

Programming Guide (Processors)

V1.4 Aug 2021 FUJITSU LIMITED

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Introduction

- This document puts together the information about the features and microarchitecture of the A64FX processor, as well as its basic performance data, from the viewpoint of application developers and tuning engineers.
- Refer to the following in conjunction with this document.
 - Fortran User's Guide
 - C User's Guide
 - C++ User's Guide
 - Profiler User's Guide
 - Programming Guide(Programming common part)
 - Programming Guide(Tuning)
 - Programming Guide(Fortran)
- The following abbreviation is used in this document:
 - A64FX Logic Specifications
 - A64FX [®] Microarchitecture Manual
 - ARM® Architecture Reference Manual (ARMv8, ARMv8.1, ARMv8.2, ARMv8.3)
 - ARM[®] Architecture Reference Manual Supplement The Scalable Vector Extension

1

Trademarks

- Linux[®] is a trademark or registered trademark of Linus Torvalds in the United States and other countries.
- Red Hat is a trademark or registered trademark of Red Hat Inc. in the United States and other countries.
- ARM is a trademark or registered trademark of ARM Ltd. in the United States and other countries.
- Proper names such as the product name mentioned are trademark or registered trademark of each company.
- Trademark symbols such as [®] and [™] may be omitted from system names and product names in this document.

Revision History

Version	Date	Details
1.1	May 14, 2020	- First published
1.2	Sep 30, 2020	 Correcting typographical errors and expressions by reviewing articles
1.3	Mar 31, 2021	- Correcting typographical errors and expressions by reviewing articles

Contents

- A64FX Processor Overview
 - A64FX Processor Overview
 - A64FX Processor Specifications
 - L2 Cache Size Available to Applications
- Microarchitecture
 - Prefetch
 - SFI (Store Fetch Interlock)
 - PMU Events
 - Large Page
 - Sector Cache
 - High-Speed Store (Zfill)
 - Data Access Alignment Constraints
 - Verification of Out-of-Order (OoO) Execution
 - SIMD Width
 - Power Control
- Basic Kernel Performance
 - Evaluation Environment and Conditions
 - Arithmetic Operations/Square Root
 - Mathematical Function Performance
 - Other Basic Operation Kernel Evaluations

- Access Performance
- Throughput Performance
- Performance by Data Type
- Performance Impact by Alignment Changes
- Memory Copy Performance
- Inter-CMG Performance
- OpenMP Overhead Evaluation

A64FX Processor Overview

<u>A64FX Processor Overview</u>
 <u>A64FX Processor Specifications</u>
 <u>Interconnect "Tofu Interconnect D" Overview</u>

A64FX Processor Overview (1/3)

- High-performance, high-efficiency CPU using Arm SVE
 - Double precision operation performance: 3.072 TFLOPS@2 GHz, 90+%@DGEMM
 - Memory bandwidth: 1024 GB/s, 80+%@STREAM Triad

CMG (Core Memory Group) TofuD specification 28 Gbps x 2 lanes x 10 ports		A64FX
specification 28 Gbps x 2 lanes x 10 ports 13 cores L2 Cache 8 MiB Memory 8 GiB, 256 GB/s I/O PCIe Gen3 16 lanes	ISA (Base, extension)	Armv8.2-A, SVE
	Process technology	7 nm
TofuD Controller Controller	Double precision peak performance	3.072 TFLOPS@2 GHz
	SIMD Width	512-bit 256-bit/128-bit supported as well
	Number of cores	48 + 4
	Memory size	32 GiB (HBM2 x4)
	Memory bandwidth	1024 GB/s
	PCIe	Gen3 16 lanes
	Interconnect	TofuD ^(*) integrated

(*1) Tofu interconnect D

A64FX Processor Overview (2/3)

The A64FX processor (hereinafter referred to as the A64FX) is designed for high performance computing (HPC). It is an out-of-order execution superscalar processor compliant with the ARMv8-A profile architecture and the Scalable Vector Extension for ARMv8-A.

The A64FX adopts several distinctive architectures for HPC.

Scalable <u>Vector</u> Extension

The A64FX supports the Scalable Vector Extension (SVE), which is a vector extension of the ARM Instruction Set Architecture.

<u>Core Memory Group</u>

The A64FX has groups called Core Memory Groups (CMGs) in it, each consisting of 13 processor cores, an independent L2 cache, and an independent memory controller.

The processor has four CMGs and uses the Non-Uniform Memory Access (NUMA) architecture for inter-CMG access.

Sector cache

This function virtually partitions the cache in units of ways, making it possible to specify the sector that can be used at the instruction level. A program can specify a sector by using tagged addresses.

The L1 cache has two 4-partition groups, and the L2 cache has two 2-partition groups.

A64FX Processor Overview (3/3)

Hardware barrier

This function allows hardware to support synchronization between software processes or threads. It enables high-speed synchronization without any memory operation.

A hardware barrier is effective only within a CMG. Synchronization between CMGs is achieved using a software barrier.

Hardware prefetch assist

This function allows a program to control the behavior of hardware prefetch. The program can give information to the hardware prefetch mechanism using the system register and tagged addresses.

High Bandwidth Memory

High Bandwidth Memory Gen2 (HBM2) is used as the main memory to provide high memory bandwidth.

A64FX Specifications

Item	Specification
Number of processor cores	52 (13 cores / CMG)
Number of CMGs	4
L1I cache size	64KiB / 4way
L1D cache size	64KiB / 4way
L2 cache size	32MiB / 16way (8MiB / CMG)
Cache line size	256B
Memory size	32GiB(8GiB/CMG)
Interconnect	Tofu Interconnect D
I/O	PCI-Express Gen3 16 Lanes
Instruction set architecture	ARMv8-A, ARMv8.1, ARMv8.2, ARMv8.3 (*1), SVE

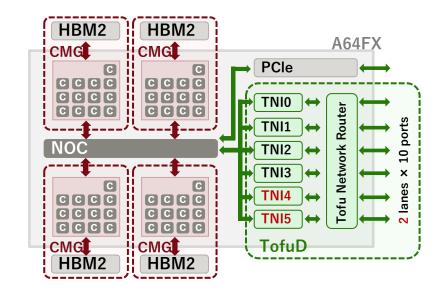
(*1) ARMv8.3 supports only complex number support instructions.

7

A64FX Specifications : Bandwidth and Latency

		A64FX	Remarks
Frequency [GHz]		2.0	
Number of CPUs/node		1	
Number of computing cores,	/node	48	
Number of CMGs/node		4	
Memory size/node [GiB]		32	
	L1 [KiB/core]	64(instruction)+64(data)	
Cache size	L2 [MiB/CMG]	8	Note: In the case of a node with an assistant core, an application is considered to use 7 MB/14 ways.
Cache latency [cycle]	L1	5 (EX, short) 8 (FL, short) 11 (FL, long)	
	L2	37 to 47	Average 42
Cache bandwidth	L1	When hit: 128	
[B/cycle/core]	L2	42.7	
Operation performance per node (per core) [GFlops]	Double precision Single precision Half precision	3072 (64) 6144 (128) 12288 (256)	
Basic operation latency [cycle]	Integer add instruction Integer mult instruction FMA instruction	1 5 9	
Memory latency [ns]		150	
Theoretical memory bandwidth per node (per CMG) [GB/s]		1024(256)	
Inter-CMG bandwidth		128 GB/s \times 2 (two ways)	

A64FX Specifications : Others



	A64FX	Remarks
Maximum number of decodes per cycle	4	
Hardware prefetch queue	16	

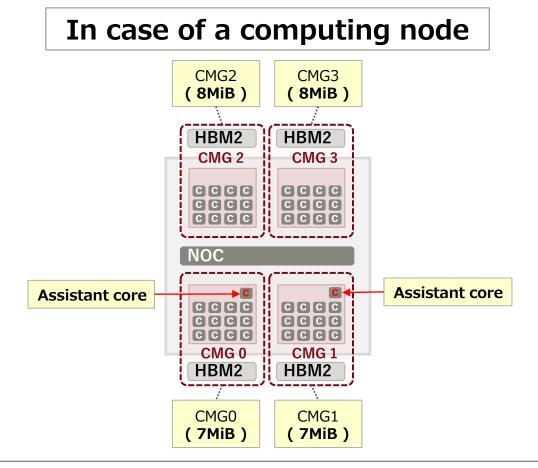
Interconnect "Tofu Interconnect D"(TofuD) Overview FUITSU

- An interconnect controller is integrated in the CPU.
 - The number of TNIs has been increased to achieve higher injection bandwidth and flexible communication patterns.
 - The barrier resources have also been increased to enable the implementation of flexible collective communication algorithms.
- The memory bypass technology enables low-latency communication.
 - Direct descriptor and cache injection

TofuD spec	
28.05 Gbps	
6.8 GB/s	
40.8 GB/s	
Measured	
6.35 GB/s	
0.49 to 0.54 µs	

L2 Cache Size Available to Applications

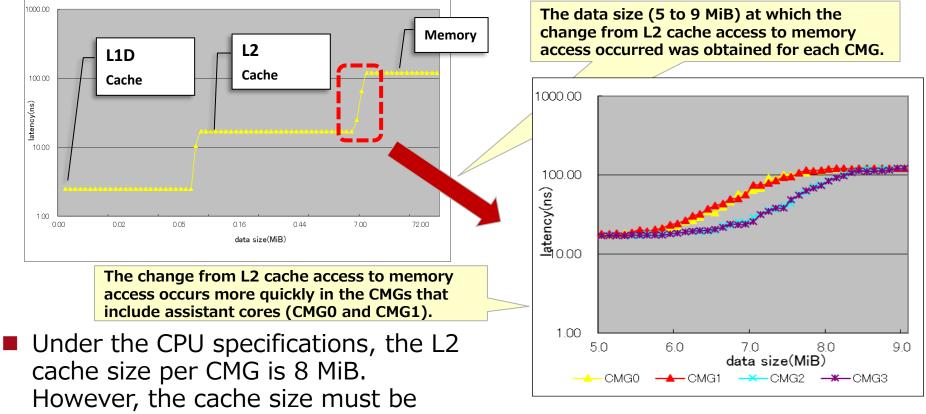
L2 Cache Size Available to Applications


Verification: Performance Based on the Presence of an Assistant Core

L2 Cache Size Available to Applications

In a CMG including an assistant core, part of the L2 cache (two ways = 1 MiB) is used for the assistant core. Therefore, when a CMG includes an assistant core, the space of the

L2 cache available to a user program is 7 MiB.



Verification: Performance Based on the Presence of an Assistant Core

Imbench performance (2.0 GHz)

Results of measuring data access latency using CMG0 Imbench (integer access)

considered 7 MiB when the application is running.

Care needs to be exercised in cases where tuning is performed, such as when blocking is done taking the L2 cache size into consideration. (The reference value of L2 cache size is slightly less than 7 MiB.)

Microarchitecture

- Prefetch
- **SFI**
- PMU Events
- Large Page
- Sector Cache
- High-Speed Store (zfill)

- Data Access Alignment Constraints
- Verification of Out-of-Order
 - Execution
- SIMD Width
- Power Control

Prefetch

- About Prefetch
- Hardware Prefetch Operation
- Prefetch Distance Setting Command
- Prefetch Distance Verification
- Hardware Prefetch Evaluation Using an Actual

Application (NICAM)

- Prefetch Instructions Provided by the A64FX
- Prefetch Collaboration Between Hardware and Software

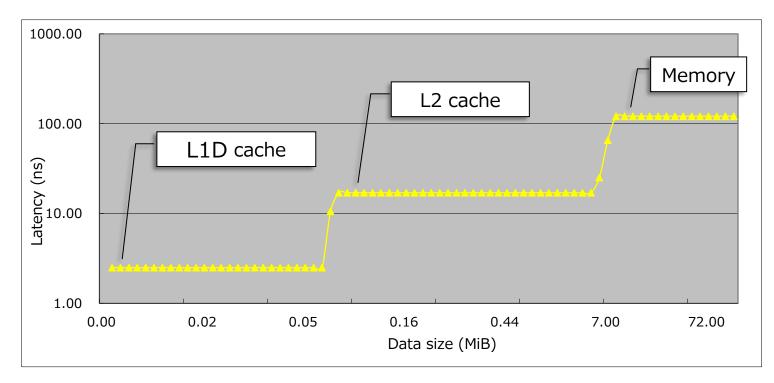
Prefetch Collaboration Verification

- The A64FX supports the following new functions as hardware and software prefetch:
 - Hardware prefetch (HWPF)
 - Hardware prefetch distance setting function
 - Hardware stride prefetch function
 - Software prefetch (SWPF)
 - Automatic adjustment of the prefetch distance
 - SVE Gather prefetch instruction support
- By using these prefetch functions, you can mask data access latency to speed up application execution. (Latency masking)

About Prefetch (2/2)

Prefetch distance

Hardware prefetch and software prefetch perform data prefetching on the lines ahead as indicated below.


	Hardware Prefetch		Software Prefetch		
	L1 Prefetch	L2 Pref	etch	L1 Prefetch	L2 Prefetch
FX100	2 lines	Up to 16	lines	3 lines	15 lines
A64FX	Up to 6 lines	Up to 40	lines	Automatic	Automatic
The hardware prefetch distance can also be set by users.			distance is automa sted for software p		

When tuning loop blocking or outer loop unrolling, be aware that the hardware prefetch may not work if the inner loop length decreases.

[Reference] What is Latency Masking?

- Latency masking hides data access latency (period from a data transmission request until a response returns) by using prefetch. There are three types of data access: L1D cache, L2 cache, and memory. The prefetch target for latency masking is the L2 cache and memory.
 - Data access latency measurement results from LMbench (at integer access)

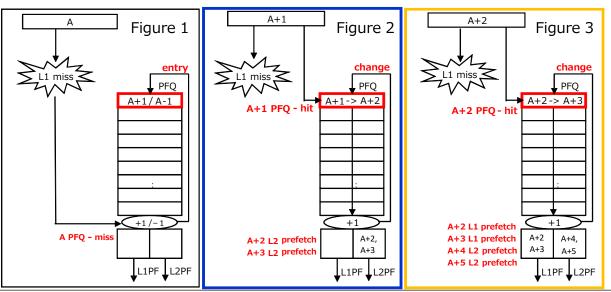
Hardware Prefetch Operation

Hardware prefetch conditions

- The prefetch is triggered by missing L1.
- The L1 miss continues to be repeated on a cache line basis.

Operation algorithm of hardware prefetch

- 1. If cache line A is missed, line A+1/A-1 is newly registered in a 16-entry FIFO (queue) called a PFQ (prefetch queue). (Figure 1)
- 2. When subsequent access is made to line A+1 and hits A+1 registered in the PFQ, it is considered ascending order stream access. From this point on, HWPF begins in the ascending order direction. Also, A+1 in the PFQ is updated to A+2. (Figure 2)
- After the above stream access is detected, the L2 prefetch is extended up to 40 lines ahead by prefetching the data of two lines at a time. In the A64FX, the L1 prefetch is also extended up to six lines ahead by prefetching the data of two lines at a time, as in the L2 prefetch. (Figure 3)


Note) The numbers in the table represent lines. In byte notation, 1 line must be regarded as 256 bytes.

 Correspondence between PFQ and prefetch addresses

PFQ-hit	L2HWPF-ADRS	L1PHWF-ADRS
A+ 1	A+ 2, A+ 3	
A+ 2	A+ 4, A+ 5	A+ 2, A+ 3
A+ 3	A+ 6, A+ 7	A+ 4, A+ 5
A+ 4	A+ 8, A+ 9	A+ 6, A+ 7
A+ 5	A+10, A+11	A+ 8, A+ 9
A+ 6	A+12, A+13	A+10
A+ 7	A+14, A+15	A+11
A+ 8	A+16, A+17	A+12
A+ 9	A+18, A+19	A+13
A+10	A+20	A+14
A+11	A+21	A+15
A+12	A+22	A+16
A+13	A+23	A+17
A+14	A+24	A+18
A+15	A+25	A+19

* L2PF = 10 lines ahead, L1PF = 4 line ahead

Overview of prefetch

19

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Hardware Prefetch Distance Setting Command

Provision of the hardware prefetch distance setting command (hwpfctl)

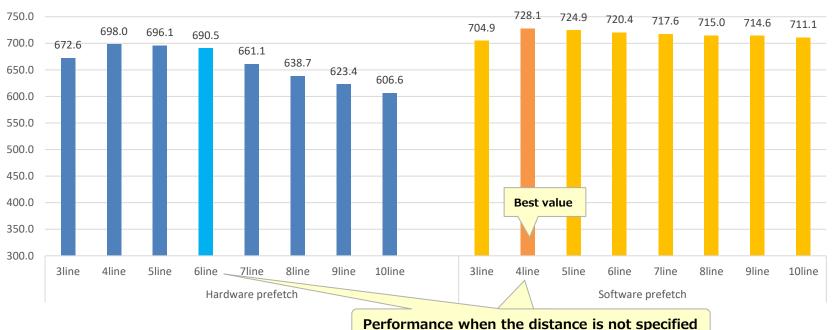
Item	Description
Item	hwpfctl [disableL1] [disableL2] [distL1 lines_l1] [distL2 lines_l2] [weakL1] [weakL2] [verbose]
Format	command {arguments} hwpfctldefault [verbose] command {arguments} hwpfctlreset [verbose] hwpfctl -help
Explanati on	The hwpfctl command changes the behavior of hardware prefetch (stream detect mode) provided in the A64FX. The CPU core to be changed by this command is determined by process affinity.
Option(s)	 disableL1 disableL2 Disables hardware prefetch for the L1/L2 cache. If these options are omitted, hardware prefetch is enabled. distL1=lines_l1 distL2=lines_l2 Specify the lines of the L1/L2 cache to be prefetched, by using the number of cache lines counted from the missed cache line. In lines_l1, you can specify a value from 1 to 15 as the number of lines of the L1 cache to be prefetched. Likewise, in lines_l2, you can specify a value from 1 to 60 as the number of lines of the L2 cache to be prefetched. Note that the value specified in lines_l2 is rounded up to a multiple of 4 when written to the system register. If you specify 0, the command behaves assuming the default value of the CPU. If these options are omitted or an invalid value is specified, 0 is assumed. weakL1 weakL2 Specify that the priority of the L1/L2 cache prefetch request is weak. If these options are omitted, the priority is strong. default Starts the command using the default settings. The options other thanverbose are ignored. verbose Outputs the values before and after the system register is changed. help Shows how to use this command.

hwpfctl -distL1=6 -distL2=40 a.out

Prefetch Distance Verification: Conditions

Measurement conditions for prefetch performance evaluation

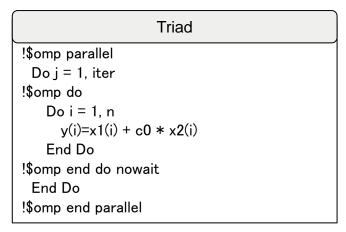
	Pattern
Verification code	 Triad L2 cache access (L1 prefetch distance evaluation) Triad memory access (L2 prefetch distance evaluation)
Prefetch distance to be evaluated	 Hardware prefetch distance and software prefetch distance (strong) L1 prefetch: 3 to 10 lines ahead L2 prefetch: 10, 15, 20, 25, 30, 35, or 40 lines ahead (In L1, the default is 6 for HWPF and automatic for SWPF (4 for Triad).)
Cores to be measured	12 cores (CMG0)
Translation option	-Kfast For software prefetch evaluation: -Kprefetch_sequential=soft -Kprefetch_line=? -Kprefetch_line_L2=?
Access range	The conditions for the Triad code evaluation are as follows. Double precision operation arrays must be used. bss must be used. Number of innermost loop iterations, array size (n) - L1 prefetch evaluation: 174720 (The total size of the arrays to be accessed is half the L2 cache size.) - L2 prefetch evaluation: 10485120 (The total size of the arrays to be accessed is 30 times the L2 cache size.) * Each array is 256 byte aligned. Number of outer loop iterations (iter) - L1 prefetch evaluation: 10000 - L2 prefetch evaluation: 3000


Prefetch Distance Verification: L1 Prefetch

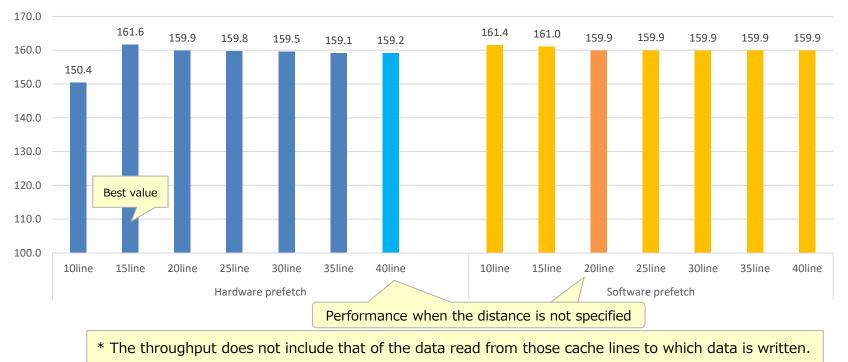
L1 prefetch distance evaluation using Triad (L2 cache access)

Triad
!\$omp parallel
Do j = 1, iter
!\$omp do
Do i = 1, n
y(i)=x1(i) + c0 * x2(i)
End Do
!\$omp end do nowait
End Do
!\$omp end parallel

Prefetch distance and throughput (Triad on L2)

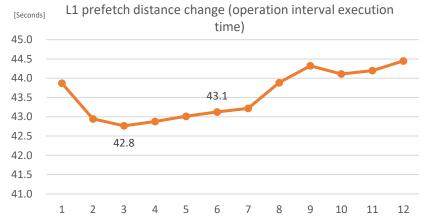


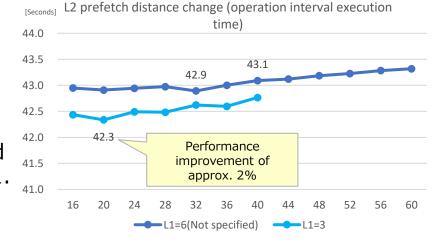
22 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

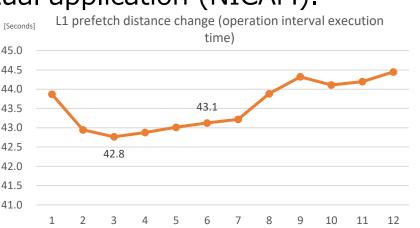

Prefetch Distance Verification: L2 Prefetch

L2 prefetch distance evaluation using Triad (memory access)

Prefetch distance and throughput (Triad on memory)



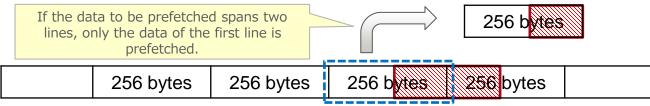

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED 23


Hardware Prefetch Evaluation Using an Actual Application (NICAM)

- Evaluation by hardware prefetch distance adjustment The hardware prefetch distance adjustment function was used to do performance evaluation with an actual application (NICAM).
 - L1 prefetch distance evaluation As the L2 prefetch distance, the initial value (40) was used. The fastest value was obtained when L1 was 3.

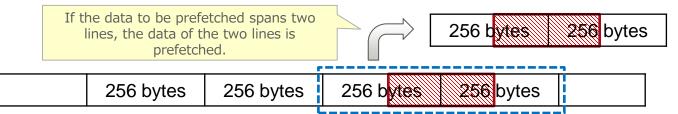
L2 prefetch distance evaluation First, as the L1 prefetch distance, the initial value (6) was used. It was confirmed that high speed was achieved at short distances (16 to 32). Next, based on the L1 prefetch distance evaluation, measurement was conducted at short distances, with 3 specified as L1. An improvement of approx. 2% was confirmed.

Prefetch Instructions Provided by the A64FX (ISA)

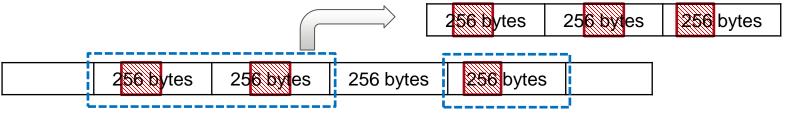

Prefetch instructions provided by the A64FX

The (1) ARMv8 prefetch instruction and(2) SVE contiguous prefetch instruction are used for contiguous access.

1 ARMv8 prefetch instruction


Prefetch instruction corresponding to the contiguous load / store instructions

(without considering the prefetching across lines)



② SVE contiguous prefetch instruction

Prefetch instruction corresponding to the contiguous load / store instructions (considering the prefetching across lines)

SVE gather prefetch instruction
 Prefetch instruction corresponding to discrete access instructions
 (gather/scatter)

Prefetch Collaboration Between Hardware and Software

HWPF may not be generated in the cases below.

Complementing hardware prefetch with software prefetch achieves ideal performance.

There are more than 16 streams.

Block stride

- Loop blocking (effective for array replacement, matrix operation, etc.)
- Unrolling of an outer loop
- Access by masked SIMD When a stream in an if statement is accessed, hardware prefetch may not be generated depending on the true rate of the if statement, preventing contiguous access from occurring.

The term "<u>collaboration</u>" means that software prefetch complements the prefetching process in case hardware prefetch is not generated.

Prefetch Collaboration Verification (1/2)

Evaluation of the case when there are more than 16 streams

If the innermost loop has more than 16 streams, software prefetch complements part of the prefetching process (collaboration). Software prefetch handles as many streams as the total number of streams minus 16 (when there are 20 streams, software prefetch handles four).

This is <u>automatically recognized by the compiler and done transparently</u> to the user.

- Evaluation cases verified

(1) HWPF only

A case of execution is evaluated where prefetching is performed only by HWPF without SWPF complementing the process even when there are more than 16 streams.

There is the possibility that the PFQ size may become insufficient, making sufficiently effective prefetching difficult.

In a program like a short loop, the startup of HWPF may become remarkable.

(2) SWPF only

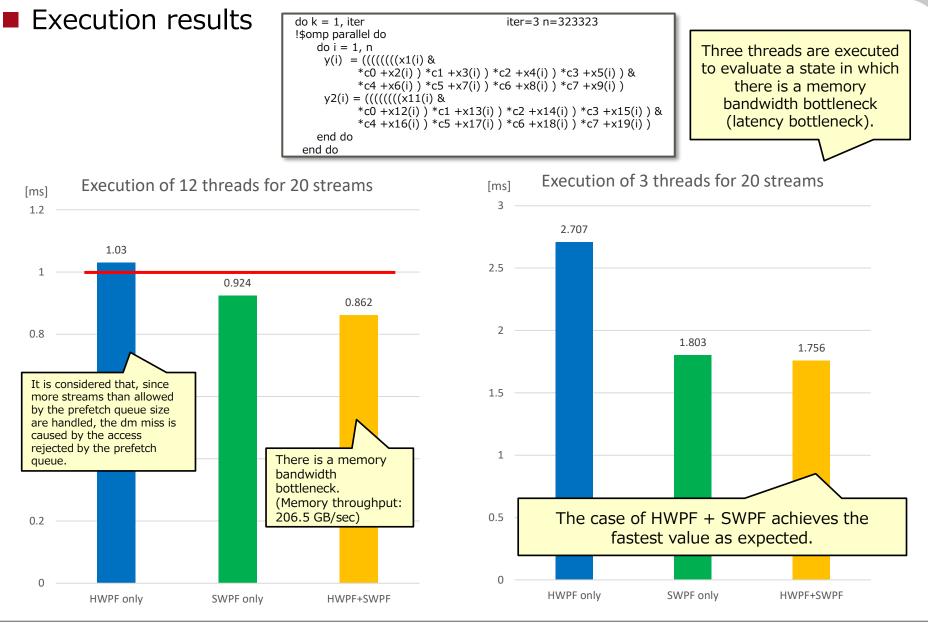
A case of execution is evaluated where all prefetching is performed by software prefetch. An increase in the number of instructions may have an adverse effect, potentially preventing the performance from being improved.

(3) <u>HWPF + SWPF</u> (default for the compiler)

A case of execution is evaluated where SWPF complements the prefetching process when there are more than 16 streams.

Prefetch Collaboration Verification (2/2)

[ms]


1.2

1

0.8

0.2

0

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

28

SFI (Store Fetch Interlock)

- About SFI
- Causes of Excessive SFI and SFI Precheck
- Explanation of Measurement Cases
- Excessive SFI Prevention by the Compiler

About SFI

FUĴITSU

SFI (Store Fetch Interlock)

- This is a control mechanism that applies an interlock so that, when the address of the preceding store instruction is identical to that of the succeeding load instruction, load is not executed before store.
- Basically, the interlock is applied only to the address where store is executed.

Excessive SFI

This can be prevented by the compiler. (A case of such prevention will be described later.)

Excessive SFI occurs in the following cases. (Details will be given later.)

- In the case of masked SIMD, the <u>addresses whose mask judgment results are 0</u> (do not store) are also locked.
- When the gathering function of Gather Load is activated, <u>the SFI target to be</u> <u>checked by Gather Load becomes the cache lines (all included entries).</u> <u>Actually, there may be cases where the SFI of an address for which load is not</u> <u>executed is detected to determine whether the address is locked</u>.

The occurrence of SFI can be checked based on the CPU analysis report.

Causes of Excessive SFI and SFI Precheck

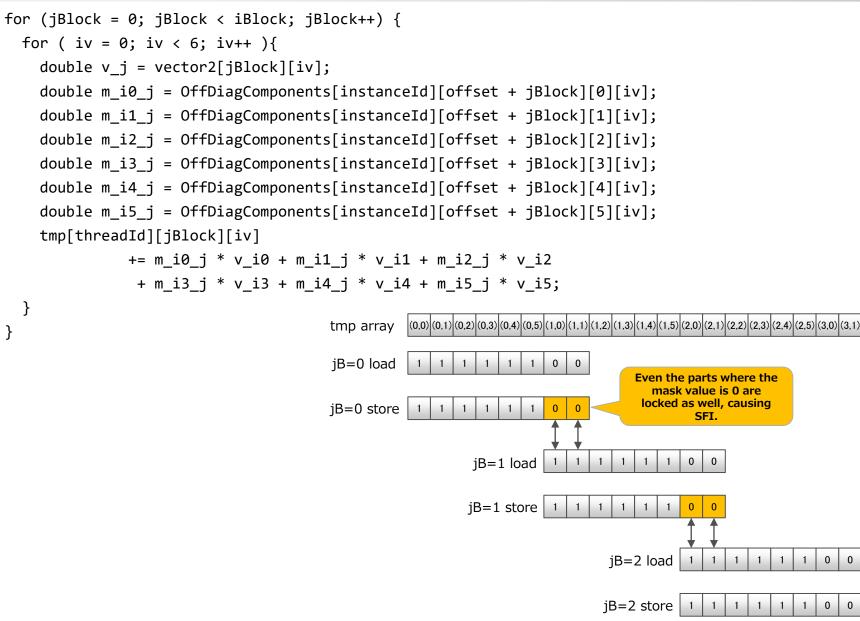
Causes of excessive SFI

Cause	Description of excessive SFI	Related application
Predicate mask = 0	SFI also applies to the store of an entry whose predicate mask is 0.	ADVENTURE
Gather Load instruction aggregation	When the Gather Load instruction activates the aggregation function, the SFI check target becomes the cache lines.	GENESIS
Load instruction for access across a 4-KB boundary	In the case of a load instruction for access across a 4-KB boundary, the SFI check is always performed on bits 11 to 0 of the physical address.	
Addresses not aligned on the 4-B boundary in all SIMD entry sizes	The SFI check is always performed with the data length aligned on the 4-B boundary.	
Multiple structure instruction	 The SFI check target becomes the cache lines. (Entry size: 4 B/8 B) Even if VL is 0 or 1, the SFI check target for store is the same as when VL is 3. (Entry size: 1 B/2 B) 	

Causes of SFI precheck

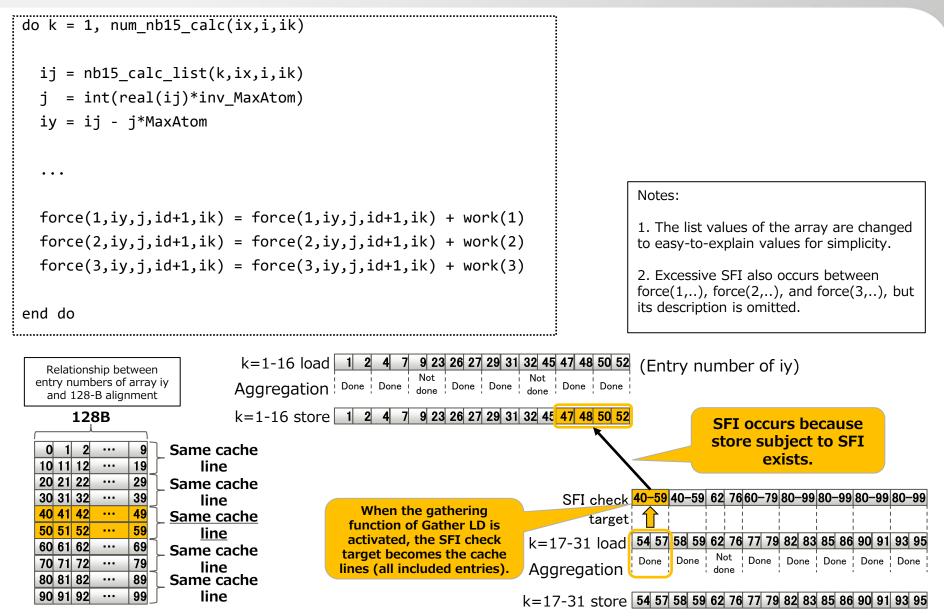
Cause	Description of SFI precheck	Related application
When the preceding store instruction exists in the pipeline	When the preceding store instruction exists in the pipeline, the SFI precheck is performed on bits 11 to 0 of the physical address.	on L1\$ array access
When the preceding store instruction misses L1D\$	The SFI precheck is performed on bits 11 to 0 of the physical address until the store data arrives at L1D\$. The load instruction is not entered again until after the arrival of the store data.	

FUJITSU

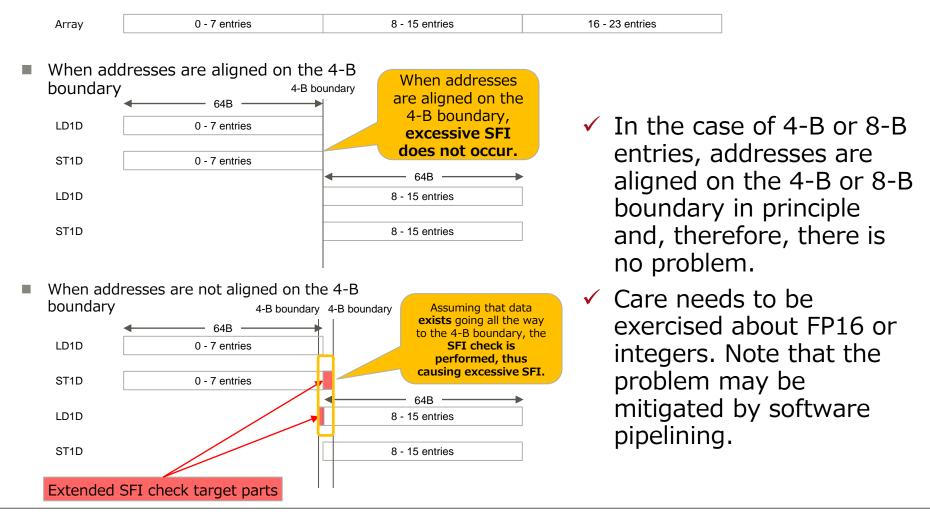

Explanation of Measurement Cases

- Excessive SFI when the Mask Value of the Access Instruction is 0
- Excessive SFI when the Gather Load Instruction Aggregation Function Makes the Cache Lines the SFI Check Target
- Excessive SFI when the SIMD Address is Not on the 4-B Boundary

- Excessive SFI when the Load Instruction Calls for Access Across a 4-KB Boundary
- Excessive SFI for Multiple Structure
- Causes of SFI Precheck
- Simple Cases when the Mask Value is 0
- Impact on Performance when the Mask Value is 0


Excessive SFI when the Mask Value of the Access Instruction is 0

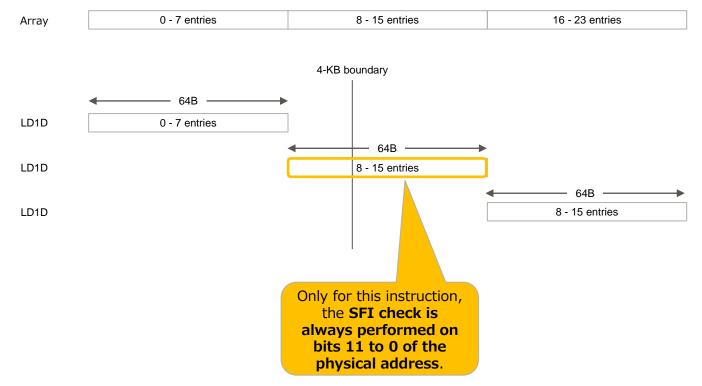
Excessive SFI when the Gather Load Instruction Aggregation Function Makes the Cache Lines the SFI Check Target



Excessive SFI when the SIMD Address is Not on the 4-B Boundary

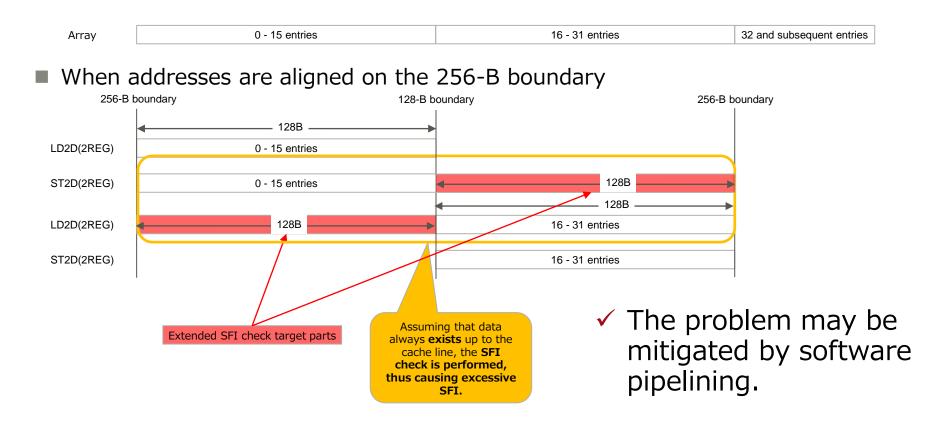
When addresses are not aligned on the 4-B boundary in all SIMD entry sizes, the SFI check target always becomes the 4-B boundary.

