suppress the above-described<br>functions. |

## New Options Added in A64FX (6/8)



| Compiler Option             | Language | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|-----------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -K[no]array_declaration_opt | Common   | Specifies to perform the optimization such as SIMDization assuming that the array subscript does not exceed the range of the array declaration. The default actions are at -O1 or higher.                                                                                                                                                                                                                                                                                             |  |
| -K[no]extract_stride_store  | Common   | Specifies to use scalar instructions for stride access store in the target loop when using SIMD extensions.<br>The default is -Knoextract_stride_store.                                                                                                                                                                                                                                                                                                                               |  |
| -K[no]fp_precision          | Common   | Specifies to induce the combination of optimization options that do not cause calculation errors in floating-point operations.<br>The default is -Knofp_precision.                                                                                                                                                                                                                                                                                                                    |  |
| -K[no]subscript_opt         | F        | These options specify whether or not to perform optimizations to prioritize neighboring data regarding array subscript, which is applicable to stencil calculation.<br>The default is -Knosubscript_opt.                                                                                                                                                                                                                                                                              |  |
| -Kswp_policy=               | Common   | Specifies a policy to select an instruction scheduling algorithm<br>used in software pipelining.<br>The default is -Kswp_policy=auto.<br><u>swp_policy=auto</u><br>The compiler automatically selects a fit algorithm for each loop.<br><u>swp_policy=small</u><br>An algorithm fit for a small loop, such as a loop with low register<br>pressure, is used.<br><u>swp_policy=large</u><br>An algorithm fit for a large loop, such as a loop with high register<br>pressure, is used. |  |

## New Options Added in A64FX (7/8)



| Compiler Option                                                                                                   | Language | Meaning                                                                                                                                                                                                                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -X08                                                                                                              | F        | Fortran 2008 language specification level option.<br>This is induced in compilation of a.f08, a.F08, a.for, and a.FOR.                                                                                                                                                                             |  |
| -std={c11 gnu11}                                                                                                  | С        | Compiles with GNU11. (default)                                                                                                                                                                                                                                                                     |  |
| $-std = \{c++17 gnu++17\}$                                                                                        | C++      | Compiles with GNU++17.                                                                                                                                                                                                                                                                             |  |
| -N[no]clang 🔀                                                                                                     | C/C++    | Runs the Clang/LLVM-based compiler (Clang Mode).                                                                                                                                                                                                                                                   |  |
| -N[no]coverage<br>[no-]coverage Common Common Common Common Common Coverage/coverage Common The default is -Nnoco |          | <ul> <li><u>-Ncoverage /coverage</u></li> <li>Generates information to use the code coverage function.</li> <li>The default is -Nnocoverage /no-coverage.</li> </ul>                                                                                                                               |  |
| -Nnocheck_global                                                                                                  | F        | <u>-Nnocheck_global</u><br>Adds the negative option of -Ncheck_global.<br>-Ncheck_global is induced from -Nquickdbg and -Eg, without compile<br>error detection, to support cases that require error detection only at<br>the execution time.<br>This is specified as -Nquickdbg -Nnocheck_global. |  |
| -Nfmtl<br>={serial SSL2 parallel SS<br>L2BLAMP}                                                                   | C++      | Specifies the use of the Fujitsu matrix template library.<br>- serial: Sequential version<br>- SSL2: High-speed sequential version using the SSL2 library<br>- parallel: Thread parallel version<br>- SSL2BLAMP: High-speed thread parallel version using the SSL2<br>library                      |  |

### New Options Added in A64FX (8/8)



| Compiler Option                | Language | Meaning                                                                                                                                                                                                                                               |
|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Nfjomplib 🔀                   | Common   | Uses the OpenMP library specific to Fujitsu as a library used for parallel processing.                                                                                                                                                                |
| -Nlibomp                       | Common   | Uses the LLVM OpenMP library as a library used for parallel processing.<br>In clang mode, -Nlibomp is always specified.                                                                                                                               |
| -N[no]reordered_variable_stack | Common   | <u>-Nreordered variable stack</u><br>Allocates automatic variables to the stack area in ascending<br>order of data size.<br>The default is -Nnoreorederd_variable_stack, which allocates<br>variables in the order of program declaration statements. |

### **Options With Changed Specifications in A64FX (1/7)**



| <b>Compiler Option</b> | Language | Meaning<br>Reason for Change                                                                                                                                                                                                                                                                                     | Old Specification                                                                                                                                                                                                                                                                                                          | New Specification                                                                                                                                                                                                            |
|------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Kfast                 | Common   | Creates an object program<br>for fast execution on the<br>target machine.<br>To pursue universal<br>performance<br>improvements.<br>-Kprefetch_conditional<br>may cause performance<br>deterioration and was thus<br>deleted. This change was<br>made along with<br>specification changes of<br>other functions. | Fortran<br>-O3 -K <b>dalign</b> ,eval,<br>fp_contract,fp_relaxed,<br>ilfunc,mfunc, <b>ns</b> ,omitfp, <b>prefet</b><br><b>ch_conditional</b><br>C/C++<br>-O3 -K <b>dalign</b> ,eval,<br>fast_matmul,fp_contract,<br>fp_relaxed,ilfunc,lib,mfunc, <b>ns</b> ,<br>omitfp, <b>prefetch_conditional</b> ,<br><b>rdconv</b> -x- | Fortran<br>-O3 -Keval,fp_contract,<br>fp_relaxed,fz,ilfunc,mfunc,omit<br>fp, <b>simd_packed_promotion</b><br>C/C++<br>-O3 -Keval,fast_matmul,<br>fp_contract,fp_relaxed,<br>fz,ilfunc,mfunc,omitfp,<br>simd_packed_promotion |
| -Kauto                 | F        | Allocates the local<br>variables, excluding those<br>with the SAVE attribute or<br>an initial value, on the<br>stack.<br>To speed up with the<br>default                                                                                                                                                         | Individually specified to work                                                                                                                                                                                                                                                                                             | Works by default from -O0                                                                                                                                                                                                    |
| -Ktemparraystack       | F        | Allocates the interim<br>results of array operations<br>and the evaluation results<br>of mask expressions on<br>the stack.<br>To speed up with the<br>default                                                                                                                                                    | Individually specified to work                                                                                                                                                                                                                                                                                             | Works by default from -O0                                                                                                                                                                                                    |
| -Kautoobjstack         | F        | Allocates automatically<br>allocated data objects on<br>the stack.<br>To speed up with the<br>default                                                                                                                                                                                                            | Individually specified to work                                                                                                                                                                                                                                                                                             | Works by default from -O0                                                                                                                                                                                                    |

### **Options With Changed Specifications in A64FX (2/7)**



| Compiler<br>Option       | Language | Meaning<br>Reason for Change                                                                                                                                           | Old Specification                                                                                                                                                                                             | New Specification                                     |
|--------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| -Klib                    | C/C++    | Recognizes sin, etc. as<br>standard library functions<br>rather than user-defined<br>functions.<br>To adapt to industry<br>standards                                   | Enabled at -O1 or higher<br>Induced from –Kfast                                                                                                                                                               | Enabled at -O0 or higher<br>Works by default from -O1 |
| -x-                      | C/C++    | Performs inline expansion.<br>Changed according to the<br>defaulting to -Xg                                                                                            | Induced from -Kfast                                                                                                                                                                                           | Induced from -O3                                      |
| -x=quick                 | C++      | Uses inline to prevent<br>enormous functions.<br>For the expected positive<br>effects generally                                                                        | -x=noquick (default)                                                                                                                                                                                          | -x=quick (default)                                    |
| -Xg                      | C/C++    | Specifies compiling based on<br>the language specification of<br>GNU C/C++ compilers.<br>To accept the extended<br>specifications of GNU C/C++<br>compilers by default | 3 language specification<br>modes: -Xa, -Xc, -Xg<br>Default is -Xa, and others<br>are optional<br>* Announced<br>obsolescence of old<br>specifications, compile<br>continuing in GNU<br>C/C++-compatible mode | Deletes -Xa and -Xc, and defaults to -Xg              |
| -Klto(F)<br>-flto(C/C++) | Common   | <ul> <li>LTO (link time optimization)</li> <li>ipo and Ito integration with<br/>Ito</li> <li>LTO behavior in Fortran</li> </ul>                                        | -Kipo (C only)<br>(Note) Warning about old<br>specifications, compile<br>continuing                                                                                                                           | -Klto (F)<br>-flto (C/C++ Clang Mode)                 |

### **Options With Changed Specifications in A64FX (3/7)**



| Compiler Option                                            | Language | Meaning<br>Reason for Change                                                                                                                                                                                                          | Old Specification                                                                                                               | New Specification                                                                                                  |
|------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| -Kzfill                                                    | Common   | Speeds up store instructions.<br>This is very similar to prefetch<br>of the store area except that<br>data is not loaded from<br>memory and only a cache<br>location is allocated.<br>Changed based on architecture<br>specifications | -KXFILL<br>("X" means fill, which<br>is indeterminate<br>value)<br>* Warning about old<br>specifications, compile<br>continuing | -Kzfill<br>("z" means zero fill)                                                                                   |
| -Kilfunc<br>[={loop procedure}]                            | Common   | Inline-expands intrinsic<br>functions and operations.<br>For the expected positive<br>effects in various applications                                                                                                                 | Default for -Kilfunc is<br>-Kilfunc=loop                                                                                        | Default for -Kilfunc is<br>-Kilfunc=procedure                                                                      |
| -Kprefetch_stride 🔀<br>[={soft hard_auto <br>hard_always}] | Common   | Generates a prefetch<br>instruction for the array data<br>accessed with an even longer<br>stride than the cache line size<br>in a loop.<br>To add a function making use<br>of the microarchitecture                                   | -Kprefetch_stride                                                                                                               | Enables use of<br>hardware stride<br>prefetch function<br>-Kprefetch_stride<br>[={soft hard_auto hard<br>_always}] |
| -Kprefetch_<br>strong[_L2]                                 | Common   | Specifies that L1/L2 prefetch<br>be a strong prefetch instruction.<br>Specifications changed based<br>on the microarchitecture                                                                                                        | Default is<br>-Kprefetch_nostrong                                                                                               | Default is<br>-Kprefetch_strong                                                                                    |

### **Options With Changed Specifications in A64FX (4/7)**



| Compiler Option      | Language | Meaning<br>Reason for Change                                                                                                                                                                                          | Old Specification                                                                | New Specification                   |
|----------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------|
| -Kassume=shortloop   | Common   | Specifies optimization control<br>assuming a low number of<br>innermost loop cycles in a<br>program.<br>To integrate into the<br>optimization control option<br>based on application features                         | -Kshortloop<br>(Note) Warning about<br>old specifications,<br>compile continuing | -Kassume=shortloop                  |
| -Kloop_part_simd     | Common   | Implementation of SIMD<br>parts of a loop by splitting the<br>parts that can be SIMDized<br>from the parts that cannot.<br>To have part of the SIMD<br>function rather than a split                                   | -Kloop_part_simd<br>works as part of -<br>Kloop_fission function                 | Works when -Ksimd is<br>enabled     |
| -Kloop_part_parallel | Common   | Parallelizes the threads in<br>parts of a loop by splitting the<br>parts that can be thread-<br>parallelized from the parts<br>that cannot.<br>To have part of the<br>parallelization function rather<br>than a split | -Kloop_part_parallel<br>works as part of<br>-Kloop_fission function              | Works when<br>-Kparallel is enabled |
| -Koptions            | F        | Treats lines that begin with<br>the !options line as compiler<br>directive lines.<br>Though deletion was initially<br>considered, it was decided to<br>keep only -O[1-3] (without<br>OCL).                            | !options -O[1-3]<br>Compiler option with<br>part of !options                     | !options -O[1-3]                    |

### **Options With Changed Specifications in A64FX (5/7)**



| Compiler Option   | Language | Meaning<br>Reason for Change                                                                                                                                                                                                                                                                                               | Old Specification                                                                                                                                                                 | New Specification                                                                                                                                                                                                                                                                                                                          |
|-------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -Krdconv[={1 2}]  | C/C++    | Executes optimization<br>assuming signed integer-<br>type expressions of 4<br>bytes or less do not<br>overflow and unsigned<br>integer-type expressions<br>of 4 bytes or less do not<br>wrap around.<br>To break up the -Krdconv<br>function and provide the<br>default option as an<br>industry standard<br>specification | -Krdconv<br>Promotes optimization<br>assuming 4-byte signed<br>variables do not overflow                                                                                          | -Krdconv derives -Krdconv=1<br>Derivations from -Kfast<br>deleted since -Krdconv is<br>enabled at -O2<br>-Krdconv=1<br>Promotes optimization<br>assuming 4-byte signed<br>integer-type expressions do<br>not overflow<br>-Krdconv=2<br>Promotes optimization<br>assuming 4-byte unsigned<br>integer-type expressions do<br>not wrap around |
| -Kstrict_aliasing | C/C++    | Specifies optimization<br>considering overlapping<br>memory areas in<br>accordance with the strict<br>aliasing rule.<br>To change to the industry<br>standard level of<br>specifications (including<br>option names)                                                                                                       | -Kmemalias<br>* Recommendation<br>against, planned<br>obsolescence of, and<br>warning about old<br>specifications, -<br>Krestrict_aliasing<br>announcement, compile<br>continuing | -Kstrict_aliasing                                                                                                                                                                                                                                                                                                                          |
| -Kfz              | Common   | Specifies the use of flush-<br>to-zero mode.<br>Changed based on<br>architecture specifications                                                                                                                                                                                                                            | -Kns<br>(NS bit for SPARC)<br>* Obsolescence<br>announcement, compile<br>continuing                                                                                               | -Kfz<br>(FZ bit for ARM)                                                                                                                                                                                                                                                                                                                   |

### **Options With Changed Specifications in A64FX (6/7)**



| Compiler Option          | Language | Meaning<br>Reason for Change                                                                                                                                                                                                                                                                                                                                          | Old Specification                                                                                                                                                                                                                                                                                                                                | New Specification                                       |
|--------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| -Kalign_commons          | F        | Specifies adjustment of<br>the 8-byte boundary on<br>8-byte integer-type,<br>double/quadruple-<br>precision, real/complex-<br>number-type data in<br>allocation processing of<br>variables belonging to<br>common blocks to<br>storage space.<br>To split older functions<br>and change to only those<br>specifications required<br>considering industry<br>standards | <ul> <li>-Kdalign</li> <li>(Default is -Knodalign)</li> <li>-Kdalign has 2 functions:</li> <li>(1) Function to align<br/>members of common<br/>variables.</li> <li>(2) Function in SPARC to<br/>specify whether to use ldd<br/>instruction -&gt; Not required</li> <li>* Warning about old<br/>specifications, compile<br/>continuing</li> </ul> | Fortran<br>-Kalign_commons(default)<br>C/C++<br>Deleted |
| -Nline                   | C/C++    | Generates the additional<br>information required for<br>the sampling function<br>during execution as<br>provided by the profiler.<br>To prioritize user<br>convenience on the K<br>computer/FX100                                                                                                                                                                     | -Nline<br>(-Xa(default), together<br>with -Xc)<br>-Nnoline<br>(together with -Xg)                                                                                                                                                                                                                                                                | Default is -Nline when -Xg<br>becomes default           |
| -std=<br>{c++14 gnu++14} | C++      | Compiles with GNU++14.<br>Specifications changed<br>according to full support<br>for C++14                                                                                                                                                                                                                                                                            | C++14 optional                                                                                                                                                                                                                                                                                                                                   | Default is C++14                                        |
## **Options With Changed Specifications in A64FX (7/7)**



| Compiler Option                                                        | Language | Meaning<br>Reason for Change                                                                                                                                                                                                                                                              | Old Specification                                                                                                 | New Specification                                     |
|------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| -gdwarf[-4]                                                            | Common   | Supports DWARF<br>version 4.<br>Changed according to<br>DWARF4 support                                                                                                                                                                                                                    | -gdwarf-2<br>(DWARF version 2)<br>* Obsolescence<br>announcement for old<br>specifications, compile<br>continuing | -gdwarf[-4]<br>(DWARF version 4)                      |
| -Ncheck_std=<br>{03d 03e 03o 03s}<br>-Ncheck_std=<br> 08d 08e 08o 08s} | F        | Executes the<br>language standard<br>test on the source<br>program.<br>• Option name change<br>preferred since it<br>may have been<br>confusing due to the<br>use of the -v option<br>for different features<br>by other<br>manufacturers<br>• Support of the<br>Fortran 2008<br>standard | <ul> <li>-v{03d 03e 03o 03s}</li> <li>* Warning about old specifications, compile continuing</li> </ul>           | -Ncheck_std=<br>{03d 03e 03o 03s 08d <br>08e 08o 08s} |

