
V1.4

Aug 2021

FUJITSU LIMITED

Programming Guide
(Processors)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED0

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

Introduction
◼ This document puts together the

information about the features and
microarchitecture of the A64FX processor,
as well as its basic performance data,
from the viewpoint of application
developers and tuning engineers.

◼ Refer to the following in conjunction with
this document.

◼ Fortran User’s Guide

◼ C User’s Guide

◼ C++ User’s Guide

◼ Profiler User's Guide

◼ Programming Guide(Programming common
part)

◼ Programming Guide(Tuning)

◼ Programming Guide(Fortran)

◼ The following abbreviation is used in
this document:
◼ A64FX Logic Specifications

◼ A64FX ® Microarchitecture Manual

◼ ARM® Architecture Reference Manual
(ARMv8 , ARMv8.1 , ARMv8.2 , ARMv8.3)

◼ ARM® Architecture Reference Manual Supplement
The Scalable Vector Extension

◼Trademarks
◼ Linux® is a trademark or registered trademark of

Linus Torvalds in the United States and other
countries.

◼ Red Hat is a trademark or registered trademark of
Red Hat Inc. in the United States and other countries.

◼ ARM is a trademark or registered trademark of ARM
Ltd. in the United States and other countries.

◼ Proper names such as the product name mentioned
are trademark or registered trademark of each
company.

◼ Trademark symbols such as ® and ™ may be
omitted from system names and product names in
this document.

◼Revision History

Version Date Details

1.1 May 14, 2020 - First published

1.2 Sep 30, 2020
- Correcting typographical errors and
expressions by reviewing articles

1.3 Mar 31, 2021
- Correcting typographical errors and
expressions by reviewing articles

1 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Contents

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ A64FX Processor Overview

◼ A64FX Processor Overview

◼ A64FX Processor Specifications

◼ L2 Cache Size Available to Applications

◼ Microarchitecture

◼ Prefetch

◼ SFI (Store Fetch Interlock)

◼ PMU Events

◼ Large Page

◼ Sector Cache

◼ High-Speed Store (Zfill)

◼ Data Access Alignment Constraints

◼ Verification of Out-of-Order (OoO) Execution

◼ SIMD Width

◼ Power Control

◼ Basic Kernel Performance

◼ Evaluation Environment and Conditions

◼ Arithmetic Operations/Square Root

◼ Mathematical Function Performance

◼ Other Basic Operation Kernel Evaluations

◼ Access Performance

◼ Throughput Performance

◼ Performance by Data Type

◼ Performance Impact by Alignment Changes

◼ Memory Copy Performance

◼ Inter-CMG Performance

◼ OpenMP Overhead Evaluation

22

◼ A64FX Processor Overview
◼ A64FX Processor Specifications
◼ Interconnect “Tofu Interconnect D“ Overview

A64FX Processor Overview

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED3

A64FX Processor Overview (1/3)

◼High-performance, high-efficiency CPU using Arm SVE

◼Double precision operation performance: 3.072 TFLOPS@2 GHz,
90+%@DGEMM

◼Memory bandwidth: 1024 GB/s, 80+%@STREAM Triad

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

A64FX

ISA
(Base, extension)

Armv8.2-A, SVE

Process technology 7 nm

Double precision
peak performance

3.072 TFLOPS@2 GHz

SIMD Width
512-bit
256-bit/128-bit supported as

well

Number of cores 48 + 4

Memory size 32 GiB (HBM2 x4)

Memory bandwidth 1024 GB/s

PCIe Gen3 16 lanes

Interconnect TofuD(*) integrated

HBM2

HBM2

HBM2

HBM2

TofuD
Controller

PCIe
Controller

N
e

tw
o

rk
 o

n
 C

h
ip

CMG (Core Memory Group)
specification
13 cores
L2 Cache 8 MiB
Memory 8 GiB, 256 GB/s

TofuD
28 Gbps x 2 lanes x 10 ports

I/O
PCIe Gen3 16 lanes

(*1) Tofu interconnect D

4

A64FX Processor Overview (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ The A64FX processor (hereinafter referred to as the A64FX) is designed for
high performance computing (HPC). It is an out-of-order execution super-
scalar processor compliant with the ARMv8-A profile architecture and the
Scalable Vector Extension for ARMv8-A.
The A64FX adopts several distinctive architectures for HPC.

◼ Scalable Vector Extension

The A64FX supports the Scalable Vector Extension (SVE), which is a vector
extension of the ARM Instruction Set Architecture.

◼ Core Memory Group

The A64FX has groups called Core Memory Groups (CMGs) in it, each consisting
of 13 processor cores, an independent L2 cache, and an independent memory
controller.
The processor has four CMGs and uses the Non-Uniform Memory Access (NUMA)
architecture for inter-CMG access.

◼ Sector cache

This function virtually partitions the cache in units of ways, making it possible to
specify the sector that can be used at the instruction level. A program can
specify a sector by using tagged addresses.
The L1 cache has two 4-partition groups, and the L2 cache has two 2-partition
groups.

5

A64FX Processor Overview (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Hardware barrier

This function allows hardware to support synchronization between
software processes or threads. It enables high-speed synchronization
without any memory operation.
A hardware barrier is effective only within a CMG. Synchronization
between CMGs is achieved using a software barrier.

◼Hardware prefetch assist

This function allows a program to control the behavior of hardware
prefetch. The program can give information to the hardware prefetch
mechanism using the system register and tagged addresses.

◼High Bandwidth Memory

High Bandwidth Memory Gen2 (HBM2) is used as the main memory
to provide high memory bandwidth.

6

A64FX Specifications

Item Specification

Number of processor cores 52 (13 cores / CMG)

Number of CMGs 4

L1I cache size 64KiB / 4way

L1D cache size 64KiB / 4way

L2 cache size 32MiB / 16way (8MiB / CMG)

Cache line size 256B

Memory size 32GiB(8GiB/CMG)

Interconnect Tofu Interconnect D

I/O PCI-Express Gen3 16 Lanes

Instruction set architecture ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3 (*1), SVE

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

(*1) ARMv8.3 supports only complex number support instructions.

7

A64FX Specifications : Bandwidth and Latency

A64FX Remarks

Frequency [GHz] 2.0

Number of CPUs/node 1

Number of computing cores/node 48

Number of CMGs/node 4

Memory size/node [GiB] 32

Cache size

L1 [KiB/core] 64(instruction)+64(data)

L2 [MiB/CMG] 8

Note: In the case of a node
with an assistant core, an
application is considered to
use 7 MB/14 ways.

Cache latency [cycle]
L1

5 (EX, short)
8 (FL, short)

11 (FL, long)

L2 37 to 47 Average 42

Cache bandwidth
[B/cycle/core]

L1 When hit: 128

L2 42.7

Operation performance per
node (per core) [GFlops]

Double precision
Single precision
Half precision

3072 (64)
6144 (128)

12288 (256)

Basic operation latency
[cycle]

Integer add instruction
Integer mult instruction
FMA instruction

1
5
9

Memory latency [ns] 150

Theoretical memory bandwidth per node (per CMG) [GB/s] 1024(256)

Inter-CMG bandwidth 128 GB/s × 2 (two ways)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED8

A64FX Specifications : Others

A64FX Remarks

Maximum number of decodes per cycle 4

Hardware prefetch queue 16

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED9

Interconnect “Tofu Interconnect D“(TofuD) Overview

◼ An interconnect controller is integrated in the CPU.
◼ The number of TNIs has been increased to achieve higher injection

bandwidth and flexible communication patterns.

◼ The barrier resources have also been increased to enable the implementation
of flexible collective communication algorithms.

◼ The memory bypass technology enables low-latency
communication.
◼ Direct descriptor and cache injection

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

TofuD spec

Data rate 28.05 Gbps

Link bandwidth 6.8 GB/s

Injection bandwidth 40.8 GB/s

Measured

Put throughput 6.35 GB/s

PingPong latency 0.49 to 0.54 µs

c
c
c
c

c c
c
c

c
c
c
cc

NOC

HBM2

CMG
c
c
c
c

c c
c
c

c
c
c
cc

HBM2

CMG

c
c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG

c
c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG

PCle

A64FX

TNI0

TNI1

TNI2

TNI3

TNI4

TNI5 T
o

fu
 N

e
tw

o
rk

 R
o

u
te

r

2
la

n
e

s
 ×

1
0

 p
o

rt
s

TofuD

10

L2 Cache Size Available to Applications

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L2 Cache Size Available to Applications

◼ Verification: Performance Based on the Presence
of an Assistant Core

11

L2 Cache Size Available to Applications

◼ In a CMG including an assistant core, part of the L2 cache (two
ways = 1 MiB) is used for the assistant core.
Therefore, when a CMG includes an assistant core, the space of the
L2 cache available to a user program is 7 MiB.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

CMG2
(8MiB)

CMG3
(8MiB)

CMG0
(7MiB)

CMG1
(7MiB)

c
c
c

c c
c
c

c
c
c
cc

NOC

HBM2
CMG 2

c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG 3

c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG 0

c
c
c

c c
c
c

c
c
c
cc

HBM2
CMG 1

Assistant core Assistant corec c

In case of a computing node

12

Verification: Performance Based on the Presence of
an Assistant Core

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ lmbench performance (2.0 GHz)

◼ Results of measuring data access latency using CMG0 lmbench (integer access)

L1D

Cache

Memory

The data size (5 to 9 MiB) at which the
change from L2 cache access to memory
access occurred was obtained for each CMG.

The change from L2 cache access to memory
access occurs more quickly in the CMGs that
include assistant cores (CMG0 and CMG1).

L2

Cache

◼ Care needs to be exercised in cases where tuning is performed, such as
when blocking is done taking the L2 cache size into consideration. (The
reference value of L2 cache size is slightly less than 7 MiB.)

◼ Under the CPU specifications, the L2
cache size per CMG is 8 MiB.
However, the cache size must be
considered 7 MiB when the application is
running.

13

◼ Prefetch
◼ SFI
◼ PMU Events
◼ Large Page
◼ Sector Cache
◼ High-Speed Store (zfill)

◼ Data Access Alignment
Constraints

◼ Verification of Out-of-Order
Execution

◼ SIMD Width
◼ Power Control

Microarchitecture

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED14

◼ About Prefetch

◼ Hardware Prefetch
Operation

◼ Prefetch Distance Setting
Command

◼ Prefetch Distance Verification

◼ Hardware Prefetch
Evaluation Using an Actual

Application (NICAM)

◼ Prefetch Instructions
Provided by the A64FX

◼ Prefetch Collaboration
Between Hardware and
Software

◼ Prefetch Collaboration
Verification

Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED15

About Prefetch (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ The A64FX supports the following new functions as hardware and
software prefetch:

◼Hardware prefetch (HWPF)

•Hardware prefetch distance setting function

•Hardware stride prefetch function

◼ Software prefetch (SWPF)

•Automatic adjustment of the prefetch distance

•SVE Gather prefetch instruction support

◼ By using these prefetch functions, you can mask data access
latency to speed up application execution. (Latency masking)

16

About Prefetch (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Prefetch distance
Hardware prefetch and software prefetch perform data
prefetching on the lines ahead as indicated below.

◼ When tuning loop blocking or outer loop unrolling, be aware that
the hardware prefetch may not work if the inner loop length
decreases.

Hardware Prefetch Software Prefetch

L1 Prefetch L2 Prefetch L1 Prefetch L2 Prefetch

FX100 2 lines Up to 16 lines 3 lines 15 lines

A64FX Up to 6 lines Up to 40 lines Automatic Automatic

The hardware prefetch distance
can also be set by users.

The distance is automatically
adjusted for software prefetch.

17

[Reference] What is Latency Masking?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Latency masking hides data access latency (period from a data
transmission request until a response returns) by using prefetch. There
are three types of data access: L1D cache, L2 cache, and memory. The
prefetch target for latency masking is the L2 cache and memory.

◼ Data access latency measurement results from LMbench (at integer access)

1.00

10.00

100.00

1000.00

0.00 0.02 0.05 0.16 0.44 7.00 72.00

L
a
te

n
c
y
 (

n
s
)

Data size (MiB)

L1D cache

L2 cache

Memory

18

Hardware Prefetch Operation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Hardware prefetch conditions

◼ The prefetch is triggered by missing L1.

◼ The L1 miss continues to be repeated on a cache line basis.

◼ Operation algorithm of hardware prefetch
1. If cache line A is missed, line A+1/A-1 is newly registered in a 16-entry FIFO

(queue) called a PFQ (prefetch queue). (Figure 1)

2. When subsequent access is made to line A+1 and hits A+1 registered in the PFQ, it
is considered ascending order stream access. From this point on, HWPF begins in
the ascending order direction. Also, A+1 in the PFQ is updated to A+2. (Figure 2)

3. After the above stream access is detected, the L2 prefetch is extended up to 40
lines ahead by prefetching the data of two lines at a time. In the A64FX, the L1
prefetch is also extended up to six lines ahead by prefetching the data of two lines
at a time, as in the L2 prefetch. (Figure 3)

PFQ-hit L2HWPF-ADRS L1PHWF-ADRS

A+ 1 A+ 2, A+ 3

A+ 2 A+ 4, A+ 5 A+ 2, A+ 3

A+ 3 A+ 6, A+ 7 A+ 4, A+ 5

A+ 4 A+ 8, A+ 9 A+ 6, A+ 7

A+ 5 A+10, A+11 A+ 8, A+ 9

A+ 6 A+12, A+13 A+10

A+ 7 A+14, A+15 A+11

A+ 8 A+16, A+17 A+12

A+ 9 A+18, A+19 A+13

A+10 A+20 A+14

A+11 A+21 A+15

A+12 A+22 A+16

A+13 A+23 A+17

A+14 A+24 A+18

A+15 A+25 A+19

◼ Overview of prefetch

◼ Correspondence between PFQ
and prefetch addresses

Figure 1 Figure 2 Figure 3

Note) The numbers in the table
represent lines. In byte notation, 1
line must be regarded as 256 bytes.

+1 /- 1

L1 miss

A PFQ - miss

A

entry

PFQ

:

+1

L1 miss

A+2 L2 prefetch

A+3 L2 prefetch

A+1

change

L2PF

PFQ

:

+1

A+3 L1 prefetch

A+4 L2 prefetch

A+5 L2 prefetch

A+2

change

PFQ

:

A+2,
A+3

L1PFL2PFL1PF L2PF

A+4,

A+5

A+2

L1PF

L1 miss

A+1 / A-1 A+1 -> A+2 A+2 -> A+3
A+1 PFQ - hit A+2 PFQ - hit

A+2 L1 prefetch

A+3

* L2PF = 10 lines ahead, L1PF = 4 line ahead

19

◼ Provision of the hardware prefetch distance setting command (hwpfctl)

◼ Use example of the hardware prefetch distance setting command (hwpfctl)

Hardware Prefetch Distance Setting Command

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Item Description

Format

hwpfctl [--disableL1] [--disableL2] [--distL1 lines_l1] [--distL2 lines_l2] [--weakL1] [--weakL2] [--verbose]
command {arguments ...}

hwpfctl --default [--verbose] command {arguments ...}
hwpfctl --reset [--verbose]
hwpfctl –help

Explanati
on

The hwpfctl command changes the behavior of hardware prefetch (stream detect mode) provided in the A64FX.
The CPU core to be changed by this command is determined by process affinity.

Option(s)

--disableL1
--disableL2

Disables hardware prefetch for the L1/L2 cache. If these options are omitted, hardware prefetch is enabled.
--distL1=lines_l1
--distL2=lines_l2

Specify the lines of the L1/L2 cache to be prefetched, by using the number of cache lines counted from the missed cache
line. In lines_l1, you can specify a value from 1 to 15 as the number of lines of the L1 cache to be prefetched. Likewise, in
lines_l2, you can specify a value from 1 to 60 as the number of lines of the L2 cache to be prefetched. Note that the value
specified in lines_l2 is rounded up to a multiple of 4 when written to the system register. If you specify 0, the command
behaves assuming the default value of the CPU. If these options are omitted or an invalid value is specified, 0 is assumed.

--weakL1
--weakL2

Specify that the priority of the L1/L2 cache prefetch request is weak. If these options are omitted, the priority is strong.
--default

Starts the command using the default settings. The options other than --verbose are ignored.
--reset

Initializes the system register values. The options other than --verbose are ignored.
--verbose

Outputs the values before and after the system register is changed.
--help

Shows how to use this command.

hwpfctl –distL1=6 –distL2=40 a.out

20

Prefetch Distance Verification: Conditions

◼ Measurement conditions for prefetch performance evaluation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Pattern

Verification code - Triad L2 cache access (L1 prefetch distance evaluation)
- Triad memory access (L2 prefetch distance evaluation)

Prefetch distance to
be evaluated

Hardware prefetch distance and software prefetch distance (strong)
- L1 prefetch: 3 to 10 lines ahead
- L2 prefetch: 10, 15, 20, 25, 30, 35, or 40 lines ahead

(In L1, the default is 6 for HWPF and automatic for SWPF (4 for Triad).)

Cores to be
measured

12 cores (CMG0)

Translation option -Kfast
For software prefetch evaluation:
-Kprefetch_sequential=soft -Kprefetch_line=? -Kprefetch_line_L2=?

Access range The conditions for the Triad code evaluation are as follows.
-- Double precision operation arrays must be used.
-- bss must be used.
-- Number of innermost loop iterations, array size (n)

- L1 prefetch evaluation: 174720 (The total size of the arrays to be accessed is half the L2
cache size.)

- L2 prefetch evaluation: 10485120 (The total size of the arrays to be accessed is 30 times
the L2 cache size.)

* Each array is 256 byte aligned.

-- Number of outer loop iterations (iter)
- L1 prefetch evaluation: 10000
- L2 prefetch evaluation: 3000

21

672.6
698.0 696.1 690.5

661.1
638.7

623.4
606.6

704.9
728.1 724.9 720.4 717.6 715.0 714.6 711.1

300.0

350.0

400.0

450.0

500.0

550.0

600.0

650.0

700.0

750.0

3line 4line 5line 6line 7line 8line 9line 10line 3line 4line 5line 6line 7line 8line 9line 10line

Hardware prefetch Software prefetch

Prefetch distance and throughput (Triad on L2)

◼ L1 prefetch distance evaluation
using Triad (L2 cache access)

Prefetch Distance Verification: L1 Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Performance when the distance is not specified

Best value

!$omp parallel

Do j = 1, iter

!$omp do

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

!$omp end do nowait

End Do

!$omp end parallel

Triad

22

150.4

161.6 159.9 159.8 159.5 159.1 159.2
161.4 161.0 159.9 159.9 159.9 159.9 159.9

100.0

110.0

120.0

130.0

140.0

150.0

160.0

170.0

10line 15line 20line 25line 30line 35line 40line 10line 15line 20line 25line 30line 35line 40line

Hardware prefetch Software prefetch

Prefetch distance and throughput (Triad on memory)

Prefetch Distance Verification: L2 Prefetch

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L2 prefetch distance
evaluation using Triad
(memory access)

Performance when the distance is not specified

Best value

* The throughput does not include that of the data read from those cache lines to which data is written.

!$omp parallel
Do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
End Do

!$omp end parallel

Triad

23

42.9
43.1

42.3

41.0

41.5

42.0

42.5

43.0

43.5

44.0

16 20 24 28 32 36 40 44 48 52 56 60

[Seconds] L2 prefetch distance change (operation interval execution
time)

L1=6(Not specified) L1=3

Hardware Prefetch Evaluation Using an Actual
Application (NICAM)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Evaluation by hardware prefetch distance adjustment
The hardware prefetch distance adjustment function was used to do
performance evaluation with an actual application (NICAM).

Performance
improvement of

approx. 2%

42.8

43.1

41.0

41.5

42.0

42.5

43.0

43.5

44.0

44.5

45.0

1 2 3 4 5 6 7 8 9 10 11 12

[Seconds] L1 prefetch distance change (operation interval execution
time)

◼ L1 prefetch distance evaluation
As the L2 prefetch distance, the initial
value (40) was used. The fastest value
was obtained when L1 was 3.

◼ L2 prefetch distance evaluation
First, as the L1 prefetch distance, the
initial value (6) was used. It was
confirmed that high speed was achieved
at short distances (16 to 32).
Next, based on the L1 prefetch distance
evaluation, measurement was conducted
at short distances, with 3 specified as L1.
An improvement of approx. 2% was
confirmed.

24

Prefetch Instructions Provided by the A64FX (ISA)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Prefetch instructions provided by the A64FX
① ARMv8 prefetch instruction

Prefetch instruction corresponding to the contiguous load / store instructions

(without considering the prefetching across lines)

② SVE contiguous prefetch instruction

Prefetch instruction corresponding to the contiguous load / store instructions
(considering the prefetching across lines)

③ SVE gather prefetch instruction

Prefetch instruction corresponding to discrete access instructions

(gather/scatter)

256 bytes 256 bytes 256 bytes 256 bytes

256 bytes 256 bytes 256 bytes 256 bytes

If the data to be prefetched spans two
lines, only the data of the first line is

prefetched.

If the data to be prefetched spans two
lines, the data of the two lines is

prefetched.

256 bytes

256 bytes 256 bytes

The (1) ARMv8 prefetch instruction and
(2) SVE contiguous prefetch instruction

are used for contiguous access.

256 bytes 256 bytes 256 bytes

256 bytes 256 bytes 256 bytes 256 bytes

The (3) SVE gather prefetch
instruction is used for indirect access.

25

Prefetch Collaboration Between Hardware and
Software

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

HWPF may not be generated in the cases below.

Complementing hardware prefetch with software prefetch
achieves ideal performance.

◼ There are more than 16 streams.

◼ Block stride

◼ Loop blocking (effective for array replacement, matrix operation, etc.)

◼ Unrolling of an outer loop

◼ Access by masked SIMD
When a stream in an if statement is accessed, hardware prefetch
may not be generated depending on the true rate of the if
statement, preventing contiguous access from occurring.

The term “collaboration” means that
software prefetch complements the
prefetching process in case
hardware prefetch is not generated.

26

Prefetch Collaboration Verification (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Evaluation of the case when there are more than 16 streams

If the innermost loop has more than 16 streams, software prefetch
complements part of the prefetching process (collaboration).
Software prefetch handles as many streams as the total number of
streams minus 16 (when there are 20 streams, software prefetch handles
four).
This is automatically recognized by the compiler and done transparently
to the user.

- Evaluation cases verified
(1) HWPF only

A case of execution is evaluated where prefetching is performed only by HWPF without SWPF complementing
the process even when there are more than 16 streams.

There is the possibility that the PFQ size may become insufficient, making sufficiently effective prefetching
difficult.
In a program like a short loop, the startup of HWPF may become remarkable.

(2) SWPF only
A case of execution is evaluated where all prefetching is performed by software prefetch.
An increase in the number of instructions may have an adverse effect, potentially preventing the
performance from being improved.

(3) HWPF + SWPF (default for the compiler)
A case of execution is evaluated where SWPF complements the prefetching process when there are more
than 16 streams.

27

2.707

1.803 1.756

0

0.5

1

1.5

2

2.5

3

HWPF only SWPF only HWPF+SWPF

[ms] Execution of 3 threads for 20 streams

1.03

0.924

0.862

0

0.2

0.4

0.6

0.8

1

1.2

HWPF only SWPF only HWPF+SWPF

[ms] Execution of 12 threads for 20 streams

Prefetch Collaboration Verification (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Execution results
Three threads are executed
to evaluate a state in which

there is a memory
bandwidth bottleneck
(latency bottleneck).

It is considered that, since
more streams than allowed
by the prefetch queue size
are handled, the dm miss is
caused by the access
rejected by the prefetch
queue. There is a memory

bandwidth
bottleneck.
(Memory throughput:
206.5 GB/sec) The case of HWPF + SWPF achieves the

fastest value as expected.

do k = 1, iter iter=3 n=323323
!$omp parallel do

do i = 1, n
y(i) = ((((((((x1(i) &

*c0 +x2(i)) *c1 +x3(i)) *c2 +x4(i)) *c3 +x5(i)) &
*c4 +x6(i)) *c5 +x7(i)) *c6 +x8(i)) *c7 +x9(i))

y2(i) = ((((((((x11(i) &
*c0 +x12(i)) *c1 +x13(i)) *c2 +x14(i)) *c3 +x15(i)) &
*c4 +x16(i)) *c5 +x17(i)) *c6 +x18(i)) *c7 +x19(i))

end do
end do

28

◼ About SFI

◼ Causes of Excessive SFI and SFI Precheck

◼ Explanation of Measurement Cases

◼ Excessive SFI Prevention by the Compiler

SFI (Store Fetch Interlock)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED29

About SFI

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ SFI (Store Fetch Interlock)

◼ This is a control mechanism that applies an interlock so that, when the address of
the preceding store instruction is identical to that of the succeeding load
instruction, load is not executed before store.

◼ Basically, the interlock is applied only to the address where store is executed.

◼ Excessive SFI
Excessive SFI occurs in the following cases. (Details will be given later.)

• In the case of masked SIMD, the addresses whose mask judgment results are 0
(do not store) are also locked.

•When the gathering function of Gather Load is activated, the SFI target to be
checked by Gather Load becomes the cache lines (all included entries).
Actually, there may be cases where the SFI of an address for which load is not
executed is detected to determine whether the address is locked.

◼ The occurrence of SFI can be checked based on the CPU analysis
report.

This can be prevented by the compiler. (A case of such
prevention will be described later.)

30

Causes of Excessive SFI and SFI Precheck

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Cause Description of excessive SFI Related application

Predicate mask = 0
SFI also applies to the store of an entry whose predicate mask is
0.

ADVENTURE

Gather Load instruction aggregation
When the Gather Load instruction activates the aggregation
function, the SFI check target becomes the cache lines.

GENESIS

Load instruction for access across a 4-KB
boundary

In the case of a load instruction for access across a 4-KB
boundary, the SFI check is always performed on bits 11 to 0 of
the physical address.

Addresses not aligned on the 4-B
boundary in all SIMD entry sizes

The SFI check is always performed with the data length aligned
on the 4-B boundary.

Multiple structure instruction

- The SFI check target becomes the cache lines.
(Entry size: 4 B/8 B)
- Even if VL is 0 or 1, the SFI check target for store is the same
as when VL is 3.
(Entry size: 1 B/2 B)

◼ Causes of SFI precheck

Cause Description of SFI precheck Related application

When the preceding store
instruction exists in the pipeline

When the preceding store instruction exists in the
pipeline, the SFI precheck is performed on bits 11 to
0 of the physical address.

on L1$ array access

When the preceding store
instruction misses L1D$

The SFI precheck is performed on bits 11 to 0 of the
physical address until the store data arrives at L1D$.
The load instruction is not entered again until after
the arrival of the store data.

◼ Causes of excessive SFI

31

◼ Excessive SFI when the Mask Value
of the Access Instruction is 0

◼ Excessive SFI when the Gather
Load Instruction Aggregation
Function Makes the Cache Lines
the SFI Check Target

◼ Excessive SFI when the SIMD
Address is Not on the 4-B
Boundary

◼ Excessive SFI when the Load
Instruction Calls for Access Across
a 4-KB Boundary

◼ Excessive SFI for Multiple Structure

◼ Causes of SFI Precheck

◼ Simple Cases when the Mask Value
is 0

◼ Impact on Performance when the
Mask Value is 0

Explanation of Measurement Cases

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED32

Excessive SFI when the Mask Value of the Access
Instruction is 0

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

for (jBlock = 0; jBlock < iBlock; jBlock++) {

for (iv = 0; iv < 6; iv++){

double v_j = vector2[jBlock][iv];

double m_i0_j = OffDiagComponents[instanceId][offset + jBlock][0][iv];

double m_i1_j = OffDiagComponents[instanceId][offset + jBlock][1][iv];

double m_i2_j = OffDiagComponents[instanceId][offset + jBlock][2][iv];

double m_i3_j = OffDiagComponents[instanceId][offset + jBlock][3][iv];

double m_i4_j = OffDiagComponents[instanceId][offset + jBlock][4][iv];

double m_i5_j = OffDiagComponents[instanceId][offset + jBlock][5][iv];

tmp[threadId][jBlock][iv]

+= m_i0_j * v_i0 + m_i1_j * v_i1 + m_i2_j * v_i2

+ m_i3_j * v_i3 + m_i4_j * v_i4 + m_i5_j * v_i5;

}

} (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

1 1 1 1 1 1 0 0

tmp array

1 1 1 1 1 1 0 0

jB=0 load

jB=0 store

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

jB=1 load

jB=1 store

(3,0) (3,1)

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

jB=2 load

jB=2 store

Even the parts where the
mask value is 0 are

locked as well, causing
SFI.

33

40-59

Excessive SFI when the Gather Load Instruction Aggregation Function Makes
the Cache Lines the SFI Check Target

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, num_nb15_calc(ix,i,ik)

ij = nb15_calc_list(k,ix,i,ik)

j = int(real(ij)*inv_MaxAtom)

iy = ij - j*MaxAtom

...

force(1,iy,j,id+1,ik) = force(1,iy,j,id+1,ik) + work(1)

force(2,iy,j,id+1,ik) = force(2,iy,j,id+1,ik) + work(2)

force(3,iy,j,id+1,ik) = force(3,iy,j,id+1,ik) + work(3)

end do

Done Done
Not
done Done Done

Not
done Done Done

k=1-16 load

k=1-16 store

Aggregation

SFI check
target

Notes:

1. The list values of the array are changed
to easy-to-explain values for simplicity.

2. Excessive SFI also occurs between
force(1,..), force(2,..), and force(3,..), but
its description is omitted.

(Entry number of iy)

0

Relationship between
entry numbers of array iy

and 128-B alignment

10
20
30
40

50
60

70
80

90

1
11
21
31
41

51
61

71
81

91

2
12
22
32
42

52
62

72
82

92

…
…
…
…
…

…
…

…
…

…

9
19
29
39
49

59
69

79
89

99

128B

Same cache
line

Same cache
line

Same cache
line

Same cache
line

Same cache
line

1 2 4 7 9 23 26 27 29 31 32 45 47 48 50 52

1 2 4 7 9 23 26 27 29 31 32 45 47 48 50 52

54 57 58 59 62 76 77 79 82 83 85 86 90 91 93 95k=17-31 load
Done Done Not

done
Done Done Done Done Done

k=17-31 store

Aggregation

54 57 58 59 62 76 77 79 82 83 85 86 90 91 93 95

40-59 62 7660-79 80-99 80-99 80-99 80-99
When the gathering

function of Gather LD is
activated, the SFI check

target becomes the cache
lines (all included entries).