Example: When the array entries are read and updated at double precision

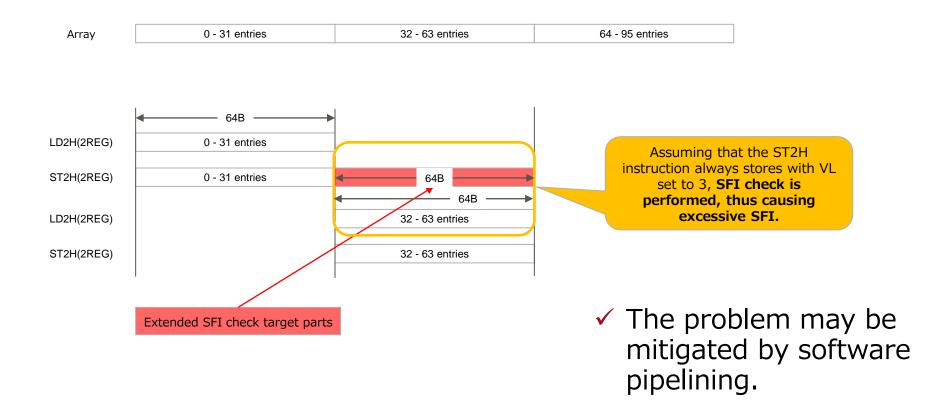


Excessive SFI when the Load Instruction Calls for Access Across a 4-KB Boundary

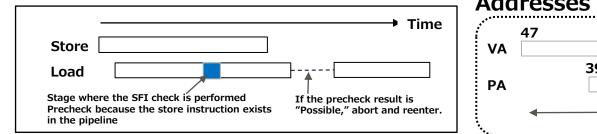
When access across a 4-KB boundary is made with a single load instruction, the SFI check is always performed on bits 11 to 0 of the physical address.


Example: When the array entries are read at double precision

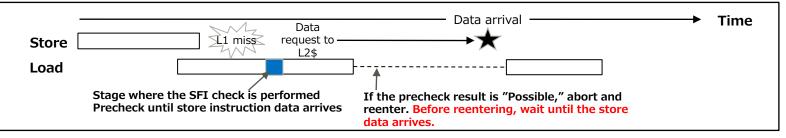
Excessive SFI for Multiple Structure (1/2)


In a multiple structure store / load instruction whose entry size is 4 B/8 B, the SFI check target becomes the cache lines.

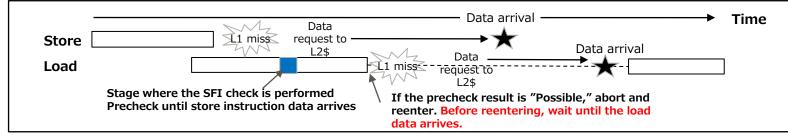
Example: When the array entries are read and updated by a LD2D instruction/ST2D instruction


Excessive SFI for Multiple Structure (2/2)

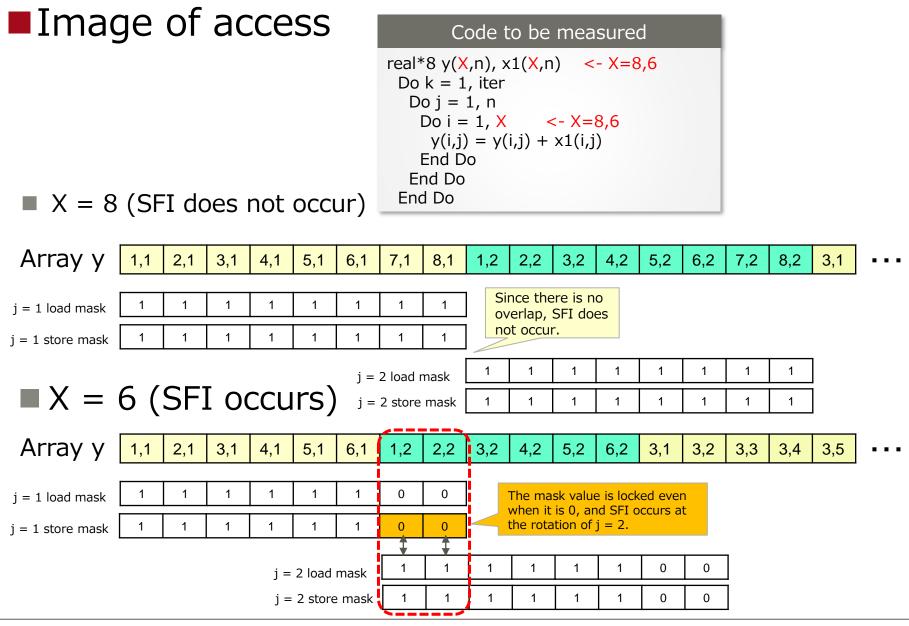
- In a multiple structure store instruction whose entry size is 1 B/2 B, when the VL (vector length) is 0 (128-bit SIMD) or 1 (256-bit SIMD), the SFI check target is the same as when the VL is 3 (512-bit SIMD).
 - Example: When the array entries are read and updated by a LD2H instruction/ST2H instruction with the VL set to 1 (256-bit SIMD)



Causes of SFI Precheck

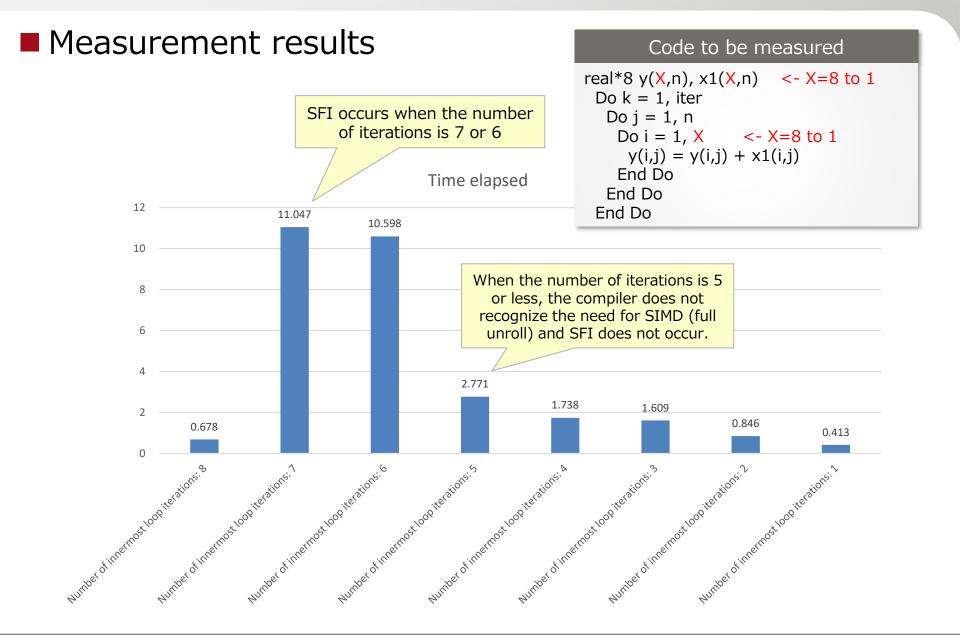

1. When the preceding store instruction exists in the pipeline while the pipelining of the load instruction is in progress

- Addresses used for the SFI precheck
- 2. When the preceding store instruction misses the L1D\$ cache and retrieves data from L2\$ (1) (When the load instruction hits L1D\$: Precheck and wait until the store data arrives)



3. When the preceding store instruction misses the L1D\$ cache and retrieves data from L2\$ (2) (When the load instruction misses L1D\$: Precheck and wait until the store data arrives)

 Since the data request is made to L2\$, there is no impact on performance, while the SFI count of the PA is updated.


Simple Cases when the Mask Value is 0 Fujirsu

40 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Impact on Performance when the Mask Value is 0

Excessive SFI Prevention by the Compiler

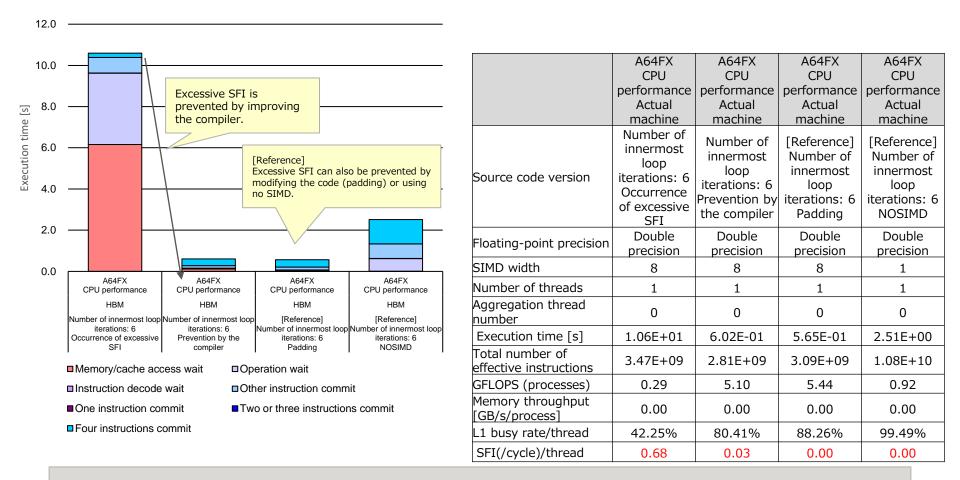
- When the Mask Value is 0: Excessive SFI Prevention by the Compiler
- When the Mask Value is 0: Results of Excessive SFI Prevention by the Compiler

When the Mask Value is 0: Excessive SFI Prevention by the Compiler

Excessive SFI can be prevented by compiler scheduling.

When SIMD is implemented in the innermost loop, scheduling (SWPL) is promoted on the outer loops to prevent excessive SFI.

		Befo	re improvement	
5	1		Do k = 1, iter	
6	2	2	Do j = 1, n	
		<<	< Loop-information Start >>>	
		<<	< [OPTIMIZATION]	
			< SIMD(VL: 8)	
			< Loop-information End >>>	
7	3	2v	Do i = 1, 6	
8	3	2v	y(i,j) = y(i,j) + x1(i,j)	
9	3	2v	End Do	
10	2	2	End Do	
11	1		End Do	


		After improvement (preventive measure)
5	1	Do k = 1, iter <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< SOFTWARE PIPELINING <<< Loop-information End >>>
6	2	2 Do j = 1, n <<< Loop-information Start >>> <<< [OPTIMIZATION] <<< SIMD(VL: 8) <<< Loop-information End >>>
7	3	2v Do i = 1, 6
8	3	2v $y(i,j) = y(i,j) + x1(i,j)$
9	3	2v End Do
10	2	2 End Do
11	1	End Do

43

When the Mask Value is 0: Results of Excessive SFI Prevention by the Compiler

Measurement results of prevention by the compiler

Excessive SFI when the mask value is 0 can be prevented.

44 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

PMU Events

- Features of CPU Analysis Report
- Improvements in the CPU Analysis Report from K/FX100 Products
- Examples of the Displayed CPU Analysis Report
 - Image of the Displayed CPU Analysis Report: Overview
 - Image of the Displayed CPU Analysis Report: Graphs
 - Image of the Displayed CPU Analysis Report: Tables
 - DGEMM: Display and Analysis Example
 - STREAM: Display and Analysis Examples
 - Notes on FLOPS

Features of CPU Analysis Report

- Display CPU performance information in Excel based on PMU Events.
- The collected major performance data can be displayed just after five measurements.
- 11 times measurements recommended. (Equivalent to FX100)
- Conducting additional measurements can provide more detailed performance data.

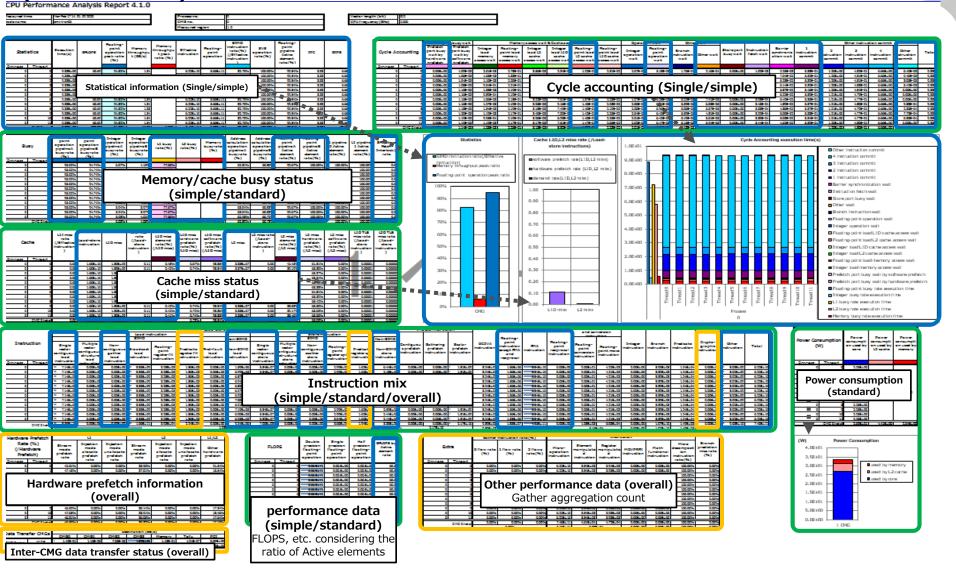
Collectable information corresponding to the number of measurements.

Performance data Level	Single report	Simple report	Standard report	Overall report
Number of measurements	1	5	11	17
Statistical information	Collected	Collected*	<-	<-
Cycle accounting		Collected	Collected*	<-
Memory/cache busy status		Collected	Collected*	Collected*
Cache miss status		Collected	Collected*	<-
Instruction mix		Collected	Collected*	Collected*
Unbalanced load		Collected	<-	<-
Power consumption			Collected	<-
Hardware prefetch information				Collected
Inter-CMG data transfer status				Collected
Other performance data				Collected

(*) The higher the level is, the more data is collected.

Improvements in the CPU Analysis Report from K/FX100 Products

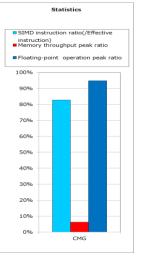
Improvement	K/FX100 products	Improvement for the A64FX
Display of performance data according to the number of	The precision PA visibility function (CPU performance analysis report) cannot be used unless the measurement is conducted at least 7 times	The CPU performance analysis report can be displayed just after 1 time or 5 times measurements. Additional data can be displayed by conducting the measurement 11 or 17 times.
measurements	for K or 11 times for the FX100.	Additional measurements of cycle accounting and others can provide more detailed CPU performance data.
Increased amount of data		 Various kinds of data have been added. Floating-point and integer operation pipeline busy L2 cache miss breakdown (dm miss rate, swpf miss rate, hwpf miss rate) Predicate mask information Gather aggregation count Spill/fill counts Inter-CMG access volume Power, etc.
Layout		While the A64FX handles more data than the previous products, the main data is displayed in a single A3-size sheet.

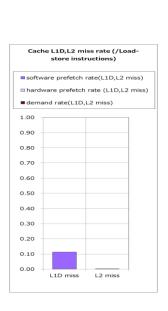


- Target applications
 - DGEMM
 - STREAM
- The measurement conditions are as follows.
 - Operating environment
 - A64FX
 - CPU performance analysis data collection level and number of measurements

• Simple data (five measurements)

Image of the Displayed CPU Analysis Report (Overview)

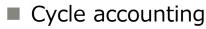


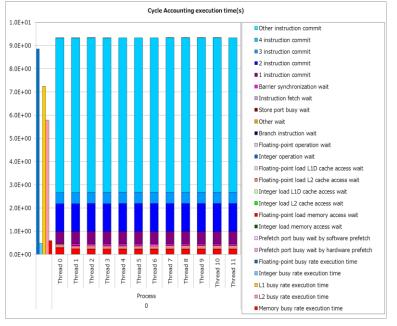

Depending on the number of times data is collected, the tables and graphs are displayed with increasing levels of detail in the following order: simple, standard, and overall. (The actual CPU performance analysis report does not display colored frames like those shown below.)

Simple Standard Overall

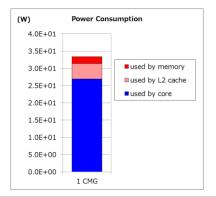
Image of the Displayed CPU Analysis Report (Graphs) Fujirsu

- A look at the following data gives you a rough grasp of the performance.
 - Operation peak, throughput peak, and SIMD ratios





Cache status


Inter-CMG data transfer status

Data Tran	sfer CMGs			Des	tination (GE	8/s)		
Data ITali		CMG0	CMG1	CMG2	CMG3	Memory	Tofu	PCI
CMG 0 total	write	1.42E-01	1.15E-03	7.05E-05	4.89E+00	1.43E-01	4.94E-07	0.00E+00
CING O LOLDI	read					4.53E+00	5.49E-07	0.00E+00

Power consumption

Image of the Displayed CPU Analysis Report (Table 1) Fujitsu

Statistical information

Statis	stics	Execution time (s)	GFLOPS	Floating- point operation peak ratio (%)	Memory throughput (GB/s)	Memory throughput peak ratio (%)	Effective instruction	Floating- point operation	SIMD instruction rate (%) (/Effective instruction)	SVE operation rate (%)	Floating- point pipeline Active element rate (%)	IPC	GIPS
Process	Thread												
0	0	9.33E+00	60.69	94.82%	1.34		6.22	5.66E+11	82.75%	100.00%	99.84%	3.33	6.66
0	1	9.33E+00	60.69	94.82%	1.36		6.2	5+11	82.75%	100.00%	99.84%	3.33	6.66
0	2	9.33E+00	60.69	94.82%	1.35	(-	Tho main	statistic	al informa	ation su	ch ac 🌾	3.33	6.66
0	3	9.33E+00	60.69	94.82%	1.33							3.33	6.66
0	4	9.33E+00	60.69	94.82%	1.33				time, floa			3.33	6.66
0	5	9.33E+00	60.69	94.82%	1.34	c	operatio	on count,	memory	through	put, 🛛 🛛	3.33	6.66
0	6	9.33E+00	60.69	94.82%	1.34	q	and SIM) instruct	ion ratio,	is displa	ved. 🗕	3.33	6.66
0	7	9.33E+00	60.69	94.82%	1.34		0.222.120	0.002.111	02.7070	100.0070	4%	3.33	6.66
0	8	9.33E+00	60.69	94.82%	1.33		6.22E+10	5.66E+11	82.75%	100.00%	99.84%	3.33	6.66
0	9	9.33E+00	60.69	94.82%	1.34		6.22E+10	5.66E+11	82.75%	100.00%	99.84%	3.33	6.66
0	10	9.33E+00	60.69	94.82%	1.34		6.22E+10	5.66E+11	82.75%	100.00%	99.84%	3.33	6.66
0	11	9.33E+00	60.69	94.82%	1.34		6.22E+10	5.66E+11	82.75%	100.00%	99.84%	3.33	6.66
	CMG 0 total	9.33E+00	728.23	94.82%	16.06	6.27%	7.46E+11	6.79E+12	82.75%	100.00%	99.84%	3.33	79.93

Cycle accounting

		Prefetch por	t busy wait		Memo	ry access wait	& Cache acces	s wait		Operatio	on wait	Othe	r wait						Other instru	ction commit		
Cycle	Accounting	Prefetch port busy wait by hardware prefetch		Integer load memory access wait	Floating- point load memory access wait	Integer load L2 cache access wait	Integer load L1D cache access wait	Floating- point load L2 cache access wait	Floating- point load L1D cache access wait	Integer operation wait	Floating- point operation wait	Branch instruction wait	Other wait	Store port busy wait	Instruction fetch wait	Barrier synchronizati on wait	1 instruction commit	2 instruction commit	3 instruction commit	4 instruction commit	Other instruction commit	Total
Proces	s Thread																					
	0	0.00E+00	1.09E-03	2.51E-03	2.78E-01	3.56E-03	2.34E-03	1.22E-01	2.31E-02	2.07E-03	5.18E-03	1.76E-04	216E-04	0.00E+00	1.09E-03	2.25E-03	5.38E-01	1.20E+00	4.82E-01	6.66E+00	6.10E-03	9.33E+00
	0	0.00E+00	1.06E-03	1.05E-03	2.33E-01	2.65E-03	6.65E-04	1.20E-01	8.50E-03	1.88E-03	5.08E-03	5.14E-9		0.00E+00	3.78E-04	7.04E-02	5.32E-01	1.20E+00	4.81E-01	6.66E+00	9.40E-03	9.33E+00
	0	0.00E+00	1.04E-03	1.10E-03	2.20E-01	2.93E-03	7.80E-04	1.22E-01	3.67E-02	2.11E-03	5.32E-03	5.60F			3.47E-04	5.23E-02	5.39E-01	1.20E+00	4.81E-01	6.66E+00	3.03E-03	9.33E+00
	0	0.00E+00	1.08E-03	9.54E-04	2.21E-01	2.89E-03	7.74E-04	1.26E-01	2.25E-02	2.01E-0											E-03	9.33E+00
	0 4	0.00E+00	1.15E-03	1.33E-03	2.19E-01	2.96E-03	7.15E-04	1.31E-01	2.22E-02	2.02E-	Th	e num	nerical	value	s (sec	conds)	of sta	acked	bar g	aphs.	+00	9.33E+00
	0	0.00E+00	1.16E-03	9.89E-04	2.19E-01	3.08E-03	7.12E-04	1.28E-01	2.22E-02	2.01E-											+00	9.33E+00
	0	0.00E+00	1.15E-03	1.06E-03	2.18E-01	3.22E-03	7.51E-04	1.37E-01	2.23E-02	1.97E-	SUCI	i as tr	ne me	mory/	cache	busy	wait t	lime, i	loatin	g-poin	t +00	9.33E+00
	0	0.00E+00	1.16E-03	1.27E-03	2.19E-01	3.25E-03	9.16E-04	1.40E-01	2.23E-02	2.00E-	on	oratio	n wait	· time	harri	er syn	chron	izatio	n wait	time	-04	9.33E+00
	0 1	0.00E+00	1.18E-03	1.34E-03	2.19E-01	3.18E-03	7.49E-04	1.40E-01	2.19E-02	2.00E-	op										-04	9.33E+00
	0	0.00E+00	1.20E-03	1.19E-03	2.17E-01	3.40E-03	7.32E-04	1.42E-01	2.25E-02	2.04E-		and	d instr	uction	l com	mit tin	ne, ar	e disp	layed.		-04	9.33E+00
	0 1	0.00E+00	1.19E-03	9.95E-04	2.19E-01	3.26E-03	6.93E-04	1.40E-01	2.25E-02	2.01E-03											5E-04	9.33E+00
	0 1	0.00E+00	1.19E-03	1.19E-03	2.17E-01	3.17E-03	7.51E-04	1.47E-01	2.05E-02	2.02E-03	6.47E-03	5.15E-05	5.94E-05	0.00E+00	3.44E-04	4.62E-02	5.39E-01	1.20E+00	4.80E-01	6.66E+00	0.00E+00	9.33E+00
	CMG 0 tota	0.00E+00	1.14E-03	1.25E-03	2.25E-01	3.13E-03	8.82E-04	1.33E-01	2.23E-02	2.01E-03	5.93E-03	6.43E-05	7.01E-05	0.00E+00	4.14E-04	5.05E-02	5.37E-01	1.20E+00	4.80E-01	6.66E+00	2.22E-03	9.33E+00

Image of the Displayed CPU Analysis Report (Table 2) Fuirsu

Memory/cache busy information

Bus	ý	Floating- point operation pipeline A busy rate (%)	Floating- point operation pipeline B busy rate (%)	Integer operation pipeline A busy rate (%)	Integer operation pipeline B busy rate (%)	L1 busy rate (%)	L2 busy rate (%)	Memory busy rate (%)	Address calculation operation pipeline A busy rate (%)	Address calculation operation pipeline B busy rate (%)	Floating- point pipeline A Active element rate (%)	Floating- point pipeline B Active element rate (%)	Active	L1 pipeline 1 Active element rate (%)	SFI(Store Fetch Interlock) rate	
Process	Thread								. ,	. ,						
0	0	95.02%	94.74%	6.07%		< <u>0%</u>			62.81%	60.80%	99.67%	100.00%	100.00%	100.00%	0.00	
0	1	95.02%	94.74%			_				Va	99.67%	100.00%	100.00%	100.00%	0.00	
0	2	95.02%	94.74%	L1 b	usv rate	e, L2 bu	sv rate.	memor	v busv i	rate, 🛛	99.67%	100.00%	100.00%	100.00%	0.00	
0	3	95.02%	94.74%			oint ope					99.67%	100.00%	100.00%	100.00%	0.00	
0	4	95.02%	94.74%													
0	5	95.02%	94.74%] in	iteger o	peratior	n pipelin	e busy	rate, etc	С. 🧖		hout t	ha mar	nory h	usy rat	Ω.
0	6	95.02%	94.74%					,	,		<u> </u>	hour t	ne mei	nory D	usyrat	C
0	7	95.02%	94.74%	6.01%	4.05%	77.56%			62.94%	60.77%		The valu	ie used	as the d	denomir	nator
0	8	95.02%	94.74%	6.00%	4.05%	77.57%			62.95%	60.78%						
0	9	95.02%	94.74%	5.94%	3.97%	77.57%			63.04%	60.83%					et has be	
0	10	95.02%	94.74%	5.94%	3.97%	77.57%			63.04%	60.83%		changeo	d (theor	etical pe	erformar	nce
0	11	95.02%	94.74%	5.98%	4.02%	77.56%			62.98%	60.79%					width pe	
	CMG 0 total	95.02%	94.74%	6.03%	4.08%	77.56%	61.93%	6.27%	62.89%	60.78%					muun pe	21

A rate of 80% or so is regarded as a busy state.

CMG (256 GB/s)).

Cache miss status

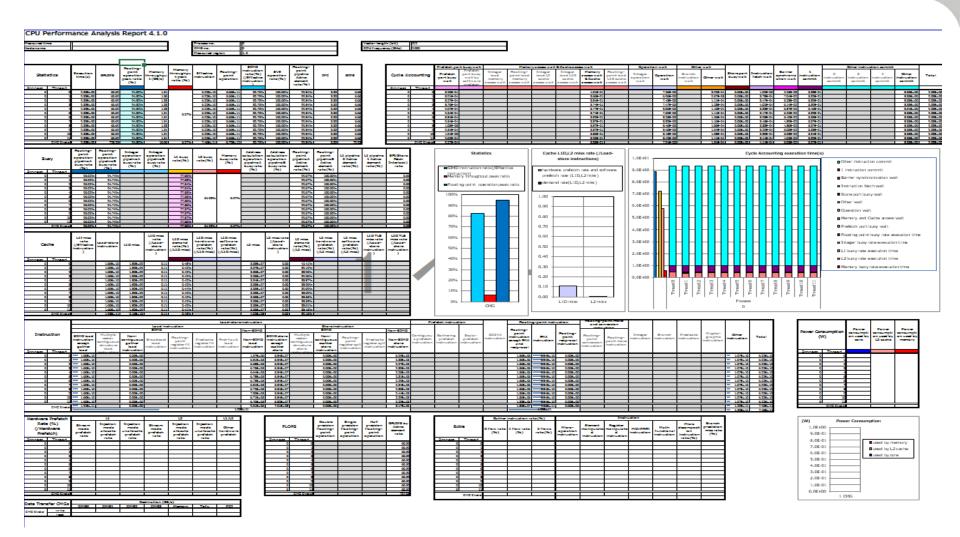
Cache	L1I miss rate (/Effective instruction)	Load-store instruction	L1D miss	L1D miss rate (/Load-store instruction)	demand rate	L1D miss hardware prefetch rate (%) (/L1D miss)	L1D miss software prefetch rate (%) (/L1D miss)	L2 miss	L2 miss rate (/Load-store instruction)	L2 miss demand rate (%) (/L2 miss)	L2 miss hardware prefetch rate (%) (/L2 miss)	software	L1D TLB miss rate (/Load- store instruction)	
Process Thread														
0 0								-07	0.00	42.43%	61.81%	0.00%	0.00001	0.00000
0 1		oad / sto	re cour	nts, I 1D	miss ra	ite, 12D	miss ra	ite. 07	0.00	39.19%	65.30%	0.00%	0.00001	0.00000
0 2									0.00	38.98%	65.37%	0.00%	0.00001	0.00000
0 3		LB miss						ate, ₀₇	0.00	39.04%	65.34%	0.00%	0.00001	0.00000
0 4		hwpf	miss ra	ite, and	swpf m	iss rate), etc.	07	0.00	38.74%	65.48%	0.00%	0.00001	0.00000
0 5								-07	0.00	38.94%	65.38%	0.00%	0.00001	0.00000
0 6	0.00	1.60E+10	1.80E+09	0.11	0.44%	0.74%	98.82%	3.35E+07	0.00	39.27%	64.81%	0.00%	0.00001	0.00000
0 7	0.00	1.60E+10	1.80E+09	0.11	0.42%	0.74%	98.84%	3.35E+07	0.00	38.69%	65.39%	0.00%	0.00001	0.00000
0 8	0.00	1.60E+10	1.80E+09	0.11	0.42%	0.74%	98.84%	3.35E+07	0.00	38.51%	65.42%	0.00%	0.00001	0.00000
0 9	0.00	1.60E+10	1.80E+09	0.11	0.42%	0.74%	98.84%	3.35E+07	0.00	38.53%	65.50%	0.00%	0.00001	0.00000
0 10	0.00	1.60E+10	1.80E+09	0.11	0.42%	0.72%	98.86%	3.35E+07	0.00	39.17%	65.03%	0.00%	0.00001	0.00000
0 11	0.00	1.60E+10	1.80E+09	0.11	0.41%	0.74%	98.85%	3.35E+07	0.00	38.46%	65.55%	0.00%	0.00001	0.00000
CMG 0 total	0.00	1.93E+11	2.16E+10	0.11	0.43%	0.73%	98.84%	4.02E+08	0.00	39.16%	65.03%	0.00%	0.00001	0.00000

Image of the Displayed CPU Analysis Report (Table 3) Fujitsu

Instruction mix

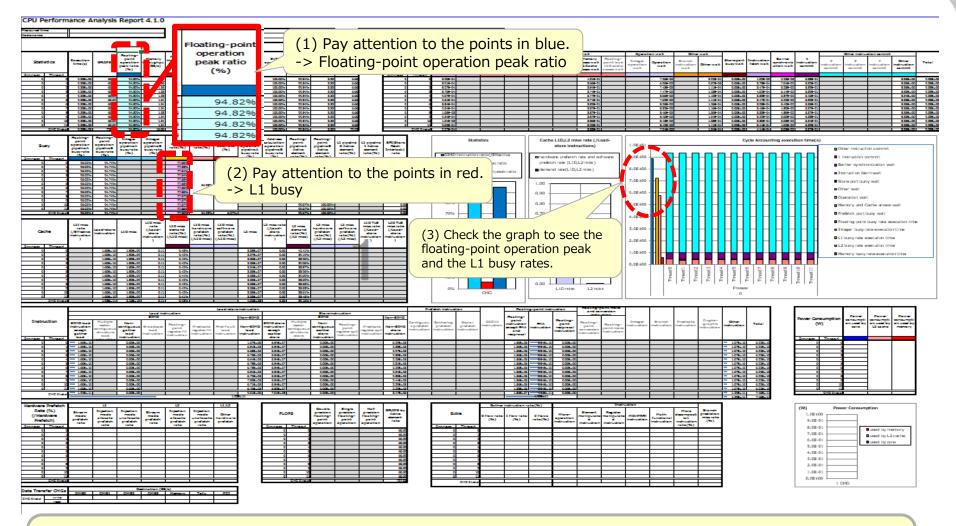
								Load-store	instruction							Pr	efetch instruct	on		Float	ing-point instru	uction	Floating-po	int move and						1
					Load in	struction						Store ins	truction						1				conversion	n instruction						
					SIMD				Non-SIMD			SIMD			Non-SIMD	1				Floating-					1					
Instruction	co	ngle vector contiguous load nstruction	Multiple vector contiguous structure load	Non- contiguous gather load instruction	Broadcast load instruction	Floating- point register fill instruction	Predicate register fill instruction	First-fault load instruction	Non-SIMD load instruction	Single vector contiguous store instruction	Multiple vector contiguous structure store	Non- contiguous scatter store instruction	Floating- point register spill instruction	Predicate register spill instruction	Non-SIMD store instruction	Contiguous prefetch instruction	Gathering prefetch instruction	Scalar prefetch instruction	DCZVA instruction	point instruction except FMA and reciprocal	FMA instruction	Floating- point reciprocal instruction	Floating- point conversion instruction	Floating- point move instruction	Integer instruction	Branch instruction	Predicate instruction	Crypto- graphic instruction	Other instruction	Total
Process Threa	ad		instruction								instruction																			
0	0	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	1.59E+06	5.84E+07	0.00E+00	0.00E+00	2.99E+03	1.62E+03	6		0.00E+00	1.81E+09	8.24E+02	1.56E+06	3.54E+10	0.00E+00	9.00E+01	4.22E+03	0.00E+00	8.90E+08	1.24E+04	0.00E+00	8.03E+09	6.22E+1
0	1	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.99E+05	5.84E+07	0.00E+00	0.00E+00	2.99E+03	1.62E+03	7			1.81E+09	8.24E+02	1.56E+06	3.54E+10	0.00E+00	9.00E+01	4.21E+03	0.00E+00	8.89E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	2	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.87E+05	5.84E+07	0.00E+00	0.00E+						_								89E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	3	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.94E+05	5.84E+07	0.00E+00	0.00E									c					E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	4	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.82E+05	5.84E+07	0.00E+00	0.00E		Loa	d / s	store	e ins	truc	tion.	. pre	tetc	h ins	strua	ction	1.	E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	5	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.97E+05	5.84E+07	0.00E+00	0.00E														E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	6	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.92E+05	5.84E+07	0.00E+00	0.00E		floa	atind	n-no	int c	ner	atior	n ins	truc	tion	inte	eger		E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	7	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	7.00E+05	5.84E+07	0.00E+00	0.00E														E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	8	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.91E+05	5.84E+07	0.00E+00	0.00E		nno	ratic	n in	ctru	ction	n hr	and	h inc	truc	tion	, etc	•	E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	9	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	7.19E+05	5.84E+07	0.00E+00	0.00E		oper	auc	// // // //	Suu	Cuoi	1, 01	anci	1 1113	su uc	LION	, eu		E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	10	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.90E+05	5.84E+07	0.00E+00	0.00E+0-															1.24E+04	0.00E+00	8.02E+09	6.22E+1
0	11	7.14E+09	0.00E+00	0.00E+00	8.85E+0	3.28E+03	1.86E+03	0.00E+00	6.95E+05	5.82E+07	0.00E+00	0.00E+00	3.04E+03	1.62E+03	2.44E+05	0.00E+00	0.00E+00	1.81E+09	8.24E+02	1.33E+06	3.54E+10	0.00E+00	9.00E+01	4.21E+03	0.00E+00	8.89E+08	1.24E+04	0.00E+00	8.02E+09	6.22E+1
CMG 0		8.56E+10	0.00E+00	0.00E+00	1.06E+1	3.93E+04	2.24E+04	0.00E+00	9.24E+06	7.00E+08	0.00E+00	0.00E+00	3.60E+04	1.94E+04	3.35E+06	0.00E+00	0.00E+00	2.17E+10	9.89E+03	1.85E+07	4.25E+11	0.00E+00	1.08E+03	5.05E+04	0.00E+00	1.07E+10	1.49E+05	0.00E+00	9.63E+10	7.46E+1
CMG 0	total							1.93	+11							1	2.17E+10		9.89E+03		4.25E+11		5.16	E+04	0.00E+00	1.07E+10	1.49E+05	0.00E+00	9.63E+10	7.46E+1

Performance data

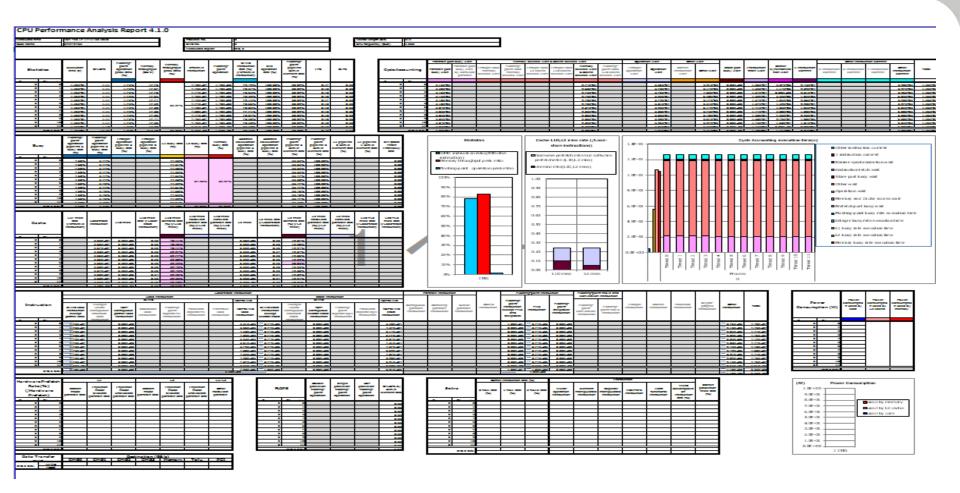

FLC)PS	Double precision floating- point operation	Single precision floating- point operation	Half precision floating- point operation	GFLOPS by Active element rate
Process	Thread				
0	0		0.00.E+00	0.00.E+00	60.59
0	- GE	OPS value	es based o	n floating	-point
0			y type (ha		
0					
0	preci	,	double pre		leuicate
0		ma	ask inform	ation	
0	6	5.66.E+11	0.00.E+00	0.00.E+00	60.59
0	7	5.66.E+11	0.00.E+00	0.00.E+00	60.59
0	8	5.66.E+11	0.00.E+00	0.00.E+00	60.59
0	9	5.66.E+11	0.00.E+00	0.00.E+00	60.59
0	10	5.66.E+11	0.00.E+00	0.00.E+00	60.59
0	11	5.66.E+11	0.00.E+00	0.00.E+00	60.59
	CMG 0 total	6.79.E+12	0.00.E+00	0.00.E+00	727.03

Floating-point operation rate by type

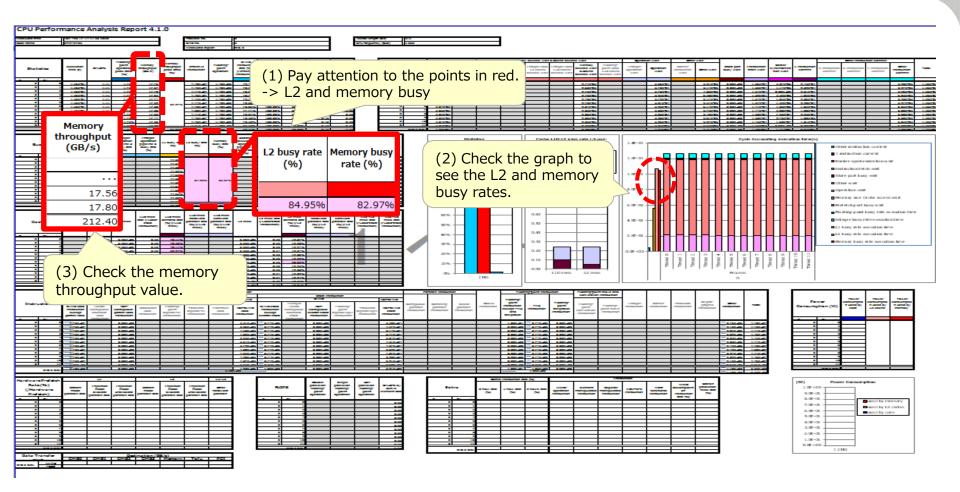
Of the floating-point operations performed during measurement intervals, the floating-point operation rate by type (half precision, single precision, or double precision) is displayed as %.