## Options Deleted From A64FX (1/2)



| Compiler Option            | Language | Reason for Deletion                                                                                                                                                                                                                                                       | Behavior                                  |
|----------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| -KHPC_ACE[2]               | Common   | Because the option is used in the K computer/FX100 SIMD extension instruction set                                                                                                                                                                                         | Warns, and continues compile              |
| -K[NO]FLTLD                | Common   | Because the option is intended for the K computer/FX100 architecture                                                                                                                                                                                                      | Warns, and continues compile              |
| -K[NO]GREG_APPLI           | C/C++    | Because the option is for intended for the SPARC-series architecture                                                                                                                                                                                                      | Warns, and continues compile              |
| -Kadr{44 64}               | Common   | Because the option is intended for the SPARC architecture                                                                                                                                                                                                                 | Warns, and continues compile              |
| -K[no]fed                  | Common   | Because the option is intended for the FX100 architecture                                                                                                                                                                                                                 | Warns, and continues compile              |
| -Kfuncalign=N              | С        | Because the option is intended for the K computer/FX100 architecture                                                                                                                                                                                                      | Warns, and continues compile              |
| -Kloop_[no]fission_if      | Common   | This function fissions a loop containing an IF statement<br>but had few users and may have had a risk of<br>performance decrease. Since it was replaced by a new<br>loop fission function that fissions a loop after branching<br>by SIMDization, the option was deleted. | Warns, and continues<br>compile           |
| -K[no]nf                   | Common   | Because the option is intended for the FX100 architecture                                                                                                                                                                                                                 | Warns, and continues compile              |
| -Kopenmp_tls               | Common   | Because the threadprivate implementation of OpenMP was changed from a Fujitsu-specific method to TLS only, which is the industry standard                                                                                                                                 | Announces deletion, and continues compile |
| -Ksimd_[no]separate_stride | Common   | Because the option is in the stride SIMD instruction for the FX100.                                                                                                                                                                                                       | Warns, and continues compile              |
| -K[no]uxsimd               | Common   | Deleted because the option served as a 2-element vector SIMD function for the K computer/FX10                                                                                                                                                                             | Warns, and continues compile              |
| -Kvppocl                   | F        | Because the option is a compatibility option for<br>conventional vector machines no longer used by<br>anyone                                                                                                                                                              | Announces deletion, and continues compile |

## **Options Deleted From A64FX (2/2)**



| Compiler Option                                          | Language | Reason for Deletion                                                                                                                              | Behavior                           |
|----------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| -Nrt_tune_io                                             | C/C++    | The Fugaku supercomputer has a performance analysis tool that outputs the input/output information that was output as a runtime output function. | Warns, and<br>continues<br>compile |
| -Nstl={500 521 500fast}<br>-Kstl_fast_new                | C++      | Because STLport-series STL was deleted<br>and libc++ was changed to the default STL                                                              | Warns, and<br>continues<br>compile |
| -fcall_used_g7<br>-ffixed-g{4 5}                         | Common   | Because the option is intended for the SPARC architecture                                                                                        | Warns, and continues compile       |
| -fvisibility=<br>{default internal hidden pr<br>otected} | C/C++    | Eliminated in Trad Mode only, because it can be<br>substituted by the same name option in Clang<br>Mode.                                         | Warns, and<br>continues<br>compile |

#### A64FX Compatibility With K Computer/FX10/FX100 (1/11)



- Fortran compatibility (1/3)
  - For details, ask your system administrator.

| No. | Target Machine          | Item                                                                                                                                     |
|-----|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | [K computer/FX10/FX100] | Defaulting to the -Kauto option                                                                                                          |
| 2   | [K computer/FX10/FX100] | Defaulting to the -Ktemparraystack option                                                                                                |
| 3   | [K computer/FX10/FX100] | Defaulting to the -Kautoobjstack option                                                                                                  |
| 4   | [FX100]                 | Change in the handling of options when the -Klto option is specified together with the -S or -Wa option                                  |
| 5   | [K computer/FX10]       | Changed default value for the level in the -Ksimd[=level] option                                                                         |
| 6   | [K computer/FX10/FX100] | Results of intrinsic functions of the GAMMA type                                                                                         |
| 7   | [K computer/FX10/FX100] | Output results of G-format editing                                                                                                       |
| 8   | [K computer/FX10/FX100] | Return value for the IOSTAT specifier at the execution time of a nonadvancing output statement                                           |
| 9   | [K computer/FX10/FX100] | Changed specifications of the runtime information output function                                                                        |
| 10  | [K computer/FX10/FX100] | LLVM OpenMP library installation                                                                                                         |
| 11  | [K computer/FX10/FX100] | Unsupported items in Fortran                                                                                                             |
| 12  | [K computer/FX10/FX100] | Changed values for predefined version macros                                                                                             |
| 13  | [K computer/FX10/FX100] | Object compatibility when using OpenMP                                                                                                   |
| 14  | [K computer/FX10/FX100] | Compile error testing compliant with Fortran standards                                                                                   |
| 15  | [K computer/FX10/FX100] | New/Changed specifications of Fortran standards, and kind type parameters for real numbers and complex numbers (extended specifications) |
| 16  | [K computer/FX10/FX100] | Compile error testing according to co-arrays and OpenMP specifications                                                                   |
| 17  | [K computer/FX10/FX100] | Message output at the execution time of a program having an error when the compile option -H is enabled                                  |
| 18  | [K computer/FX10/FX100] | Change from -X03 to -X08 in the language specification level options induced from the file suffixes .F, .f, .FOR, and .for               |
| 19  | [K computer/FX10/FX100] | Runtime message output in accordance with Fortran standards                                                                              |
| 20  | [K computer/FX10/FX100] | Change of the -v03d, -v03e, -v03o, and -v03s options to -Ncheck_std=                                                                     |
| 21  | [K computer/FX10/FX100] | Changes in values for macros and named constants along with support for the OpenMP API version 4.0 specifications                        |
| 22  | [K computer/FX10/FX100] | Deleted compile option -K{openmp_tls openmp_notls}                                                                                       |

### A64FX Compatibility With K Computer/FX10/FX100 (2/11)



- Fortran compatibility (2/3)
  - For details, ask your system administrator.

| No. | Target Machine Item                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|
| 23  | [K computer/FX10/FX100] Error testing for the OpenMP THREADPRIVATE directive                                                          |
| 24  | [K computer/FX10/FX100] Deleted options specific to the SPARC instruction set architecture                                            |
| 25  | [K computer/FX10/FX100] Deleted compile options specific to HPC-ACE and HPC-ACE2                                                      |
| 26  | [FX100] Changed specifications dependent on the instruction set architecture                                                          |
| 27  | [K computer/FX10/FX100] Deleted -Kvppocl option                                                                                       |
| 28  | [K computer/FX10/FX100] Compile error testing for OpenMP directives                                                                   |
| 29  | [K computer/FX10/FX100] Deleted compiler command line "!options" and -Koptions option                                                 |
| 30  | [K computer/FX10/FX100] Deleted -Nuse_rodata option, and changed inductive relationship                                               |
| 31  | [K computer/FX10/FX100] Deleted -Q option                                                                                             |
| 32  | [K computer/FX10/FX100] Changed -K{XFILL NOXFILL} option, optimization specifier {XFILL NOXFILL}, and optimization information output |
| 33  | [K computer/FX10/FX100] Changed specifications of traceback of procedures containing an ENTRY statement                               |
| 34  | [K computer/FX10/FX100] Deleted -K{shortloop=N noshortloop} option and optimization specifier {SHORTLOOP(n) NOSHORTLOOP}              |
| 35  | [K computer/FX10/FX100] Deleted -K{uxsimd nouxsimd} option and optimization specifier {UXSIMD NOUXSIMD}                               |
| 36  | [K computer/FX10/FX100] Changed specification for the -Kswp and -Kswp_strong options                                                  |
| 37  | [K computer/FX10/FX100] Changed display format of compiled information (SIMDization)                                                  |
| 38  | [K computer/FX10/FX100] Changed display format of compiler messages (loop fission)                                                    |
| 39  | [K computer/FX10/FX100] Changed display format of compiled information (loop fission)                                                 |
| 40  | [K computer/FX10/FX100] Changed display format of compiled information (software pipelining)                                          |
| 41  | [K computer/FX10/FX100] Deleted -Kdalign option                                                                                       |
| 42  | [K computer] Changed deduction relationship between the optimization level and the compile option -Kloop_fission                      |
| 43  | [K computer/FX10/FX100] Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD                             |
| 44  | [K computer/FX10/FX100] Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL                     |

### A64FX Compatibility With K Computer/FX10/FX100 (3/11)



- Fortran compatibility (3/3)
  - For details, ask your system administrator.

| No. | Target Machine          | Item                                                                                                                                                    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45  | [K computer/FX10/FX100] | Deleted compile option -K{loop_fission_if loop_nofission_if}                                                                                            |
| 46  | [K computer/FX10/FX100] | Change of -Kprefetch_strong to default                                                                                                                  |
| 47  | [K computer/FX10/FX100] | Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2                                                                 |
| 48  | [K computer]            | Deleted compile options specific to the K computer                                                                                                      |
| 49  | [FX10]                  | Deleted compile options specific to the FX10                                                                                                            |
| 50  | [FX100]                 | Defaulting to the SIMDization function through multiple redundant executions with the SIMD length, and deleted optimization specifier simd_redundant_vl |
| 51  | [K computer/FX10/FX100] | Modified runtime messages                                                                                                                               |
| 52  | [K computer/FX10/FX100] | Changed behavior when a specified option is unrecognizable                                                                                              |
| 53  | [K computer/FX10/FX100] | Changed options induced from the compile option -Kfast                                                                                                  |
| 54  | [K computer/FX10/FX100] | Changed execution results of formatted sequential access input/output and formatted nonadvancing input/output                                           |
| 55  | [K computer/FX10/FX100] | Runtime messages that are output during parallel processing                                                                                             |
| 56  | [FX10/FX100]            | Type conversion option in the LLVM OpenMP library                                                                                                       |
| 57  | [K computer/FX10/FX100] | IO buffer parallel transmission with the LLVM OpenMP library                                                                                            |
| 58  | [K computer/FX10/FX100] | Runtime messages that are output when capturing floating-point exceptions                                                                               |
| 59  | [K computer/FX10/FX100] | Changed Japanese message for jwd8205o-i                                                                                                                 |
| 60  | [K computer/FX10/FX100] | Changed Fortran 2008 specifications for the intrinsic procedures FRACTION, RRSPACING, and SPACING                                                       |

### A64FX Compatibility With K Computer/FX10/FX100 (4/11)



## • C compatibility (1/3)

| No. | Target Machine          | Item                                                                                                    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------|
| 1   | [K computer/FX10/FX100] | Defaulting to the -Klib option                                                                          |
| 2   | [K computer/FX10/FX100] | Deleted -Kipo option                                                                                    |
| 3   | [FX100]                 | Change in the handling of options when the -Klto option is specified together with the -S or -Wa option |
| 4   | [K computer/FX10]       | Changed default value for the level in the -Ksimd[=level] option                                        |
| 5   | [K computer/FX10/FX100] | Changed specifications of the runtime information output function                                       |
| 6   | [K computer/FX10/FX100] | LLVM OpenMP library installation                                                                        |
| 7   | [K computer/FX10/FX100] | Deleted -gdwarf-2 option, and added -gdwarf and -gdwarf-4 options                                       |
| 8   | [K computer/FX10/FX100] | Deleted compile option -noansi                                                                          |
| 9   | [K computer/FX10/FX100] | Changed default value for the compile option -f{signed-char unsigned-char}                              |
| 10  | [K computer/FX10/FX100] | Changed values for predefined version macros                                                            |
| 11  | [K computer/FX10/FX100] | Deleted compile option -X (The language specification mode is GNU-compatible mode only.)                |
| 12  | [K computer/FX10/FX100] | Changed GNU C compatible version                                                                        |
| 13  | [K computer/FX10/FX100] | Changed default value for the compile option -std                                                       |
| 14  | [K computer/FX10/FX100] | Changed definitions of the macrosSTRICT_ANSI, linux, unix, andSTDC_VERSION                              |
| 15  | [K computer/FX10/FX100] | Change of the language specification level when the compile option -ansi or -std is enabled             |
| 16  | [K computer/FX10/FX100] | Changed behavior when the compile options -Dname and -Uname are specified together                      |
| 17  | [K computer/FX10/FX100] | Changed behavior when the compile option -P is specified                                                |
| 18  | [K computer/FX10/FX100] | Changed default value for the compile option -N{line noline}                                            |
| 19  | [K computer/FX10/FX100] | Object compatibility when using OpenMP                                                                  |
| 20  | [K computer/FX10/FX100] | Deleted compile option -K{openmp_tls openmp_notls}                                                      |
| 21  | [K computer/FX10/FX100] | Deleted options specific to the SPARC instruction set architecture                                      |
| 22  | [K computer/FX10/FX100] | Deleted GNU C compatible options specific to the SPARC instruction set architecture                     |

### A64FX Compatibility With K Computer/FX10/FX100 (5/11)



#### • C compatibility (2/3)

| No. | Target Machine          | Item                                                                                                          |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------|
| 23  | [K computer/FX10/FX100] | Deleted compile options specific to HPC-ACE and HPC-ACE2                                                      |
| 24  | [FX100]                 | Changed specifications dependent on the instruction set architecture                                          |
| 25  | [K computer/FX10/FX100] | Changed specifications of options related to -Kstrict_aliasing                                                |
| 26  | [K computer/FX10/FX100] | Deleted -Kfuncalign=N option                                                                                  |
| 27  | [K computer/FX10/FX100] | Deleted -Nuse_rodata option, and changed inductive relationship                                               |
| 28  | [K computer/FX10/FX100] | Changed options induced from the compiler options -O2 and -O3                                                 |
| 29  | [K computer/FX10/FX100] | Changed -K{XFILL NOXFILL} option, optimization specifier {XFILL NOXFILL}, and optimization information output |
| 30  | [K computer/FX10/FX100] | Deleted -K{shortloop=N noshortloop} option and optimization specifier {SHORTLOOP(n) NOSHORTLOOP}              |
| 31  | [K computer/FX10/FX100] | Deleted -K{uxsimd nouxsimd} option and optimization specifier {UXSIMD NOUXSIMD}                               |
| 32  | [K computer/FX10/FX100] | Changed specifications of the -Kswp and -Kswp_strong options                                                  |
| 33  | [K computer/FX10/FX100] | Changed display format of compiled information (SIMDization)                                                  |
| 34  | [K computer/FX10/FX100] | Changed display format of compiler messages (loop fission)                                                    |
| 35  | [K computer/FX10/FX100] | Changed display format of compiled information (loop fission)                                                 |
| 36  | [K computer/FX10/FX100] | Changed display format of compiled information (software pipelining)                                          |
| 37  | [K computer/FX10/FX100] | Deleted -Kdalign option                                                                                       |
| 38  | [K computer/FX10/FX100] | Changed specifications of the built-in functionssync_fetch_and_nand andsync_nand_and_fetch                    |
| 39  | [K computer]            | Changed deduction relationship between the optimization level and the compile option -Kloop_fission           |
| 40  | [K computer/FX10/FX100] | Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD                             |
| 41  | [K computer/FX10/FX100] | Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL                     |
| 42  | [K computer/FX10/FX100] | Deleted compile option -K{loop_fission_if loop_nofission_if}                                                  |
| 43  | [K computer/FX10/FX100] | Change of -Kprefetch_strong to default                                                                        |
| 44  | [K computer/FX10/FX100] | Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2                       |