SFI occurs because
store subject to SFI

exists.

34

Excessive SFI when the SIMD Address is Not on the
4-B Boundary

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ When addresses are not aligned on the 4-B boundary in all SIMD entry
sizes, the SFI check target always becomes the 4-B boundary.

Example: When the array entries are read and updated at double precision

0 - 7 entries 8 - 15 entries 16 - 23 entriesArray

0 - 7 entriesLD1D

0 - 7 entriesST1D

8 - 15 entriesLD1D

8 - 15 entriesST1D

◼ When addresses are aligned on the 4-B
boundary 4-B boundary

LD1D

0 - 7 entriesST1D

LD1D

8 - 15 entriesST1D

◼ When addresses are not aligned on the 4-B
boundary 4-B boundary 4-B boundary Assuming that data

exists going all the way
to the 4-B boundary, the

SFI check is
performed, thus

causing excessive SFI.

When addresses
are aligned on the

4-B boundary,
excessive SFI

does not occur.

✓ In the case of 4-B or 8-B
entries, addresses are
aligned on the 4-B or 8-B
boundary in principle
and, therefore, there is
no problem.

✓ Care needs to be
exercised about FP16 or
integers. Note that the
problem may be
mitigated by software
pipelining.

Extended SFI check target parts

64B

64B

64B

64B

0 - 7 entries

8 - 15 entries

35

Excessive SFI when the Load Instruction Calls for
Access Across a 4-KB Boundary

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ When access across a 4-KB boundary is made with a single load
instruction, the SFI check is always performed on bits 11 to 0 of
the physical address.

Example: When the array entries are read at double precision
0 - 7 entries 8 - 15 entries 16 - 23 entriesArray

0 - 7 entriesLD1D

8 - 15 entriesLD1D

4-KB boundary

Only for this instruction,
the SFI check is

always performed on
bits 11 to 0 of the
physical address.

LD1D

64B

64B

64B

8 - 15 entries

36

Excessive SFI for Multiple Structure (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ In a multiple structure store / load instruction whose entry size is 4 B/8 B, the SFI check target
becomes the cache lines.

Example: When the array entries are read and updated by a LD2D instruction/ST2D instruction

0 - 15 entries 16 - 31 entries 32 and subsequent entriesArray

0 - 15 entriesLD2D(2REG)

0 - 15 entriesST2D(2REG)

16 - 31 entriesLD2D(2REG)

16 - 31 entriesST2D(2REG)

◼ When addresses are aligned on the 256-B boundary
128-B boundary256-B boundary 256-B boundary

Assuming that data
always exists up to the

cache line, the SFI
check is performed,

thus causing excessive
SFI.

Extended SFI check target parts

128B

128B

✓ The problem may be
mitigated by software
pipelining.

128B

128B

37

Excessive SFI for Multiple Structure (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ In a multiple structure store instruction whose entry size is 1 B/2 B, when
the VL (vector length) is 0 (128-bit SIMD) or 1 (256-bit SIMD), the SFI
check target is the same as when the VL is 3 (512-bit SIMD).

Example: When the array entries are read and updated by a LD2H
instruction/ST2H instruction with the VL set to 1 (256-bit SIMD)

0 - 31 entries 32 - 63 entries 64 - 95 entriesArray

0 - 31 entriesLD2H(2REG)

0 - 31 entriesST2H(2REG)

32 - 63 entriesLD2H(2REG)

32 - 63 entriesST2H(2REG)

Assuming that the ST2H
instruction always stores with VL

set to 3, SFI check is
performed, thus causing

excessive SFI.

✓ The problem may be
mitigated by software
pipelining.

Extended SFI check target parts

64B

64B

64B

38

Causes of SFI Precheck

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

1. When the preceding store instruction exists in the pipeline while the pipelining of the
load instruction is in progress

2. When the preceding store instruction misses the L1D$ cache and retrieves data from L2$ (1)
(When the load instruction hits L1D$: Precheck and wait until the store data arrives)

3. When the preceding store instruction misses the L1D$ cache and retrieves data from L2$ (2)
(When the load instruction misses L1D$: Precheck and wait until the store data arrives)

✓ Since the data request is made to L2$, there is no impact on performance, while the SFI count of the PA is
updated.

Store

Load

Stage where the SFI check is performed
Precheck because the store instruction exists
in the pipeline

If the precheck result is
”Possible,” abort and reenter.

Time

Store

Load

Stage where the SFI check is performed
Precheck until store instruction data arrives

If the precheck result is ”Possible,” abort and
reenter. Before reentering, wait until the store
data arrives.

Time

L1 miss
Data

request to
L2$

Store

Load

Stage where the SFI check is performed
Precheck until store instruction data arrives

If the precheck result is ”Possible,” abort and
reenter. Before reentering, wait until the load
data arrives.

Time

L1 miss
Data

request to
L2$ Data

request to
L2$

Data arrival

01147 12

01139 12

VA

PA

Part to
compare

Addresses used for the SFI precheck

Data arrival

Data arrival

L1 miss

39

Simple Cases when the Mask Value is 0

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Image of access
real*8 y(X,n), x1(X,n) <- X=8,6

Do k = 1, iter
Do j = 1, n

Do i = 1, X <- X=8,6
y(i,j) = y(i,j) + x1(i,j)

End Do
End Do

End Do

Code to be measured

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 3,1Array y ・・・

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

j = 1 load mask

j = 1 store mask

j = 2 load mask

j = 2 store mask

1,1 2,1 3,1 4,1 5,1 6,1 1,2 2,2 3,2 4,2 5,2 6,2 3,1 3,2 3,3 3,4 3,5Array y ・・・

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 0

j = 1 load mask

j = 1 store mask

j = 2 load mask

j = 2 store mask

The mask value is locked even
when it is 0, and SFI occurs at
the rotation of j = 2.

Since there is no
overlap, SFI does
not occur.

◼ X = 8 (SFI does not occur)

◼ X = 6 (SFI occurs)

40

0.678

11.047
10.598

2.771

1.738 1.609

0.846
0.413

0

2

4

6

8

10

12

Time elapsed

Impact on Performance when the Mask Value is 0

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement results

When the number of iterations is 5
or less, the compiler does not

recognize the need for SIMD (full
unroll) and SFI does not occur.

SFI occurs when the number
of iterations is 7 or 6

real*8 y(X,n), x1(X,n) <- X=8 to 1
Do k = 1, iter

Do j = 1, n
Do i = 1, X <- X=8 to 1

y(i,j) = y(i,j) + x1(i,j)
End Do

End Do
End Do

Code to be measured

41

◼When the Mask Value is 0: Excessive SFI
Prevention by the Compiler

◼When the Mask Value is 0: Results of Excessive
SFI Prevention by the Compiler

Excessive SFI Prevention by the
Compiler

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED42

When the Mask Value is 0: Excessive SFI Prevention
by the Compiler

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Excessive SFI can be prevented by
compiler scheduling.

5 1 Do k = 1, iter

6 2 2 Do j = 1, n

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< Loop-information End >>>

7 3 2v Do i = 1, 6

8 3 2v y(i,j) = y(i,j) + x1(i,j)

9 3 2v End Do

10 2 2 End Do

11 1 End Do

5 1 Do k = 1, iter

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SOFTWARE PIPELINING

<<< Loop-information End >>>

6 2 2 Do j = 1, n

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< Loop-information End >>>

7 3 2v Do i = 1, 6

8 3 2v y(i,j) = y(i,j) + x1(i,j)

9 3 2v End Do

10 2 2 End Do

11 1 End Do

Before improvement
After improvement

(preventive measure)

When SIMD is implemented
in the innermost loop,
scheduling (SWPL) is
promoted on the outer loops
to prevent excessive SFI.

43

0.0

2.0

4.0

6.0

8.0

10.0

12.0

A64FX
CPU performance

A64FX
CPU performance

A64FX
CPU performance

A64FX
CPU performance

HBM HBM HBM HBM

Number of innermost loop
iterations: 6

Occurrence of excessive
SFI

Number of innermost loop
iterations: 6

Prevention by the
compiler

[Reference]
Number of innermost loop

iterations: 6
Padding

[Reference]
Number of innermost loop

iterations: 6
NOSIMD

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Memory/cache access wait Operation wait

Instruction decode wait Other instruction commit

One instruction commit Two or three instructions commit

Four instructions commit

When the Mask Value is 0: Results of Excessive SFI
Prevention by the Compiler

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement results of prevention by the compiler

A64FX
CPU

performance
Actual

machine

A64FX
CPU

performance
Actual

machine

A64FX
CPU

performance
Actual

machine

A64FX
CPU

performance
Actual

machine

Source code version

Number of
innermost

loop
iterations: 6
Occurrence
of excessive

SFI

Number of
innermost

loop
iterations: 6

Prevention by
the compiler

[Reference]
Number of
innermost

loop
iterations: 6

Padding

[Reference]
Number of
innermost

loop
iterations: 6

NOSIMD

Floating-point precision
Double

precision
Double

precision
Double

precision
Double

precision

SIMD width 8 8 8 1

Number of threads 1 1 1 1

Aggregation thread
number

0 0 0 0

Execution time [s] 1.06E+01 6.02E-01 5.65E-01 2.51E+00

Total number of
effective instructions

3.47E+09 2.81E+09 3.09E+09 1.08E+10

GFLOPS (processes) 0.29 5.10 5.44 0.92

Memory throughput
[GB/s/process]

0.00 0.00 0.00 0.00

L1 busy rate/thread 42.25% 80.41% 88.26% 99.49%

SFI(/cycle)/thread 0.68 0.03 0.00 0.00

Excessive SFI is
prevented by improving
the compiler.

[Reference]
Excessive SFI can also be prevented by
modifying the code (padding) or using
no SIMD.

Excessive SFI when the mask value is 0 can be prevented.

44

◼ Features of CPU Analysis Report

◼ Improvements in the CPU Analysis Report from K/FX100 Products

◼ Examples of the Displayed CPU Analysis Report

◼ Image of the Displayed CPU Analysis Report: Overview

◼ Image of the Displayed CPU Analysis Report: Graphs

◼ Image of the Displayed CPU Analysis Report: Tables

◼ DGEMM: Display and Analysis Example

◼ STREAM: Display and Analysis Examples

◼ Notes on FLOPS

PMU Events

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED45

Features of CPU Analysis Report

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Display CPU performance information in Excel based on PMU Events.

◼ The collected major performance data can be displayed just after five measurements.

◼ 11 times measurements recommended. (Equivalent to FX100)

◼ Conducting additional measurements can provide more detailed performance data.

(*) The higher the level is, the more data is collected.

Collectable information corresponding to the number of measurements.

Performance data Level Single report Simple report Standard report Overall report

Number of measurements 1 5 11 17

Statistical information Collected Collected※ <- <-

Cycle accounting Collected Collected※ <-

Memory/cache busy status Collected Collected※ Collected※

Cache miss status Collected Collected※ <-

Instruction mix Collected Collected※ Collected※

Unbalanced load Collected <- <-

Power consumption Collected <-

Hardware prefetch information Collected

Inter-CMG data transfer status Collected

Other performance data Collected

46

Improvements in the CPU Analysis Report from
K/FX100 Products

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Improvement K/FX100 products Improvement for the A64FX

Display of
performance
data according
to the number of
measurements

The precision PA visibility
function (CPU performance
analysis report) cannot be
used unless the measurement
is conducted at least 7 times
for K or 11 times for the
FX100.

The CPU performance analysis report can
be displayed just after 1 time or 5 times
measurements.
Additional data can be displayed by
conducting the measurement 11 or 17
times.

Additional measurements of cycle
accounting and others can provide more
detailed CPU performance data.

Increased
amount of data

Various kinds of data have been added.
- Floating-point and integer operation

pipeline busy
- L2 cache miss breakdown (dm miss

rate, swpf miss rate, hwpf miss rate)
- Predicate mask information
- Gather aggregation count
- Spill/fill counts
- Inter-CMG access volume
- Power, etc.

Layout ---
While the A64FX handles more data than
the previous products, the main data is
displayed in a single A3-size sheet.

47

Examples of the Displayed CPU Analysis Report

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Target applications

◼DGEMM

◼ STREAM

◼ The measurement conditions are as follows.

◼Operating environment

•A64FX

◼ CPU performance analysis data collection level and number of
measurements

•Simple data (five measurements)

48

Image of the Displayed CPU Analysis Report
(Overview)

Depending on the number of times data is collected, the tables and graphs are displayed with increasing levels of detail in the following order: simple, standard, and overall.
(The actual CPU performance analysis report does not display colored frames like those shown below.)

Simple Standard Overall

Cycle accounting (Single/simple)Statistical information (Single/simple)

Inter-CMG data transfer status (overall)

Other performance data (overall)
Gather aggregation count

Hardware prefetch information
(overall)

performance data
(simple/standard)

FLOPS, etc. considering the
ratio of Active elements

Memory/cache busy status
(simple/standard)

Cache miss status
(simple/standard)

Instruction mix
(simple/standard/overall)

Power consumption
(standard)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED49

◼ A look at the following data gives you a rough grasp of the performance.

◼ Cycle accounting

Image of the Displayed CPU Analysis Report (Graphs)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

CMG0 CMG1 CMG2 CMG3 Memory Tofu PCI

write 1.42E-01 1.15E-03 7.05E-05 4.89E+00 1.43E-01 4.94E-07 0.00E+00

read 4.53E+00 5.49E-07 0.00E+00
CMG 0 total

Destination (GB/s)
Data Transfer CMGs

◼ Cache status

◼ Inter-CMG data transfer status ◼ Power consumption

◼ Operation peak,
throughput peak,
and SIMD ratios

50

Process Thread
0 0 0.00E+00 1.09E-03 2.51E-03 2.78E-01 3.56E-03 2.34E-03 1.22E-01 2.31E-02 2.07E-03 5.18E-03 1.76E-04 2.16E-04 0.00E+00 1.09E-03 2.25E-03 5.38E-01 1.20E+00 4.82E-01 6.66E+00 6.10E-03 9.33E+00

0 1 0.00E+00 1.06E-03 1.05E-03 2.33E-01 2.65E-03 6.65E-04 1.20E-01 8.50E-03 1.88E-03 5.08E-03 5.14E-05 4.42E-05 0.00E+00 3.78E-04 7.04E-02 5.32E-01 1.20E+00 4.81E-01 6.66E+00 9.40E-03 9.33E+00

0 2 0.00E+00 1.04E-03 1.10E-03 2.20E-01 2.93E-03 7.80E-04 1.22E-01 3.67E-02 2.11E-03 5.32E-03 5.60E-05 5.49E-05 0.00E+00 3.47E-04 5.23E-02 5.39E-01 1.20E+00 4.81E-01 6.66E+00 3.03E-03 9.33E+00

0 3 0.00E+00 1.08E-03 9.54E-04 2.21E-01 2.89E-03 7.74E-04 1.26E-01 2.25E-02 2.01E-03 5.47E-03 5.49E-05 6.80E-05 0.00E+00 4.02E-04 6.14E-02 5.39E-01 1.20E+00 4.83E-01 6.66E+00 5.42E-03 9.33E+00

0 4 0.00E+00 1.15E-03 1.33E-03 2.19E-01 2.96E-03 7.15E-04 1.31E-01 2.22E-02 2.02E-03 6.04E-03 5.67E-05 5.34E-05 0.00E+00 3.33E-04 5.87E-02 5.46E-01 1.20E+00 4.84E-01 6.66E+00 0.00E+00 9.33E+00

0 5 0.00E+00 1.16E-03 9.89E-04 2.19E-01 3.08E-03 7.12E-04 1.28E-01 2.22E-02 2.01E-03 5.68E-03 5.91E-05 5.14E-05 0.00E+00 3.47E-04 6.22E-02 5.39E-01 1.21E+00 4.79E-01 6.66E+00 0.00E+00 9.33E+00

0 6 0.00E+00 1.15E-03 1.06E-03 2.18E-01 3.22E-03 7.51E-04 1.37E-01 2.23E-02 1.97E-03 6.28E-03 5.22E-05 7.41E-05 0.00E+00 3.98E-04 5.49E-02 5.35E-01 1.21E+00 4.77E-01 6.66E+00 0.00E+00 9.33E+00

0 7 0.00E+00 1.16E-03 1.27E-03 2.19E-01 3.25E-03 9.16E-04 1.40E-01 2.23E-02 2.00E-03 6.31E-03 5.59E-05 6.03E-05 0.00E+00 3.45E-04 4.89E-02 5.37E-01 1.21E+00 4.80E-01 6.66E+00 9.88E-04 9.33E+00

0 8 0.00E+00 1.18E-03 1.34E-03 2.19E-01 3.18E-03 7.49E-04 1.40E-01 2.19E-02 2.00E-03 6.46E-03 5.00E-05 5.57E-05 0.00E+00 3.33E-04 4.86E-02 5.37E-01 1.21E+00 4.79E-01 6.66E+00 2.35E-04 9.33E+00

0 9 0.00E+00 1.20E-03 1.19E-03 2.17E-01 3.40E-03 7.32E-04 1.42E-01 2.25E-02 2.04E-03 6.42E-03 5.59E-05 4.81E-05 0.00E+00 3.29E-04 5.00E-02 5.33E-01 1.21E+00 4.77E-01 6.66E+00 7.73E-04 9.33E+00

0 10 0.00E+00 1.19E-03 9.95E-04 2.19E-01 3.26E-03 6.93E-04 1.40E-01 2.25E-02 2.01E-03 6.42E-03 5.19E-05 5.61E-05 0.00E+00 3.30E-04 5.03E-02 5.34E-01 1.21E+00 4.77E-01 6.66E+00 6.35E-04 9.33E+00

0 11 0.00E+00 1.19E-03 1.19E-03 2.17E-01 3.17E-03 7.51E-04 1.47E-01 2.05E-02 2.02E-03 6.47E-03 5.15E-05 5.94E-05 0.00E+00 3.44E-04 4.62E-02 5.39E-01 1.20E+00 4.80E-01 6.66E+00 0.00E+00 9.33E+00

0.00E+00 1.14E-03 1.25E-03 2.25E-01 3.13E-03 8.82E-04 1.33E-01 2.23E-02 2.01E-03 5.93E-03 6.43E-05 7.01E-05 0.00E+00 4.14E-04 5.05E-02 5.37E-01 1.20E+00 4.80E-01 6.66E+00 2.22E-03 9.33E+00

Prefetch port busy wait Memory access wait & Cache access wait

CMG 0 total

Cycle Accounting Total
Prefetch port

busy wait by

hardware

prefetch

Prefetch port

busy wait by

software

prefetch

Integer load

memory

access wait

Floating-

point load

memory

access wait

Integer load

L2 cache

access wait

Integer load

L1D cache

access wait

Floating-

point load L2

cache access

wait

Floating-

point load

L1D cache

access wait

Other instruction commitOperation wait Other wait

Integer

operation

wait

Floating-

point

operation

wait

Branch

instruction

wait

Other wait

Instruction

fetch wait 2 instruction

commit

3 instruction

commit

4 instruction

commit

Barrier

synchronizati

on wait

1 instruction

commit

Store port

busy wait
Other

instruction

commit

Process Thread
0 0 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 1 9.33E+00 60.69 94.82% 1.36 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 2 9.33E+00 60.69 94.82% 1.35 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 3 9.33E+00 60.69 94.82% 1.33 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 4 9.33E+00 60.69 94.82% 1.33 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 5 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 6 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 7 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 8 9.33E+00 60.69 94.82% 1.33 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 9 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 10 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

0 11 9.33E+00 60.69 94.82% 1.34 6.22E+10 5.66E+11 82.75% 100.00% 99.84% 3.33 6.66

9.33E+00 728.23 94.82% 16.06 6.27% 7.46E+11 6.79E+12 82.75% 100.00% 99.84% 3.33 79.93

Floating-

point

operation

IPC GIPSStatistics

CMG 0 total

Execution

time (s)
GFLOPS

Floating-

point

operation

peak ratio

(%)

Memory

throughput

(GB/s)

Memory

throughput

peak ratio

(%)

Effective

instruction

6.27%

SIMD

instruction

rate (%)

(/Effective

instruction)

SVE

operation

rate (%)

Floating-

point pipeline

Active

element rate

(%)

Image of the Displayed CPU Analysis Report (Table 1)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Statistical information

The numerical values (seconds) of stacked bar graphs,
such as the memory/cache busy wait time, floating-point
operation wait time, barrier synchronization wait time,

and instruction commit time, are displayed.

The main statistical information, such as
the execution time, floating-point

operation count, memory throughput,
and SIMD instruction ratio, is displayed.

◼ Cycle accounting

51

Process Thread
0 0 95.02% 94.74% 6.07% 4.13% 77.60% 62.81% 60.80% 99.67% 100.00% 100.00% 100.00% 0.00

0 1 95.02% 94.74% 6.16% 4.19% 77.53% 62.70% 60.73% 99.67% 100.00% 100.00% 100.00% 0.00

0 2 95.02% 94.74% 6.09% 4.16% 77.54% 62.77% 60.76% 99.67% 100.00% 100.00% 100.00% 0.00

0 3 95.02% 94.74% 6.07% 4.14% 77.54% 62.79% 60.77% 99.67% 100.00% 100.00% 100.00% 0.00

0 4 95.02% 94.74% 6.09% 4.19% 77.55% 62.78% 60.72% 99.67% 100.00% 100.00% 100.00% 0.00

0 5 95.02% 94.74% 6.05% 4.11% 77.55% 62.86% 60.76% 99.67% 100.00% 100.00% 100.00% 0.00

0 6 95.02% 94.74% 5.98% 4.02% 77.56% 62.98% 60.80% 99.67% 100.00% 100.00% 100.00% 0.00

0 7 95.02% 94.74% 6.01% 4.05% 77.56% 62.94% 60.77% 99.67% 100.00% 100.00% 100.00% 0.00

0 8 95.02% 94.74% 6.00% 4.05% 77.57% 62.95% 60.78% 99.67% 100.00% 100.00% 100.00% 0.00

0 9 95.02% 94.74% 5.94% 3.97% 77.57% 63.04% 60.83% 99.67% 100.00% 100.00% 100.00% 0.00

0 10 95.02% 94.74% 5.94% 3.97% 77.57% 63.04% 60.83% 99.67% 100.00% 100.00% 100.00% 0.00

0 11 95.02% 94.74% 5.98% 4.02% 77.56% 62.98% 60.79% 99.67% 100.00% 100.00% 100.00% 0.00

95.02% 94.74% 6.03% 4.08% 77.56% 61.93% 6.27% 62.89% 60.78% 99.67% 100.00% 100.00% 100.00% 0.00

SFI(Store

Fetch

Interlock)

rate

L1 pipeline 0

Active

element rate

(%)

L1 pipeline 1

Active

element rate

(%)

Floating-

point pipeline

B Active

element rate

(%)

Address

calculation

operation

pipeline A

busy rate

(%)

Busy

CMG 0 total

61.93% 6.27%

Address

calculation

operation

pipeline B

busy rate

(%)

Floating-

point pipeline

A Active

element rate

(%)

Floating-

point

operation

pipeline A

busy rate

(%)

Floating-

point

operation

pipeline B

busy rate

(%)

Integer

operation

pipeline A

busy rate

(%)

Integer

operation

pipeline B

busy rate

(%)

L1 busy rate

(%)

L2 busy rate

(%)

Memory busy

rate (%)

Process Thread
0 0 0.00 1.60E+10 1.80E+09 0.11 0.48% 0.67% 98.85% 3.33E+07 0.00 42.43% 61.81% 0.00% 0.00001 0.00000

0 1 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.37E+07 0.00 39.19% 65.30% 0.00% 0.00001 0.00000

0 2 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.36E+07 0.00 38.98% 65.37% 0.00% 0.00001 0.00000

0 3 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.35E+07 0.00 39.04% 65.34% 0.00% 0.00001 0.00000

0 4 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.34E+07 0.00 38.74% 65.48% 0.00% 0.00001 0.00000

0 5 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.35E+07 0.00 38.94% 65.38% 0.00% 0.00001 0.00000

0 6 0.00 1.60E+10 1.80E+09 0.11 0.44% 0.74% 98.82% 3.35E+07 0.00 39.27% 64.81% 0.00% 0.00001 0.00000

0 7 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.35E+07 0.00 38.69% 65.39% 0.00% 0.00001 0.00000

0 8 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.35E+07 0.00 38.51% 65.42% 0.00% 0.00001 0.00000

0 9 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.74% 98.84% 3.35E+07 0.00 38.53% 65.50% 0.00% 0.00001 0.00000

0 10 0.00 1.60E+10 1.80E+09 0.11 0.42% 0.72% 98.86% 3.35E+07 0.00 39.17% 65.03% 0.00% 0.00001 0.00000

0 11 0.00 1.60E+10 1.80E+09 0.11 0.41% 0.74% 98.85% 3.35E+07 0.00 38.46% 65.55% 0.00% 0.00001 0.00000

0.00 1.93E+11 2.16E+10 0.11 0.43% 0.73% 98.84% 4.02E+08 0.00 39.16% 65.03% 0.00% 0.00001 0.00000

Load-store

instruction

L1D miss

demand rate

(%) (/L1D

miss)

L1D miss

hardware

prefetch rate

(%) (/L1D

miss)

L1D TLB miss

rate (/Load-

store

instruction)

L2D TLB miss

rate (/Load-

store

instruction)

L2 miss

software

prefetch rate

(%) (/L2

miss)

L2 miss

hardware

prefetch rate

(%) (/L2

miss)

L2 miss rate

(/Load-store

instruction)

L2 miss

demand rate

(%) (/L2

miss)

CMG 0 total

Cache
L1I miss rate

(/Effective

instruction)

L1D miss

L1D miss rate

(/Load-store

instruction)

L1D miss

software

prefetch rate

(%) (/L1D

miss)

L2 miss

Image of the Displayed CPU Analysis Report (Table 2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Memory/cache busy information

Load / store counts, L1D miss rate, L2D miss rate,
DTLB miss rate, L2 miss breakdown (dm miss rate,

hwpf miss rate, and swpf miss rate), etc.

L1 busy rate, L2 busy rate, memory busy rate,
floating-point operation pipeline busy rate,
integer operation pipeline busy rate, etc.

◼ About the memory busy rate

The value used as the denominator
in the K/FX100 PA sheet has been
changed (theoretical performance
value of memory bandwidth per
CMG (256 GB/s)).

A rate of 80% or so is regarded as a
busy state.

◼ Cache miss status

52

Non-SIMD Non-SIMD

Process Thread
0 0 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 1.59E+06 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 6.44E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.22E+03 0.00E+00 8.90E+08 1.24E+04 0.00E+00 8.03E+09 6.22E+10

0 1 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.99E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.48E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 2 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.87E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.42E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 3 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.94E+05 5.84E+07 0.00E+00 0.00E+00 3.04E+03 1.62E+03 2.45E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 4 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.82E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.40E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 5 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.97E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.46E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 6 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.92E+05 5.84E+07 0.00E+00 0.00E+00 2.97E+03 1.63E+03 2.44E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 7 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 7.00E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.49E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 8 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.91E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.45E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 9 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 7.19E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.59E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 10 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.90E+05 5.84E+07 0.00E+00 0.00E+00 2.99E+03 1.62E+03 2.44E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.56E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

0 11 7.14E+09 0.00E+00 0.00E+00 8.85E+09 3.28E+03 1.86E+03 0.00E+00 6.95E+05 5.82E+07 0.00E+00 0.00E+00 3.04E+03 1.62E+03 2.44E+05 0.00E+00 0.00E+00 1.81E+09 8.24E+02 1.33E+06 3.54E+10 0.00E+00 9.00E+01 4.21E+03 0.00E+00 8.89E+08 1.24E+04 0.00E+00 8.02E+09 6.22E+10

8.56E+10 0.00E+00 0.00E+00 1.06E+11 3.93E+04 2.24E+04 0.00E+00 9.24E+06 7.00E+08 0.00E+00 0.00E+00 3.60E+04 1.94E+04 3.35E+06 0.00E+00 0.00E+00 2.17E+10 9.89E+03 1.85E+07 4.25E+11 0.00E+00 1.08E+03 5.05E+04 0.00E+00 1.07E+10 1.49E+05 0.00E+00 9.63E+10 7.46E+11

9.89E+03 0.00E+00 1.07E+10 1.49E+05 0.00E+00 9.63E+10 7.46E+115.16E+044.25E+11

DCZVA

instruction

2.17E+10

Load instruction

SIMD

First-fault

load

instruction

Branch

instruction
Non-SIMD

load

instruction

Non-SIMD

store

instruction

Prefetch instructionLoad-store instruction

Predicate

register spill

instruction

1.93E+11

Floating-

point

reciprocal

instruction

FMA

instruction

Floating-

point

instruction

except FMA

and

reciprocal

Scalar

prefetch

instruction

Gathering

prefetch

instruction

Contiguous

prefetch

instruction

SIMD

Store instruction

Total
Other

instruction

Crypto-

graphic

instruction
Single vector

contiguous

store

instruction

Multiple

vector

contiguous

structure

store

instruction

Floating-point instruction

Predicate

instruction

Integer

instructionNon-

contiguous

scatter store

instruction

Floating-

point register

spill

instruction

Instruction

Broadcast

load

instruction

Predicate

register fill

instruction

CMG 0 total

Single vector

contiguous

load

instruction

Multiple

vector

contiguous

structure

load

instruction

Non-

contiguous

gather load

instruction

Floating-

point register

fill

instruction

Floating-point move and

conversion instruction

Floating-

point move

instruction

Floating-

point

conversion

instruction

Process Thread
0 0 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 1 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 2 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 3 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 4 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 5 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 6 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 7 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 8 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 9 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 10 5.66.E+11 0.00.E+00 0.00.E+00 60.59

0 11 5.66.E+11 0.00.E+00 0.00.E+00 60.59

6.79.E+12 0.00.E+00 0.00.E+00 727.03

FLOPS

CMG 0 total

GFLOPS by

Active

element rate

Single

precision

floating-

point

operation

Half

precision

floating-

point

operation

Double

precision

floating-

point

operation

Image of the Displayed CPU Analysis Report (Table 3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Instruction mix

GFLOPS values based on floating-point
operation rate by type (half precision, single
precision, and double precision), predicate

mask information

Load / store instruction, prefetch instruction,
floating-point operation instruction, integer

operation instruction, branch instruction, etc.