GFLOPS values based on predicate mask information GFLOPS values calculated using predicate mask information (The predicate mask information values are for reference only since they are not only used for operations.)

Display Example (DGEMM: Simple Data (Five Measurements))


FUITSU

Analysis Example (DGEMM: Simple Data (Five Measurements))


The floating-point peak ratio ((1)) and the L1 busy ratio ((2)) are high. From the graph ((3)), it can be seen that the floating-point peak ratio is higher. Its value is 94.82%, which indicates that high operation performance can be achieved.

Display Example (STREAM: Simple Data (Five Measurements))

FUJITSU

Analysis Example (STREAM: Simple Data (Five Measurements))

From the busy information ((1)) and the graph ((2)), it is found that the L2 busy rate and memory busy rate are high. When the value ((3)) is checked, it is found to be 207.69 GB/s. This indicates that performance equivalent to over 80% of the memory bandwidth per CMG (256 GB/s) is achieved.

Notes on FLOPS

About the count of the number of operations

There are cases in which more operations are counted in the CPU performance analysis report. Therefore, the FLOPS value may become higher than the actual one.

For example, when a masked SIMD instruction is used, all operations are counted as true even if some masks (predicate) are false. In this case, the number of operations becomes greater than it actually is. The cases in which the count of the number of operations becomes greater than the actual number are summarized below, including the one mentioned above.

Item	Overview	Difference from K/FX100	Prevention method
Floating-point division/SQRT function	Since the compiler replaces an operation with a sequence of multiple operation instructions,	Same	Specify -Knofp_relaxed.
Mathematical function/numeric function	more operations are counted than seen on the code.	Same	None
Reduction	If an automatic loop slicing occurs in a loop that includes a reduction operation, more operations are counted than seen on the code.	Same	Specify -Knoreduction.
Conversion of a loop including an IF construct into a SIMD instruction	When a loop including an IF construct is optimized using a masked SIMD instruction, <u>all</u> <u>operations are counted as true even if some</u> <u>masks (predicate) are false.</u>	Same as - Ksimd=2	Specify 1 in -Ksimd.
SIMD conversion through redundant loop execution	When a loop is optimized using a masked SIMD instruction in cases where the number of loop repetitions cannot be divided by the SIMD length, <u>all operations are counted as true even</u> if some masks (predicate) are false.	New	Specify the following OCL. SIMD_NOREDUNDANT_VL

Large Page

- About the Large Page
- Large Page Specifications
- Environment Variables for Large Page Setting
 - Basic Setting/Paging Policy Setting
 - Tuning Setting
- Large Page Evaluation
 - Stream Triad
 - ARENA FREE Performance
 - PAGING POLICY Performance
 - ARENA LOCK TYPE Performance

About the Large Page

FUjitsu

About the large page

- It refers to the allocation of memory in a larger page size (large page) than the normal page to an application that handles a large volume of data. The large page:
 - Reduces the overhead of the CPU address translation processing.
 - Improves the memory access performance.
- In the A64FX system environment, the normal page size is 64 KiB and the size available for the large page is 2 MiB.
 - The following operations can be set with environment variables.
 - ✓ Enabling and disabling of the large page allocation operation
 - Enabling and disabling of the large page allocation operation in a stack area
 - Selection of the paging policy (page allocation trigger) for each memory area
 - Various page sizes, such as 32 MiB, 1 GiB, and 16 GiB, can be implemented using McKernel.

Large Page Specifications

Large page specifications

	MP10/FX10/ FX100	A64FX			
Memory area	Page size	Page size			Paging
		Normal page	Large page base	Large page base+stack (default)	(The default is underlined.)
Text (.text)	8KiB	64KiB	64KiB	64KiB	-
Static data (.data)	4MiB (default), 8KiB, 32MiB, 256MiB	64KiB	2MiB	2MiB	Always prepage
Static data (.bss)		64KiB	2MiB	2MiB	demand <u>prepage</u>
Stack (*1)		64KiB	64KiB	2MiB	<u>demand</u> prepage
Dynamic memory (*2)		64KiB	2MiB	2MiB	demand prepage
Shared memory		64KiB	64KiB	64KiB	_

*1: For the process stack, main thread stack, and thread stack areas

*2: For the process heap, main thread heap, thread heap, and mmap areas

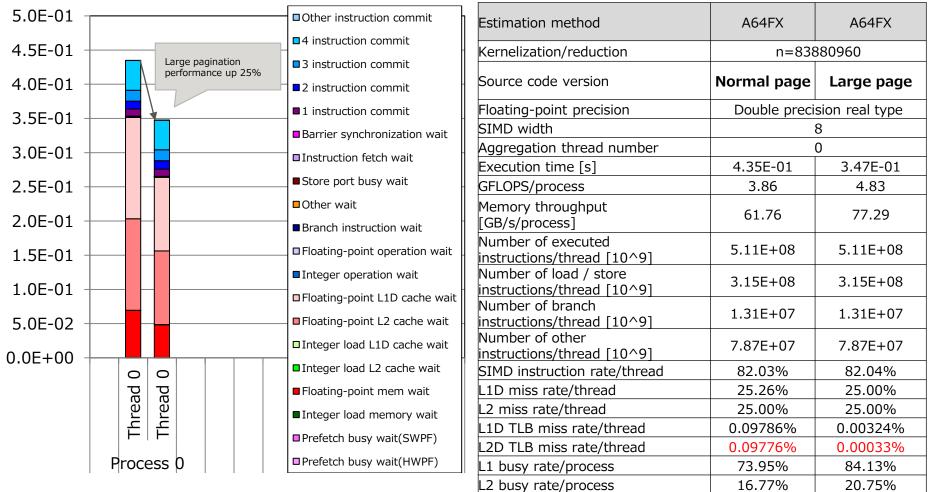
Environment Variables for Large Page Setting (1/2)

Basic setting/paging policy setting

Environment variable name	Specifiable value (The default is underlined.)	Explanation
XOS_MMM_L_HPAGE_TYPE	<u>hugetlbfs </u> none	This setting is used to select whether to enable or disable the large page allocation operation using the large page library. If "hugetlbfs" is specified, HugeTLBfs makes large pagination. If "none" is specified, the large page library is not used for large pagination.
XOS_MMM_L_LPG_MODE	<u>base+stack</u> base	This setting is used to select whether to enable or disable the large page allocation operation in a stack area and thread stack area. If "base+stack" is specified, large pagination is done not only in static data and dynamic memory allocation areas but also in a stack area and thread stack area. If "base" is specified, large pagination is done only in static data and dynamic memory allocation areas, but not in a stack area or thread stack area.
XOS_MMM_L_PAGING_POLICY	[demand <u>prepage</u>]: [<u>demand</u> prepage]: [demand <u>prepage</u>]	This setting is used to select the paging policy (page allocation trigger) for each memory area. "demand" means the demand paging policy, and "prepage" means the prepaging policy. This variable lets you specify paging policies for three different memory areas using colons (:) as delimiters. The first specified policy is for the .bss area of static data. (The paging policy specification is not applicable to the .data area of static data, and prepage is always specified.) The second specified policy is for the stack area and thread stack area. The third specified policy is for the dynamic memory allocation area. If a value other than the specifiable value is specified, "prepage:demand:prepage" is assumed.

Environment Variables for Large Page Setting (2/2) Fujitsu

Tuning setting (environment variables unique to the large page library)


Environment variable name	Specifiable value (The default is underlined.)	Explanation
XOS_MMM_L_ARENA_FREE	<u>1</u> 2	This setting concerns the handling of the heap area that is freed by free(3). If "1" is specified, the memory that can be freed is immediately freed. If "2" is specified, no memory is freed and all the memory is pooled and reused.
XOS_MMM_L_ARENA_LOCK_TY PE	0 <u>1</u>	This setting concerns the memory allocation policy. "0" means that priority is on memory allocation performance. "1" means that priority is on memory usage efficiency.
XOS_MMM_L_MAX_ ARENA_NUM	Integer [in decimal notation] from <u>1</u> or more to a value equal to or less than INT_MAX	Set the number of arenas that can be generated (the total of the process heap and thread heap areas). This is valid when 0 is specified in XOS_MMM_L_ARENA_LOCK_TYPE.
XOS_MMM_L_HEAP_SIZE_MB	Integer <in mib=""> [in decimal notation] from a value twice <u>MALLOC MMAP THRESHOLD</u> or more to a value equal to or less than ULONG_MAX</in>	When using a thread heap area, set the size of memory to be allocated for generating or expanding the thread heap area.
XOS_MMM_L_COLORING	0 <u>1</u>	Set whether to enable or disable cache coloring. This reduces the conflict of the L1 cache of the processor. If "0" is specified, cache coloring is not performed. If "1" is specified, cache coloring is performed when memory of a size equal to or larger than MALLOC_MMAP_THRESHOLD_ (the default is 128 MiB) is allocated by mmap(2).
XOS_MMM_L_FORCE_MMAP_TH RESHOLD	<u>0</u> 1	This setting specifies whether to give priority to mmap(2) when allocating memory of a size equal to or larger than MALLOC_MMAP_THRESHOLD_ (the default is 128 MiB). If "0" is specified, priority is not given to mmap(2). First, the heap area is searched for free space. If there is any free space, the free memory space of the heap area is returned. Memory is allocated by mmap(2) only when free space cannot be found in the heap area. If "1" is specified, priority is given to mmap(2). Memory is allocated by mmap(2) without searching the heap area for free space (even if there is free space).

For the environment variables of glibc (MALLOC_MMAP_THRESHOLD_, etc.), see the User's Guide.

Large Page Evaluation 1

Stream Triad (1 thread execution)

Large pagination reduces the L2D TLB miss rate, improving the performance by 25%.

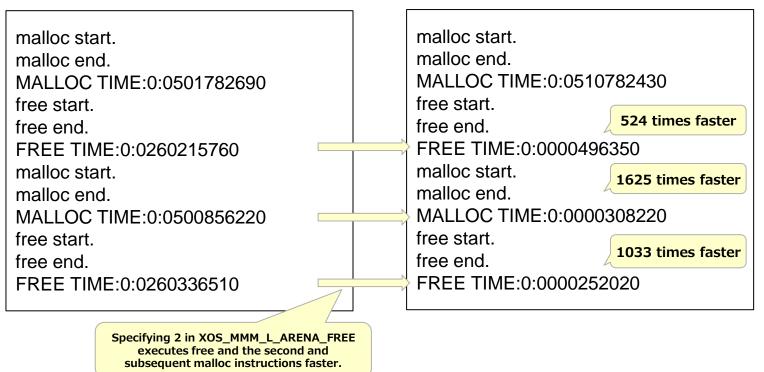
24.13%

30.19%

Memory busy rate/process

Large Page Evaluation 2: ARENA_FREE Performance (1/2)

Measurement conditions


Code to be measured

Condition	Pattern	while(loop <2){ printf("malloc start.¥n"); read(
Verification code	Code shown at the right (excerpt from the manual)	<pre>clock_gettime(CLOCK_REALTIME, &time1); for(i=0;i<malloc_cnt;i++){ *)malloc(sizeof(double)*n*n);<="" c[i]="(double" td=""></malloc_cnt;i++){></pre>
Number of threads to be measured	1 thread	<pre>if (c[i] == NULL) { fprintf(stderr, "malloc error: cnt=%d, errno=%d¥n", i, errno); exit(1); } }</pre>
Compiler	Compiler for the A64FX	<pre>clock_gettime(CLOCK_REALTIME, &time2); printf("malloc end.¥n"); sec = (time2.tv_sec - time1.tv_sec);</pre>
Compilation option	-Kfast	<pre>nsec= (time2.tv_nsec-time1.tv_nsec); if(nsec<0){ sec; nsec += 100000000L;</pre> Print the elapsed time of malloc.
Access range	N=1024 MALLOC_CNT=1024	<pre>printf("MALLOC TIME:%d:%010d¥n", sec, nsec); sleep(10); printf("free start.¥n");</pre>
Evaluation conditions	The execution results are compared using the following two conditions. - XOS_MMM_L_ARENA_FREE = 1 (Default: Memory is freed.) - XOS_MMM_L_ARENA_FREE=2 (Memory is reused without being freed.)	<pre>clock_gettime(CLOCK_REALTIME, &time1); for(i=0;i<malloc_cnt;i++){ &time2);="" -="" clock_gettime(clock_realtime,="" elapsed="" end.¥n");="" free(c[i]);="" if(nsec<0){="" nsec="(time2.tv_nsec-time1.tv_nsec);" pre="" print="" printf("free="" sec="(time2.tv_sec" sec;="" the="" time1.tv_sec);="" time<="" }=""></malloc_cnt;i++){></pre>
	Perform a loop of executing malloc and free twice.	<pre>sec; nsec += 100000000L; } printf("FREE TIME:%d:%010d¥n", sec, nsec); loop++; }</pre>

Large Page Evaluation 2: ARENA_FREE Performance (2/2)

- XOS_MMM_L_ARENA_FREE = 1 (Default: Memory is freed.)
- XOS_MMM_L_ARENA_FREE = 2
 (Memory is reused without being freed.)

XOS_MMM_L_ARENA_FREE is effective for a program in which malloc and free instructions of the same size are repeated.

Large Page Evaluation 3: PAGING_POLICY Performance

Since data comes from CMG0 in prepaging, performance cannot reach that of 48-thread streams. With the method changed to demand paging, data is put on the running CMG, and performance is significantly higher.

Source	
14 Subroutine sub(n,iter,x1,x2,y1)	
15 real(8) :: x1(n), x2(n), y1(n),c0	
16 integer n,i,k	
17 c0=2.0	
18	
19 call fapp_start("sub",0,0)	
20 1 do k=1,iter	
21 1 !\$omp parallel do	
<<< Loop-information Start >>>	Memory throughput (GB/s)
<<< [OPTIMIZATION]	
<<< SIMD(VL: 8)	
<pre><< SOFTWARE PIPELINING(IPC: 2.45, ITR: 128 MVE: 2 POL: 5)</pre>	prepage (default) 93 GB/s
128, MVE: 2, POL: S) <<< PREFETCH(SOFT) : 10	demand 804 GB/s
<<< SEQUENTIAL : 10	demand 804 GB/S
<<< x2: 4, x1: 4, y1: 2	Commiler entions. Iffect energy
<<< ZFILL :	Compiler option: -Kfast,openmp
<<< v1	-Kprefetch_sequential=soft -Kprefetch_line=
<<< Loop-information End >>>	-Kprefetch_line_L2=70 -Kzfill=18
22 2 p v do i=1,n	
23 2 p v $y1(i) = x1(i) + c0 * x2(i)$	
24 2 p v end do	
25 1 enddo	
:	
30 parameter(N=45000000,ITER=100)	
31 real*8 x1(N),x2(N),y1(N)	
	Data size: About
32call init(N,ITER,x1,x2,y1)Stream (L33call sub(N,ITER,x1,x2,y1)1 GB)	

Large Page Evaluation 4: LOCK_TYPE Performance

malloc performance is higher when XOS_MMM_L_ARENA_LOCK_TYPE=0 is specified. (Reduced execution time from 0.56 seconds to 0.35 seconds, a performance increase of 1.60 times)

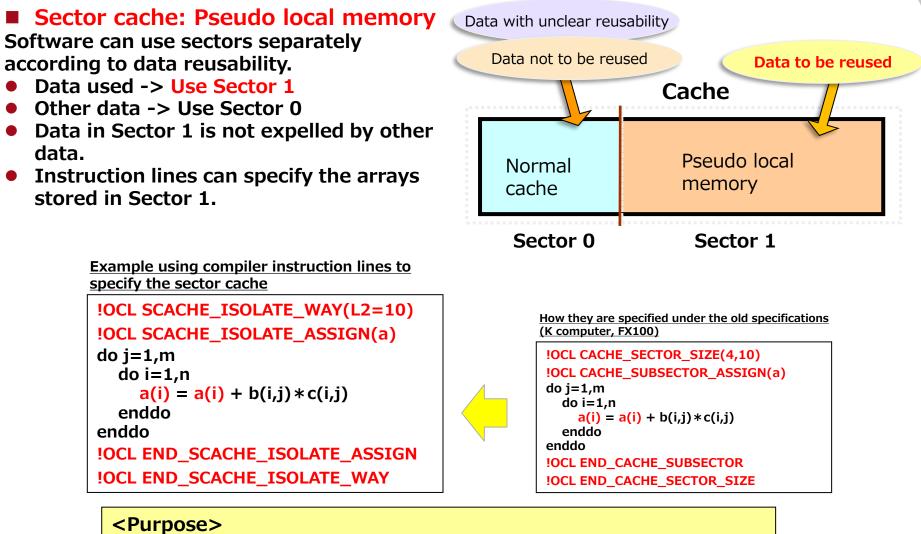
	Source			
1	subroutine sub(n,m,iter,x1,x2,y2) integer(8) :: pZ1(iter)			
3	3 real(8) :: x1(n), x2(n), y2(n,m),c0			
45	c0=2.0			
6	!\$omp parallel do shared(n,m,iter,x1,x2,c0,y2) private(pZ1,i,j,k) default(none) <<< Loop-information Start >>>			
	<<< [OPTIMIZATION]			
	<<< PREFETCH(HARD) Expected by compiler :			
	<<< x1, x2, y2 <<< Loop-information End >>>			
7	1 p do k=1,m			
	<<< Loop-information Start >>>			
	<<< [OPTIMIZATION] <<< PREFETCH(HARD) Expected by compiler :			
	<<< (unknown)			
8	<<< Loop-information End >>> 2 p s do j=1,iter			
9	2 p m pZ1(j) = malloc(8 * n)			
10	2 p v end do			
11	1 <<<< Loop-information Start >>>			
	<<< [OPTIMIZATION]			
	<<< SIMD(VL: 8) <<< SOFTWARE PIPELINING(IPC: 3.50, ITR: 144, MVE: 4, POL: S)			
	<pre><< PREFETCH(HARD) Expected by compiler :</pre>			
	<<< x1, x2, y2			
12	<<< Loop-information End >>> 2 p 2v do i=1,n			
13	2 p 2v $y2(i,k) = x1(i) + c0 * x2(i)$			
14	2 p 2v end do			
15	1 2 p s doj=1,iter			
17	2 p s call free(pZ1(j))			
18	2 p s end do			
19	1 p end do end subroutine sub			
21				
22	program main			
23	23 parameter(N=1048512,ITER=80) 24 real*8 x1(N),x2(N),y2(N,12)			
25 call sub(N,12,ITÈR,x1,x2,y2)				
26	end program main			

Sector Cache

What is the Sector Cache? How to Use the Sector Cache Sector Cache: Case 1 (Before Improvement) Sector Cache: Case 1 (Source Tuning) Sector Cache: Case 2 (Before Improvement) Sector Cache: Case 2 (Source Tuning)

What is the Sector Cache?

The sector cache is a cache mechanism that can prevent non-reusable data from expelling reusable data from the cache. An application can allocate reusable data and non-reusable to different sectors. (Reusable arrays use Sector 1, and others use Sector 0.)


Sector cache details You can set multiple sectors in both the L1D cache and L2 Core #0-#11 cache. The maximum number of sectors is 4 in L1D and Setting by application 2 in L2. The number of ways specifies the capacity of each sector. The capacity works as a target value. Sector 0 Sector 1 Hardware controls sectors so that they approach the specified capacity at the line replacement time. 4 10 -> Not forcibly disabled even when over the capacity 256 bytes/line Use the LRU (least recently used) algorithm to control expulsion within a sector. Applications can decide the usage of sectors 0 and 1. However, Sector 0 stores instruction sequences. 2,048 In a secondary cache, the assistant core always uses two ways. lines

Conceptual image of L2 cache usage

14 ways

How to Use the Sector Cache (1/2)

FUJITS

To prevent Array a, which is reusable, from being expelled from the cache due to access to Arrays b and c during the loop

How to Use the Sector Cache (2/2)

To use the sector cache, specify the following optimization control lines.

		Optimization Control Line Specifiable?				
Optimization Specifier	Meaning		By DO Loop	By Statement	By Array Assignment Statement	
SCACHE_ISOLATE_WAY(L2=n1[,L1=n 2]) END_SCACHE_ISOLATE_WAY	Specifies the maximum number of ways for Sector 1 of the primary cache and secondary cache.	Yes	No	Yes	No	
SCACHE_ISOLATE_ASSIGN(array1[,ar ray2]) END_SCACHE_ISOLATE_ASSIGN	Specifies the arrays stored in Sector 1 of the cache.	Yes	No	Yes	No	

Note

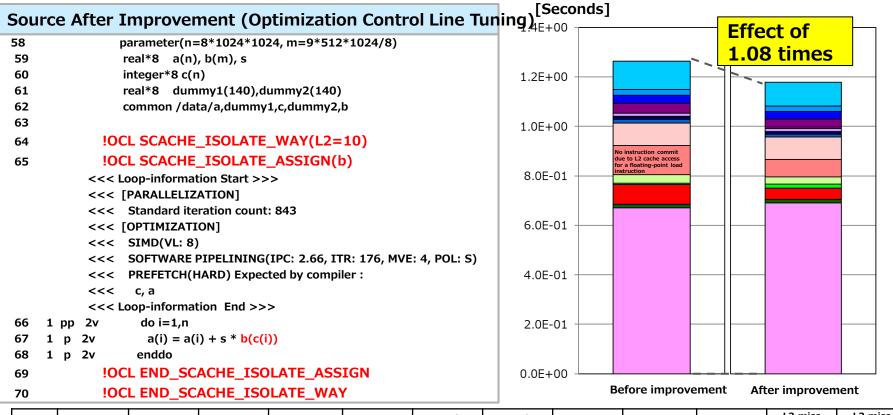
In the secondary cache, the assistant core always uses two ways. Therefore, the ranges of values that can be specified in n1 and n2 are as follows:

 $0 \le n1 \le maximum$ number of ways of secondary cache - 2 $0 \le n2 \le maximum$ number of ways of primary cache

• For a CMG that contains an assistant core, the assistant core uses part (2 ways = 1 MiB) of the L2 cache. Therefore, for the CMG, the maximum number of ways of the secondary cache is 14 and the size is 7 MiB.

A64FX Specifications				
Number of CMGs	4			
L1I cache size	64 KiB/4 ways			
L1D cache size	64 KiB/4 ways			
L2 cache size	32 MiB/16 ways (8 MiB/CMG)			

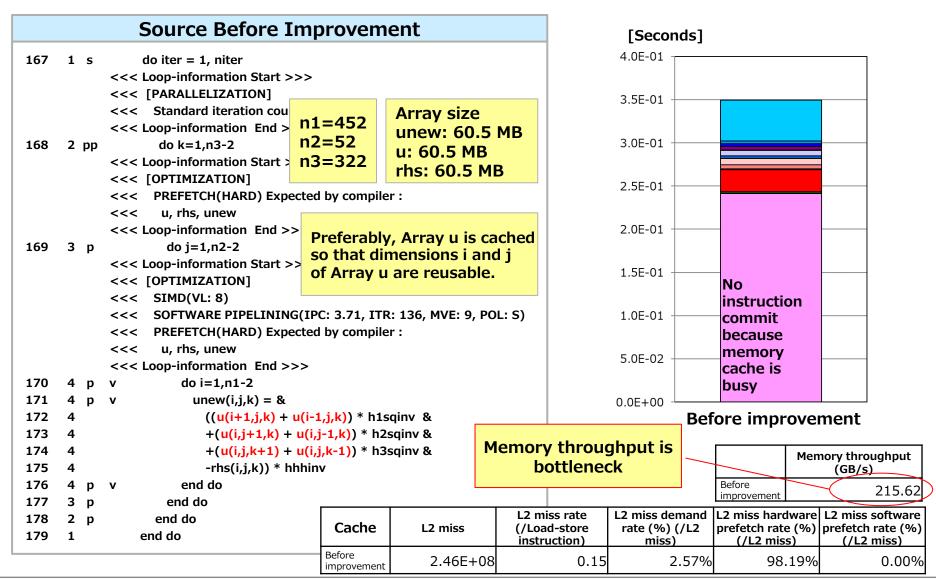
Sector Cache: Case 1 (Before Improvement) Fujitsu


Array b data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction commit due to L2 cache access for a floating-point load instruction" event occurs many times.

Source Before Improveme	ent	[Seconds]
66 parameter(n=8*1024*1024, m=9	1.4E+00	
67 real*8 a(n), b(m), s		
68 integer*8 c(n)		
69 real*8 dummy1(140),dummy2((140)	1.2E+00
70 common /data/a,dummy1,c,dum	my2,b	
71		1.0E+00
<<< Loop-information Start >>>	Array size	
<<< [PARALLELIZATION]	a: 64 MiB	No instruction commit due to L2 cache access for a floating-point load instruction
<pre><< Standard iteration count: 843</pre>	b: 4.5 MiB	8.0E-01
<<< [OPTIMIZATION]	c: 64 MiB	
<<< SIMD(VL: 8)		6.0E-01
<<< SOFTWARE PIPELINING(IPC: 2.66, I	TR: 176, MVE: 4, POL: S)	
<<< PREFETCH(HARD) Expected by c	ompiler :	
<<< c, a	-	4.0E-01
<<< Loop-information End >>>		
72 1 pp 2v do i=1,n		2.0E-01
73 1 p 2v $a(i) = a(i) + s * b(c(i))$		
74 1 p 2v enddo		
• • • • • • • • • • • • • • • • • • • •		Before improvemer

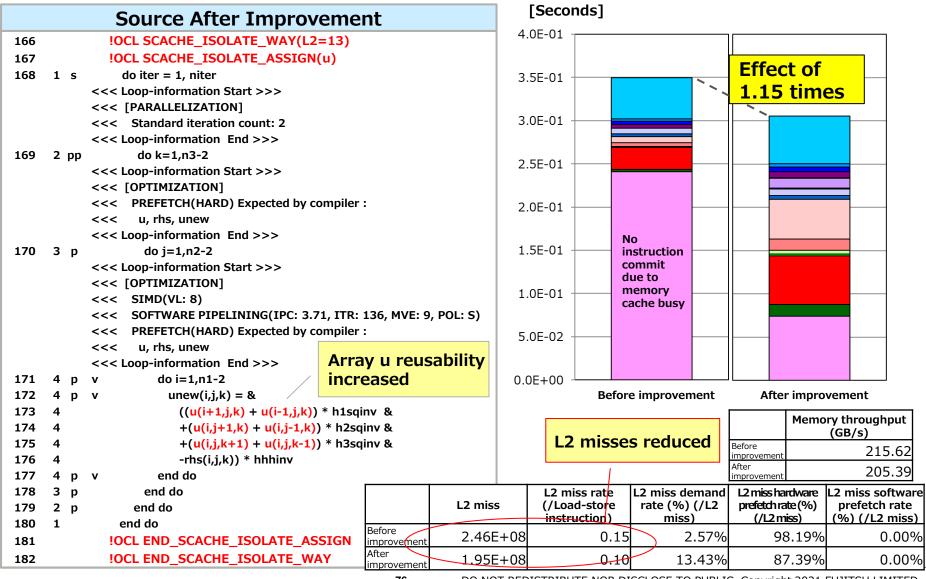
Cache	L1I miss rate (/Effective instruction)	Load-store instruction	L1D miss		demand rate	L1D miss hardware prefetch rate (%)(/L1Dmiss)		L2 miss	L2 miss rate (/Load-store instruction)	demand rate	L2 miss hardware prefetch rate (%)(/L2miss)	L2 miss software prefetch rate (%)(/L2miss)
Before improvement	0.00	4.76E+09	7.89E+08	0.17	0.89%	99.11%	0.00%	7.34E+08	0.15	0.77%	100.00%	0.00%
Before	Memory the		Memory throughput is bottleneck High L2 cache miss				s rate					

Sector Cache: Case 1 (Source Tuning)


Storing Array b in Sector 1 increases cache efficiency. The result is improvement of the "No instruction commit due to L2 cache access for a floating-point load instruction" event.

	L1I miss rate (/Effective instruction)	Load-store instruction	L1D miss	L1D miss rate (/Load-store instruction)	L1D miss demand rate (%)(/L1Dmiss)		L1D miss software prefetch rate (%)(/L1Dmiss)	L2 miss	L2 miss rate (/Load-store instruction)	L2 miss demand rate (%)(/L2 miss)	Inrototch rate	L2 miss software prefetch rate (%)(/L2 miss)
Before improvement	0.00	4.76E+09	7.89E+08	0.17	0.89%	99.11%	0.00%	7.34E+08	0.15	0.77%	100.00%	0.00%
After improvement	0.00	5.19E+09	7.93E+08	0.15	1.19%	98.81%	0.01%	5.99E+08	0.12	1.93%	99.69%	0.00%
	Memory thi (GB/					_	_					
Before improvement		203.11			L2 m	isses r	educe	d				
After improvement		188.07										

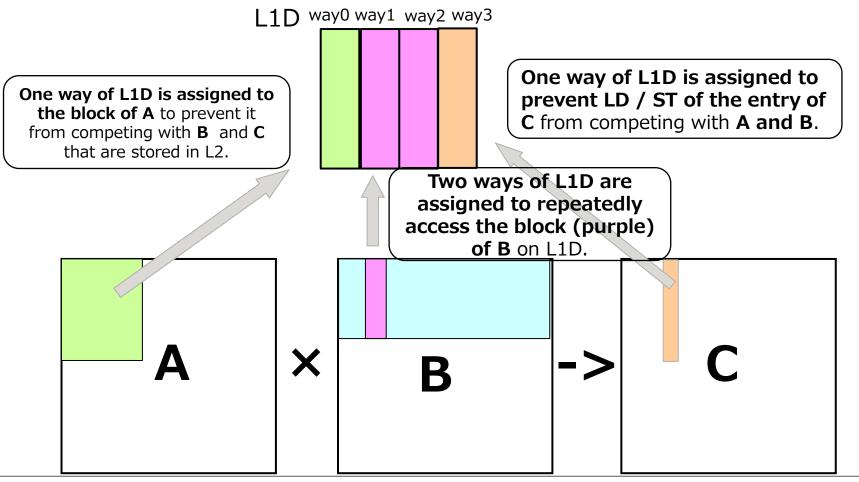
Sector Cache: Case 2 (Before Improvement) Fujitsu


Array u data is expelled from the cache and thus cannot be reused. Consequently, the "No instruction commit because memory cache is busy" event occurs many times.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Sector Cache: Case 2 (Source Tuning)

Storing part of dimension k of Array u in Sector 1 increases cache efficiency. The result is improvement of the "No instruction commit because memory cache is busy" event.



DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Effects of a Sector Cache on DGEMM (1/2)

- In the matrix product (C = AB), matrices are divided into blocks, stored in the L1D and L2 caches, and calculated.
- The blocks of A and B are copied to the work area to prevent thrashing.
- The sector cache of L1 is used to ensure that A, B, and C are stored in the cache. Particularly, the block of B is important that is repeatedly used on L1D.

Effects of a Sector Cache on DGEMM (2/2) FUJITSU

Performance of DGEMM when a sector cache is used and not used

1CMG

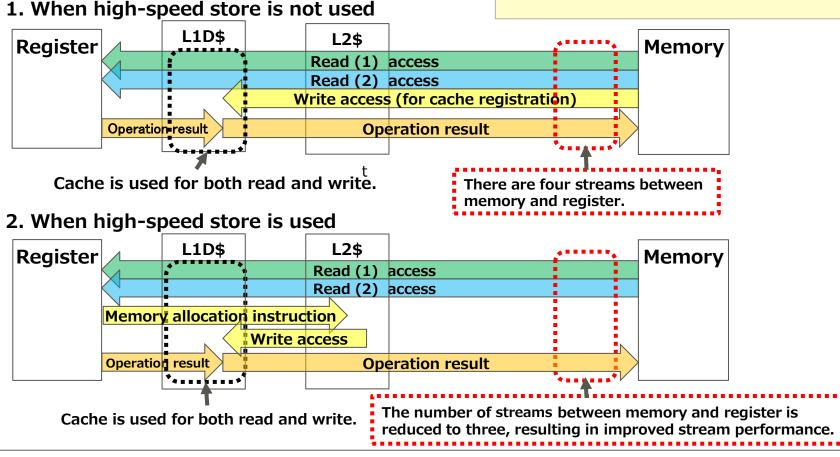
	DGEMM efficiency
Sector cache used	94%
Sector cache not used	74%

The use of a sector cache increases efficiency by 20%.

High-Speed Store (Zfill)

- Image of High-Speed Store (zfill)
- About High-Speed Store (zfill) by the Compiler
- High-Speed Store Instructions
- Operating Conditions of High-Speed Store (zfill)
- Evaluation of High-Speed Store (zfill)
- [Note] About High-Speed Store of On-Cache Data

Image of High-Speed Store (zfill)



About high-speed store (zfill)

This function secures cache lines for writing on the cache. This reduces the cache line read access from the memory and improves the performance of a program whose bottleneck is the memory throughput.

 Conceptual diagram (image of the Stream Triad case)

About High-Speed Store (zfill) by the Compiler

Option description

Not induced by -Kfast The option and OCL specifier are renamed. XFILL -> zfill * The old option and specifier (-KXFILL and !OCL XFILL) are also compatible.

{ zfill[=N] | nozfill } 1 $\leq N \leq 100$

For array data that is only written within the loop, the store instruction is accelerated by using an instruction that secures cache lines for writing on the cache without loading data from the memory.

If you specify N, the data of N cache lines ahead is optimized.

The specifiable value range of N is 1 to 100. If you omit N, the compiler automatically decides the value. This option takes effect only when the -O2 and subsequent options are valid. The default is –Knozfill.

Optimization overview

zfill achieves optimization in which data is stored at high speed by using an instruction that secures cache lines for writing on the cache without loading data from the memory. It is applied to array data that is stored in the loop. Note that optimization does not occur for an array having any reference in the same loop, an array subject to non-sequential access, or an array stored under an IF construct. Also, if zfill is applied, a prefetch instruction is not output to the secondary cache.

Since loop deformation is performed in which all the cache lines secured through optimization by zfill are stored, the following optimization techniques become unavailable. This may result in lower execution performance.

- Loop unrolling

- Loop striping

Even if the zfill optimization occurs, the information resulting from performing the above-mentioned optimization may be output to the compilation message or optimization information when optimization by loop deformation is initiated. The execution performance may also lower in the following cases.

- Loop with a small number of rotations

- If you specify the number of cache lines in -Kzfill=N, the number of rotations is smaller than the number of entries in the cache lines.

- Program without a memory bandwidth bottleneck

Do not specify -Kzfill if doing so lowers the execution performance. It is desirable to control zfill on a loop-by-loop basis. Therefore, it is recommended to specify the optimization specifier "ZFILL" rather than the option that affects the entire program.

High-Speed Store Instructions

%xg2,256,%xg2

bne,pt %icc, .L91

* The sxar

instruction is

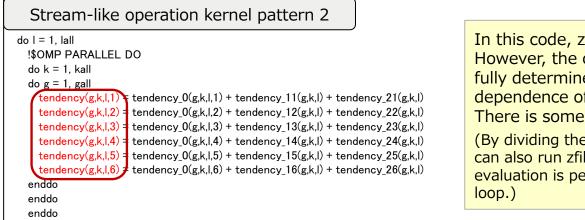
omitted.

add

FX100	A64FX
	High-speed store instruction for the A64FX $ d1d \{21.d\}, p0/z, [x4, -3, mul vl]$ $ d1d \{z0, p0/z, [x9, -3, mul vl]$ $dc ZVA, x7$ add x7, x7, 256 $ d1d \{z4.d\}, p0/z, [x4, -2, mul vl]$ $ d1d \{z3.d\}, p0/z, [x4, -2, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, -1, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, -1, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z7.d\}, p0/z, [x9, -2, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z6.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z16.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z16.d\}, p0/z, [x4, 0, mul vl]$ $ d1d \{z1.d, p0/m, z2.d, z0.d$ $ fmad z1.d, p0/m, z2.d, z3.d$ $ fmad z6.d, p0/m, z2.d, z5.d$ $ fmad z16.d, p0/m, z2.d, z5.d$ $ fmad z16.d, p0, [x1, -3, mul vl]$ $ s11d \{z6.d\}, p0, [x1, -3, mul vl]$ $ s11d \{z6.d\}, p0, [x1, -1, mul vl]$ $ s11d \{z6.d\}, p0, [x1, -1, mul vl]$ $ s11d \{z6.d\}, p0, [x1, -1, mul vl]$ $ s11d \{z16.d\}, p0, [x1, 0, $
std,sd %f52,[%xg2+120]	Since an amount of data equivalent to cache lines (256 B) needs to be stored when high-speed store (zfill) is used, the memory space for the necessary number of rotations is allocated through striping.
std,sd %f64,[%xg2+216]	

* Amount of data equivalent to cache lines (256 B): 4SIMD \times 8 rotations for FX100 and 8SIMD \times 4 rotations for A64FX

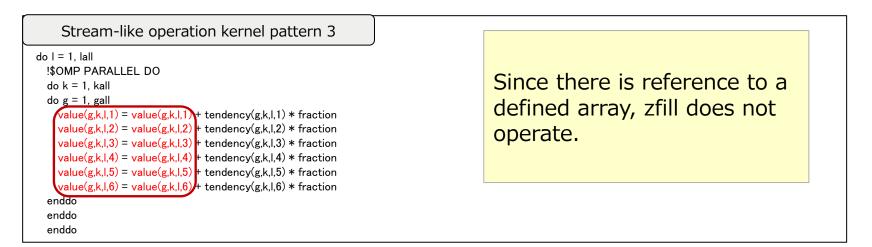
Operating Conditions of High-Speed Store (zfill) (1/2) Fujirsu


- Operating conditions
 - The arrays to be stored must not be dependent between iterations.
 - There must be no reference to any defined array.
 - Memory access must be contiguous.
- Case in which zfill operates

zfill operates because memory access is contiguous.