### A64FX Compatibility With K Computer/FX10/FX100 (6/11)



#### • C compatibility (3/3)

| No. | Target Machine          | item                                                                                                                                                    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45  | [K computer]            | Deleted compile options specific to the K computer                                                                                                      |
| 46  | [FX10]                  | Deleted compile options specific to the FX10                                                                                                            |
| 47  | [FX100]                 | Defaulting to the SIMDization function through multiple redundant executions with the SIMD length, and deleted optimization specifier simd_redundant_vl |
| 48  | [K computer/FX10/FX100] | Modified runtime messages                                                                                                                               |
| 49  | [K computer/FX10/FX100] | Changed behavior when a specified option is unrecognizable                                                                                              |
| 50  | [K computer/FX10/FX100] | Changed options induced from the compile option -Kfast                                                                                                  |
| 51  | [K computer/FX10/FX100] | Runtime messages that are output during parallel processing                                                                                             |
| 52  | [K computer/FX10/FX100] | Runtime messages that are output when capturing floating-point exceptions                                                                               |
| 53  | [K computer/FX10/FX100] | Changed Japanese message for jwd8205o-i                                                                                                                 |

### A64FX Compatibility With K Computer/FX10/FX100 (7/11)



- C++ compatibility (1/3)
  - For details, ask your system administrator.

| No. | Target Machine          | Item                                                                                                    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------|
| 1   | [K computer/FX10/FX100] | Defaulting to the -Klib option                                                                          |
| 2   | [FX100]                 | Change in the handling of options when the -Klto option is specified together with the -S or -Wa option |
| 3   | [K computer/FX10]       | Changed default value for the level in the -Ksimd[=level] option                                        |
| 4   | [K computer/FX10/FX100] | Changed specifications of the runtime information output function                                       |
| 5   | [K computer/FX10/FX100] | LLVM OpenMP library installation                                                                        |
| 6   | [K computer/FX10/FX100] | Deleted -gdwarf-2 option, and added -gdwarf and -gdwarf-4 options                                       |
| 7   | [K computer/FX10/FX100] | Change of the standard template library (STL) in the C++03 specifications or C++11 specifications       |
| 8   | [K computer/FX10/FX100] | Deleted compile options -stdlib and -Nstl                                                               |
| 9   | [K computer/FX10/FX100] | Deleted compile option -K{stl_fast_new nostl_fast_new}                                                  |
| 10  | [K computer/FX10/FX100] | Changed default value for the compile option -f{signed-char unsigned-char}                              |
| 11  | [K computer/FX10/FX100] | Changed values for predefined version macros                                                            |
| 12  | [K computer/FX10/FX100] | Deleted compile option -X (The language specification mode is GNU-compatible mode only.)                |
| 13  | [K computer/FX10/FX100] | Changed GNU C++ compatible version                                                                      |
| 14  | [K computer/FX10/FX100] | Changed default value for the compile option -std                                                       |
| 15  | [K computer/FX10/FX100] | Changed definitions of the macrosSTRICT_ANSI, linux, unix, andcplusplus                                 |
| 16  | [K computer/FX10/FX100] | Changed behavior when the compile options -Dname and -Uname are specified together                      |
| 17  | [K computer/FX10/FX100] | Changed behavior when the compile option -P is specified                                                |
| 18  | [K computer/FX10/FX100] | Changed default value for the compile option -N{line noline}                                            |
| 19  | [K computer/FX10/FX100] | Object compatibility when using OpenMP                                                                  |
| 20  | [K computer/FX10/FX100] | Deleted compile option -K{openmp_tls openmp_notls}                                                      |
| 21  | [K computer/FX10/FX100] | Deleted options specific to the SPARC instruction set architecture                                      |
| 22  | [K computer/FX10/FX100] | Deleted GNU C++ compatible options specific to the SPARC instruction set architecture                   |

## A64FX Compatibility With K Computer/FX10/FX100 (8/11)



#### • C++ compatibility (2/3)

| No. | Target Machine         | Item                                                                                                            |
|-----|------------------------|-----------------------------------------------------------------------------------------------------------------|
| 23  | [K computer/FX10/FX100 | ] Deleted compile options specific to HPC-ACE and HPC-ACE2                                                      |
| 24  | [FX100]                | Changed specifications dependent on the instruction set architecture                                            |
| 25  | [K computer/FX10/FX100 | ] Changed specifications of options related to -Kstrict_aliasing                                                |
| 26  | [K computer/FX10/FX100 | ] Deleted -Nuse_rodata option, and changed inductive relationship                                               |
| 27  | [K computer/FX10/FX100 | ] Changed options induced from the compiler options -O2 and -O3                                                 |
| 28  | [K computer/FX10/FX100 | ] Changed -K{XFILL NOXFILL} option, optimization specifier {XFILL NOXFILL}, and optimization information output |
| 29  | [K computer/FX10/FX100 | ] Deleted -K{shortloop=N noshortloop} option and optimization specifier {SHORTLOOP(n) NOSHORTLOOP}              |
| 30  | [K computer/FX10/FX100 | ] Deleted -K{uxsimd nouxsimd} option and optimization specifier {UXSIMD NOUXSIMD}                               |
| 31  | [K computer/FX10/FX100 | ] Changed specifications of the -Kswp and -Kswp_strong options                                                  |
| 32  | [K computer/FX10/FX100 | ] Changed display format of compiled information (SIMDization)                                                  |
| 33  | [K computer/FX10/FX100 | ] Changed display format of compiler messages (loop fission)                                                    |
| 34  | [K computer/FX10/FX100 | ] Changed display format of compiled information (loop fission)                                                 |
| 35  | [K computer/FX10/FX100 | ] Changed display format of compiled information (software pipelining)                                          |
| 36  | [K computer/FX10/FX100 | ] Deleted -Kdalign option                                                                                       |
| 37  | [K computer/FX10/FX100 | ] Changed specifications of the built-in functionssync_fetch_and_nand andsync_nand_and_fetch                    |
| 38  | [K computer]           | Changed deduction relationship between the optimization level and the compile option -Kloop_fission             |
| 39  | [K computer/FX10/FX100 | ] Changed compile option -Kloop_part_simd and optimization specifier LOOP_PART_SIMD                             |
| 40  | [K computer/FX10/FX100 | ] Changed compile option -Kloop_part_parallel and optimization specifier LOOP_PART_PARALLEL                     |
| 41  | [K computer/FX10/FX100 | ] Deleted compile option -K{loop_fission_if loop_nofission_if}                                                  |
| 42  | [K computer/FX10/FX100 | ] Change of -Kprefetch_strong to default                                                                        |
| 43  | [K computer/FX10/FX100 | ] Requirement that -Khpctag be enabled for -Kprefetch_nostrong and -Kprefetch_nostrong_L2                       |
| 44  | [K computer]           | Deleted compile options specific to the K computer                                                              |

### A64FX Compatibility With K Computer/FX10/FX100 (9/11)



- C++ compatibility (3/3)
  - For details, ask your system administrator.

| No. | Target Machine          | Item                                                                                                                                                    |
|-----|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 45  | [FX10]                  | Deleted compile options specific to the FX10                                                                                                            |
| 46  | [FX100]                 | Defaulting to the SIMDization function through multiple redundant executions with the SIMD length, and deleted optimization specifier simd_redundant_vl |
| 47  | [K computer/FX10/FX100] | Modified runtime messages                                                                                                                               |
| 48  | [K computer/FX10/FX100] | Changed behavior when a specified option is unrecognizable                                                                                              |
| 49  | [K computer/FX10/FX100] | Changed options induced from the compile option -Kfast                                                                                                  |
| 50  | [K computer/FX10/FX100] | Runtime messages that are output during parallel processing                                                                                             |
| 51  | [K computer/FX10/FX100] | Runtime messages that are output when capturing floating-point exceptions                                                                               |
| 52  | [K computer/FX10/FX100] | Changed Japanese message for jwd8205o-i                                                                                                                 |

#### A64FX Compatibility With K Computer/FX10/FX100 (10/11)



#### • MPI compatibility (1/2)

| No. | Target Machine          | Item                                                                                                                     |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1   | [K computer/FX10/FX100] | Deleted Hasty Rendezvous communication function                                                                          |
| 2   | [K computer/FX10/FX100] | Deleted MCA parameter dpm_ple_socket_timeout                                                                             |
| 3   | [K computer/FX10/FX100] | Deleted extension RDMA interface                                                                                         |
| 4   | [K computer/FX10/FX100] | Changed rank query interface                                                                                             |
| 5   | [K computer/FX10/FX100] | Changed output of error messages related to the mpiexec command                                                          |
| 6   | [K computer/FX10/FX100] | Changed specifications for output of an error message when the mpiexec command is executed with no option specified      |
| 7   | [K computer/FX10/FX100] | Changed error message for insufficient memory                                                                            |
| 8   | [K computer/FX10/FX100] | Changed and deleted error messages                                                                                       |
| 9   | [K computer/FX10/FX100] | Changed warning messages                                                                                                 |
| 10  | [K computer/FX10/FX100] | Deleted signal SIGCHLD                                                                                                   |
| 11  | [K computer/FX10/FX100] | MPI functions in C no longer hooked, since the profiling interface of Fortran is used                                    |
| 12  | [K computer/FX10/FX100] | Change of the MCA parameter orte_abort_print_stack to opal_abort_print_stack                                             |
| 13  | [K computer/FX10/FX100] | Changed restrictions when generating processes from within MPI programs                                                  |
| 14  | [FX100]                 | Changed default value for the MCA parameter common_tofu_packet_mtu from 1792 to 1920                                     |
| 15  | [K computer/FX10/FX100] | Changed error message [mpi::common-tofu::tofu-signal-*]                                                                  |
| 16  | [FX100/FX10]            | Deleted -nompi option of the mpiexec command                                                                             |
| 17  | [FX100/FX10]            | Changed name of the MCA parameter dpm_ple_no_establish_connection                                                        |
| 18  | [K computer/FX10/FX100] | Changed algorithm of the reduction operation used for group communication                                                |
| 19  | [K computer/FX10/FX100] | Changed default value for the MCA parameter coll_tbi_use_on_max_min                                                      |
| 20  | [K computer/FX10/FX100] | Changed conditions for applying the barrier communication function in the MPI_REDUCE routine and MPI_ALLREDUCE routine   |
| 21  | [K computer/FX10/FX100] | Deleted MCA parameters coll_tuned_use_6d_algorithm and coll_tuned_scatterv_use_linear_sync                               |
| 22  | [FX100]                 | Changed behavior when the specified value for the MCA parameter opal_progress_thread_mode is invalid (other than 0 to 3) |

### A64FX Compatibility With K Computer/FX10/FX100 (11/11)



- MPI compatibility (2/2)
  - For details, ask your system administrator.

| No. | Target Machine | Item                                                                                                 |
|-----|----------------|------------------------------------------------------------------------------------------------------|
| 23  | [K computer]   | Changed MCA parameter names and error messages related to the communication timeout setting function |
| 24  | [FX10/FX100]   | Deleted MCA parameters mpi_deadlock_timeout and mpi_deadlock_timeout_delay                           |

- Math library compatibility
  - For details, ask your system administrator.

| No. | Target Machine | Item                                                         |
|-----|----------------|--------------------------------------------------------------|
| 1   | [FX100]        | Update of the BLAS header file cblas.h to the latest version |



## MPI Extension Functions and Data Types

MPI Extension Functions and Data Types

## **MPI Extension Functions and Data Types**



## Extension functions

| Function Name      | A64FX Behavior                                                         | FX700 Behavior                                                                         |
|--------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| FJMPI_Collection_* | Interval-specified MPI statistical information                         | Neither collects information nor displays results.                                     |
| FJMPI_Progress_*   | Promotes communication using assistant cores.                          | Does not allow communication and computing to overlap. (Same as not being called)      |
| FJMPI_Prequest_*   | Extended persistent<br>communication request                           | Works as a wrapper for MPI_Send_init, etc.                                             |
| FJMPI_Topology_*   | Obtains Tofu coordinates.                                              | Returns a value that simulates a 1-<br>dimensional Tofu job, based on the rank number. |
| FJMPI_Mswk_*       | Master-worker function                                                 | Same as the A64FX                                                                      |
| MPIX_*_init        | Preliminarily implements persistent collective communication requests. | Same as the A64FX                                                                      |

## • Data types

Half-precision data types are added.



## Endian

• <u>Endian</u>

## Endian



## Endian

| Node Type              | K Computer    | A64FX         |
|------------------------|---------------|---------------|
| Compute node           | Big endian    | Little endian |
| Login node (IA server) | Little endian | Little endian |

- Automatic conversion during execution (Fujitsu Fortran)
  - Using runtime options (-WI,-Tu\_num) in Fujitsu Fortran, you can input and output big-endian data.
  - Only one device number can be specified. If the device number is omitted, the target is all device numbers connected to the unformatted file.

89

#### Example: Runtime option (Device number = 10)

```
./a.out -WI,-T10
```

Example: Environment variable (Device number = 10)

```
export FORT90L="-WI,-T10"
./a.out
```



## **Acceleration With Compiler**

- <u>Prefetch</u>
- <u>SIMDization</u>
- <u>Software Pipelining</u>
- Loop Optimization and Instruction Scheduling
- Optimization for Loops
- <u>Automatic Parallelization</u>



## Prefetch

- <u>About Prefetch</u>
- Hardware Prefetch
- <u>Software Prefetch</u>
- Harmonization of Prefetch



## **About Prefetch**

- <u>What is Prefetch?</u>
- <u>About Prefetch</u>
- [Reference] What is Latency Masking?

## What is Prefetch?



Prefetch is a mechanism that raises performance by loading data into the cache before the data is required by an executed instruction.



The two types of prefetch are hardware prefetch and software prefetch.

#### • Hardware prefetch

Hardware prefetches data by predicting data access based on the regularity of memory access by programs.

The cache efficiency of a program may degrade significantly because data is also prefetched from areas not accessed by the program. In such cases, use software prefetch.