◼ Floating-point operation rate by type

Of the floating-point operations performed during
measurement intervals, the floating-point operation rate by
type (half precision, single precision, or double precision) is
displayed as %.

◼ GFLOPS values based on predicate mask information

GFLOPS values calculated using predicate mask information
(The predicate mask information values are for reference
only since they are not only used for operations.)

◼ Performance data

53

Display Example
(DGEMM: Simple Data (Five Measurements))

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED54

Analysis Example
(DGEMM: Simple Data (Five Measurements))

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

(2) Pay attention to the points in red.
-> L1 busy

(3) Check the graph to see the
floating-point operation peak
and the L1 busy rates.

The floating-point peak ratio ((1)) and the L1 busy ratio ((2)) are high. From the graph ((3)),
it can be seen that the floating-point peak ratio is higher. Its value is 94.82%, which indicates
that high operation performance can be achieved.

(1) Pay attention to the points in blue.
-> Floating-point operation peak ratio

55

Display Example
(STREAM: Simple Data (Five Measurements))

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED56

Analysis Example
(STREAM: Simple Data (Five Measurements))

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

(1) Pay attention to the points in red.
-> L2 and memory busy

(2) Check the graph to
see the L2 and memory
busy rates.

From the busy information ((1)) and the graph ((2)), it is found that the L2 busy rate and
memory busy rate are high.
When the value ((3)) is checked, it is found to be 207.69 GB/s. This indicates that performance
equivalent to over 80% of the memory bandwidth per CMG (256 GB/s) is achieved.

(3) Check the memory
throughput value.

57

Notes on FLOPS

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ About the count of the number of operations
There are cases in which more operations are counted in the CPU performance analysis report. Therefore,
the FLOPS value may become higher than the actual one.
For example, when a masked SIMD instruction is used, all operations are counted as true even if some
masks (predicate) are false. In this case, the number of operations becomes greater than it actually is.
The cases in which the count of the number of operations becomes greater than the actual number are
summarized below, including the one mentioned above.

Item Overview
Difference
from
K/FX100

Prevention method

Floating-point
division/SQRT
function

Since the compiler replaces an operation with a
sequence of multiple operation instructions,
more operations are counted than seen on the
code.

Same

Specify -Knofp_relaxed.

Mathematical
function/numeric
function

None

Reduction
If an automatic loop slicing occurs in a loop
that includes a reduction operation, more
operations are counted than seen on the code.

Same Specify -Knoreduction.

Conversion of a loop
including an IF
construct into a
SIMD instruction

When a loop including an IF construct is
optimized using a masked SIMD instruction, all
operations are counted as true even if some
masks (predicate) are false.

Same as -
Ksimd=2

Specify 1 in -Ksimd.

SIMD conversion
through redundant
loop execution

When a loop is optimized using a masked SIMD
instruction in cases where the number of loop
repetitions cannot be divided by the SIMD
length, all operations are counted as true even
if some masks (predicate) are false.

New
Specify the following OCL.
SIMD_NOREDUNDANT_VL

58

◼ About the Large Page

◼ Large Page Specifications

◼ Environment Variables for Large Page Setting

◼ Basic Setting/Paging Policy Setting

◼ Tuning Setting

◼ Large Page Evaluation

◼ Stream Triad

◼ ARENA_FREE Performance

◼ PAGING_POLICY Performance

◼ ARENA_LOCK_TYPE Performance

Large Page

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED59

About the Large Page

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ About the large page
◼ It refers to the allocation of memory in a larger page size (large

page) than the normal page to an application that handles a large
volume of data. The large page:

• Reduces the overhead of the CPU address translation processing.

• Improves the memory access performance.

◼ In the A64FX system environment, the normal page size is 64
KiB and the size available for the large page is 2 MiB.

• The following operations can be set with environment variables.

✓ Enabling and disabling of the large page allocation operation

✓ Enabling and disabling of the large page allocation operation in
a stack area

✓ Selection of the paging policy (page allocation trigger) for each
memory area

• Various page sizes, such as 32 MiB, 1 GiB, and 16 GiB, can be
implemented using McKernel.

60

Large Page Specifications

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Memory area

MP10/FX10/
FX100 A64FX

Page size

Page size
Paging

(The default is
underlined.)Normal page

Large page
base

Large page
base+stack

(default)

Text
(.text)

8KiB 64KiB 64KiB 64KiB －

Static data
(.data)

4MiB
(default),

8KiB,
32MiB,
256MiB

64KiB 2MiB 2MiB
Always
prepage

Static data
(.bss)

64KiB 2MiB 2MiB
demand |
prepage

Stack (*1) 64KiB 64KiB 2MiB
demand |
prepage

Dynamic
memory (*2)

64KiB 2MiB 2MiB
demand |
prepage

Shared memory 64KiB 64KiB 64KiB －

*1: For the process stack, main thread stack, and thread stack areas
*2: For the process heap, main thread heap, thread heap, and mmap areas

◼ Large page specifications

61

Environment Variables for Large Page Setting (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Basic setting/paging policy setting

Environment variable name

Specifiable value

(The default is
underlined.)

Explanation

XOS_MMM_L_HPAGE_TYPE hugetlbfs | none

This setting is used to select whether to enable or disable the large
page allocation operation using the large page library.
If “hugetlbfs” is specified, HugeTLBfs makes large pagination. If
“none” is specified, the large page library is not used for large
pagination.

XOS_MMM_L_LPG_MODE base+stack | base

This setting is used to select whether to enable or disable the large
page allocation operation in a stack area and thread stack area.
If “base+stack” is specified, large pagination is done not only in
static data and dynamic memory allocation areas but also in a stack
area and thread stack area.
If “base” is specified, large pagination is done only in static data and
dynamic memory allocation areas, but not in a stack area or thread
stack area.

XOS_MMM_L_PAGING_POLICY
[demand | prepage]:
[demand | prepage]:
[demand | prepage]

This setting is used to select the paging policy (page allocation
trigger) for each memory area.
“demand” means the demand paging policy, and “prepage” means
the prepaging policy. This variable lets you specify paging policies
for three different memory areas using colons (:) as delimiters.
The first specified policy is for the .bss area of static data. (The
paging policy specification is not applicable to the .data area of static
data, and prepage is always specified.)
The second specified policy is for the stack area and thread stack
area.
The third specified policy is for the dynamic memory allocation area.
If a value other than the specifiable value is specified,
“prepage:demand:prepage” is assumed.

62

Environment Variables for Large Page Setting (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Tuning setting (environment variables unique to the large page library)

Environment variable
name

Specifiable value

(The default is
underlined.)

Explanation

XOS_MMM_L_ARENA_FREE 1 | 2

This setting concerns the handling of the heap area that is freed by free(3).
If “1” is specified, the memory that can be freed is immediately freed. If “2” is
specified, no memory is freed and all the memory is pooled and reused.

XOS_MMM_L_ARENA_LOCK_TY
PE

0 | 1

This setting concerns the memory allocation policy.
“0” means that priority is on memory allocation performance. “1” means that priority
is on memory usage efficiency.

XOS_MMM_L_MAX_
ARENA_NUM

Integer [in decimal notation]
from 1 or more to a value equal

to or less than INT_MAX

Set the number of arenas that can be generated (the total of the process heap and
thread heap areas). This is valid when 0 is specified in
XOS_MMM_L_ARENA_LOCK_TYPE.

XOS_MMM_L_HEAP_SIZE_MB

Integer <in MiB> [in decimal
notation] from a value twice

MALLOC_MMAP_THRESHOLD or
more to a value equal to or less

than ULONG_MAX

When using a thread heap area, set the size of memory to be allocated for generating
or expanding the thread heap area.

XOS_MMM_L_COLORING 0 | 1

Set whether to enable or disable cache coloring. This reduces the conflict of the L1
cache of the processor. If “0” is specified, cache coloring is not performed.
If “1” is specified, cache coloring is performed when memory of a size equal to or
larger than MALLOC_MMAP_THRESHOLD_ (the default is 128 MiB) is allocated by
mmap(2).

XOS_MMM_L_FORCE_MMAP_TH
RESHOLD

0 | 1

This setting specifies whether to give priority to mmap(2) when allocating memory of
a size equal to or larger than MALLOC_MMAP_THRESHOLD_ (the default is 128 MiB).
If “0” is specified, priority is not given to mmap(2). First, the heap area is searched
for free space. If there is any free space, the free memory space of the heap area is
returned. Memory is allocated by mmap(2) only when free space cannot be found in
the heap area. If “1” is specified, priority is given to mmap(2). Memory is allocated by
mmap(2) without searching the heap area for free space (even if there is free space).

◼ For the environment variables of glibc (MALLOC_MMAP_THRESHOLD_, etc.), see the User’s Guide.

63

Large Page Evaluation 1

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Large pagination reduces the L2D TLB miss rate, improving the
performance by 25%.

◼ Stream Triad (1 thread execution)
Estimation method A64FX A64FX

Kernelization/reduction n=83880960

Source code version Normal page Large page

Floating-point precision Double precision real type

SIMD width 8

Aggregation thread number 0

Execution time [s] 4.35E-01 3.47E-01

GFLOPS/process 3.86 4.83

Memory throughput
[GB/s/process]

61.76 77.29

Number of executed
instructions/thread [10^9]

5.11E+08 5.11E+08

Number of load / store
instructions/thread [10^9]

3.15E+08 3.15E+08

Number of branch
instructions/thread [10^9]

1.31E+07 1.31E+07

Number of other
instructions/thread [10^9]

7.87E+07 7.87E+07

SIMD instruction rate/thread 82.03% 82.04%

L1D miss rate/thread 25.26% 25.00%

L2 miss rate/thread 25.00% 25.00%

L1D TLB miss rate/thread 0.09786% 0.00324%

L2D TLB miss rate/thread 0.09776% 0.00033%

L1 busy rate/process 73.95% 84.13%

L2 busy rate/process 16.77% 20.75%

Memory busy rate/process 24.13% 30.19%

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

4.5E-01

5.0E-01

T
h
re

a
d
 0

T
h
re

a
d
 0

Process 0

Other instruction commit

4 instruction commit

3 instruction commit

2 instruction commit

1 instruction commit

Barrier synchronization wait

Instruction fetch wait

Store port busy wait

Other wait

Branch instruction wait

Floating-point operation wait

Integer operation wait

Floating-point L1D cache wait

Floating-point L2 cache wait

Integer load L1D cache wait

Integer load L2 cache wait

Floating-point mem wait

Integer load memory wait

Prefetch busy wait(SWPF)

Prefetch busy wait(HWPF)

Large pagination
performance up 25%

64

◼Measurement conditions

Condition Pattern

Verification
code

Code shown at the right (excerpt from
the manual)

Number of
threads to be

measured
1 thread

Compiler Compiler for the A64FX

Compilation
option

-Kfast

Access range
N=1024
MALLOC_CNT=1024

Evaluation
conditions

The execution results are compared
using the following two conditions.
- XOS_MMM_L_ARENA_FREE = 1

(Default: Memory is freed.)
- XOS_MMM_L_ARENA_FREE=2

(Memory is reused without being
freed.)

Large Page Evaluation 2:
ARENA_FREE Performance (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

while(loop <2){
printf("malloc start.¥n");
clock_gettime(CLOCK_REALTIME, &time1);

for(i=0;i<MALLOC_CNT;i++){
c[i]=(double *)malloc(sizeof(double)*N*N);
if (c[i] == NULL) {

fprintf(stderr, "malloc error: cnt=%d, errno=%d¥n", i, errno);
exit(1);

}
}

clock_gettime(CLOCK_REALTIME, &time2);
printf("malloc end.¥n");
sec = (time2.tv_sec - time1.tv_sec);
nsec= (time2.tv_nsec-time1.tv_nsec);
if(nsec<0){
sec--;
nsec += 1000000000L;

}
printf("MALLOC TIME:%d:%010d¥n", sec, nsec);
sleep(10);

printf("free start.¥n");
clock_gettime(CLOCK_REALTIME, &time1);

for(i=0;i<MALLOC_CNT;i++){
free(c[i]);

}

clock_gettime(CLOCK_REALTIME, &time2);
printf("free end.¥n");
sec = (time2.tv_sec - time1.tv_sec);
nsec= (time2.tv_nsec-time1.tv_nsec);
if(nsec<0){
sec--;
nsec += 1000000000L;

}
printf("FREE TIME:%d:%010d¥n", sec, nsec);
loop++;

}

Code to be measured

Perform a loop of
executing malloc
and free twice.

Repeat malloc
1024 times.

Repeat free
1024 times.

Print the
elapsed time

of free.

Print the
elapsed time of

malloc.

65

malloc start.

malloc end.

MALLOC TIME:0:0501782690

free start.

free end.

FREE TIME:0:0260215760

malloc start.

malloc end.

MALLOC TIME:0:0500856220

free start.

free end.

FREE TIME:0:0260336510

malloc start.

malloc end.

MALLOC TIME:0:0510782430

free start.

free end.

FREE TIME:0:0000496350

malloc start.

malloc end.

MALLOC TIME:0:0000308220

free start.

free end.

FREE TIME:0:0000252020

Large Page Evaluation 2:
ARENA_FREE Performance (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

XOS_MMM_L_ARENA_FREE is effective for a program in which
malloc and free instructions of the same size are repeated.

◼ XOS_MMM_L_ARENA_FREE = 1
(Default: Memory is freed.)

◼ XOS_MMM_L_ARENA_FREE = 2
(Memory is reused without being freed.)

Specifying 2 in XOS_MMM_L_ARENA_FREE
executes free and the second and

subsequent malloc instructions faster.

524 times faster

1033 times faster

1625 times faster

66

Large Page Evaluation 3:
PAGING_POLICY Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Since data comes from CMG0 in prepaging, performance cannot reach that of 48-thread streams.

With the method changed to demand paging, data is put on the running CMG, and performance is
significantly higher.

14 Subroutine sub(n,iter,x1,x2,y1)
15 real(8) :: x1(n), x2(n), y1(n),c0
16 integer n,i,k
17 c0=2.0
18
19 call fapp_start("sub",0,0)
20 1 do k=1,iter
21 1 !$omp parallel do

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 2.45, ITR:

128, MVE: 2, POL: S)
<<< PREFETCH(SOFT) : 10
<<< SEQUENTIAL : 10
<<< x2: 4, x1: 4, y1: 2
<<< ZFILL :
<<< y1
<<< Loop-information End >>>

22 2 p v do i=1,n
23 2 p v y1(i) = x1(i) + c0 * x2(i)
24 2 p v end do
25 1 enddo
: ……
30 parameter(N=45000000,ITER=100)
31 real*8 x1(N),x2(N),y1(N)
32 call init(N,ITER,x1,x2,y1)
33 call sub(N,ITER,x1,x2,y1)

Source

Stream (Data size: About
1 GB)

Memory throughput (GB/s)

prepage (default) 93 GB/s

demand 804 GB/s

Compiler option: -Kfast,openmp
-Kprefetch_sequential=soft -Kprefetch_line=9
-Kprefetch_line_L2=70 -Kzfill=18

67

Large Page Evaluation 4:
LOCK_TYPE Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

malloc performance is higher when XOS_MMM_L_ARENA_LOCK_TYPE=0 is specified.
(Reduced execution time from 0.56 seconds to 0.35 seconds, a performance increase of 1.60
times)

1 subroutine sub(n,m,iter,x1,x2,y2)
2 integer(8) :: pZ1(iter)
3 real(8) :: x1(n), x2(n), y2(n,m),c0
4 c0=2.0
5
6 !$omp parallel do shared(n,m,iter,x1,x2,c0,y2) private(pZ1,i,j,k) default(none)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

7 1 p do k=1,m
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< (unknown)
<<< Loop-information End >>>

8 2 p s do j=1,iter
9 2 p m pZ1(j) = malloc(8 * n)
10 2 p v end do
11 1

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 144, MVE: 4, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< x1, x2, y2
<<< Loop-information End >>>

12 2 p 2v do i=1,n
13 2 p 2v y2(i,k) = x1(i) + c0 * x2(i)
14 2 p 2v end do
15 1
16 2 p s do j=1,iter
17 2 p s call free(pZ1(j))
18 2 p s end do
19 1 p end do
20 end subroutine sub
21
22 program main
23 parameter(N=1048512,ITER=80)
24 real*8 x1(N),x2(N),y2(N,12)
25 call sub(N,12,ITER,x1,x2,y2)
26 end program main

Source

68

What is the Sector Cache?
How to Use the Sector Cache
Sector Cache: Case 1 (Before Improvement)
Sector Cache: Case 1 (Source Tuning)
Sector Cache: Case 2 (Before Improvement)
Sector Cache: Case 2 (Source Tuning)

Sector Cache

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED69

What is the Sector Cache?

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

The sector cache is a cache mechanism that can prevent non-reusable data from
expelling reusable data from the cache. An application can allocate reusable data
and non-reusable to different sectors. (Reusable arrays use Sector 1, and others
use Sector 0.)

Sector 1Sector 0

4 10

256 bytes/line

2
,0

4
8

 lin
e
s

Core #0-#11
Setting by application

Conceptual image of L2 cache usage

◼ Sector cache details
⚫ You can set multiple sectors in both the L1D cache and L2

cache. The maximum number of sectors is 4 in L1D and
2 in L2.

⚫ The number of ways specifies the capacity of each sector.
⚫ The capacity works as a target value.

Hardware controls sectors so that they approach
the specified capacity at the line replacement time.
-> Not forcibly disabled even when over the capacity

⚫ Use the LRU (least recently used) algorithm to control
expulsion within a sector.

⚫ Applications can decide the usage of sectors 0 and 1.
However, Sector 0 stores instruction sequences.

⚫ In a secondary cache, the assistant core always uses two
ways.

14 ways

70

How to Use the Sector Cache (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Cache

Data with unclear reusability

Pseudo local
memory

Data not to be reused Data to be reused

Normal
cache

Sector 0 Sector 1

Example using compiler instruction lines to
specify the sector cache

!OCL SCACHE_ISOLATE_WAY(L2=10)

!OCL SCACHE_ISOLATE_ASSIGN(a)

do j=1,m
do i=1,n

a(i) = a(i) + b(i,j)＊c(i,j)
enddo

enddo

!OCL END_SCACHE_ISOLATE_ASSIGN

!OCL END_SCACHE_ISOLATE_WAY

<Purpose>
To prevent Array a, which is reusable, from being expelled from
the cache due to access to Arrays b and c during the loop

◼ Sector cache: Pseudo local memory
Software can use sectors separately
according to data reusability.
⚫ Data used -> Use Sector 1
⚫ Other data -> Use Sector 0
⚫ Data in Sector 1 is not expelled by other

data.
⚫ Instruction lines can specify the arrays

stored in Sector 1.

!OCL CACHE_SECTOR_SIZE(4,10)

!OCL CACHE_SUBSECTOR_ASSIGN(a)

do j=1,m
do i=1,n

a(i) = a(i) + b(i,j)＊c(i,j)
enddo

enddo

!OCL END_CACHE_SUBSECTOR

!OCL END_CACHE_SECTOR_SIZE

How they are specified under the old specifications
(K computer, FX100)

71

How to Use the Sector Cache (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Optimization Specifier Meaning

Optimization Control Line
Specifiable?

By Program By DO Loop By Statement
By Array

Assignment
Statement

SCACHE_ISOLATE_WAY(L2=n1[,L1=n
2])

END_SCACHE_ISOLATE_WAY

Specifies the maximum number of ways
for Sector 1 of the primary cache and
secondary cache.

Yes No Yes No

SCACHE_ISOLATE_ASSIGN(array1[,ar
ray2]…)

END_SCACHE_ISOLATE_ASSIGN

Specifies the arrays stored in Sector 1 of
the cache.

Yes No Yes No

To use the sector cache, specify the following optimization control lines.

◼ Note
⚫ In the secondary cache, the assistant core always uses two ways. Therefore, the ranges of values that can be

specified in n1 and n2 are as follows:
0 ≦ n1 ≦ maximum number of ways of secondary cache - 2
0 ≦ n2 ≦ maximum number of ways of primary cache

⚫ For a CMG that contains an assistant core, the
assistant core uses part (2 ways = 1 MiB) of the
L2 cache. Therefore, for the CMG,
the maximum number of ways of the secondary
cache is 14 and the size is 7 MiB.

A64FX Specifications

Number of CMGs 4

L1I cache size 64 KiB/4 ways

L1D cache size 64 KiB/4 ways

L2 cache size 32 MiB/16 ways (8 MiB/CMG)

72

Sector Cache: Case 1 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Array b data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit due to L2 cache access for a floating-point load instruction" event occurs many times.

Before improvement

[Seconds]

No instruction commit due to L2
cache access for a floating-point
load instruction

66 parameter(n=8*1024*1024, m=9*512*1024/8)

67 real*8 a(n), b(m), s

68 integer*8 c(n)

69 real*8 dummy1(140),dummy2(140)

70 common /data/a,dummy1,c,dummy2,b

71

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 843

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 176, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

72 1 pp 2v do i=1,n

73 1 p 2v a(i) = a(i) + s * b(c(i))

74 1 p 2v enddo

Source Before Improvement

Cache
L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before
improvement 0.00 4.76E+09 7.89E+08 0.17 0.89% 99.11% 0.00% 7.34E+08 0.15 0.77% 100.00% 0.00%

Memory throughput
(GB/s)

Before
improvement 203.11

Memory throughput is bottleneck High L2 cache miss rate

Array size
a: 64 MiB
b: 4.5 MiB
c: 64 MiB

73

Sector Cache: Case 1 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Storing Array b in Sector 1 increases cache efficiency. The result is improvement of the "No
instruction commit due to L2 cache access for a floating-point load instruction" event.

Before improvement

[Seconds]

After improvement

Effect of
1.08 times

No instruction commit
due to L2 cache access
for a floating-point load
instruction

58 parameter(n=8*1024*1024, m=9*512*1024/8)

59 real*8 a(n), b(m), s

60 integer*8 c(n)

61 real*8 dummy1(140),dummy2(140)

62 common /data/a,dummy1,c,dummy2,b

63

64 !OCL SCACHE_ISOLATE_WAY(L2=10)

65 !OCL SCACHE_ISOLATE_ASSIGN(b)

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 843

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.66, ITR: 176, MVE: 4, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< c, a

<<< Loop-information End >>>

66 1 pp 2v do i=1,n

67 1 p 2v a(i) = a(i) + s * b(c(i))

68 1 p 2v enddo

69 !OCL END_SCACHE_ISOLATE_ASSIGN

70 !OCL END_SCACHE_ISOLATE_WAY

Source After Improvement (Optimization Control Line Tuning)

L1I miss rate
(/Effective
instruction)

Load-store
instruction

L1D miss
L1D miss rate
(/Load-store
instruction)

L1D miss
demand rate
(%) (/L1D miss)

L1D miss
hardware

prefetch rate
(%) (/L1D miss)

L1D miss
software

prefetch rate
(%) (/L1D miss)

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss
demand rate
(%) (/L2 miss)

L2 miss
hardware

prefetch rate
(%) (/L2 miss)

L2 miss
software

prefetch rate
(%) (/L2 miss)

Before
improvement 0.00 4.76E+09 7.89E+08 0.17 0.89% 99.11% 0.00% 7.34E+08 0.15 0.77% 100.00% 0.00%

After
improvement 0.00 5.19E+09 7.93E+08 0.15 1.19% 98.81% 0.01% 5.99E+08 0.12 1.93% 99.69% 0.00%

L2 misses reduced

Memory throughput
(GB/s)

Before
improvement 203.11
After
improvement 188.07

74

Sector Cache: Case 2 (Before Improvement)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Array u data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction
commit because memory cache is busy" event occurs many times.

Memory throughput
(GB/s)

Before
improvement 215.62

167 1 s do iter = 1, niter

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

168 2 pp do k=1,n3-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

169 3 p do j=1,n2-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.71, ITR: 136, MVE: 9, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

170 4 p v do i=1,n1-2

171 4 p v unew(i,j,k) = &

172 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

173 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

174 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

175 4 -rhs(i,j,k)) * hhhinv

176 4 p v end do

177 3 p end do

178 2 p end do

179 1 end do

Source Before Improvement

Preferably, Array u is cached
so that dimensions i and j
of Array u are reusable.

Before improvement

[Seconds]

Memory throughput is
bottleneck

No
instruction
commit
because
memory
cache is
busy

Cache L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate (%)

(/L2 miss)

Before
improvement 2.46E+08 0.15 2.57% 98.19% 0.00%

Array size
unew: 60.5 MB
u: 60.5 MB
rhs: 60.5 MB

n1=452
n2=52
n3=322

75

Sector Cache: Case 2 (Source Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Storing part of dimension k of Array u in Sector 1 increases cache efficiency. The result
is improvement of the "No instruction commit because memory cache is busy" event.

166 !OCL SCACHE_ISOLATE_WAY(L2=13)

167 !OCL SCACHE_ISOLATE_ASSIGN(u)

168 1 s do iter = 1, niter

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 2

<<< Loop-information End >>>

169 2 pp do k=1,n3-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

170 3 p do j=1,n2-2

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 3.71, ITR: 136, MVE: 9, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< u, rhs, unew

<<< Loop-information End >>>

171 4 p v do i=1,n1-2

172 4 p v unew(i,j,k) = &

173 4 ((u(i+1,j,k) + u(i-1,j,k)) * h1sqinv &

174 4 +(u(i,j+1,k) + u(i,j-1,k)) * h2sqinv &

175 4 +(u(i,j,k+1) + u(i,j,k-1)) * h3sqinv &

176 4 -rhs(i,j,k)) * hhhinv

177 4 p v end do

178 3 p end do

179 2 p end do

180 1 end do

181 !OCL END_SCACHE_ISOLATE_ASSIGN

182 !OCL END_SCACHE_ISOLATE_WAY

Source After Improvement

Array u reusability
increased

Before improvement

[Seconds]

After improvement

Effect of
1.15 times

Memory throughput
(GB/s)

Before
improvement 215.62
After
improvement 205.39

No
instruction
commit
due to
memory
cache busy

L2 miss
L2 miss rate
(/Load-store
instruction)

L2 miss demand
rate (%) (/L2

miss)

L2 miss hardware
prefetch rate (%)

(/L2 miss)

L2 miss software
prefetch rate

(%) (/L2 miss)
Before
improvement 2.46E+08 0.15 2.57% 98.19% 0.00%
After
improvement 1.95E+08 0.10 13.43% 87.39% 0.00%

L2 misses reduced

76

Effects of a Sector Cache on DGEMM (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ In the matrix product (C = AB), matrices are divided into blocks, stored in the
L1D and L2 caches, and calculated.

◼ The blocks of A and B are copied to the work area to prevent thrashing.

◼ The sector cache of L1 is used to ensure that A, B, and C are stored in the
cache. Particularly, the block of B is important that is repeatedly used on L1D.

A B C× ->

L1D way0 way1 way2 way3

One way of L1D is assigned to
the block of A to prevent it

from competing with B and C
that are stored in L2.

One way of L1D is assigned to
prevent LD / ST of the entry of
C from competing with A and B.

Two ways of L1D are
assigned to repeatedly

access the block (purple)
of B on L1D.

77

Effects of a Sector Cache on DGEMM (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Performance of DGEMM when a sector cache is used
and not used

◼ 1CMG

◼ The use of a sector cache increases efficiency by 20%.

DGEMM
efficiency

Sector cache used 94%

Sector cache not used 74%

78

◼ Image of High-Speed Store (zfill)

◼ About High-Speed Store (zfill) by the Compiler

◼ High-Speed Store Instructions

◼ Operating Conditions of High-Speed Store (zfill)

◼ Evaluation of High-Speed Store (zfill)

◼ [Note] About High-Speed Store of On-Cache Data

High-Speed Store (Zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED79

Image of High-Speed Store (zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ About high-speed store (zfill)

This function secures cache lines for writing on the cache. This reduces the cache line read
access from the memory and improves the performance of a program whose bottleneck is the
memory throughput.

◼ Conceptual diagram (image of the Stream
Triad case)

t

L1D$ L2$ MemoryRegister
Read (1) access

Read (2) access

Write access (for cache registration)

Operation result Operation result

1. When high-speed store is not used

There are four streams between
memory and register.

Cache is used for both read and write.

MemoryRegister
Read (1) access

Read (2) access

Operation result

2. When high-speed store is used

The number of streams between memory and register is
reduced to three, resulting in improved stream performance.

L1D$ L2$

Operation result

Memory allocation instruction

Write access

Cache is used for both read and write.

The A64FX uses the DC
ZVA instruction.

80

About High-Speed Store (zfill) by the Compiler

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Option description

◼Optimization overview

{ zfill[=N] | nozfill } 1 ≦ N ≦ 100
For array data that is only written within the loop, the store instruction is accelerated by using an instruction
that secures cache lines for writing on the cache without loading data from the memory.
If you specify N, the data of N cache lines ahead is optimized.
The specifiable value range of N is 1 to 100. If you omit N, the compiler automatically decides the value. This
option takes effect only when the -O2 and subsequent options are valid. The default is –Knozfill.

Not induced
by -Kfast

zfill achieves optimization in which data is stored at high speed by using an instruction that secures cache lines for writing on the
cache without loading data from the memory. It is applied to array data that is stored in the loop.
Note that optimization does not occur for an array having any reference in the same loop, an array subject to non-sequential
access, or an array stored under an IF construct. Also, if zfill is applied, a prefetch instruction is not output to the secondary cache.