Triad		iter = 3	
real*4 y(n), x1(n), x2(n), c0		n = 3145728	
do j = 1, iter			
!\$omp parallel do			
Do i = 1, n			
y(i)=x1(i) + c0 * x2(i)			
End Do			
enddo			
Stream-like operation kernel pattern 1	do iq = 1, qall do I = 1, lall		gall=16900, kall=96
do I = 1, Iall	\$0MP PARALL	EL DO	lall=1, qall=6
!\$OMP PARALLEL DO	do k = 1, kall		
do k = 1, kall do g = 1, gall	dog = 1, gall g(gk lig) = PF	ROGq(g,k,l,iq) / PROG	(øk 1)
rho(g,k,l) = PROG(g,k,l,1) / metrics(g,k,l)	enddo		/ יייייס
vx (g,k,l) = PROG(g,k,l,2) / PROG(g,k,l,1)	enddo		
vy (g,k,l) = PROG(g,k,l,3) / PROG(g,k,l,1)	enddo		
vz (g,k,l) = PROG(g,k,l,4) / PROG(g,k,l,1) ein(g,k,l) = PROG(g,k,l,5) / PROG(g,k,l,1)	enddo		
enddo			
enddo			
enddo			

Operating Conditions of High-Speed Store (zfill) (2/2) Fujirsu


Case in which zfill operates

In this code, zfill can operate. However, the current compiler cannot fully determine whether there is no dependence of the arrays to be stored. There is some room for improvement.

(By dividing the loop, the current compiler can also run zfill. This time, therefore, the evaluation is performed by dividing the loop.)

Case in which zfill does not operate

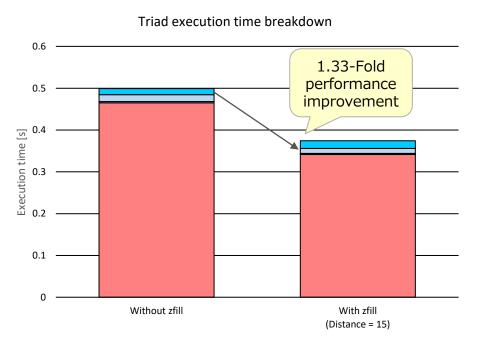
zfill Evaluation: Triad (1/2)

Like prefetch, high-speed store (zfill) requires that the time for hiding the latency be determined and that instructions be executed in advance.

The high-speed store (zfill) distance was verified in the case of Triad.

-> Improvement in performance was observed on 15 cache lines.

(The following page shows the details.)



Elapsed time ratio (when the time observed without zfill is 1)

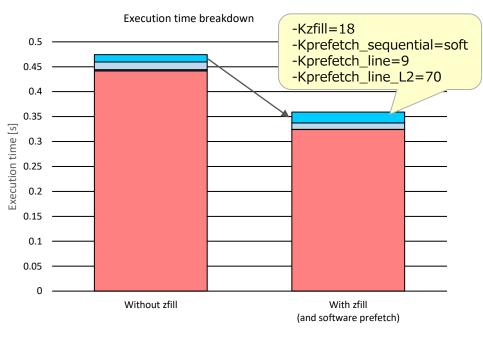
zfill Evaluation: Triad (2/2)

Performance improvement by zfill

Memory/cache access wait
 Instruction decode wait
 Two or three instructions commit

Operation wait
 One instruction commit
 Four instructions commit

The effect of high-speed store (zfill) reduces the number of memory accesses and improves performance.


PA values

	Without zfill	With zfill (Distance = 15)
Aggregation thread number	0	0
Execution time [s]	0.499	0.374
Total number of effective instructions	2.16E+09	2.18E+09
GFLOPS	12.60	16.83
Memory throughput [GB/s]	206.28	207.88
L1 busy rate/thread	59.97%	56.39%
L2 busy rate	87.65%	93.35%
Memory busy rate	80.58%	81.21%
Floating-point pipeline busy rate/thread	FLA:4.61% FLB:2.70%	FLA:6.44% FLB:3.32%
L1 miss count/thread	2.47E+07	2.47E+07
L1 miss demand rate/thread	3.65%	2.18%
L2 miss count/thread	2.55E+07	1.72E+07
L2 miss demand rate/thread	5.83%	5.27%

zfill Evaluation: Triad [Reference: Number of Innermost Loop Iterations Increased by 10 Times]

Performance of zfill and software prefetch

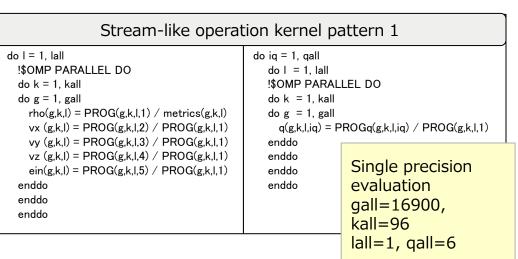
Memory/cache access wait
 Instruction decode wait
 Two or three instructions commit

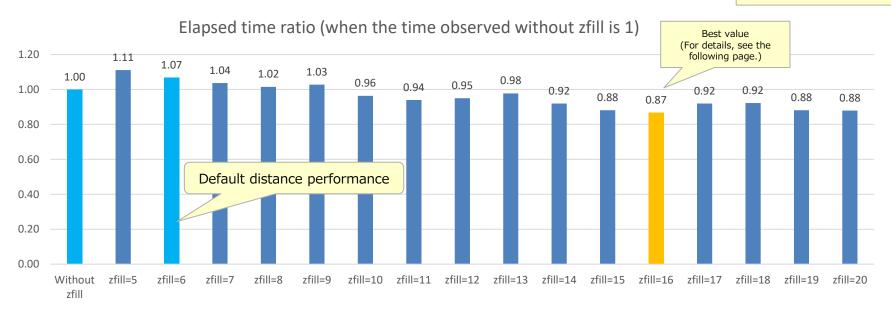
Operation wait
 One instruction commit
 Four instructions commit

PA values

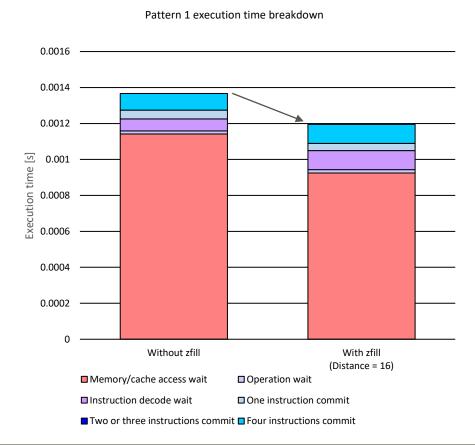
	Without zfill	With zfill (and software prefetch)
Aggregation thread number	0	0
Execution time [s]	0.474	0.359
Total number of effective instructions	2.16E+09	2.52E+09
GFLOPS	13.27	17.54
Memory throughput [GB/s]	222.5	210.8
L1 busy rate/thread	52.9%	55.09%
L2 busy rate	85.1%	94.39%
Memory busy rate	86.8%	82.32%
Floating-point pipeline busy rate/thread	FLA:4.90% FLB:2.80%	FLA:7.14% FLB:3.01%
L1 miss count/thread	2.46E+07	2.46E+07
L1 miss demand rate/thread	9.40%	0.08%
L2 miss count/thread	2.62E+07	1.64E+07
L2 miss demand rate/thread	12.21%	0.31%

 * The evaluation was conducted with the access size (number of innermost loop iterations, array size) increased to 240 MB (by 10 times).


Performing software prefetch and zfill properly improves the performance up to 210.8 GB/s.

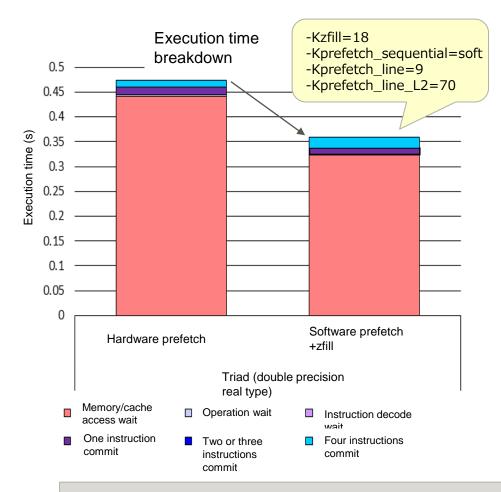

zfill Evaluation: Stream-Like Operation Kernel Pattern 1 (1/2)

The high-speed store (zfill) distance was verified in the case of the stream-like operation kernel (pattern 1).


-> Improvement in performance was observed on 16 cache lines. (The following page shows the details.)

zfill Evaluation: Stream-Like Operation Kernel Pattern 1 (2/2)

The effect of zfill has been confirmed. Note that the default value of the zfill destination needs to be changed.


PA values

	Without zfill	With zfill (Distance = 16)
Aggregation thread number	0	0
Execution time [s]	0.001372	0.001206
Total number of effective instructions	10775582	11158332
GFLOPS	91.10	103.7
Memory throughput [GB/s]	211.31	194.84
L1 busy rate	47.98%	46.77%
L2 busy rate	83.70%	83.85%
Memory busy rate	83.36%	76.91%
Floating-point pipeline busy rate/thread	FLA:11.64% FLB:10.92%	FLA:12.92% FLB:12.59%
L1 miss count/thread	7.15E+04	7.21E+04
L1 miss demand rate/thread	10.93%	5.37%
L2 miss count/thread	6.96E+04	5.49E+04
L2 miss demand rate/thread	15.31%	13.25%

[Reference] Performance Improvement by zfill

Performance of software prefetch and zfill

PA values

	Hardware prefetch	Software prefetch + zfill
Aggregation thread number	0	0
Execution time [s]	0.474	0.359
Total number of effective instructions	2.16E+09	2.52E+09
GFLOPS	13.27	17.54
Memory throughput [GB/s]	222.5	210.8
L1 busy rate/thread	52.9%	55.09%
L2 busy rate	85.1%	94.39%
Memory busy rate	21.7%	20.58%
Floating-point pipeline busy rate/thread	FLA:4.90% FLB:2.80%	FLA:7.14% FLB:3.01%
L1 miss count/thread	2.46E+07	2.46E+07
L1 miss demand rate/thread	9.40%	0.08%
L2 miss count/thread	2.62E+07	1.64E+07
L2 miss demand rate/thread	12.21%	0.31%

 \ast The evaluation was conducted with the access size (number of innermost loop iterations, array size) increased to 240 MB (by 10 times).

Performing zfill properly improves the performance up to 210.8 GB/s.

[Note] About High-Speed Store of On-Cache Data

1.11

1.00

High-speed store during cache access

Performing high-speed store for on-cache data may lower the performance.

Before specifying high-speed store, you need to check whether it is actually necessary.

Elapsed time ratio (Triad sequential execution) 1.2 1.11

Performance decreased by about 11% when high-speed store was applied to data access to the L1 and L2 caches.

Without high-speed With high-speed Without high-speed With high-speed store store store store Triad Triad onL1 cache access onL2 cache access

1.00

1.0

0.8

0.6

0.4

0.2

0.0

High-speed store (zfill) improves performance when used after access to the target arrays is properly checked.

FUJITSU

Data Access Alignment Constraints

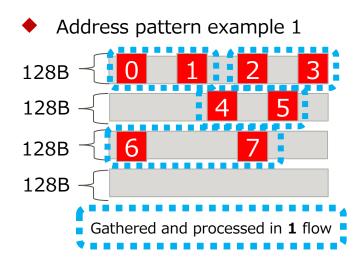
- Microarchitecture Affected by Alignment
- <u>Gather Load Instruction</u>
 <u>Aggregation Function</u>
- High-Speed Operation of the Multiple Structures Instruction
- WB (Write Buffer) Operations

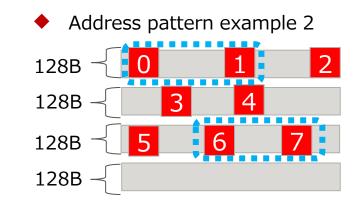
For the performance related to the following alignment changes, see <u>Basic Kernel</u> <u>Performance</u>.

- Evaluation Results: Contiguous SIMD Load
- Evaluation Results: Contiguous SIMD Store
- Evaluation Results: Gather Load
- Evaluation Results: Scatter Store
- Evaluation Results: Structure Load (LD2 Instruction)
- Evaluation Results: Structure Store (ST2 Instruction)

Microarchitecture Affected by Alignment

- Alignment changes may cause differences in performance for some of the load / store instructions. Alignment is considered to affect the following.
 - Gather load instruction aggregation function
 - High-speed operation of the Multiple Structures instruction
 - WB (write buffer) operations (WB split and merge)
 - (Store fetch bypass operation)


Gather Load Instruction Aggregation Function


FUĴITSU

What is the gathering function of the Gather instruction?

If two elements issued simultaneously from one FP are adjacent to each other, the Gather instruction can process them at a high speed. If the addresses of the two adjacent elements match each other within 128 bytes, the instruction can speed up processing by gathering the elements and processing **them** in one flow.

If two adjacent elements belong to the same 128-byte block, they are gathered and processed in one flow. In the following address pattern examples, indicates the gathered parts, and the two elements are processed in one L1D\$ pipeline flow.



Pay attention when implementing the starting addresses of arrays to make full use of the gathering function of the Gather instruction.

High-Speed Operation of the Multiple Structures Instruction

High-speed operation of the Multiple Structures instruction The Multiple Structures instruction (LD2/ST2) can process data in one flow per register when the address range of the data to be handled fits within a 128-byte boundary, leading to faster processing.

WB (Write Buffer) Operations

WB (write buffer) operations

Data is written from the SP (store port) to the WB (write buffer) in 64-byte units. If blocks of data to be stored each span a 64-byte boundary, storing all the data requires more write operations than the number of data blocks. <u>If blocks</u> of data to be stored each span a 64-byte boundary, each block needs to be split at the 64-byte boundary when written from the SP to the WB (WB split). After that, the split data blocks that fit within the same 64-byte boundary are merged into one block (WB merge) before being written to the WB.

Verification of Out-of-Order (OoO) Execution

- Out-of-Order Execution-Related Resources
- Purposes of the Verification
- Verification of the Out-of-Order Execution Effect
- Collaboration Between Out-of-Order Execution and Software Scheduling
- Summary

Out-of-Order Execution-Related Resources

Out-of-order execution-related resources

Item	Unit	A64FX	K compute r	FX100
Operation latency FL (FMA)	(Cycle)	9	6	6
Number of inflight instructions (CSE)	(Instruction/core)	128	48	64
Number of inflight load instructions (FP)	(Instruction/core)	40	20	32
Number of inflight store instructions (SP)	(Instruction/core)	24	8	20
RSA (address calculation and integer operation)	(Entry/core)	20	10	16
RSE (integer operation and real number operation)	(Entry/core)	20x2	10+16	16+20
RSBR (branch)	(Entry/core)	19	8	10
Number of renaming registers (GPR)	(Entry/core)	64	32	48
Number of renaming registers (FPR)	(Entry/core)	96	48	64
Number of renaming registers (PDR)	(Entry/core)	32	-	_

Purposes of the Verification

- Verification of the out-of-order execution effect
 - Check whether out-of-order execution is effective in performance improvement, using an actual machine
 - Check changes in the effect of out-of-order execution that occur as the number of operations (chains) changes
 - Check quantitative changes in performance based on the number of out-of-order resources of the A64FX and the number of resources necessary for optimal scheduling
- Collaboration between out-of-order execution and software scheduling
 - Check the effect of scheduling collaboration between software (compiler) and hardware (out-of-order execution)

Verification of the Out-of-Order Execution Effect (1/4) FUITSU

```
Evaluation overview
                                                       [1FMA]
  Perform an FMA operation for array y, using
                                                        Do i = 1, n
  constants c0 to c9. Prepare nine cases, each with
                                                         Doi = 1, 8
  a different number of FMAs from one to nine.
                                                          y(i,j) = c0 + y(i,j-m) * c1
                                                         End Do
  The expression assumes access to array y. In this
                                                        End Do
  code, since m is passed as an argument, the
                                                       [2FMA]
  software (compiler) cannot determine m and the
                                                        Do i = 1, n
  loops of i are executed sequentially. Compare the
                                                         Doi = 1, 8
  following cases.
                                                         End Do
  (1) OoO enabled/software scheduling disabled
                                                        End Do
  m=0: There is no dependency, and the
  processing can be overtaken. (-
                                                        : (Omitted)
  Kfast,noswp,unroll=2)
                                                       [9FMA]
                                                        Do j = 1, n
  (2) OoO disabled/software scheduling disabled
                                                         Doi = 1.8
```

m=1: Dependencies emerge, and the loops of i must be executed sequentially. (-Kfast,noswp,unroll=2)

(3) SWPL (OoO enabled/software scheduling enabled) m=0: Specify NORECURRENCE. (-Kfast)

```
v(i,j) = c0 + y(i,j-m)^*(c1 + y(i,j-m)^* c2)
  y(i,j) = c0 + y(i,j-m)^{*}(c1 + y(i,j-m)^{*} \neq c
         (c2 + y(i,j-m)^{*}(c3 + y(i,j-m)^{*})^{*}
         (c4 + y(i,j-m)*(c5 + y(i,j-m)* ¥)
         (c6 + y(i,j-m)*(c7 + y(i,j-m)*)
         End Do
End Do
```

Verification of the Out-of-Order Execution Effect (2/4) Fujirsu

While OoO is effective, SWPL is superior to OoO in performance because there are many operations and chains.

Result of NORECURRENCE

Effect of software (compiler)

scheduling and OoO

The operation efficiency is

about 70%.

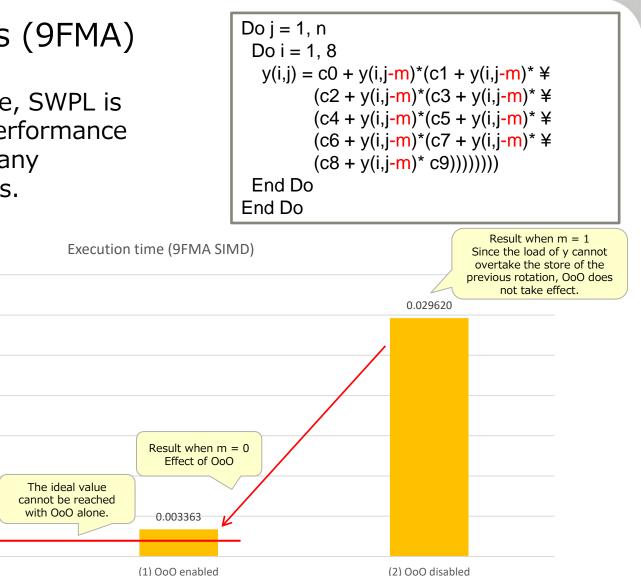
0.001823

(3) SWPL

0.035

0.030

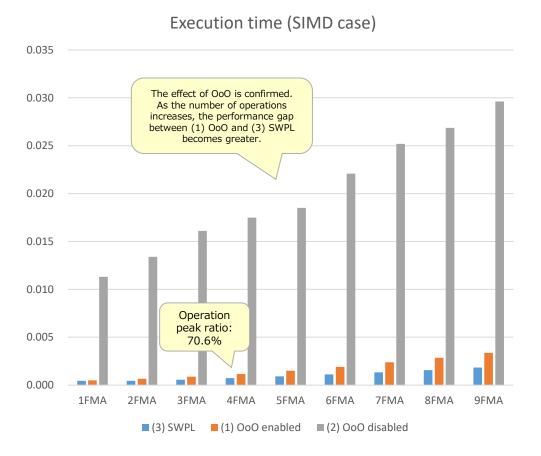
0.025


0.020

0.015

0.010

0.005


0.000

Verification of the Out-of-Order Execution Effect (3/4) Fujirsu

 Execution results of the individual cases (execution time)

For the loop of the 2FMA case, the performance of SWPL is almost the same as that of OoO.


```
[1FMA]
 Do_{i} = 1, n
  Doi = 1, 8
    y(i,j) = c0 + y(i,j-m) * c1
  End Do
 End Do
[2FMA]
 Do i = 1, n
  Doi = 1.8
    y(i,j) = c0 + y(i,j-m)^{*}(c1 + y(i,j-m)^{*} c2)
  End Do
 End Do
: (Omitted)
[9FMA]
 Do_{i} = 1, n
  Doi = 1.8
    y(i,j) = c0 + y(i,j-m)^*(c1 + y(i,j-m)^* + c1)^*
           (c2 + y(i,j-m)^{*}(c3 + y(i,j-m)^{*})^{*}
           (c4 + y(i,j-m)^{*}(c5 + y(i,j-m)^{*})^{*}
           (c6 + y(i,j-m)^{*}(c7 + y(i,j-m)^{*})^{*}
           End Do
 End Do
```

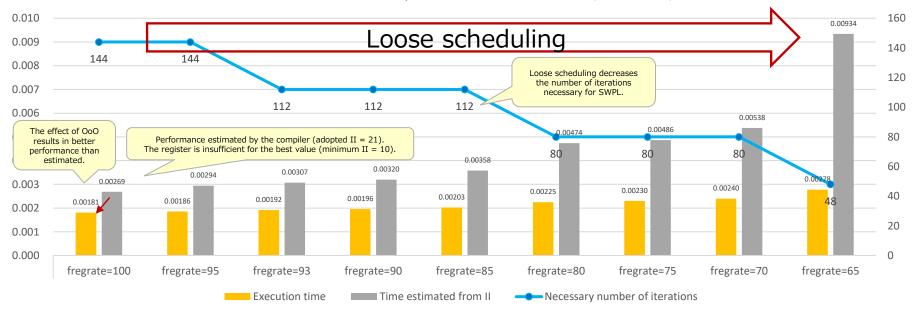
Verification of the Out-of-Order Execution Effect (4/4) Fujirsu

Number of OoO resources necessary for ideal execution (for hiding operation latency)

	Number of A64FX resources	2FMA	3FMA	9FMA	
Number of necessary registers	32+96	39	40	46	As the gap from the number of resources increases, adequate scheduling becomes more difficult.
Number of RSEs	20x2	36	54	162	
Number of RSBRs	16	9	9	9	
Number of necessary FPs	40	18	18	18	
Number of necessary SPs	24	18	18	18	

Number of necessary registers = Constant + (2 * latency * number of pipelines) Number of necessary RSEs = Number of FMAs * latency * number of pipelines Number of necessary RSBRs = Latency * number of pipelines / number of unrolls Number of necessary FPs = Number of loads * latency * number of pipelines Number of necessary SPs = Number of stores * latency * number of pipelines

```
[2FMA]
 Do_{i} = 1, n
  Doi = 1.8
    y(i,j) = c0 + y(i,j-m)^{*}(c1 + y(i,j-m)^{*} c2)
  End Do
 End Do
[3FMA]
 Do i = 1, n
  Doi = 1, 8
    y(i,j) = c0 + y(i,j-m)^{*}(c1 + y(i,j-m)^{*} \neq c
           (c2 + y(i,j-m)* c3))
  End Do
 End Do
: (Omitted)
[9FMA]
 Do i = 1, n
  Do i = 1, 8
    y(i,j) = c0 + y(i,j-m)^*(c1 + y(i,j-m)^* \neq
           (c2 + y(i,j-m)^{*}(c3 + y(i,j-m)^{*})^{*}
           (c4 + y(i,j-m)^{*}(c5 + y(i,j-m)^{*})^{*}
           (c6 + y(i,j-m)^*(c7 + y(i,j-m)^* ¥)
           End Do
 End Do
```


Collaboration Between Out-of-Order Execution and Software Scheduling

- Out-of-order execution and software scheduling (SWPL) The performance of SWPL improves when used in collaboration with OoO.
- Loose scheduling and out-of-order execution While loose scheduling through SWPL results in a poorly-ordered instruction sequence, OoO prevents the deterioration width from increasing. As scheduling loosens, the number of loop iterations necessary for SWPL decreases, making it possible to use SWPL for the tuning of loops whose iteration counts are known.

Do j = 1, n Do i = 1, 8 $y(i,j) = c0 + y(i,j)^*(c1 + y(i,j)^* \neq (c2 + y(i,j)^*(c3 + y(i,j)^* \neq (c4 + y(i,j)^*(c5 + y(i,j)^* \neq (c6 + y(i,j)^*(c7 + y(i,j)^* \neq (c8 + y(i,j)^* c9))))))))$ End Do End Do

Execution time/necessary number of SWPL iterations (9fma SIMD)

Summary

The effect of out-of-order execution has been confirmed.

 As the link (number) of operations grows larger, software scheduling (SWPL) becomes more important.
 When SWPL is not supported for a loop, dividing the loop promotes SWPL.

Scheduling SWPL loosely on purpose may provide room for tuning for a loop whose iteration count is explicitly decided.

SIMD Width

- About the SIMD Width
- Performance of the Fixed-Length SIMD Width Specification
- Performance Impact of SIMD Width-Conscious Optimization (Tuning)
- Performance of the Variable-Length SIMD Specification
- [Reference] Changes in Power Based on the SIMD Width

About the SIMD Width

SIMD widths supported by the processor

The implementor can freely decide the vector length (SIMD width) of the ARM SVE in units of 128 bits from 128 bits to 2048 bits. The A64FX is implemented with the vector length being 512 bits.

- The A64FX supports the following vector lengths.
 - 512 bits
 - 256 bits
 - 128 bits
- Compiler options
 - -Ksimd_reg_size={ 128 | 256 | 512 | agnostic } The default is -Ksimd_reg_size=512.
 - simd_reg_size={ 128 | 256 | 512 }

Specify the vector register size of the SVE. The unit is the bit. At the time of compilation, optimization is performed, assuming that the value specified in this option is the vector register size of the SVE. Note that the generated executable program works normally only in a CPU architecture in which the SVE vector register whose size is equal to that specified in this option is implemented.

simd_reg_size=agnostic

Compilation is performed, without assuming any particular size as the vector register size of the SVE, to create an executable program that decides the SVE vector register size at the time of execution. This executable program can be executed, regardless of the vector register size of the SVE implemented in the CPU architecture.

Note that the execution performance may become lower than when the -Ksimd_reg_size= $\{128|256|512\}$ option is specified.

Performance of the Fixed-Length SIMD Width Specification

The change in performance is acceptable as long as the ratio does not exceed twice the original value when the SIMD width is 256 bits or four times when the SIMD width is 128 bits.

If the ratio is larger than that, it is possible that there is another problem.

	Floating-point	Memory	Exe SIMD width =	ecution time ra		
Program	operation peak ratio	throughput peak ratio	512 (Default)	256	SIMD width = 128	
Adventure.region1	26.98%	62.38%	1.00	1.67	3.25	
Adventure.region2	20.85%	0.02%	1.00	1.49	2.74	
FFB.callap_kernel2	39.12%	76.33%	1.00	1.02	1.19	
FFB.spmmv_vec8	28.38%	33.94%	1.00	0.99	5.11	
GAMERA.TIMER_COMP_MATVEC_IF	20.29%	8.90%	1.00	1.56	2.81	To be analyzed
GENESIS.Nonb15F(June)	7.73%	6.41%	1.00	1.78	3.38	on the next
GENESIS.Nonb15F(July)	8.04%	4.46%	1.00	1.45	2.07	page
GENESIS.PairList(June)	6.71%	7.96%	1.00	1.79	1.88	page
GENESIS.PairList(July)	4.76%	3.04%	1.00	1.08	1.14	
NICAM.Horizontal_Adv_flux	2.59%	1.94%	1.00	1.20	1.96	
NICAM.Horizontal_Adv_limiter	14.37%	41.61%	1.00	1.21	1.67	
NICAM.Radiation_adding	14.48%	47.57%	1.00	1.27	1.84	
NICAM.Radiation_dtrn31	9.64%	36.38%	1.00	1.24	1.81	
NICAM.Radiation_ptfit2	11.84%	64.94%	1.00	1.05	1.35	
NICAM.Vertical_Adv_limiter	6.10%	73.82%	1.00	0.97	1.01	
NICAM.diffusion	15.62%	43.44%	1.00	1.78	3.35	
NICAM.divdamp	33.16%	36.00%	1.00	1.56	2.81	
NICAM.vi_rhow_solver	15.49%	56.23%	1.00	1.34	2.00	
NICAM_nsw6.M3_mp_nsw6_OMP9	10.29%	68.25%	1.00	1.01	1.01	
NICAM_nsw6.M3_vadv1d_getflux_new	3.06%	54.72%	1.00	1.19	1.54	
streamlike_pattern1_check	9.38%	78.69%	1.00	1.00	1.01	
streamlike_pattern2_check	2.38%	78.10%	1.00	1.54	2.94	
streamlike_pattern3_check	4.15%	78.41%	1.00	0.99	1.00	
MD	78.42%	0.02%	1.00	2.70	3.87	
N-body	90.36%	0.00%	1.00	1.95	3.32	
(Geometric mean)			1.00	1.34	2.01	

Basically, there is no impact for a kernel with a memory bandwidth bottleneck.

Performance Impact of SIMD Width-Conscious Optimization (Tuning)

For FFB.spmmv_vec8

[SIMD widt	th 256 bits]	[SIMD width 128 bits]
182 183 184 185 186 187 1 p 191 1 192 2 p 193 2 p	<pre>!\$omp parallel default(none) private(IP,II,JJ,IP2) !\$omp&shared(NP,LIST,AX,A,X) !\$omp do !ocl nounroll !ocl swp <<c loop-information="" start="">>> <c <c="" [optimization]=""> SOFTWARE PIPELINING(IPC: 3.01, ITR: 48, MVE: 3, POL: S) <c> PREFETCH(HARD) Expected by compiler : <c> LIST, A, AX <c> Loop-information End >>> </c> DO IP=1,NP !ocl nounroll,loop_nofission <c> [OPTIMIZATION] SIMD(VL: 8) C DO JJ=1,8 D JJ=1,8 V DO JJ=1,8 V AX(JJ,IP)=AX(JJ,IP)+A(1,IP)*X(JJ,LIST(1,IP)) AX(JJ,IP)=AX(JJ,IP)+A(2,IP)*X(JJ,LIST(2,IP))</c></c></c></c></c></pre>	182 !\$omp parallel default(none) private(IP,II,JJ,IP2) 183 !\$omp&shared(NP,LIST,AX,A,X) 184 !\$omp do 185 !ocl nounroll 186 !ocl swp 187 1 p 191 1 191 1 191 !ocl nounroll,loop_nofission <<<
226 2 p	o v ENDDO	<<< Loop-information End >>>1922pvDO JJ=1,8
:		193 2 p v AX(JJ,IP)=AX(JJ,IP)+A(1,IP)*X(JJ,LIST(1,IP))
238 1 p 239		194 2 p v AX(JJ,IP)=AX(JJ,IP)+A(2,IP)*X(JJ,LIST(2,IP))
239 240	!\$omp end do !\$omp end parallel	226 2 p v ENDDO
240		
		238 1 p ENDDO
		239 !\$omp end do
		240 !\$omp end parallel

If optimization (tuning) is performed with the SIMD width in mind, a performance gap greater than expected may arise.

Performance of the Variable-Length SIMD Specification

Performance of the variable-length SIMD (-Ksimd_reg_size=agnostic)

(Ratio when the variable-length SIMD specification + system SIMD width of 512 is 1)

	-Ksimd_reg_size=512	-Ks	md_reg_size=agi	nostic	Executed SIMD width
Program	(Default)				
	SIMD width = 512	SIMD width = 512	SIMD width = 256	SIMD wi	
Adventure.region1	1.00	1.00	1.69	3.3	
Adventure.region2	1.02	1.00	1.62	2.9	
FFB.callap_kernel2	0.18	1.00	0.87	0.9	
FFB.spmmv_vec8	0.25	1.00	1.09	1.5	
GAMERA.TIMER_COMP_MATVEC_IF	0.85	1.00	1.64	2.8	
GENESIS.Nonb15F(June)	0.73	1.00	1.70	3.1	
GENESIS.Nonb15F(July)	0.82	1.00	1.31	1.94	4
GENESIS.PairList(June)	0.59	1.00	1.07	1.1	
GENESIS.PairList(July)	1.02	1.00	1.14	1.24	4
NICAM.Horizontal_Adv_flux	0.68	1.00	1.46	1.6	3
NICAM.Horizontal_Adv_limiter	0.96	1.00	1.20	1.7	3
NICAM.Radiation_adding	0.77	1.00	1.39	2.2	6
NICAM.Radiation_dtrn31	0.74	1.00	1.23	1.6	4
NICAM.Radiation_ptfit2	1.04	1.00	1.15	1.5	3
NICAM.Vertical_Adv_limiter	1.04	1.00	1.02	1.04	4
NICAM.diffusion	0.10	1.00	1.07	1.2	2
NICAM.divdamp	0.81	1.00	1.42	2.1	5
NICAM.vi_rhow_solver	1.01	1.00	1.28	1.8	9
NICAM_nsw6.M3_mp_nsw6_OMP9	1.00	1.00	1.01	1.0	7
NICAM_nsw6.M3_vadv1d_getflux_new	0.81	1.00	1.42	2.1	9
streamlike_pattern1_check	0.99	1.00	1.00	1.0	0
streamlike_pattern2_check	0.81	1.00	1.39	2.2	8
streamlike_pattern3_check	1.01	1.00	1.02	1.0	1
MD	0.98	1.00	2.71	3.8	8
N-body	0.96	1.00	1.81	3.4	6
(Geometric mean)	0.72	1.00	1.31	1.7	9

A value smaller than 1.0 indicates code whose performance lowers when the variable-length SIMD option is specified. If SIMD width-conscious optimization is possible, the performance may deteriorate.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

[Reference] Changes in Power Based on the SIMD Width

Power efficiency when the SIMD width changes from 512 bits to 128 bits

Program	Performance improvement ratio (SIMD width changed from 512 to 128) * The larger the value, the better the performance	Power ratio (SIMD width changed from 512 to 128) * The larger the value, the greater the power	Performance improvement ratio/power ratio * The smaller, the more efficient		
Adventure.region1	0.80	0.71	0.88		
Adventure.region2	0.43	0.88	2.04		
FFB.callap_kernel2	0.83	0.93	1.12		
FFB.spmmv_vec8	0.20	0.86	4.43		
GAMERA.TIMER_COMP_MATVEC_IF	0.36	0.93	2.62		
GENESIS.Nonb15F(June)	0.30	0.94	3.13		
GENESIS.Nonb15F(July)	0.50	1.02	2.03		
GENESIS.PairList(June)	0.91	1.01	1.12		
GENESIS.PairList(July)	0.86	0.90	1.05		
NICAM.Horizontal_Adv_flux	0.56	0.94	1.68		
NICAM.Horizontal_Adv_limiter	0.60	0.93	1.53		
NICAM.Radiation_adding	0.55	1.01	1.83		
NICAM.Radiation_dtrn31	0.55	0.84	1.52		
NICAM.Radiation_ptfit2	0.73	0.82	1.13		
NICAM.Vertical_Adv_limiter	0.97	0.96	0.99		
NICAM.diffusion	0.28	0.91	3.24		
NICAM.divdamp	0.37	0.88	2.38		
NICAM.vi_rhow_solver	0.50	1.03	2.05		
NICAM_nsw6.M3_mp_nsw6_OMP9	0.98		fficient 0.96		
NICAM_nsw6.M3_vadv1d_getflux_new	0.65	0.00	hen the 1.53		
streamlike_pattern1_check	1.00	1.01	vidth is 1.04		
streamlike_pattern2_check	0.34	0.87 5	12 2.56		
streamlike_pattern3_check	0.98	1.05	1.07		
(Geometric mean)	0.56	0.93	1.64		

Setting the SIMD width to 128 bits can slightly reduce power consumption. This cannot be said to be efficient, however, considering the performance drop rate.

Power Control

- About the Boost Mode
- About the Eco Mode
- Basic Kernel Power by Mode
- Performance Verification in Boost Mode
- Performance Verification in Eco Mode
- [Reference] Time-Series Power and Performance of an Actual Application (NICAM)

About the Boost Mode

About the boost mode

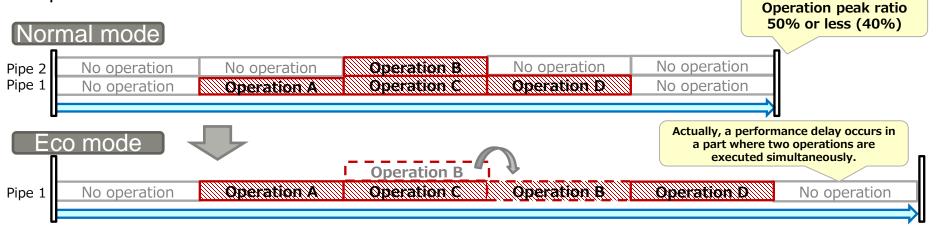
In normal mode, the A64FX operates at 2.0 GHz, taking into consideration the balance between performance and power efficiency. Allowing for cases where the application (job) needs to run as fast as possible, the boost mode is also provided in which the CPU operates at the frequency of 2.2 GHz. In boost mode, the CPU operates at a higher frequency than in normal mode, leading to a rise in its drive voltage.

In boost mode, the CPU operates at the frequency of 2.2 GHz, while the frequency of the HBM is the same as in normal mode. The following table shows the code characteristics for which improvement in performance can be expected in boost mode.

Code characteristics	Effect of the boost mode on performance
L1 bandwidth bottleneck	Can be expected
L2 bandwidth bottleneck	Can be expected
Memory bandwidth bottleneck	Cannot be expected
Operation bottleneck	Can be expected
Access latency bottleneck	Can be expected
Tofu communication bandwidth bottleneck	Cannot be expected
Tofu communication latency bottleneck	Can be partially expected (CPU operating part only)

About the Eco Mode (1/2)

FUĴĨTSU


About the eco mode

In eco mode, Power Knob, which uses only one FPU pipeline, is turned on, while the bottom-up power is reduced by half to only the power for one floating-point operation pipe. The eco mode is effective in reducing power consumption in the running and standby states although the peak floating-point operation performance declines.

Behavior of the operation pipeline in normal mode and eco mode

Since the operation pipeline is reduced to only one pipe in eco mode, the performance is certain to drop for code whose floating-point operation peak ratio exceeds 50%.

Even in cases where the floating-point operation peak ratio does not exceed 50%, the performance may be affected depending on the operation timing of the operation instruction.

About the Eco Mode (2/2)

- The following table shows the code characteristics for which an impact on (drop in) performance can be expected in eco mode.
- Power consumption is certainly reduced more in eco mode than in normal mode.