## About Prefetch (1/2)

- The A64FX supports the following new functions as hardware and software prefetch:
  - Hardware prefetch (HWPF)
    - Hardware prefetch distance setting function
    - Hardware stride prefetch function
  - Software prefetch (SWPF)
    - Automatic adjustment of the prefetch distance
    - SVE Gather prefetch instruction support
- By using these prefetch functions, you can mask data access latency to speed up application execution. (Latency masking)

94

## About Prefetch (2/2)



#### • Prefetch distance

Hardware prefetch and software prefetch perform data prefetching on the lines ahead as indicated below.

|                                                          | Hardware Prefetch |                |               | Software Prefetch                         |                     |  |  |
|----------------------------------------------------------|-------------------|----------------|---------------|-------------------------------------------|---------------------|--|--|
|                                                          | L1 Prefetch       | L2 Prefetch    |               | L1 Prefetch                               | L2 Prefetch         |  |  |
| FX100                                                    | 2 lines           | Up to 16 lines |               | 3 lines                                   | 15 lines            |  |  |
| A64FX                                                    | Up to 6 lines     | Up to 40 lines |               | Automatic                                 | Automatic           |  |  |
| The hardware prefetch distance can also be set by users. |                   |                | The or adjust | distance is automa<br>sted for software p | tically<br>refetch. |  |  |

 When tuning loop blocking or outer loop unrolling, be aware that the hardware prefetch may not work if the inner loop length decreases.

## [Reference] What is Latency Masking?



- Latency masking hides data access latency (period from a data transmission request until a response returns) by using prefetch. There are three types of data access: L1D cache, L2 cache, and memory. The prefetch target for latency masking is the L2 cache and memory.
- Data access latency measurement results from LMbench (at integer access)





## **Hardware Prefetch**

- Hardware Prefetch Behavior
- Hardware Prefetch Distance Setting Function
- Hardware Stride Prefetch Function

#### DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

## Hardware Prefetch Behavior

- Conditions of hardware prefetch behavior
  - Cause: 11 miss
  - L1 miss that proceeds sequentially by cache line

#### Algorithm of hardware prefetch behavior

- 1. A miss occurs on cache line A, resulting in registration of the lines A+1/A-1 as a new entry in a 16-entry FIFO queue called PFQ (prefetch queue). (Figure 1)
- 2. When the line A+1 is accessed in subsequent access, the result is a hit of the registered A+1 entry in PFQ, and the access is determined as ascending stream access. Then, HWPF begins in ascending order. Also, A+1 in PFQ is updated to A+2. (Figure 2)
- 3. After the above-described detection of stream access, L2 prefetch fetches 2 lines of data at a time to extend to 40 lines ahead. In the A64FX, L1 prefetch also fetches 2 lines of data at a time, like L2 prefetch, to extend to 6 lines ahead. (Figure 3)



Note: The numbers in the table represent lines. In byte representation, read 1 line as equal to 256 bytes.

Correspondence between PFO and prefetch addresses

| PFQ-hit | L2HWPF-ADRS         | L1PHWF-ADRS |
|---------|---------------------|-------------|
| A+ 1    | A+ 2, A+ 3          |             |
| A+ 2    | A+ 4, A+ 5          | A+ 2, A+ 3  |
| A+ 3    | A+ 6, A+ 7          | A+ 4, A+ 5  |
| A+ 4    | A+ 8, A+ 9          | A+ 6, A+ 7  |
| A+ 5    | A+10, A+11          | A+ 8, A+ 9  |
| A+ 6    | A+12, A+13          | A+10        |
| A+ 7    | - 7 A+14, A+15 A+11 |             |
| A+ 8    | + 8 A+16, A+17 A+12 |             |
| A+ 9    | A+18, A+19          | A+13        |
| A+10    | A+20                | A+14        |
| A+11    | A+21                | A+15        |
| A+12    | A+22                | A+16        |
| A+13    | A+23                | A+17        |
| A+14    | A+24                | A+18        |
| A+15    | A+25                | A+19        |

\* L2PF=10 lines ahead, L1PF=4 lines ahead



Functional extension on A64FX

## Hardware Prefetch Distance Setting Function

#### • Command (hwpfctl) for setting the hardware prefetch distance

| Item        | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Format      | <pre>hwpfctl [disableL1 ] [disableL2 ] [distL1 lines_l1 ] [distL2 lines_l2 ] [weakL1 ] [weakL2 ] [verbose]<br/>command {arguments}<br/>hwpfctldefault [verbose] command {arguments}<br/>hwpfctlreset [verbose]<br/>hwpfctlhelp</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Description | The hwpfctl command changes the behavior of the hardware prefetch (stream detect mode) mechanism mounted on the A64FX.<br>The CPU core to be changed is chosen based on process affinity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Option      | <ul> <li>disableL1</li> <li>disableL2</li> <li>Disables hardware prefetch on the L1/L2 cache. If omitted, hardware prefetch is enabled.</li> <li>distL1=lines_l1</li> <li>distL2=lines_l2</li> <li>Specifies the cache lines to prefetch on the L1/L2 cache. The prefetch of this number of cache lines starts on the cache line where a cache miss occurred. In lines_l1, you can specify a value from 1 to 15 lines to be prefetched on the L1 cache. In lines_l2, you can specify a value from 1 to 60 lines to be prefetched on the L2 cache. However, the value specified in lines_l2 is rounded up to a multiple of 4, which is then written to the system register. If 0 is specified, the behavior follows the default value of the CPU. If omitted or the specified value is invalid, 0 is assumed specified.</li> <li>weakL1</li> <li>weakL2</li> <li>Specifies "weak" for the priority of prefetch requests to the L1/L2 cache. If omitted, "strong" is assumed.</li> <li>default</li> <li>Runs the command with the default settings. Options other thanverbose are ignored.</li> <li>verbose</li> <li>Outputs the system register values before and after changes.</li> <li>help</li> <li>Displays instructions.</li> </ul> |

Example of using the command (hwpfctl) for setting the hardware prefetch distance

#### hwpfctl -distL1=6 -distL2=40 a.out

FUITSU

## **Hardware Stride Prefetch Function**



# The A64FX supports the <u>hardware stride prefetch function</u>. This function is an extension of the -Kprefetch\_stride option.

-K{prefetch\_stride[={soft|hard\_auto|hard\_always}]|prefetch\_nostride}

The option specifies whether to prefetch the array data accessed with an even longer stride than the line size of the cache used in a loop.

This includes loops with the addresses for prefetching not yet determined at the compile time.

If the -Kprefetch\_stride option is specified, the function is executed. If omitted, the -Kprefetch\_nostride option is applied.

If ={soft|hard\_auto|hard\_always} is omitted from -Kprefetch\_stride, the -Kprefetch\_stride=soft option is applied.

The -Kprefetch\_stride=soft option and -Kprefetch\_nostride option are valid when the -O1 option or higher is enabled.

The -Kprefetch\_stride=hard\_auto option and -Kprefetch\_stride=hard\_always option are valid when the -Khpctag option and -O1 option or higher are enabled.

100

-Kprefetch\_stride=soft Generate a prefetch instruction for prefetching.

-Kprefetch\_stride=hard\_auto

Use the hardware stride prefetcher for prefetching. If this option is specified, the hardware stride prefetcher is set to prefetch only data that is not on the cache.

#### -Kprefetch\_stride=hard\_always

Use the hardware stride prefetcher for prefetching. If this option is specified, the hardware stride prefetcher is set to always prefetch data, unlike the -Kprefetch\_stride=hard\_auto option.



## **Software Prefetch**

- <u>Automatic Adjustment of Prefetch Distance</u>
- [Reference] Prefetch Instructions Provided by A64FX
- Prefetch Options
- Prefetch Optimization Specifiers (OCL)

## Automatic Adjustment of Prefetch Distance



- What is automatic adjustment of the prefetch distance?
  - In general, the prefetch distance may be as long as the possible extent of latency masking.
  - However, a longer distance than required has the following negative effects:
    - Iterations near the start of loops that do not prefetch the referenced areas
    - Increase in the number of lines that should be cached concurrently
  - The appropriate prefetch distance varies by loop, according to the execution period and cache usage per iteration of the loop. Until now, if not specified by the user, the prefetch distance uses a longer fixed value, which could cause the abovedescribed negative effects.

The A64FX <u>heuristically determines the appropriate prefetch</u> <u>distance for every loop</u>, taking the following conditions into consideration, when no value is specified by the user:

- Number of streams
- Loop length
- \* The function for automatic adjustment of the prefetch distance works when the prefetch distance is not explicitly specified.

102

# [Reference] Prefetch Instructions Provided by A64FX

#### • Prefetch instructions provided by the A64FX

(1) ARMv8 prefetch instruction

Instruction used for sequential access: (1) ARMv8 prefetch instruction, and (2) SVE Contiguous prefetch instruction

Prefetch instruction supporting sequential load/store instructions (no consideration of prefetch across lines)



Prefetch instruction supporting sequential load/store instructions (consideration of prefetch across lines)



#### (3) SVE Gather prefetch instruction

Prefetch instruction supporting scattered access instructions (Gatin

Instruction used for indirect access: (3) SVE Gather prefetch instruction



## **Prefetch Options (1/3)**



| <b>Option Format</b>                                                                                | Functional Outline                                                                                                                                                                                                                                                                                       |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| -Knoprefetch                                                                                        | Specifies not to generate objects using a prefetch instruction.                                                                                                                                                                                                                                          |  |  |
| -Kprefetch_cache_level<br>= { 1   2   <u>all</u> }                                                  | Specifies which cache level to prefetch data to.                                                                                                                                                                                                                                                         |  |  |
| -K{ <u>prefetch_sequential</u> [=kind]<br>  prefetch_nosequential }<br>kind: { <u>auto</u>   soft } | Specifies whether to generate objects using a prefetch instruction for the array data used in a loop and accessed sequentially.                                                                                                                                                                          |  |  |
| -K{prefetch_stride<br>[={soft hard_auto hard_always}]<br> prefetch_nostride}                        | Specifies whether to prefetch the array data accessed with an even longer stride than the line size of the cache used in a loop. This includes loops with the addresses for prefetching not yet determined at the compile time. If the - Kprefetch_stride option is specified, the function is executed. |  |  |
| -K{ prefetch_indirect  <br>prefetch_noindirect }                                                    | Specifies whether to generate objects using a prefetch<br>instruction for the array data used in a loop and accessed<br>indirectly (list access). (This option is valid when the -O1 or<br>higher option is enabled.)                                                                                    |  |  |
| -K{ prefetch_conditional  <br>prefetch_noconditional }                                              | Specifies whether to generate a prefetch instruction for the array data used in the blocks included in an IF construct or CASE construct.                                                                                                                                                                |  |  |
| -K{ prefetch_infer  <br>prefetch_noinfer }                                                          | Specifies whether to generate a prefetch instruction for sequential access even if the prefetch distance is not known.                                                                                                                                                                                   |  |  |

## Prefetch Options (2/3)



| Option Format                                             | Functional Outline                                                                                                                                                                                                          |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -K{ <u>prefetch_strong</u>  <br>prefetch_nostrong }       | Specifies whether to generate a strong prefetch instruction when generating a prefetch instruction for the primary cache.                                                                                                   |
| -K{ <u>prefetch_strong_L2</u>  <br>prefetch_nostrong_L2 } | Specifies whether to generate a strong prefetch instruction when generating a prefetch instruction for the secondary cache.                                                                                                 |
| -Kprefetch_iteration=N<br>$1 \leq N \leq 10000$           | Specifies the target as the data referenced or defined after N cycles of a loop, when generating a prefetch instruction. For a loop with SIMDization applied, specify N as the number of loop iterations after SIMDization. |
| -Kprefetch_iteration_L2=N<br>$1 \leq N \leq 10000$        | Specifies the target as the data referenced or defined after N cycles of a loop, when generating a prefetch instruction. For a loop with SIMDization applied, specify N as the number of loop iterations after SIMDization. |
| -Kprefetch_line=N<br>1 ≤N ≤ 100                           | Specifies the target as the corresponding data prefetched N cache lines ahead, when generating a prefetch instruction .                                                                                                     |
| -Kprefetch_line_L2=N<br>$1 \leq N \leq 100$               | Specifies the target as the corresponding data prefetched N cache lines ahead, when generating a prefetch instruction.                                                                                                      |

## Prefetch Options (3/3)



| Option              | Usage Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| -Kprefetch indirect | Specify -Kprefetch_indirect in the following situation. Suppose you want to<br>output prefetch instructions like the optimization control line shown below.<br>Also, for list access, the array is written to the index like a(m(i)) in the<br>program below. However, the option may cause execution performance to<br>decrease depending on the cache efficiency of loops, the presence of<br>branches, or the complexity of the index.                                                                               |  |  |  |
|                     | $ \begin{array}{c c} do \ i=1,N & \\ & /^* \ \text{Outputs L2 prefetch instruction on } a(m(i+a)) \ */ \\ & /^* \ \text{Outputs L1 prefetch instruction on } a(m(i+\beta)) \ */ \\ & b(i) = b(i) + a(m(i)) \\ & enddo \end{array} $                                                                                                                                                                                                                                                                                     |  |  |  |
|                     | Specify -Kprefetch_stride in the following situation. Suppose you want to<br>output prefetch instructions like the following optimization control line. Also, in<br>stride access, the increment value for loops may be so large that the array<br>elements accessed in the current cycle and next cycle are not on the same<br>cache line as shown in the program below. However, the option may cause<br>execution performance to decrease depending on the cache efficiency of loops<br>or the presence of branches. |  |  |  |
| -Kprefetch_stride   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

## Prefetch Optimization Specifiers (OCL) (1/2)



| Optimization                      | Meaning                                                                                                                                                                                                                                                                        |   | Specifiable in Following Units on<br>Optimization Control Line? |       |                               |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------|-------|-------------------------------|--|
| Specifier                         |                                                                                                                                                                                                                                                                                |   | DO Loop                                                         | Stmt. | Array<br>Assignme<br>nt Stmt. |  |
| PREFETCH                          | Enables the automatic prefetch function of the compiler.                                                                                                                                                                                                                       | ~ | ~                                                               | х     | x                             |  |
| NOPREFETCH                        | Disables the automatic prefetch function of the compiler.                                                                                                                                                                                                                      |   | ~                                                               | х     | x                             |  |
| PREFETCH_CACHE_LEVEL<br>(c-level) | Specifies c-level, the cache level of the data to be prefetched.<br>c-level is 1, 2, or all.                                                                                                                                                                                   | ~ | ~                                                               | x     | ~                             |  |
| PREFETCH_INFER                    | Specifies that prefetch be output for sequential access even if the prefetch distance is not known.                                                                                                                                                                            | ✓ | ✓                                                               | x     | ✓                             |  |
| PREFETCH_NOINFER                  | Specifies that prefetch not be output for sequential access if the prefetch distance is not known.                                                                                                                                                                             | ~ | √                                                               | х     | ~                             |  |
| PREFETCH_ITERATION(n)             | Specifies the target as the data referenced or<br>defined after n cycles of a loop, when generating a<br>prefetch instruction.<br>n is a decimal number from 1 to 10,000.                                                                                                      | ~ | ~                                                               | x     | x                             |  |
| PREFETCH_ITERATION_L2(n)          | Specifies the target as the data referenced or<br>defined after n cycles of a loop, when generating a<br>prefetch instruction.<br>However, this function targets only the prefetch<br>instructions for secondary cache prefetching.<br>n is a decimal number from 1 to 10,000. | √ | ✓                                                               | x     | ✓                             |  |
# Prefetch Optimization Specifiers (OCL) (2/2)



| Optimization                                              | Meaning                                                                                                                                                                                                                           | Specifiable in Following Units on<br>Optimization Control Line? |         |       |                               |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------|-------|-------------------------------|
| Specifier                                                 |                                                                                                                                                                                                                                   | Progra<br>m                                                     | DO Loop | Stmt. | Array<br>Assignm<br>ent Stmt. |
| PREFETCH_READ<br>(name[,level={1 2}]<br>[,strong={0 1}])  | Specifies that prefetch instructions be generated for<br>the referenced data.<br>"name" is the name of an array element, "level" is<br>the cache level for prefetching, and "strong"<br>indicates whether to use strong prefetch. | x                                                               | x       | ✓     | x                             |
| PREFETCH_WRITE<br>(name[,level={1 2}]<br>[,strong={0 1}]) | Specifies that prefetch instructions be generated for<br>the defined data.<br>"name" is the name of an array element, "level" is<br>the cache level for prefetching, and "strong"<br>indicates whether to use strong prefetch.    | x                                                               | x       | V     | x                             |
| PREFETCH_SEQUENTIAL<br>[(AUTO SOFT)]                      | Specifies that prefetch instructions be generated for the array data accessed sequentially.                                                                                                                                       | √                                                               | ~       | х     | ~                             |
| PREFETCH_STRONG                                           | Specifies that prefetch instructions for the primary cache be generated as strong prefetch.                                                                                                                                       | √                                                               | ✓       | х     | ~                             |
| PREFETCH_NOSTRONG                                         | Specifies that prefetch instruction for the primary cache not be generated as strong prefetch.                                                                                                                                    | √                                                               | ✓       | х     | ~                             |
| PREFETCH_STRONG_L2                                        | Specifies that prefetch instructions for the secondary cache be generated as strong prefetch.                                                                                                                                     | √                                                               | ✓       | х     | ~                             |
| PREFETCH_NOSTRONG_L2                                      | Specifies that prefetch instructions for the secondary cache not be generated as strong prefetch.                                                                                                                                 | √                                                               | ✓       | х     | √                             |

108



# **Harmonization of Prefetch**

Harmonization of Hardware and Software Prefetch

# Harmonization of Hardware and Software Prefetch FUJITSU

HWPF does not occur in the cases described below. Complementation with SWPF can deliver optimum performance.