Since loop deformation is performed in which all the cache lines secured through optimization by zfill are stored, the following
optimization techniques become unavailable. This may result in lower execution performance.
- Loop unrolling
- Loop striping
Even if the zfill optimization occurs, the information resulting from performing the above-mentioned optimization may be output to
the compilation message or optimization information when optimization by loop deformation is initiated.
The execution performance may also lower in the following cases.
- Loop with a small number of rotations
- If you specify the number of cache lines in -Kzfill=N, the number of rotations is smaller than the number of entries in the cache
lines.
- Program without a memory bandwidth bottleneck
Do not specify -Kzfill if doing so lowers the execution performance. It is desirable to control zfill on a loop-by-loop basis.
Therefore, it is recommended to specify the optimization specifier “ZFILL” rather than the option that affects the entire program.

The option and OCL specifier are renamed.
XFILL -> zfill

* The old option and specifier (-KXFILL and !OCL XFILL) are also compatible.

81

High-Speed Store Instructions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

ldd,s [%xg0+-8],%f34

ldd,s [%xg1+-8],%f32

subcc %o1,1,%o1

ldd,s [%xg0+24],%f40

ldd,s [%xg1+24],%f38

ldd,s [%xg0+56],%f44

ldd,s [%xg1+56],%f42

ldd,s [%xg0+88],%f48

ldd,s [%xg1+88],%f46

ldd,s [%xg0+120],%f52

ldd,s [%xg1+120],%f50

ldd,s [%xg0+152],%f56

ldd,s [%xg1+152],%f54

fmaddd,s %f36,%f34,%f32,%f34

ldd,s [%xg0+184],%f60

ldd,s [%xg1+184],%f58

fmaddd,s %f36,%f40,%f38,%f40

ldd,s [%xg0+216],%f64

ldd,s [%xg1+216],%f62

add %xg1,256,%xg1

fmaddd,s %f36,%f44,%f42,%f44

add %xg0,256,%xg0

fmaddd,s %f36,%f48,%f46,%f48

fmaddd,s %f36,%f52,%f50,%f52

fmaddd,s %f36,%f56,%f54,%f56

fmaddd,s %f36,%f60,%f58,%f60

fmaddd,s %f36,%f64,%f62,%f64

stxa %g0, [%xg2 + %xg6] 0xf4

std,sd %f34,[%xg2+-8]

std,sd %f40,[%xg2+24]

std,sd %f44,[%xg2+56]

std,sd %f48,[%xg2+88]

std,sd %f52,[%xg2+120]

prefetch [%xg2+760],2

std,sd %f56,[%xg2+152]

std,sd %f60,[%xg2+184]

std,sd %f64,[%xg2+216]

add %xg2,256,%xg2

bne,pt %icc, .L91

ld1d {z1.d}, p0/z, [x4, -3, mul vl]

ld1d {z0.d}, p0/z, [x9, -3, mul vl]

dc ZVA, x7

add x7, x7, 256

ld1d {z4.d}, p0/z, [x4, -2, mul vl]

ld1d {z3.d}, p0/z, [x9, -2, mul vl]

subs w3, w3, 1

ld1d {z6.d}, p0/z, [x4, -1, mul vl]

ld1d {z5.d}, p0/z, [x9, -1, mul vl]

ld1d {z16.d}, p0/z, [x4, 0, mul vl]

ld1d {z7.d}, p0/z, [x9, 0, mul vl]

add x9, x9, 256

add x4, x4, 256

fmad z1.d, p0/m, z2.d, z0.d

fmad z4.d, p0/m, z2.d, z3.d

fmad z6.d, p0/m, z2.d, z5.d

fmad z16.d, p0/m, z2.d, z7.d

st1d {z1.d}, p0, [x1, -3, mul vl]

st1d {z4.d}, p0, [x1, -2, mul vl]

st1d {z6.d}, p0, [x1, -1, mul vl]

st1d {z16.d}, p0, [x1, 0, mul vl]

prfm 16, [x1, 824]

add x1, x1, 256

bne .L92

◼ FX100 ◼ A64FX

High-speed store instruction
for the A64FX

High-speed store instruction
for the FX100

* The sxar
instruction is

omitted.

Since an amount of data equivalent to cache lines (256 B) needs to
be stored when high-speed store (zfill) is used, the memory space
for the necessary number of rotations is allocated through striping.

* Amount of data equivalent to cache lines (256 B): 4SIMD × 8
rotations for FX100 and 8SIMD × 4 rotations for A64FX

Since high-speed store
disables hardware
prefetch, software
prefetch is used as the L1
prefetch.

82

Operating Conditions of High-Speed Store (zfill) (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Operating conditions

◼ The arrays to be stored must not be dependent between iterations.

◼ There must be no reference to any defined array.

◼ Memory access must be contiguous.

◼ Case in which zfill operates

do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

rho(g,k,l) = PROG(g,k,l,1) / metrics(g,k,l)
vx (g,k,l) = PROG(g,k,l,2) / PROG(g,k,l,1)
vy (g,k,l) = PROG(g,k,l,3) / PROG(g,k,l,1)
vz (g,k,l) = PROG(g,k,l,4) / PROG(g,k,l,1)
ein(g,k,l) = PROG(g,k,l,5) / PROG(g,k,l,1)

enddo
enddo
enddo

Stream-like operation kernel pattern 1 do iq = 1, qall
do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

q(g,k,l,iq) = PROGq(g,k,l,iq) / PROG(g,k,l,1)
enddo
enddo
enddo

enddo

gall=16900, kall=96
lall=1, qall=6

real*4 y(n), x1(n), x2(n), c0
do j = 1, iter

!$omp parallel do
Do i = 1, n
y(i)=x1(i) + c0 * x2(i)

End Do
enddo

iter = 3
n = 3145728

Triad

zfill operates because memory access is contiguous.

83

Operating Conditions of High-Speed Store (zfill) (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Case in which zfill operates

◼ Case in which zfill does not operate

do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

tendency(g,k,l,1) = tendency_0(g,k,l,1) + tendency_11(g,k,l) + tendency_21(g,k,l)
tendency(g,k,l,2) = tendency_0(g,k,l,2) + tendency_12(g,k,l) + tendency_22(g,k,l)
tendency(g,k,l,3) = tendency_0(g,k,l,3) + tendency_13(g,k,l) + tendency_23(g,k,l)
tendency(g,k,l,4) = tendency_0(g,k,l,4) + tendency_14(g,k,l) + tendency_24(g,k,l)
tendency(g,k,l,5) = tendency_0(g,k,l,5) + tendency_15(g,k,l) + tendency_25(g,k,l)
tendency(g,k,l,6) = tendency_0(g,k,l,6) + tendency_16(g,k,l) + tendency_26(g,k,l)

enddo
enddo
enddo

Stream-like operation kernel pattern 2

In this code, zfill can operate.
However, the current compiler cannot
fully determine whether there is no
dependence of the arrays to be stored.
There is some room for improvement.

(By dividing the loop, the current compiler
can also run zfill. This time, therefore, the
evaluation is performed by dividing the
loop.)

do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

value(g,k,l,1) = value(g,k,l,1) + tendency(g,k,l,1) * fraction
value(g,k,l,2) = value(g,k,l,2) + tendency(g,k,l,2) * fraction
value(g,k,l,3) = value(g,k,l,3) + tendency(g,k,l,3) * fraction
value(g,k,l,4) = value(g,k,l,4) + tendency(g,k,l,4) * fraction
value(g,k,l,5) = value(g,k,l,5) + tendency(g,k,l,5) * fraction
value(g,k,l,6) = value(g,k,l,6) + tendency(g,k,l,6) * fraction

enddo
enddo
enddo

Stream-like operation kernel pattern 3

Since there is reference to a
defined array, zfill does not
operate.

84

1.00 1.02

0.86
0.83 0.82 0.81

0.77 0.76 0.76 0.76 0.75 0.75 0.77 0.79 0.77 0.77 0.75

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Without
zfill

zfill=5 zfill=6 zfill=7 zfill=8 zfill=9 zfill=10 zfill=11 zfill=12 zfill=13 zfill=14 zfill=15 zfill=16 zfill=17 zfill=18 zfill=19 zfill=20

Elapsed time ratio (when the time observed without zfill is 1)

◼ Like prefetch, high-speed store (zfill) requires
that the time for hiding the latency be
determined and that instructions be executed
in advance.
The high-speed store (zfill) distance was
verified in the case of Triad.

-> Improvement in performance was
observed on 15 cache lines.

(The following page shows the details.)

zfill Evaluation: Triad (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

!$omp parallel
Do j = 1, iter iter=3000

!$omp do

Do i = 1, n n=1048512

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
End Do

!$omp end parallel

STRRAM Triad/1CMG execution

Default distance performance

Best value
(For details, see the

following page.)

85

0

0.1

0.2

0.3

0.4

0.5

0.6

Without zfill With zfill
(Distance = 15)

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Triad execution time breakdown

Memory/cache access wait Operation wait
Instruction decode wait One instruction commit
Two or three instructions commit Four instructions commit

◼ Performance improvement by zfill

zfill Evaluation: Triad (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Without zfill
With zfill

(Distance =
15)

Aggregation thread
number

0 0

Execution time [s] 0.499 0.374

Total number of
effective instructions

2.16E+09 2.18E+09

GFLOPS 12.60 16.83

Memory throughput
[GB/s]

206.28 207.88

L1 busy rate/thread 59.97% 56.39%

L2 busy rate 87.65% 93.35%

Memory busy rate 80.58% 81.21%

Floating-point
pipeline busy
rate/thread

FLA:4.61%
FLB:2.70%

FLA:6.44%
FLB:3.32%

L1 miss count/thread 2.47E+07 2.47E+07

L1 miss demand
rate/thread

3.65% 2.18%

L2 miss count/thread 2.55E+07 1.72E+07

L2 miss demand
rate/thread

5.83% 5.27%

PA values

The effect of high-speed store (zfill)
reduces the number of memory accesses

and improves performance.

1.33-Fold
performance
improvement

86

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Without zfill With zfill
(and software prefetch)

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Execution time breakdown

Memory/cache access wait Operation wait
Instruction decode wait One instruction commit
Two or three instructions commit Four instructions commit

◼ Performance of zfill and software
prefetch

zfill Evaluation: Triad [Reference: Number of Innermost Loop
Iterations Increased by 10 Times]

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Performing software prefetch and zfill properly improves the
performance up to 210.8 GB/s.

Without zfill
With zfill

(and software
prefetch)

Aggregation thread number 0 0

Execution time [s] 0.474 0.359

Total number of effective
instructions

2.16E+09 2.52E+09

GFLOPS 13.27 17.54

Memory throughput [GB/s] 222.5 210.8

L1 busy rate/thread 52.9% 55.09%

L2 busy rate 85.1% 94.39%

Memory busy rate 86.8% 82.32%

Floating-point pipeline busy
rate/thread

FLA:4.90%
FLB:2.80%

FLA:7.14%
FLB:3.01%

L1 miss count/thread 2.46E+07 2.46E+07

L1 miss demand rate/thread 9.40% 0.08%

L2 miss count/thread 2.62E+07 1.64E+07

L2 miss demand rate/thread 12.21% 0.31%

PA values

-Kzfill=18
-Kprefetch_sequential=soft
-Kprefetch_line=9
-Kprefetch_line_L2=70

* The evaluation was conducted with the access size (number of
innermost loop iterations, array size) increased to 240 MB (by 10

times).

87

1.00

1.11
1.07 1.04 1.02 1.03

0.96 0.94 0.95 0.98
0.92

0.88 0.87
0.92 0.92

0.88 0.88

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Without
zfill

zfill=5 zfill=6 zfill=7 zfill=8 zfill=9 zfill=10 zfill=11 zfill=12 zfill=13 zfill=14 zfill=15 zfill=16 zfill=17 zfill=18 zfill=19 zfill=20

Elapsed time ratio (when the time observed without zfill is 1)

zfill Evaluation: Stream-Like Operation Kernel
Pattern 1 (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ The high-speed store (zfill)
distance was verified in the case
of the stream-like operation
kernel (pattern 1).

-> Improvement in performance
was observed on 16 cache lines.
(The following page shows the
details.)

do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

rho(g,k,l) = PROG(g,k,l,1) / metrics(g,k,l)
vx (g,k,l) = PROG(g,k,l,2) / PROG(g,k,l,1)
vy (g,k,l) = PROG(g,k,l,3) / PROG(g,k,l,1)
vz (g,k,l) = PROG(g,k,l,4) / PROG(g,k,l,1)
ein(g,k,l) = PROG(g,k,l,5) / PROG(g,k,l,1)

enddo
enddo
enddo

do iq = 1, qall
do l = 1, lall
!$OMP PARALLEL DO
do k = 1, kall
do g = 1, gall

q(g,k,l,iq) = PROGq(g,k,l,iq) / PROG(g,k,l,1)
enddo
enddo
enddo
enddo

Single precision
evaluation
gall=16900,
kall=96
lall=1, qall=6

Stream-like operation kernel pattern 1

Default distance performance

Best value
(For details, see the

following page.)

88

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

Without zfill With zfill
(Distance = 16)

Ex
ec

u
ti

o
n

 t
im

e
[s

]

Pattern 1 execution time breakdown

Memory/cache access wait Operation wait

Instruction decode wait One instruction commit

Two or three instructions commit Four instructions commit

zfill Evaluation: Stream-Like Operation Kernel
Pattern 1 (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Without zfill
With zfill

(Distance =
16)

Aggregation thread
number

0 0

Execution time [s] 0.001372 0.001206

Total number of
effective instructions

10775582 11158332

GFLOPS 91.10 103.7

Memory throughput
[GB/s]

211.31 194.84

L1 busy rate 47.98% 46.77%

L2 busy rate 83.70% 83.85%

Memory busy rate 83.36% 76.91%

Floating-point
pipeline busy
rate/thread

FLA:11.64%
FLB:10.92%

FLA:12.92%
FLB:12.59%

L1 miss count/thread 7.15E+04 7.21E+04

L1 miss demand
rate/thread

10.93%
5.37%

L2 miss count/thread 6.96E+04 5.49E+04

L2 miss demand
rate/thread

15.31%
13.25%

PA values

The effect of zfill has been confirmed. Note that
the default value of the zfill destination needs to

be changed.

89

◼ Performance of software prefetch and zfill

[Reference] Performance Improvement by zfill

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Performing zfill properly improves the performance
up to 210.8 GB/s.

Hardware
prefetch

Software
prefetch
+ zfill

Aggregation thread number 0 0

Execution time [s] 0.474 0.359

Total number of effective
instructions

2.16E+09 2.52E+09

GFLOPS 13.27 17.54

Memory throughput [GB/s] 222.5 210.8

L1 busy rate/thread 52.9% 55.09%

L2 busy rate 85.1% 94.39%

Memory busy rate 21.7% 20.58%

Floating-point pipeline busy
rate/thread

FLA:4.90%
FLB:2.80%

FLA:7.14%
FLB:3.01%

L1 miss count/thread 2.46E+07 2.46E+07

L1 miss demand rate/thread 9.40% 0.08%

L2 miss count/thread 2.62E+07 1.64E+07

L2 miss demand rate/thread 12.21% 0.31%

PA values

* The evaluation was conducted with the access size (number of
innermost loop iterations, array size) increased to 240 MB (by 10

times).

Execution time

breakdown

Hardware prefetch
Software prefetch

+zfill

Triad (double precision

real type)

Memory/cache

access wait

One instruction

commit

Operation wait

Two or three

instructions

commit

Instruction decode

wait

Four instructions

commit

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

-Kzfill=18
-Kprefetch_sequential=soft
-Kprefetch_line=9
-Kprefetch_line_L2=70

90

[Note] About High-Speed Store of On-Cache Data

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

High-speed store (zfill) improves performance when used after access to the target
arrays is properly checked.

◼ High-speed store during cache
access
Performing high-speed store for
on-cache data may lower the
performance.
Before specifying high-speed
store, you need to check
whether it is actually necessary.

Performance decreased by
about 11% when high-speed

store was applied to data
access to the L1 and L2 caches.

1.00

1.11

1.00

1.11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Without high-speed
store

With high-speed
store

Without high-speed
store

With high-speed
store

Triad
onL1 cache access

Triad
onL2 cache access

Elapsed time ratio (Triad sequential execution)

91

◼ Microarchitecture Affected by
Alignment

◼ Gather Load Instruction
Aggregation Function

◼ High-Speed Operation of the
Multiple Structures Instruction

◼ WB (Write Buffer) Operations

For the performance related to the following
alignment changes, see Basic Kernel
Performance.

◼ Evaluation Results: Contiguous SIMD Load

◼ Evaluation Results: Contiguous SIMD Store

◼ Evaluation Results: Gather Load

◼ Evaluation Results: Scatter Store

◼ Evaluation Results: Structure Load (LD2
Instruction)

◼ Evaluation Results: Structure Store (ST2
Instruction)

Data Access Alignment Constraints

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED92

Microarchitecture Affected by Alignment

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Alignment changes may cause differences in
performance for some of the load / store instructions.
Alignment is considered to affect the following.

◼ Gather load instruction aggregation function

◼ High-speed operation of the Multiple Structures
instruction

◼ WB (write buffer) operations (WB split and merge)

◼ (Store fetch bypass operation)

93

Gather Load Instruction Aggregation Function

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

If two elements issued simultaneously from one FP are adjacent to each other, the
Gather instruction can process them at a high speed. If the addresses of the two adjacent
elements match each other within 128 bytes, the instruction can speed up processing by
gathering the elements and processing them in one flow.

◼ If two adjacent elements belong to the same 128-byte block, they are gathered and
processed in one flow. In the following address pattern examples, indicates the
gathered parts, and the two elements are processed in one L1D$ pipeline flow.

20 1 3

4 5

6 7

◆ Address pattern example 1

128B

128B

128B

128B

20 1

4

6 7

◆ Address pattern example 2

128B

128B

128B

128B

3

5

Gathered and processed in 1 flow

◼ What is the gathering function of the Gather instruction?

Pay attention when implementing the starting addresses
of arrays to make full use of the gathering function of the
Gather instruction.

94

High-Speed Operation of the Multiple Structures
Instruction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Example) LD2
instruction

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

ld2d {z0.d, z1.d}, p0/z, [(array address)]

Array in the memory

z0 register z1 register

The performance changes depending on
whether the array in the memory fits within a

128-byte boundary.

When 0, 2, 4, 6, 8, 10, 12, and 14 fit within a
128-byte boundary, the data can be processed in

one flow.
(Otherwise, the data is processed in two flows.)

When 1, 3, 5, 7, 9, 11, 13, and 15 fit within a
128-byte boundary, the data can be processed in

one flow.
(Otherwise, the data is processed in two flows.)

The Multiple Structures instruction (LD2/ST2) can process data in one
flow per register when the address range of the data to be handled fits
within a 128-byte boundary, leading to faster processing.

128B

◼ High-speed operation of the Multiple Structures instruction

95

WB (Write Buffer) Operations

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Data is written from the SP (store port) to the WB (write buffer) in 64-byte
units. If blocks of data to be stored each span a 64-byte boundary, storing all the
data requires more write operations than the number of data blocks. If blocks
of data to be stored each span a 64-byte boundary, each block needs to be split
at the 64-byte boundary when written from the SP to the WB (WB split). After
that, the split data blocks that fit within the same 64-byte boundary are merged
into one block (WB merge) before being written to the WB.

Contiguous access
results in little impact
on performance.

◼ WB (write buffer) operations

WB split

64-byte boundary

WB merge

To WB

96

◼ Out-of-Order Execution-Related Resources

◼ Purposes of the Verification

◼ Verification of the Out-of-Order Execution Effect

◼ Collaboration Between Out-of-Order Execution and Software
Scheduling

◼ Summary

Verification of Out-of-Order (OoO)
Execution

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED97

Out-of-Order Execution-Related Resources

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Item Unit A64FX
K

compute
r

FX100

Operation latency FL (FMA) (Cycle) 9 6 6

Number of inflight instructions
(CSE)

(Instruction/core) 128 48 64

Number of inflight load
instructions (FP)

(Instruction/core) 40 20 32

Number of inflight store
instructions (SP)

(Instruction/core) 24 8 20

RSA (address calculation and
integer operation)

(Entry/core) 20 10 16

RSE (integer operation and real
number operation)

(Entry/core) 20x2 10+16 16+20

RSBR (branch) (Entry/core) 19 8 10

Number of renaming registers
(GPR)

(Entry/core) 64 32 48

Number of renaming registers
(FPR)

(Entry/core) 96 48 64

Number of renaming registers
(PDR)

(Entry/core) 32 - -

◼Out-of-order execution-related resources

98

◼ Verification of the out-of-order execution effect

◼ Check whether out-of-order execution is effective in performance
improvement, using an actual machine

◼ Check changes in the effect of out-of-order execution that occur
as the number of operations (chains) changes

◼ Check quantitative changes in performance based on the number
of out-of-order resources of the A64FX and the number of
resources necessary for optimal scheduling

◼ Collaboration between out-of-order execution and
software scheduling

◼ Check the effect of scheduling collaboration between software
(compiler) and hardware (out-of-order execution)

Purposes of the Verification

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED99

◼ Evaluation overview
Perform an FMA operation for array y, using
constants c0 to c9. Prepare nine cases, each with
a different number of FMAs from one to nine.

The expression assumes access to array y. In this
code, since m is passed as an argument, the
software (compiler) cannot determine m and the
loops of i are executed sequentially. Compare the
following cases.

(1) OoO enabled/software scheduling disabled
m=0: There is no dependency, and the
processing can be overtaken. (-
Kfast,noswp,unroll=2)

(2) OoO disabled/software scheduling disabled
m=1: Dependencies emerge, and the loops of i
must be executed sequentially. (-
Kfast,noswp,unroll=2)

(3) SWPL (OoO enabled/software scheduling
enabled)
m=0: Specify NORECURRENCE. (-Kfast)

Verification of the Out-of-Order Execution Effect (1/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

[1FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m) * c1

End Do

End Do

[2FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m) * c2)

End Do

End Do

: (Omitted)

[9FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

100

0.001823
0.003363

0.029620

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(3) SWPL (1) OoO enabled (2) OoO disabled

Execution time (9FMA SIMD)

Verification of the Out-of-Order Execution Effect (2/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Execution results (9FMA) Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

Result when m = 1
Since the load of y cannot
overtake the store of the

previous rotation, OoO does
not take effect.

Result when m = 0
Effect of OoO

Result of NORECURRENCE
Effect of software (compiler)

scheduling and OoO
The operation efficiency is

about 70%.
The ideal value

cannot be reached
with OoO alone.

While OoO is effective, SWPL is
superior to OoO in performance
because there are many
operations and chains.

101

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

1FMA 2FMA 3FMA 4FMA 5FMA 6FMA 7FMA 8FMA 9FMA

Execution time (SIMD case)

(3) SWPL (1) OoO enabled (2) OoO disabled

Verification of the Out-of-Order Execution Effect (3/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Execution results of the individual cases
(execution time) [1FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m) * c1

End Do

End Do

[2FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m) * c2)

End Do

End Do

: (Omitted)

[9FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

The effect of OoO is confirmed.
As the number of operations

increases, the performance gap
between (1) OoO and (3) SWPL

becomes greater.

Operation
peak ratio:

70.6%

For the loop of the 2FMA case, the
performance of SWPL is almost the same
as that of OoO.

102

Verification of the Out-of-Order Execution Effect (4/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Number of OoO resources necessary
for ideal execution (for hiding
operation latency)

Number
of A64FX
resources

2FMA 3FMA 9FMA

Number of
necessary
registers

32+96 39 40 46

Number of
RSEs

20x2 36 54 162

Number of
RSBRs

16 9 9 9

Number of
necessary

FPs
40 18 18 18

Number of
necessary

SPs
24 18 18 18

As the gap from the
number of resources
increases, adequate
scheduling becomes
more difficult.

Number of necessary registers = Constant + (2 * latency * number of pipelines)
Number of necessary RSEs = Number of FMAs * latency * number of pipelines
Number of necessary RSBRs = Latency * number of pipelines / number of unrolls
Number of necessary FPs = Number of loads * latency * number of pipelines
Number of necessary SPs = Number of stores * latency * number of pipelines

[2FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m) * c2)

End Do

End Do

[3FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m) * ¥

(c2 + y(i,j-m)* c3))

End Do

End Do

: (Omitted)

[9FMA]

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

103

0.00181 0.00186 0.00192 0.00196 0.00203
0.00225 0.00230 0.00240

0.002780.00269
0.00294 0.00307 0.00320

0.00358

0.00474 0.00486

0.00538

0.00934

144 144

112 112 112

80 80 80

48

0

20

40

60

80

100

120

140

160

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

fregrate=100 fregrate=95 fregrate=93 fregrate=90 fregrate=85 fregrate=80 fregrate=75 fregrate=70 fregrate=65

Execution time/necessary number of SWPL iterations (9fma SIMD)

Execution time Time estimated from II Necessary number of iterations

Collaboration Between Out-of-Order Execution and
Software Scheduling

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Out-of-order execution and software scheduling (SWPL)
The performance of SWPL improves when used in collaboration with OoO.

◼ Loose scheduling and out-of-order execution
While loose scheduling through SWPL results in a poorly-ordered instruction
sequence, OoO prevents the deterioration width from increasing.
As scheduling loosens, the number of loop iterations necessary for SWPL
decreases, making it possible to use SWPL for the tuning of loops whose
iteration counts are known.

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j)*(c1 + y(i,j)* ¥

(c2 + y(i,j)*(c3 + y(i,j)* ¥

(c4 + y(i,j)*(c5 + y(i,j)* ¥

(c6 + y(i,j)*(c7 + y(i,j)* ¥

(c8 + y(i,j)* c9))))))))

End Do

End Do

The effect of OoO
results in better

performance than
estimated.

Performance estimated by the compiler (adopted II = 21).
The register is insufficient for the best value (minimum II = 10).

Loose scheduling
Loose scheduling decreases

the number of iterations
necessary for SWPL.

104

Summary

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ The effect of out-of-order execution has been confirmed.

◼ As the link (number) of operations grows larger,
software scheduling (SWPL) becomes more important.
-> When SWPL is not supported for a loop, dividing the
loop promotes SWPL.

◼ Scheduling SWPL loosely on purpose may provide room
for tuning for a loop whose iteration count is explicitly
decided.

105

◼ About the SIMD Width

◼ Performance of the Fixed-Length SIMD Width Specification

◼ Performance Impact of SIMD Width-Conscious Optimization
(Tuning)

◼ Performance of the Variable-Length SIMD Specification

◼ [Reference] Changes in Power Based on the SIMD Width

SIMD Width

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED106

About the SIMD Width

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ SIMD widths supported by the processor

The implementor can freely decide the vector length (SIMD width) of the ARM SVE
in units of 128 bits from 128 bits to 2048 bits.
The A64FX is implemented with the vector length being 512 bits.

◼ The A64FX supports the following vector lengths.

• 512 bits

• 256 bits

• 128 bits

◼ Compiler options

◼ -Ksimd_reg_size={ 128 | 256 | 512 | agnostic }
The default is -Ksimd_reg_size=512.

• simd_reg_size={ 128 | 256 | 512 }
Specify the vector register size of the SVE. The unit is the bit. At the time of compilation, optimization is
performed, assuming that the value specified in this option is the vector register size of the SVE. Note that
the generated executable program works normally only in a CPU architecture in which the SVE vector
register whose size is equal to that specified in this option is implemented.

• simd_reg_size=agnostic
Compilation is performed, without assuming any particular size as the vector register size of the SVE, to
create an executable program that decides the SVE vector register size at the time of execution. This
executable program can be executed, regardless of the vector register size of the SVE implemented in the
CPU architecture.
Note that the execution performance may become lower than when the -Ksimd_reg_size={128|256|512}
option is specified.

107

Performance of the Fixed-Length SIMD Width
Specification

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Changes in performance based on
the SIMD width

Program
Floating-point
operation peak

ratio

Memory
throughput
peak ratio

Execution time ratio
SIMD width =

512
(Default)

SIMD width =
256

SIMD width =
128

Adventure.region1 26.98% 62.38% 1.00 1.67 3.25

Adventure.region2 20.85% 0.02% 1.00 1.49 2.74

FFB.callap_kernel2 39.12% 76.33% 1.00 1.02 1.19

FFB.spmmv_vec8 28.38% 33.94% 1.00 0.99 5.11

GAMERA.TIMER_COMP_MATVEC_IF 20.29% 8.90% 1.00 1.56 2.81

GENESIS.Nonb15F(June) 7.73% 6.41% 1.00 1.78 3.38

GENESIS.Nonb15F(July) 8.04% 4.46% 1.00 1.45 2.07

GENESIS.PairList(June) 6.71% 7.96% 1.00 1.79 1.88

GENESIS.PairList(July) 4.76% 3.04% 1.00 1.08 1.14

NICAM.Horizontal_Adv_flux 2.59% 1.94% 1.00 1.20 1.96

NICAM.Horizontal_Adv_limiter 14.37% 41.61% 1.00 1.21 1.67

NICAM.Radiation_adding 14.48% 47.57% 1.00 1.27 1.84

NICAM.Radiation_dtrn31 9.64% 36.38% 1.00 1.24 1.81

NICAM.Radiation_ptfit2 11.84% 64.94% 1.00 1.05 1.35

NICAM.Vertical_Adv_limiter 6.10% 73.82% 1.00 0.97 1.01

NICAM.diffusion 15.62% 43.44% 1.00 1.78 3.35

NICAM.divdamp 33.16% 36.00% 1.00 1.56 2.81

NICAM.vi_rhow_solver 15.49% 56.23% 1.00 1.34 2.00

NICAM_nsw6.M3_mp_nsw6_OMP9 10.29% 68.25% 1.00 1.01 1.01

NICAM_nsw6.M3_vadv1d_getflux_new 3.06% 54.72% 1.00 1.19 1.54

streamlike_pattern1_check 9.38% 78.69% 1.00 1.00 1.01

streamlike_pattern2_check 2.38% 78.10% 1.00 1.54 2.94

streamlike_pattern3_check 4.15% 78.41% 1.00 0.99 1.00

MD 78.42% 0.02% 1.00 2.70 3.87

N-body 90.36% 0.00% 1.00 1.95 3.32

(Geometric mean) 1.00 1.34 2.01

To be analyzed
on the next

page

The change in performance is acceptable as long as the ratio does not exceed twice
the original value when the SIMD width is 256 bits or four times when the SIMD

width is 128 bits.
If the ratio is larger than that, it is possible that there is another problem.

Basically, there is no impact for a kernel with a
memory bandwidth bottleneck.

108

Performance Impact of SIMD Width-Conscious
Optimization (Tuning)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ For FFB.spmmv_vec8
[SIMD width 256 bits]

182 !$omp parallel default(none) private(IP,II,JJ,IP2)

183 !$omp&shared(NP,LIST,AX,A,X)

184 !$omp do

185 !ocl nounroll

186 !ocl swp

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SOFTWARE PIPELINING(IPC: 3.01, ITR: 48, MVE: 3, POL: S)

<<< PREFETCH(HARD) Expected by compiler :

<<< LIST, A, AX

<<< Loop-information End >>>

187 1 p DO IP=1,NP

191 1 !ocl nounroll,loop_nofission

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< Loop-information End >>>

192 2 p v DO JJ=1,8

193 2 p v AX(JJ,IP)=AX(JJ,IP)+A(1,IP)*X(JJ,LIST(1,IP))

194 2 p v AX(JJ,IP)=AX(JJ,IP)+A(2,IP)*X(JJ,LIST(2,IP))

：
226 2 p v ENDDO

：
238 1 p ENDDO

239 !$omp end do

240 !$omp end parallel

[SIMD width 128 bits]

182 !$omp parallel default(none) private(IP,II,JJ,IP2)

183 !$omp&shared(NP,LIST,AX,A,X)

184 !$omp do

185 !ocl nounroll

186 !ocl swp

187 1 p DO IP=1,NP

191 1 !ocl nounroll,loop_nofission

<<< Loop-information Start >>>

<<< [OPTIMIZATION]

<<< SIMD(VL: 4)

<<< PREFETCH(HARD) Expected by compiler :

<<< X

<<< PREFETCH(SOFT) : 30

<<< SEQUENTIAL : 30

<<< X: 28, AX: 2

<<< SPILLS :

<<< GENERAL : SPILL 4 FILL 20

<<< SIMD&FP : SPILL 0 FILL 4

<<< SCALABLE : SPILL 0 FILL 0

<<< PREDICATE : SPILL 0 FILL 0

<<< Loop-information End >>>

192 2 p v DO JJ=1,8

193 2 p v AX(JJ,IP)=AX(JJ,IP)+A(1,IP)*X(JJ,LIST(1,IP))

194 2 p v AX(JJ,IP)=AX(JJ,IP)+A(2,IP)*X(JJ,LIST(2,IP))

：
226 2 p v ENDDO

：
238 1 p ENDDO

239 !$omp end do

240 !$omp end parallel

Eight innermost rotations
are expanded based on the
SIMD width, and scheduling
is optimized in the external

loop.

If optimization (tuning) is performed with the SIMD width in mind, a
performance gap greater than expected may arise.

As the SIMD width becomes
small, the rotation remains
even if the innermost loop
is expanded with the SIMD,
resulting in the optimization
of scheduling being applied

on the innermost loop.

109

Performance of the Variable-Length SIMD
Specification

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Performance of the variable-length SIMD (-Ksimd_reg_size=agnostic)
(Ratio when the variable-length SIMD specification + system SIMD width of 512 is 1)

Program

-Ksimd_reg_size=512
(Default)

-Ksimd_reg_size=agnostic

SIMD width = 512
SIMD width =

512
SIMD width =

256
SIMD width =

128
Adventure.region1 1.00 1.00 1.69 3.32

Adventure.region2 1.02 1.00 1.62 2.94

FFB.callap_kernel2 0.18 1.00 0.87 0.92

FFB.spmmv_vec8 0.25 1.00 1.09 1.55

GAMERA.TIMER_COMP_MATVEC_IF 0.85 1.00 1.64 2.84

GENESIS.Nonb15F(June) 0.73 1.00 1.70 3.18

GENESIS.Nonb15F(July) 0.82 1.00 1.31 1.94

GENESIS.PairList(June) 0.59 1.00 1.07 1.15

GENESIS.PairList(July) 1.02 1.00 1.14 1.24

NICAM.Horizontal_Adv_flux 0.68 1.00 1.46 1.63

NICAM.Horizontal_Adv_limiter 0.96 1.00 1.20 1.73

NICAM.Radiation_adding 0.77 1.00 1.39 2.26

NICAM.Radiation_dtrn31 0.74 1.00 1.23 1.64

NICAM.Radiation_ptfit2 1.04 1.00 1.15 1.53

NICAM.Vertical_Adv_limiter 1.04 1.00 1.02 1.04

NICAM.diffusion 0.10 1.00 1.07 1.22

NICAM.divdamp 0.81 1.00 1.42 2.15

NICAM.vi_rhow_solver 1.01 1.00 1.28 1.89

NICAM_nsw6.M3_mp_nsw6_OMP9 1.00 1.00 1.01 1.07

NICAM_nsw6.M3_vadv1d_getflux_new 0.81 1.00 1.42 2.19

streamlike_pattern1_check 0.99 1.00 1.00 1.00

streamlike_pattern2_check 0.81 1.00 1.39 2.28

streamlike_pattern3_check 1.01 1.00 1.02 1.01

MD 0.98 1.00 2.71 3.88

N-body 0.96 1.00 1.81 3.46

(Geometric mean) 0.72 1.00 1.31 1.79

A value smaller than 1.0 indicates code whose performance lowers when the variable-length SIMD option is specified.
If SIMD width-conscious optimization is possible, the performance may deteriorate.

Executed SIMD width

110

[Reference] Changes in Power Based on the SIMD
Width

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Power efficiency when the SIMD width changes from 512 bits to
128 bits

Program

Performance improvement ratio
(SIMD width changed from 512 to 128)
* The larger the value, the better the

performance

Power ratio
(SIMD width changed from 512 to 128)
* The larger the value, the greater the

power

Performance improvement
ratio/power ratio

* The smaller, the more efficient

Adventure.region1 0.80 0.71 0.88

Adventure.region2 0.43 0.88 2.04

FFB.callap_kernel2 0.83 0.93 1.12

FFB.spmmv_vec8 0.20 0.86 4.43

GAMERA.TIMER_COMP_MATVEC_IF 0.36 0.93 2.62

GENESIS.Nonb15F(June) 0.30 0.94 3.13

GENESIS.Nonb15F(July) 0.50 1.02 2.03

GENESIS.PairList(June) 0.91 1.01 1.12

GENESIS.PairList(July) 0.86 0.90 1.05

NICAM.Horizontal_Adv_flux 0.56 0.94 1.68

NICAM.Horizontal_Adv_limiter 0.60 0.93 1.53

NICAM.Radiation_adding 0.55 1.01 1.83

NICAM.Radiation_dtrn31 0.55 0.84 1.52

NICAM.Radiation_ptfit2 0.73 0.82 1.13

NICAM.Vertical_Adv_limiter 0.97 0.96 0.99

NICAM.diffusion 0.28 0.91 3.24

NICAM.divdamp 0.37 0.88 2.38

NICAM.vi_rhow_solver 0.50 1.03 2.05

NICAM_nsw6.M3_mp_nsw6_OMP9 0.98 0.94 0.96

NICAM_nsw6.M3_vadv1d_getflux_new 0.65 0.99 1.53

streamlike_pattern1_check 1.00 1.04 1.04

streamlike_pattern2_check 0.34 0.87 2.56

streamlike_pattern3_check 0.98 1.05 1.07

(Geometric mean) 0.56 0.93 1.64

Setting the SIMD width to 128 bits can slightly reduce power
consumption. This cannot be said to be efficient, however,

considering the performance drop rate.

Less efficient
than when the
SIMD width is

512

111

◼ About the Boost Mode

◼ About the Eco Mode

◼ Basic Kernel Power by Mode

◼ Performance Verification in Boost Mode

◼ Performance Verification in Eco Mode

◼ [Reference] Time-Series Power and Performance of an
Actual Application (NICAM)

Power Control

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED112

About the Boost Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Code characteristics
Effect of the boost mode on

performance

L1 bandwidth bottleneck Can be expected

L2 bandwidth bottleneck Can be expected

Memory bandwidth bottleneck Cannot be expected

Operation bottleneck Can be expected

Access latency bottleneck Can be expected

Tofu communication bandwidth
bottleneck

Cannot be expected

Tofu communication latency
bottleneck

Can be partially expected
(CPU operating part only)

◼ About the boost mode
In normal mode, the A64FX operates at 2.0 GHz, taking into consideration the balance between
performance and power efficiency. Allowing for cases where the application (job) needs to run as
fast as possible, the boost mode is also provided in which the CPU operates at the frequency of
2.2 GHz. In boost mode, the CPU operates at a higher frequency than in normal mode, leading to
a rise in its drive voltage.

◼ In boost mode, the CPU operates at the frequency of 2.2 GHz, while the frequency of the HBM is
the same as in normal mode. The following table shows the code characteristics for which
improvement in performance can be expected in boost mode.

113

◼ About the eco mode
In eco mode, Power Knob, which uses only one FPU pipeline, is turned on, while the
bottom-up power is reduced by half to only the power for one floating-point
operation pipe. The eco mode is effective in reducing power consumption in the
running and standby states although the peak floating-point operation performance
declines.

◼ Behavior of the operation pipeline in normal mode and eco mode

Since the operation pipeline is reduced to only one pipe in eco mode, the
performance is certain to drop for code whose floating-point operation peak ratio
exceeds 50%.

Even in cases where the floating-point operation peak ratio does not exceed 50%,
the performance may be affected depending on the operation timing of the
operation instruction.

About the Eco Mode (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

No operation Operation C No operation

No operation Operation A Operation C Operation B No operationOperation D

Operation B

Operation peak ratio
50% or less (40%)

No operation No operation No operation No operation

Operation DOperation A

Operation BPipe 2
Pipe 1

Pipe 1

Normal mode

Eco mode
Actually, a performance delay occurs in

a part where two operations are
executed simultaneously.

114

◼ The following table shows the code characteristics for which an
impact on (drop in) performance can be expected in eco mode.

◼ Power consumption is certainly reduced more in eco mode than in
normal mode.

About the Eco Mode (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Code characteristics
Impact of the eco

mode on performance

L1 bandwidth bottleneck None

L2 bandwidth bottleneck None

Memory bandwidth bottleneck None

Operation bottleneck Yes

Access latency bottleneck None

Intra-node barrier bottleneck None

Tofu communication bandwidth bottleneck None

Tofu communication latency bottleneck None

115

Basic Kernel Power by Mode (1/2): Verification
Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Verification conditions

Item Details

Measurement
pattern

- L1 cache bandwidth bottleneck code
- L2 cache bandwidth bottleneck code
- Memory bandwidth bottleneck code (three patterns, each with different
array values)

(1) All 0s
(2) Serial numbers (0, 1, 2, 3, 4, ...)
(3) 64-byte block of 0s (all bits set to 0) and 64-byte block of the

minimum values (all bits set to 1) set alternately
- Latency bottleneck (L2 cache) code

Access range

* bss area used

- L1 cache bandwidth bottleneck code: 48 KB (3/4 of the L1 size) * Per core

- L2 cache bandwidth bottleneck code: 4 MB (1/2 of the L2 size) * Per CMG

- Memory bandwidth bottleneck code: 240 MB (30 times the L2 size) * Per

CMG

- Latency bottleneck code: 1.8 MB * Per CMG

Array type
- Cache bandwidth bottleneck code: Double precision real type
- Memory bandwidth bottleneck code/latency bottleneck code: 8-byte integer
type

Number of parallel
measurements
(processes and
threads)

4 processes and 12 threads
(1 process per CMG and 1 thread per core)

Compilation option -Kfast,openmp

!$omp parallel
do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
enddo

!$omp end parallel

Code to be measured 1
(Cache/memory bandwidth

bottleneck)

for (i = 0; i < rep; i++) {
p = index2[0];
for (j = 0; j < NL; j++) {

p = (uint64_t **)*p;
}
ans = p;

}

Code to be measured 2
(latency bottleneck)

116

◼ Verification results

Basic Kernel Power by Mode (2/2): Power Values

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Program

Floating-
point

operation
peak ratio

Memory
throughput
peak ratio

Busy rate
(Normal mode, eco mode off)

Power

Normal mode (2.0
GHz)

Boost mode (2.2
GHz)

L1 busy
rate

L2 busy
rate

Memory
busy rate
* The hardware
problem remains

unsolved.

Floating-
point PL busy

rate

Integer
PL busy

rate

Eco mode
off

Eco mode
on

Eco mode
off

Eco mode
on

DGEMM (* Reference) (94%) - (79%) - - (94%) - 177 125 206 143

STREAM (*Reference) - (81%) - (92%) (81%) - - 196 164 218 178

L1 bandwidth bottleneck 21.58% 0.00% 93.68% 0.00% 0.00% 54.87% 33.86% 159 132 188 152

L2 bandwidth bottleneck 7.55% 0.00% 98.09% 97.42% 0.00% 19.62% 9.67% 151 122 176 138

Memory bandwidth
bottleneck (1)

0.00% 82.50% 76.66% 91.97% 82.50% 6.42% 3.02% 169 143 194 155

Memory bandwidth
bottleneck (2)

0.00% 81.80% 75.91% 90.74% 81.80% 6.37% 2.99% 189 157 209 171

Memory bandwidth
bottleneck (3)

0.00% 82.50% 76.61% 91.90% 82.50% 6.42% 3.02% 199 171 219 186

Latency bottleneck (L2
cache)

0.00% 0.00% 10.59% 12.67% 0.00% 0.00% 0.54% 121 88 139 99

(1): As the array values, 0s are used.
(2): As the array values, serial numbers (0, 1, 2, 3, 4, ...) are used.
(3): As the array values, 0s (all bits set to 0) and minimum values (all bits set to 1)
are used alternately in 64-byte units.
Value in parentheses: Reference value

It has been confirmed that a
difference of about 20 to 30 W
arises due to the difference in

the initial value.

Note) The power values differ for each individual CPU. The
values shown above should be considered relative values.

117

[Reference] Application Kernel Busy Rate and Power
Value by Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Relationship between busy rate and power

Program

Single/
double
precisi

on

Floating-
point

operation
peak ratio

Memory
throughput
peak ratio

Busy rate
(Normal mode, eco mode off)

Corrected power

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

L1 busy
rate

L2 busy
rate

Memory busy
rate

* The hardware
problem remains

unsolved.

Floating-point
PL busy rate

Integer PL
busy rate

Eco mode
off

Eco mode
on

Eco mode
off

Eco mode
on

Adventure.region1 Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 226 179

NICAM.Radiation_dtrn31 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% 198 163 222 180

FFB.callap_kernel2 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 140 227 157

streamlike_pattern3_check Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% 4.2% 192 155 213 173

NICAM.Horizontal_Adv_flux Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 178

streamlike_pattern1_check Single 11.9% 84.5% 46.2% 81.0% 84.5% 10.6% 1.5% 189 158 215 170

NICAM_nsw6.M3_mp_nsw6_OMP9 Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% 3.4% 187 153 209 170

NICAM.vi_rhow_solver Single 14.8% 54.3% 45.8% 53.5% 54.3% 14.6% 22.4% 185 147 213 172

NICAM.divdamp Single 13.2% 41.4% 53.3% 75.1% 41.4% 12.4% 9.6% 180 150 208 168

Adventure.region0 Double 16.5% 93.7% 45.1% 81.0% 93.7% 19.8% 18.2% 178 146 203 161

NICAM.Radiation_adding Single 11.3% 88.2% 48.9% 84.8% 88.2% 9.1% 1.5% 178 143 196 156

streamlike_pattern2_check Single 2.3% 86.0% 48.0% 80.9% 86.0% 4.1% 2.1% 175 147 202 161

NICAM_nsw6.M3_vadv1d_getflux_new Single 3.0% 79.1% 37.1% 71.0% 79.1% 11.5% 5.6% 171 138 191 150

NICAM.Vertical_Adv_limiter Single 34.5% 37.0% 26.9% 26.3% 37.0% 49.7% 4.3% 170 127 196 143

FFB.spmmv_vec8 Single 27.0% 32.3% 52.8% 27.0% 32.3% 39.9% 20.1% 166 131 185 150

NICAM.Radiation_ptfit2 Single 16.6% 49.0% 52.6% 46.5% 49.0% 41.3% 4.8% 166 127 189 141

NICAM.Horizontal_Adv_limiter Single 8.6% 34.7% 37.2% 53.1% 34.7% 14.6% 8.1% 162 127 189 144

Adventure.region2 Double 20.0% 0.0% 78.3% 47.1% 0.0% 50.7% 4.3% 156 119 182 138

NICAM.diffusion Single 17.4% 10.4% 50.6% 72.3% 10.4% 16.1% 13.1% 156 120 179 137

GAMERA.TIMER_COMP_MATVEC_IF Single 21.0% 10.4% 57.7% 9.8% 10.4% 36.9% 15.0% 149 113 172 128

QCD.ddd_in_s_ Single 26.3% 0.1% 41.3% 18.5% 0.1% 20.9% 6.9% 149 113 172 129

QCD.jinv_ddd_in_s_ Single 27.4% 0.1% 49.4% 25.8% 0.1% 24.5% 7.0% 148 113 172 129

GENESIS.Nonb15F(June) Single 7.4% 7.0% 51.3% 12.2% 7.0% 21.7% 1.6% 142 112 165 126

GENESIS.PairList(June) Single 7.0% 9.1% 27.8% 6.8% 9.1% 18.9% 29.9% 139 106 160 119

GENESIS.Nonb15F(July) Single 7.9% 5.7% 29.3% 7.2% 5.7% 13.9% 6.2% 133 101 151 114

GENESIS.PairList(July) Single 5.5% 4.2% 24.0% 6.3% 4.2% 14.9% 31.9% 133 99 152 113

Sort

Programs with higher
memory busy rates

tend to appear higher in
the list.

118

◼ Boost Mode: Performance Verification Conditions by
Code Characteristic

◼ Boost Mode: Basic Kernel Performance

◼ [Reference] Application Kernel Measurement Results

Performance Verification in Boost Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED119

Boost Mode: Performance Verification Conditions by
Code Characteristic

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement conditions
Pattern

Verification
code

Basic operation
kernel

(1) Triad L1 cache access (L1 bandwidth performance)
(2) Triad L2 cache access (L2 bandwidth performance)
(3) Triad memory access (memory bandwidth performance)
(4) DGEMM (operation performance)
(5) L1 access latency code (operation/L1 access latency performance)

Application
kernel

28 kernels

Number of
cores to be
measured

Basic operation
kernel

(1) (5): 1 core execution, (2) (3) (4): 12 core execution (CMG0)

Application
kernel

12 core execution (CMG0)

Compilation
option

Basic operation
kernel

(1) (5) -Kfast
(2) -Kfast,openmp -Kprefetch_sequential=soft ¥

-Kprefetch_cache_level=1 -Kprefetch_line=4
(3) -Kfast,openmp -Kzfill=18 ¥

-Kprefetch_sequential=soft -Kprefetch_line=9 -Kprefetch_line_L2=70
(4) -Kfast,openmp

Application
kernel

The options individually specified for each kernel are used as they are.

Access
range

Basic operation
kernel

(1) (5) Half the L1 cache size (32 KB)
(2) Half the L2 cache size (4 MB)
(3) 30 times the L2 cache size (240 MB)
(4) TRANSA=N, TRANSB=N, M=23040, N=23040, K=640

120

0

0.05

0.1

0.15

0.2

0.25

0.3

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

L1 bandwidth
performance
normal mode

(2.0GHz)

L1 bandwidth
performance
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

Boost Mode: Basic Kernel Performance (1/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L1 bandwidth performance (1 core)

-> A performance improvement of about 10%
has been confirmed.

(As expected)

Do j = 1, iter

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

End Do
Performance

improvement of
about 10%

A64FX A64FX

CPU performance CPU performance Ratio

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

(2.2GHz
÷2.0GHz)

Source code version
L1 bandwidth
performance

L1 bandwidth
performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 1 1

Aggregation thread
number

0 0

Execution time [s] 0.276 0.251 0.91

Total number of effective
instructions

1.29.E+09 1.29.E+09

GFLOPS (processes) 14.85 16.33 1.10

Memory throughput
[GB/s/process]

0.00 0.00

L1 busy rate/thread 99.95% 99.93%

L2 busy rate/thread 0.00% 0.00%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline
busy rate/thread
(FLA and FLB)

58.61%
34.38%

58.60%
34.37%

L1 throughput
[GB/s/thread]

178.1 196.0 1.10

121

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

L2 bandwidth
performance
normal mode

(2.0GHz)

L2 bandwidth
performance
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

Boost Mode: Basic Kernel Performance (2/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L2 bandwidth performance (1 CMG)

-> A performance improvement of about 10%
has been confirmed.

(As expected)

!$omp parallel

Do j = 1, iter

!$omp do

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

!$omp end do nowait

End Do

!$omp end parallel

A64FX A64FX

CPU performance CPU performance Ratio

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

(2.2GHz
÷2.0GHz)

Source code version
L2 bandwidth
performance

L2 bandwidth
performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.058 0.052 0.91

Total number of effective
instructions

1.35.E+09 1.35.E+09

GFLOPS (processes) 60.63 66.67 1.10

Memory throughput [GB/s/process] 0.00 0.01

L1 busy rate/thread 95.08% 94.97%

L2 busy rate/thread 96.93% 96.82%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline busy
rate/thread
(FLA and FLB)

20.73%
10.88%

20.70%
10.86%

L1D miss count/thread 1.38E+07 1.38E+07

L1D miss demand rate/thread 1.00% 1.00%

L2 throughput
[GB/s/process]

727.59 799.99 1.10

Performance
improvement of

about 10%

122

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Memory
bandwidth

performance
normal mode

(2.0GHz)

Memory
bandwidth

performance
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

Boost Mode: Basic Kernel Performance (3/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Memory bandwidth performance (with zfill/1
CMG)

-> No change in performance has been confirmed.
(As expected)

A64FX A64FX

CPU performance CPU performance Ratio

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

(2.2GHz
÷2.0GHz)

Source code version
Memory bandwidth

performance
Memory bandwidth

performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.357 0.356 1.00

Total number of effective
instructions

2.52.E+09 2.52.E+09

GFLOPS (processes) 17.60 17.66 1.00

Memory throughput
[GB/s/process]

211.50 212.18 1.00

L1 busy rate/thread 51.97% 49.32%

L2 busy rate/thread 91.62% 90.04%

Memory busy rate/thread 82.62% 82.88%

Floating-point pipeline busy
rate/thread
(FLA and FLB)

6.46%
2.73%

5.89%
2.48%

L1D miss count/thread 2.46E+07 2.46E+07

L1D miss demand rate/thread 0.07% 0.07%

L2 miss count/thread 1.64E+07 1.64E+07

L2 miss demand rate/thread 0.29% 0.29%

!$omp parallel

Do j = 1, iter

!$omp do

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

!$omp end do nowait

End Do

!$omp end parallel
No performance

change

123

0

1

2

3

4

5

6

7

8

9

10

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Operation
performance
normal mode

(2.0GHz)

Operation
performance
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

Boost Mode: Basic Kernel Performance (4/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Operation performance (DGEMM/1 CMG)

-> A performance improvement of about 10% has
been confirmed.

(As expected)

A64FX A64FX

CPU performance CPU performance Ratio

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

(2.2GHz
÷2.0GHz)

Source code version
Operation

performance
Operation

performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 9.435 8.565 0.91

Total number of effective instructions 7.46.E+11 7.46.E+11

GFLOPS (processes) 720.20 793.31 1.10

Memory throughput [GB/s/process] 20.02 21.91

L1 busy rate/thread 79.40% 79.30%

L2 busy rate/thread 61.62% 61.45%

Memory busy rate/thread 7.82% 8.56%

Floating-point pipeline busy
rate/thread (FLA and FLB)

94.62%
94.38%

94.51%
94.28%

L1D miss count/thread 1.80E+09 1.80E+09

L1D miss demand rate/thread 0.45% 0.46%

L2 miss count/thread 4.60E+07 4.61E+07

L2 miss demand rate/thread 52.38% 53.49%

Performance
improvement of

about 10%

DGEMM parameters
Number
of callsTRANSA

TRANSB
M N K

NN 23040 23040 640 10

124

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Operation/L1
access latency
performance
normal mode

(2.0GHz)

Operation/L1
access latency
performance
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

Boost Mode: Basic Kernel Performance (5/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Operation/L1 access latency performance

-> A performance improvement of about 10%
has been confirmed.

(As expected)

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

Performance
improvement of

about 10%

A64FX A64FX

CPU performance CPU performance Ratio

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

(2.2GHz
÷2.0GHz)

Source code version
Operation/L1 access
latency performance

Operation/L1 access
latency performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 1 1

Aggregation thread
number

0 0

Execution time [s] 0.029 0.027 0.91

Total number of effective
instructions

7.72.E+06 7.74.E+06

GFLOPS (processes) 2.52 2.76 1.10

Memory throughput
[GB/s/process]

0.00 0.00

L1 busy rate/thread 5.55% 5.54%

L2 busy rate/thread 0.01% 0.01%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline
busy rate/thread
(FLA and FLB)

4.39%
4.36%

4.39%
4.36%

m=1

125

[Reference]
Application Kernel Measurement Results (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼NICAM Horizontal_Adv_flux

A64FX A64FX

CPU performance CPU performance

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

Source code version Horizontal_Adv_flux Horizontal_Adv_flux

Floating-point precision Single precision Single precision

SIMD width 16 16

Number of threads 12 12

Aggregation thread
number

0 0

Execution time [s] 0.001005 0.000929

Total number of
effective instructions

2.43.E+07 2.43.E+07

GFLOPS (processes) 108.75 117.62

Memory throughput
[GB/s/process]

123.04 133.74

L1 busy rate/thread 68.40% 67.87%

L2 busy rate/thread 66.77% 66.28%

Memory busy rate/thread 49.04% 52.90%

Floating-point pipeline
busy rate/thread (FLA
and FLB)

18.06%
14.00%

17.86%
13.85%

L1D miss count/thread 7.99E+04 8.04E+04

L1D miss demand
rate/thread

20.81% 20.78%

L2 miss count/thread 2.18E+04 2.61E+04

L2 miss demand
rate/thread

6.78% 7.92%

* There is a PA measurement overhead of about 50 to 80 μ.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Horizontal_Adv_flux
 normal mode

(2.0GHz)

Horizontal_Adv_flux
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

126

[Reference]
Application Kernel Measurement Results (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ FFB callap_kernel2.nodebase

A64FX A64FX

CPU performance CPU performance

Normal mode
(2.0 GHz)

Boost mode
(2.2 GHz)

Source code version
callap_kernel2.

nodebase
callap_kernel2.

nodebase

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread
number

0 0

Execution time [s] 0.000939 0.000858

Total number of effective
instructions

4.13.E+07 4.13.E+07

GFLOPS (processes) 282.65 309.34

Memory throughput
[GB/s/process]

185.36 203.37

L1 busy rate/thread 56.05% 54.81%

L2 busy rate/thread 57.98% 69.72%

Memory busy rate/thread 74.01% 80.58%

Floating-point pipeline
busy rate/thread (FLA and
FLB)

76.90%
61.84%

74.75%
60.10%

L1D miss count/thread 5.09E+04 5.09E+04

L1D miss demand
rate/thread

2.15% 2.13%

L2 miss count/thread 5.05E+04 5.05E+04

L2 miss demand
rate/thread

0.89% 0.87%

* There is a PA measurement overhead of about 50 to 80 μ.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

callap_kernel2.nodebase
normal mode

(2.0GHz)

callap_kernel2.nodebase
boost mode

(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

127

◼ Eco Mode: Performance Verification Conditions by Code
Characteristic

◼ Eco Mode: Basic Kernel Performance

◼ [Reference] Impact of the Eco Mode on Application Kernel
Performance

◼ [Reference] Application Kernel Measurement Results

◼ [Reference] Time-Series Power and Performance of an Actual
Application (NICAM)

Performance Verification in Eco Mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED128

Eco Mode: Performance Verification Conditions by
Code Characteristic

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement conditions
Pattern

Verification
code

Basic operation
kernel

(1) Triad L1 cache access (L1 bandwidth performance)
(2) Triad L2 cache access (L2 bandwidth performance)
(3) Triad memory access (memory bandwidth performance)
(4) DGEMM (operation performance)
(5) L1 access latency code (operation/L1 access latency performance)

Application
kernel

28 kernels

Number of
cores to be
measured

Basic operation
kernel

(1) (5): 1 core execution, (2) (3) (4): 12 core execution (CMG0)

Application
kernel

12 core execution (CMG0)

Compilation
option

Basic operation
kernel

(1) (5) -Kfast
(2) -Kfast,openmp -Kprefetch_sequential=soft ¥

-Kprefetch_cache_level=1 -Kprefetch_line=4
(3) -Kfast,openmp -Kzfill=18 ¥

-Kprefetch_sequential=soft -Kprefetch_line=9 -Kprefetch_line_L2=70
(4) -Kfast,openmp

Application
kernel

The options individually specified for each kernel are used as they are.

Access
range

Basic operation
kernel

(1) (5) Half the L1 cache size (32 KB)
(2) Half the L2 cache size (4 MB)
(3) 30 times the L2 cache size (240 MB)
(4) TRANSA=N, TRANSB=N, M=23040, N=23040, K=640

129

0

0.05

0.1

0.15

0.2

0.25

0.3

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

L1 bandwidth performance
Normal

 L1 bandwidth performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

Eco Mode: Basic Kernel Performance (1/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L1 bandwidth performance (1 core)

-> No impact on performance has been
confirmed.

(As expected)

Do j = 1, iter

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

End Do
No performance

change

A64FX A64FX

CPU performance CPU performance Ratio

Normal Eco mode
(Eco mode ÷

normal)

Source code version
L1 bandwidth
performance

L1 bandwidth
performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 1 1

Aggregation thread
number

0 0

Execution time [s] 0.276 0.277 1.00

Total number of effective
instructions

1.29.E+09 1.29.E+09

GFLOPS (processes) 14.85 14.78 1.00

Memory throughput
[GB/s/process]

0.00 0.00

L1 busy rate/thread 99.95% 99.75%

L2 busy rate/thread 0.00% 0.00%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline
busy rate/thread
(FLA and FLB)

58.61%
34.38%

92.74%
0.00%

L1 throughput
[GB/s/thread]

178.1 177.4 1.00

130

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

L2 bandwidth performance
Normal

 L2 bandwidth performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

Eco Mode: Basic Kernel Performance (2/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ L2 bandwidth performance (1 CMG)

-> No impact on performance has been confirmed.
(As expected)

!$omp parallel

Do j = 1, iter

!$omp do

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

!$omp end do nowait

End Do

!$omp end parallel

A64FX A64FX

CPU performance CPU performance Ratio

Normal Eco mode
(Eco mode ÷

normal)

Source code version
L2 bandwidth
performance

L2 bandwidth
performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.058 0.058 1.00

Total number of effective instructions 1.35.E+09 1.35.E+09

GFLOPS (processes) 60.63 60.68 1.00

Memory throughput [GB/s/process] 0.00 0.00

L1 busy rate/thread 95.08% 95.00%

L2 busy rate/thread 96.93% 96.87%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline busy
rate/thread
(FLA and FLB)

20.73%
10.88%

31.58%
0.00%

L1D miss count/thread 1.38E+07 1.38E+07

L1D miss demand rate/thread 1.00% 1.01%

L2 throughput
[GB/s/process]

727.59 728.15 1.00

No performance
change

131

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Memory bandwidth performance
Normal

Memory bandwidth performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

Eco Mode: Basic Kernel Performance (3/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Memory bandwidth performance (with zfill/1
CMG)

-> No change in performance has been confirmed.
(As expected)

A64FX A64FX

CPU performance CPU performance Ratio

Normal Eco mode
(Eco mode ÷

normal)

Source code version
Memory bandwidth

performance
Memory bandwidth

performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.357 0.357 1.00

Total number of effective
instructions

2.52.E+09 2.52.E+09

GFLOPS (processes) 17.60 17.62 1.00

Memory throughput [GB/s/process] 211.50 211.78 1.00

L1 busy rate/thread 51.97% 51.50%

L2 busy rate/thread 91.62% 91.55%

Memory busy rate/thread 82.62% 82.73%

Floating-point pipeline busy
rate/thread
(FLA and FLB)

6.46%
2.73%

9.18%
0.00%

L1D miss count/thread 2.46E+07 2.46E+07

L1D miss demand rate/thread 0.07% 0.07%

L2 miss count/thread 1.64E+07 1.64E+07

L2 miss demand rate/thread 0.29% 0.29%

!$omp parallel

Do j = 1, iter

!$omp do

Do i = 1, n

y(i)=x1(i) + c0 * x2(i)

End Do

!$omp end do nowait

End Do

!$omp end parallel

No performance
change

132

0

2

4

6

8

10

12

14

16

18

20

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Operation performance
Normal

Operation performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

Eco Mode: Basic Kernel Performance (4/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Operation performance (DGEMM/1 CMG)

-> An impact increasing performance by about
1.9 times has been confirmed.

A64FX A64FX

CPU performance CPU performance Ratio

Normal Eco mode (Eco mode ÷ normal)

Source code version
Operation

performance
Operation

performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 9.435 18.093 1.92

Total number of effective
instructions

7.46.E+11 7.46.E+11

GFLOPS (processes) 720.20 375.56 0.52

Memory throughput [GB/s/process] 20.02 10.25 0.51

L1 busy rate/thread 79.40% 42.33%

L2 busy rate/thread 61.62% 32.06%

Memory busy rate/thread 7.82% 4.00%

Floating-point pipeline busy
rate/thread (FLA and FLB)

94.62%
94.38%

97.99%
0.00%

L1D miss count/thread 1.80E+09 1.80E+09

L1D miss demand rate/thread 0.45% 0.45%

L2 miss count/thread 4.60E+07 4.57E+07

L2 miss demand rate/thread 52.38% 52.32%

Impact increasing
performance by
about 1.9 times

DGEMM parameters
Number
of callsTRANSA

TRANSB
M N K

NN 23040 23040 640 10

133

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

Operation/L1 access latency
performance

Normal

Operation/L1 access latency
performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

Eco Mode: Basic Kernel Performance (5/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Operation/L1 access latency performance

-> No impact on performance has been
confirmed.

(As expected)

Do j = 1, n

Do i = 1, 8

y(i,j) = c0 + y(i,j-m)*(c1 + y(i,j-m)* ¥

(c2 + y(i,j-m)*(c3 + y(i,j-m)* ¥

(c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥

(c6 + y(i,j-m)*(c7 + y(i,j-m)* ¥

(c8 + y(i,j-m)* c9))))))))

End Do

End Do

Almost no performance
change

(Since operations need to
be performed, the

processing slightly slows
down.)

A64FX A64FX

CPU performance CPU performance Ratio

Normal Eco mode
(Eco mode ÷

normal)

Source code version
Operation/L1 access
latency performance

Operation/L1 access
latency performance

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 1 1

Aggregation thread number 0 0

Execution time [s] 0.029 0.030 1.01

Total number of effective
instructions

7.72.E+06 7.74.E+06

GFLOPS (processes) 2.52 2.48 0.99

Memory throughput
[GB/s/process]

0.00 0.00

L1 busy rate/thread 5.55% 3.72%

L2 busy rate/thread 0.01% 0.01%

Memory busy rate/thread 0.00% 0.00%

Floating-point pipeline busy
rate/thread
(FLA and FLB)

4.39%
4.36%

8.64%
0.00%

m=1

134

[Reference] Impact of the Eco Mode on Application
Kernel Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ FFB callap_kernel2.nodebase
Normal mode and eco mode

A64FX A64FX

CPU performance CPU performance

Normal Eco mode

Source code version
callap_kernel2.

nodebase
callap_kernel2.

nodebase

Floating-point precision Single precision Single precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.000912 0.001392

Total number of effective
instructions

3.45.E+06 3.45.E+06

GFLOPS (processes) 291.05 190.80

Memory throughput
[GB/s/process]

190.72 125.15

L1 busy rate/thread 56.76% 34.02%

L2 busy rate/thread 56.42% 35.99%

Memory busy rate/thread 74.54% 48.90%

Floating-point pipeline busy
rate/thread (FLA and FLB)

78.13%
62.85%

92.14%
0.00%

L1D miss count/thread 5.10E+04 5.10E+04

L1D miss demand rate/thread 2.23% 2.30%

L2 miss count/thread 5.07E+04 5.07E+04

L2 miss demand rate/thread 1.05% 1.01%

* Since the PA value measured with -Hmethod set to normal is used, the
execution time is slightly longer.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

L2 bandwidth performance
Normal

L2 bandwidth performance
Eco mode

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

FLA busy time FLB busy time

135

[Reference] Application Kernel Measurement Results

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼GENESIS PairList (Dec-July)

A64FX A64FX

CPU performance CPU performance

Normal mode (2.0
GHz)

Boost mode (2.2
GHz)

Source code version PairList (Dec-July) PairList (Dec-July)

Floating-point precision Double precision Double precision

SIMD width 8 8

Number of threads 12 12

Aggregation thread number 0 0

Execution time [s] 0.002542 0.002347

Total number of effective
instructions

1.00.E+08 1.00.E+08

GFLOPS (processes) 42.31 45.82

Memory throughput
[GB/s/process]

10.84 11.61

L1 busy rate/thread 24.60% 24.67%

L2 busy rate/thread 6.14% 6.16%

Memory busy rate/thread 4.26% 4.56%

Floating-point pipeline busy
rate/thread (FLA and FLB)

15.29%
13.22%

15.36%
13.29%

L1D miss count/thread 1.37E+04 1.36E+04

L1D miss demand
rate/thread

73.13% 72.85%

L2 miss count/thread 6.28E+03 6.28E+03

L2 miss demand
rate/thread

32.14% 30.22%* There is a PA measurement overhead of about 50 to 80 μ.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Busy time A64FX
CPU

performance

Busy time A64FX
CPU

performance

HBM HBM

PairList (Dec-
July)

normal mode
(2.0GHz)

PairList (Dec-
July)

boost mode
(2.2GHz)

E
x
e

c
u

ti
o

n
 t
im

e
 [
s
]

Memory/cache access wait Operation wait

Instruction decode wait One to three instructions commit

Four instructions commit L1 busy time

L2 busy time Memory busy time

136

[Reference] Time-Series Power and Performance of
an Actual Application (NICAM)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Time-series power aggregation

The power value was measured at intervals of about three seconds (vertical axis:
power value, horizontal axis: elapsed time).
The July 2019 version of NICAM was used.

199

214

50

70

90

110

130

150

170

190

210

0
0

:0
0

0
0

:0
3

0
0

:0
7

0
0

:1
2

0
0

:1
5

0
0

:1
8

0
0

:2
2

0
0

:2
5

0
0

:2
9

0
0

:3
2

0
0

:3
5

0
0

:3
9

0
0

:4
3

0
0

:4
6

0
0

:4
9

0
0

:5
3

0
0

:5
7

0
1

:0
0

0
1

:0
3

0
1

:0
6

0
1

:1
0

0
1

:1
4

0
1

:1
8

0
1

:2
1

0
1

:2
4

0
1

:2
7

0
1

:3
1

0
1

:3
5

0
1

:3
8

0
1

:4
2

0
1

:4
5

0
1

:4
9

0
1

:5
2

0
1

:5
6

0
1

:5
9

0
2

:0
2

0
2

:0
6

0
2

:1
0

0
2

:1
4

0
2

:1
7

0
2

:2
1

0
2

:2
4

0
2

:2
8

0
2

:3
1

0
2

:3
4

0
2

:3
8

0
2

:4
2

0
2

:4
5

0
2

:4
8

0
2

:5
1

0
2

:5
5

0
2

:5
8

0
3

:0
1

Time-series power (NICAM)

Normal mode (2.0GHz)
Eco mode OFF

Normal mode (2.0GHz)
Eco mode ON

Boost mode (2.2GHz)
Eco mode OFF

Boost mode (2.2GHz)
Eco mode ON

137

◼ Evaluation Environment and Conditions
◼ Basic Operation Kernel Performance

◼ Arithmetic Operations/Square Root

◼ Mathematical Function Performance

◼ Other Basic Operation Kernel
Evaluations

◼ Access Performance

◼ Throughput Performance
◼ Performance Values by Data Type
◼ Performance Impact by Alignment

Changes
◼ Memory Copy Performance
◼ Inter-CMG Performance Evaluation
◼ OpenMP Overhead Evaluation

Basic Kernel
Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED138

Note) The performance values
shown herein may vary slightly
depending on the measurement
software (compiler and library).

◼ Evaluation Environment: Measurement System

◼ Evaluation Conditions: Evaluation Code

◼ Evaluation Conditions: Compiler Options

Evaluation Conditions and Environment

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED139

Evaluation Environment: Measurement System (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

K FX100 Haswell
(Xeon E5-2698 v3)

Skylake
(Xeon Platinum 8168)

A64FX
1 node

Frequency [GHz] 2.0 1.975 1.9 *1 1.9 *1 2.0

Number of CPUs/node 1 1 2 2 1

Number of cores/node 8 32 32 48 48

Number of CMGs/node 2 4

Memory size/node [GB] 16 32 256 384 32

Cache size

L1 [KiB/core] 32 64 32 32 64

L2 [KiB/core] 256 1024

LL [MiB/CPU] 6 12 40 33 8

Cache latency

L1 [cycle] 4 5 4 4
5 (EX, short)
8 (FL, short)
11 (FL, long)

L2 [cycle] 11 12

LL [cycle] 31 54 Up to 34 45 37 to 47

Cache
throughput

L1 [B/cycle] 32 64 96 - When hit: 128

L2 [B/cycle] 64

LL [B/cycle] 16 32 - 42.7

*1: Set to operate at the fixed frequency of 1.9 GHz.

140

Evaluation Environment: Measurement System (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

K FX100 Haswell
Skylake

(Xeon Platinum
8168)

A64FX
1 node

Operation
performance per
node
(Operation
performance per
core)
[GFLOPS]

Double
precisi
on

128
(16)

1011.2
(31.6)

972.8
(30.4)

2918.4
(60.8)

3,072.0
(64.0)

Single
precisi
on

2022.4
(63.2)

1945.6
(60.8)

5836.8
(121.6)

6144.0
(128.0)

Main memory latency [ns] 86 160 80 150

Theoretical memory
bandwidth per node
(Theoretical memory
bandwidth per CMG)
[GB/s]

64
480

(240)
136 255

1024
(256)

141

Evaluation Conditions (1/2): Evaluation Code

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Evaluation
conditions

Pattern

Evaluation code

(1) on L1$
- Arithmetic operations/square root
- Mathematical function
- Numeric function
- Type conversion
- Access performance (contiguous access) L1$ access
- Access performance (stride access)
- Access Performance (indirect access)
(2) Access performance (contiguous access) L2$ access
(3) Access performance (contiguous access) memory access

Number of cores to
be measured

(1) 1 core execution
(2) (3) 12 core execution (1 CMG)

Access range
(1) 3/4 of the L1 cache size (48 KB)
(2) Half the L2 cache size (4 MB)
(3) 3 times the L2 cache size (24 MB)

142

Evaluation Conditions (2/2): Compiler Options

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Evaluation environment Evaluation options

K
(2.0GHz)

-Kfast -V -Nlst=t -Koptmsg=2
[Fortran only] -Cpp -Kautoobjstack,temparraystack
[ilfunc evaluation only] -Kilfunc,nomfunc

FX100
(1.975GHz)

-Kfast -V -Nlst=t -Koptmsg=2
[Fortran only] -Cpp -Kautoobjstack,temparraystack
[ilfunc evaluation only] -Kilfunc,nomfunc

PRIMERGY RX2530 M1
Haswell (FJ compiler) (1.9 GHz)

-Kfast,CORE_AVX2 -Nlst=t -Koptmsg=2
[Fortran only] -Cpp -Kautoobjstack,temparraystack

PRIMERGY RX2540 M4
Skylake (Intel compiler) (1.9
GHz)

-O3 -no-prec-div -fp-model fast=2 -xCORE-AVX512 -qopt-
zmm-usage=high

A64FX
(2.0GHz)

-Kfast -V -Nlst=t -Koptmsg=2
[Fortran only] -Cpp -Kautoobjstack,temparraystack

143

◼ Arithmetic Operations/Square Root

◼ Mathematical Function Performance

Basic Operation Kernel Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED144

Arithmetic Operations/Square Root Measurement

Results (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Arithmetic operations/square root (real type)

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Floating-point
operation

performance
(GFLOPS)

Perfor
manc

e
impro
veme

nt
ratio

Floating-point
operation

performance
(GFLOPS)

Perfor
manc

e
impro
veme

nt
ratio

Floating-point
operation

performance
(GFLOPS)

Perfor
manc

e
impro
veme

nt
ratio

Floating-point
operation

performance
(GFLOPS)

Perfor
manc

e
impro
veme

nt
ratio

Floating-point
operation

performance
(GFLOPS)

Perfor
manc

e
impro
veme

nt
ratio

Operati
on

efficien
cy

(%)

SIMD
conver
sion

effect

Double

precision

Addition 1.38 1.00 3.37 2.48 4.61 3.52 8.57 6.54 7.42 5.38 11.59 6.55

Subtraction 1.38 1.00 3.40 2.49 4.62 3.52 8.46 6.46 7.42 5.38 11.59 6.55

Multiplicatio

n
1.38 1.00 3.40 2.50 4.62 3.53 7.51 5.73 7.42 5.38 11.59 6.70

Product-

sum

operation

2.87 1.00 6.96 2.46 9.51 3.49 15.79 5.80 14.84 5.18 23.19 6.55

Division 10.39 1.00 19.06 1.86 3.22 0.33 9.24 0.94 39.57 3.81 61.84 7.94

Reciprocal 10.79 1.00 19.02 1.79 5.60 0.55 8.38 0.82 39.85 3.69 62.26 8.33

Square root 11.90 1.00 21.63 1.84 4.84 0.43 8.14 0.72 34.78 2.92 54.34 12.75

Single

precision

Addition 1.69 1.00 6.57 3.93 9.11 5.66 13.59 8.45 13.84 8.18 10.81 12.16

Subtraction 1.68 1.00 6.62 3.99 9.11 5.71 13.78 8.64 13.84 8.24 10.81 12.16

Multiplicatio

n
1.69 1.00 6.62 3.96 9.09 5.65 13.49 8.39 13.84 8.18 10.81 12.16

Product-

sum

operation

3.46 1.00 13.52 3.96 19.18 5.84 26.60 8.09 27.68 8.00 21.62 12.20

Division 9.85 1.00 15.97 1.64 26.98 2.88 39.32 4.20 61.13 6.21 47.76 14.42

Reciprocal 9.99 1.00 16.84 1.71 28.13 2.97 44.43 4.68 72.00 7.21 56.25 18.64

Square root 9.61 1.00 17.15 1.81 8.41 0.92 49.29 5.40 52.07 5.42 40.68 23.83

145

Arithmetic Operations/Square Root Measurement

Results (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Arithmetic operations (integer type)

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Integer
operation

performanc
e

(GOPS)

Performa
nce

improvem
ent ratio

Integer
operation

performanc
e

(GOPS)

Performa
nce

improvem
ent ratio

Integer
operation

performanc
e

(GOPS)

Performa
nce

improvem
ent ratio

Integer
operation

performanc
e

(GOPS)

Performa
nce

improvem
ent ratio

Integer
operation

performanc
e

(GOPS)

Perform
ance

improve
ment
ratio

Operatio
n

efficienc
y

(%)

SIMD
conversi
on effect

8-byte

integer

Addition 0.77 1.00 3.43 4.51 4.74 6.47 8.86 12.09 7.42 9.62 11.59 7.91

Subtraction 0.77 1.00 3.43 4.51 4.74 6.48 8.72 11.90 7.42 9.62 11.59 7.91

Multiplication 0.33 1.00 3.47 10.64 1.21 3.87 5.86 18.66 7.42 22.44 11.59 7.84

Product-sum

operation
0.66 1.00 7.01 10.69 2.61 4.13 9.21 14.61 14.84 22.36 23.19 13.91

Division 0.18 1.00 0.18 1.00 0.07 0.42 0.31 1.78 0.09 0.50 0.14 0.58

4-byte

integer

Addition 0.84 1.00 3.88 4.71 9.41 11.86 15.53 19.56 13.84 16.56 10.81 14.54

Subtraction 0.84 1.00 3.88 4.71 9.42 11.86 15.21 19.16 13.84 16.56 10.81 14.69

Multiplication 0.33 1.00 3.80 11.60 7.28 23.07 11.90 37.72 13.84 41.54 10.77 14.62

Product-sum

operation
0.66 1.00 7.64 11.65 14.27 22.61 25.98 41.17 27.68 41.67 21.62 26.08

Division 0.18 1.00 0.18 1.00 0.23 1.35 1.57 9.11 0.28 1.54 0.22 1.82

146

Mathematical Function Measurement Results

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Mathematical function

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Floating-
point

operation
performance

(GFLOPS)

Perfo
rman

ce
impr
ovem
ent
ratio

Floating-
point

operation
performance

(GFLOPS)

Perfo
rman

ce
impr
ovem
ent
ratio

Floating-
point

operation
performance

(GFLOPS)

Perfo
rman

ce
impr
ovem
ent
ratio

Floating-
point

operation
performance

(GFLOPS)

Perfo
rman

ce
impr
ovem
ent
ratio

Floating-
point

operation
performance

(GFLOPS)

Perfor
mance
impro
vemen
t ratio

SIMD
conver
sion

effect

Double

precision

atan 8.71 1.00 13.25 1.54 4.36 0.53 18.80 2.27 15.41 1.77 10.85

atan2 8.87 1.00 9.69 1.11 2.32 0.28 16.19 1.92 6.88 0.78 15.46

cos 11.55 1.00 19.43 1.70 4.49 0.41 21.10 1.92 24.44 2.11 8.04

exp 7.93 1.00 15.22 1.94 4.05 0.54 22.55 2.99 18.04 2.27 10.70

exp10 7.99 1.00 15.18 1.92 1.56 0.21 22.19 2.92 17.25 2.16 10.29

log 6.97 1.00 7.87 1.14 3.14 0.47 16.01 2.42 11.80 1.69 8.09

log10 7.62 1.00 9.45 1.26 2.36 0.33 20.70 2.86 11.84 1.55 8.82

sin 11.54 1.00 19.47 1.71 5.42 0.49 22.21 2.03 24.17 2.10 7.98

Exponenti

ation
7.48 1.00 8.88 1.20 2.66 0.37 13.32 1.88 8.47 1.13 14.97

Single

precision

atan 7.29 1.00 9.76 1.36 1.72 0.25 29.51 4.26 36.30 4.98 22.38

atan2 8.00 1.00 6.76 0.86 1.28 0.17 28.70 3.78 25.67 3.21 22.10

cos 10.98 1.00 16.37 1.51 1.30 0.13 39.92 3.83 48.93 4.46 15.88

exp 6.74 1.00 11.44 1.72 1.55 0.24 47.42 7.41 35.75 5.30 21.34

exp10 7.37 1.00 11.65 1.60 1.52 0.22 43.10 6.15 37.59 5.10 23.35

log 5.91 1.00 5.49 0.94 0.99 0.18 41.46 7.39 28.96 4.90 17.47

log10 6.29 1.00 6.67 1.07 1.11 0.19 52.90 8.86 30.70 4.88 17.73

sin 10.98 1.00 16.36 1.52 1.36 0.13 45.36 4.35 48.98 4.46 17.77

Exponenti

ation
7.30 1.00 6.55 0.91 1.02 0.15 25.56 3.69 17.30 2.37 17.95

Performance
improvement ratio

compared with the K
(Clock normalized)

147

Mathematical Function Comparison with Other

CPUs

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

K
(GFLOPS)

FX100
(GFLOPS)

Skylake
(GFLOPS)

A64FX
(GFLOPS)

Compare
d with K

Compar
ed with
FX100

Compared
with

Skylake

Double
precision

atan 8.71 13.25 18.80 15.41 1.77 1.16 0.78

atan2 8.87 9.69 16.19 6.88 0.78 0.71 0.40

cos 11.55 19.43 21.10 24.44 2.11 1.26 1.10

exp 7.93 15.22 22.55 18.04 2.27 1.19 0.76

exp10 7.99 15.18 22.19 17.25 2.16 1.14 0.74

log 6.97 7.87 16.01 11.80 1.69 1.50 0.70

log10 7.62 9.45 20.70 11.84 1.55 1.25 0.54

sin 11.54 19.47 22.21 24.17 2.10 1.24 1.03

Exponentiatio
n

7.48 8.88 13.32 8.47 1.13 0.95 0.60

Single
precision

atan 7.29 9.76 29.51 36.30 4.98 3.72 1.17

atan2 8.00 6.76 28.70 25.67 3.21 3.80 0.85

cos 10.98 16.37 39.92 48.93 4.46 2.99 1.16

exp 6.74 11.44 47.42 35.75 5.30 3.13 0.72

exp10 7.37 11.65 43.10 37.59 5.10 3.23 0.83

log 5.91 5.49 41.46 28.96 4.90 5.28 0.66

log10 6.29 6.67 52.90 30.70 4.88 4.60 0.55

sin 10.98 16.36 45.36 48.98 4.46 2.99 1.03

Exponentiatio
n

7.30 6.55 25.56 17.30 2.37 2.64 0.64

GEOMEAN 2.66 2.00 0.76

There is room for improvement, as
of December 2019.

148

◼ Numeric Function Measurement Results

◼ Type Conversion Measurement Results

Other Basic Operation Kernel Evaluations

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED149

Numeric Function Measurement Results

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Numeric function

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Floating-
point

operation
performanc

e
(Gflops)

Perfor
mance
impro
veme

nt
ratio

Floating-
point

operation
performanc

e
(Gflops)

Perfor
mance
impro
veme

nt
ratio

Floating-
point

operation
performanc

e
(Gflops)

Perfor
mance
impro
veme

nt
ratio

Floating-
point

operation
performanc

e
(Gflops)

Perform
ance

improve
ment
ratio

Floating-
point

operation
performanc

e
(Gflops)

Perfor
mance
impro
veme

nt
ratio

SIMD
convers

ion
effect

Double

precision

abs 1.71 1.00 4.82 2.85 6.93 4.26 13.38 8.23 9.78 5.72 7.08

max 1.42 1.00 3.43 2.45 4.54 3.38 8.08 6.00 7.42 5.24 6.55

min 1.42 1.00 3.43 2.45 4.57 3.39 8.21 6.10 7.42 5.24 6.55

mod 1.27 1.00 9.29 7.40 5.37 4.44 18.70 15.47 6.04 4.76 9.38

sign 1.58 1.00 3.45 3.32 2.46 2.81 7.07 8.07 5.85 6.35 6.37

Single

precision

abs 2.02 1.00 5.70 2.86 14.01 7.30 20.59 10.72 17.16 8.49 10.73

max 1.73 1.00 3.88 2.27 9.00 5.47 12.14 7.39 13.84 7.99 12.16

min 1.74 1.00 3.83 2.23 9.06 5.48 12.09 7.31 13.84 7.95 12.16

mod 2.06 1.00 9.63 4.73 13.79 7.05 27.86 14.24 11.11 5.39 18.67

sign 1.58 1.00 3.90 2.49 4.99 3.32 13.44 8.94 11.64 7.36 12.81

150

Type Conversion Measurement Results

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Type conversion

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Integer
operation

performance
(GOPS)

Perform
ance

improv
ement
ratio

Integer
operation

performance
(GOPS)

Perform
ance

improv
ement
ratio

Integer
operation

performance
(GOPS)

Performa
nce

improve
ment
ratio

Integer
operation

performance
(GOPS)

Performa
nce

improve
ment
ratio

Integer
operation

performance
(GOPS)

Performa
nce

improve
ment
ratio

SIMD
conversio
n effect

dble (single precision

real number)
1.64 1.00 4.79 2.96 3.79 2.44 9.19 5.91 9.06 5.54 5.78

dble (4-byte integer) 1.29 1.00 4.78 3.76 4.59 3.75 9.74 7.96 9.06 7.04 13.10

real (double precision

real number)
1.91 1.00 5.39 2.86 4.64 2.56 8.70 4.80 11.19 5.86 7.59

real (4-byte integer) 1.66 1.00 5.96 3.64 12.07 7.67 18.23 11.57 17.21 10.38 24.87

int (double precision real

number)
1.11 1.00 5.79 5.26 4.78 4.53 8.78 8.31 11.19 10.06 27.01

int (single precision real

number)
1.13 1.00 5.98 5.34 11.99 11.13 17.09 15.86 17.21 15.18 40.48

aint (double precision

real number)
0.83 1.00 4.79 5.82 3.56 4.50 6.37 8.05 9.78 11.75 6.23

aint (single precision

real number)
0.87 1.00 5.95 6.92 7.39 8.94 12.60 15.23 17.21 19.77 10.80

nint (double precision

real number)
0.80 1.00 4.07 5.15 0.83 1.10 3.92 5.15 9.78 12.19 26.65

nint (single precision

real number)
0.82 1.00 4.25 5.22 2.49 3.17 9.10 11.61 17.26 20.93 47.52

anint (double precision

real number)
0.69 1.00 4.79 7.04 1.24 1.89 5.25 8.03 9.78 14.21 6.13

anint (single precision

real number)
0.71 1.00 5.87 8.37 2.47 3.66 9.17 13.58 17.21 24.21 10.80

151

◼ Basic Access Performance

Access Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED152

Basic Access Performance (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Access performance (contiguous access): STREAM Triad case

◼ L1 access

◼ L2 access One CMG evaluated for FX100 and A64FX; one CPU evaluated for the others

◼ Memory access One CMG evaluated for FX100 and A64FX; one CPU evaluated for the others

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Floating-point
operation

performance
(Gflops)

Performa
nce

improve
ment
ratio

Floating-point
operation

performance
(Gflops)

Performa
nce

improve
ment
ratio

Floating-point
operation

performance
(Gflops)

Performa
nce

improve
ment
ratio

Floating-point
operation

performance
(Gflops)

Performa
nce

improve
ment
ratio

Floating-point
operation

performance
(Gflops)

Performa
nce

improve
ment
ratio

Operatio
n

efficienc
y

(%)

Operation
efficiency

(ideal value)
(%)

Contiguous SIMD load ×
2/

contiguous SIMD store × 1
2.87 1.00 6.94 2.45 9.02 3.31 11.69 4.29 14.84 5.17 23.19 25.00

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Throughput
(GB/s)

Performan
ce

improvem
ent ratio

Throughput
(GB/s)

Performan
ce

improvem
ent ratio

Throughput
(GB/s)

Performan
ce

improvem
ent ratio

Throughput
(GB/s)

Performan
ce

improvem
ent ratio

Throughput
(GB/s)

Performan
ce

improvem
ent ratio

Contiguous SIMD load × 2/
contiguous SIMD store × 1 133.77 1.00 418.62 3.13 301.74 2.26 312.42 2.34 698.88 5.22

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Throughput
(GB/s)

Performa
nce

improve
ment
ratio

Throughput
(GB/s)

Performa
nce

improve
ment
ratio

Throughput
(GB/s)

Performa
nce

improve
ment
ratio

Throughput
(GB/s)

Performa
nce

improve
ment
ratio

Throughput
(GB/s)

Performa
nce

improve
ment
ratio

Throughput
efficiency (%)

Contiguous SIMD load × 2/
contiguous SIMD store × 1 34.89 1.00 103.52 2.97 43.30 1.24 77.20 2.21 150.68 4.32 78.48

Result without zfill
The result with zfill was 210 GB/s or so.

153

Basic Access Performance (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Access performance (stride access) L1 access

◼ Access performance (indirect access) L1 access

K FX100
PRIMERGY
RX2530 M1

A64FX

Floating-point
operation

performance
(Gflops)

Perfor
mance
improv
ement
ratio

Floating-point
operation

performance
(Gflops)

Perfor
mance
improv
ement
ratio

Floating-point
operation

performance
(Gflops)

Perfor
mance
improv
ement
ratio

Floating-point
operation

performance
(Gflops)

Perform
ance

improve
ment
ratio

Operation
efficiency

(%)

Operation
efficiency

(ideal value)
(%)

No load/
indirect SIMD store × 1

Jump width 2 0.88 1.00 1.36 1.56 1.87 2.23 1.60 1.82 2.50

Jump width
16

0.82 1.00 1.00 1.23 1.75 2.24 1.41 1.71 2.20

Indirect SIMD load × 2/
indirect SIMD store × 1

Jump width 2 1.22 1.00 1.58 1.31 2.23 1.93 1.96 1.61 3.07

Jump width
16

0.85 1.00 1.24 1.48 2.25 2.79 0.90 1.06 1.40

Indirect SIMD load × 2/
contiguous SIMD store × 1

Jump width 2 1.82 1.00 2.41 1.34 2.27 1.32 4.72 2.60 7.38 10.00

Jump width
16

0.91 1.00 2.25 2.49 2.01 2.32 3.05 3.34 4.76 5.56

K FX100
PRIMERGY
RX2530 M1

PRIMERGY
RX2540 M4

A64FX

Floating-
point

operation
performance

(Gflops)

Perfor
mance
improv
ement
ratio

Floating-
point

operation
performance

(Gflops)

Perfor
mance
improv
ement
ratio

Floating-
point

operation
performance

(Gflops)

Perform
ance

improve
ment
ratio

Floating-
point

operation
performance

(Gflops)

Perfor
mance
improv
ement
ratio

Floating-
point

operation
performance

(Gflops)

Perform
ance

improve
ment
ratio

Operati
on

efficienc
y

(%)

Operation
efficiency

(ideal value)
(%)

No load/
indirect SIMD store × 1

Fixed value 0.98 1.00 1.82 1.88 1.82 1.95 0.15 0.16 1.56 1.59 2.44

Contiguous 0.82 1.00 1.58 1.94 1.79 2.30 0.16 0.21 1.53 1.86 2.39

Jump width
16

0.75 1.00 0.91 1.23 1.80 2.53 0.39 0.54 1.22 1.63 1.90

Indirect SIMD load × 2/
indirect SIMD store × 1

Fixed value 1.47 1.00 2.29 1.57 1.51 1.08 0.29 0.21 2.06 1.40 3.22

Contiguous 1.05 1.00 1.84 1.78 1.48 1.49 0.34 0.34 2.01 1.92 3.14

Jump width
16

0.55 1.00 1.13 2.08 1.50 2.88 0.64 1.23 0.90 1.65 1.41

Indirect SIMD load × 2/
contiguous SIMD store × 1

Fixed value 1.45 1.00 2.19 1.52 1.74 1.26 1.99 1.44 4.12 2.84 6.44 10.00

Contiguous 1.12 1.00 2.18 1.97 1.75 1.64 1.95 1.83 4.12 3.67 6.44 10.00

Jump width
16

0.98 1.00 1.72 1.77 1.38 1.47 1.59 1.70 2.73 2.77 4.26 5.56

154

◼ Measurement Conditions

◼ Calculating Measurement Results for Comparison With Other
CPUs

◼ L1 Cache Access

◼ L2 Cache Access

◼ Memory Access: Without zfill

◼ Memory Access: Access Across CMGs

Throughput Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED155

Measurement Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement conditions
Pattern

Measurement pattern

Three patterns
- L1 cache access throughput measurement
- L2 cache access throughput measurement
- Memory access throughput measurement

Cores to be measured

- L1 cache access throughput measurement
-> 1 core execution (CMG0 computing core)
- L2 cache/memory access throughput measurement
-> 12 core execution (CMG0)

Compilation option
-Kfast
* The prefetch and zfill options are described in the document as
necessary.

Type Double precision real type

Access range

-- bss is used.
-- n (number of innermost loop iterations and array size) is as
follows.

- L1 = 3/4 of the L1 cache size (2048 for the A64FX)
- L2 = 1/2 of the L2 cache size (174720 for the A64FX)
- Memory = 3 times the L2 cache size (1048512 for the A64FX)

* Each array is 256 byte aligned.

Number of outer loop
iterations (iter)

- L1 = 1000000
- L2 = 10000
- Memory = 3000

!$omp parallel
Do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
End Do

!$omp end parallel

Verification code

Specifications (throughput)
- L1 access: Read: 256 GB/s,

Write: 128 GB/s
- L2 access: 1024 GB/s
- Memory access: 256 GB/s (1 CMG)

156

Calculating Measurement Results for Comparison With Other
CPUs

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Measurement results

Floating-point operation
performance
(Gflops)

Number of floating-point operations ÷ elapsed time ÷ 109

The number of floating-point operations for PRIMERGY (Haswell, Skylake)
is the same as that for the FX100.

Integer operation
performance
(GOPS)

Number of integer operations ÷ elapsed time ÷ 109

The number of integer operations is the same as the number of floating-
point operations.

Throughput
(GB/s)

Data transfer volume ÷ elapsed time ÷ 109

As with the STREAM benchmark, the data transfer volume does not include
that of the data read from those cache lines to which data is written.

Performance
improvement ratio
(when the performance
of the K is 1)

Operation performance:
Floating-point operation performance ÷ floating-point operation

performance of the K
Integer operation performance ÷ integer operation performance of the K

Data access performance (throughput):
Throughput ÷ throughput of the K

The operation performance was calculated, with the CPU operating
frequency changed to the same frequency as the K.

◼ Calculating measurement results for comparison with other CPUs

157

◼ Ratio when the performance of the K is 1; throughput

◼ Triad contiguous access evaluated

L1 Cache Access

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Scatter ST ST Gather LD LD Expression

Triad contiguous
access

0 1 0 2 y(i) = x1(i) + scalar * x2(i)

The specified values
of the L1 cache
throughput are:
Read: 256 GB/s,
Write: 128 GB/s

178.13

140.28

0

20

40

60

80

100

120

140

160

180

200

Triad

Double precision L1 access performance Throughput
(GB/sec)

K FX100 A64FX Haswell skylake

5.25

4.13

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Triad

Double precision L1 access performance Ratio
when the performance of the K is 1

K FX100 A64FX Haswell skylake

Although alignment is
achieved, it does not
result in aligned access
and full performance fails
to be delivered.

158

◼ Ratio when the performance of the K is 1; L2 throughput (per CMG)

◼ Triad contiguous access evaluated

L2 Cache Access (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Scatter ST ST Gather LD LD Expression

Triad contiguous
access

0 1 0 2 y(i) = x1(i) + scalar * x2(i)

The specified values
of the L2 cache
throughput are:

1024 GB/s

730.63

312.42

910.95

0

100

200

300

400

500

600

700

800

900

1000

Triad

Double precision L2/L3 access performance Throughput
(GB/sec)

K FX100 A64FX Haswell L3 skylake L3 skylake L2

5.46

2.34

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Triad

Double precision L2 access performance Ratio
when the performance of the K is 1

K FX100 A64FX Haswell L3 skylake L3

Optimal value
obtained from
software prefetch
(-Kprefetch_line=4)

Triad(read2,write1)
The ideal value of this
case is 768 GB/s.

159

L2 Cache Access (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Number of executed threads and throughput

Almost all the performance of the CMG can be delivered through 10
threads (10 core) execution.

70.3 69.5 69.8 69.6 69.3 69.0 68.7 68.4
66.7 66.9

62.6
60.9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12

Throughput/number of cores (GB/sec)

70.3

139.0

209.4

278.5

346.5

414.2

481.2

546.9

600.0

669.1
688.6

730.6

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

1 2 3 4 5 6 7 8 9 10 11 12

Throughput (GB/sec)

Using CMG0, 1 to 12
threads were executed.

160

L2 Cache Access (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Difference in throughput due to the executed core

No significant difference in throughput due to the executed core was
observed.

Using cores 1 to 12
of CMG0, a thread
was executed per
core.

70.3 70.2 70.2 70.2 69.5 70.2 70.2 70.2 69.7 70.2 70.2 69.9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

core1 core2 core3 core4 core5 core6 core7 core8 core9 core10 core11 core12

Throughput (GB/sec)

161

◼ Ratio when the performance of the K is 1; memory throughput
(per CMG)

◼ Triad contiguous access evaluated

Memory Access: Without zfill (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Scatter ST ST Gather LD LD Expression

Triad
contiguous
access

0 1 0 2 y(i) = x1(i) + scalar * x2(i)

* The value shown here (memory
throughput) does not include that of
the data read from those cache lines
to which data is written.
(Same as the STREAM benchmark)

Hardware prefetch
L1 prefetch: 8 lines ahead
L2 prefetch: 40 lines ahead

Parameter tuning
will improve
performance a little
more. See the data
provided later.

Double precision memory access performance

Ratio when the performance of the K is 1

Double precision memory access performance

Throughput (GB/sec)

A64FX
A64FX

K
K

162

Memory Access: Without zfill (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Number of executed cores and throughput
(hardware prefetch)

* The value shown here (memory
throughput) does not include that of
the data read from those cache lines
to which data is written.
(Same as the STREAM benchmark)

Almost all the performance of the CMG can be delivered through 3
threads (3 core) execution.

Throughput (GB/sec) Throughput/number of cores (GB/sec)

Using CMG0, 1 to 12
threads were
executed.

163

Memory Access: Without zfill (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Difference in throughput due to the
executed core
(hardware prefetch)

No significant difference in throughput due to the executed core was
observed.

Using cores 1 to 12 of
CMG0, a thread was
executed per core.

* The value shown here (memory
throughput) does not include that of the
data read from those cache lines to
which data is written.
(Same as the STREAM benchmark)

Throughput (GB/sec)

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8 Core 9 Core 10 Core 11 Core 12

164

◼ Performance of software prefetch and
zfill

[Reference] Performance Improvement by zfill

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Performing zfill properly improves the performance up to 210.8 GB/s.

Hardware
prefetch

Software
prefetch
+ zfill

Aggregation thread number 0 0

Execution time [s] 0.474 0.359

Total number of effective
instructions

2.16E+09 2.52E+09

GFLOPS 13.27 17.54

Memory throughput [GB/s] 222.5 210.8

L1 busy rate/thread 52.9% 55.09%

L2 busy rate 85.1% 94.39%

Memory busy rate 21.7% 20.58%

Floating-point pipeline busy
rate/thread

FLA:4.90%
FLB:2.80%

FLA:7.14%
FLB:3.01%

L1 miss count/thread 2.46E+07 2.46E+07

L1 miss demand
rate/thread

9.40% 0.08%

L2 miss count/thread 2.62E+07 1.64E+07

L2 miss demand
rate/thread

12.21% 0.31%

PA values

-Kzfill=18
-Kprefetch_sequential=soft
-Kprefetch_line=9
-Kprefetch_line_L2=70

* The evaluation was conducted with the access size (number of innermost
loop iterations, array size) increased to 240 MB (by 10 times).

Execution time

breakdown

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
)

Hardware prefetch
Software prefetch

+ZFILL

Triad (double precision real number)

Memory/cache

access wait

One instruction

commit

Operation wait

Two or three

instructions

commit

Instruction decode

wait

Four instructions

commit

165

◼Memory access across CMGs

Memory Access: Access Across CMGs

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Memory

Memory

Memory

Memory

12 threads executed (1 CMG)
numactl –m4

Access to the CMG0 memory

While the performance almost the same as the specified value is achieved, the
transfer rate for memory access across CMGs is about half as high.

Care needs to be exercised when performing parallel processing (OpenMP or MPI).

210.8

118.5 120.8 120.9

0.0

50.0

100.0

150.0

200.0

250.0

CMG0 CMG1 CMG2 CMG3

Throughput (GB/sec)

Almost same
value as the

specified value
of the ring bus

zfill-tuned program used

166

◼Contiguous Access

◼Gather Load / Scatter Store Access

Performance Values by Data Type

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED167

◼ Evaluation Conditions

◼ Evaluation Results: L1 Cache Throughput

◼ Evaluation Results: L2 Cache Throughput

◼ Evaluation Results: Memory Throughput
(With/Without zfill)

Contiguous Access

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED168

Contiguous Access Evaluation Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Throughput evaluation conditions

◼ Evaluated access areas
L1 cache, L2 cache, memory (with/without zfill)

◼ Type patterns

•Real type: Double precision real number, single precision real number, half
precision real number (FP16)

• Integer type: 8-byte integer, 4-byte integer, 2-byte integer, 1-byte integer

◼ Data access pattern

•Contiguous SIMD load 2 + contiguous SIMD
store 1

◼ The evaluation code is shown at the right.

◼ For other details, see below.

do k = 1, iter
do i = 1,n

y(i) = x1(i) + c * x2(i)
enddo

enddo

Evaluation code

Evaluated access
areas

Number of
executed

cores
n (array size/innermost loop) iter (outer loop)

L1 cache 1 1/2 of the L1 cache size 1000000

L2 cache 12 1/2 of the L2 cache size 10000

Memory 12 30 times the L2 cache size 300

Half precision real numbers were evaluated
using an assembler manually modified based on

the 2-byte integer pattern.

169

Contiguous Access Evaluation Results: L1 Cache Throughput

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

22.1%
20.6% 20.6%

22.1%
20.6% 20.6% 20.6%

0%

5%

10%

15%

20%

25%
Operation efficiency (%)

169.7
158.5 158.5

169.7
158.5 158.5 158.5

0

20

40

60

80

100

120

140

160

180

L1 throughput (GB/s)

The specified values of the L1 cache throughput are:
Read1: 256 GB/s,
Write1: 128 GB/s,

Read2, Write1: 192 GB/s

The 8-byte type shows
particularly high performance.

Type
Throughput

(GB/s)
GFLOPS
/GOPS

Operation
performance ratio

L1 busy rate

Double precision real number 169.7 14.1 0.54 96.7%

Single precision real number 158.5 26.4 1.00 96.2%

Half precision real number (FP16) 158.5 52.8 2.00 97.4%

8-byte integer 169.7 14.1 0.54 96.7%

4-byte integer 158.5 26.4 1.00 97.4%

2-byte integer 158.5 52.8 2.00 97.4%

1-byte integer 158.5 105.7 4.00 97.4%

* The theoretical operation performance of the
floating-point operation was used to calculate the

operation efficiency of the integer operation.

170

Contiguous Access Evaluation Results: L2 Cache Throughput

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Type
Throughput

(GB/s)
GFLOPS
/GOPS

L2 busy rate L1D miss count

Double precision real number 731.7 60.3 96.5% 1.66E+08

Single precision real number 734.3 120.9 97.0% 1.66E+08

Half precision real number (FP16) 687.0 226.7 90.5% 1.65E+08

8-byte integer 725.0 59.6 96.5% 1.66E+08

4-byte integer 736.8 121.2 96.9% 1.66E+08

2-byte integer 686.4 226.5 90.5% 1.65E+08

1-byte integer 731.3 482.2 96.5% 1.66E+08

7.9% 7.9%
7.4%

7.8% 7.9%
7.4%

7.8%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

Operation efficiency (%)

731.7 734.3
687.0

725.0 736.8
686.4

731.3

0

100

200

300

400

500

600

700

800

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

L2 throughput (GB/s)

The specified values of the L2 cache throughput are:
Read1: 1024 GB/s,
Write1: 512 GB/s,

Read2, Write1: 768 GB/s

-Kprefetch_sequential=soft
-Kprefetch_cache_level=1
-Kprefetch_line=4

* The theoretical operation performance of
the floating-point operation was used to
calculate the operation efficiency of the

integer operation.

171

Contiguous Access Evaluation Results: Memory Throughput
(With zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Type
Throughput

(GB/s)
GFLOPS
/GOPS

L2
busy rate

Memory
busy rate

L1D
miss count

L2
miss count

Double precision real number 208.5 17.4 93.7% 81.7% 2.95E+08 1.97E+08

Single precision real number 209.1 34.8 93.2% 81.9% 2.95E+08 1.98E+08

Half precision real number (FP16) 159.6 53.2 84.8% 83.3% 2.95E+08 2.96E+08

8-byte integer 208.2 17.3 93.7% 81.6% 2.95E+08 1.98E+08

4-byte integer 208.4 34.7 93.2% 81.7% 2.95E+08 1.97E+08

2-byte integer 158.8 52.9 84.8% 83.0% 2.95E+08 2.96E+08

1-byte integer 159.0 106.0 84.8% 83.0% 2.95E+08 2.96E+08

2.3% 2.3%

1.7%

2.3% 2.3%

1.7% 1.7%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

Operation efficiency (%)

208.5 209.1

159.6

208.2 208.4

158.8 159.0

0

50

100

150

200

250

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

Memory throughput (GB/s)

-Kzfill=18
-Kprefetch_sequential=soft
-Kprefetch_line=9
-Kprefetch_line_L2=70

* The theoretical operation performance
of the floating-point operation was used
to calculate the operation efficiency of

the integer operation.

172

Contiguous Access Evaluation Results: Memory Throughput
(Without zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Type
Throughput

(GB/s)
GFLOPS
/GOPS

L2
busy rate

Memory
busy rate

L1D
miss count

L2
miss count

Double precision real number 159.9 13.3 84.4% 83.5% 2.95E+08 2.96E+08

Single precision real number 159.8 26.6 84.6% 83.5% 2.95E+08 2.96E+08

Half precision real number (FP16) 159.6 53.2 84.7% 83.4% 2.95E+08 2.96E+08

8-byte integer 159.9 13.3 84.5% 83.5% 2.95E+08 2.96E+08

4-byte integer 159.9 26.7 84.5% 83.5% 2.95E+08 2.96E+08

2-byte integer 159.8 53.3 84.4% 83.5% 2.95E+08 2.96E+08

1-byte integer 160.0 106.6 84.6% 83.5% 2.95E+08 2.96E+08

159.9 159.8 159.6 159.9 159.9 159.8 160.0

0

20

40

60

80

100

120

140

160

180

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

Memory throughput (GB/s)

1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

Double
precision

real
number

Single
precision

real
number

Half
precision

real
number
(FP16)

8-byte
integer

4-byte
integer

2-byte
integer

1-byte
integer

Operation efficiency (%)

* The theoretical operation performance
of the floating-point operation was used
to calculate the operation efficiency of

the integer operation.

-Kprefetch_sequential=soft
-Kprefetch_line=9
-Kprefetch_line_L2=70

store was counted as one access.
If it is counted as two accesses, the

throughput becomes about 213 GB/s.

173

◼ ISA of Gather Load / Scatter Store

◼ Evaluation Conditions

◼ Evaluation Results: L1 Cache Throughput

◼ Evaluation Results: L2 Cache Throughput

◼ Evaluation Results: Memory Throughput
(With/Without zfill)

Gather Load / Scatter Store Access

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED174

ISA of Gather Load / Scatter Store

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ 4-byte integer type and 8-byte integer type
The instructions were excluded from the evaluation because they were the same as
those for real numbers (single precision and double precision).

◼ 4-byte integer, single precision real number (example: Gather load instruction)

◼ 8-byte integer, double precision real number (example: Gather load instruction)

◼ 1-byte integer, 2-byte integer, half precision real number (FP16)
SIMD conversion using all of the 512 bytes (1 byte = 64 SIMD/2 bytes = 32 SIMD)
cannot be performed due to the instruction specifications of 1-byte integers, 2-byte

integers, and half precision real numbers.
Currently, up to 8 SIMD conversion is supported (16 SIMD to be supported in the
future).

ld1w {z1.s}, p0/z, [x11, z0.s, sxtw]

ld1d {z1.d}, p1/z, [x11, z0.d]

ld1sh {z1.d}, p1/z, [x11, z0.d]
The index is specified.
This specification cannot
implement 32 SIMD or 64 SIMD.

175

Gather Load / Scatter Store Access Evaluation Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Throughput evaluation conditions

◼ Evaluated access areas
L1 cache, L2 cache, memory (with/without zfill)

◼ Type patterns

• Real type: Double precision real number, single precision real
number

◼ Data access pattern

• Contiguous SIMD load 2 + contiguous SIMD store 1

• Gather load 2 + contiguous SIMD store 1

• Contiguous SIMD load 2 + Scatter store 1

• Gather load 2 + Scatter store 1

◼ The evaluation code is shown at the right.
(Evaluation code 2 is Gather load + Scatter store.)

◼ For other details, see below.

do k = 1, iter
do i = 1,n

y(i) = x1(i) + c * x2(i)
enddo

enddo

Evaluation code example 1

Evaluated access
areas

Number of
executed

cores
n (array size/innermost loop) iter (outer loop)

L1 cache 1 1/2 of the L1 cache size 1000000

L2 cache 12 1/2 of the L2 cache size 10000

Memory 12 30 times the L2 cache size 300

do k = 1, iter
do i = 1,n

y(1,i) = x1(1,i) + c * x2(1,i)
enddo

enddo

Evaluation code example 2

176

Evaluation Results: L1 Cache Throughput

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

In cases including Gather / Scatter, there is no L1 throughput bottleneck.

Type Load / store
Throughput

(GB/s)
GFLOPS
/GOPS

Operation
performance ratio

L1
busy rate

Double precision
real number

Contiguous load × 2 + contiguous store × 1 169.7 14.1 1.00 96.7%

Gather load × 2 + contiguous store × 1 51.8 4.3 0.31 74.4%

Contiguous load × 2 + Scatter store × 1 37.7 3.1 0.22 59.3%

Gather load × 2 + Scatter store × 1 23.5 2.0 0.14 55.0%

Single precision
real number

Contiguous load × 2 + contiguous store × 1 155.8 26.0 1.00 96.2%

Gather load × 2 + contiguous store × 1 29.2 4.9 0.19 73.9%

Contiguous load × 2 + Scatter store × 1 17.2 2.9 0.11 46.0%

Gather load × 2 + Scatter store × 1 11.2 1.9 0.07 49.8%

22.1%

6.7%
4.9%

3.1%

20.3%

3.8%
2.2% 1.5%

0%

5%

10%

15%

20%

25%

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Operation efficiency (%)

169.7

51.8
37.7

23.5

155.8

29.2
17.2 11.2

0

20

40

60

80

100

120

140

160

180

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

L1 throughput (GB/s)

177

Evaluation Results: L2 Cache Throughput

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

In cases including Gather / Scatter, there is no L2 throughput bottleneck.

Type Load / store
Throughput

(GB/s)
GFLOPS
/GOPS

L2
busy rate

L1D
miss count

Double precision
real number

Contiguous load × 2 + contiguous store × 1 700.9 57.9 97.6% 1.65E+08

Gather load × 2 + contiguous store × 1 501.1 41.5 71.6% 1.65E+08

Contiguous load × 2 + Scatter store × 1 406.9 33.7 59.0% 1.65E+08

Gather load × 2 + Scatter store × 1 279.1 23.1 40.4% 1.65E+08

Single precision
real number

Contiguous load × 2 + contiguous store × 1 701.6 115.9 97.6% 1.65E+08

Gather load × 2 + contiguous store × 1 322.0 53.3 45.7% 1.65E+08

Contiguous load × 2 + Scatter store × 1 203.0 33.6 29.2% 1.65E+08

Gather load × 2 + Scatter store × 1 133.6 22.1 20.4% 1.65E+08

700.9

501.1

406.9

279.1

701.6

322.0

203.0
133.6

0

100

200

300

400

500

600

700

800

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

L2 throughput (GB/s)

7.5%

5.4%

4.4%

3.0%

7.5%

3.5%

2.2%
1.4%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Operation efficiency (%)
Hardware prefetch
L1 = 4 lines ahead

178

Evaluation Results: Memory Throughput (With zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Double precision real numbers create a memory throughput bottleneck.

Type Load / store
Throughput

(GB/s)
GFLOPS
/GOPS

L2
busy rate

Memory
busy rate

L1D
miss count

L2
miss count

Double
precision

Real
number

Contiguous load × 2 + contiguous store × 1 211.0 17.6 94.1% 99.9% 2.95E+08 2.60E+08

Gather load × 2 + contiguous store × 1 211.3 17.6 94.4% 95.6% 2.95E+08 2.43E+08

Contiguous load × 2 + Scatter store × 1 159.8 13.3 85.1% 87.0% 2.95E+08 3.12E+08

Gather load × 2 + Scatter store × 1 159.8 13.3 84.5% 86.8% 2.95E+08 3.12E+08

Single
precision

Real
number

Contiguous load × 2 + contiguous store × 1 211.1 35.2 93.9% 99.8% 2.95E+08 2.59E+08

Gather load × 2 + contiguous store × 1 211.3 35.2 94.0% 92.4% 2.95E+08 2.32E+08

Contiguous load × 2 + Scatter store × 1 159.7 26.6 84.8% 86.0% 2.95E+08 3.08E+08

Gather load × 2 + Scatter store × 1 121.2 20.2 48.4% 63.3% 2.95E+08 2.96E+08

2.3% 2.3%

1.7% 1.7%

2.3% 2.3%

1.7%

1.3%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Operation efficiency (%)

211.0 211.3

159.8 159.8

211.1 211.3

159.7

121.2

0

50

100

150

200

250

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Memory throughput (GB/s)

zfill (dc instruction) is generated
for contiguous store. It is not
generated for Scatter store.

-Kzfill=18
+ hardware prefetch
L1 = 4 lines ahead
L2 = 20 lines ahead

179

Evaluation Results: Memory Throughput
(Without zfill)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Double precision real numbers create a memory throughput bottleneck in all access patterns.

Type Load / store
Throughput

(GB/s)
GFLOPS
/GOPS

L2
busy rate

Memory
busy rate

L1D
miss count

L2
miss count

Double
precision

Real
number

Contiguous load × 2 + contiguous store × 1 159.9 13.3 86.0% 95.8% 2.95E+08 3.54E+08

Gather load × 2 + contiguous store × 1 159.8 13.3 85.2% 87.4% 2.95E+08 3.15E+08

Contiguous load × 2 + Scatter store × 1 159.1 13.3 85.3% 86.5% 2.95E+08 3.12E+08

Gather load × 2 + Scatter store × 1 158.6 13.2 84.5% 86.1% 2.95E+08 3.12E+08

Single
precision

Real
number

Contiguous load × 2 + contiguous store × 1 159.8 26.6 85.9% 95.7% 2.95E+08 3.54E+08

Gather load × 2 + contiguous store × 1 158.1 26.4 84.6% 85.7% 2.95E+08 3.11E+08

Contiguous load × 2 + Scatter store × 1 158.2 26.4 84.5% 85.1% 2.95E+08 3.08E+08

Gather load × 2 + Scatter store × 1 121.2 20.2 48.4% 63.2% 2.95E+08 2.96E+08

159.9 159.8 159.1 158.6 159.8 158.1 158.2

121.2

0

20

40

60

80

100

120

140

160

180

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Memory throughput (GB/s)

1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%

1.3%

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

2.0%

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

C
o

n
ti

gu
o

u
s

lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

G
at

h
er

 lo
ad

+
co

n
ti

gu
o

u
s

st
o

re

C
o

n
ti

gu
o

u
s

lo
ad

+
Sc

at
te

r
st

o
re

G
at

h
er

 lo
ad

+
Sc

at
te

r
st

o
re

Double precision real number Single precision real number

Operation efficiency (%)
Hardware prefetch
L1 = 4 lines ahead
L2 = 20 lines ahead

180

◼ Measurement Conditions

◼ Measurement Results: Contiguous SIMD Load

◼ Measurement Results: Contiguous SIMD Store

◼ Measurement Results: Gather Load

◼ Measurement Results: Scatter Store

◼ Measurement Results: Structure Load (LD2 Instruction)

◼ Measurement Results: Structure Store (ST2 Instruction)

Performance Impact by Alignment

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED181

Measurement Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Evaluation overview
Impact by alignment changes is evaluated using the following data access
operations.

◼ Contiguous SIMD load

◼ Contiguous SIMD store

◼ Evaluation conditions

◼ The performance is evaluated by accessing a 256-byte aligned array from bytes
0 to 63.

◼ The evaluation data types are as follows.
8-byte type (double precision real number/8-byte integer), 4-byte type (single

precision real number/4-byte integer), 2-byte type (half precision real number
(FP16)/2-byte integer), 1-byte type (1-byte integer)

◼ The evaluation code will be described later together with the evaluation results.

◼ The innermost loop (n) is evaluated using the array size and the number of
iterations for accessing 1/2 of the L1 cache size. The outer loop (iter) is
evaluated using 1000000.

◼ The evaluation is performed through 1 core execution (sequential execution).

◼ When the Multiple Structures instruction is evaluated, SWPL and loop unrolling
are suppressed (out-of-order scheduling only).

182

Measurement Results: Contiguous SIMD Load (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(i) = x1(i)
enddo

enddo

Evaluation code

Delete the store
instruction from

the assembly code.

1.00
1.05 1.05 1.05 1.05 1.05 1.05 1.05

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Contiguous SIMD load (8-byte type, execution
time ratio)

1.00
1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 4 bytes 8 bytes 12 bytes 16 bytes 20 bytes 24 bytes 28 bytes 32 bytes 36 bytes 40 bytes 44 bytes 48 bytes 52 bytes 56 bytes 60 bytes

Contiguous SIMD load (4-byte type, execution time ratio)

◼ 8-byte type (double precision real number/8-byte integer)

◼ 4-byte type (single precision real number/4-byte integer)

183

Measurement Results: Contiguous SIMD Load (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

1.00

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Contiguous SIMD load (2-byte type, execution time ratio)

1.00

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11
1.06

1.11

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Contiguous SIMD load (1-byte type, execution time ratio)

◼ 2-byte type (half precision real number (FP16)/2-byte integer)

◼ 1-byte type (1-byte integer)

184

Measurement Results: Contiguous SIMD Store (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(i) = x1(i)
enddo

enddo

Evaluation code

Delete the load
instruction from

the assembly code.

1.00

1.10

1.01

1.10

1.01

1.10

1.01

1.10
1.01

1.10

1.01

1.10
1.01

1.10

1.01

1.10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 4 bytes 8 bytes 12 bytes 16 bytes 20 bytes 24 bytes 28 bytes 32 bytes 36 bytes 40 bytes 44 bytes 48 bytes 52 bytes 56 bytes 60 bytes

Contiguous SIMD store (4-byte type, execution time ratio)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Contiguous SIMD store (8-byte type, execution
time ratio)

◼ 8-byte type (double precision real number/8-byte integer)

◼ 4-byte type (single precision real number/4-byte integer)

185

1.00
1.10

1.01
1.10

1.01
1.10

1.01
1.10

1.01
1.10

1.01
1.10

1.01
1.10

1.01
1.10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Contiguous SIMD store (1-byte type, execution time ratio)

◼ 2-byte type (half precision real number)
(FP16)/2-byte integer)

◼ 1-byte type (1-byte integer)

Measurement Results: Contiguous SIMD Store (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

1.00

1.10 1.10 1.10
1.01

1.10 1.10 1.10
1.01

1.10 1.10 1.10
1.01

1.10 1.10 1.10 1.10 1.10 1.10 1.10
1.00

1.10 1.10 1.10
1.01

1.10 1.10 1.10
1.01

1.10 1.10 1.10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Contiguous SIMD store (2-byte type, execution time ratio)

186

1.00

1.27

1.00

1.27

1.00

1.26

1.00

1.26

1.00

1.28

1.00

1.28

1.00

1.19

1.00

1.19

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 bytes 4 bytes 8 bytes 12 bytes 16 bytes 20 bytes 24 bytes 28 bytes 32 bytes 36 bytes 40 bytes 44 bytes 48 bytes 52 bytes 56 bytes 60 bytes

Gather load (4-byte type, execution time ratio)

◼ 8-byte type (double precision real number/8-byte integer)

◼ 4-byte type (single precision real number/4-byte integer)

1.00
1.06

1.00
1.06

1.00 1.03 1.00 1.03

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Gather load (8-byte type, execution time ratio)

Measurement Results: Gather Load

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(1,i) = x1(1,i)
enddo

enddo

Evaluation code

Delete the store
instruction from

the assembly code.All entries aggregated
Aggregation rate:

100%

Partially not aggregated
Aggregation rate:

87.5%

All entries aggregated
Aggregation rate:

100%

Partially not aggregated
Aggregation rate:

93.74%

187

◼ 8-byte type (double precision real number/8-byte integer)

◼ 4-byte type (single precision real number/4-byte integer)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Scatter store (8-byte type, execution time ratio)

1.00

1.10
1.01

1.10
1.01

1.10
1.01

1.10
1.01

1.10
1.01

1.10
1.01

1.10
1.01

1.10

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 bytes 4 bytes 8 bytes 12 bytes 16 bytes 20 bytes 24 bytes 28 bytes 32 bytes 36 bytes 40 bytes 44 bytes 48 bytes 52 bytes 56 bytes 60 bytes

Scatter store (4-byte type, execution time ratio)

Measurement Results: Scatter Store

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(1,i) = x1(1,i)
enddo

enddo

Evaluation code

Delete the load
instruction from

the assembly code.

There is the same trend as
contiguous store.

188

1.00

1.58 1.58 1.58 1.58 1.58 1.58 1.58

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Structure load (8-byte type, execution time
ratio)

◼ Double precision complex number type (16-byte complex)

◼ Single precision complex number type (8-byte complex)

Measurement Results: Structure Load (LD2 Instruction)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(i) = c1 * x1(i)
enddo

enddo

Evaluation code

Delete the fadd and
store instructions from

the assembly code,
using the complex

number type.

1.00

1.58 1.58 1.58

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 bytes 16 bytes 32 bytes 48 bytes

Structure load (16-byte type, execution time
ratio)

Alignment affects
structure load.

189

Measurement Results: Structure Store (ST2 Instruction)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

do k = 1, iter
do i = 1,n

y(i) = c1 * x1(i)
enddo

enddo

Evaluation code

Delete the fadd and
load instructions from
the assembly code,
using the complex

number type.

1.00

2.06 2.06 2.06 2.06 2.06 2.06 2.06

0.00

0.50

1.00

1.50

2.00

2.50

0 bytes 8 bytes 16 bytes 24 bytes 32 bytes 40 bytes 48 bytes 56 bytes

Structure store (8-byte type, execution time
ratio)

◼ Double precision complex number type (16-byte complex)

◼ Single precision complex number type (8-byte complex)

1.00

1.87 1.87 1.87

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 bytes 16 bytes 32 bytes 48 bytes

Structure store (16-byte type, execution time
ratio)

Alignment affects
structure store.

190

◼ Purpose

◼ Measurement Conditions

◼ Measurement Results

◼ Summary

Memory Copy Performance

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED191

Purpose

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Purpose

◼To evaluate the memory copy performance using
Fortran code and memcpy (glibc/high-speed version)
and identify use scenes

◼About high-speed version memcpy

◼It becomes available when the relevant option is
specified. (-Kfast, A64FX, SVE, optlib_string, nolib)

◼High-speed version memcpy is used for the MPI as
well.

192

◼Measurement conditions
Condition Pattern

Verification code - Fortran code without cache cleaning
- Fortran code with cache cleaning
- memcpy (C language) without cache cleaning
- memcpy (C language) with cache cleaning

Number of
threads to be
measured

- 1 thread, 12 threads

Compiler - Compiler for the A64FX (March 20, 2019 version)

Compilation
option

- Fortran code : -Kfast * Fortran code with -Kzfill is also evaluated.
- memcpy default : -Kfast
- memcpy high-speed version : -Kfast,A64FX,SVE,optlib_string,nolib

Access range - 1 thread: Copy size 256 bytes to 1,073,741,824 bytes
- 12 threads: Copy size 288 bytes to 1,073,741,856 bytes
* When 12 threads are measured, the copy size per thread is equal to the above copy size divided by 12.

Measurement Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

double y[n], x1[n] <- 1 thread: 32 to 134217728
for (j = 0; j < iter; j++) {
Start of timer measurement
memcpy(y, x1, (copy size));
End of timer measurement
Cache cleaning

}

Code to be measured

Execute the following
Fortran code.
do i = 1, n

y(i)=x1(i)
end do

Without cache cleaning
The cache is not cleared each time memory copy is

executed once.
Depending on the copy size, on cache occurs.

With cache cleaning
The cache is cleared each time memory copy is

executed once.
Memory access occurs in any copy size.

For memcpy, evaluate the following.
default (glibc)
High-speed version

* default (glibc) was measured of the
pre-accelerated version for F64FX.

193

[Reference]

Memory Copy Performance Measurement Results (1/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ 1 thread, without cache cleaning

Copy size
(bytes)

Throughput (GB/sec)

Fortran code
Fortran code
with zfill

memcpy
default

memcpy high-
speed version

256 5.69 5.39 3.74 4.53

512 11.25 10.14 6.92 8.98

1,024 19.69 17.66 10.34 16.79

2,048 36.57 29.47 15.06 31.75

4,096 63.02 46.55 18.24 54.25

8,192 88.56 38.64 21.33 79.15

16,384 88.80 40.76 22.90 96.95

32,768 79.63 39.27 20.99 76.03

65,536 54.64 44.04 19.51 55.54

131,072 56.17 45.95 19.57 59.82

262,144 57.28 47.08 19.77 62.10

524,288 57.49 47.72 19.85 63.34

1,048,576 57.78 48.02 19.90 64.12

2,097,152 57.87 47.91 19.90 64.44

4,194,304 44.65 41.41 18.52 35.40

8,388,608 49.66 43.83 18.03 35.79

16,777,216 49.71 43.89 18.03 36.01

33,554,432 49.44 43.70 18.00 35.86

67,108,864 45.24 40.59 17.50 33.71

134,217,728 45.29 40.57 17.50 33.76

268,435,456 45.15 40.56 17.48 33.67

536,870,912 44.45 40.49 17.46 33.56

1,073,741,824 44.42 40.50 17.46 33.59

194

[Reference]

Memory Copy Performance Measurement Results (2/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ 1 thread, with cache cleaning

Copy size
(bytes)

Throughput (GB/sec)

Fortran code
Fortran code
with zfill

memcpy
default

memcpy high-
speed version

256 2.20 1.36 1.88 2.09

512 4.23 2.43 2.47 3.98

1,024 7.56 4.28 2.81 6.87

2,048 9.92 6.85 3.10 9.66

4,096 16.25 11.74 7.13 16.06

8,192 23.11 19.67 10.79 23.21

16,384 30.01 25.13 10.92 30.62

32,768 39.31 33.13 15.37 39.27

65,536 41.39 36.75 16.22 27.84

131,072 44.36 39.71 17.05 27.84

262,144 45.95 41.46 17.53 27.60

524,288 46.62 42.34 17.77 27.64

1,048,576 47.01 42.84 17.90 27.59

2,097,152 47.24 43.00 17.97 27.62

4,194,304 47.34 43.14 18.00 35.73

8,388,608 47.15 43.00 17.99 35.74

16,777,216 44.64 40.60 17.61 34.00

33,554,432 44.07 39.86 17.49 33.65

67,108,864 44.10 39.87 17.49 33.65

134,217,728 44.14 39.96 17.50 33.72

268,435,456 44.03 39.84 17.48 33.67

536,870,912 43.92 39.46 17.46 33.59

1,073,741,824 43.94 39.73 17.46 33.59

195

[Reference]

Memory Copy Performance Measurement Results (3/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ 12 threads, without cache cleaning

Copy size
(bytes)

Throughput (GB/sec)

Fortran code
Fortran code
with zfill

memcpy
default

memcpy high-
speed version

288 1.05 1.05 0.77 0.76

576 2.76 2.76 1.57 1.55

1,056 5.82 5.77 2.88 2.87

2,112 11.77 11.42 5.83 5.93

4,128 25.48 25.02 11.20 11.90

8,256 47.86 47.59 22.74 23.76

16,416 88.74 90.45 41.51 41.04

32,832 153.42 160.16 74.70 93.01

65,568 277.83 221.89 120.31 182.64

131,136 467.51 283.54 174.62 315.61

262,176 522.78 298.78 188.62 481.50

524,352 467.34 330.40 200.33 439.71

1,048,608 530.94 362.15 220.41 562.11

2,097,216 570.44 374.27 227.93 601.61

4,194,336 328.48 294.05 189.47 424.89

8,388,672 140.45 206.26 141.31 143.16

16,777,248 140.18 206.39 141.53 143.32

33,554,496 140.23 206.37 141.70 143.61

67,108,896 140.20 206.59 142.16 206.10

134,217,792 140.30 206.83 142.21 206.36

268,435,488 140.21 206.65 142.32 206.51

536,870,976 140.02 206.79 142.38 206.42

1,073,741,856 139.88 206.44 142.45 206.44

196

[Reference]

Memory Copy Performance Measurement Results (4/4)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ 12 threads, with cache cleaning

Copy size
(bytes)

Throughput (GB/sec)

Fortran code
Fortran code
with zfill

memcpy
default

memcpy high-
speed version

288 0.82 0.83 0.97 0.93

576 1.51 1.50 1.91 1.68

1,056 2.82 2.81 3.33 3.10

2,112 5.69 5.58 6.09 5.71

4,128 11.01 11.05 10.41 10.49

8,256 21.44 20.46 17.33 21.50

16,416 36.04 35.88 25.45 36.04

32,832 61.95 55.93 33.42 60.97

65,568 86.67 75.37 44.53 87.19

131,136 109.33 116.36 65.06 101.73

262,176 123.00 144.29 92.06 121.89

524,352 133.54 167.15 102.95 118.93

1,048,608 141.42 185.02 120.94 130.78

2,097,216 137.25 201.39 132.87 139.55

4,194,336 137.96 197.40 133.33 138.75

8,388,672 138.41 204.53 138.73 141.53

16,777,248 138.96 204.34 139.54 142.39

33,554,496 140.32 205.50 141.09 143.06

67,108,896 139.77 206.85 141.68 204.27

134,217,792 140.28 206.23 141.84 205.77

268,435,488 139.95 206.84 141.98 205.82

536,870,976 140.20 205.95 142.16 206.01

1,073,741,856 139.85 205.48 142.27 206.03

197

Summary

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ memcpy high-speed version

◼ In every case, this version is faster than memcpy default (glibc version).

-> The use of the high-speed version of memcpy is recommended.

◼ If the copy size (per thread) exceeds 4 MiB, zfill is automatically enabled.

• When one thread is executed (memory is not busy), care needs to be exercised because
the performance drops.

• When 12 threads are executed (memory is busy), the performance improves.

-> Depending on the copy size, zfill may fail to be enabled even when the memory is busy.

◼ Fortran code

◼ While the performance is equal to or better than the high-speed version of
memcpy, zfill needs to be set manually.

◼ Cases when Fortran code is faster than the high-speed version of memcpy

• When the memory is not busy, Fortran code is faster if the copy size is 4 MiB to 1 GiB.

• When the memory is busy, Fortran code with zfill is faster. (Compared to when zfill is disabled in
the high-speed version of memcpy)

198

◼ Hardware Overview

◼ About the Specification of numactl (Core, Memory, Interleave)

◼ Throughput Measurement Measurement Conditions

◼ Throughput Measurement Measurement Results (12 Thread Execution)

◼ Measurement Results (48 Thread Execution)

◼ Latency Measurement Measurement Conditions

◼ Latency Measurement Measurement Results

◼ Summary

◼ DGEMM Across CMGs A64FX Implementation

◼ DGEMM Efficiency in Multiple CMGs

Inter-CMG Performance Evaluation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED199

Hardware Overview

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Memory (HBM)
Four HBM (High Bandwidth Memory)
chips are directly connected to the CPU
LSI.
One HBM has a 1024-bit data interface
supporting transfer rates of up to 2 Gbps.
The memory bandwidth is 1024 bits (two-
way) × 2 Gbps × 4 (HBM), totaling 1024
GB/s.

◼ Inter-CMG connection
The intra-chip network configuration
interconnecting CMGs is shown here. This is a
two-way ring bus network that connects the

following six points.
- Four CMGs
- Interconnect controller (ICC)/
PCI Express controller

- Interrupt controller

There are two 64-byte ring buses (two-way),
and the transfer capability of these ring buses
is 128 GB/s × 2 (two-way).

Interrupt

controller

ICC

mounted PCI Express

controller

CPUNode

CMG#0

CMG#2 CMG#3

CMG#1

ICC

Tofu network PCIe bus

GearBox

PCI Express
controller
mounted

ccNUMA
connection
via ring bus

Interrupt

controller

M
e

m
o

ry
M

e
m

o
ry

M
e

m
o

ry
M

e
m

o
ry

200

About the Specification of numactl

(Core, Memory, Interleave)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ About the specification of numactl

The numactl command uses the following.
- Core specification: -C
- Memory specification: -m
- Interleave specification: –-interleave

◼ Example of numactl)

CMG Core Memory

CMG0 12 to 23 4

CMG1 24 to 35 5

CMG2 36 to 47 6

CMG3 48 to 59 7

numactl –C12-59 –m4-7

In this example, 48 threads (48
cores) and all the memories are
used. For the specified values, see
the table at the right.

201

Throughput Measurement Measurement Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement conditions

Pattern

Code to be
measured

- Triad memory access

Number of cores
to be measured
and memory
settings

12 core execution (CMG0)
- Intra-CMG memory used
- Inter-CMG memory used

48 core execution (CMG0 to CMG3)
- Demand paging
- Prepaging
- Interleave

Compilation
option

-Kfast,openmp,zfill

Access range

- Total number of bytes of access arrays: 240 MiB
- bss is used.
- Double precision operation arrays are used.
- Number of innermost loop iterations, array size (n): 10485120
- Number of outer loop iterations (iter): 3

Measurement
values

- Memory throughput (GB/s)
* Calculated by the memory access volume divided by the measurement

time.

- Memory throughput peak ratio (%)
* The denominator is 256 GB/s when 12 threads are executed and 1024

GB/s when 48 threads are executed.

!$omp parallel
do j = 1, iter

!$omp do
Do i = 1, n

y(i)=x1(i) + c0 * x2(i)
End Do

!$omp end do nowait
enddo

!$omp end parallel

Code to be measured

202

◼ Intra-CMG memory used

◼ Inter-CMG memory used

Throughput Measurement Measurement Results

(12 Thread Execution)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Number of
executed
threads

Execute
d cores

Specified
memory

Through
put

(GB/s)

Memory
throughput
peak ratio

(%)

12
12 to
23

(CMG0)

4
(CMG0)

210.8 82.3%

Memory

numactl –C12-23 –m4 (Access to the CMG0 memory)

Memory

Memory

Memory

Memory

CMG0

Number of
executed
threads

Executed
cores

Specified
memory

Through
put

(GB/s)

Memory
throughput
peak ratio

(%)

12
12 to 23
(CMG0)

5
(CMG1)

118.5 46.3%

12
12 to 23
(CMG0)

6
(CMG2)

120.8 47.2%

12
12 to 23
(CMG0)

7
(CMG3)

120.9 47.2%

numactl –C12-23 –m5 to 7 (Access to the CMG1 to CMG3 memory)

203

◼ Four CMG memories used

Measurement Results (48 Thread Execution)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Number of
executed threads

Executed cores
Specified
memory

Throughput
(GB/s)

Memory throughput
peak ratio (%)

48
12 to 59

(CMG0 to 3)
4 to 7

(CMG0 to 3) 819.7 80.0%

export XOS_MMM_L_PAGING_POLICY=demand:demand:demand
numactl –C12-59 –m4-7

Number of
executed
threads

Executed
cores

Specified
memory

Throughput
(GB/s)

Memory
throughput peak

ratio (%)

48
12 to 59

(CMG0 to 3)
4 to 7

(CMG0 to 3) 99.3 9.7%

Number of
executed
threads

Executed
cores

Specified
memory

Throughput
(GB/s)

Memory
throughput peak

ratio (%)

48
12 to 59

(CMG0 to 3)
Interleave

(CMG0 to 3) 476.0 46.5%

export XOS_MMM_L_PAGING_POLICY=prepage:prepage:prepage
numactl –C12-59 –m4-7

numactl –C12-59 --interleave=4-7

Number of
executed threads

Executed cores
Specified
memory

Throughput
(GB/s)

Memory throughput
peak ratio (%)

48
12 to 59

(CMG0 to 3)
4

(CMG0) 93.2 9.1%

numactl –C12-59 –m4

While 4-7 is set in the memory specification,
the declaration is executed with CMG0. This
allocates all the arrays to the memory (4) of
CMG0, preventing the appropriate
performance from being achieved.

Use interleave if data cannot be
divided on a per-CMG basis due
to the characteristics of the
application.

◼ Demand paging

◼ Interleave

◼ Prepaging

◼ One CMG memory used (reference)

204

Latency Measurement Measurement Conditions

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼Measurement conditions
Pattern

Code to be measured Memory access latency measurement

Cores to be measured

- 1 core execution × 48 cores (all computing cores of CMG0 to
CMG3)

-> Access to the memory inside the CMG
-> Access to the CMG0 memory (access to the memory outside

the CMG for cores of CMG1 to CMG3)

Compilation option -Kfast

Access range
- bss is used.
- Number of inner loop iterations (NL): 1024
- Number of outer loop iterations (rep): 1

Measurement value Access latency (number of cycles)

for (i = 0; i < rep; i++) {
p = 0;
for (j = 0; j < NL; j++) {

p = array[p];
}
ans = p;

}

Code to be measured

205

◼ Measurement results
(memory access (1))

CMG Core
Latency
(cycles)

CMG
average
(cycles)

2

36 262.19

264.54

37 262.92

38 262.89

39 262.19

40 262.94

41 262.94

42 263.58

43 263.15

44 262.88

45 265.34

46 262.85

47 281.17

3

48 262.19

265.66

49 259.84

50 262.19

51 262.95

52 262.19

53 262.19

54 262.28

55 263.18

56 266.10

57 263.58

58 281.16

59 281.17

Latency Measurement Measurement Results (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

CMG Core
Latency
(cycles)

CMG
average
(cycles)

0

12 259.86

261.87

13 257.17

14 259.87

15 259.06

16 262.60

17 259.06

18 262.42

19 262.22

20 263.14

21 265.98

22 262.56

23 268.71

1

24 256.65

260.75

25 256.70

26 259.86

27 256.03

28 262.19

29 259.02

30 262.22

31 262.86

32 263.14

33 262.73

34 262.48

35 265.35

Memory

Memory

Memory

Memory

numactl –m(4 to 7)
Access to each CMG memory

With respect to the specification
of 150 ns, there is no problem
with the measurement value of

131 ns.

131ns

206

◼ Measurement results
(memory access (2))

CMG Core
Latency
(cycles)

CMG
average
(cycles)

2

36 423.55

429.96

37 423.52

38 423.52

39 423.54

40 424.16

41 423.52

42 436.25

43 436.25

44 437.00

45 436.25

46 436.25

47 436.25

3

48 423.57

429.99

49 423.52

50 423.54

51 424.29

52 424.10

53 423.52

54 436.46

55 436.43

56 436.25

57 436.25

58 436.25

59 436.25

Latency Measurement Measurement Results (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

CMG Core
Latency
(cycles)

CMG
average
(cycles)

0

12 259.86

261.87

13 257.17

14 259.87

15 259.06

16 262.60

17 259.06

18 262.42

19 262.22

20 263.14

21 265.98

22 262.56

23 268.71

1

24 387.24

389.86

25 387.88

26 388.93

27 387.22

28 388.93

29 387.24

30 388.98

31 388.96

32 393.26

33 393.26

34 393.26

35 393.28

Memory

Memory

Memory

Memory

numactl –m4
Access to the CMG0 memory

215ns

131ns

Reference values for thread
parallel processing across CMGs

and intra-node MPI
communication performance

207

Summary

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ In the case of local access (memory access only to the local CMG)

◼ There is no performance problem as efficiency of 80% or more is achieved when
12 or 48 threads are executed.

◼ There is no problem with the recommended 4-process, 12-thread execution.

◼ In the case of global access (memory access made to other CMGs as well)

◼ There is a bottleneck in the inter-CMG bus performance (peak at 128 GB/s in the
case of 2.0 GHz).

◼ When only one CMG has memory and the other three CMGs access that
memory, the performance may be up to 100 GB/s or so.

◼ Whether the appropriate performance can be achieved when 48 threads
are executed depends on the application.
-> It is necessary to identify the characteristics of the application and consider

executing interleave.

208

DGEMM Across CMGs A64FX Implementation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Proposed division for a multitude of cores

◼ Use different matrix division dimensions for CMGs
and cores, respectively.

•A •×

Copy to work area

L2 of CMG0

L2 of CMG1

Load to L2 of each CMG

Copy to work area

•B

•core

•0

•core

•1 •…

•core

•15

•C

•core

•0

•core

•1 •…

•core

•15

Computed by CMG0

Computed by CMG1

Instead of assigning threads to one dimension, assign them to two
dimensions separately in units of a CMG and in units of a core. This
reduces the unnecessary movement of entries between cores.

209

DGEMM Efficiency in Multiple CMGs

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ A drop in performance in the
range where the value is large
(N = 7000 to 8000) is 1.5%
when changing from one CMG to
two CMGs and 5% or so when
changing from one CMG to four
CMGs.

◼ Improvement from one-
dimension division
In the 48th one-dimension
division, only the side of N is
divided into 48 narrow parts,
resulting in a huge drop in
performance. This has been
improved.
(In one-dimension division, the lines in the
graph are jagged because of register
blocking and surplus threads.)

◼ Why performance declines even
after the improvement
◼ Performance drops because the size per

CMG becomes smaller.

◼ Lower performance results from the
original matrix data spanning CMGs.

Measured with the A64FX

12th (1CMG)

24th (2CMG)

48th (4CMG, 1D division)

48th (4CMG)

210

◼ Two OpenMP libraries (LLVM version and Fujitsu version)

◼ Performance of Fujitsu OpenMP Library

◼ Basic performance of LLVM OpenMP and Fujitsu OpenMP
Libraries

◼ Stream benchmark performance: each compiler x library

OpenMP Overhead Evaluation

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED211

Two OpenMP libraries
(LLVM version and Fujitsu version) (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ The LLVM OpenMP library is an OpenMP library based on the LLVM
OpenMP Runtime Library extended for the A64FX.

OpenMP Library Option Supported Functions

LLVM OpenMP library
-Nlibomp
(default)

OpenMP 4.5 and Parts of 5.0
Hardware barrier(Default is Software barrier)
Sector cache
Bind to core (default)

Fujitsu OpenMP library -Nfjomplib

OpenMP 3.1
Hardware barrier
Sector cache
Bind to core (Default when execute on job)

◼ Compiler combination
◼ The object files(.o) are common in Fortran and C/C++ Trad Mode, and libraries

used can be specified with the –Nlibomp/-Nfjomplib option.
(If Clang Mode object files are included, only –Nlibomp option is available)

Option Fortran
C/C++

Trad Mode Clang Mode

-Nlibomp Available Available Available

-Nfjomplib Available Available Not available

212

Two OpenMP libraries
(LLVM version and Fujitsu version) (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Selection method

◼ Specify in compiler option when linking.

• -Nlibomp (default) : Use LLVM OpenMP Library

• -Nfjomplib : Use Fujitsu OpenMP Library

◼ Difference in specifications

◼ Thread stack size

Option Default size
Environment

variables for resizing

-Nlibomp • 8MiB OMP_STACKSIZE

-Nfjomplib

• Inherit the process stack size.
• If the stack size of the process is

specified as unlimited.
(Memory size / Number of threads) / 5

OMP_STACKSIZE
or
THREAD_STACK_SIZE

213

Performance of Fujitsu OpenMP Library (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Typical directive performance comparison

OpenMP Microbench
Units:microsecond

K
(8T)

FX100
(16T)

A64FX
(12T)

DO overhead 0.090 0.120 0.121

PARALLEL_DO overhead 0.400 0.542 0.461

BARRIER overhead 0.090 0.106 0.113

REDUCTION overhead 0.780 1.154 0.957

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

DO overhead PARALLEL_DO
overhead

BARRIER overhead REDUCTION
overhead

Performance of OpenMP Microbench

K
(8T)

FX100
(16T)

A64FX
(12T)

214

Performance of Fujitsu OpenMP Library (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Performance comparison (Per Thread)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 6 8 12 16 24 32 36 48

[microsecond] OpenMP Microbench
DO overhead 性能

K FX100 A64FX

0.0

1.0

2.0

3.0

4.0

1 2 3 4 6 8 12 16 24 32 36 48

[microsecond] OpenMP Microbench
PARALLEL_DO overhead 性能

K FX100 A64FX

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 6 8 12 16 24 32 36 48

[microsecond] OpenMP Microbench
BARRIER overhead 性能

K FX100 A64FX

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 6 8 12 16 24 32 36 48

[microsecond] OpenMP Microbench
REDUCTION overhead 性能

K FX100 A64FX

215

Performance of Fujitsu OpenMP Library (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Performance comparison (Per Thread)

OpenMP
Microbench

Units:
microsecond

Number of threads

1 2 3 4 6 8 12 16 24 32 36 48

DO overhead
K 0.090

FX100 0.023 0.092 0.097 0.097 0.107 0.115 0.120 0.130

A64FX 0.014 0.103 0.103 0.103 0.108 0.121 0.778 0.983 1.049

PARALLEL_DO
overhead

K 0.400

FX100 0.309 0.466 0.358 0.535 0.478 0.535 0.542 0.701

A64FX 0.236 0.422 0.422 0.464 0.471 0.461 2.283 2.774 3.004

BARRIER
overhead

K 0.090

FX100 0.016 0.081 0.087 0.088 0.092 0.101 0.106 0.119

A64FX 0.012 0.097 0.097 0.097 0.098 0.113 0.773 1.008 1.049

REDUCTION
overhead

K 0.780

FX100 0.317 0.769 0.794 0.835 0.899 1.073 1.154 1.717

A64FX 0.292 0.670 0.732 0.850 0.875 0.957 3.390 4.182 4.589

216

Basic performance of LLVM OpenMP and Fujitsu
OpenMP Libraries

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Processing

Run time(microsecond)
hardware barrier

comparison
(libomp/fjomplib)

libomp fjomplib

software
barrier

hardware
barrier

hardware
barrier

PARALLEL 2.95 2.24 0.43 5.25

DO/FOR 1.60 0.13 0.13 0.97

PARALLEL_DO/FOR 2.95 2.23 0.45 5.00

BARRIER 1.55 0.12 0.12 1.00

SINGLE 1.68 1.37 0.60 2.26

CRITICAL 0.32 0.32 0.66 0.49

LOCK/UNLOCK 0.32 0.32 0.48 0.67

ORDERED 0.32 0.32 0.28 1.12

ATOMIC 0.65 0.69 0.69 1.00

REDUCTION 4.63 2.59 0.95 2.72

5.25

0.97

5.00

1.00

2.26

0.49 0.67
1.12 1.00

2.72

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00
OpenMP Microbench (Fortran, 12 Thread Execution)

libomp(software barrier) libomp(hardware barrier)

fjomplib(hardware barrier) hardware barrier comparison

(libomp/fjomplib)

(microsecond)

PARALLEL syntax should
be used with caution when

using LLVM OpenMP
libraries(default)

217

Stream benchmark performance:
each compiler x library

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

◼ Performance comparison between C(trad/clang) and Fortran
-> Performance is equivalent

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

C/Fortran stream Triad Best Rate (MB/s)

① C trad

fjomplib

+ zfill

② F trad

fjomplib

+ zfill

③ C trad

fjomplib

④ F trad

fjomplib

⑤ C trad

libomp

+ zfill

⑥ F trad

libomp

+ zfill

⑦ C trad

libomp

⑧ F trad

libomp

⑨ C clang

libomp

zfill
effect

The numactl specification is:
・01t ～ 12t ： numactl -m4 -C12
・13t ～ 24t ： numactl -m4-5 -C12-23
・24t ～ 36t ： numactl -m4-6 -C12-35
・37t ～ 48t ： numactl -m4-7 -C12-47

(STREAM_ARRAY_SIZE： 50000000)

Number of threads (1 - 48)

B
e
tt

e
r

zfill

No zfill

Best Rate (MB/s)

With 8 threads, the
throughput will be 16.7
GB/s per core, with linear
improvements going
forward.

Fortran 13t PA

CMG
Crossing

218

Revision History

◼ Revision History

Version Date Details

1.1 May 14, 2020 - First published

1.2 Sep 30, 2020
- Correcting typographical errors and
expressions by reviewing articles

1.3 Mar 31, 2021
- Correcting typographical errors and
expressions by reviewing articles

1.4 Aug , 2021
- Modified the glibc article for “Memory Copy
Performance” pages

219 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU

LIMITED
220