Code characteristics	Impact of the eco mode on performance
L1 bandwidth bottleneck	None
L2 bandwidth bottleneck	None
Memory bandwidth bottleneck	None
Operation bottleneck	Yes
Access latency bottleneck	None
Intra-node barrier bottleneck	None
Tofu communication bandwidth bottleneck	None
Tofu communication latency bottleneck	None

Basic Kernel Power by Mode (1/2): Verification Conditions

FUĴĨTSU

Verification conditions

Item	Details	Code to be measured 1 (Cache/memory bandwidth bottleneck)
Measurement pattern	 L1 cache bandwidth bottleneck code L2 cache bandwidth bottleneck code Memory bandwidth bottleneck code (three patterns, each with different array values) (1) All 0s (2) Serial numbers (0, 1, 2, 3, 4,) (3) 64-byte block of 0s (all bits set to 0) and 64-byte block of the minimum values (all bits set to 1) set alternately Latency bottleneck (L2 cache) code 	<pre>!\$omp parallel do j = 1, iter !\$omp do Do i = 1, n y(i)=x1(i) + c0 * x2(i) End Do !\$omp end do nowait enddo</pre>
Access range * bss area used	 L1 cache bandwidth bottleneck code: 48 KB (3/4 of the L1 size) * Per core L2 cache bandwidth bottleneck code: 4 MB (1/2 of the L2 size) * Per CMG Memory bandwidth bottleneck code: 240 MB (30 times the L2 size) * Per CMG Latency bottleneck code: 1.8 MB * Per CMG 	!\$omp end parallel Code to be measured 2 (latency bottleneck)
Array type	 Cache bandwidth bottleneck code: Double precision real type Memory bandwidth bottleneck code/latency bottleneck code: 8-byte integer type 	for (i = 0; i < rep; i++) {
Number of parallel measurements (processes and threads)	4 processes and 12 threads (1 process per CMG and 1 thread per core)	<pre>p = index2[0]; for (j = 0; j < NL; j++) { p = (uint64_t **)*p; }</pre>
Compilation option	-Kfast,openmp	ans = p; }

Verification results

			Busy rate Power											
	Floating-	Memory		(Normal mode, eco mode off)					mode (2.0 Hz)	Boost mode (2.2 GHz)				
Program	point operation peak ratio	operation		operation	throughput peak ratio	L1 busy rate	L2 busy rate	Memory busy rate * The hardware problem remains unsolved.	Floating- point PL busy rate	Integer PL busy rate	Eco mode off	Eco mode on	Eco mode off	Eco mode on
DGEMM (* Reference)	(94%)	-	(79%)	-	-	(94%)	-	177	125	206	143			
STREAM (*Reference)	-	(81%)	-	(92%)	(81%)	-	-	196	164	218	178			
L1 bandwidth bottleneck	21.58%	0.00%	93.68%	0.00%	0.00%	54.87%	33.86%	159	132	188	152			
L2 bandwidth bottleneck	7.55%	0.00%	98.09%	97.42%	0.00%	19.62%	9.67%	151	122	176	138			
Memory bandwidth bottleneck (1)	0.00%	82.50%	76.66%	91.97%	82.50%	6.42%	3.02%	169	143	194	155			
Memory bandwidth bottleneck (2)	0.00%	81.80%	75.91%	90.74%	81.80%	6.37%	2.99%	189	157	209	171			
Memory bandwidth bottleneck (3)	0.00%	82.50%	76.61%	91.90%	82.50%	6.42%	3.02%	199	171	219	186			
Latency bottleneck (L2 cache)	0.00%	0.00%	10.59%	12.67%	0.00%	0.00%	0.54%	121	88	139	99			

(1): As the array values, 0s are used.

(2): As the array values, serial numbers (0, 1, 2, 3, 4, ...) are used.

(3): As the array values, 0s (all bits set to 0) and minimum values (all bits set to 1) are used alternately in 64-byte units.

Value in parentheses: Reference value

It has been confirmed that a difference of about 20 to 30 W arises due to the difference in the initial value.

Note) The power values differ for each individual CPU. The values shown above should be considered relative values.

[Reference] Application Kernel Busy Rate and Power Value by Mode

Relationship between busy rate and power

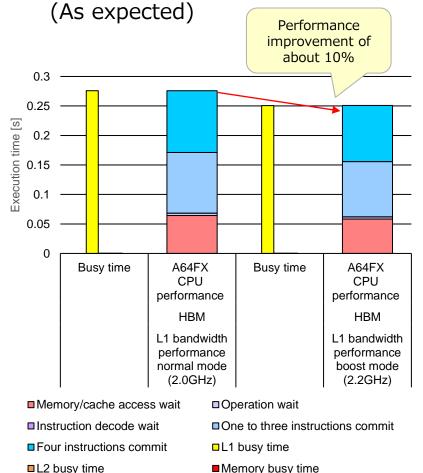
								Sort				
					Busy rate							
Single/	Floating-			(Nori			f)					mode
double	point	· · ·							(2.0	GHZ)	(2.2	GHZ)
		peak ratio	L1 busy	L2 busy	rate		-point	Integer PL	Eco mode	Eco mode	Eco mode	Eco mode
on	реак гацо		rate	rate	* The hardware				off	on	off	on
					unsolved.							
											-	179
												180
Single	38.8%	74.8%	57.8%	57.2%	74.8%			3.5%	194	140	227	157
Single	4.0%	85.1%	43.3%	78.8%	85.1%	5.49	%	4.2%	192	155	213	173
Single	13.8%	46.4%	72.3%	66.6%	46.4%	17.8	%	10.5%	191	160	221	178
Single	11.9%	84.5%	46.2%	81.0%	84.5%	10.6	%	1.5%	189	158	215	170
Single	10.5%	67.2%	41.4%	64.6%	67.2%	9.89	%	3.4%	187	153	209	170
Single	14.8%	54.3%	45.8%	53.5%	54.3%	14.6	%	Programs with higher				172
Single	13.2%	41.4%	53.3%	75.1%	41.4%	12.	_	-				
Double	16.5%	93.7%	45.1%	81.0%	93.7%	19.8	%				161	
Single	11.3%	88.2%	48.9%	84.8%	88.2%	9.19	<u>%</u> t	end to	appea	r highe	er in 🗌	156
Single	2.3%	86.0%	48.0%	80.9%	86.0%	4.19	%		the lis	st.		161
Single	3.0%	79.1%	37.1%	71.0%	79.1%	11.5	%	5.6%	1/1	138	191	150
Single	34.5%	37.0%	26.9%	26.3%	37.0%	49.7	%	4.3%	170	127	196	143
Single	27.0%	32.3%	52.8%	27.0%	32.3%	39.9	%	20.1%	166	131	185	150
Single	16.6%	49.0%	52.6%	46.5%	49.0%	41.3	%	4.8%	166	127	189	141
Single	8.6%	34.7%	37.2%	53.1%	34.7%	14.6	%	8.1%	162	127	189	144
Double	20.0%	0.0%	78.3%	47.1%	0.0%	50.7	%	4.3%	156	119	182	138
Single	17.4%	10.4%	50.6%	72.3%	10.4%	16.1	%	13.1%	156	120	179	137
Single	21.0%	10.4%	57.7%	9.8%	10.4%	36.9	%	15.0%	149	113	172	128
Single	26.3%	0.1%	41.3%	18.5%	0.1%	20.9	%	6.9%	149	113	172	129
Single	27.4%	0.1%	49.4%	25.8%	0.1%	24.5	%	7.0%	148	113	172	129
Single	7.4%	7.0%	51.3%	12.2%	7.0%	21.7	%	1.6%	142	112	165	126
Single	7.0%	9.1%	27.8%	6.8%	9.1%	18.9	%	29.9%	139	106	160	119
Single	7.9%	5.7%	29.3%	7.2%	5.7%	13.9	%	6.2%	133	101	151	114
Single	5.5%	4.2%	24.0%	6.3%	4.2%	14.9	%	31.9%	133	99	152	113
	Double Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single Single	double point precisi operation peak ratio Double 23.5% Single 6.3% Single 38.8% Single 13.8% Single 11.9% Single 11.9% Single 10.5% Single 14.8% Single 14.8% Single 14.8% Single 13.2% Double 16.5% Single 2.3% Single 2.3% Single 34.5% Single 34.5% Single 34.5% Single 34.5% Single 16.6% Single 16.6% Single 16.6% Single 17.4% Single 21.0% Single 27.4% Single 27.4% Single 7.4% Single 7.9%	double precisi on point operation peak ratio Memory throughput peak ratio Double 23.5% 54.7% Single 6.3% 77.4% Single 38.8% 74.8% Single 4.0% 85.1% Single 13.8% 46.4% Single 11.9% 84.5% Single 11.9% 84.5% Single 13.2% 41.4% Double 16.5% 93.7% Single 11.3% 88.2% Single 3.0% 79.1% Single 34.5% 37.0% Single 27.0% 32.3% Single 16.6% 49.0% Single 10.4% 50.0% Single 17.4% 10.4% Single 21.0% 0.1% Single 27.4% 0.1% Single 27.4% 0.1% Single 27.4% 0.1% Single 27.4% 0.1% Single	Memory on Memory operation peak ratio Ithroughput peak ratio Double 23.5% 54.7% 66.0% Single 6.3% 77.4% 53.9% Single 38.8% 74.8% 57.8% Single 38.8% 74.8% 57.8% Single 13.8% 46.4% 72.3% Single 11.9% 84.5% 46.2% Single 11.9% 84.5% 46.2% Single 10.5% 67.2% 41.4% Single 13.2% 41.4% 53.3% Double 16.5% 93.7% 45.1% Single 11.3% 88.2% 48.9% Single 3.0% 79.1% 37.1% Single 3.0% 79.1% 37.1% Single 3.0% 79.1% 37.1% Single 27.0% 32.3% 52.8% Single 27.0% 32.3% 52.6% Single 17.4% 10.4% 50.6%	Memory on Memory operation peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Double 23.5% 54.7% 66.0% 89.5% Single 6.3% 77.4% 53.9% 80.5% Single 38.8% 74.8% 57.8% 57.2% Single 13.8% 46.4% 72.3% 66.6% Single 13.8% 46.4% 72.3% 66.6% Single 11.9% 84.5% 46.2% 81.0% Single 10.5% 67.2% 41.4% 64.6% Single 13.2% 41.4% 53.3% 75.1% Double 16.5% 93.7% 45.1% 81.0% Single 11.3% 88.2% 48.9% 84.8% Single 2.3% 86.0% 48.0% 80.9% Single 3.0% 79.1% 37.1% 71.0% Single 34.5% 37.0% 26.9% 26.3% Single 27.0% 32.3% 52.6	Single/ double precisi on Floating- point operation peak ratio Memory throughput peak ratio L1 busy rate L2 pusy rate Memory busy rate Double 23.5% 54.7% 66.0% 89.5% 54.7% Single 6.3% 77.4% 53.9% 80.5% 77.4% Single 6.3% 77.4% 53.9% 80.5% 77.4% Single 38.8% 74.8% 57.8% 57.2% 74.8% Single 13.8% 46.4% 72.3% 66.6% 46.4% Single 11.9% 84.5% 46.2% 81.0% 84.5% Single 10.5% 67.2% 41.4% 64.6% 67.2% Single 11.3% 88.2% 48.9% 84.8% 88.2% Single 11.3% 88.2% 48.9% 84.8% 88.2% Single 11.3% 88.2% 48.9% 84.8% 88.2% Single 3.0% 79.1% 37.1% 71.0% 79.1% Single 3.0% <td>double precisi on point peak ratio Memory throughput peak ratio L1 busy rate Memory busy rate Floating PL busy unsolved. Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0 Single 4.0% 85.1% 43.3% 78.8% 85.1% 54.4% Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8 Single 11.9% 84.5% 46.2% 81.0% 84.5% 10.6 Single 11.9% 84.5% 45.8% 53.5% 54.3% 14.6 Single 13.2% 41.4% 53.3% 75.1% 41.4% 12. Double 16.5% 93.7% 45.1% 81.0% 93.7% 19.8 Single 21.3% 86.0% 48.9% 84.8% 88.2% 9.1%</td> <td>Single double precision on Floating- point operation peak ratio Memory throughput peak ratio Memory L1 busy rate Memory busy rate Floating-point Public memains unsolved. Double 23.5% 54.7% 66.0% 89.5% 54.7% Floating-point Public memains unsolved. Single 6.3% 77.4% 53.9% 80.5% 54.7% 6.8% Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% Single 11.9% 84.5% 46.2% 81.0% 84.5% 10.6% Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% Single 13.2% 41.4% 53.3% 75.1% 41.4% 12 Double 16.5% 93.7% 45.1% 81.0% 93.7% 19.8% Single 3.0% 79.1% 37.1% 71.0% 79.1% 11.5% Single 3.0% 52.8% 27.0%<td>Single/ double on Floating- point operation peak ratio Memory throughput peak ratio Memory trate Memory busy rate Floating-point The hardware problem remains Floating-point PL busy rate Integer PL busy rate Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% 4.2% Single 10.5% 67.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.4% 67.2% 9.8% 3.4% Single 11.3% 88.2% 81.0% 80.9% 86.0% 41.4% 12 memory Single 3.0% 79.1% <td< td=""><td>Single double point precisi on Floating- point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate polem remains polem Floating-point path Integer PL busy rate Eco mode off Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.8% 80.5% 11.4% 203 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 Single 11.9% 84.5% 45.3% 14.4% 12.5% 189 Single 13.2% 41.4% 63.3% 75.1% 41.4% 12.5% 14.6% 67.2% 9.8% 3.4% 187 Single 13.2% 44.8% 80.9% 86.6% 41.4% 12.5% The lais Single 13.2% 79</td><td>Busy rate (Normal mode, eco mode off) Corrects Normal mode (2.0 GHz) Single operation on Floating-point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate "memory unsolved. Floating-point pus rate "manowed. Integer PL busy rate Corrects Normal mode (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% 198 163 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 140 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% 3.4% 189 153 Single 11.3% 88.2% 48.9% 88.2% 14.8% 166 131 Single 2.3% 86.0% 41.4%</td><td>Floating- precisi on Floating- peak ratio Memory broughput peak ratio Memory throughput peak ratio Libusy rate Busy rate rate Floating-point problem remarked problem remarked. Integer PL busy rate Eco mode off Boost (2.0 GHz) Boost (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 226 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.6% 8.5% 198 163 222 Single 38.8% 74.8% 57.2% 74.8% 80.0% 3.5% 194 140 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 9.8% 3.4% 187 153 209 Single 13.2% 4</td></td<></td></td>	double precisi on point peak ratio Memory throughput peak ratio L1 busy rate Memory busy rate Floating PL busy unsolved. Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0 Single 4.0% 85.1% 43.3% 78.8% 85.1% 54.4% Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8 Single 11.9% 84.5% 46.2% 81.0% 84.5% 10.6 Single 11.9% 84.5% 45.8% 53.5% 54.3% 14.6 Single 13.2% 41.4% 53.3% 75.1% 41.4% 12. Double 16.5% 93.7% 45.1% 81.0% 93.7% 19.8 Single 21.3% 86.0% 48.9% 84.8% 88.2% 9.1%	Single double precision on Floating- point operation peak ratio Memory throughput peak ratio Memory L1 busy rate Memory busy rate Floating-point Public memains unsolved. Double 23.5% 54.7% 66.0% 89.5% 54.7% Floating-point Public memains unsolved. Single 6.3% 77.4% 53.9% 80.5% 54.7% 6.8% Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% Single 11.9% 84.5% 46.2% 81.0% 84.5% 10.6% Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% Single 13.2% 41.4% 53.3% 75.1% 41.4% 12 Double 16.5% 93.7% 45.1% 81.0% 93.7% 19.8% Single 3.0% 79.1% 37.1% 71.0% 79.1% 11.5% Single 3.0% 52.8% 27.0% <td>Single/ double on Floating- point operation peak ratio Memory throughput peak ratio Memory trate Memory busy rate Floating-point The hardware problem remains Floating-point PL busy rate Integer PL busy rate Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% 4.2% Single 10.5% 67.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.4% 67.2% 9.8% 3.4% Single 11.3% 88.2% 81.0% 80.9% 86.0% 41.4% 12 memory Single 3.0% 79.1% <td< td=""><td>Single double point precisi on Floating- point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate polem remains polem Floating-point path Integer PL busy rate Eco mode off Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.8% 80.5% 11.4% 203 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 Single 11.9% 84.5% 45.3% 14.4% 12.5% 189 Single 13.2% 41.4% 63.3% 75.1% 41.4% 12.5% 14.6% 67.2% 9.8% 3.4% 187 Single 13.2% 44.8% 80.9% 86.6% 41.4% 12.5% The lais Single 13.2% 79</td><td>Busy rate (Normal mode, eco mode off) Corrects Normal mode (2.0 GHz) Single operation on Floating-point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate "memory unsolved. Floating-point pus rate "manowed. Integer PL busy rate Corrects Normal mode (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% 198 163 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 140 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% 3.4% 189 153 Single 11.3% 88.2% 48.9% 88.2% 14.8% 166 131 Single 2.3% 86.0% 41.4%</td><td>Floating- precisi on Floating- peak ratio Memory broughput peak ratio Memory throughput peak ratio Libusy rate Busy rate rate Floating-point problem remarked problem remarked. Integer PL busy rate Eco mode off Boost (2.0 GHz) Boost (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 226 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.6% 8.5% 198 163 222 Single 38.8% 74.8% 57.2% 74.8% 80.0% 3.5% 194 140 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 9.8% 3.4% 187 153 209 Single 13.2% 4</td></td<></td>	Single/ double on Floating- point operation peak ratio Memory throughput peak ratio Memory trate Memory busy rate Floating-point The hardware problem remains Floating-point PL busy rate Integer PL busy rate Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% Single 4.0% 85.1% 43.3% 78.8% 85.1% 5.4% 4.2% Single 10.5% 67.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.2% 81.0% 84.5% 10.6% 1.5% Single 11.3% 84.5% 46.4% 67.2% 9.8% 3.4% Single 11.3% 88.2% 81.0% 80.9% 86.0% 41.4% 12 memory Single 3.0% 79.1% <td< td=""><td>Single double point precisi on Floating- point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate polem remains polem Floating-point path Integer PL busy rate Eco mode off Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.8% 80.5% 11.4% 203 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 Single 11.9% 84.5% 45.3% 14.4% 12.5% 189 Single 13.2% 41.4% 63.3% 75.1% 41.4% 12.5% 14.6% 67.2% 9.8% 3.4% 187 Single 13.2% 44.8% 80.9% 86.6% 41.4% 12.5% The lais Single 13.2% 79</td><td>Busy rate (Normal mode, eco mode off) Corrects Normal mode (2.0 GHz) Single operation on Floating-point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate "memory unsolved. Floating-point pus rate "manowed. Integer PL busy rate Corrects Normal mode (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% 198 163 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 140 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% 3.4% 189 153 Single 11.3% 88.2% 48.9% 88.2% 14.8% 166 131 Single 2.3% 86.0% 41.4%</td><td>Floating- precisi on Floating- peak ratio Memory broughput peak ratio Memory throughput peak ratio Libusy rate Busy rate rate Floating-point problem remarked problem remarked. Integer PL busy rate Eco mode off Boost (2.0 GHz) Boost (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 226 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.6% 8.5% 198 163 222 Single 38.8% 74.8% 57.2% 74.8% 80.0% 3.5% 194 140 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 9.8% 3.4% 187 153 209 Single 13.2% 4</td></td<>	Single double point precisi on Floating- point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate polem remains polem Floating-point path Integer PL busy rate Eco mode off Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.8% 80.5% 11.4% 203 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 Single 11.9% 84.5% 45.3% 14.4% 12.5% 189 Single 13.2% 41.4% 63.3% 75.1% 41.4% 12.5% 14.6% 67.2% 9.8% 3.4% 187 Single 13.2% 44.8% 80.9% 86.6% 41.4% 12.5% The lais Single 13.2% 79	Busy rate (Normal mode, eco mode off) Corrects Normal mode (2.0 GHz) Single operation on Floating-point peak ratio Memory throughput peak ratio L1 busy rate L2 busy rate Memory busy rate "memory unsolved. Floating-point pus rate "manowed. Integer PL busy rate Corrects Normal mode (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 Single 6.3% 77.4% 53.9% 80.5% 77.4% 6.8% 8.5% 198 163 Single 38.8% 74.8% 57.8% 57.2% 74.8% 80.0% 3.5% 194 140 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 Single 10.5% 67.2% 41.4% 64.6% 67.2% 9.8% 3.4% 189 153 Single 11.3% 88.2% 48.9% 88.2% 14.8% 166 131 Single 2.3% 86.0% 41.4%	Floating- precisi on Floating- peak ratio Memory broughput peak ratio Memory throughput peak ratio Libusy rate Busy rate rate Floating-point problem remarked problem remarked. Integer PL busy rate Eco mode off Boost (2.0 GHz) Boost (2.0 GHz) Double 23.5% 54.7% 66.0% 89.5% 54.7% 54.3% 1.6% 203 158 226 Single 6.3% 77.4% 53.9% 80.5% 77.4% 68.6% 8.5% 198 163 222 Single 38.8% 74.8% 57.2% 74.8% 80.0% 3.5% 194 140 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 66.6% 46.4% 17.8% 10.5% 191 160 221 Single 13.8% 46.4% 72.3% 9.8% 3.4% 187 153 209 Single 13.2% 4

118 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Performance Verification in Boost Mode

- Boost Mode: Performance Verification Conditions by Code Characteristic
- Boost Mode: Basic Kernel Performance
- [Reference] Application Kernel Measurement Results

Boost Mode: Performance Verification Conditions by Code Characteristic


Measurement conditions

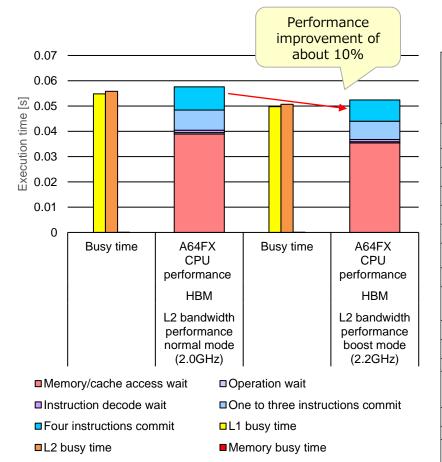
		Pattern				
Verification code	Basic operation kernel	 (1) Triad L1 cache access (L1 bandwidth performance) (2) Triad L2 cache access (L2 bandwidth performance) (3) Triad memory access (memory bandwidth performance) (4) DGEMM (operation performance) (5) L1 access latency code (operation/L1 access latency performance) 				
	Application kernel	28 kernels				
Number of cores to be	Basic operation kernel	(1) (5): 1 core execution, (2) (3) (4): 12 core execution (CMG0)				
measured Application kernel		12 core execution (CMG0)				
Compilation option	Basic operation kernel	 (1) (5) -Kfast (2) -Kfast,openmp -Kprefetch_sequential=soft ¥ -Kprefetch_cache_level=1 -Kprefetch_line=4 (3) -Kfast,openmp -Kzfill=18 ¥ -Kprefetch_sequential=soft -Kprefetch_line=9 -Kprefetch_line_L2=70 (4) -Kfast,openmp 				
	Application kernel	The options individually specified for each kernel are used as they are.				
Access range	Basic operation kernel	 (1) (5) Half the L1 cache size (32 KB) (2) Half the L2 cache size (4 MB) (3) 30 times the L2 cache size (240 MB) (4) TRANSA=N, TRANSB=N, M=23040, N=23040, K=640 				

Boost Mode: Basic Kernel Performance (1/5) Fujitsu

L1 bandwidth performance (1 core)

-> A performance improvement of about 10% has been confirmed.

Do j = 1, iter Do i = 1, n y(i)=x1(i) + c0 * x2(i) End Do End Do

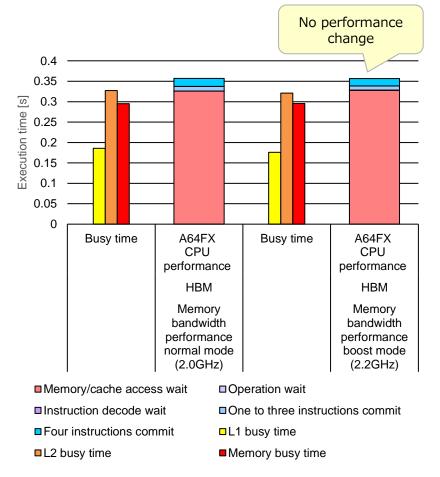

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal mode (2.0 GHz)	Boost mode (2.2 GHz)	(2.2GHz ÷2.0GHz)
Source code version	L1 bandwidth performance	L1 bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	1	1	
Aggregation thread number	0	0	
Execution time [s]	0.276	0.251	0.91
Total number of effective instructions	1.29.E+09	1.29.E+09	
GFLOPS (processes)	14.85	16.33	1.10
Memory throughput [GB/s/process]	0.00	0.00	
L1 busy rate/thread	99.95%	99.93%	
L2 busy rate/thread	0.00%	0.00%	
Memory busy rate/thread	0.00%	0.00%	
Floating-point pipeline busy rate/thread (FLA and FLB)	58.61% 34.38%	58.60% 34.37%	
L1 throughput [GB/s/thread]	178.1	196.0	1.10

Boost Mode: Basic Kernel Performance (2/5) Fujitsu

L2 bandwidth performance (1 CMG)

-> A performance improvement of about 10% has been confirmed.

(As expected)



 $!$omp parallel \\ Do j = 1, iter \\ !$omp do \\ Do i = 1, n \\ y(i)=x1(i) + c0 * x2(i) \\ End Do \\ !$omp end do nowait \\ End Do \\ !$omp end parallel }$

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal mode (2.0 GHz)	Boost mode (2.2 GHz)	(2.2GHz ÷2.0GHz)
Source code version	L2 bandwidth performance	L2 bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	0.058	0.052	0.91
Total number of effective instructions	1.35.E+09	1.35.E+09	
GFLOPS (processes)	60.63	66.67	1.10
Memory throughput [GB/s/process]	0.00	0.01	
L1 busy rate/thread	95.08%	94.97%	
L2 busy rate/thread	96.93%	96.82%	
Memory busy rate/thread	0.00%	0.00%	
Floating-point pipeline busy rate/thread (FLA and FLB)	20.73% 10.88%	20.70% 10.86%	
L1D miss count/thread	1.38E+07	1.38E+07	/
L1D miss demand rate/thread	1.00%	1.00%	/
L2 throughput [GB/s/process]	727.59	799.99	1.10

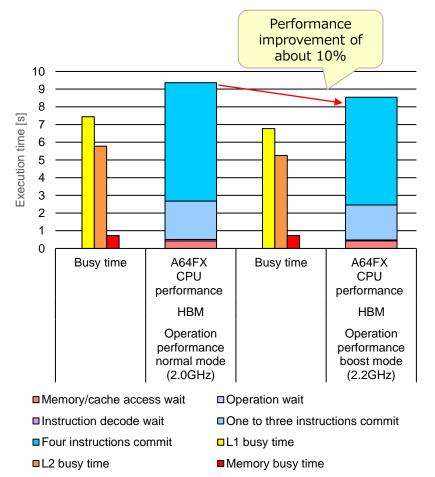
Boost Mode: Basic Kernel Performance (3/5) Fujitsu

- Memory bandwidth performance (with zfill/1 CMG)
 - -> No change in performance has been confirmed. (As expected)

	1.1
!\$omp parallel	
Do j = 1, iter	
!\$omp do	
Do i = 1, n	
y(i)=x1(i) + c0 * x2(i)	
End Do	
!\$omp end do nowait	
End Do	
!\$omp end parallel	
	Do j = 1, iter !\$omp do Do i = 1, n y(i)=x1(i) + c0 * x2(i) End Do !\$omp end do nowait End Do

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal mode (2.0 GHz)	Boost mode (2.2 GHz)	(2.2GHz ÷2.0GHz)
Source code version	Memory bandwidth performance	Memory bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	0.357	0.356	1.00
Total number of effective instructions	2.52.E+09	2.52.E+09	
GFLOPS (processes)	17.60	17.66	1.00
Memory throughput [GB/s/process]	211.50	212.18	1.00
L1 busy rate/thread	51.97%	49.32%	/
L2 busy rate/thread	91.62%	90.04%	
Memory busy rate/thread	82.62%	82.88%	
Floating-point pipeline busy rate/thread (FLA and FLB)	6.46% 2.73%	5.89% 2.48%	
L1D miss count/thread	2.46E+07	2.46E+07	
L1D miss demand rate/thread	0.07%	0.07%	
L2 miss count/thread	1.64E+07	1.64E+07	
L2 miss demand rate/thread	0.29%	0.29%	

123


DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

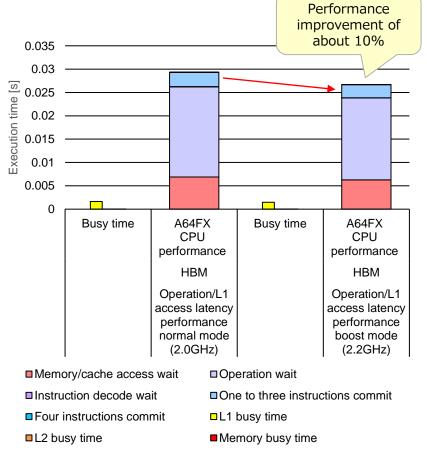
Boost Mode: Basic Kernel Performance (4/5) Fujitsu

Operation performance (DGEMM/1 CMG)

-> A performance improvement of about 10% has been confirmed.

(As expected)

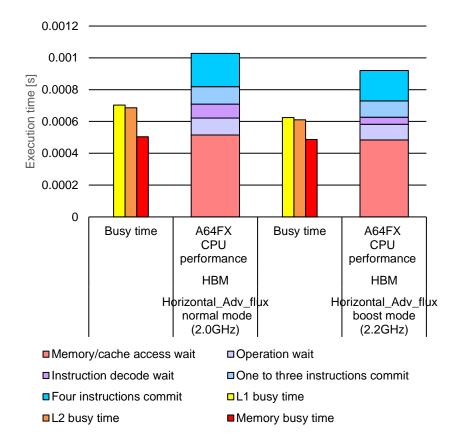
[DGEMM parameters			
TRANSA TRANSB	М	Ν	К	Number of calls
NN	23040	23040	640	10


	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal mode (2.0 GHz)	Boost mode (2.2 GHz)	(2.2GHz ÷2.0GHz)
Source code version	Operation performance	Operation performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	9.435	8.565	0.91
Total number of effective instructions	7.46.E+11	7.46.E+11	
GFLOPS (processes)	720.20	793.31	1.10
Memory throughput [GB/s/process]	20.02	21.91	
L1 busy rate/thread	79.40%	79.30%	
L2 busy rate/thread	61.62%	61.45%	
Memory busy rate/thread	7.82%	8.56%	
Floating-point pipeline busy rate/thread (FLA and FLB)	94.62% 94.38%	94.51% 94.28%	
L1D miss count/thread	1.80E+09	1.80E+09	
L1D miss demand rate/thread	0.45%	0.46%	
L2 miss count/thread	4.60E+07	4.61E+07	/
L2 miss demand rate/thread	52.38%	53.49%	/

Boost Mode: Basic Kernel Performance (5/5) Fujitsu

-> A performance improvement of about 10% has been confirmed.

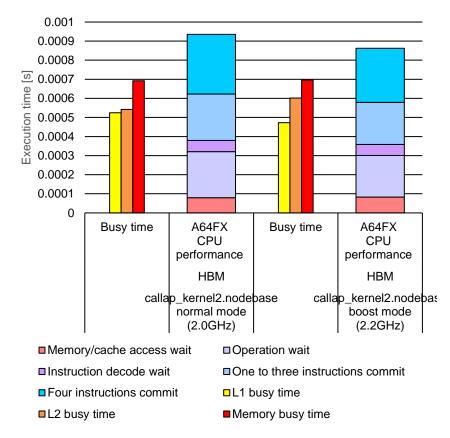
(As expected)


Do j = 1, n Do i = 1, 8	m=1
$y(i,j) = c0 + y(i,j-m)^*(c1 + y(i,j-m))^*(c1 + y(i,j-m)))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m)))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m)))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m)))^*(c1 + y(i,j-m))^*(c1 + y(i,j-m)))^*(c1 + y(i,j-m))))^*(c1 + y(i,j-m))))$,
(c2 + y(i,j-m)*(c3 + y(i,j-m (c4 + y(i,j-m)*(c5 + y(i,j-m	/
$(c6 + y(i,j-m)^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))^*(c7 + y(i,j-m)))^*(c7 + y(i,j-m))))^*(c7 + y(i,j-m))))^*(c7 + y(i,j-m))))$,
(c8 + y(i,j-m)* c9)))))))	
End Do	
End Do	

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal mode (2.0 GHz)	Boost mode (2.2 GHz)	(2.2GHz ÷2.0GHz)
Source code version		Operation/L1 access latency performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	1	1	
Aggregation thread number	0	0	
Execution time [s]	0.029	0.027	0.91
Total number of effective instructions	7.72.E+06	7.74.E+06	
GFLOPS (processes)	2.52	2.76	1.10
Memory throughput [GB/s/process]	0.00	0.00	
L1 busy rate/thread	5.55%	5.54%	
L2 busy rate/thread	0.01%	0.01%	
Memory busy rate/thread	0.00%	0.00%	
Floating-point pipeline busy rate/thread (FLA and FLB)	4.39% 4.36%	4.39% 4.36%	

[Reference] Application Kernel Measurement Results (1/2)

NICAM Horizontal_Adv_flux


* There is a PA measurement overhea	ad of about 50 to 80 μ .
-------------------------------------	------------------------------

	A64FX	A64FX
	CPU performance	CPU performance
	Normal mode	Boost mode
	(2.0 GHz)	(2.2 GHz)
Source code version	Horizontal_Adv_flux	Horizontal_Adv_flux
Floating-point precision	Single precision	Single precision
SIMD width	16	16
Number of threads	12	12
Aggregation thread number	0	0
Execution time [s]	0.001005	0.000929
Total number of effective instructions	2.43.E+07	2.43.E+07
GFLOPS (processes)	108.75	117.62
Memory throughput [GB/s/process]	123.04	133.74
L1 busy rate/thread	68.40%	67.87%
L2 busy rate/thread	66.77%	66.28%
Memory busy rate/thread	49.04%	52.90%
Floating-point pipeline busy rate/thread (FLA and FLB)	18.06% 14.00%	17.86% 13.85%
L1D miss count/thread	7.99E+04	8.04E+04
L1D miss demand rate/thread	20.81%	20.78%
L2 miss count/thread	2.18E+04	2.61E+04
L2 miss demand rate/thread	6.78%	7.92%

[Reference] Application Kernel Measurement Results (2/2)

FFB callap_kernel2.nodebase

* There is a PA measurement overhead of about 50 to 80 μ .

	A64FX	A64FX
	CPU performance	CPU performance
	Normal mode	Boost mode
	(2.0 GHz)	(2.2 GHz)
Source code version	callap_kernel2. nodebase	callap_kernel2. nodebase
Floating-point precision	Double precision	Double precision
SIMD width	8	8
Number of threads	12	12
Aggregation thread number	0	0
Execution time [s]	0.000939	0.000858
Total number of effective instructions	4.13.E+07	4.13.E+07
GFLOPS (processes)	282.65	309.34
Memory throughput [GB/s/process]	185.36	203.37
L1 busy rate/thread	56.05%	54.81%
L2 busy rate/thread	57.98%	69.72%
Memory busy rate/thread	74.01%	80.58%
Floating-point pipeline busy rate/thread (FLA and FLB)	76.90% 61.84%	74.75% 60.10%
L1D miss count/thread	5.09E+04	5.09E+04
L1D miss demand rate/thread	2.15%	2.13%
L2 miss count/thread	5.05E+04	5.05E+04
L2 miss demand rate/thread	0.89%	0.87%

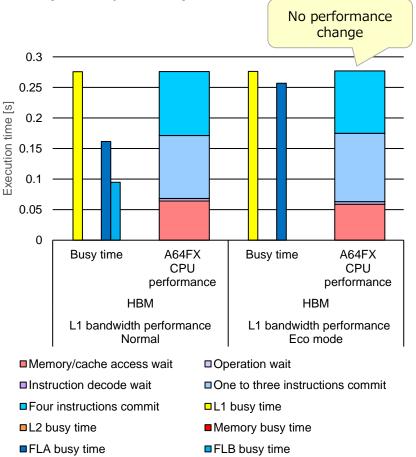
Performance Verification in Eco Mode

- Eco Mode: Performance Verification Conditions by Code Characteristic
- Eco Mode: Basic Kernel Performance
- [Reference] Impact of the Eco Mode on Application Kernel Performance
- [Reference] Application Kernel Measurement Results
- [Reference] Time-Series Power and Performance of an Actual Application (NICAM)

Eco Mode: Performance Verification Conditions by Code Characteristic

Measurement conditions

		Pattern
Verification code	Basic operation kernel	 (1) Triad L1 cache access (L1 bandwidth performance) (2) Triad L2 cache access (L2 bandwidth performance) (3) Triad memory access (memory bandwidth performance) (4) DGEMM (operation performance) (5) L1 access latency code (operation/L1 access latency performance)
	Application kernel	28 kernels
Number of cores to be	Basic operation kernel	(1) (5): 1 core execution, (2) (3) (4): 12 core execution (CMG0)
measured	Application kernel	12 core execution (CMG0)
Compilation option	Basic operation kernel	 (1) (5) -Kfast (2) -Kfast,openmp -Kprefetch_sequential=soft ¥ -Kprefetch_cache_level=1 -Kprefetch_line=4 (3) -Kfast,openmp -Kzfill=18 ¥ -Kprefetch_sequential=soft -Kprefetch_line=9 -Kprefetch_line_L2=70 (4) -Kfast,openmp
	Application kernel	The options individually specified for each kernel are used as they are.
Access range	Basic operation kernel	 (1) (5) Half the L1 cache size (32 KB) (2) Half the L2 cache size (4 MB) (3) 30 times the L2 cache size (240 MB) (4) TRANSA=N, TRANSB=N, M=23040, N=23040, K=640

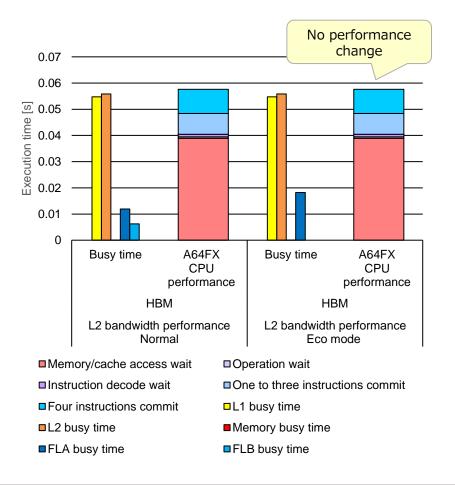

Eco Mode: Basic Kernel Performance (1/5)

L1 bandwidth performance (1 core)

-> No impact on performance has been confirmed.