• Number of streams exceeds 16

-> This is automatically identified by the compiler for processing done without the user's knowledge.

- Block stride cases
  - Loop blocking (Effective for array replacement, matrix operation, etc.)
  - Unrolling in the outer loop
- Access by masked SIMD When masked SIMD accesses a stream having an if statement, the true rate of the if statement may not allow sequential access. In this case, HWPF does not occur.

"<u>Harmonization of Hardware and Software Prefetch</u>" means complementation with SWPF in cases where HWPF does not occur.



# **Built-in Prefetch**

• Built-in Prefetch

# **Built-in Prefetch**



Built-in prefetch is supported in C/C++ clang mode.

Specification method

\_builtin\_prefetch(\**addr, rw, localy*)

• *addr*: Specify the memory address to be prefetched.

*rw*: Specify the type of prefetch. For read prefetch, specify 0. For write prefetch, specify 1. *localy*: Specify 0 to 3.

112

For L1 cache prefetching, specify 3. For L2 cache prefetching, specify 2.



# SIMD Vectorization (SIMDization) (Single Instruction Multiple Data)

- Basic Principles of SIMDization
- Example of SIMDization of Consecutive Data
- <u>Confirmation of SIMDization</u>
- <u>SIMDizable Loops</u>
  - Assembler images from source code are used in descriptions of load/store and other instructions.

## **Basic Principles of SIMDization**



• <u>SIMD</u> (single instruction multiple data) Parallel processing of multiple operations by a single instruction

#### SIMD features of A64FX SVE

Supports SIMD widths of up to 512 bits Supports variable-length SIMD widths

Supports various accesses and operation instructions

Can execute two multiply-add operation instructions simultaneously on one core

With double-precision:

A single core can process 16<sup>\*</sup> operations simultaneously. \*8 SIMD width \* 2 arithmetic pipeline

Can process 32 single-precision operations simultaneously

Can SIMDize integer types too

Application-friendly SIMD and faster computational processing realized



## **Example of SIMDization of Consecutive Data**

FUJITSU

With data of the double-precision type



For the innermost loop of the array, <u>the 8 repeated array</u> <u>elements are SIMD ordered</u> and the number of execution instructions is decreased to 1/8 to speed up processing.

## **Confirmation of SIMDization**



#### Example of compiled information output



### **SIMDizable Loops**



- Loop characteristics required in compiler SIMDization
  - The number of loop iterations can be determined before entering a loop. (\*1)
  - No procedure/function is called inside a loop. (\*2)
  - No more than one exit of the loop.
  - No I/O statements in the loop.
  - Data definition or order of data references order does not differ from serial execution.

117

\*1 With SVE, this can also be a while loop.

\*2 In some cases, SIMDization is possible through inline expansion.



# **Software Pipelining**

- Basic Principles of Software Pipelining
- <u>Confirmation of Software Pipelining</u>

## **Basic Principles of Software Pipelining**



- Software pipelining improves instruction-level parallelism in a kernel loop by overlapping the current and next iterations of the loop.
- The descriptions of concepts assume the following machine model.

The loop that best represents the features of the program is called a kernel loop.



## **Confirmation of Software Pipelining**



Example of compiled information output





# Loop Optimization and Instruction Scheduling

- Order of Optimization
- <u>Unrolling Behavior</u>
- <u>Striping Behavior</u>
- Flow of Loop Optimization and Control

## **Order of Optimization**





- Optimization order and descriptions
  - SIMD
    - SIMDize.
  - Unrolling
    - Optimize by expanding all of the executable statements in a loop by n times within the loop and reducing the number of loop cycles to 1/n.
  - Striping
    - Optimize by expanding a specific number (stripe length) of executable statements in a loop. Forcibly exchange executable statements.
  - Software pipelining
    - Optimize by improving instruction-level parallelism in a kernel loop by overlapping the current and next iterations of the loop.
  - Local scheduler (Pre-scheduler)
    - Exchange instructions (scheduling) with consideration of instruction latency and the live ranges of registers.
  - Register allocation
    - Allocate the registers used by variables and arrays.
  - Local scheduler (Post-scheduler)
    - Exchange instructions (scheduling) with consideration of the instructions added (spills) in register allocation.

## **Unrolling Behavior**





• The descriptions of concepts assume the following machine model.

| Latency of load                          | 3 cycles          |
|------------------------------------------|-------------------|
| Latency of add                           | 3 cycles          |
| Latency of store                         | 1 cycle           |
| Number of load pipes                     | 2                 |
| Number of store pipes                    | 1                 |
| Number of concurrent instruction commits | 4<br>instructions |
|                                          |                   |









## **Striping Behavior**



**Conceptual image of instructions** 

#### • Behavior of striping (without SWPL)





## **Flow of Loop Optimization and Control**







# **Optimization for Loops**

- <u>About Loop Optimization</u>
- Loop Interchange
- Loop Fusion
- Loop Unrolling
- Loop Collapse

### **About Loop Optimization**



- Loop optimization
  - The table below lists typical loop optimization techniques automatically employed by the compiler.

| Type of Loop<br>Optimization/Transformation | Effect                                                                                          |
|---------------------------------------------|-------------------------------------------------------------------------------------------------|
| Loop interchange                            | <ul><li>Data localization</li><li>Parallelization of outer loops (Larger granularity)</li></ul> |
| Loop fusion                                 | <ul><li>Data localization</li><li>Improved instruction-level parallelism</li></ul>              |
| Loop unrolling                              | <ul><li>Fewer instructions</li><li>Improved instruction-level parallelism</li></ul>             |
| Loop collapse                               | <ul><li>Increased scheduling efficiency</li><li>Improved load balancing</li></ul>               |

### Loop Interchange

#### Purpose



- Data localization
  - Cache utilization efficiency increases with the adoption of sequential access to array b.

| Original Source                               | Source Showing Compiler Optimization          |
|-----------------------------------------------|-----------------------------------------------|
| double a[N][M];                               | double a[N][M];                               |
| const double b[N][N][M];                      | const double b[N][N][M];                      |
| void foo()                                    | void foo()                                    |
| {                                             | {                                             |
| int i, j, k;                                  | int i, j, k;                                  |
| for (j = 0; j < M; ++j) {                     | for (k = 0; k < N; ++k) {                     |
| for (k = 0; k < N; ++k) {                     | <pre>for (i = 0; i &lt; N; ++i) {</pre>       |
| for (i = 0; i < N; ++i) {                     | <pre>✓ for (j = 0; j &lt; M; ++j) {</pre>     |
| a[ k ][ j ] = a[ k ][ j ] + b[ k ][ i ][ j ]; | a[ k ][ j ] = a[ k ][ j ] + b[ k ][ i ][ j ]; |
| }                                             | }                                             |
| } Stride access                               | } Sequential access                           |
| }                                             | }                                             |
| }                                             | }                                             |

## **Confirmation of Loop Interchange**



#### Example of compiled information output (Loop interchange)



### **Loop Fusion**



#### Purpose

#### Data localization

Loop fusion enables reuse of array a.

#### Improved instruction-level parallelism

 Loop fusion improves instruction-level parallelism by increasing the number of instructions in a loop and scheduling the instructions.

| Original Source           | Source Showing Compiler<br>Optimization |
|---------------------------|-----------------------------------------|
| void sub()                | void sub()                              |
| {                         | {                                       |
| int i;                    | int i;                                  |
| for (i = 0; i < N; ++i) { | for (i = 0; i < N; ++i) {               |
| a[i] = b[i] + c[i];       | a[i] = b[i] + c[i];                     |
| }                         | d[i] = a[i] + e[i];                     |
| for (i = 0; i < N; ++i) { | }                                       |
| d[ i ] = a[ i ] + e[ i ]; | }                                       |
| }                         |                                         |
| }                         |                                         |

### **Confirmation of Loop Fusion**



Example of compiled information output (Loop fusion)



### **Loop Unrolling**



#### Purpose

#### Fewer instructions

- Loop unrolling decreases the number of loop iterations, which in turn reduces branch instructions.
- A general formula for reducing instructions is B[i+1]+b[i+2].
- Improved instruction-level parallelism
  - Increasing the number of instructions per cycle increases the scheduling capacity and thus improves instruction-level parallelism.

| Original Source                        | Source Showing Compiler Optimization |
|----------------------------------------|--------------------------------------|
| #define N 10000                        | #define N 10000                      |
| double a[N], b[N];                     | double a[N], b[N];                   |
| void sub()                             | void sub()                           |
| {                                      | {                                    |
| int i;                                 | int i;                               |
| for (i = 0; i < N-3; ++i) {            | double t;                            |
| a[ i ] = b[ i ] + b[ i+1 ] + b[ i+2 ]; | for (i = 0; i < N-3; i += 2) {       |
| }                                      | t = b[ i+1 ] + b[ i+2 ];             |
| }                                      | a[i] = b[i] + t;                     |
|                                        | a[ i+1 ] = t + b[ i+3 ];             |
|                                        | }                                    |
|                                        | }                                    |

### **Confirmation of Loop Unrolling**



Example of compiled information output (Loop unrolling)



### Loop Collapse



#### Purpose

- Increased software pipelining efficiency
  - Loop collapse increases the number of loop iterations to increase software pipelining efficiency.
- Improved load imbalancing
  - Loop collapse raises the likelihood of improved load balancing independently of the M value. For example, parallelization outside of the original source may have an adverse effect when the M value is 1, 2, or so on.

| Original Source           | Source Showing Compiler<br>Optimization |
|---------------------------|-----------------------------------------|
| double a[M][N], c;        | double a[M*N], c;                       |
| void sub()                | void sub()                              |
| {                         | {                                       |
| int i,j;                  | int i,j;                                |
| c=1.0;                    | <pre> c=1.0;</pre>                      |
| for (j = 0; j < M; ++j) { | for (ij = 0; ij < N*M; ++ij) {          |
| for (i = 0; i < N; ++i) { | a[ij] = a[ij] + c;                      |
| a[j][i] = a[j][i] + c;    | }                                       |
| }                         | }                                       |
| }                         |                                         |
| }                         |                                         |

### **Confirmation of Loop Collapse**



Example of compiled information output (Loop collapse)





# **Automatic Parallelization**

- Simple Loop Slice
- Loop Slice by Reduction
- Determination of Automatic Parallelization Possibility
- Verification of Automatic Parallelization
- <u>Pipeline Parallelism</u>

## **Simple Loop Slice**



Parallelization follows the allocation of loop indexes to multiple threads.



(Example with 2 threads)

 An environment variable (PARALLEL) specifies the number of parallel threads.

### **Loop Slice by Reduction**



Parallelization for preventing data contention



Note: A computation error may occur because the operation order differs from the sequential order.

If -Knoeval or -Knoreduction option is specified, parallelization is not possible.

### Determination of Automatic Parallelization Possibility



- The parallelization targets exclude the following cases:
  - (1) Loop with a low cost identified at the compile time
  - (2) Loop with a low cost identified at the execution time
    - $^{\ast}$  The compiler outputs dynamic control for parallelization only when the loop cost is high.

```
(1)
double a[N][N], b[N][N];
void sub() {
  for (int i = 0; i < 3; ++i) {
     for (int j = 0; j < 3; ++j) {
        a[i][j] = b[i][j] + 1.0;
     }
}
```

#### (2)

```
extern double a[3][3], b[3][3];
void sub(int n) {
  for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
        a[ i ][ j ] = b[ i ][ j ]+1.0;
        }
  }
}
```

## **Verification of Automatic Parallelization**





### **Pipeline Parallelism**



#### • Pipeline parallelism

i=3

i=0 to 9

i=2

j=10 to 19



Barrier

Barrier

141

i=0

j=30 to 39

i=1

j=20 to 29



# Debug Functions for Fortran and C/C++ Trad Mode

- Built-in debug function
- Debug function for abnormal termination
- <u>Hook function</u>

## **Built-in Debug Function (1/2)**



You can use the following built-in debug function with the C/C++ compiler.

| Compiler Option                      | -Nquickdbg                                                                                         |
|--------------------------------------|----------------------------------------------------------------------------------------------------|
| Test Item                            | subchk<br>heapchk                                                                                  |
| Output<br>Information                | <ul> <li>Error message</li> <li>Line number where error occurred</li> <li>Variable name</li> </ul> |
| Thread<br>Parallelization<br>Support | OpenMP and automatic parallelization supported                                                     |


#### Usage Specify the following compiler option.

-Nquickdbg [=subchk | heapchk | inf\_detail | inf\_simple]

- \$ fccpx -Nquickdbg test.c
  - If not specified, the subparameters assume the following values: -Nquickdbg=subchk -Nquickdbg=heapchk -Nquickdbg=inf\_detail
- Arguments (subparameters) for testing

| Argument | Test Description                                 |
|----------|--------------------------------------------------|
| subchk   | Checks of the range when referencing arrays      |
| heapchk  | Checks of memory release and out-of-bounds write |

• Arguments (subparameters) for displaying diagnostic messages

| Argument   | Displayed Content                                                      |
|------------|------------------------------------------------------------------------|
| inf_detail | Error message, line number, variable name                              |
| inf_simple | Error message, line number * Reduced impact on execution performance * |

## Debug Function for Abnormal Termination (1/2) FUJI

 If the program is terminated abnormally, you can output information from the execution time to help in investigating the cause.

| Compiler Option       | n                | -NRtrap                                                                                                                                                                                              |
|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Caught Signals        |                  | SIGILL(04): Incorrect instruction executed<br>SIGFPE(08): Arithmetic exception<br>SIGBUS(10): Storage protection exception<br>SIGSEGV(11): Segmentation exception<br>SIGXCPU(30): CPU time interrupt |
| Output<br>Information | General<br>Abend | <ul> <li>Signal number</li> <li>Signal code for the abend cause</li> <li>Detailed information of signal code</li> </ul>                                                                              |
|                       | SIGXCPU          | Message                                                                                                                                                                                              |

Instructions Specify the following compiler option.

#### -NRtrap

- \$ fccpx -NRtrap test.c
- Output information

| Signal No.        | Output Message                                                                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| SIGILL            | jwe0019i-u The program was terminated abnormally with signal number SSSSSSS.signal identifier = NNNNNNNNN,(Detailed information.)                 |
| SIGBUS<br>SIGSEGV | SSSSSSS: SIGILL, SIGBUS, or SIGSEGV<br>NNNNNNNNN: Signal code for the abend cause<br>(Detailed information.): Detailed information of signal code |
| SIGXCPU           | jwe0017i-u The program was terminated with signal number SIGXCPU.                                                                                 |

# Hook Function (1/2)



 You can use a user-defined function to check program behavior by calling the function from a specific point in the program.

| Compiler Option                           | -Nhook_func                                                                                                                                                                                                                                                                             |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| User-Defined<br>Function Name             | user_defined_proc                                                                                                                                                                                                                                                                       |
| User-Defined<br>Function<br>Arguments     | FLAG: Information on user-defined function call source<br>NAME: Function name at call source<br>LINE: Line number at call source<br>THREAD: Thread identification number<br>(for OpenMP/automatic parallelization)                                                                      |
| User-Defined<br>Function Call<br>Location | <ul> <li>Program entry/exit point</li> <li>Function entry/exit point</li> <li>If -Kopenmp or -Kparallel is enabled, you can call the function from the following location in addition to above:</li> <li>Parallel region (OpenMP/automatic parallelization) entry/exit point</li> </ul> |

# Hook Function (2/2)

#### Instructions

Specify the following compiler option.

### -Nhook\_func

- \$ fccpx -Nhook\_func test.c
- User-defined function format
  - Format

#include "fjhook.h"

void user\_defined\_proc(int \*FLAG, char \*NAME, int \*LINE, int \*THREAD)

### Arguments

| d function call source.                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1: Program exit point                                                                        | 2: Function entry point                                                                                                                                                                                                           | 3: Function exit point                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| it                                                                                           | 5: Parallel region exit                                                                                                                                                                                                           | point                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                              | 100: Available to users                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ame at the call source.                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| e referenced only wher                                                                       | n FLAG is 2, 3, 4, 5, or 100 o                                                                                                                                                                                                    | or higher.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| at the call source.                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| referenced only when                                                                         | FLAG is 2, 3, 4, 5, or 100 o                                                                                                                                                                                                      | r higher.                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| THREAD: Indicates the identification number of the thread calling the user-defined function. |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| arallelization)                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1 be referenced only w                                                                       | hen FLAG is 2, 3, 4, 5, or 10                                                                                                                                                                                                     | 0 or higher.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                              | ed function call source.<br>1: Program exit point<br>ame at the call source.<br>e referenced only when<br>r at the call source.<br>e referenced only when<br>ation number of the th<br>barallelization)<br>n be referenced only w | ed function call source.<br>1: Program exit point 2: Function entry point<br>nt 5: Parallel region exit<br>100: Available to users<br>ame at the call source.<br>e referenced only when FLAG is 2, 3, 4, 5, or 100 o<br>r at the call source.<br>e referenced only when FLAG is 2, 3, 4, 5, or 100 o<br>ation number of the thread calling the user-defined<br>barallelization)<br>n be referenced only when FLAG is 2, 3, 4, 5, or 100 |  |







# Large Page

- <u>About Large Page</u>
- Large Page Specifications
- <u>Environment Variables for Large Page Settings</u>
- Precautions (Side Effects) Related to Memory Usage
- Paging Policy of Large Page
- Lock Type of Large Page
- <u>Behavior of Large Page Shortage(Fugaku only)</u>

## **About Large Page**



- What is a large page?
  - Allocating memory (large page) with a larger page size than a normal page to applications handling data on a larger scale has the following effects:
    - Reduces the overhead incurred by the CPU address translation process
    - Improves memory access performance
  - In the A64FX system environment, the normal page size is 64 KiB, and the size available as a large page is 2 MiB.
    - You can set the following operations by setting environment variables:
      - Enabling/Disabling the large page allocation operation
      - Enabling/Disabling the large page allocation operation for the stack area
      - Selecting the paging method (page allocation trigger) for each memory area
    - The various page sizes that can be used with McKernel 32 MiB, 1 GiB, 16 GiB and etc.

\*For details, see Chapter 3 Large Page Library in the "Job Operation Software Enduser's Guide for HPC Extensions".

## Large Page Specifications



#### • Large page specifications

|                                     | MP10/FX10/<br>FX100                                 | A64FX          |                    |                                       |                                             |
|-------------------------------------|-----------------------------------------------------|----------------|--------------------|---------------------------------------|---------------------------------------------|
| Memory Area                         | Page<br>Size                                        |                |                    |                                       |                                             |
|                                     |                                                     | Normal<br>Page | Large Page<br>Base | Large Page<br>Base+Stack<br>(Default) | Paging<br>(Default is<br><u>Underlined)</u> |
| Text<br>(.text)                     | 8 KiB                                               | 64 KiB         | 64 KiB             | 64 KiB                                | -                                           |
| Static data<br>(.data)              |                                                     | 64 KiB         | 2 MiB              | 2 MiB                                 | Always<br>prepage                           |
| Static data<br>(.bss)<br>Stack (*1) | 4 MiB<br>(default),<br>8 KiB,<br>32 MiB,<br>256 MiB | 64 KiB         | 2 MiB              | 2 MiB                                 | demand  <br><u>prepage</u>                  |
|                                     |                                                     | 64 KiB         | 64 KiB             | 2 MiB                                 | <u>demand</u>  <br>prepage                  |
| Dynamic<br>memory (*2)              |                                                     | 64 KiB         | 2 MiB              | 2 MiB                                 | demand  <br>prepage                         |
| Shared memory                       |                                                     | 64 KiB         | 64 KiB             | 64 KiB                                | -                                           |

\*1 This covers the process stack/main thread stack/thread stack area.

\*2 This covers the process heap/main thread heap/thread heap/mmap area.



### • Basic settings/Paging method settings

| Environment<br>Variable Name | Specified Value<br>(Default is <u>Underlined)</u>                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XOS_MMM_L_HPAGE_TYPE         | <u>hugetlbfs</u>   none                                                                  | With this setting, select whether to enable or disable the operation of large page allocation using the large page library.<br>"hugetlbfs" enables large pages using HugeTLBfs.<br>"none" does not enable large pages using the large page library.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| XOS_MMM_L_LPG_MODE           | <u>base+stack</u>   base                                                                 | With this setting, select whether to enable or disable the operation of<br>large page allocation for the stack region and thread stack region.<br>"base+stack" enables large pages not only for the static data and<br>Dynamically allocated memory region but also for the stack region and<br>thread stack region.<br>"base" enables large pages only for the static data and dynamic<br>memory storage region. Large pages are not enabled for the stack<br>region and thread stack region.                                                                                                                                                                                                                                                                                                                                                                |
| XOS_MMM_L_PAGING_POLICY      | [demand   <u>prepage</u> ]:<br>[ <u>demand</u>   prepage]:<br>[demand   <u>prepage</u> ] | <ul> <li>With this setting, select the paging method (page allocation trigger) for each memory region.</li> <li>"demand" represents the demand paging method, and "prepage" represents the prepaging method. This variable specifies the paging method for three memory region delimited by a colon (:).</li> <li>The first specified method applies to the .bss region of static region. (This specified paging method does not cover the .data region of static data. "prepage" is always the value for this region.)</li> <li>The second specified method applies to the stack region and thread stack region.</li> <li>The third specified method applies to Dynamically allocated memory region.</li> <li>If a value not in the Specified Value column is specified, the respective value in "prepage: demand: prepage" is assumed specified.</li> </ul> |

### **Environment Variables for Large Page Settings (2/2)**



### • Settings for tuning (Environment variables specific to large pages)

| Environment<br>Variable Name       | Specified Value<br>(Default is <u>Underlined)</u>                                                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XOS_MMM_L_ARENA_<br>FREE           | <u>1</u>   2                                                                                                       | This setting relates to how to handle the heap area released by free(3).<br>Specify "1" to immediately release the memory that can be released. Specify "2" to never<br>release memory but instead pool all memory for reuse.                                                                                                                                                                                                                                                                              |
| XOS_MMM_L_ARENA_<br>LOCK_TYPE      | 0   <u>1</u>                                                                                                       | This setting relates to the memory allocation policy.<br>"0" means memory acquisition performance has priority. "1" means memory utilization<br>efficiency has priority.                                                                                                                                                                                                                                                                                                                                   |
| XOS_MMM_L_MAX_<br>ARENA_NUM        | Integer value between <u>1</u> and<br>INT_MAX<br>[decimal number]                                                  | Set the number of arenas that can be generated (total for the process heap area and thread heap area). This setting is enabled when XOS_MMM_L_ARENA_LOCK_TYPE=0.                                                                                                                                                                                                                                                                                                                                           |
| XOS_MMM_L_HEAP_S<br>IZE_MB         | Integer value between<br><u>MALLOC MMAP THRESHOLD x</u><br><u>2</u> and ULONG_MAX <mib><br/>[decimal number]</mib> | Set the size of memory acquired when generating and extending the thread heap area in order to use the thread heap area.                                                                                                                                                                                                                                                                                                                                                                                   |
| XOS_MMM_L_COLORI<br>NG             | 0   <u>1</u>                                                                                                       | With this setting, enable or disable cache coloring. Cache coloring mitigates L1 cache conflicts of the processor. "0" does not enable cache coloring. "1" enables cache coloring when the size of memory being acquired by mmap(2) is equal to or greater than MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).                                                                                                                                                                                                 |
| XOS_MMM_L_FORCE_<br>MMAP_THRESHOLD | <u>0</u>   1                                                                                                       | Set whether to prioritize mmap(2) when the size of memory being acquired is equal to or greater than MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).<br>"0" does not prioritize mmap(2). First, a search for free memory in the heap area returns any free memory found in the area. Then, mmap(2) acquires memory only when no free memory has been found in the heap area. "1" prioritizes mmap(2). Without a search for free memory in the heap area, mmap(2) acquires memory (in spite of any free memory). |

For details on environment variables (MALLOC\_MMAP\_THRESHOLD\_, etc.) for glibc , see the user's guide.



- Static data (.data) area
   Both side effects 1 and 2 always occur.
- Static data (.bss) area

If the following conditions are met, side effects 1 and 2 occur.

- a. The .dynsym section (dynamic section) has a symbol.
- b. The symbol has an address within the range of the bss area (bss\_start, bss\_end) of the main program.
- c. The symbol is global (STB\_GLOBAL) or weak (STB\_WEAK).
- d. The symbol type is variable (STT\_OBJECT).
- e. The size of the symbol is larger than 0.
- Side effects
  - 1. A large page may use double or triple the memory area.
  - 2. The prepaging method ("prepage") is the active method even when the demand paging method ("demand") is set for the static data (.bss) area in XOS\_MMM\_L\_PAGING\_POLICY.

# **Paging Policy of Large Page**



Since data comes from CMG0 in prepaging, performance cannot reach that of 48-thread streams. With the method changed to demand paging, data is put on the running CMG, and performance is significantly higher.

| Source                                                                                                                                                                                                                                |                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 14       Subroutine sub(n,iter,x1,x2,y1)         15       real(8) :: x1(n), x2(n), y1(n),c0         16       integer n,i,k         17       c0=2.0         18       19         19       call fapp_start("sub",0,0)         20       1 |                                                                                                                    |
| 21 1 !\$omp parallel do<br><<< Loop-information Start >>><br><<< [OPTIMIZATION]<br><<< SIMD(VL: 8)                                                                                                                                    | Memory throughput (GB/s)                                                                                           |
| <<< SOFTWARE PIPELINING(IPC: 2.45, ITR:                                                                                                                                                                                               | prepage (default) 93 GB/s                                                                                          |
| 128, MVE: 2, POL: S)<br><<< PREFETCH(SOFT) : 10<br><<< SEOUENTIAL : 10                                                                                                                                                                | demand 804 GB/s                                                                                                    |
| <<< x2: 4, x1: 4, y1: 2<br><<< ZFILL :<br><<< y1<br><<< Loop-information End >>>                                                                                                                                                      | Compiler option: -Kfast,openmp<br>-Kprefetch_sequential=soft -Kprefetch_line=9<br>-Kprefetch_line_L2=70 -Kzfill=18 |
| 22 2 p v do $i=1,n$<br>23 2 p v $y1(i) = x1(i) + c0 * x2(i)$<br>24 2 p v end do<br>25 1 enddo                                                                                                                                         |                                                                                                                    |
| 30 parameter(N=45000000,ITER=100)                                                                                                                                                                                                     |                                                                                                                    |
| 31         real*8 x1(N),x2(N),y1(N)         Stream (Data           32         call init(N,ITER,x1,x2,y1)         Stream (Data           33         call sub(N,ITER,x1,x2,y1)         GB)                                              | ita size: About 1                                                                                                  |
|                                                                                                                                                                                                                                       |                                                                                                                    |

# Lock Type of Large Page



malloc performance is higher when XOS\_MMM\_L\_ARENA\_LOCK\_TYPE=0 is specified. (Reduced execution time from 0.56 seconds to 0.35 seconds, a performance increase of 1.60 times)

|    |   |        | Source                                                                          |
|----|---|--------|---------------------------------------------------------------------------------|
| 1  |   |        | subroutine sub(n,m,iter,x1,x2,y2)                                               |
| 2  |   |        | integer(8) :: pZ1(iter)                                                         |
| 3  |   |        | real(8) :: x1(n), x2(n), y2(n,m),c0                                             |
| 4  |   |        | c0=2.0                                                                          |
| 5  |   |        | Isomp parallel do shared(n m iter v1 v2 c0 v2) private(n71 i i k) default(none) |
| 0  |   |        | <pre></pre>                                                                     |
|    |   |        | <<< [OPTIMIZATION]                                                              |
|    |   |        | <<< PREFETCH(HARD) Expected by compiler :                                       |
|    |   |        | <<< x1, x2, y2                                                                  |
|    |   |        | <<< Loop-information End >>>                                                    |
| 7  | 1 | р      | do k=1,m                                                                        |
|    |   |        | <<< Loop-information Start >>>                                                  |
|    |   |        | <<< [OPTIMIZATION]                                                              |
|    |   |        | PREFEICH(HARD) Expected by compiler :                                           |
|    |   |        | <<< (UNKNOWN)                                                                   |
| 8  | 2 | n      | s do i=1 iter                                                                   |
| 9  | 2 | Р<br>D | m $pZ1(i) = malloc(8 * n)$                                                      |
| 10 | 2 | p      | v end do                                                                        |
| 11 | 1 | •      |                                                                                 |
|    |   |        | <<< Loop-information Start >>>                                                  |
|    |   |        |                                                                                 |
|    |   |        | << SIMU(VL: 8)                                                                  |
|    |   |        | <<< DREFETCH(HARD) Expected by compiler :                                       |
|    |   |        |                                                                                 |
|    |   |        | <<< Loop-information End >>>                                                    |
| 12 | 2 | р      | 2v do i=1,n                                                                     |
| 13 | 2 | p      | $2v$ $y_2(i,k) = x_1(i) + c_0 * x_2(i)$                                         |
| 14 | 2 | р      | 2v end do                                                                       |
| 15 | 1 |        | and the form                                                                    |
| 16 | 2 | p      | s do $j=1,lter$                                                                 |
| 18 | 2 | p      | s and do                                                                        |
| 19 | 1 | P<br>n | end do                                                                          |
| 20 | - | Ρ      | end subroutine sub                                                              |
| 21 |   |        |                                                                                 |
| 22 |   |        | program main                                                                    |
| 23 |   |        | parameter(N=1048512,ITER=80)                                                    |
| 24 |   |        | real*8 x1(N),x2(N),y2(N,12)                                                     |
| 25 |   |        | call sub(N,12,ITER,x1,x2,y2)                                                    |
| 26 |   |        | ena program main                                                                |



### • XOS\_MMM\_L\_HUGETLB\_FALLBACK

- This setting specifies the behavior of large page shortage during malloc.
- [1] causes try allocating memory shortage with normal pages. If a normal page is unable to acquire memory to satisfy a malloc request, the process ends with out of memory. This setting is effective for programs that operate for normal page specification (XOS\_MMM\_L\_HPAGE\_TYPE=none) but fail to execute due to memory exhaustion for large page specification. By enabling this setting, it is possible to make the program work by using large pages as much as possible while compensating for the shortage with normal pages and increasing the amount of memory that can be obtained with malloc.
- [0] causes the process to terminate by out of memory when a large page shortage occurs. (Default)
- Note 1: The following settings are required to enable this setting. I. XOS MMM L HPAGE TYPE=hugetlbfs and
  - II. XOS\_MMM\_L\_PAGING\_POLICY=any:any:prepage and
  - III. XOS\_MMM\_L\_ARENA\_LOCK\_TYPE=1 and
  - IV. XOS\_MMM\_L\_MAX\_ARENA\_NUM=1

These four conditions are the default settings for the large page library and do not need to be explicitly specified unless otherwise specified.