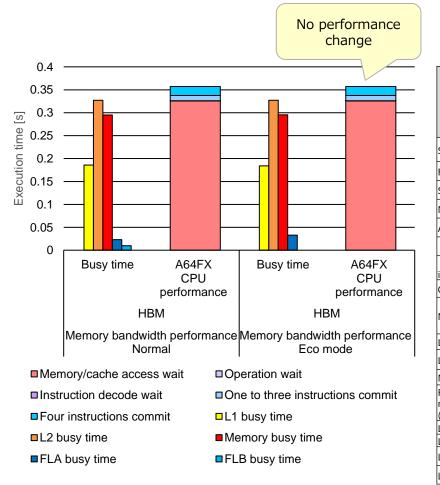
(As expected)

Do j = 1, iter Do i = 1, n y(i)=x1(i) + c0 * x2(i) End Do End Do


	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal	Eco mode	(Eco mode ÷ normal)
Source code version	L1 bandwidth performance	L1 bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	1	1	
Aggregation thread number	0	0	
Execution time [s]	0.276	0.277	1.00
Total number of effective instructions	1.29.E+09	1.29.E+09	
GFLOPS (processes)	14.85	14.78	1.00
Memory throughput [GB/s/process]	0.00	0.00	
L1 busy rate/thread	99.95%	99.75%	
L2 busy rate/thread	0.00%	0.00%	
Memory busy rate/thread	0.00%	0.00%	
Floating-point pipeline busy rate/thread (FLA and FLB)	58.61% 34.38%	92.74% 0.00%	
L1 throughput [GB/s/thread]	178.1	177.4	1.00

Eco Mode: Basic Kernel Performance (2/5)

-> No impact on performance has been confirmed. (As expected)

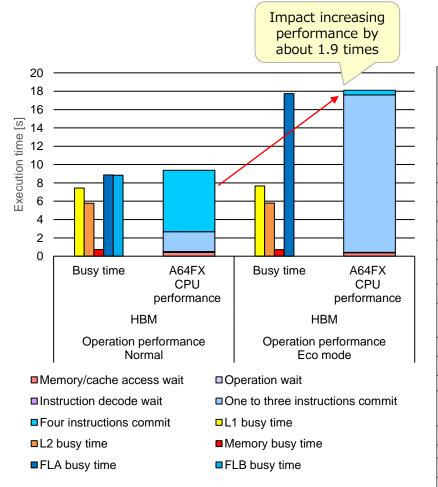


!\$omp parallel
Do j = 1, iter
!\$omp do
Do i = 1, n
y(i)=x1(i) + c0 * x2(i)
End Do
!\$omp end do nowait
End Do
!\$omp end parallel

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal	Eco mode	(Eco mode ÷ normal)
Source code version	L2 bandwidth performance	L2 bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	0.058	0.058	1.00
Total number of effective instructions	1.35.E+09	1.35.E+09	
GFLOPS (processes)	60.63	60.68	1.00
Memory throughput [GB/s/process]	0.00	0.00	
L1 busy rate/thread	95.08%	95.00%	
L2 busy rate/thread	96.93%	96.87%	
Memory busy rate/thread	0.00%	0.00%] /
Floating-point pipeline busy rate/thread (FLA and FLB)	20.73% 10.88%	31.58% 0.00%	
L1D miss count/thread	1.38E+07	1.38E+07	/
L1D miss demand rate/thread	1.00%	1.01%	/
L2 throughput [GB/s/process]	727.59	728.15	1.00

Eco Mode: Basic Kernel Performance (3/5)

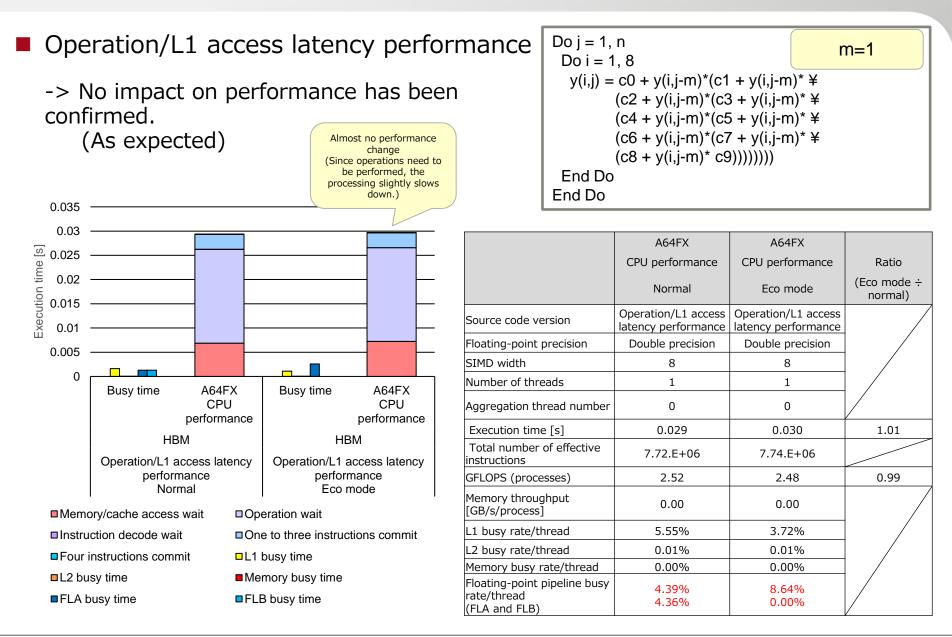
- Memory bandwidth performance (with zfill/1 CMG)
 - -> No change in performance has been confirmed. (As expected)


	A64FX	A64FX	
	CPU performance CPU performance		Ratio
	Normal	Eco mode	(Eco mode ÷ normal)
Source code version	Memory bandwidth performance	Memory bandwidth performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	0.357	0.357	1.00
Total number of effective instructions	2.52.E+09	2.52.E+09	
GFLOPS (processes)	17.60	17.62	1.00
Memory throughput [GB/s/process]	211.50	211.78	1.00
L1 busy rate/thread	51.97%	51.50%	
L2 busy rate/thread	91.62%	91.55%	
Memory busy rate/thread	82.62%	82.73%	
Floating-point pipeline busy rate/thread (FLA and FLB)	6.46% 2.73%	9.18% 0.00%	
L1D miss count/thread	2.46E+07	2.46E+07	
L1D miss demand rate/thread	0.07%	0.07%	
L2 miss count/thread	1.64E+07	1.64E+07	
L2 miss demand rate/thread	0.29%	0.29%	/

Eco Mode: Basic Kernel Performance (4/5)

Operation performance (DGEMM/1 CMG)

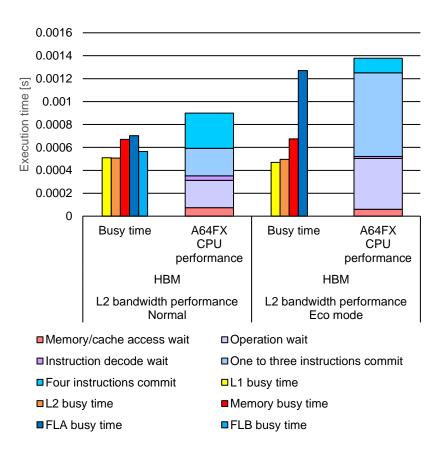
-> An impact increasing performance by about 1.9 times has been confirmed.



C	Number			
TRANSA TRANSB		Ν	к	of calls
NN	23040	23040	640	10

	A64FX	A64FX	
	CPU performance	CPU performance	Ratio
	Normal	Eco mode	(Eco mode ÷ normal)
Source code version	Operation performance	Operation performance	
Floating-point precision	Double precision	Double precision	
SIMD width	8	8	
Number of threads	12	12	
Aggregation thread number	0	0	
Execution time [s]	9.435	18.093	1.92
Total number of effective instructions	7.46.E+11	7.46.E+11	
GFLOPS (processes)	720.20	375.56	0.52
Memory throughput [GB/s/process]	20.02	10.25	0.51
L1 busy rate/thread	79.40%	42.33%	
L2 busy rate/thread	61.62%	32.06%	1 /
Memory busy rate/thread	7.82%	4.00%	
Floating-point pipeline busy rate/thread (FLA and FLB)	94.62% 94.38%	97.99% 0.00%	
L1D miss count/thread	1.80E+09	1.80E+09] /
L1D miss demand rate/thread	0.45%	0.45%	
L2 miss count/thread	4.60E+07	4.57E+07	
L2 miss demand rate/thread	52.38%	52.32%	/

133


Eco Mode: Basic Kernel Performance (5/5)

[Reference] Impact of the Eco Mode on Application Kernel Performance

FFB callap_kernel2.nodebase Normal mode and eco mode

	A64FX	A64FX
	CPU performance	CPU performance
	Normal	Eco mode
Source code version	callap_kernel2. nodebase	callap_kernel2. nodebase
Floating-point precision	Single precision	Single precision
SIMD width	8	8
Number of threads	12	12
Aggregation thread number	0	0
Execution time [s]	0.000912	0.001392
Total number of effective instructions	3.45.E+06	3.45.E+06
GFLOPS (processes)	291.05	190.80
Memory throughput [GB/s/process]	190.72	125.15
L1 busy rate/thread	56.76%	34.02%
L2 busy rate/thread	56.42%	35.99%
Memory busy rate/thread	74.54%	48.90%
Floating-point pipeline busy rate/thread (FLA and FLB)	78.13% 62.85%	92.14% 0.00%
L1D miss count/thread	5.10E+04	5.10E+04
L1D miss demand rate/thread	2.23%	2.30%
L2 miss count/thread	5.07E+04	5.07E+04
L2 miss demand rate/thread	1.05%	1.01%

 \ast Since the PA value measured with -Hmethod set to normal is used, the execution time is slightly longer.

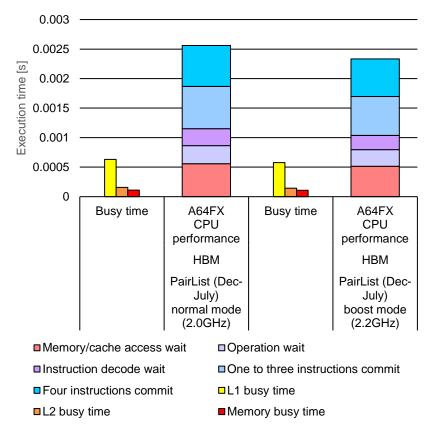
[Reference] Application Kernel Measurement Results Fujitsu

Source code version

Number of threads

Execution time [s]

SIMD width


instructions

Floating-point precision

Aggregation thread number

Total number of effective

GENESIS PairList (Dec-July)

GFLOPS (processes)	42.31	45.82
Memory throughput [GB/s/process]	10.84	11.61
L1 busy rate/thread	24.60%	24.67%
L2 busy rate/thread	6.14%	6.16%
Memory busy rate/thread	4.26%	4.56%
Floating-point pipeline busy rate/thread (FLA and FLB)	15.29% 13.22%	15.36% 13.29%
L1D miss count/thread	1.37E+04	1.36E+04
L1D miss demand rate/thread	73.13%	72.85%
L2 miss count/thread	6.28E+03	6.28E+03
L2 miss demand rate/thread	32.14%	30.22%

A64FX

CPU performance

Normal mode (2.0

GHz)

PairList (Dec-July)

Double precision

8

12

0

0.002542

1.00.E+08

A64FX

CPU performance Boost mode (2.2

GHz)

PairList (Dec-July)

Double precision

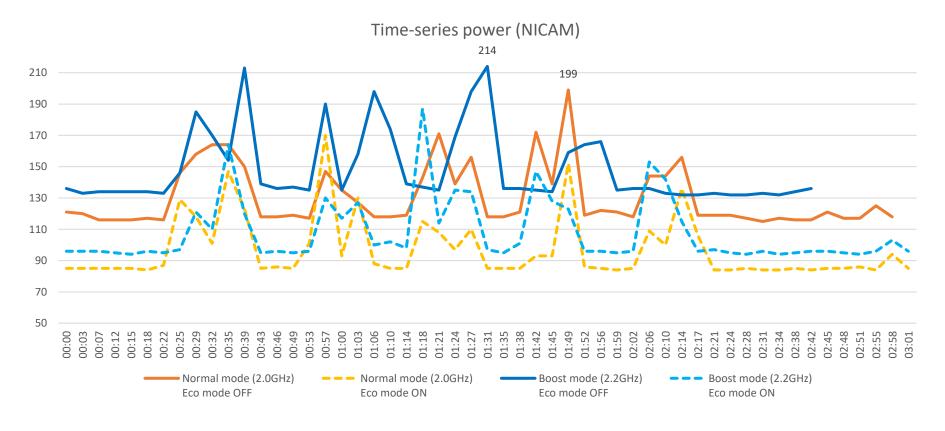
8

12

0

0.002347

1.00.E+08


* There is a PA measurement overhead of about 50 to 80 $\mu.$

[Reference] Time-Series Power and Performance of an Actual Application (NICAM)

Time-series power aggregation

The power value was measured at intervals of about three seconds (vertical axis: power value, horizontal axis: elapsed time). The July 2019 version of NICAM was used.

Basic Kernel Performance

Note) The performance values shown herein may vary slightly depending on the measurement software (compiler and library).

- Evaluation Environment and Conditions
- Basic Operation Kernel Performance
 - Arithmetic Operations/Square Root
 - Mathematical Function Performance
- Other Basic Operation Kernel Evaluations
- Access Performance

- Throughput Performance
- Performance Values by Data Type
- Performance Impact by Alignment Changes
- Memory Copy Performance
- Inter-CMG Performance Evaluation
- OpenMP Overhead Evaluation

Evaluation Conditions and Environment

- Evaluation Environment: Measurement System
- Evaluation Conditions: Evaluation Code
- Evaluation Conditions: Compiler Options

Evaluation Environment: Measurement System (1/2) Fujitsu

		К	FX100	Haswell (Xeon E5-2698 v3)	Skylake (Xeon Platinum 8168)	A64FX 1 node
Frequency [GHz]]	2.0	1.975	1.9 *1	1.9 *1	2.0
Number of CPUs	/node	1	1	2	2	1
Number of cores	s/node	8	32	32	48	48
Number of CMG	s/node		2			4
Memory size/no	de [GB]	16	32	256	384	32
	L1 [KiB/core]	32	64	32	32	64
Cache size	L2 [KiB/core]			256	1024	
LL [MiB/CPU]	6	12	40	33	8	
Cache latency	L1 [cycle]	4	5	4	4	5 (EX, short) 8 (FL, short) 11 (FL, long)
	L2 [cycle]			11	12	
	LL [cycle]	31	54	Up to 34	45	37 to 47
	L1 [B/cycle]	32	64	96	-	When hit: 128
Cache throughput	L2 [B/cycle]			64		
	LL [B/cycle]	16	32		-	42.7

*1: Set to operate at the fixed frequency of 1.9 GHz.

Evaluation Environment: Measurement System (2/2) Fujirsu

		К	FX100	Haswell	Skylake (Xeon Platinum 8168)	A64FX 1 node
Operation performance per nodeDouble precisi on		128	1011.2 (31.6)	972.8 (30.4)	2918.4 (60.8)	3,072.0 (64.0)
(Operation performance per core) [GFLOPS]	Single precisi on	(16)	2022.4 (63.2)	1945.6 (60.8)	5836.8 (121.6)	6144.0 (128.0)
Main memory latend	cy [ns]	86	160		80	150
Theoretical memory bandwidth per node (Theoretical memor bandwidth per CMG [GB/s]	y	64	480 (240)	136	255	1024 (256)

Evaluation Conditions (1/2): Evaluation Code

Evaluation conditions	Pattern
Evaluation code	 (1) on L1\$ Arithmetic operations/square root Mathematical function Numeric function Type conversion Access performance (contiguous access) L1\$ access Access performance (stride access) Access Performance (indirect access) Access performance (contiguous access) L2\$ access (3) Access performance (contiguous access) memory access
Number of cores to be measured	(1) 1 core execution(2) (3) 12 core execution (1 CMG)
Access range	(1) 3/4 of the L1 cache size (48 KB)(2) Half the L2 cache size (4 MB)(3) 3 times the L2 cache size (24 MB)

Evaluation Conditions (2/2): Compiler Options

Evaluation environment	Evaluation options
K (2.0GHz)	-Kfast -V -Nlst=t -Koptmsg=2 [Fortran only] -Cpp -Kautoobjstack,temparraystack [ilfunc evaluation only] -Kilfunc,nomfunc
FX100 (1.975GHz)	-Kfast -V -Nlst=t -Koptmsg=2 [Fortran only] -Cpp -Kautoobjstack,temparraystack [ilfunc evaluation only] -Kilfunc,nomfunc
PRIMERGY RX2530 M1 Haswell (FJ compiler) (1.9 GHz)	-Kfast,CORE_AVX2 -NIst=t -Koptmsg=2 [Fortran only] -Cpp -Kautoobjstack,temparraystack
PRIMERGY RX2540 M4 Skylake (Intel compiler) (1.9 GHz)	-O3 -no-prec-div -fp-model fast=2 -xCORE-AVX512 -qopt- zmm-usage=high
A64FX (2.0GHz)	-Kfast -V -Nlst=t -Koptmsg=2 [Fortran only] -Cpp -Kautoobjstack,temparraystack

Basic Operation Kernel Performance

- Arithmetic Operations/Square Root
- Mathematical Function Performance

Arithmetic Operations/Square Root Measurement Results (1/2)

Arithmetic operations/square root (real type)

		К		FX100		PRIMERG RX2530 M		PRIMERG RX2540 M			A64F>	<	
		Floating-point operation performance (GFLOPS)	Perfor manc e impro veme nt ratio	Operati on efficien cy (%)	SIMD conver sion effect								
	Addition	1.38	1.00	3.37	2.48	4.61	3.52	8.57	6.54	7.42	5.38	11.59	6.55
	Subtraction	1.38	1.00	3.40	2.49	4.62	3.52	8.46	6.46	7.42	5.38	11.59	6.55
	Multiplicatio n	1.38	1.00	3.40	2.50	4.62	3.53	7.51	5.73	7.42	5.38	11.59	6.70
Double precision	Product- sum operation	2.87	1.00	6.96	2.46	9.51	3.49	15.79	5.80	14.84	5.18	23.19	6.55
	Division	10.39	1.00	19.06	1.86	3.22	0.33	9.24	0.94	39.57	3.81	61.84	7.94
	Reciprocal	10.79	1.00	19.02	1.79	5.60	0.55	8.38	0.82	39.85	3.69	62.26	8.33
	Square root	11.90	1.00	21.63	1.84	4.84	0.43	8.14	0.72	34.78	2.92	54.34	12.75
	Addition	1.69	1.00	6.57	3.93	9.11	5.66	13.59	8.45	13.84	8.18	10.81	12.16
	Subtraction	1.68	1.00	6.62	3.99	9.11	5.71	13.78	8.64	13.84	8.24	10.81	12.16
	Multiplicatio n	1.69	1.00	6.62	3.96	9.09	5.65	13.49	8.39	13.84	8.18	10.81	12.16
Single precision	Product- sum operation	3.46	1.00	13.52	3.96	19.18	5.84	26.60	8.09	27.68	8.00	21.62	12.20
	Division	9.85	1.00	15.97	1.64	26.98	2.88	39.32	4.20	61.13	6.21	47.76	14.42
	Reciprocal	9.99	1.00	16.84	1.71	28.13	2.97	44.43	4.68	72.00	7.21	56.25	18.64
	Square root	9.61	1.00	17.15	1.81	8.41	0.92	49.29	5.40	52.07	5.42	40.68	23.83

Arithmetic Operations/Square Root Measurement Results (2/2)

Arithmetic operations (integer type)

		К		FX1	00	PRIME RX253		PRIME RX254			A64	FX	
		Integer operation performanc e (GOPS)	Performa nce improvem ent ratio	Integer operation performanc e (GOPS)	Perform ance improve ment ratio	Operatio n efficienc y (%)	SIMD conversi on effect						
	Addition	0.77	1.00	3.43	4.51	4.74	6.47	8.86	12.09	7.42	9.62	11.59	7.91
	Subtraction	0.77	1.00	3.43	4.51	4.74	6.48	8.72	11.90	7.42	9.62	11.59	7.91
8-byte	Multiplication	0.33	1.00	3.47	10.64	1.21	3.87	5.86	18.66	7.42	22.44	11.59	7.84
integer	Product-sum operation	0.66	1.00	7.01	10.69	2.61	4.13	9.21	14.61	14.84	22.36	23.19	13.91
	Division	0.18	1.00	0.18	1.00	0.07	0.42	0.31	1.78	0.09	0.50	0.14	0.58
	Addition	0.84	1.00	3.88	4.71	9.41	11.86	15.53	19.56	13.84	16.56	10.81	14.54
	Subtraction	0.84	1.00	3.88	4.71	9.42	11.86	15.21	19.16	13.84	16.56	10.81	14.69
4-byte	Multiplication	0.33	1.00	3.80	11.60	7.28	23.07	11.90	37.72	13.84	41.54	10.77	14.62
integer	Product-sum operation	0.66	1.00	7.64	11.65	14.27	22.61	25.98	41.17	27.68	41.67	21.62	26.08
	Division	0.18	1.00	0.18	1.00	0.23	1.35	1.57	9.11	0.28	1.54	0.22	1.82

Mathematical Function Measurement Results

Mathematical function

Performance improvement ratio compared with the K (Clock normalized)

											< norman	
		К		FX100		PRIMERO RX2530 N		PRIMERO RX2540 N		A	54FX	
		Floating	Perfo	Floating	Perfo	Floating	Perfo	Floating	Perfo	Floating	Douton	
		Floating- point	rman ce	Floating- point	rman ce	Floating- point	rman ce	Floating- point	rman ce	Floating- point	Perfor mance	SIMD
		operation	impr	operation	impr	operation	impr	operation	impr	operation	impro	conver sion
		performance (GFLOPS)	ovem ent ratio	performance (GFLOPS)	ovem ent ratio	performance (GFLOPS)	ovem ent ratio	performance (GFLOPS)	ovem ent ratio	performance (GFLOPS)	vemen t ratio	effect
	atan	8.71	1.00	13.25	1.54	4.36	0.53	18.80	2.27	15.41	1.77	10.85
	atan2	8.87	1.00	9.69	1.11	2.32	0.28	16.19	1.92	6.88	0.78	15.46
	COS	11.55	1.00	19.43	1.70	4.49	0.41	21.10	1.92	24.44	2.11	8.04
	ехр	7.93	1.00	15.22	1.94	4.05	0.54	22.55	2.99	18.04	2.27	10.70
Double	exp10	7.99	1.00	15.18	1.92	1.56	0.21	22.19	2.92	17.25	2.16	10.29
precision	log	6.97	1.00	7.87	1.14	3.14	0.47	16.01	2.42	11.80	1.69	8.09
	log10	7.62	1.00	9.45	1.26	2.36	0.33	20.70	2.86	11.84	1.55	8.82
	sin	11.54	1.00	19.47	1.71	5.42	0.49	22.21	2.03	24.17	2.10	7.98
	Exponenti ation	7.48	1.00	8.88	1.20	2.66	0.37	13.32	1.88	8.47	1.13	14.97
	atan	7.29	1.00	9.76	1.36	1.72	0.25	29.51	4.26	36.30	4.98	22.38
	atan2	8.00	1.00	6.76	0.86	1.28	0.17	28.70	3.78	25.67	3.21	22.10
	COS	10.98	1.00	16.37	1.51	1.30	0.13	39.92	3.83	48.93	4.46	15.88
	ехр	6.74	1.00	11.44	1.72	1.55	0.24	47.42	7.41	35.75	5.30	21.34
Single	exp10	7.37	1.00	11.65	1.60	1.52	0.22	43.10	6.15	37.59	5.10	23.35
precision	log	5.91	1.00	5.49	0.94	0.99	0.18	41.46	7.39	28.96	4.90	17.47
	log10	6.29	1.00	6.67	1.07	1.11	0.19	52.90	8.86	30.70	4.88	17.73
	sin	10.98	1.00	16.36	1.52	1.36	0.13	45.36	4.35	48.98	4.46	17.77
	Exponenti ation	7.30	1.00	6.55	0.91	1.02	0.15	25.56	3.69	17.30	2.37	17.95

Mathematical Function Comparison with Other CPUs

		K (GFLOPS)	FX100 (GFLOPS)	Skylake (GFLOPS)	A64FX (GFLOPS)	Compare d with K	Compar ed with FX100	Compared with Skylake
	atan	8.71	13.25	18.80	15.41	1.77	1.16	0.78
	atan2	8.87	9.69	16.19	6.88	0.78	0.71	0.40
	cos	11.55	19.43	21.10	24.44	2.11	1.26	1.10
	exp	7.93	15.22	22.55	18.04	2.27	1.19	0.76
Double	exp10	7.99	15.18	22.19	17.25	2.16	1.14	0.74
precision	log	6.97	7.87	16.01	11.80	1.69	1.50	0.70
	log10	7.62	9.45	20.70	11.84	1.55	1.25	0.54
	sin	11.54	19.47	22.21	24.17	2.10	1.24	1.03
	Exponentiatio n	7.48	8.88	13.32	8.47	1.13	0.95	0.60
	atan	7.29	9.76	29.51	36.30	4.98	3.72	1.17
	atan2	8.00	6.76	28.70	25.67	3.21	3.80	0.85
	cos	10.98	16.37	39.92	48.93	4.46	2.99	1.16
	exp	6.74	11.44	47.42	35.75	5.30	3.13	0.72
Single	exp10	7.37	11.65	43.10	37.59	5.10	3.23	0.83
precision	log	5.91	5.49	41.46	28.96	4.90	5.28	0.66
	log10	6.29	6.67	52.90	30.70	4.88	4.60	0.55
	sin	10.98	16.36	45.36	48.98	4.46	2.99	1.03
	Exponentiatio n	7.30	6.55	25.56	17.30	2.37	2.64	0.64
GEO	DMEAN					2.66	2.00	0.76
						There is roon of De	n for impro cember 20	

Other Basic Operation Kernel Evaluations

- Numeric Function Measurement Results
- Type Conversion Measurement Results

Numeric Function Measurement Results

Numeric function

		к		FX100)	PRIMER RX2530		PRIMER RX2540		А	64FX	
		Floating- point operation performanc e (Gflops)	Perfor mance impro veme nt ratio	Floating- point operation performanc e (Gflops)	Perfor mance impro veme nt ratio	Floating- point operation performanc e (Gflops)	Perfor mance impro veme nt ratio	Floating- point operation performanc e (Gflops)	Perform ance improve ment ratio	Floating- point operation performanc e (Gflops)	Perfor mance impro veme nt ratio	SIMD convers ion effect
	abs	1.71	1.00	4.82	2.85	6.93	4.26	13.38	8.23	9.78	5.72	7.08
Daubla	max	1.42	1.00	3.43	2.45	4.54	3.38	8.08	6.00	7.42	5.24	6.55
Double	min	1.42	1.00	3.43	2.45	4.57	3.39	8.21	6.10	7.42	5.24	6.55
precision	mod	1.27	1.00	9.29	7.40	5.37	4.44	18.70	15.47	6.04	4.76	9.38
	sign	1.58	1.00	3.45	3.32	2.46	2.81	7.07	8.07	5.85	6.35	6.37
	abs	2.02	1.00	5.70	2.86	14.01	7.30	20.59	10.72	17.16	8.49	10.73
Cingle	max	1.73	1.00	3.88	2.27	9.00	5.47	12.14	7.39	13.84	7.99	12.16
Single precision	min	1.74	1.00	3.83	2.23	9.06	5.48	12.09	7.31	13.84	7.95	12.16
	mod	2.06	1.00	9.63	4.73	13.79	7.05	27.86	14.24	11.11	5.39	18.67
	sign	1.58	1.00	3.90	2.49	4.99	3.32	13.44	8.94	11.64	7.36	12.81

Type Conversion Measurement Results

Type conversion

	К		FX100)	PRIME RX2530	-	PRIMER RX2540			A64FX	
	Integer operation performance (GOPS)	Perform ance improv ement ratio	Integer operation performance (GOPS)	Perform ance improv ement ratio	Integer operation performance (GOPS)	Performa nce improve ment ratio	Integer operation performance (GOPS)	Performa nce improve ment ratio	Integer operation performance (GOPS)	Performa nce improve ment ratio	SIMD conversio n effect
dble (single precision real number)	1.64	1.00	4.79	2.96	3.79	2.44	9.19	5.91	9.06	5.54	5.78
dble (4-byte integer)	1.29	1.00	4.78	3.76	4.59	3.75	9.74	7.96	9.06	7.04	13.10
real (double precision real number)	1.91	1.00	5.39	2.86	4.64	2.56	8.70	4.80	11.19	5.86	7.59
real (4-byte integer)	1.66	1.00	5.96	3.64	12.07	7.67	18.23	11.57	17.21	10.38	24.87
int (double precision real number)	1.11	1.00	5.79	5.26	4.78	4.53	8.78	8.31	11.19	10.06	27.01
int (single precision real number)	1.13	1.00	5.98	5.34	11.99	11.13	17.09	15.86	17.21	15.18	40.48
aint (double precision real number)	0.83	1.00	4.79	5.82	3.56	4.50	6.37	8.05	9.78	11.75	6.23
aint (single precision real number)	0.87	1.00	5.95	6.92	7.39	8.94	12.60	15.23	17.21	19.77	10.80
nint (double precision real number)	0.80	1.00	4.07	5.15	0.83	1.10	3.92	5.15	9.78	12.19	26.65
nint (single precision real number)	0.82	1.00	4.25	5.22	2.49	3.17	9.10	11.61	17.26	20.93	47.52
anint (double precision real number)	0.69	1.00	4.79	7.04	1.24	1.89	5.25	8.03	9.78	14.21	6.13
anint (single precision real number)	0.71	1.00	5.87	8.37	2.47	3.66	9.17	13.58	17.21	24.21	10.80

Access Performance

Basic Access Performance

Basic Access Performance (1/2)

Access performance (contiguous access): STREAM Triad case

L1 access

	К	K FX100			PRIMERGY RX2530 M1		PRIMERGY RX2540 M4		A64FX				
	Floating-point operation performance (Gflops)	Performa nce improve ment ratio	Operatio n efficienc y (%)	Operation									
$\begin{array}{l} \mbox{Contiguous SIMD load} \times \\ 2/ \\ \mbox{contiguous SIMD store} \times 1 \end{array}$	2.87	1.00	6.94	2.45	9.02	3.31	11.69	4.29	14.84	5.17	23.19	25.00	

L2 access One CMG evaluated for FX100 and A64FX; one CPU evaluated for the others

	К		FX100		PRIMERO RX2530 I		PRIMERG RX2540 N		A64FX		
	Throughput (GB/s)	Performan ce improvem ent ratio									
Contiguous SIMD load \times 2/ contiguous SIMD store \times 1	133.77	1.00	418.62	3.13	301.74	2.26	312.42	2.34	698.88	5.22	

Memory access One CMG evaluated for FX100 and A64FX; one CPU evaluated for the others

	К			PRIMERGY RX2530 M1		PRIMERGY RX2540 M4		A64FX			
	Throughput (GB/s)	Performa nce improve ment ratio	Throughput efficiency (%)								
Contiguous SIMD load \times 2/ contiguous SIMD store \times 1	34.89	1.00	103.52	2.97	43.30	1.24	77.20	2.21	150.68	4.32	78.48

Result without zfill The result with zfill was 210 GB/s or so.

Basic Access Performance (2/2)

Access performance (stride access) L1 access

		к		FX100		PRIMERO RX2530 I	-		A6	54FX	
		Floating-point operation performance (Gflops)	Perfor mance improv ement ratio	Floating-point operation performance (Gflops)	Perfor mance improv ement ratio	Floating-point operation performance (Gflops)	Perfor mance improv ement ratio	Floating-point operation performance (Gflops)	Perform ance improve ment ratio	Operation	Operation efficiency (ideal value) (%)
No load/	Jump width 2	0.88	1.00	1.36	1.56	1.87	2.23	1.60	1.82	2.50	
indirect SIMD store \times 1	Jump width 16	0.82	1.00	1.00	1.23	1.75	2.24	1.41	1.71	2.20	
Indirect SIMD load × 2/	Jump width 2	1.22	1.00	1.58	1.31	2.23	1.93	1.96	1.61	3.07	
indirect SIMD store $\times 1$	Jump width 16	0.85	1.00	1.24	1.48	2.25	2.79	0.90	1.06	1.40	
Indirect SIMD load × 2/	Jump width 2	1.82	1.00	2.41	1.34	2.27	1.32	4.72	2.60	7.38	10.00
contiguous SIMD store × 1	Jump width 16	0.91	1.00	2.25	2.49	2.01	2.32	3.05	3.34	4.76	5.56

Access performance (indirect access) L1 access

		К		FX100	I	PRIMER RX2530	-	PRIMERO RX2540	-		A64	FX	
		Floating- point operation performance (Gflops)	Perfor mance improv ement ratio	Floating- point operation performance (Gflops)	Perfor mance improv ement ratio	Floating- point operation performance (Gflops)	Perform ance improve ment ratio	Floating- point operation performance (Gflops)	Perfor mance improv ement ratio	Floating- point operation performance (Gflops)	Perform ance improve ment ratio	Operati on efficienc y (%)	Operation efficiency (ideal value) (%)
	Fixed value	0.98	1.00	1.82	1.88	1.82	1.95	0.15	0.16	1.56	1.59	2.44	
No load/ indirect SIMD store \times 1	Contiguous	0.82	1.00	1.58	1.94	1.79	2.30	0.16	0.21	1.53	1.86	2.39	
	Jump width 16	0.75	1.00	0.91	1.23	1.80	2.53	0.39	0.54	1.22	1.63	1.90	
	Fixed value	1.47	1.00	2.29	1.57	1.51	1.08	0.29	0.21	2.06	1.40	3.22	
Indirect SIMD load \times 2/ indirect SIMD store \times 1	Contiguous	1.05	1.00	1.84	1.78	1.48	1.49	0.34	0.34	2.01	1.92	3.14	
	Jump width 16	0.55	1.00	1.13	2.08	1.50	2.88	0.64	1.23	0.90	1.65	1.41	
	Fixed value	1.45	1.00	2.19	1.52	1.74	1.26	1.99	1.44	4.12	2.84	6.44	10.00
Indirect SIMD load \times 2/ contiguous SIMD store \times 1	Contiguous	1.12	1.00	2.18	1.97	1.75	1.64	1.95	1.83	4.12	3.67	6.44	10.00
	Jump width 16	0.98	1.00	1.72	1.77	1.38	1.47	1.59	1.70	2.73	2.77	4.26	5.56

Throughput Performance

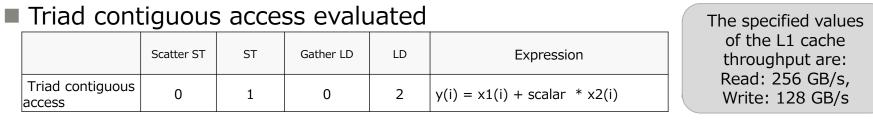
- Measurement Conditions
- Calculating Measurement Results for Comparison With Other <u>CPUs</u>
- L1 Cache Access
- L2 Cache Access
- Memory Access: Without zfill
- Memory Access: Access Across CMGs

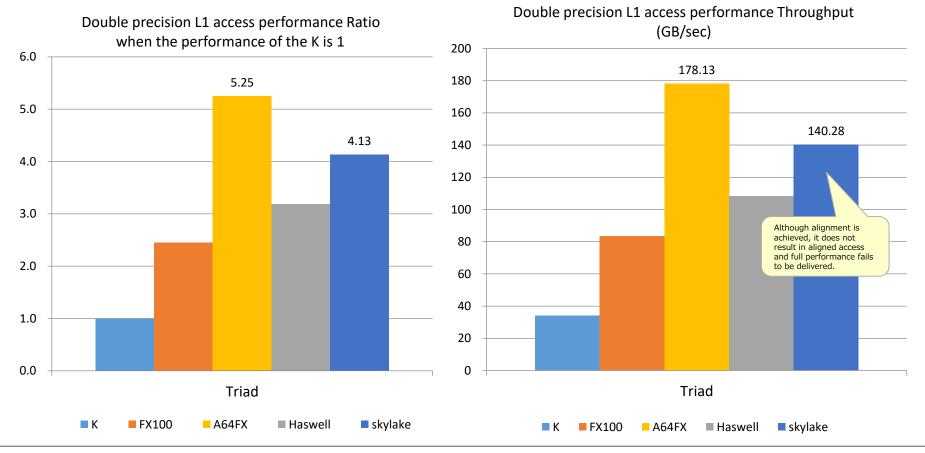
Measurement Conditions

Measurement conditions

	Dattorn	Verification code		
Measurement pattern	Pattern Three patterns - L1 cache access throughput measurement - L2 cache access throughput measurement - Memory access throughput measurement	!\$omp parallel Do j = 1, iter !\$omp do Do i = 1, n y(i)=x1(i) + c0 * x2(i)		
Cores to be measured	 L1 cache access throughput measurement > 1 core execution (CMG0 computing core) L2 cache/memory access throughput measuremen > 12 core execution (CMG0) 	End Do !\$omp end do nowait		
Compilation option	-Kfast * The prefetch and zfill options are described in the one necessary.	document as		
Туре	Double precision real type			
Access range	 bss is used. n (number of innermost loop iterations and array s follows. - L1 = 3/4 of the L1 cache size (2048 for the A64 - L2 = 1/2 of the L2 cache size (174720 for the A64 - Memory = 3 times the L2 cache size (1048512 * Each array is 256 byte aligned. 	4FX) A64FX)		
Number of outer loop iterations (iter)	- L1 = 1000000 - L2 = 10000 - Memory = 3000	Specifications (throughput) - L1 access: Read: 256 GB/s, Write: 128 GB/s - L2 access: 1024 GB/s - Memory access: 256 GB/s (1 CMG)		

Calculating Measurement Results for Comparison With Other CPUs

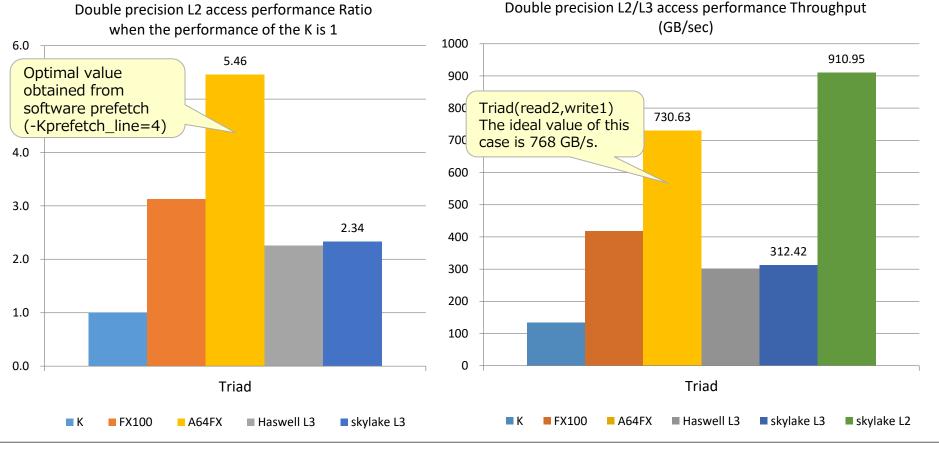



Calculating measurement results for comparison with other CPUs

Measurement results	
performance	Number of floating-point operations ÷ elapsed time ÷ 10 ⁹ The number of floating-point operations for PRIMERGY (Haswell, Skylake) is the same as that for the FX100.
performance	Number of integer operations ÷ elapsed time ÷ 10 ⁹ The number of integer operations is the same as the number of floating- point operations.
(GB/s)	Data transfer volume \div elapsed time \div 10 ⁹ As with the STREAM benchmark, the data transfer volume does not include that of the data read from those cache lines to which data is written.
Performance improvement ratio (when the performance of the K is 1)	Operation performance: Floating-point operation performance ÷ floating-point operation performance of the K Integer operation performance ÷ integer operation performance of the K Data access performance (throughput): Throughput ÷ throughput of the K The operation performance was calculated, with the CPU operating frequency changed to the same frequency as the K.

L1 Cache Access

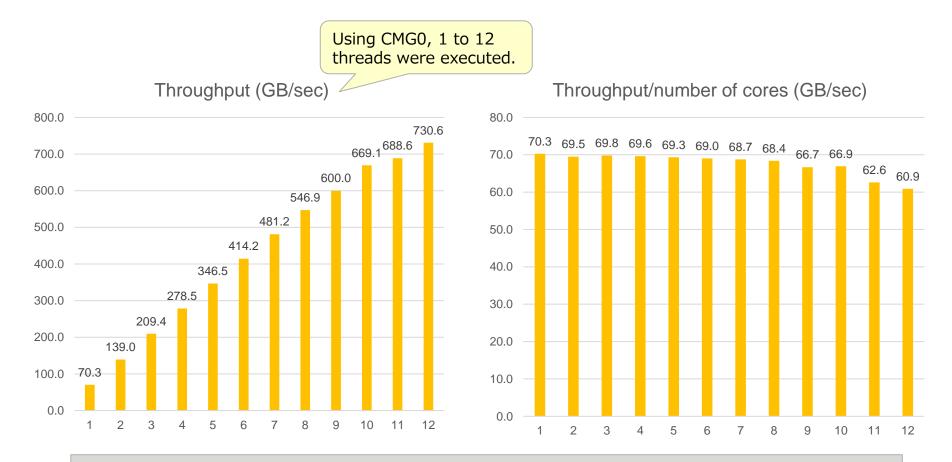
Ratio when the performance of the K is 1; throughput


L2 Cache Access (1/3)

Ratio when the performance of the K is 1; L2 throughput (per CMG)

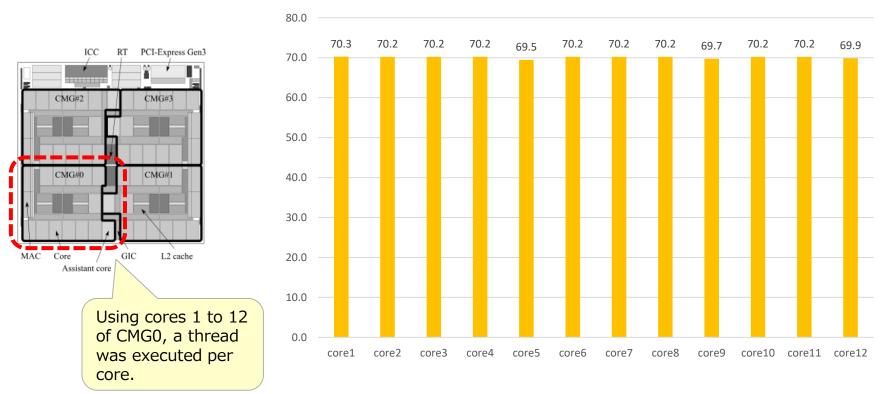
Triad contiguous access evaluated

	Scatter ST	ST	Gather LD	LD	Expression	
Triad contiguous access	0	1	0	2	y(i) = x1(i) + scalar * x2(i)	


The specified values of the L2 cache throughput are: 1024 GB/s

L2 Cache Access (2/3)

Number of executed threads and throughput



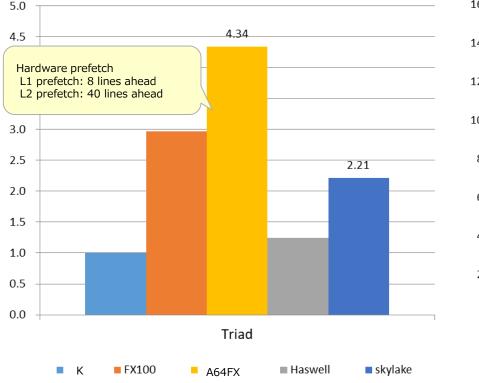
Almost all the performance of the CMG can be delivered through 10 threads (10 core) execution.

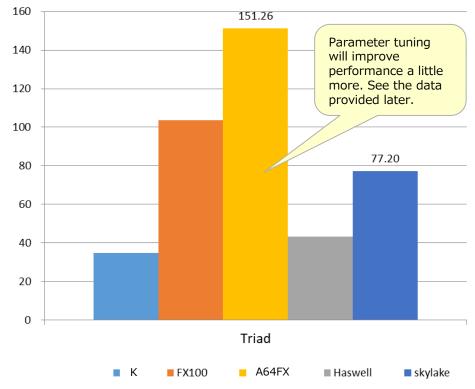
L2 Cache Access (3/3)

Difference in throughput due to the executed core

Throughput (GB/sec)

No significant difference in throughput due to the executed core was observed.


Memory Access: Without zfill (1/3)

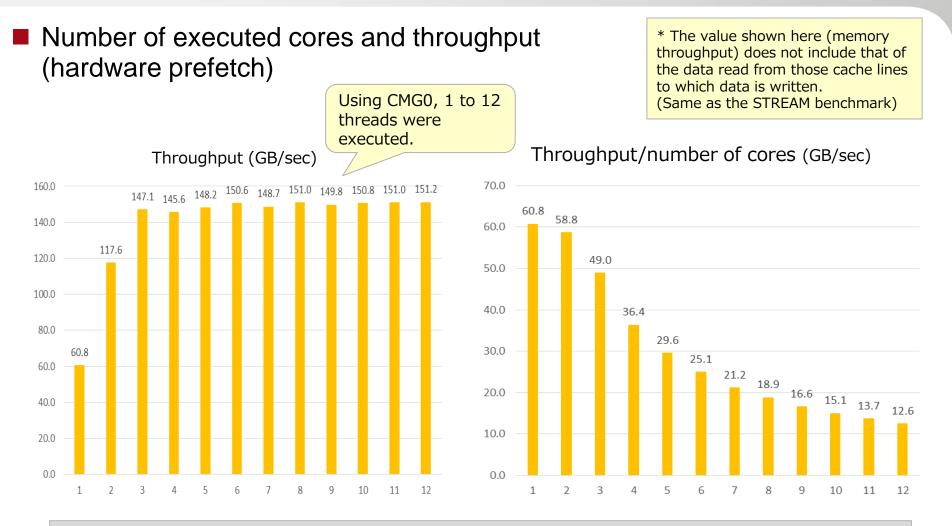

- Ratio when the performance of the K is 1; memory throughput (per CMG)
 - Triad contiguous access evaluated

					to which	h data is written.	
	Scatter ST	ST	Gather LD	LD			as the STREAM benchmark)
Triad contiguous access	0	1	0	2	y(i) = x1(i) + scalar * x2(i)		

Double precision memory access performance Ratio when the performance of the K is 1

Double precision memory access performance Throughput (GB/sec)

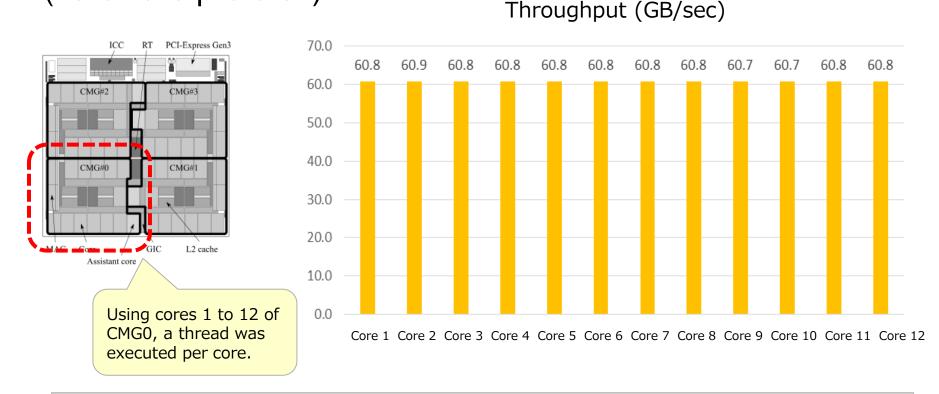
ouble precision memory access performance


* The value shown here (memory

throughput) does not include that of the data read from those cache lines

162

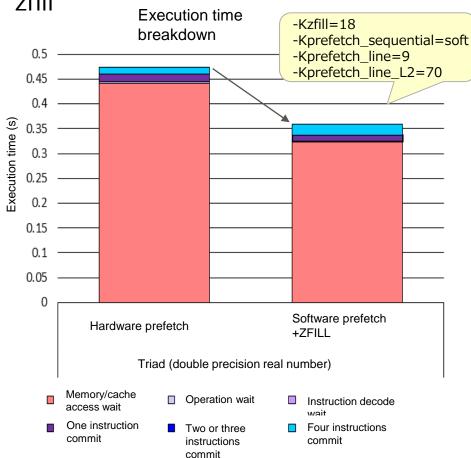
Memory Access: Without zfill (2/3)


Almost all the performance of the CMG can be delivered through 3 threads (3 core) execution.

Memory Access: Without zfill (3/3)

Difference in throughput due to the executed core (hardware prefetch)

* The value shown here (memory throughput) does not include that of the data read from those cache lines to which data is written. (Same as the STREAM benchmark)


No significant difference in throughput due to the executed core was observed.

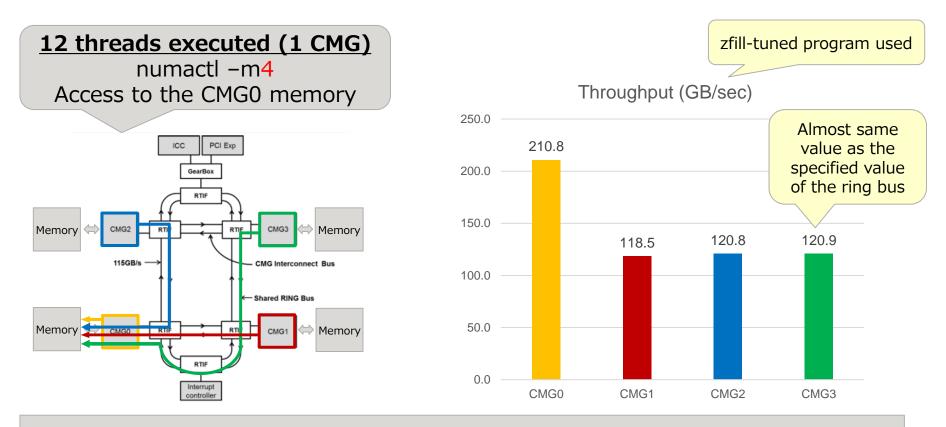
164

[Reference] Performance Improvement by zfill

Performance of software prefetch and zfill

PA values

	Hardware prefetch	Software prefetch + zfill
Aggregation thread number	0	0
Execution time [s]	0.474	0.359
Total number of effective instructions	2.16E+09	2.52E+09
GFLOPS	13.27	17.54
Memory throughput [GB/s]	222.5	210.8
L1 busy rate/thread	52.9%	55.09%
L2 busy rate	85.1%	94.39%
Memory busy rate	21.7%	20.58%
Floating-point pipeline busy rate/thread	FLA:4.90% FLB:2.80%	FLA:7.14% FLB:3.01%
L1 miss count/thread	2.46E+07	2.46E+07
L1 miss demand rate/thread	9.40%	0.08%
L2 miss count/thread	2.62E+07	1.64E+07
L2 miss demand rate/thread	12.21%	0.31%


* The evaluation was conducted with the access size (number of innermost loop iterations, array size) increased to 240 MB (by 10 times).

Performing zfill properly improves the performance up to 210.8 GB/s.

Memory Access: Access Across CMGs

Memory access across CMGs

While the performance almost the same as the specified value is achieved, the transfer rate for memory access across CMGs is about half as high. Care needs to be exercised when performing parallel processing (OpenMP or MPI).

Performance Values by Data Type

Contiguous Access

Gather Load / Scatter Store Access

Contiguous Access

- Evaluation Conditions
- Evaluation Results: L1 Cache Throughput
- Evaluation Results: L2 Cache Throughput
- Evaluation Results: Memory Throughput (With/Without zfill)

Contiguous Access Evaluation Conditions

- Throughput evaluation conditions
 - Evaluated access areas
 - L1 cache, L2 cache, memory (with/without zfill)

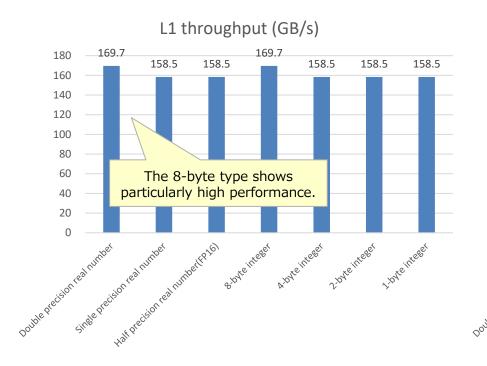
Type patterns

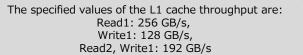
- Real type: Double precision real number, single precision real number, half precision real number (FP16)
- Integer type: 8-byte integer, 4-byte integer, 2-byte integer, 1-byte integer

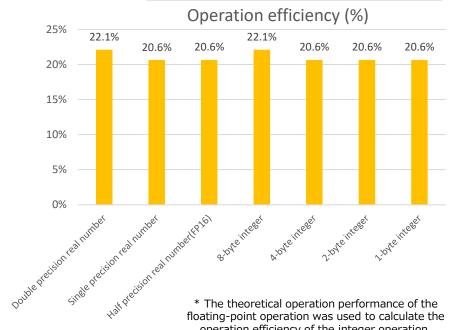
Data access pattern

- Contiguous SIMD load 2 + contiguous SIMD store 1
- The evaluation code is shown at the right.

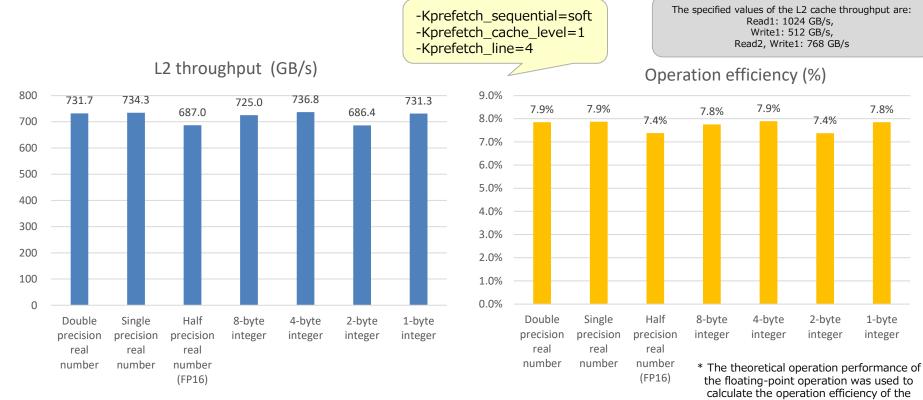
Evaluation code


Half precision real numbers were evaluated using an assembler manually modified based on the 2-byte integer pattern.


```
do k = 1, iter
do i = 1, n
y(i) = x1(i) + c * x2(i)
enddo
enddo
```


For other details, see below.

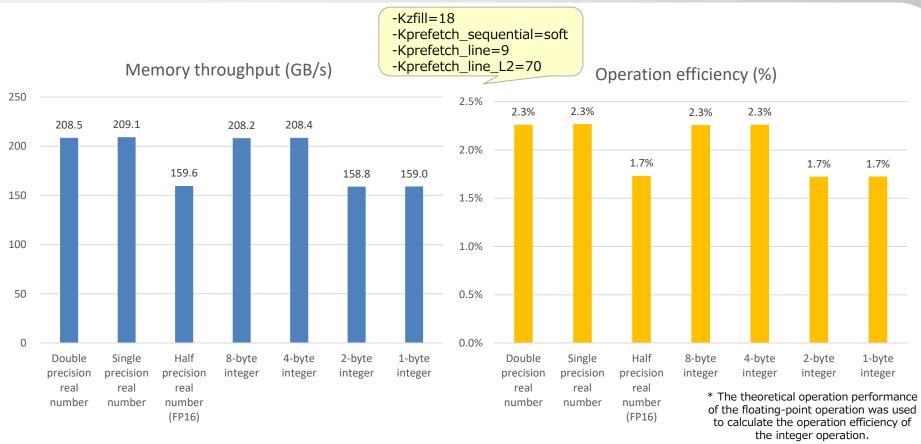
Evaluated access areas	Number of executed cores	n (array size/innermost loop)	iter (outer loop)
L1 cache	1	1/2 of the L1 cache size	1000000
L2 cache	12	1/2 of the L2 cache size	10000
Memory	12	30 times the L2 cache size	300



* The theoretical operation performance of the floating-point operation was used to calculate the operation efficiency of the integer operation.

Туре	Throughput (GB/s)	GFLOPS /GOPS	Operation performance ratio	L1 busy rate
Double precision real number	169.7	14.1	0.54	96.7%
Single precision real number	158.5	26.4	1.00	96.2%
Half precision real number (FP16)	158.5	52.8	2.00	97.4%
8-byte integer	169.7	14.1	0.54	96.7%
4-byte integer	158.5	26.4	1.00	97.4%
2-byte integer	158.5	52.8	2.00	97.4%
1-byte integer	158.5	105.7	4.00	97.4%

Contiguous Access Evaluation Results: L2 Cache Throughput

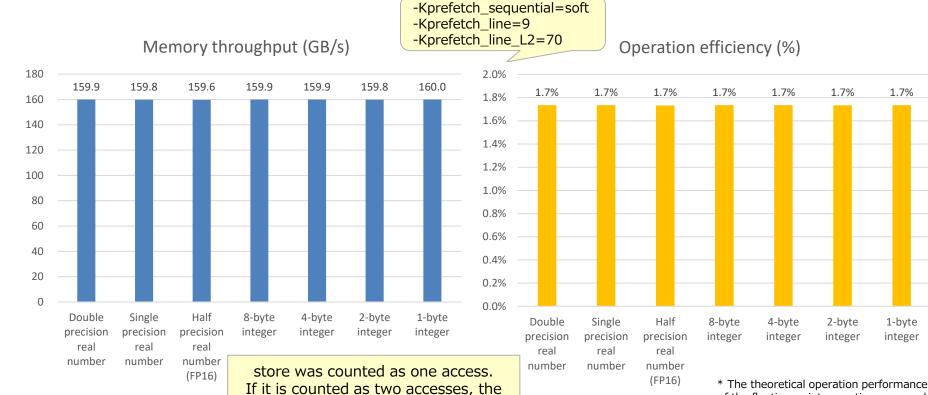


integer operation.

Туре	Throughput (GB/s)	GFLOPS /GOPS	L2 busy rate	L1D miss count
Double precision real number	731.7	60.3	96.5%	1.66E+08
Single precision real number	734.3	120.9	97.0%	1.66E+08
Half precision real number (FP16)	687.0	226.7	90.5%	1.65E+08
8-byte integer	725.0	59.6	96.5%	1.66E+08
4-byte integer	736.8	121.2	96.9%	1.66E+08
2-byte integer	686.4	226.5	90.5%	1.65E+08
1-byte integer	731.3	482.2	96.5%	1.66E+08

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Contiguous Access Evaluation Results: Memory Throughput (With zfill)



Туре	Throughput (GB/s)	GFLOPS /GOPS	L2 busy rate	Memory busy rate	L1D miss count	L2 miss count
Double precision real number	208.5	17.4	93.7%	81.7%	2.95E+08	1.97E+08
Single precision real number	209.1	34.8	93.2%	81.9%	2.95E+08	1.98E+08
Half precision real number (FP16)	159.6	53.2	84.8%	83.3%	2.95E+08	2.96E+08
8-byte integer	208.2	17.3	93.7%	81.6%	2.95E+08	1.98E+08
4-byte integer	208.4	34.7	93.2%	81.7%	2.95E+08	1.97E+08
2-byte integer	158.8	52.9	84.8%	83.0%	2.95E+08	2.96E+08
1-byte integer	159.0	106.0	84.8%	83.0%	2.95E+08	2.96E+08

172 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Contiguous Access Evaluation Results: Memory Throughput (Without zfill)

throughput becomes about 213 GB/s.

of the floating-point operation was used to calculate the operation efficiency of the integer operation.

Туре	Throughput	GFLOPS	L2	Memory	L1D	L2
Туре	(GB/s)	/GOPS	busy rate	busy rate	miss count	miss count
Double precision real number	159.9	13.3	84.4%	83.5%	2.95E+08	2.96E+08
Single precision real number	159.8	26.6	84.6%	83.5%	2.95E+08	2.96E+08
Half precision real number (FP16)	159.6	53.2	84.7%	83.4%	2.95E+08	2.96E+08
8-byte integer	159.9	13.3	84.5%	83.5%	2.95E+08	2.96E+08
4-byte integer	159.9	26.7	84.5%	83.5%	2.95E+08	2.96E+08
2-byte integer	159.8	53.3	84.4%	83.5%	2.95E+08	2.96E+08
1-byte integer	160.0	106.6	84.6%	83.5%	2.95E+08	2.96E+08

173 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

Gather Load / Scatter Store Access

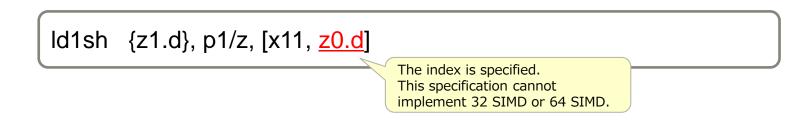
- ISA of Gather Load / Scatter Store
- Evaluation Conditions
- Evaluation Results: L1 Cache Throughput
- Evaluation Results: L2 Cache Throughput
- Evaluation Results: Memory Throughput (With/Without zfill)

ISA of Gather Load / Scatter Store

4-byte integer type and 8-byte integer type

The instructions were excluded from the evaluation because they were the same as those for real numbers (single precision and double precision).

4-byte integer, single precision real number (example: Gather load instruction)


ld1w {z1.s}, p0/z, [x11, z0.s, sxtw]

8-byte integer, double precision real number (example: Gather load instruction)

ld1d {z1.d}, p1/z, [x11, z0.d]

1-byte integer, 2-byte integer, half precision real number (FP16) SIMD conversion using all of the 512 bytes (1 byte = 64 SIMD/2 bytes = 32 SIMD) cannot be performed due to the instruction specifications of 1-byte integers, 2-byte integers, and half precision real numbers.

Currently, up to 8 SIMD conversion is supported (16 SIMD to be supported in the future).

Gather Load / Scatter Store Access Evaluation Conditions

FUÏTSU

Throughput evaluation conditions

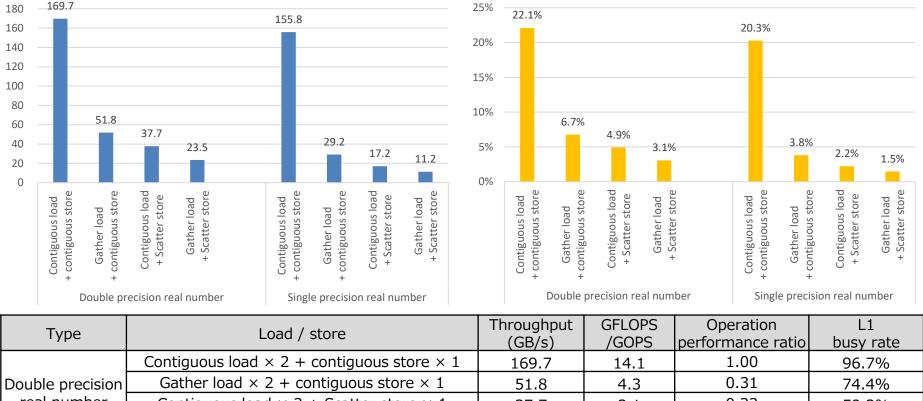
- Evaluated access areas
 - L1 cache, L2 cache, memory (with/without zfill)
- Type patterns
 - Real type: Double precision real number, single precision real number
- Data access pattern
 - Contiguous SIMD load 2 + contiguous SIMD store 1
 - Gather load 2 + contiguous SIMD store 1
 - Contiguous SIMD load 2 + Scatter store 1
 - Gather load 2 + Scatter store 1
- The evaluation code is shown at the right. (Evaluation code 2 is Gather load + Scatter store.)
- For other details, see below.

Evaluation code example 1

```
do k = 1, iter
  do i = 1, n
     y(i) = x1(i) + c * x2(i)
  enddo
enddo
```

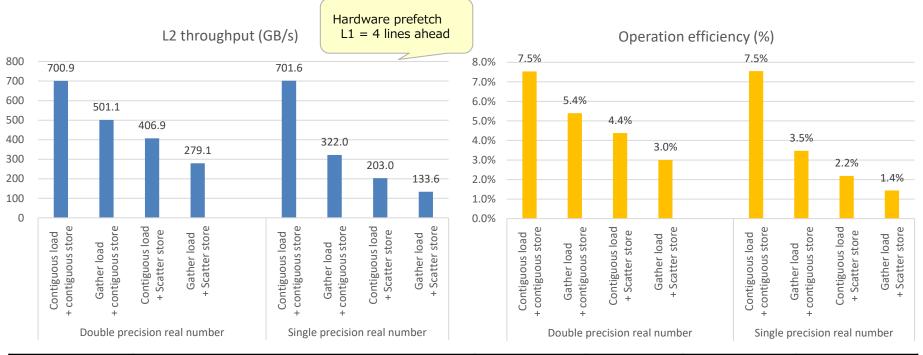
Evaluation code example 2

```
do k = 1, iter
  do i = 1, n
     y(1,i) = x1(1,i) + c * x2(1,i)
  enddo
enddo
```


Evaluated access areas	Number of executed cores	n (array size/innermost loop)	iter (outer loop)
L1 cache	1	1/2 of the L1 cache size	1000000
L2 cache	12	1/2 of the L2 cache size	10000
Memory	12	30 times the L2 cache size	300

Evaluation Results: L1 Cache Throughput

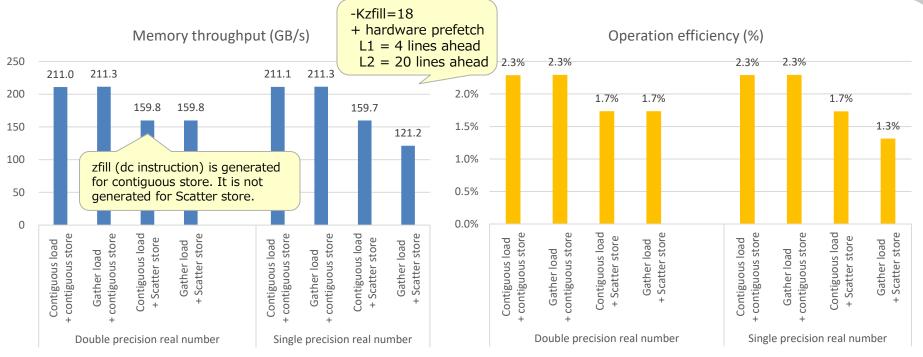
L1 throughput (GB/s)


Operation efficiency (%)

Double precision	Gather load $\times 2$ + contiguous store $\times 1$	51.8	4.3	0.31	74.4%
real number	Contiguous load \times 2 + Scatter store \times 1	37.7	3.1	0.22	59.3%
	Gather load \times 2 + Scatter store \times 1	23.5	2.0	0.14	55.0%
Single precision	Contiguous load \times 2 + contiguous store \times 1	155.8	26.0	1.00	96.2%
	Gather load \times 2 + contiguous store \times 1	29.2	4.9	0.19	73.9%
real number	Contiguous load \times 2 + Scatter store \times 1	17.2	2.9	0.11	46.0%
	Gather load \times 2 + Scatter store \times 1	11.2	1.9	0.07	49.8%

In cases including Gather / Scatter, there is no L1 throughput bottleneck.

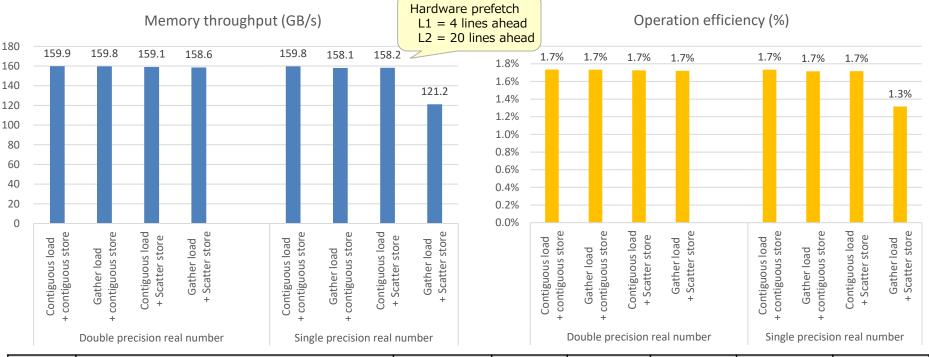
Evaluation Results: L2 Cache Throughput



Туре	Load / store	Throughput (GB/s)	GFLOPS /GOPS	L2 busy rate	L1D miss count
Double precisionGather load × 2 + contigu Contiguous load × 2 + Scatereal numberContiguous load × 2 + ScateGather load × 2 + Scate	Contiguous load \times 2 + contiguous store \times 1	700.9	57.9	97.6%	1.65E+08
	Gather load \times 2 + contiguous store \times 1	501.1	41.5	71.6%	1.65E+08
	Contiguous load \times 2 + Scatter store \times 1	406.9	33.7	59.0%	1.65E+08
	Gather load \times 2 + Scatter store \times 1	279.1	23.1	40.4%	1.65E+08
	Contiguous load \times 2 + contiguous store \times 1	701.6	115.9	97.6%	1.65E+08
Single precision	Gather load \times 2 + contiguous store \times 1	322.0	53.3	45.7%	1.65E+08
real number	Contiguous load \times 2 + Scatter store \times 1	203.0	33.6	29.2%	1.65E+08
	Gather load \times 2 + Scatter store \times 1	133.6	22.1	20.4%	1.65E+08

In cases including Gather / Scatter, there is no L2 throughput bottleneck.

Evaluation Results: Memory Throughput (With zfill)



Туре	Load / store	Throughput (GB/s)	GFLOPS /GOPS	L2 busy rate	Memory busy rate	L1D miss count	L2 miss count
Double precision Real number	Contiguous load \times 2 + contiguous store \times 1	211.0	17.6	94.1%	99.9%	2.95E+08	2.60E+08
	Gather load \times 2 + contiguous store \times 1	211.3	17.6	94.4%	95.6%	2.95E+08	2.43E+08
	Contiguous load \times 2 + Scatter store \times 1	159.8	13.3	85.1%	87.0%	2.95E+08	3.12E+08
	Gather load \times 2 + Scatter store \times 1	159.8	13.3	84.5%	86.8%	2.95E+08	3.12E+08
Single precision Real number	Contiguous load \times 2 + contiguous store \times 1	211.1	35.2	93.9%	99.8%	2.95E+08	2.59E+08
	Gather load \times 2 + contiguous store \times 1	211.3	35.2	94.0%	92.4%	2.95E+08	2.32E+08
	Contiguous load \times 2 + Scatter store \times 1	159.7	26.6	84.8%	86.0%	2.95E+08	3.08E+08
	Gather load \times 2 + Scatter store \times 1	121.2	20.2	48.4%	63.3%	2.95E+08	2.96E+08

Double precision real numbers create a memory throughput bottleneck.

Evaluation Results: Memory Throughput (Without zfill)

Туре	Load / store	Throughput	GFLOPS	L2	Memory	L1D	L2
туре		(GB/s)	/GOPS	busy rate	busy rate	miss count	miss count
Double	Contiguous load \times 2 + contiguous store \times 1	159.9	13.3	86.0%	95.8%	2.95E+08	3.54E+08
precision	Gather load \times 2 + contiguous store \times 1	159.8	13.3	85.2%	87.4%	2.95E+08	3.15E+08
Real	Contiguous load \times 2 + Scatter store \times 1	159.1	13.3	85.3%	86.5%	2.95E+08	3.12E+08
number	Gather load \times 2 + Scatter store \times 1	158.6	13.2	84.5%	86.1%	2.95E+08	3.12E+08
Single	Contiguous load \times 2 + contiguous store \times 1	159.8	26.6	85.9%	95.7%	2.95E+08	3.54E+08
precision	Gather load \times 2 + contiguous store \times 1	158.1	26.4	84.6%	85.7%	2.95E+08	3.11E+08
Real	Contiguous load \times 2 + Scatter store \times 1	158.2	26.4	84.5%	85.1%	2.95E+08	3.08E+08
number	Gather load \times 2 + Scatter store \times 1	121.2	20.2	48.4%	63.2%	2.95E+08	2.96E+08

Double precision real numbers create a memory throughput bottleneck in all access patterns.

Performance Impact by Alignment

- Measurement Conditions
- Measurement Results: Contiguous SIMD Load
- Measurement Results: Contiguous SIMD Store
- Measurement Results: Gather Load
- Measurement Results: Scatter Store
- Measurement Results: Structure Load (LD2 Instruction)
- Measurement Results: Structure Store (ST2 Instruction)

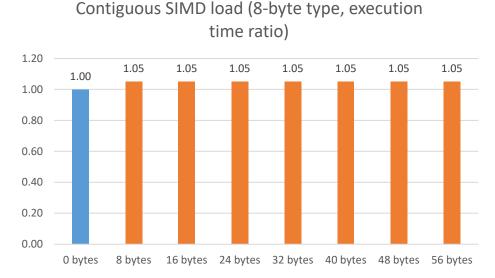
Measurement Conditions

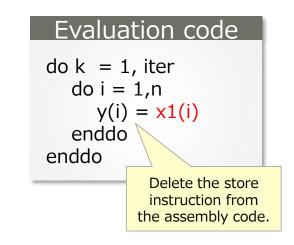
FUITSU

Evaluation overview

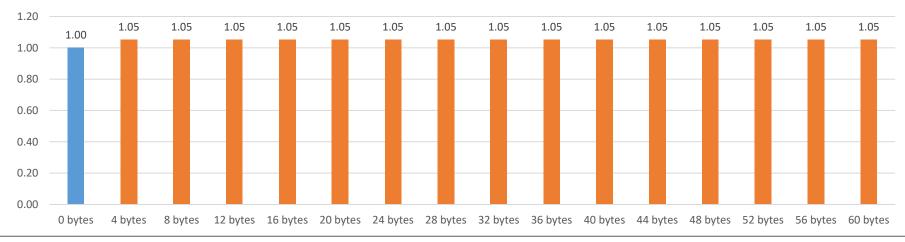
Impact by alignment changes is evaluated using the following data access operations.

- Contiguous SIMD load
- Contiguous SIMD store
- Evaluation conditions
 - The performance is evaluated by <u>accessing a 256-byte aligned array from bytes</u> <u>0 to 63</u>.
 - The evaluation data types are as follows.

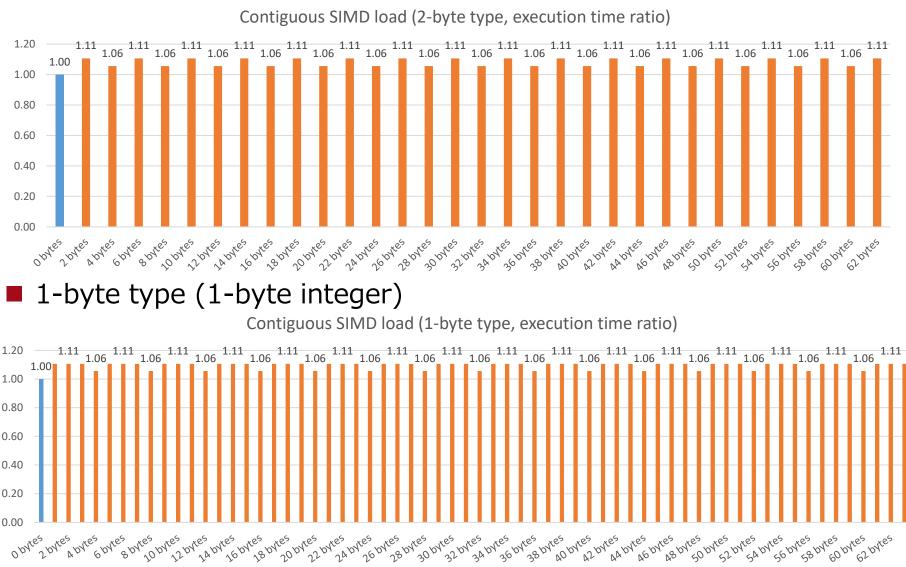

<u>8-byte type (double precision real number/8-byte integer)</u>, <u>4-byte type (single precision real number/4-byte integer)</u>, <u>2-byte type (half precision real number (FP16)/2-byte integer)</u>, <u>1-byte type (1-byte integer)</u>


- The evaluation code will be described later together with the evaluation results.
- The innermost loop (n) is evaluated using the array size and the number of iterations for accessing 1/2 of the L1 cache size. The outer loop (iter) is evaluated using 1000000.
- The evaluation is performed through 1 core execution (sequential execution).
- When the Multiple Structures instruction is evaluated, SWPL and loop unrolling are suppressed (out-of-order scheduling only).

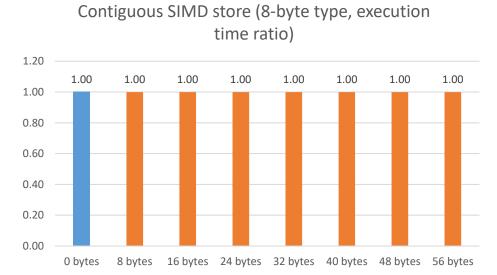
Measurement Results: Contiguous SIMD Load (1/2)



8-byte type (double precision real number/8-byte integer)


4-byte type (single precision real number/4-byte integer)

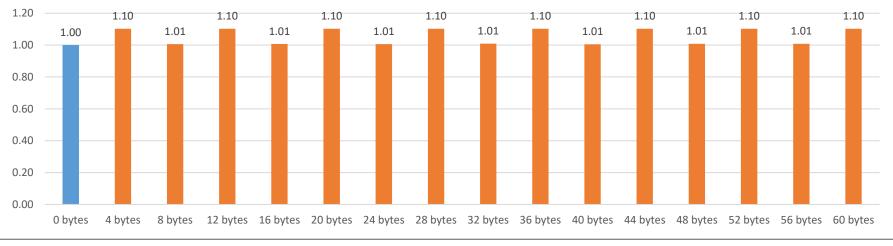
Contiguous SIMD load (4-byte type, execution time ratio)


Measurement Results: Contiguous SIMD Load (2/2) Fujirsu

2-byte type (half precision real number (FP16)/2-byte integer)

Measurement Results: Contiguous SIMD Store (1/2) Fujirsu

8-byte type (double precision real number/8-byte integer)



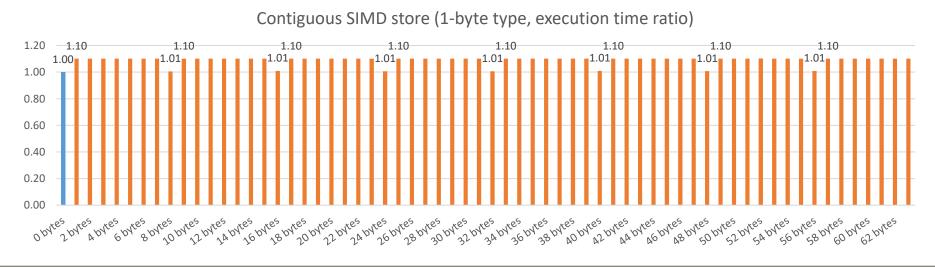
Evaluation code
do k = 1, iter
do i = 1, n

$$y(i) = x1(i)$$

enddo
enddo
Delete the load
instruction from
the assembly code.

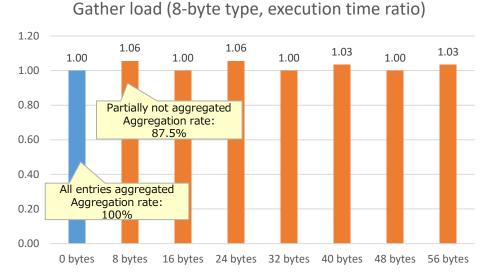
4-byte type (single precision real number/4-byte integer)

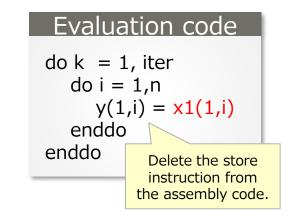
Contiguous SIMD store (4-byte type, execution time ratio)



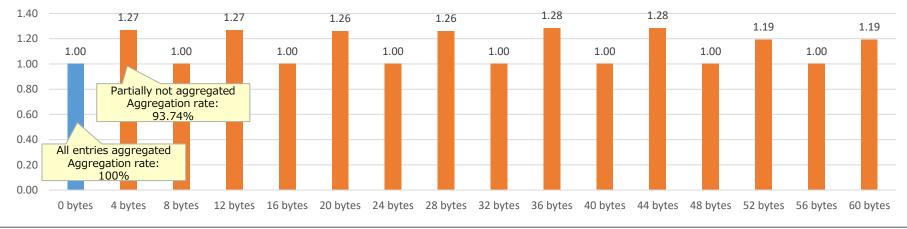
Measurement Results: Contiguous SIMD Store (2/2) Fujitsu

2-byte type (half precision real number)


1-byte type (1-byte integer)

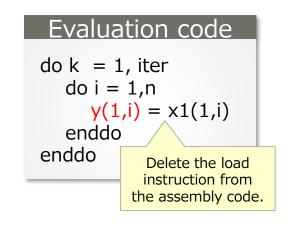


Measurement Results: Gather Load

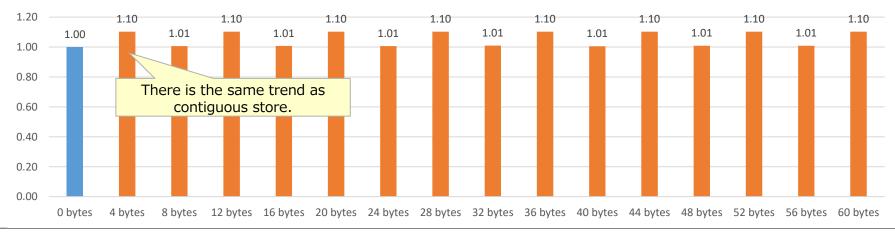

8-byte type (double precision real number/8-byte integer)

4-byte type (single precision real number/4-byte integer)

Gather load (4-byte type, execution time ratio)

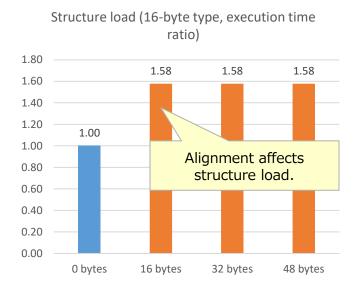


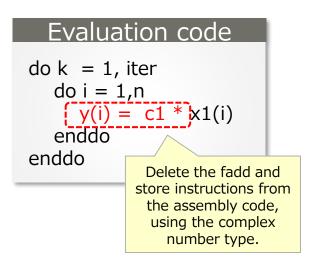
Measurement Results: Scatter Store



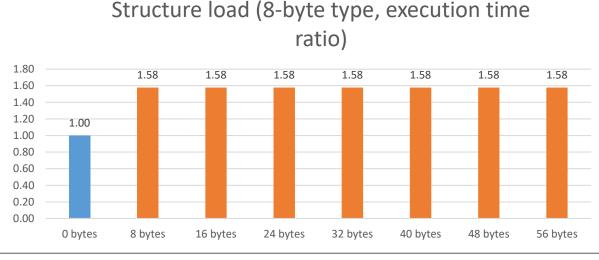
8-byte type (double precision real number/8-byte integer)

4-byte type (single precision real number/4-byte integer)

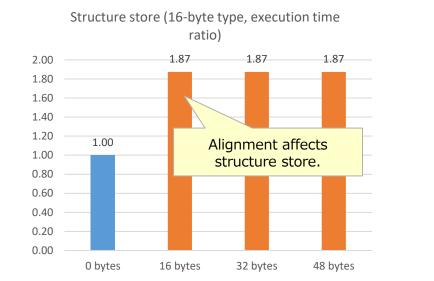


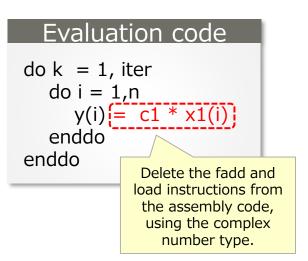

Scatter store (4-byte type, execution time ratio)

Measurement Results: Structure Load (LD2 Instruction)



Double precision complex number type (16-byte complex)


Single precision complex number type (8-byte complex)



Measurement Results: Structure Store (ST2 Instruction)



Double precision complex number type (16-byte complex)

Single precision complex number type (8-byte complex)

Memory Copy Performance

Purpose

- Measurement Conditions
- Measurement Results
- Summary

Purpose

Purpose

To evaluate the memory copy performance using Fortran code and memcpy (glibc/high-speed version) and identify use scenes

About high-speed version memcpy

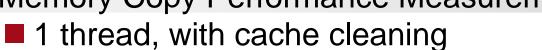
- It becomes available when the relevant option is specified. (-Kfast, A64FX, SVE, optlib_string, nolib)
- High-speed version memcpy is used for the MPI as well.

Measurement Conditions

Measurement conditions

Condition	Pattern			
Verification code	 Fortran code without cache cleaning Fortran code with cache cleaning memcpy (C language) without cache cleaning memcpy (C language) with cache cleaning 	Without cache cleaning The cache is not cleared each time memory copy is executed once. Depending on the copy size, on cache occurs. With cache cleaning		
Number of threads to be measured	- 1 thread, 12 threads	The cache is cleared each time memory copy is executed once. Memory access occurs in any copy size.		
Compiler	- Compiler for the A64FX (March 20, 2019 version)			
Compilation option	 Fortran code : -Kfast * Fortran code with -Kzfill is also evaluated. memcpy default : -Kfast memcpy high-speed version : -Kfast,A64FX,SVE,optlib_string,nolib 			
Access range	 Access range - 1 thread: Copy size 256 bytes to 1,073,741,824 bytes - 12 threads: Copy size 288 bytes to 1,073,741,856 bytes * When 12 threads are measured, the copy size per thread is equal to the above copy size divided by 			

Code to be m			
double y[n], x1[n] <- 1 thread: 32 to 134217728			For memcpy, evaluate the following.
for (j = 0; j < iter; j++) {			default (glibc)
Start of timer measurement	Execute the following		High-speed version
memcpy(y, x1, (<i>copy size</i>));	Fortran code.		
End of timer measurement	do i = 1, n		* default (glibc) was measured of the
Cache cleaning	y(i)=x1(i) end do		pre-accelerated version for F64FX.


[Reference] Memory Copy Performance Measurement Results (1/4)

1 thread, without cache cleaning

Copy size	Throughput (GB/sec)					
(bytes)	Fortran code	Fortran code with zfill	memcpy default	memcpy high- speed version		
256	5.69	5.39	3.74	4.53		
512	11.25	10.14	6.92	8.98		
1,024	19.69	17.66	10.34	16.79		
2,048	36.57	29.47	15.06	31.75		
4,096	63.02	46.55	18.24	54.25		
8,192	88.56	38.64	21.33	79.15		
16,384	88.80	40.76	22.90	96.95		
32,768	79.63	39.27	20.99	76.03		
65,536	54.64	44.04	19.51	55.54		
131,072	56.17	45.95	19.57	59.82		
262,144	57.28	47.08	19.77	62.10		
524,288	57.49	47.72	19.85	63.34		
1,048,576	57.78	48.02	19.90	64.12		
2,097,152	57.87	47.91	19.90	64.44		
4,194,304	44.65	41.41	18.52	35.40		
8,388,608	49.66	43.83	18.03	35.79		
16,777,216	49.71	43.89	18.03	36.01		
33,554,432	49.44	43.70	18.00	35.86		
67,108,864	45.24	40.59	17.50	33.71		
134,217,728	45.29	40.57	17.50	33.76		
268,435,456	45.15	40.56	17.48	33.67		
536,870,912	44.45	40.49	17.46	33.56		
1,073,741,824	44.42	40.50	17.46	33.59		

[Reference] Memory Copy Performance Measurement Results (2/4)

Copy size	Throughput (GB/sec)					
(bytes)	Fortran code	Fortran code with zfill	memcpy default	memcpy high- speed version		
256	2.20	1.36	1.88	2.09		
512	4.23	2.43	2.47	3.98		
1,024	7.56			6.87		
2,048	9.92	6.85	3.10	9.66		
4,096	16.25	11.74	7.13	16.06		
8,192	23.11	19.67	10.79	23.21		
16,384	30.01	25.13	10.92	30.62		
32,768	39.31	33.13	15.37	39.27		
65,536	41.39	36.75	16.22	27.84		
131,072	44.36	39.71	17.05	27.84		
262,144	45.95	41.46	17.53	27.60		
524,288	46.62	42.34	17.77	27.64		
1,048,576	47.01	42.84	17.90	27.59		
2,097,152	47.24	43.00	17.97	27.62		
4,194,304	47.34	43.14	18.00	35.73		
8,388,608	47.15	43.00	17.99	35.74		
16,777,216	44.64	40.60	17.61	34.00		
33,554,432	44.07	39.86	17.49	33.65		
67,108,864	44.10	39.87	17.49	33.65		
134,217,728	44.14	39.96	17.50	33.72		
268,435,456	44.03	39.84	17.48	33.67		
536,870,912	43.92	39.46	17.46	33.59		
1,073,741,824	43.94	39.73	17.46	33.59		

195 DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2021 FUJITSU LIMITED

FUITSU

[Reference] Memory Copy Performance Measurement Results (3/4)

12 threads, without cache cleaning

Copy size	Throughput (GB/sec)					
(bytes)	Fortran code	Fortran code with zfill	memcpy default	memcpy high- speed version		
288	1.05	1.05	0.77	0.76		
576	2.76	2.76	1.57	1.55		
1,056	5.82	5.77	2.88	2.87		
2,112	11.77	11.42	5.83	5.93		
4,128	25.48	25.02	11.20	11.90		
8,256	47.86	47.59	22.74	23.76		
16,416	88.74	90.45	41.51	41.04		
32,832	153.42	160.16	74.70	93.01		
65,568	277.83	221.89	120.31	182.64		
131,136	467.51	283.54	174.62	315.61		
262,176	522.78	298.78	188.62	481.50		
524,352	467.34	330.40	200.33	439.71		
1,048,608	530.94	362.15	220.41	562.11		
2,097,216	570.44	374.27	227.93	601.61		
4,194,336	328.48	294.05	189.47	424.89		
8,388,672	140.45	206.26	141.31	143.16		
16,777,248	140.18	206.39	141.53	143.32		
33,554,496	140.23	206.37	141.70	143.61		
67,108,896	140.20	206.59	142.16	206.10		
134,217,792	140.30	206.83	142.21	206.36		
268,435,488	140.21	206.65	142.32	206.51		
536,870,976	140.02	206.79	142.38	206.42		
1,073,741,856	139.88	206.44	142.45	206.44		

[Reference] Memory Copy Performance Measurement Results (4/4) 12 threads, with cache cleaning

Throughput (GB/sec) Copy size Fortran code memcpy memcpy high-(bytes) Fortran code with zfill default speed version 288 0.82 0.83 0.97 0.93 576 1.51 1.91 1.68 1.50 1,056 2.82 2.81 3.33 3.10 6.09 5.71 2,112 5.69 5.58 4,128 11.01 11.05 10.41 10.49 8,256 17.33 21.50 21.4420.46 16,416 36.04 35.88 25.45 36.04 32,832 61.95 55.93 33.42 60.97 65,568 86.67 75.37 44.53 87.19 131,136 109.33 116.36 65.06 101.73 262,176 123.00 144.29 92.06 121.89 524,352 133.54 167.15 102.95 118.93 185.02 1,048,608 141.42 120.94 130.78 2,097,216 137.25 201.39 132.87 139.55 4,194,336 137.96 197.40 133.33 138.75 8,388,672 138.41 204.53 138.73 141.53 16,777,248 204.34 139.54 142.39 138.96 33,554,496 140.32 205.50 141.09 143.06 67,108,896 139.77 206.85 141.68 204.27 134,217,792 206.23 205.77 140.28 141.84 268,435,488 139.95 206.84 141.98 205.82 536,870,976 140.20 205.95 142.16 206.01 1,073,741,856 139.85 205.48 142.27 206.03

Summary

memcpy high-speed version

- In every case, this version is faster than memcpy default (glibc version).
 - -> The use of the high-speed version of memcpy is recommended.
- If the copy size (per thread) exceeds 4 MiB, zfill is automatically enabled.
 - When one thread is executed (memory is not busy), care needs to be exercised because the performance drops.
 - When 12 threads are executed (memory is busy), the performance improves.
 - -> Depending on the copy size, zfill may fail to be enabled even when the memory is busy.

Fortran code

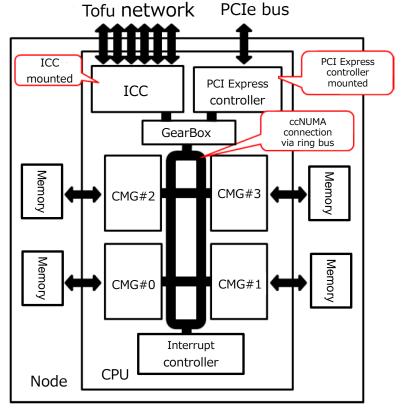
- While the performance is equal to or better than the high-speed version of memcpy, zfill needs to be set manually.
- Cases when Fortran code is faster than the high-speed version of memcpy
 - When the memory is not busy, Fortran code is faster if the copy size is 4 MiB to 1 GiB.
 - When the memory is busy, Fortran code with zfill is faster. (Compared to when zfill is disabled in the high-speed version of memcpy)

FUJITSU

Inter-CMG Performance Evaluation

- Hardware Overview
- About the Specification of numactl (Core, Memory, Interleave)
- Throughput Measurement Measurement Conditions
- Throughput Measurement Measurement Results (12 Thread Execution)
- Measurement Results (48 Thread Execution)
- Latency Measurement Measurement Conditions
- Latency Measurement Measurement Results
- Summary
- DGEMM Across CMGs A64FX Implementation
- DGEMM Efficiency in Multiple CMGs

Hardware Overview


Memory (HBM)

Four HBM (High Bandwidth Memory) chips are directly connected to the CPU LSI.

One HBM has a 1024-bit data interface supporting transfer rates of up to 2 Gbps. The memory bandwidth is 1024 bits (twoway) \times 2 Gbps \times 4 (HBM), totaling 1024 GB/s.

- Inter-CMG connection The intra-chip network configuration interconnecting CMGs is shown here. This is a two-way ring bus network that connects the following six points.
 - Four CMGs
 - Interconnect controller (ICC)/ PCI Express controller
 - Interrupt controller

There are two 64-byte ring buses (two-way), and the transfer capability of these ring buses is 128 GB/s \times 2 (two-way).

About the Specification of numactl (Core, Memory, Interleave)

About the specification of numactl

The numactl command uses the following.

- Core specification: -C

Example of numactl)

- Memory specification: -m
- Interleave specification: --interleave

In this example, 48 threads (48 cores) and all the memories are used. For the specified values, see the table at the right.

numactl -- C12-59 -- m4-7

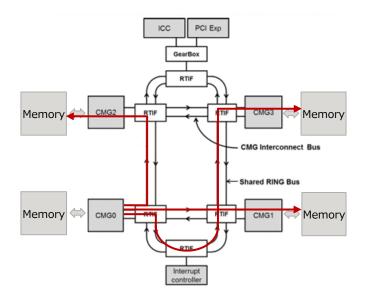
CMG	Core	Memory
CMG0	12 to 23	4
CMG1	24 to 35	5
CMG2	36 to 47	6
CMG3	48 to 59	7

Measurement conditions

		Code to be measured
Code to be	Pattern	!\$omp parallel
measured Number of cores to be measured and memory settings	 Triad memory access 12 core execution (CMG0) Intra-CMG memory used Inter-CMG memory used 48 core execution (CMG0 to CMG3) Demand paging Prepaging Interleave 	do j = 1, iter !\$omp do Do i = 1, n y(i)=x1(i) + c0 * x2(i) End Do !\$omp end do nowait enddo !\$omp end parallel
Compilation option	-Kfast,openmp,zfill	
Access range	 Total number of bytes of access arrays: 240 MiB bss is used. Double precision operation arrays are used. Number of innermost loop iterations, array size (n): 1 Number of outer loop iterations (iter): 3 	0485120
 Memory throughput (GB/s) Calculated by the memory access volume divided by the measurement time. Memory throughput peak ratio (%) Memory throughput peak ratio (%) The denominator is 256 GB/s when 12 threads are executed and 1024 GB/s when 48 threads are executed. 		

Throughput Measurement Measurement Results (12 Thread Execution)

Intra-CMG memory used _


Memory CMG0

Inter-CMG memory used

Number of executed threads	Execute d cores	Specified memory	Through put (GB/s)	Memory throughput peak ratio (%)
12	12 to 23 (CMG0)	4 (CMG0)	210.8	82.3%

numactl -C12-23 -m4 (Access to the CMG0 memory)

numactl -C12-23 -m5 to 7 (Access to the CMG1 to CMG3 memory)

	Number of executed threads	Executed cores	Specified memory	Through put (GB/s)	Memory throughput peak ratio (%)
	12	12 to 23 (CMG0)	5 (CMG1)	118.5	46.3%
Ī	12	12 to 23 (CMG0)	6 (CMG2)	120.8	47.2%
	12	12 to 23 (CMG0)	7 (CMG3)	120.9	47.2%

Measurement Results (48 Thread Execution)

Four CMG memories used

Demand paging

export XOS_MMM_L_PAGING_POLICY=demand:demand numactl -C12-59 -m4-7

export XOS MMM L PAGING POLICY=prepage:prepage:prepage

Number of executed threads	Executed cores	Specified memory	Throughput (GB/s)	Memory throughput peak ratio (%)
48	12 to 59 (CMG0 to 3)	4 to 7 (CMG0 to 3)	819.7	80.0%

Prepaging

Number of executed threads	Executed cores	Specified memory	Throughput (GB/s)	Memory throughput peak ratio (%)	While 4-7 is set in the memory specification, the declaration is executed with CMG0. This allocates all the arrays to the memory (4) of CMG0, preventing the appropriate
48	12 to 59 (CMG0 to 3)	4 to 7 (CMG0 to 3)	99.3	9.7%	performance from being achieved.

numactl -C12-59 -m4-7

Interleave

numactl -C12-59 --interleave=4-7

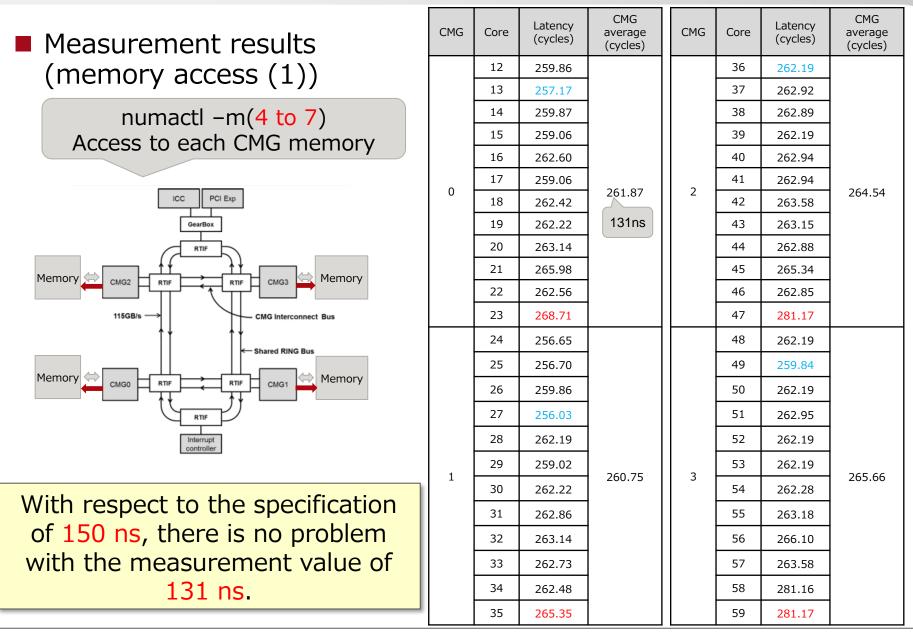
Number of executed threads	Executed cores	Specified memory	Throughput (GB/s)	Memory throughput peak ratio (%)	Use interleave if data cannot be divided on a per-CMG basis due to the characteristics of the		
48	12 to 59 (CMG0 to 3)	Interleave (CMG0 to 3)	476.0	46.5%	application.		

One CMG memory used (reference)

numactl -C12-59 -m4

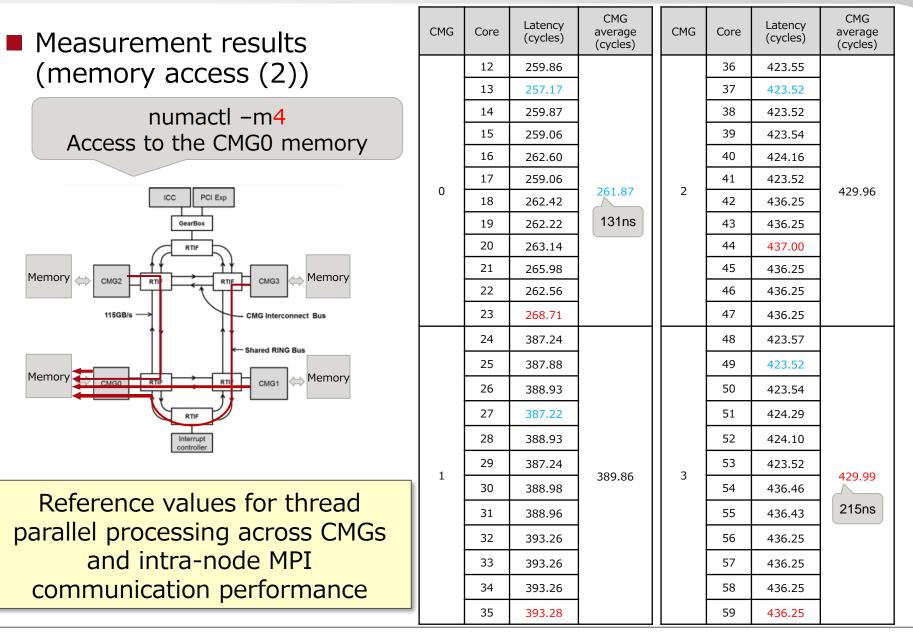
Number of executed threads	Executed cores	Specified memory	Throughput (GB/s)	Memory throughput peak ratio (%)		
48	12 to 59 (CMG0 to 3)	4 (CMG0)	93.2	9.1%		

Latency Measurement Measurement Conditions


Measurement conditions

}

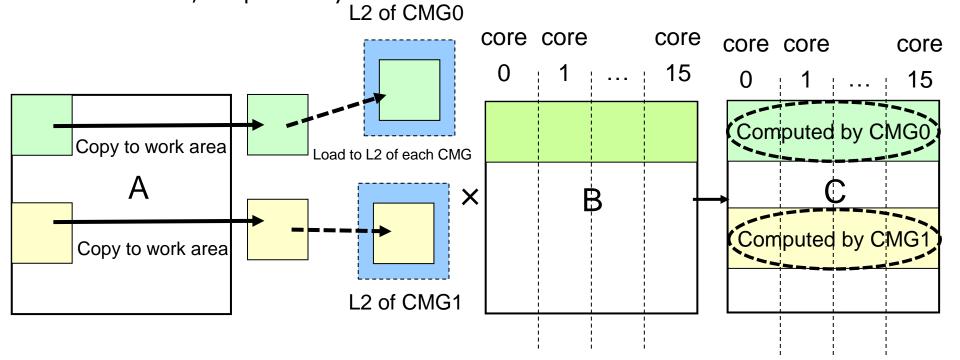
	Pattern			
Code to be measured	Memory access latency measurement			
Cores to be measured	 - 1 core execution × 48 cores (all computing cores of CMG0 to CMG3) -> Access to the memory inside the CMG -> Access to the CMG0 memory (access to the memory outside the CMG for cores of CMG1 to CMG3) 			
Compilation option	-Kfast			
Access range	 bss is used. Number of inner loop iterations (NL): 1024 Number of outer loop iterations (rep): 1 			
Measurement value	Access latency (number of cycles)			
Code to be me	easured			
<pre>for (i = 0; i < rep; i p = 0; for (j = 0; j < NI p = array[p]; } ans = p;</pre>				


Latency Measurement Measurement Results (1/2)

Latency Measurement Measurement Results (2/2)

207

Summary

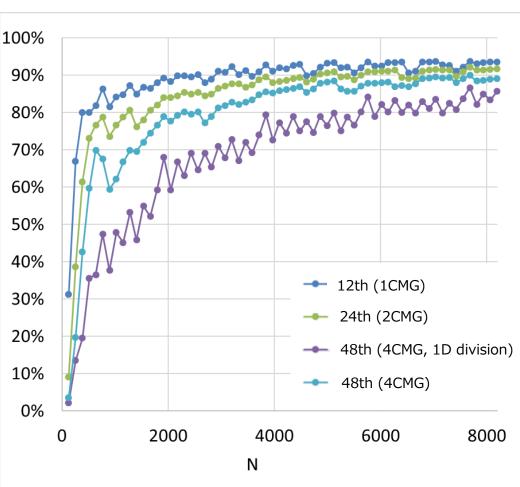

- In the case of local access (memory access only to the local CMG)
 - There is no performance problem as efficiency of 80% or more is achieved when 12 or 48 threads are executed.
 - There is no problem with the recommended 4-process, 12-thread execution.
 - In the case of global access (memory access made to other CMGs as well)
 - There is a bottleneck in the inter-CMG bus performance (peak at 128 GB/s in the case of 2.0 GHz).
 - When only one CMG has memory and the other three CMGs access that memory, the performance may be up to 100 GB/s or so.
- Whether the appropriate performance can be achieved when 48 threads are executed depends on the application.

-> It is necessary to identify the characteristics of the application and consider executing interleave.

Proposed division for a multitude of cores

Use different matrix division dimensions for CMGs and cores, respectively.

Instead of assigning threads to one dimension, assign them to two dimensions separately in units of a CMG and in units of a core. This reduces the unnecessary movement of entries between cores.


DGEMM Efficiency in Multiple CMGs

- A drop in performance in the range where the value is large (N = 7000 to 8000) is 1.5% when changing from one CMG to two CMGs and 5% or so when changing from one CMG to four CMGs.
- Improvement from onedimension division In the 48th one-dimension division, only the side of N is divided into 48 narrow parts, resulting in a huge drop in performance. This has been improved.

(In one-dimension division, the lines in the graph are jagged because of register blocking and surplus threads.)

- Why performance declines even after the improvement
 - Performance drops because the size per CMG becomes smaller.
 - Lower performance results from the original matrix data spanning CMGs.

Measured with the A64FX

OpenMP Overhead Evaluation

- Two OpenMP libraries (LLVM version and Fujitsu version)
- Performance of Fujitsu OpenMP Library
- Basic performance of LLVM OpenMP and Fujitsu OpenMP Libraries
- Stream benchmark performance: each compiler x library

The LLVM OpenMP library is an OpenMP library based on the LLVM OpenMP Runtime Library extended for the A64FX.

OpenMP Library	Option	Supported Functions
LLVM OpenMP library	-Nlibomp (default)	OpenMP 4.5 and Parts of 5.0 Hardware barrier(Default is Software barrier) Sector cache Bind to core (default)
Fujitsu OpenMP library	-Nfjomplib	OpenMP 3.1 Hardware barrier Sector cache Bind to core (Default when execute on job)

Compiler combination

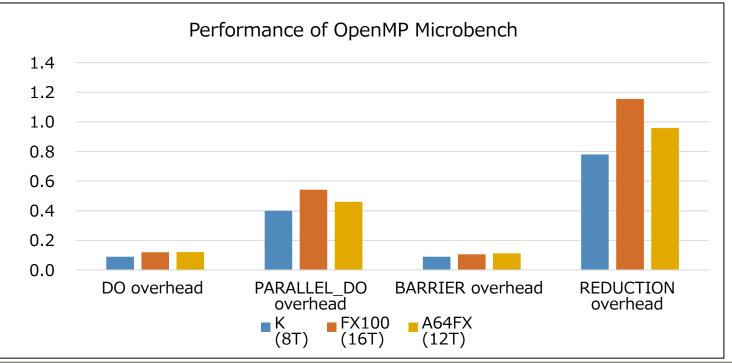
The object files(.o) are common in Fortran and C/C++ Trad Mode, and libraries used can be specified with the -Nlibomp/-Nfjomplib option. (If Clang Mode object files are included, only -Nlibomp option is available)

Ontion	Fortrop	C/C++				
Option	Fortran	Trad Mode	Clang Mode			
-Nlibomp	Available	Available	Available			
-Nfjomplib	Available	Available	Not available			

Two OpenMP libraries (LLVM version and Fujitsu version) (2/2)

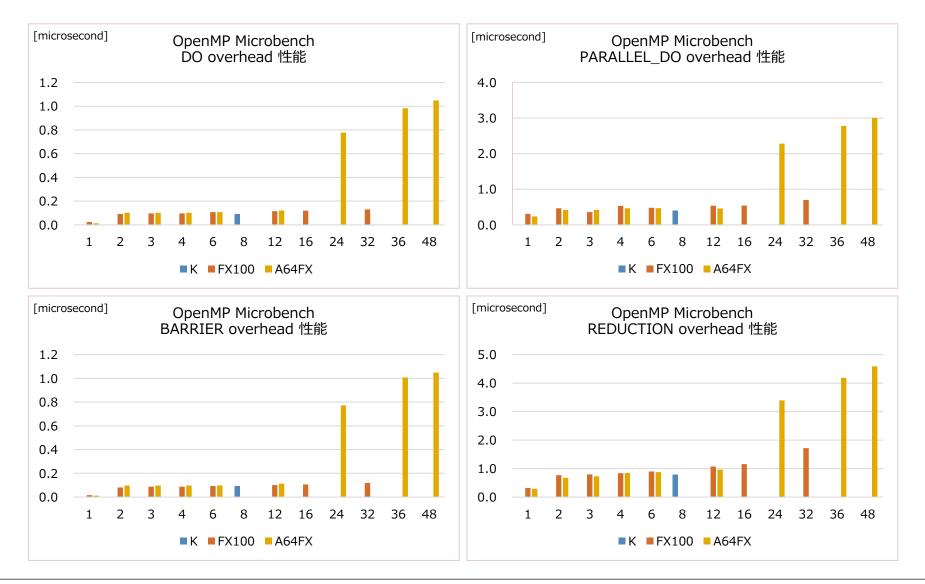
- Selection method
 - Specify in compiler option when linking.
 - -Nlibomp (default) : Use LLVM OpenMP Library
 - -Nfjomplib : Use Fujitsu OpenMP Library

Difference in specifications


Thread stack size

Option	Default size	Environment variables for resizing			
-Nlibomp	• 8MiB	OMP_STACKSIZE			
-Nfjomplib	 Inherit the process stack size. If the stack size of the process is specified as unlimited. (Memory size / Number of threads) / 5 	OMP_STACKSIZE or THREAD_STACK_SIZE			

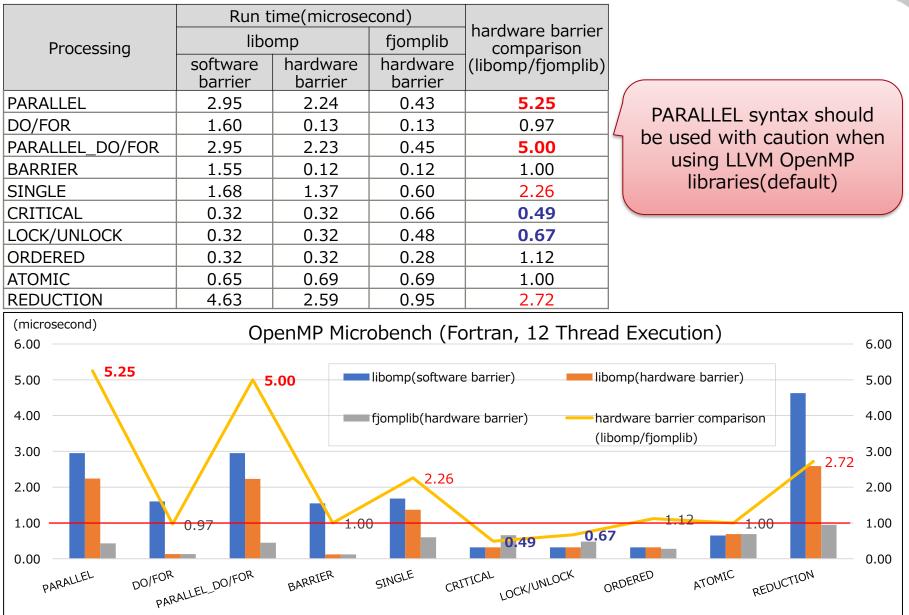
Performance of Fujitsu OpenMP Library (1/3) Fujitsu


Typical directive performance comparison

OpenMP Microbench Units:microsecond	K (8T)	FX100 (16T)	A64FX (12T)
DO overhead	0.090	0.120	0.121
PARALLEL_DO overhead	0.400	0.542	0.461
BARRIER overhead	0.090	0.106	0.113
REDUCTION overhead	0.780	1.154	0.957

Performance of Fujitsu OpenMP Library (2/3) Fujitsu

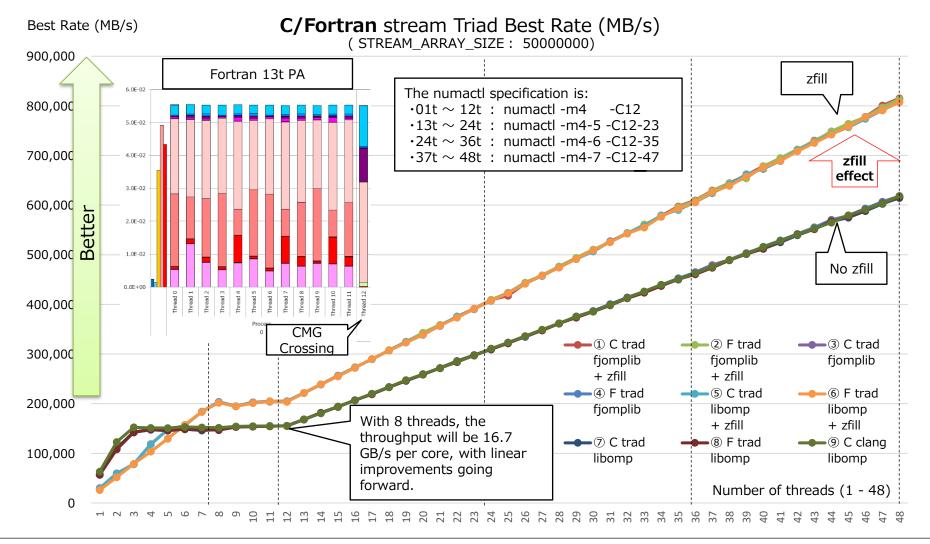
Performance comparison (Per Thread)


Performance of Fujitsu OpenMP Library (3/3) Fujitsu

Performance comparison (Per Thread)

OpenMP Microbench Units:		Number of threads											
microsecond		1	2	3	4	6	8	12	16	24	32	36	48
	К						0.090						
DO overhead	FX100	0.023	0.092	0.097	0.097	0.107		0.115	0.120		0.130		
	A64FX	0.014	0.103	0.103	0.103	0.108		0.121		0.778		0.983	1.049
	К						0.400						
PARALLEL_DO	FX100	0.309	0.466	0.358	0.535	0.478		0.535	0.542		0.701		
overhead	A64FX	0.236	0.422	0.422	0.464	0.471		0.461		2.283		2.774	3.004
	К						0.090						
BARRIER	FX100	0.016	0.081	0.087	0.088	0.092		0.101	0.106		0.119		
overhead	A64FX	0.012	0.097	0.097	0.097	0.098		0.113		0.773		1.008	1.049
	К						0.780						
REDUCTION	FX100	0.317	0.769	0.794	0.835	0.899		1.073	1.154		1.717		
overhead	A64FX	0.292	0.670	0.732	0.850	0.875		0.957		3.390		4.182	4.589

Basic performance of LLVM OpenMP and Fujitsu OpenMP Libraries



Stream benchmark performance: each compiler x library

- Performance comparison between C(trad/clang) and Fortran
 - -> Performance is equivalent

Revision History

Revision History

Version	Date	Details
1.1	May 14, 2020	- First published
1.2	Sep 30, 2020	- Correcting typographical errors and expressions by reviewing articles
1.3	Mar 31, 2021	 Correcting typographical errors and expressions by reviewing articles
1.4	Aug , 2021	- Modified the glibc article for "Memory Copy Performance" pages

FUJTSU

shaping tomorrow with you