• Note 2: When this setting is enabled (Specify 1), a mixed malloc area of normal page and large page is generated, but when this area is used as a communication buffer of Tofu, the whole area is managed as normal page on Tofu. Therefore, the communication performance when used as a communication buffer cannot be expected to be improved from the case of normal page specification.



# **Timers Supported by Fortran**

- <u>Timer Specifications</u>
- <u>Timer Precision</u>

# Timer Specifications (1/3)

### Specifications of the major timer routines

| С   | 0    |
|-----|------|
| FUJ | ITSU |

| No. | Routine Name                         | Function Format                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | What is<br>Measured                    | Returned<br>by Routine |
|-----|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|
| 1   | DATE_AND_TIMEb<br>uilt-in subroutine | Obtains the date and time.                                                                                                                                                            | CALL DATE_AND_TIME ( [ DATE , TIME , ZONE , VALUES ] )<br>DATE: Sets the current date in the CCYYMMDD format.<br>(CC: century, YY: year, MM: month, DD: day)<br>TIME: Sets the current time in the hhmmss.sss format.<br>(hh: hour, mm: minute, ss.sss: second)<br>ZONE: Sets the time zone offset from UTC in the shhmm format.<br>(s: sign, hh: hour, mm: minute)<br>VALUES(1): Year<br>VALUES(2): Month<br>VALUES(2): Month<br>VALUES(3): Day<br>VALUES(4): Time zone offset from UTC in minutes<br>VALUES(5): Hour<br>VALUES(6): Minute<br>VALUES(7): Second<br>VALUES(8): Millisecond | Current<br>date/time                   |                        |
| 2   | GETTIM<br>service subroutine         | Obtains the current time.                                                                                                                                                             | CALL GETTIM ( hour , minute , second , second1_100 )<br>hour: Sets the current hour.<br>minute: Sets the current minute.<br>second: Sets the current second.<br>second1_100: Sets the current hundredth of a second.                                                                                                                                                                                                                                                                                                                                                                       | Current time                           |                        |
| 3   | FDATE<br>service subroutine          | Obtains the current date and time by converting them to ASCII code.                                                                                                                   | CALL FDATE ( string )<br>string: Sets the current date and time in the order of day of the<br>week, month, day, time, and year.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current date and time                  |                        |
| 4   | ITIME<br>service subroutine          | Obtains the current hour, minute, and second.                                                                                                                                         | CALL ITIME ( ia )<br>ia(1): Sets the current hour.<br>ia(2): Sets the current minute.<br>ia(3): Sets the current second.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Current hour,<br>minute, and<br>second |                        |
| 5   | GETTOD<br>service subroutine         | Obtains the current real time. The real time<br>is the time in microseconds elapsed since a<br>specific time point in the past. Usually, it<br>represents the time since system boot. | CALL GETTOD ( g )<br>g: Sets the elapsed time in microseconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wall clock<br>time                     | Microsecond            |

# Timer Specifications (2/3)

### • Specifications of the major timer routines

| С   | Q    |
|-----|------|
| FUJ | ITSU |

| No. | Routine<br>Name                        | Routine Function Format                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | What is<br>Measured | Returned<br>by<br>Routine |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|
| 6   | GMTIME<br>service subroutine           | Obtains the specified system clock time information to<br>show the second, minute, hour, day, month, year, day<br>of the week, total number of days since January 1, and<br>observation of daylight saving time according to<br>Greenwich Mean Time. | CALL GMTIME ( time , t )<br>time: Specifies the system clock time.<br>The following array is set from the system clock time with the specified "time" value<br>according to Greenwich Mean Time:<br>t(1): Second<br>t(2): Minute<br>t(3): Hour<br>t(3): Hour<br>t(4): Day<br>t(5): Month<br>t(6): Total number of years since 1990<br>t(7): Total number of days since Sunday<br>t(8): Total number of days since January 1<br>t(9): The setting is 0 for standard time and 1 for daylight saving time. | Wall clock time     |                           |
| 7   | LTIME<br>service subroutine            | Obtains the specified system clock time information to<br>show the second, minute, hour, day, month, year, day<br>of the week, total number of days since January 1, and<br>observation of daylight saving time according to the<br>local time.      | CALL LTIME ( time , t )<br>time: Specifies the system clock time.<br>The following array is set from the system clock time with the specified "time" value<br>according to the local time:<br>t(1): Second<br>t(2): Minute<br>t(3): Hour<br>t(3): Hour<br>t(4): Day<br>t(5): Month<br>t(6): Total number of years since 1990<br>t(7): Total number of days since Sunday<br>t(8): Total number of days since January 1<br>t(9): The setting is 0 for standard time and 1 for daylight saving time.       | Wall clock time     |                           |
| 8   | omp_get_wtime<br>routine               | Obtains the current real time. The real time is the time<br>in seconds elapsed since a specific time point in the<br>past. Usually, it represents the time since system boot.                                                                        | y = omp_get_wtime ( )<br>y: Returns the elapsed time in seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wall clock time     | Second                    |
| 9   | SECNDS<br>service function             | Obtains the number of seconds by subtracting the value specified in the first argument from the number of seconds elapsed since midnight in the system clock time.                                                                                   | <ul> <li>y = SECNDS (sec )</li> <li>y: Returns the number of seconds obtained by subtracting the sec value from the number of seconds elapsed since midnight in the system clock time.</li> <li>sec: Specifies a value in seconds to subtract from the number of seconds elapsed since midnight in the system clock time.</li> </ul>                                                                                                                                                                    | Wall clock time     | Second                    |
| 10  | SYSTEM_CLOCK<br>built-in<br>subroutine | Obtains the total time elapsed since midnight. The total time is an elapsed time in seconds. Usually, it represents the time since system boot.                                                                                                      | CALL SYSTEM_CLOCK ( [ COUNT , COUNT_RATE , COUNT_MAX ] )<br>COUNT: Sets the time elapsed from midnight until the present time.<br>COUNT_RATE: Sets the rate of counting (=1000) per second by the processing system.<br>COUNT_MAX: Sets the maximum COUNT value (=86399999).                                                                                                                                                                                                                            | Wall clock time     | Millisecond               |
| 11  | RTC<br>service function                | Obtains the total number of seconds elapsed since 0:00 on January 1, 1970 in UTC.                                                                                                                                                                    | y = RTC ( )<br>y: Sets the total number of seconds elapsed since 0:00 on January 1, 1970.                                                                                                                                                                                                                                                                                                                                                                                                               | Wall clock time     | Second                    |

# Timer Specifications (3/3)

### Specifications of the major timer routines

| С   | 0    |
|-----|------|
| FUJ | ITSU |

| No. | Routine<br>Name                    | Function                                                                                                                                                                                                                                      | Format                                                                                                                                                                                                                                                                                      | What is<br>Measured                                                 | Unit Returned<br>by Routine                                                                            |
|-----|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 12  | TIME<br>service<br>function        | Obtains the time elapsed in seconds since 00:00:00 GMT (January 1, 1970).                                                                                                                                                                     | iy = TIME ( )<br>iy: Returns the elapsed time in seconds since 00:00:00 GMT<br>(January 1, 1970).                                                                                                                                                                                           | Wall clock time                                                     | Second                                                                                                 |
| 13  | TIMEF<br>service<br>function       | Returns the elapsed time since the last called TIMEF service function.                                                                                                                                                                        | $\gamma$ = TIMEF ( ) y: Returns the elapsed time since the last executed TIMEF service function.                                                                                                                                                                                            | Wall clock time                                                     | Second                                                                                                 |
| 14  | TIMER<br>service<br>subroutine     | Obtains the time elapsed in hundredths of seconds since midnight.                                                                                                                                                                             | CALL TIMER( ix ) ix: Sets the time elapsed in hundredths of seconds since midnight.                                                                                                                                                                                                         | Wall clock time                                                     | Second                                                                                                 |
| 15  | CLOCK<br>service<br>subroutine     | Obtains the CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads.                                                 | CALL CLOCK (g, i1, i2)<br>g: Sets the CPU time in the unit specified in i1.<br>i1: Specifies the unit (second, millisecond, microsecond) for<br>the return value.<br>i2: Specifies the type of the variable specified in g.                                                                 | CPU time used by<br>current processes and<br>their internal threads | Any of following units<br>depending on<br>specification:<br>- Second<br>- Millisecond<br>- Microsecond |
| 16  | CLOCKM<br>service<br>subroutine    | Obtains the CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads.                                                 | CALL CLOCKM ( i )<br>i: Sets the CPU time in milliseconds.                                                                                                                                                                                                                                  | CPU time used by<br>current processes and<br>their internal threads | Millisecond                                                                                            |
| 17  | CLOCKV<br>service<br>subroutine    | Obtains the CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads. The routine is compatible with vector machines. | CALL CLOCKV (g1,g2,i1,i2)<br>g1: Always sets 0. * VU time is set in vector machines.<br>g2: Sets the CPU time in the unit specified in i1.<br>i1: Specifies the unit (second, millisecond, microsecond) for<br>the return value.<br>i2: Specifies the type of the variable specified in g2. | CPU time used by<br>current processes and<br>their internal threads | Any of following units<br>depending on<br>specification:<br>- Second<br>- Millisecond<br>- Microsecond |
| 18  | CPU_TIME<br>built-in<br>subroutine | Obtains the CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads.                                                 | CALL CPU_TIME ( TIME )<br>TIME: Sets the CPU time in seconds.                                                                                                                                                                                                                               | CPU time used by<br>current processes and<br>their internal threads | Second                                                                                                 |
| 19  | DTIME<br>service<br>function       | Obtains the CPU time from the last called DTIME service function. The CPU time represents the time used by the processes executing the program and all their internal threads.                                                                | <ul> <li>y = DTIME (tm)</li> <li>y: Returns the CPU time since the last called DTIME service function.</li> <li>tm(1): Sets the user CPU time in seconds.</li> <li>tm(2): Sets the system CPU time in seconds.</li> </ul>                                                                   | CPU time used by<br>current processes and<br>their internal threads | Second                                                                                                 |
| 20  | ETIME<br>service<br>function       | Obtains the CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads.                                                 | <ul> <li>y = ETIME (tm)</li> <li>y: Returns the CPU time elapsed since the execution start of an executable program.</li> <li>tm(1): Sets the user CPU time in seconds.</li> <li>tm(2): Sets the system CPU time in seconds.</li> </ul>                                                     | CPU time used by<br>current processes and<br>their internal threads | Second                                                                                                 |
| 21  | SECOND<br>service<br>function      | Obtains the user CPU time elapsed since the execution start of an executable program. The CPU time represents the time used by the processes executing the program and all their internal threads.                                            | y = SECOND()<br>y: Returns the user CPU time in seconds elapsed since the execution start of an executable program.                                                                                                                                                                         | CPU time used by<br>current processes and<br>their internal threads | Second                                                                                                 |

# Timer Precision (1/2)

### • Precision of the major timer routines (Timer overhead)

| No. | Routine Name                         | Precision<br>Resolution                           | Overhead<br>(µs)                        | Thread<br>Safe | Implementation                                                                           | GCC<br>Overhead<br>(µs) | Fujitsu/G<br>CC                           | Remarks                             |
|-----|--------------------------------------|---------------------------------------------------|-----------------------------------------|----------------|------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------|-------------------------------------|
| 1   | DATE_AND_TIME<br>built-in subroutine | 1/1,000,000                                       | 77.37<br>(Improved<br>version)<br>47.27 | V              | gettimeofday<br>localtime                                                                | 163.13                  | 0.47                                      |                                     |
| 2   | GETTIM<br>service subroutine         | 1/1,000,000                                       | 38.37                                   | √              | gettimeofday<br>localtime                                                                |                         |                                           |                                     |
| 3   | FDATE<br>service subroutine          | 1/1,000,000                                       | 18.58                                   | V              | time<br>ctime_r                                                                          | 78.71                   | 0.24                                      |                                     |
| 4   | ITIME<br>service subroutine          | 1/1,000,000                                       | 36.07                                   | V              | time<br>localtime                                                                        | 69.27                   | 0.52                                      |                                     |
| 5   | GETTOD<br>service subroutine         | 1/100,000,000                                     | 0.02                                    | V              | arm asm instruction<br>time stamp counter<br>gmtime_r<br>localtime_r                     |                         |                                           | Resolution: Value of (1/cntfrq_el0) |
| 6   | GMTIME<br>service subroutine         |                                                   | 5.72                                    | V              | gmtime_r                                                                                 | 58.21                   | 0.10                                      |                                     |
| 7   | LTIME<br>service subroutine          |                                                   | 10.81                                   | ~              | localtime_r                                                                              | 67.59                   | 0.16                                      |                                     |
| 8   | omp_get_wtime<br>routine             | FJOMP:<br>1/100,000,000<br>libomp:<br>1/1,000,000 | 1.00                                    | √              | FJOMP:<br>arm asm instruction time stamp<br>counter<br>libomp: gettimeofday<br>localtime | 6.05                    | 0.17                                      | Resolution: Value of (1/cntfrq_el0) |
| 9   | SECNDS<br>service function           | 1/1,000,000                                       | 49.05                                   | √              | gettimeofday<br>localtime                                                                | 77.31                   | 0.63                                      |                                     |
| 10  | SYSTEM_CLOCK<br>built-in subroutine  | 1/100,000,000                                     | 20.98<br>(Improved<br>version)<br>1.42  | V              | arm asm instruction<br>time stamp counter                                                | 5.23                    | 4.01<br>(Improve<br>d<br>version)<br>0.27 | Resolution: Value of (1/cntfrq_el0) |
| 11  | RTC<br>service function              | 1/1,000,000                                       | 5.21                                    | √              | time                                                                                     |                         |                                           |                                     |

ĨTSU

FU

# Timer Precision (2/2)

### • Precision of the major timer routines (Timer overhead)

| No. | Routine Name                       | Precision<br>Resolution | Overhead<br>(µs) | Thread<br>Safe | Implementation            | GCC<br>Overhead<br>(µs) | Fujitsu/G<br>CC | Remarks |
|-----|------------------------------------|-------------------------|------------------|----------------|---------------------------|-------------------------|-----------------|---------|
| 12  | TIME<br>service function           | 1/1,000,000             | 5.28             | V              | time                      | 5.03                    | 1.05            |         |
| 13  | TIMEF<br>service function          | 1/1,000,000             | 7.26             | V              | time                      |                         |                 |         |
| 14  | TIMER<br>service<br>subroutine     | 1/1,000,000             | 49.85            | V              | gettimeofday<br>localtime |                         |                 |         |
| 15  | CLOCK<br>service<br>subroutine     | 1/1,000,000             | 12.82            | V              | getrusage                 |                         |                 |         |
| 16  | CLOCKM<br>service<br>subroutine    | 1/1,000,000             | 13.70            | V              | getrusage                 |                         |                 |         |
| 17  | CLOCKV<br>service<br>subroutine    | 1/1,000,000             | 14.12            | V              | getrusage                 |                         |                 |         |
| 18  | CPU_TIME<br>built-in<br>subroutine | 1/1,000,000             | 18.09            | V              | getrusage                 | 5.39                    | 3.36            |         |
| 19  | DTIME<br>service function          | 1/1,000,000             | 14.12            | ~              | getrusage                 | 10.20                   | 1.38            |         |
| 20  | ETIME<br>service function          | 1/1,000,000             | 13.33            | ~              | getrusage                 | 9.37                    | 1.42            |         |
| 21  | SECOND<br>service function         | 1/1,000,000             | 14.27            | V              | getrusage                 | 5.91                    | 2.41            |         |

ĬTSU

FU



# Main Entry Names in Compiler Runtime Library

Main Entry Names in Compiler Runtime Library

### Main Entry Names in Compiler Runtime Library



| Entry Name | Functional Outline                                                                                 |
|------------|----------------------------------------------------------------------------------------------------|
| jwe_c      | Module called from the compiler (check routine, Fortran multi-phase processing, etc.)              |
| jwe_ca     | COARRAY                                                                                            |
| jwe_d      | Intrinsic debugging, quick debugging                                                               |
| jwe_e      | Error processing of the runtime library                                                            |
| jwe_f      | Internal routine such as for operations and type conversion called from inside the runtime library |
| jwe_hook   | HOOK function                                                                                      |
| jwe_i      | Fortran IO processing                                                                              |
| jwe_o      | Parallel processing (mainly, OpenMP)                                                               |
| jwe_p      | Parallel processing (parallel control, automatic parallelization)                                  |
| jwe_s      | Processing module of the Fortran service routine                                                   |
| jwe_t      | Runtime information output function                                                                |
| jwe_x      | Runtime library control (initialization, end, exception, area management, etc.)                    |
| mpc        | C/C++ (trad mode) OpenMP                                                                           |
| f_         | Fortran function (transformational function, array function, query function, etc.)                 |
| g_         | Floating-point math operation-related function                                                     |
| plvla      | mfunc=1                                                                                            |
| vm_        | mfunc=2                                                                                            |
| V          | mfunc=3                                                                                            |
| omp_       | OpenMP routine                                                                                     |
| kmp_       | LLVM OpenMP                                                                                        |



# Variations in Elapsed Time of Operation Region

- <u>Causes of Variations in Elapsed Time of Operation Region</u>
  - <u>Effects of Node OS Jitter</u>
  - Latency Due to Differences in L2 Cache Access Latency
  - Performance Impact Due to Directory Path Name Change



- A variation in the elapsed time may occur in some cases, even for the same arithmetic processing. The potential causes are as follows:
  - (1) Latency due to node OS jitter
  - (2) Use of other CMG memory
    - ->The memory used may span across CMGs.

This is primarily due to the use of dynamic libraries.

- (3) Difference in the accessed array address (physical address)
- (4) Execution timing fluctuations due to an OoO operation
  - -> Bias of operation pipeline a or b, load and store pipeline control, etc.
- (5) Differences in L2 cache access latency
- (6) Performance impact due to a directory path name change

(1), (5), and (6) are explained on the subsequent pages.

# **Effects of Node OS Jitter**



- The Fugaku/FX1000 contain assistant cores in the CPUs. The result is fewer OS jitter than in the FX700.
- The following graphs show the aggregate results of executing FWQ using 48 cores (48 threads) in the node.



### Latency Due to Differences in L2 Cache Access Latency

| <ul> <li>Acquisition of L1D latency</li> <li>After quanties on all the grant in the CDU (12 threads)</li> </ul>                                                                                                                                                                                                                                                                                                                      | Execution result                                                                                                                                                                                         | <b>CS</b> Process 1 delayed in evaluation environment                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x 4 MPI execution), performance events were acquired                                                                                                                                                                                                                                                                                                                                                                                 | Process 0                                                                                                                                                                                                | Process 1                                                                                                                                                                                                |
| using the fapp command. The average latency of the L1D cache miss processing of each core was calculated from the following formula.                                                                                                                                                                                                                                                                                                 | Core 12: 60.3<br>Core 13: 61.4<br>Core 14: 61.4                                                                                                                                                          | Core 24: 67.2<br>Core 25: 50.2<br>Core 26: 68.6                                                                                                                                                          |
| <ul> <li>Latency formula</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | Core 15: 60.2<br>Core 16: 61.8<br>Core 17: 59.6                                                                                                                                                          | Core 27: 67.8<br>Core 28: 50.3<br>Core 29: 68.5                                                                                                                                                          |
| Average latency of L1D cache miss processing<br>= L1_MISS_WAIT / L1D_CACHE_REFILL                                                                                                                                                                                                                                                                                                                                                    | Core 18: 61.9<br>Core 19: 60.7 About 7<br>Core 20: 63.1 than slo                                                                                                                                         | Core 30: 53.8<br>% slower<br>West core<br>Core 31: 68.8<br>Core 32: 54.9                                                                                                                                 |
| * Source: A64FX Microarchitecture Manual<br>Validation code                                                                                                                                                                                                                                                                                                                                                                          | Core 21: 62.8 In Other<br>Core 22: 63.3<br>Core 23: 66.3                                                                                                                                                 | Core 33: 69.7<br>Core 34: 59.3<br>Core 35: 71.0                                                                                                                                                          |
| 39 !\$omp parallel                                                                                                                                                                                                                                                                                                                                                                                                                   | Process 2                                                                                                                                                                                                | Process 3                                                                                                                                                                                                |
| <pre>&lt;&lt;&lt; Loop-information Start &gt;&gt;&gt; &lt;&lt;&lt; [OPTIMIZATION] &lt;&lt;&lt; PREFETCH(HARD) Expected by compiler : &lt;&lt;&lt; x2, x1, y &lt;&lt;&lt; Loop-information End &gt;&gt;&gt; 40 1 DO j = 1, iter 41 1 !\$omp do &lt;&lt;&lt; Loop-information Start &gt;&gt;&gt; &lt;&lt;&lt; [OPTIMIZATION] &lt;&lt;&lt; SIMD(VL: 8) &lt;&lt;&lt;&lt; SOFTWARE PIPELINING(IPC: 3.25, ITR: 144, MVE: 4, POL: S) </pre> | Core 36: 60.3<br>Core 37: 61.5<br>Core 38: 61.5<br>Core 39: 60.2<br>Core 40: 61.8<br>Core 41: 59.6<br>Core 42: 61.9<br>Core 43: 60.7<br>Core 44: 63.1<br>Core 45: 62.8<br>Core 46: 63.3<br>Core 47: 66.3 | Core 48: 60.3<br>Core 49: 61.4<br>Core 50: 61.4<br>Core 51: 60.2<br>Core 52: 61.8<br>Core 53: 59.6<br>Core 54: 61.8<br>Core 55: 60.7<br>Core 56: 63.1<br>Core 57: 62.7<br>Core 58: 63.3<br>Core 59: 66.3 |
| 42       2       p       2v       DO i = 1, n         43       2       p       2v $y(i)=x1(i) + c0 * x2(i)$ 44       2       p       2v       ENDDO         45       1       !\$omp end do nowait         46       1       ENDDO         47       !\$omp end parallel                                                                                                                                                                | Apparent different betwee                                                                                                                                                                                | ence in latency<br>n cores                                                                                                                                                                               |

FUJITSU



address

The stack is used from high addresses to low addresses. The figure on the left shows the arrangement on the stack at application execution. The order is environment variables (env1 to envM), then arguments (arg1 to argN), and then local variables.

## Impact on performance

Changing the directory path name for a load module location or adding an environment variable at load module execution can have an impact on performance during execution of the load module.

## Cause of performance irregularities

Changing a directory path name or adding an environment variable at load module execution may cause the location address of a local variable defined within a function (located in the stack region) to shift.

## Causes of shifting location addresses on stack

The set environment variables are different for each type of shell. The following explanation uses /bin/bash for an example. The following three environment variables are special:

 PWD
 Name of the current working directory

 OLDPWD
 Name of the current working directory before a move by the cd command

 \_\_\_\_\_\_
 Load module path name

The shifting of location addresses for the above three environment variables has the following six causes.

- 1. A full or relative path name has been specified for the execution of a load module, and the path name is set as is for the "\_" environment variable.
- 2. Only the load module file name has been specified for the execution of a load module, and the load module path name is complemented by the PATH environment variable. However, the full path name is set for the "\_" environment variable.
- 3. When the cd command moves to a directory, the OLDPWD environment variable is set to the directory name before the move. The directory moved to by the cd command is set to the PWD environment variable.
- 4. For the above reasons, if the load module is specified with the full path name or if the full path name of the load module is complemented by the PATH environment variable, the addresses of arguments shift slightly. As a result, the addresses of local variables of functions called from the main function also shift.
- 5. Also, changing the length of the full path name will change the length of the full path name of the load module set in the "\_" environment variable. In turn, the length of the string stored as an environment variable increases, and the addresses of local variables of functions called from the main function shift.
- 6. When the cd command moves from the current directory before load module execution, a special environment variable called "OLDPWD" is set. In turn, the addresses of local variables of functions called from the main function shift.

## Performance Impact Due to Directory Path Name Change (3/3) FUITSU

#### Operation check results on actual device

(1) Load module placed directly under root (/)

(2) Load module placed directly under the root home directory (/root) (16-byte shift relative to (1))

(3) Load module placed in the load module storage directory of root (/root/bin). The full path name is complemented by the PATH environment variable. (16-byte shift relative to (1))

(4) Load module placed in the os directory (/root/os) directly under the root home directory (/root). The load module is executed with a relative path after a move to /root/os. (32-byte shift relative to (1))

| (1) Load module placed directly under root (/)                                                                                                        | (2) Load module placed directly under the root nome directory (700t)                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # /hellomodule4 1 2 3 4                                                                                                                               | # /root/hellomodule4 1 2 3 4                                                                                                                                                     |
| hello, function call arg=function call argument address: 0x0000fffffffea68                                                                            | hello, function call arg=function call argument address: 0x0000fffffffea58                                                                                                       |
| hello, function call local world: 0x0000fffffffea90                                                                                                   | hello, function call local world: 0x0000fffffffea80                                                                                                                              |
| hello, main argc=5: 0x0000fffffffeaec                                                                                                                 | hello, main argc=5: 0x0000fffffffeadc                                                                                                                                            |
| hello, main initialized function local world: 0x0000fffffffeaf0                                                                                       | hello, main initialized function local world: 0x0000fffffffeae0                                                                                                                  |
| hello, main not initialized local world: 0x0000fffffffeb30                                                                                            | hello, main not initialized local world: 0x0000fffffffeb20                                                                                                                       |
| hello, /hellomodule4: 0x0000fffffffef61                                                                                                               | hello, /root/hellomodule4: 0x0000fffffffef52                                                                                                                                     |
| hello, 1: 0x0000fffffffef6f                                                                                                                           | hello, 1: 0x0000fffffffef65                                                                                                                                                      |
| hello, 2: 0x0000fffffffef71                                                                                                                           | hello, 2: 0x0000fffffffef67                                                                                                                                                      |
| hello, 3: 0x0000fffffffef73                                                                                                                           | hello, 3: 0x0000fffffffef69                                                                                                                                                      |
| hello, 4: 0x0000fffffffef75                                                                                                                           | hello, 4: 0x0000fffffffef6b                                                                                                                                                      |
| hello, _=/hellomodule4: 0x0000fffffffffda                                                                                                             | hello, _=/root/hellomodule4: 0x0000ffffffffd0                                                                                                                                    |
| (3) Load module placed in the load module storage directory of root (/root/bin). The full path name is complemented by the PATH environment variable. | (4) Load module placed in the os directory (/root/os) directly under the root home directory (/root). The load module is executed with a relative path after a move to /root/os. |
| # nellomodule4 1 2 3 4                                                                                                                                | # cd os                                                                                                                                                                          |
| hello, function call arg=runction call argument address: 0x0000111111ea58                                                                             | # ./hellomodule4 1 2 3 4                                                                                                                                                         |
| hello, main arge-Et 0x00000000000000000000000000000000000                                                                                             | hello, function call arg=function call argument address: 0x0000fffffffea48                                                                                                       |
| hello, main arge=3. 0x0000mmedue                                                                                                                      | hello, function call local world: 0x0000fffffffea70                                                                                                                              |
| hello, main initialized local world: 0x00000mmedeo                                                                                                    | hello, main argc=5: 0x0000fffffffeacc                                                                                                                                            |
| hello, hellomodule4: 0x00000ffffffef50                                                                                                                | hello, main initialized function local world: 0x0000fffffffead0                                                                                                                  |
| hello, 1: 0x0000ffffffffef5d                                                                                                                          | hello, main not initialized local world: 0x0000fffffffeb10                                                                                                                       |
| hello, 2: 0x0000ffffffffef5f                                                                                                                          | hello, ./hellomodule4: 0x0000fffffffef4e                                                                                                                                         |
| hello, 3: 0x0000ffffffffef61                                                                                                                          | hello, 1: 0x0000fffffffef5d                                                                                                                                                      |
| hello, 4: 0x0000fffffffef63                                                                                                                           | hello, 2: 0x0000fffffffef5f                                                                                                                                                      |
|                                                                                                                                                       | hello, 3: 0x0000fffffffef61                                                                                                                                                      |
| hello, _=/root/bin/hellomodule4: 0x0000ffffffffc8                                                                                                     | hello, 4: 0x0000fffffffef63                                                                                                                                                      |
|                                                                                                                                                       |                                                                                                                                                                                  |
|                                                                                                                                                       | hello, _=./hellomodule4: 0x0000fffffffffcb                                                                                                                                       |
|                                                                                                                                                       | hello, OLDPWD=/root: 0x0000ffffffffdc                                                                                                                                            |

# **Revision History**



#### • Revision History

| Version | Date         | Details                                                                                                                                                                                                                                                                                                                                        |  |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.1     | May 14, 2020 | - First published                                                                                                                                                                                                                                                                                                                              |  |
| 1.2     | Sep 30, 2020 | <ul> <li>Correcting typographical errors and<br/>expressions by reviewing articles</li> </ul>                                                                                                                                                                                                                                                  |  |
| 1.3     | Mar 31, 2021 | <ul> <li>Correcting typographical errors and<br/>expressions by reviewing articles</li> </ul>                                                                                                                                                                                                                                                  |  |
| 1.4     | Aug. 2021    | <ul> <li>Fixing differences by increasing the number of software versions, and correcting typographical errors and expressions by reviewing articles</li> <li>Added "Behavior of Large Page Shortage(Fugaku only)" page</li> <li>Added shared libraries information for "LLVM OpenMP Library and Fujitsu OpenMP Library (2/2)" page</li> </ul> |  |
| 1.5     | Jul. 2022    | <ul> <li>Correcting typographical errors and<br/>expressions by reviewing articles</li> </ul>                                                                                                                                                                                                                                                  |  |
| 1.6     | Mar. 2023    | <ul> <li>Correcting typographical errors and<br/>expressions by reviewing articles</li> </ul>                                                                                                                                                                                                                                                  |  |



DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED