
Programming Guide
(Fortran)

Mar. 2023

v1.6

FUJITSU LIMITED

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED0

This document is publicly released with the permission of Fujitsu Limited. Please direct any inquiries regarding its content to RIKEN.

Introduction

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ This document describes how to
program and tune applications for A64FX
processors in Fortran.

⚫ Refer to the following in conjunction with
this document.

⚫ Fortran User’s Guide

⚫ C User’s Guide

⚫ C++ User’s Guide

⚫ Profiler User's Guide

⚫ Programming Guide(Processors)

⚫ Programming Guide(Programming common
part)

⚫ Programming Guide(Tuning)

⚫ The following abbreviation is used in
this document:
⚫ A64FX Logic Specifications

⚫ A64FX ® Microarchitecture Manual

⚫ ARM® Architecture Reference Manual
(ARMv8 , ARMv8.1 , ARMv8.2 , ARMv8.3)

⚫ ARM® Architecture Reference Manual Supplement
The Scalable Vector Extension

⚫ Trademarks
⚫ Linux® is a trademark or registered trademark of

Linus Torvalds in the United States and other
countries.

⚫ Red Hat is a trademark or registered trademark of
Red Hat Inc. in the United States and other countries.

⚫ ARM is a trademark or registered trademark of ARM
Ltd. in the United States and other countries.

⚫ Proper names such as the product name mentioned
are trademark or registered trademark of each
company.

⚫ Trademark symbols such as ® and ™ may be
omitted from system names and product names in
this document.

1

◼ Major Optimization Settings

◼ Recommended Option

• -Kfast

◼ Optimization Level

• -O

◼ SIMDization

• -Ksimd
Directive: SIMD

• -Ksimd_packed_promotion

• -Ksimd_reg_size={128|256|512}

• -Ksimd_reg_size=agnostic

• -Ksimd_use_multiple_structures
Directive: USE_MULTIPLE_STRUCTURES

• -Ksimd_uncounted_loop

• -Kloop_part_simd

• Directive: NOVREC/NORECURRENCE

◼ Software Pipelining

• -Kswp
Directive: SWP

• -Kswp_weak/-Kswp_strong
Directive: SWP_WEAK

• -Kswp_freg_rate/-Kswp_ireg_rate/
-Kswp_preg_rate

• -Kswp_policy
Directive: SWP_POLICY

◼ Instruction Scheduling

• -Ksch_pre_ra/-Ksch_post_ra

◼ Prefetch

• -Kprefetch_sequential
Directive: PREFETCH_SEQUENTIAL

• -Kprefetch_cache_level
Directive: PREFETCH_CACHE_LEVEL

• -Kprefetch_stride
Directive: PREFETCH_STRIDE

• -Kprefetch_strong/-Kprefetch_strong_L2
Directive: PREFETCH_STRONG/
Directive: PREFETCH_STRONG_L2

• -Kprefetch_conditional
Directive: PREFETCH_CONDITIONAL

• Directive: PREFETCH_INDIRECT

• Directive:
PREFETCH_LINE/PREFETCH_LINE_L2

• Directive:
PREFETCH_READ/PREFETCH_WRITE

Contents(1/5): Options and Directives

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED2

◼ Loop Expansion

• -Kunroll
Directive: UNROLL

• Directive: FULLUNROLL_PRE_SIMD

• -Kunroll_and_jam
Directive: UNROLL_AND_JAM[(n)]
Directive: UNROLL_AND_JAM_FORCE

• -Kstriping
Directive: STRIPING

◼ Loop Fission

• -Kloop_fission
Directive: LOOP_FISSION_TARGET
Directive: FISSION_POINT

• -Kloop_fission_threshold
Directive: LOOP_FISSION_THRESHOLD

• -Kloop_fission_stripmining
Directive:
LOOP_FISSION_STRIPMININING

◼ Loop Fusion

• -Kloop_fusion
Directive: LOOP_NOFUSION

◼ Loop Interchange

• -Kloop_interchange
Directive: LOOP_INTERCHANGE

◼ Loop Unswitching

• Directive: UNSWITCHING

◼ Perfect Loop nesting

• -Kloop_perfect_nest
Directive: LOOP_PERFECT_NEST

◼ Fast Store

• -Kzfill

◼ Clone Optimization

• Directive: CLONE

◼ Speculative Execution of Load Instructions

• -Kpreload
Directive: PRELOAD

◼ Stack Allocation

• -Kauto/-Kautoobjstack/-Ktemparraystack

◼ Change in Operation Evaluation Method

• -Keval
Directive: EVAL

• -Keval_concurrent
Directive: EVAL_CONCURRENT

◼ Handling of Denormal Numbers

• ｰKfz

Contents(2/5): Options and Specifiers

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED3

◼ Alignment of Common Block Boundary

• -Kalign_commons

◼ Array Declaration Range

• -Karray_declaration_opt
Directive: ARRAY_DECLARATION_OPT

◼ String Operation Library

• -Koptlib_string

◼ Sector Cache Specification

• Directive: SCACHE_ISOLATE_WAY

• Directive: SCACHE_ISOLATE_ASSIGN

◼ Link Time Optimization

• -Klto

◼ HPC Tag Address Override

• ｰKhpctag

◼ Data Allocation

• -Nreordered_variable_stack

◼ Analysis and Inspection

• -Ncoverage

◼ OpenMP

• -Kopenmp_collapse_except_innermost

• -Nfjomplib/-Nlibomp

◼ Adjustment of Optimization

• -Kassume=shortloop
Directive: ASSUME(SHORTLOOP)

• -Kassume=memory_bandwidth
Directive:
ASSUME(MEMORY_BANDWIDTH)

• -Kassume=time_saving_compilation
Directive:
ASSUME(TIME_SAVING_COMPILATION)

◼ Options That Require Attentions to Use
(Side Effects of Optimization)

◼ Options That May Affect Execution

• -Kpreex

• -Ksimd=2

• -Kpreload

◼ Options That Accompany Calculation Errors

• -Keval

• -Kfp_contract

• -Kfp_relaxed

• -Kilfunc

◼ Options That Suppress Calculation Errors

• -Kfp_precision

• -Kparallel_fp_precision

Contents(3/5): Options and Specifiers

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED4

◼ Compilation Information

◼ Diagnosis Message/Guidance Message

◼ Contents of Compilation Information

◼ Lister (Program List/Optimization
Information/Statistical Information)

◼ Notes of Compilation Information

◼ Executing a Program

◼ Execution Commands

◼ Thread Parallel Execution

◼ Combination of OpenMP Libraries

◼ LLVM OpenMP Library and Fujitsu OpenMP
Library

• LLVM OpenMP Library (-Nlibomp)

• Fujitsu OpenMP Library (-Nfjomplib)

◼ Notes of Developing Programs

◼ Conditions for SIMDizable Loops

◼ Conditions for Automatic Parallelizable Loops

◼ Fujitsu Extension Object Specification

◼ SIMDization of the Redirection Operations
Using the bit Operator

◼ Large Page

◼ Notes on transformational function reference
of intrinsic functions

Contents(4/5): Compilation, Execution, Notes

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED5

◼ Timers Supported by Fortran

◼ Specifications of Timers

◼ Precisions of Timers

◼ Relation of Fortran Data Attributes and
Optimization

◼ Attribute List

◼ allocatable Attribute

◼ pointer Attribute

◼ contiguous Attribute

◼ intent(in) Attribute

◼ intent(out) Attribute

◼ intent(inout) Attribute

◼ value Attribute

◼ pure Attribute

◼ save Attribute

◼ Other Grammatical Notes

• Case where an array not in the program is
generated

◼ Examples of Performance Tuning by
pointer and Argument Interface
Improvement

◼ Difference Between pointer and allocatable

◼ Performance Tuning by pointer

◼ Performance Tuning by Argument Interface
Improvement

Contents(5/5): Fortran-Local Information and
Performance Tuning Examples

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED6

• Recommended Option

• Optimization Level

• SIMDization

• Software Pipelining

• Instruction Scheduling

• Prefetch

• Loop Expansion

• Loop Fission

• Loop Fusion

• Loop Interchange

• Loop Unswitching

• Perfect Loop Nesting

• Fast Store

• Clone Optimization

• Speculative Execution of
Load Instructions

• Stack Allocation

• Change in Operation
Evaluation Method

• Handling of Denormal
Numbers

• Alignment of Common
Block Boundary

• Array Declaration Range

• String Operation Library

• Sector Cache Specification

• Link Time Optimization

• HPC Tag Address Override

• Data Allocation

• Analysis and Check

• OpenMP

• Adjustment of
Optimization

Major Optimization Settings

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED7

-Kfast (1/2)

⚫Function outline
⚫This option induces the optimization option to create an object program

that operates at high-speed on the target machine.

⚫Effect
⚫This option induces to specify standard optimization options and is

expected to improve execution performance.

⚫Points
⚫The –Kfast option is recommended to be specified as an optimization

option when execution performance is pursued.

⚫This option induces to specify standard optimization options that possibly
improve execution performance.

⚫Note
⚫This option induces an optimization option that may generate operation

precision errors. So, it is necessary to suppress options that generate
operation precision errors if operation precision matters.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kfast -

8

-Kfast (2/2)

⚫ Optimization options to be induced

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Induced Option Function Outline

-O3 Performs optimization in optimization level 3.

-Keval * Performs optimization to change the operation evaluation method.

-Kfp_contract *
Performs optimization using the Floating-Point Multiply-
Add/Subtract operation instruction.

-Kfp_relaxed *
Performs optimization applying reciprocal approximation operation
to single precision floating-point division/double precision floating-
point division/SQRT function.

-Kfz *
Uses the flush-to-zero mode (where a denormal operation result or
source operand is replaced by 0 with the sign of the original
number).

-Kilfunc * Performs inline expansion of an intrinsic function/operation.

-Kmfunc *
Performs optimization to convert an intrinsic function/operation to
a multi-operation function.

-Komitfp
Performs optimization in a way that does not ensure the frame
pointer register at procedure calling. Therefore, the traceback
information is not ensured.

-Ksimd_packed_promotion

Promotes packed-SIMDization supposing the index calculation of
single precision real type/4-byte integer type array elements does
not exceed the 4-byte range. A runtime error or execution result
error may occur if it exceeds the 4-byte range.

*: Optimization options where an operation precision error may occur.

9

-O

⚫ Function outline
⚫ This option selects optimization according to the usage.

⚫ Effect
⚫ Optimization level can be used to select optimization according to the usage.

⚫ Points
⚫ When the recommended option –Kfast is specified, option -O3 is induced.

⚫ The –Kfast option is recommended to be specified as the optimization option, but the optimization level can be specified
according to the usage.

⚫ Notes
⚫ The side effects of optimization such as operation accuracy error may be generated with ｰO2 or above.

⚫ Compilation takes longer with ｰO2 or above.
DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-O[0|1|2|3]
Without –O specification: -O2
With –O specification only: -O3

Optimization
Level

Function Outline Usage

0 Does not perform optimization. When error check on a program is required

1

Performs basic optimization. This does not perform optimization to improve
execution performance such as loop unrolling, software pipelining, and SIMDization.

The object size becomes smaller and the execution time becomes shorter than
-O0.

To avoid object size being large or to shorten compilation time

2

Performs loop optimization, prefetch instruction generation, SIMD, top alignment
adjustment of loops and tail call optimization in addition to -O1. Also, this performs
optimization of -O1 iteratively until the room for optimization disappears.
Compilation takes longer than -O1.

When performance is pursued as far as the accuracy error is not
generated (because –Kfast specification generates accuracy error)

3
Performs unrolling of nested loops, loop fission to promote loop interchange, loop
unswitching, and CLONE optimization in addition to -O2. Compilation takes longer
than -O2.

When execution performance is pursued

10

SIMD (1/3)

⚫ Function outline
⚫ This option specifies whether instructions in the loop is SIMDized.

⚫ To apply this to a specific loop, use the SIMD specifier.

⚫ The argument of the SIMD specifier can be specified to maintain compatibility with source
codes of old products.

⚫ SIMDization may not be performed according to the operation type and the loop structure.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd[={1|2|auto}]
-Knosimd

-O2 or above: -Ksimd
-O1 or below: -Knosimd

Optimization Specifier

SIMD[({ALIGNED | UNALIGNED})]
NOSIMD

Argument SIMDization Specification

1 • Issues SIMD instructions.

2
• In addition to the function of -Ksimd=1, issues SIMD instructions to loops that contain IF

constructs, etc.

auto
(default)

• The compiler judges automatically whether to perform SIMDization.

Argument SIMDization Target

None

(default)
• Instructs to perform SIMDization.

ALIGNED • Equivalent to !OCL SIMD

UNALIGNED • Equivalent to !OCL SIMD

11

SIMD (2/3)

⚫Effect
⚫Converting two or more operations of the same kind into simultaneously

executed SIMD instructions improves the execution performance.

⚫ Point
⚫Specify the -Ksimd={2|auto} option to perform SIMDization on a loop of high

cost and with any IF constructs that meet any of the following conditions.

⚫ The true rate of a condition clause in the IF construct is high.

⚫ The true rate of a condition clause in the IF construct is unknown but the number of
executable statements in the THEN/ELSE clauses in the IF construct is smaller than the
number of executable statements in the whole loop.

Eliminating branch instructions in the loop promotes software pipelining, and thus improves
parallelism in instruction level.

⚫Note
⚫With the -Ksimd={2|auto} option, instructions in the IF construct are executed

redundantly. So, execution performance may degrade depending on the true rate
of the IF construct. Also, expressions in the IF construct are speculatively
executed just like the –Kpreex option. So, instructions that should not be
executed according to the program logic are executed, resulting in an error.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED12

SIMD (3/3)

⚫ Example
⚫ Incorrect SIMD(ALIGNED) specification

Double precision floating-point store becomes available for SIMDization when it is on a 16-byte boundary.
However, when the SIMD(ALIGNED) specifier is specified for double precision floating-point store that is not
on a 16-byte boundary, it terminates abnormally with SIGSEGV during execution.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

REAL(8) A(10)
COMMON //N,A

!OCL SIMD(ALIGNED)
DO I=1,10

A(I) = ...
END DO

Double precision floating-point
store may not be allocated on a
16-byte boundary because Array
A is an element that is not the
first or the last.

REAL(8) A(10)
COMMON //A

!OCL SIMD(ALIGNED)
DO I=2,10

A(I) = ...
END DO

Even if Array A is on 16-byte
boundary, the second and the
subsequent elements are
referenced in the loop and they
are not on 16-byte boundary.

13

-Ksimd_packed_promotion (1/2)

⚫ Function outline
⚫ This option promotes packed-SIMDization, assuming that the index calculation of single

precision real type and that 4-byte integer type array elements does not exceed the 4-byte
range.

⚫ The -Ksimd_packed_promotion option has meaning when the –Ksimd option is valid.

⚫ When the access to an array is nested, the array address to be the index is converted into 8
bytes. So, an 8-byte integer type operation appears on the operation tree connecting to the
index and packed-SIMDization is disturbed.
Packed-SIMDization becomes possible when all the following conditions are satisfied.

⚫ Access to an array is nested in a loop.

⚫ All the array data in the loop is 4-byte or less element type.

⚫ The array of indexes to an array is 4 bytes.

⚫ Effect
⚫ It is expected to improve execution performance because this option promotes packed-

SIMDization.

⚫ Notes
⚫ If the index calculation of array elements exceeds the 4-byte range, an invalid area is

accessed, resulting in abnormal termination during execution or execution result error.

⚫ If the -Ksimd_packed_promotion option is not specified, it becomes 8 SIMD instead of 16
SIMD.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd_packed_promotion
-Ksimd_nopacked_promotion

-Ksimd_nopacked_promotion

14

-Ksimd_packed_promotion (2/2)

⚫ Example
⚫ packed-SIMDization

⚫ If C(I) exceeds the 4-byte range, an abnormal termination during execution or an execution result error
may be generated.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

SUBROUTINE TEST(A,B,C,D)
USE_SIMFUNC
INTEGER(KIND=4),DIMENSION(1:N) :: A,B
INTEGER(KIND=4),DIMENSION(1:N) :: C,D
!OCL SIMD(UNALIGNED)
DO I=1,N

A(C(I)) = B(D(I))
ENDDO

END SUBROUTINE TEST

Because 4-byte type is allowed for index, the 4-byte
address of C(I) is not converted into 8-byte type but
optimization to connect the address directly to the
index is implemented to promote packed-SIMDization.

15

-Ksimd_reg_size={128|256|512}

⚫ Function outline
⚫This option specifies the size of SVE vector register in unit of bit.

⚫This option becomes valid when the –KSVE option is valid.

⚫The generated executable program operates normally only on the CPU
architecture where SVE vector register in the size specified by this option.

⚫Effect
⚫ It is expected to improve execution performance because this option promotes

optimization.

⚫Notes
⚫When the specified size differs from the size of vector register on the CPU

architecture where the program is executed, an abnormal termination during
execution may occur. Even when an abnormal termination during execution does
not occur, execution result is not guaranteed.

⚫When it is obvious that the specified size is smaller than the size of the vector
register on the CPU architecture where the program is to be executed, it is
necessary to set a valid vector register size by using, for example, the prctl(2)
system call.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd_reg_size={128|256|512} -Ksimd_reg_size=512

16

-Ksimd_reg_size=agnostic (1/2)

⚫Function outline
⚫This option instructs to perform compilation without considering the SVE

vector register as a specific size and create an executable program that
determines the SVE vector register size at the time of execution.

⚫This option is valid when the –KSVE option is valid.

⚫An executable program is executable regardless the size of the SVE
vector register on CPU.

⚫Effect
⚫It is expected to improve execution performance because this option

promotes optimization.

⚫Note
⚫The execution performance may degrade, compared to the case when

the
-Ksimd_reg_size={128|256|512} option is specified.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd_reg_size=agnostic -

17

-Ksimd_reg_size=agnostic (2/2)

⚫ Example
⚫ When the -Ksimd_reg_size=agnostic is specified, a similar optimization as

-Ksimd_reg_size=512 (default) may not be executed. In such a case, execution performance
may degrade.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 843
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< SIMD(VL: AGNOSTIC; VL: 2 in 128-bit)
<<< PREFETCH(HARD) Expected by compiler :
<<< B, A
<<< Loop-information End >>>

6 1 pp 2v DO J=1,N
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< Loop-information End >>>

7 2 p 2 DO I=1,N
8 2 p 2v A(I,J) = A(I,J) + C * B(I,J)
9 2 p 2v ENDDO
10 1 p ENDDO

When -Ksimd_reg_size=agnostic is specified When -Ksimd_reg_size=512 (default) is specified

<<< Loop-information Start >>>
<<< [PARALLELIZATION]
<<< Standard iteration count: 843
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING

(IPC: 3.00, ITR: 192, MVE: 7, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< B, A
<<< Loop-information End >>>

6 1 pp 2v DO J=1,N
<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< COLLAPSED
<<< Loop-information End >>>

7 2 p 2 DO I=1,N
8 2 p 2v A(I,J) = A(I,J) + C * B(I,J)
9 2 p 2v ENDDO
10 1 p ENDDO
11 END SUBROUTINE

When agnostic is selected, it is judged that software
pipelining will not be effective, and software
pipelining is suppressed.

18

SIMD_USE_MULTIPLE_STRUCTURES (1/2)

⚫ Function outline
⚫ This option specifies whether to use the Load Multiple Structures instructions and the Store

Multiple Structures instructions of SVE at SIMDization.

⚫ This option becomes valid when the –Ksimd option and the –KSVE option are valid.

⚫ Effect
⚫ It is expected to improve execution performance by using the Load Multiple Structures

instructions and the Store Multiple Structures instruction for SIMDization-target loading and
storing.

⚫ Point
⚫ For details, see “Using the Multiple Structures Instruction” in Programming Guide - Tuning.

⚫ Note
⚫ Performance may degrade depending on data alignment.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd_use_multiple_structures
-Ksimd_nouse_multiple_structures

-Ksimd_use_multiple_structures

Optimization Specifier

SIMD_USE_MULTIPLE_STRUCTURES

SIMD_NOUSE_MULTIPLE_STRUCTURES

19

SIMD_USE_MULTIPLE_STRUCTURES (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL SIMD_USE_MULTIPLE_STRUCTURES
DO I=1,N

A(I) = B(1,I) + B(2,I) + B(3,I)
ENDDO

In the target loops, the Load Multiple Structures
instructions and the Store Multiple Structures
instructions of SVE are used.

LD3D {Z0.D, Z1.D, Z2.D}, P0/Z, [X6, 0, MUL VL] // "b"

Load Multiple Structures instructions of SVE at assembler
Load instructions of B(1,I), B(2,I), and B(3,I) are
implemented in a single instruction (LD3D) of a
structure instruction.

20

-Ksimd_uncounted_loop

⚫Function outline
⚫This option specifies whether to create an object using SIMD

instructions for loops whose iteration counts are unknown (instructions
in DO WHILE loops, DO UNTIL loops, and DO loops with statements to
end the loops).

⚫This option becomes valid when –Ksimd option and –KSVE options are
valid.

⚫Effect
⚫It is expected to improve execution performance because an object

using SIMD instructions is generated.

⚫Note
⚫Execution performance may degrade when the iteration count is small.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksimd_uncounted_loop
-Ksimd_nouncounted_loop

-Ksimd_nouncounted_loop

21

-Kloop_part_simd

⚫ Function outline
⚫ This option specifies whether a loop is spilt and SIMDized partially when the loop has both

the SIMDizable part and unSIMDizable part.

⚫ The target loops are inner-most loops.

⚫ This option becomes valid when the –Ksimd option is valid.

⚫ Effect
⚫ It is expected to improve execution performance because an object using SIMD instructions

is generated.

⚫ Note
⚫ Execution may take longer if there are too many work areas for data passing due to loop

fission.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_part_simd
-Kloop_nopart_simd

-Kloop_nopart_simd

!OCL LOOP_PART_SIMD
DO I=2,N
A(I) = A(I) - B(I) + LOG(C(I)) ! SIMDizable
D(I) = D(I-1) + A(I) ! unSIMDizable

ENDDO

Original source

DO I=2,N
A(I) = A(I) - B(I) + LOG(C(I)) ! SIMD executed

ENDDO
DO II=2,N

D(II) = D(II-1) + A(II) ! non-SIMD executed
ENDDO

Sample source after optimization

Only loop I that is split is SIMDized.

22

NOVREC/NORECURRENCE (1/2)

⚫ Function outline
⚫ The NOVREC specifier instructs that a loop has no array of recursive operation.

It uses SIMD instructions for an array in the loop but may not use SIMD instructions due to the
operation type and the loop structure. Also, a pointer array cannot be specified for array.

⚫ The NORECURRENCE specifier instructs that definitions of array elements to be the target of
operation in a DO loop are not referenced beyond an iteration. This makes DO loops the
following optimization target if the DO loops cannot be optimized due to unknown array
definition reference order.

⚫ Loop slice (automatic parallelization)

⚫ SIMDization

⚫ Software pipelining

⚫ array1, array2, ... are array names.

⚫ Effect
⚫ It is expected to improve execution performance because an object using SIMD instructions is

generated.

⚫ Notes
⚫ Execution result with the NOVREC Specifier is not guaranteed if the array used in the loop is

recursive data.

⚫ Execution result is not guaranteed if the NORECURRENCE specifier is specified by mistake to
an array dependent on the iteration count.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

NOVREC[(array1[,array2]...)]

NORECURRENCE [(array1[,array2]...)]

23

NOVREC/NORECURRENCE (2/2)

⚫ Examples
⚫ NOVREC specifier

⚫ How to select the NOVREC specifier and NORECURRENCE specifier

The specifier can be used without specifying individual array names so as to promote SIMDization.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

REAL A(20),B(20)
!OCL NOVREC
DO I=2,10

A(I) = A(I+N) + 1
B(I) = B(I+M) + 2

ENDDO

This specifier instructs that all the arrays
in the loop do not become recursive
operation. SIMD instructions are used
for operations of array A and B.

REAL A(20),B(20)
!OCL NOVREC(A)
DO I=2,10

A(I) = A(I+N) + 1
B(I) = B(I) + 2

ENDDO

The specifier instructs that array A with
unknown data dependency is not a
recursive operation. SIMD instructions
are used for operations of array A and B.

!OCL NOVREC
DO I=1,N

A(I) = A(I+M)+1
B(I) = B(I)+1

:
ENDDO

Select the specifier to use depending on the value of variable M.

• Use the NOVREC specifier when the value of M may be 1 or
above.

• Use the NORECURRENCE specifier when the value of M is 0
alone.

24

SWP

⚫ Function outline

⚫ This option performs optimization by software pipelining.

⚫ When the –Kswp option is specified together with the -Kswp_weak option or the -Kswp_strong option, the one
specified later becomes valid.

⚫ This is valid with -O2 or above.

⚫ Optimization is not performed under the following condition.

⚫ It is judged the optimization will not produce any effects.

⚫ Effect

⚫ It is expected to improve execution performance because the order of instructions are changed so that
instructions in the loop are executed in parallel as much as possible.

⚫ Point

⚫ SWP specifier has an effect equivalent to the -Kswp_strong option.

⚫ Notes

⚫ The loop needs to be iterated for sufficient times because the shape of the loop is changed by performing
instruction scheduling that overlaps executable statements between an arbitrary time of loop iteration and
subsequent loop iterations.

⚫ The size of the object program increases when software pipelining is applied for a loop with a variable as the
iteration count.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kswp
-Knoswp

-O2 or above: -Kswp
-O1: -Knoswp

Optimization Specifier

SWP
NOSWP

25

-Kswp_weak/-Kswp_strong (1/2)

⚫ Function outline
⚫ The option instructs software pipelining application method.

⚫ When the –Kswp option, the -Kswp_weak option, and the -Kswp_strong option are specified
together, the one specified last becomes valid.

⚫ Other functions and notes are the same as those for the –Kswp option.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kswp_weak -

-Kswp_strong -

Option Software Pipelining Application Method

-Kswp_weak
• Adjusts software pipelining to make overlapping of executable

statements in the loop small.

-Kswp_strong
• Relaxes the software pipelining application condition and applies

software pipelining forcibly even when the loop body is large.

Optimization Specifier

SWP_WEAK

26

-Kswp_weak/-Kswp_strong (2/2)

⚫ Effect
⚫ It is expected to improve execution performance because executing a loop with software

pipelining applied lessens the required iteration of the loop.

⚫ Point
⚫ ITR of the route that software pipelining go through varies depending on whether the

-Kswp_weak option is specified.

⚫ Note

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Note

-Kswp_weak
• Execution performance may degrade because overlapping of

executable statements becomes smaller.

-Kswp_strong
• Compilation memory and compilation time may increase

significantly.

Option Effect

-Kswp_weak
• Optimization effects are expected when the iteration count of the

loop is unknown at the time of compilation and the iteration
count of the loop is small.

-Kswp_strong
• Optimization effects are expected when the iteration count of the

loop is large.

27

-Kswp_freg_rate/-Kswp_ireg_rate/-Kswp_preg_rate (1/2)

⚫ Function outline

⚫ This option specifies the ratios (percentage) available for floating-point register, SVE, integer register, and
predicate register in software pipelining.
Software pipelining is performed assuming all the registers (32 registers for freq) are available if the
argument is 100 and twice as many as the registers of argument 100 (64 registers for freq) are available if
the argument is 200.

⚫ This is valid with -O2 or above.

⚫ Effect

⚫ Software pipelining application can be adjusted by changing the condition related to the number of registers.

⚫ Point

⚫ If software pipelining is not applied due to register shortage, specifying an integer larger than 1000 may
enable forcible application of software pipelining though spill/fill is generated.

⚫ Note

⚫ Execution performance may degrade due to change in register backup/restore instructions to memory.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kswp_freg_rate=n -Kswp_freg_rate=100

-Kswp_ireg_rate=n -Kswp_ireg_rate=100

-Kswp_preg_rate=n -Kswp_preg_rate=100

Optimization Specifier

SWP_FREG_RATE(n)

SWP_IREG_RATE(n)

SWP_PREG_RATE(n)

28

-Kswp_freg_rate/-Kswp_ireg_rate/-Kswp_preg_rate (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

7 1 DO J=1,N
8 1 !OCL UNROLL(8)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< PREFETCH(HARD) Expected by compiler :
<<< D, C, A
<<< Loop-information End >>>

9 2 8v DO I=1,N
10 2 8v A(I,J) = B(J,I) + C(I) / D(I,J)
11 2 8v ENDDO
12 1 ENDDO

jwd8666o-i “a.f90", line 9: Cannot apply software
pipelining due to floating-point register shortage

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< PREFETCH(HARD) Expected by compiler :
<<< D, C, A
<<< Loop-information End >>>

7 1 DO J=1,N
8 1 !OCL UNROLL(8)
9 1 !OCL SWP_FREG_RATE(120)

<<< Loop-information Start >>>
<<< [OPTIMIZATION]
<<< SIMD(VL: 8)
<<< SOFTWARE PIPELINING

(IPC: 2.52, ITR: 192, MVE: 2, POL: S)
<<< PREFETCH(HARD) Expected by compiler :
<<< C, D, A
<<< SPILLS :
<<< GENERAL : SPILL 0 FILL 0
<<< SIMD&FP : SPILL 0 FILL 0
<<< SCALABLE : SPILL 4 FILL 16
<<< PREDICATE : SPILL 0 FILL 0
<<< Loop-information End >>>

10 2 8v DO I=1,N
11 2 8v A(I,J) = B(J,I) + C(I) / D(I,J)
12 2 8v ENDDO
13 1 ENDDO

jwd8204o-i “a.f90", line 10: Applied software pipelining
to loop
jwd8205o-i “a.f90", line 10: A loop with software
pipelining applied is selected at the time of execution
when the loop iteration count is 192 or above.

Software pipelining cannot be applied due to floating-
point register shortage.

Available floating-point registers are increased by the
SWP_FREG_RATE specifier to promote software pipelining.

29

SWP_POLICY

⚫ Function outline
⚫ This option specifies the criteria to select the instruction scheduling algorism to be used

by software pipelining.

⚫ Software pipelining is performed when the –Kswp option, the -Kswp_weak option, the
-Kswp_strong options, or a specifier corresponding to each option is valid.

⚫ Effect
⚫ It is expected to improve execution performance because software pipelining is applied.

⚫ Point
⚫ Try auto/AUTO first because the algorism is selected automatically.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kswp_policy={auto|small|large} -Kswp_policy=auto

Optimization Specifier

SWP_POLICY({AUTO|SMALL|LARGE})

Argument Algorithm Selection Criteria

auto/AUTO • Selects the instruction scheduling algorism automatically for each loop.

small/SMALL
• Uses the instruction scheduling algorism appropriate for small loops (for

example, loops that require a small number of registers).

large/LARGE
• Uses the instruction scheduling algorism appropriate for large loops (for

example, loops that require a large number of registers).

30

-Ksch_pre_ra/-Ksch_post_ra

⚫ Function outline
⚫ This option performs instruction scheduling before and after register allocation.

⚫ Effect
⚫ It is expected to improve execution performance by using strong prefetch.

⚫ Point
⚫ Specifying the -Knosch_post_ra option may improve execution performance when spill/fill is

found at listing.

⚫ Notes
⚫ Execution performance may degrade with the -Ksch_pre_ra option because instructions to

back up/restore the registers in/from memory may increase. Generally, users need not be
aware of it because it is processed properly at optimization.

⚫ Instructions to back up/restore the registers in/from memory do not increase with the
-Ksch_post_ra option.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ksch_pre_ra
-Ksch_nopre_ra

-O1 or above: -Ksch_pre_ra
-O0 or below: -Ksch_nopre_ra

-Ksch_post_ra
-Ksch_nopost_ra

-O1 or above: -Ksch_post_ra
-O0 or below: -Ksch_post_ra

31

PREFETCH_SEQUENTIAL

⚫ Function outline
⚫ This option generates an object that uses prefetch instructions for sequentially accessed array

data used in the loop.

⚫ This becomes valid with -O1 or above.

⚫ Effect
⚫ It is expected to improve execution performance by the selected prefetch.

⚫ Note
⚫ Execution performance may degrade due to cache efficiency, branch existence, or index

complexity of the loop.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kprefetch_sequential[={auto|soft}]
-Kprefetch_nosequential

-O2 or above: -Kprefetch_sequential
-O1 or below: -Kprefetch_nosequential

Optimization Specifier

PREFETCH_SEQUENTIAL[({AUTO|SOFT})]
PREFETCH_NOSEQUENTIAL

Argument How to Select Prefetch

auto
(default)

• The compiler automatically selects whether to use hardware
prefetch or issue a prefetch instruction.

soft • Does not use hardware prefetch but issues a prefetch instruction.

32

PREFETCH_CACHE_LEVEL

⚫ Function outline
⚫ This option instructs to which cache level data is prefetched.

⚫ Effect
⚫ It is expected to improve execution performance by prefetch to the specified cache.

⚫ Points
⚫ Try auto first because the automatic prefetch function becomes valid.

⚫ For detailed explanation, see “Prefetch” in Programming Guide - Integrated Programming Guide. For usage,
see “Data Access Wait Time (Hidden Latency)” in Programming Guide - Tuning.

⚫ Note
⚫ Execution performance may degrade unless a proper cache level is specified.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kprefetch_cache_level={1|2|all} -Kprefetch_cache_level=all

Optimization Specifier

PREFETCH_CACHE_LEVEL(1|2|all)

Argument Cache Level to Prefetch

1 • Instructs to prefetch data to L1 cache.

2 • Instructs to prefetch data to L2 cache.

all

(default)

• Instructs to prefetch data to cache in every layer.

• More advanced prefetch can be implemented by combining prefetch
instructions to each layer.

33

PREFETCH_STRIDE (1/2)

⚫ Function outline
⚫ This option generates an object that uses prefetch instructions for array data accessed with a stride larger

than the cache line size used in the loop.

⚫ The -Kprefetch_stride=soft option and the -Kprefetch_nostride option become valid with
-O1 or above.

⚫ The -Kprefetch_stride=hard_auto option and the -Kprefetch_stride=hard_always option become valid when
the –Khpctag option and -O1 or above is specified.

⚫ How to prefetch array data can be specified.

⚫ Effect
⚫ It is expected to improve execution performance by the specified prefetch.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kprefetch_stride[={soft|hard_auto|
hard_always}]

-Kprefetch_nostride
-Kprefetch_nostride

Optimization Specifier

PREFETCH_STRIDE[({SOFT | HARD_AUTO | HARD_ALWAYS})]
PREFETCH_NOSTRIDE

Argument How to Prefetch

soft
(default)

• Performs prefetch by generating prefetch instructions.

hard_auto
• Performs prefetch by using hardware stride prefetcher.

• Specifies stride prefetcher so that only data not on cache is prefetched.

hard_always • Performs prefetch by using hardware stride prefetcher.

• Specifies stride prefetcher so that prefetch is always performed.

34

PREFETCH_STRIDE (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Note

◼ Execution performance may degrade due to cache efficiency, branch existence, or index
complexity of the loop.

◼ Example

!OCL PREFETCH_STRIDE(SOFT)
DO I=1,N,K
A(I) = B(I)

ENDDO

A prefetch instruction is generated in the target loop.

35

PREFETCH_STRONG/PREFETCH_STRONG_L2
(1/2)

⚫ Function outline
⚫ This option uses strong prefetch for prefetch instructions generated for L1 cache and L2

cache.

⚫ When any of the following options

⚫ -Kprefetch_sequential

⚫ -Kprefetch_stride

⚫ -Kprefetch_indirect

is valid, and:
- When the -Kprefetch_cache_level=all option is specified, both the -Kprefetch_strong option and the -
Kprefetch_strong_L2 option become valid.
- When the ｰKprefetch_cache_level=1 option is specified, the -Kprefetch_strong option becomes valid.
- When the -Kprefetch_cache_level=2 option is specified, the -Kprefetch_strong_L2 option becomes valid.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kprefetch_strong
-Kprefetch_nostrong

-Kprefetch_strong

-Kprefetch_strong_L2
-Kprefetch_nostrong_L2

-Kprefetch_strong_L2

Optimization Specifier

PREFETCH_STRONG
PREFETCH_NOSTRONG
PREFETCH_STRONG_L2
PREFETCH_NOSTRONG_L2

36

PREFETCH_STRONG/PREFETCH_STRONG_L2
(2/2)

⚫ Effect
⚫ It is expected to improve execution performance by using strong prefetch.

⚫ Notes
⚫ There are “Strong property” and “Weak property” for prefetch instruction. With “Strong

property,” the hardware tries to complete the prefetch request as much as possible. With
“Weak property,” the prefetch request is deleted unless the hardware resource is sufficient.

⚫ The default of L1 cache is “Weak property” on K computer, but it is changed to “Strong
property” on Fugaku.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL PREFETCH_STRONG
DO I=1,N
A(I) = B(I)

ENDDO

Prefetch instructions of L1 cache generated in the target loop are strong prefetch.

37

PREFETCH_CONDITIONAL

⚫ Function outline
⚫This option generates prefetch instructions for array data used in blocks contained

in IF constructs and CASE constructs.

⚫This option becomes valid when any of the following options is valid.

⚫ -Kprefetch_sequential

⚫ -Kprefetch_stride

⚫ -Kprefetch_indirect

⚫Effect
⚫ It is expected to improve execution performance by prefetch for array data.

⚫Note
⚫Execution performance may degrade due to cache efficiency, branch existence, or

index complexity of the loop.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kprefetch_conditional
-Kprefetch_noconditional

-Kprefetch_noconditional

Optimization Specifier

PREFETCH_CONDITIONAL
PREFETCH_NOCONDITIONAL

38

PREFETCH_INDIRECT

⚫ Function outline
⚫ This specifier generates prefetch instructions for array data used by the loop through

indirect access (list access).

⚫ Effect
⚫ It is expected to improve execution performance by prefetch for array data.

⚫ Note
⚫ Execution performance may degrade due to cache efficiency, branch existence or index

complexity of the loop, or, the cost of prefetch instructions when prefetch target array
data is consecutive or an identical value.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

PREFETCH_INDIRECT
PREFETCH_NOINDIRECT

!OCL PREFETCH_INDIRECT
DO I=1,N
A(INDX(I)) = B(INDX(I))

ENDDO

A prefetch instruction is generated for indirectly accessed (through list access) array data
used by the loop through indirect access.

39

PREFETCH_LINE/PREFETCH_LINE_L2

⚫ Function outline
⚫ Targets data locating “n” cache lines ahead when a prefetch instruction is generated for L1 cache or L2 cache.

⚫ Specify an integer value between 1 and 100 for “n”.

⚫ Effect
⚫ It is expected to improve execution performance by prefetch for array data.

⚫ Point
⚫ Hardware prefetch prefetches data at a relatively far location such as six cache lines ahead at maximum for L1

cache and 40 cache lines ahead at maximum for L2 cache. So, specifying a close location in this option may
produce effects.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

PREFETCH_LINE(n)

PREFETCH_LINE_L2(n)

!OCL PREFETCH_LINE(4)
DO I=1,N
A(I) = B(I)

ENDDO

For prefetch instructions of L1 cache generated in the
loop, the target of prefetch is data four cache lines
ahead for prefetch.
The size of L1 cache line is 256 bytes. It is the same
size as 256/8=32 elements when accessed by double
precision real type (8 bytes).
In the left example, data of 4 cache lines * 32
elements = 128 elements ahead is prefetched.

40

PREFETCH_READ/PREFETCH_WRITE (1/2)

⚫ Function outline

⚫ PREFETCH_READ generates prefetch instructions for the referenced data, while
PREFETCH_WRITE generates prefetch instructions for the defined data.

⚫ Specify the data (an array element or an array section) referenced/defined in the program for
name.
In addition to specification by elements, vector specification is available.

⚫ Specify “level” to specify to which cache level data is prefetched.
1 means L1 cache, while 2 means L2 cache. The default is level=1.

⚫ Specify “strong” to specify whether to use strong prefetch.

⚫ When strong=0 is specified, strong prefetch is not used.

⚫ When strong=1 is specified, strong prefetch is used.

⚫ The default is strong=1.

⚫ Effect

⚫ It is expected to improve execution performance by prefetch for array data.

⚫ Points

⚫ Use the PREFETCH_WRITE specifier for referenced and defined data.

⚫ When vector specification is used for “name,” the compiler generates a prefetch instruction per
cache line dynamically.
Also, the performance may be better than specification by element because two or more
prefetch instructions can be generated at the same time.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

PREFETCH_READ(name[,level={ 1 | 2 }][,strong={ 0 | 1 }])

PREFETCH_WRITE(name[,level={ 1 | 2 }][,strong={ 0 | 1 }])

41

PREFETCH_READ/PREFETCH_WRITE (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

DO J=1,N
DO I=1,ISIZE

!OCL PREFETCH_WRITE(A(I,J+1),level=1)
!OCL PREFETCH_READ(B(I,J+1),level=1)
!OCL PREFETCH_READ(C(I,J+1),level=1)

A(I,J) = B(I,J) + SCALAR * C(I,J)
ENDDO

ENDDO

Prefetch instructions are generated
for A(I,J+1), B(I,J+1), and C(I,J+1).

Specification by element

DO J=1,N
!OCL PREFETCH_WRITE(A(1:ISIZE,J+1),level=1)
!OCL PREFETCH_READ(B(1:ISIZE,J+1),level=1)
!OCL PREFETCH_READ(C(1:ISIZE,J+1),level=1)

DO I=1,ISIZE
A(I,J) = B(I,J) + SCALAR * C(I,J)

ENDDO
ENDDO

Specification by vector (recommended)

Prefetch instructions are generated for
A(1:ISIZE,J+1), B(1:ISIZE,J+1), and
C(1:ISIZE,J+1).
Compared to specification by element,
performance may be improved because the
number of instructions in the inner-most loop can
be reduced by vector specification outside of the
loop.

42

Loop Expansion

⚫ There are two types of loop expansion as shown below.
⚫ Unrolling (unroll)

⚫ Striping (striping)

⚫ Points
⚫ Unrolling is recommended in general. Unrolling does not change the order of instructions. So,

the expansion count is as small as two or three and striping is effective to change the order
of instructions securely.

⚫ When –Kstriping option and –Kunroll option are specified together, the one specified later is
valid.

⚫ Note
⚫ Striping uses more registers than unrolling. So, longer stripe length may degrade the

execution performance.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

DO I=1,N
A(I) = B(I) + C(I)

ENDDO

DO I=1,N,2
TMP_B1 = B(I)
TMP_B2 = B(I+1)
TMP_C1 = C(I)
TMP_C2 = C(I+1)
TMP_A1 = TMP_B1 + TMP_C1
TMP_A2 = TMP_B2 + TMP_C2
A(I) = TMP_A1
A(I+1) = TMP_A2

ENDDO

◼ Two striping expansions (sample)

DO I=1,N,2
TMP_B1 = B(I)
TMP_C1 = C(I)
TMP_A1 = TMP_B1 + TMP_C1
A(I) = TMP_A1
TMP_B2 = B(I+1)
TMP_C2 = C(I+1)
TMP_A2 = TMP_B2 + TMP_C2
A(I+1) = TMP_A2

ENDDO

◼ Two unrolling expansions (sample)Difference between
unrolling and striping

Expanded
differently

Red: 1st expansion
Blue: 2nd expansion

43

UNROLL (1/3)

⚫ Function outline
⚫ This option expands all the executable statements in a DO loop “n” times in the loop to

reduce the iteration count of the loop to once in “n” times.

⚫ If -Ksimd[=level] option is valid and SIMDization of the loop components is performed, this
option expands executable statements SIMD-length * n times to reduce the iteration count of
the loop to once in SIMD-length * “n”.

⚫ The target loops are those that are not entered or not exited.

⚫ When n is omitted to be specified, the compiler automatically determines the best value.

⚫ Use the UNROLL specifier to apply this to a specific DO loop.

⚫ Effect
⚫ The iteration count becomes smaller and the overhead due to loop iteration becomes smaller.

Also, it is expected to improve the execution performance because executable statements
multiply expanded are optimized as a set of the loop.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kunroll[=n]
-Knounroll

-O2 or above: -Kunroll
-O1 or below: -Knounroll

Optimization Specifier

UNROLL[(n)]
UNROLL('full')

44

UNROLL (2/3)

⚫ Points
⚫ Ordinary loops are unrolled by software pipelining that performs instruction scheduling with

overlapped executable statements in the loop.
Loops with redirection operations are unrolled by unrolling and software pipelining.

⚫ Loop unrolling is performed before and after SIMDization.

For loops where the -Kunroll[=n] option or the UNROLL specifier is valid, loop unrolling is
performed before and after SIMDization. If the iteration count of an inner loop is small, full
unrolling is performed by software pipelining.

⚫ Statements with array assignment and array expression (array description) are expanded to
a Do loop and become the target of unrolling.

⚫ Instruction scheduling/software pipelining promotion may resolve the operation wait state.

⚫ Note
⚫ Statements in a loop multiply as they expand and contract, so the size of the object

program increases.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Before
SIMDization

• To apply SIMDization or software pipelining to the outer loop, full
unrolling is performed on the inner loop with the small iteration
count.

After
SIMDization

• To promote optimization such as common expressions, unrolling
or full unrolling is performed on the inner loop.

45

UNROLL (3/3)

⚫ Examples
⚫ Unroll only (does not improve execution performance)

⚫ SIMDization + unrolling (improves execution performance)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL UNROLL(2)
DO I=1,N
A(I) = B(I) + C(I)

ENDDO

Original source

DO I=1,N,2
TMP_B1 = B(I)
TMP_C1 = C(I)
TMP_A1 = TMP_B1 + TMP_C1
A(I) = TMP_A1
TMP_B2 = B(I+1)
TMP_C2 = C(I+1)
TMP_A2 = TMP_B2 + TMP_C2
A(I+1) = TMP_A2

ENDDO

Sample source after optimization

With unrolling only, Gather
is output and execution
performance is not
improved.

!OCL UNROLL(2)
DO I=1,N
A(I) = B(I) + C(I)

ENDDO

Original source

DO I=1,N,15
TMP_B1(1:7) = B(I:I+7)
TMP_C1(1:7) = C(I:I+7)
TMP_A1(1:7) = TMP_B1(1:7) + TMP_C1(1:7)
A(I:I+7) = TMP_A1(1:7)
TMP_B2(1:7) = B(I+8:I+15)
TMP_C2(1:7) = C(I+8:I+15)
TMP_A2(1:7) = TMP_B2(1:7) + TMP_C2(1:7)
A(I+8:I+15) = TMP_A2(1:7)

ENDDO

Sample source after optimization with SIMDization (VL:8) valid

46

FULLUNROLL_PRE_SIMD (1/2)

⚫ Function outline
⚫This option controls full unrolling behavior before SIMDization.

⚫ “n” represents an integer between two and 100 that expresses the upper bound
of the iteration count of the target loop.

⚫When the value “n” is omitted, the compiler determines automatically optimum
value.

⚫Only the DO loop or the array description right after this is specified, is the target.

⚫Effect
⚫The iteration count becomes smaller and the overhead due to loop iteration

decreases. Also, it is expected to improve execution performance because
executable statements expanded multiply are optimized as a set of the loop.

⚫Point
⚫Promotion of SIMDization may reduce the operation execution time.

⚫Note
⚫Optimization is not performed if the iteration count is unknown.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

FULLUNROLL_PRE_SIMD[(n)]

47

FULLUNROLL_PRE_SIMD (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Example

DO I=1,N
!OCL FULLUNROLL_PRE_SIMD

DO J=1,16
A(I,J) = B(I,J) + C(I,J)

ENDDO
ENDDO

Original source

Full unrolling before SIMDization
is applied to the inner loop.

DO I=1,N,8
A(I:I+7,1) = B(I:I+7,1) + C(I:I+7,1)
A(I:I+7,2) = B(I:I+7,2) + C(I:I+7,2)
A(I:I+7,3) = B(I:I+7,3) + C(I:I+7,3)
A(I:I+7,4) = B(I:I+7,4) + C(I:I+7,4)
A(I:I+7,5) = B(I:I+7,5) + C(I:I+7,5)
A(I:I+7.6) = B(I:I+7,6) + C(I:I+7,6)
A(I:I+7,7) = B(I:I+7,7) + C(I:I+7,7)
A(I:I+7,8) = B(I:I+7,8) + C(I:I+7,8)
A(I:I+7,9) = B(I:I+7,9) + C(I:I+7,9)
A(I:I+7,10) = B(I:I+7,10) + C(I:I+7,10)
A(I:I+7,11) = B(I:I+7,11) + C(I:I+7,11)
A(I:I+7,12) = B(I:I+7,12) + C(I:I+7,12)
A(I:I+7,13) = B(I:I+7,13) + C(I:I+7,13)
A(I:I+7,14) = B(I:I+7,14) + C(I:I+7,14)
A(I:I+7,15) = B(I:I+7,15) + C(I:I+7,15)
A(I:I+7,16) = B(I:I+7,16) + C(I:I+7,16)

ENDDO

Sample source after optimization

The loop “DO I=1,N” is SIMDized (VL:8)
after full unrolling of the inner loop.

48

UNROLL_AND_JAM (1/2)

⚫ Function outline
⚫ This option performs unrolling on an outer loop of a nested loop to expand it “n” times and then fuses the

expanded inner loops.

⚫ With the -Kunroll_and_jam option or the UNROLL_AND_JAM specifier, the optimization is not performed under
any of the following condition.

⚫ The loop is the inner-most loop.

⚫ It is judged the optimization will not bear any effects (with any addition or subtraction in the second dimension,
with reusability, or with any extractable common expression).

⚫ It is judged data dependency exists beyond an iteration.

⚫ The UNROLL_AND_JAM_FORCE specifier considers no data dependency beyond an iteration and always applies
unroll-and-jam.

⚫ To apply this to a specific DO loop, use the UNROLL_AND_JAM specifier or the UNROLL_AND_JAM_FORCE
specifier.

⚫ Effects
⚫ It is expected to improve execution performance because it promotes common expression elimination.

⚫ The memory wait state may be resolved by streamlining L2 cache use.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kunroll_and_jam[=n]
-Knounroll_and_jam

-Knounroll_and_jam

Optimization Specifier

UNROLL_AND_JAM[(n)]

UNROLL_AND_JAM_FORCE[(n)]

49

UNROLL_AND_JAM (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Points

◼ Whether it is effective depends on each loop. So, it is recommended not to use the
-Kunroll_and_jam[=N] option to apply to the whole program, but to use the
UNROLL_AND_JAM specifier or the UNROLL_AND_JAM_FORCE specifier to apply to individual
loops.

◼ Use the UNROLL_AND_JAM_FORCE specifier to apply unroll-and-jam forcibly when there is no
data dependency beyond an iteration and it is judged that any common expressions can be
extracted.

◼ Notes

◼ The execution result is not guaranteed if the UNROLL_AND_JAM_FORCE specifier is specified
by mistake (there is data dependency beyond an iteration).

◼ If the iteration count of the inner-most loop is small, cache use efficiency may degrade
depending on the increase of data streams and change in the data access order, leading to
execution performance degradation.
For details, see the item, “outer loop unrolling” in Programming Guide - Tuning.

◼ Increase in cache mistake may be improved by correction with prefetch.
For details, see the item, “outer loop unrolling” in Programming Guide - Tuning.

◼ Example

!OCL UNROLL_AND_JAM(2)
DO J=1, 128

DO I=1, 128
A(I, J) = B(I, J) + B(I, J+1)
...

END DO
END DO

Original source

DO J=1, 128, 2
DO I=1, 128

A(I, J) = B(I, J) + B(I, J+1)
A(I, J+1) = B(I, J+1) + B(I, J+2)
...

END DO
END DO

Sample source after optimization

50

STRIPING (1/2)

⚫ Function outline
⚫ This option expands all the executable statements in a DO loop for a certain (stripe length “n”)

times within the loop and make the iteration count of the loop once in “n” times.

⚫ The target loops are those that are not entered or not exited.

⚫ To apply this to a specific DO loop, use the STRIPING specifier.

⚫ Effect
⚫ The iteration count becomes smaller and the overhead due to loop iteration decreases. Also, it

is expected to improve execution performance including promotion of instruction scheduling.

⚫ Point
⚫ Striping is effective to change the order of instructions without fail when the expansion count

is as small as two or three.

⚫ Notes
⚫ The order of instructions is changed without fail. However, execution performance may

degrade when the stripe length “n” is long due because more registers are used.

⚫ The size of the object program increases because statements in a loop expanded multiply.

⚫ Compilation may take longer.
DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kstriping[=n]
-Knostriping

-Knostriping

Optimization Specifier

STRIPING[(n)]

51

STRIPING (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Example

!OCL STRIPING (2)
DO I=1,N
A(I) = B(I) + C(I)

ENDDO

Original source

DO I=1,N,2
TMP_B1 = B(I)
TMP_B2 = B(I+1)
TMP_C1 = C(I)
TMP_C2 = C(I+1)
TMP_A1 = TMP_B1 + TMP_C1
TMP_A2 = TMP_B2 + TMP_C2
A(I) = TMP_A1
A(I+1) = TMP_A2

ENDDO

Sample source after optimization

52

LOOP_FISSION (1/3)

⚫ Function outline
⚫ This option divides a loop into multiple smaller loops.

⚫ The target loops are those that are not entered or not exited.

⚫ To apply this to a specific DO loop, use the LOOP_FISSION_TARGET specifier.

⚫ Use the FISSION_POINT specifier to split a loop at a specified location of a loop.
This option splits nested loops of the depth “n” counting from the inner-most loop.
Specify an integer between 1 and 6 for “n”.
If “n” is omitted to be specified only the inner-most loops (first division) are divided.

⚫ Effect
⚫ It is expected to improve execution performance because loop fission brings loop interchange and

parallelization of outer loops is enabled.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_fission
-Kloop_nofission

-O2 or above: -Kloop_fission
-O1 or below: -Kloop_nofission

Option Specifier

LOOP_FISSION_TARGET[({CL | LS})]
FISSION_POINT[(n)]

Argument Loop Fission Algorithm

CL
(default)

• Clustering algorism.

• Performs loop fission with giving priority to reduction of work array for
temporary data transfer associated with loop fission.

LS
• Local search algorism.

• Performs loop fission with giving priority to software pipelining promotion.

53

LOOP_FISSION (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Note

◼ Local search algorism takes more compilation time compared to clustering algorism.

◼ Example

◼ -Kloop_fission option

DO I=1,N
E(I) = A1(I)*B1(I) + A2(I)*B2(I) + A3(I)*B3(I) + A4(I)*B4(I) + A5(I)*B5(I)
F(I) = C1(I)*D1(I) + C2(I)*D2(I) + C3(I)*D3(I) + C4(I)*D4(I) + C5(I)*D5(I)

ENDDO

Original source

DO I=1,N
E(I) = A1(I)*B1(I) + A2(I)*B2(I) + A3(I)*B3(I) + A4(I)*B4(I) + A5(I)*B5(I)

ENDDO
DO I=1,N

F(I) = C1(I)*D1(I) + C2(I)*D2(I) + C3(I)*D3(I) + C4(I)*D4(I) + C5(I)*D5(I)
ENDDO

Sample source after optimization

54

LOOP_FISSION (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ LOOP_FISSION_TARGET specifier

◼ FISSION_POINT specifier

DO I=1,N
DO J=1,N

A(I,J) = B(I,J)
!OCL FISSION_POINT(1)

C(I,J) = D(I,J)
ENDDO

ENDDO

Original source

DO I=1,N
DO J=1,N

A(I,J) = B(I,J)
ENDDO
DO J=1,N

C(I,J) = D(I,J)
ENDDO

ENDDO

Sample source after optimization

Loop fission is performed on Loop
J in the above example.

!OCL LOOP_FISSION_TARGET(CL)
DO I=1,N

S1 = A(I) + B(I)
S2 = C(I) + D(I)
. ..
P(I) = S1 + Q(I)
X(I) = S2 + Y(I)
...

ENDDO

!OCL LOOP_FISSION_TARGET(LS)
DO I=1,N

S1 = A(I) + B(I)
S2 = C(I) + D(I)
...
P(I) = S1 + Q(I)
X(I) = S2 + Y(I)
...

ENDDO

CL LS

This splits loops with giving priority
to argument reduction of work array
for temporary data transfer
associated with loop fission.

This argument splits loops with
giving priority to software pipelining
promotion.

55

LOOP_FISSION_THRESHOLD (1/2)

⚫ Function outline
⚫ This option specifies the threshold to determine the loop granularity (the number of

instructions or registers in the loop) after loop fission.

⚫ Specify a value between 1 and 100 for “n”.

⚫ This option is valid when the LOOP_FISSION_TARGET specifier is specified in the optimization
control line and the -Kloop_fission option, the -Kocl option, and the –O2 option or above are
valid.

⚫ To apply this to a specific DO loop, use the LOOP_FISSION_THRESHOLD specifier.

⚫ Effect
⚫ It is expected to have effects of promoting software pipelining, improving cache memory use

efficiency, and resolving register shortage by arranging the number of splits in loop fission.

⚫ Point
⚫ The smaller “n” becomes, the smaller loops after fission and the more the number of splits

tend to be.

⚫ Note
⚫ Increase in the number of splits results in increase in work areas and cache memory used.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_fission_threshold=n -Kloop_fission_threshold=50

Optimization Specifier

LOOP_FISSION_THRESHOLD(n)

56

LOOP_FISSION_THRESHOLD (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL LOOP_FISSION_TARGET
!OCL LOOP_FISSION_THRESHOLD(N)
DO I=1,NN
A1(I) = A1(I) + B1(I)
...
A2(I) = A2(I) + B2(I)
...
A3(I) = A3(I) + B3(I)
...
A4(I) = A4(I) + B4(I)
...
ENDDO

DO I=1,NN
A1(I) = A1(I) + B1(I)
...
A2(I) = A2(I) + B2(I)
...
ENDDO
DO I=1,NN
A3(I) = A3(I) + B3(I)
...
A4(I) = A4(I) + B4(I)
...
ENDDO

Original source (N={50|20})
Sample source after optimization

(N=50)

DO I=1,NN
A1(I) = A1(I) + B1(I)
...
ENDDO
DO I=1,NN
A2(I) = A2(I) + B2(I)
...
ENDDO
DO I=1,NN
A3(I) = A3(I) + B3(I)
...
ENDDO
DO I=1,NN
A4(I) = A4(I) + B4(I)
...
ENDDO

Sample source after optimization
(N=20)

57

LOOP_FISSION_STRIPMINING (1/3)

⚫ Function outline
⚫ This option instructs to fractionate loops for smaller iteration counts after automatic loop fission.

⚫ This option becomes valid when the LOOP_FISSION_TARGET specifier is specified in the optimization control line and the
-Kloop_fission option, the -Kocl option, and the –O2 option or above are valid.

⚫ There are two ways to specify the strip length: Specifying the length (n) directly, and specifying the length to be the size
appropriate for each cache layer (‘L1’ or ‘L2’).

⚫ When the argument is omitted, the compiler determines the value automatically.

⚫ Strip mining is applied under any of the following conditions.

⚫ The option or the optimization specifier is valid.

⚫ The size of the temporary area is unknown at the time of compilation.

⚫ The size of the temporary area is clear at the time of compilation and 8 Kbytes or above.

⚫ The -Kstriping option or the STRIPING specifier is invalid.

⚫ Blocking is not applied.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_fisson_stripmining[={n|L1|L2}]
-Kloop_nofisson_stripmining

-Kloop_nofission_stripmining

Optimization Specifier

LOOP_FISSION_STRIPMINING[({n|L1|L2})]

Argument Strip Length

n
• Specify the strip length for “n”. You can specify a value between 2 and 100000000

for “n”.

L1
• Takes cache memory use efficiency into consideration and sets the strip length to

fit the size of L1 cache.

L2
• Takes cache memory use efficiency into consideration and sets the strip length to

fit the size of L2 cache.

58

LOOP_FISSION_STRIPMINING (2/3)

⚫ Effect
⚫ It is expected to improve cache memory use efficiency for data accessed between split loops.

⚫ Point
⚫ It is recommended to set the strip length “n” to the length of software pipelining target.

Adjust the strip length by compiling a source program without the -Kloop_fisson_stripmining option and
referencing lister information of software pipelining.

⚫ Notes
⚫ If the strip length “n” is too long, it may not be stored in L1 cache.

⚫ If the strip length “n” is too short, it may not go to the software pipelining route.

⚫ If the strip length “n” is short, it may disturb cache access continuity and may prevent prefetch from working.

⚫ Examples
⚫ -Kloop_fisson_stripmining option

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

REAL A(L),B(L),P(L),Q
!OCL LOOP_FISSON_TARGET
DO I=1,L

Q = A(I) + B(I)
...
P(I) = P(I) + Q
...

ENDDO

REAL A(L),B(L),P(L),Q
REAL TEMPARRAY_Q(L)
DO I=1,L
TEMPARRAY_Q(I) = A(I) + B(I)
...

ENDDO
DO I=1,L
P(I) = P(I) + TEMPARRAY_Q(I)
...

ENDDO

Original source
Sample source

after automatic loop fission

REAL A(L),B(L),P(L),Q
REAL TEMPARRAY_Q(256)
DO II=1,L,256
DO I=II,MIN(L,II+255)

TEMPARRAY_Q(I-II) = A(I) + B(I)
...

ENDDO
DO I=II,MIN(L,II+255)

P(I) = P(I) + TEMPARRAY_Q(I-II)
...

ENDDO
ENDDO

Sample source after optimization

The compiler generates a temporary array
TEMPARRAY Q.

59

LOOP_FISSION_STRIPMINING (3/3)

⚫LOOP_FISSION_STRIPMINING specifier

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

REAL A(L),B(L),P(L),Q
!OCL LOOP_FISSION_TARGET
!OCL LOOP_FISSION_STRIPMINING(256)
DO I=1,L

Q = A(I) + B(I)
...
P(I) = P(I) + Q
...

ENDDO

Original source

REAL A(L),B(L),P(L),Q
REAL TEMPARRAY_Q(256)
DO II=1,L,256

DO I=II,MIN(L,II+255)
TEMPARRAY_Q(I-II) = A(I) + B(I)
...

ENDDO
DO I= II,MIN(L,II+255)

P(I) = P(I) + TEMPARRAY_Q(I-II)
...

ENDDO
ENDDO

Sample source after optimization
• A loop is generated

outside the split loops and
strip mining with strip
length 256 is performed.
At the same time, the
compiler generates a
temporary array to store
the interim result between
loops.

• The number of elements
in the array
TEMPARRAY_Q is the
same as the strip length,
256.

60

-Kloop_fusion (1/2)

⚫Function outline
⚫This option instructs to fuse adjacent loops if -O2 or above is specified.

⚫To suppress loop fusion of a specific DO loop, use the LOOP_NOFUSION
specifier.

⚫Effect
⚫It is expected to generate an effect of localizing data by loop fusion.

⚫Note
⚫Excessive fusion causes too large loop bodies, which may prevent

software pipelining from working.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_fusion
-Kloop_nofusion

-O2 or above: -Kloop_fusion
-O1 or below: -Kloop_nofusion

Optimization Specifier

LOOP_NOFUSION

61

-Kloop_fusion (2/2)

⚫ Examples
⚫ -Kloop_fusion option

⚫ LOOP_NOFUSION specifier

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL LOOP_NOFUSION
DO I=1,N

A(I)=B(I)+C(I)
ENDDO
DO J=1,N

D(J)=E(J)+F(J)
ENDDO
DO K=1,N

G(K)=H(K)+L(K)
ENDDO

Loop I and loop J are not fused. Loop J and loop K
are fused.

SUBROUTINE SUB(A, B, C, D, E, N)
REAL*8 A(N), B(N), C(N)
REAL*8 D(N), E(N)
DO I=1,N
A(I)=B(I)+C(I)

ENDDO
DO I=1,N
D(I)=A(I)+E(I)

ENDDO
END SUBROUTINE SUB

SUBROUTINE SUB (A, B, C, D, E, N)
REAL*8 A(N), B(N), C(N)
REAL*8 D(N), E(N)
DO I=1,N
A(I)=B(I)+C(I)
D(I)=A(I)+E(I)

ENDDO
END SUBROUTINE SUB

Original source Sample source after optimization

!OCL LOOP_NOFUSION
DO I=1,N

A(I)=B(I)+C(I)
ENDDO
DO J=1,N

D(J)=E(J)+F(J)
G(J)=H(J)+L(J)

ENDDO

Original source Sample source after optimization

62

LOOP_INTERCHANGE (1/2)

⚫ Function outline
⚫ This option instructs to perform loop interchange if -O2 or above is specified.

⚫ To perform loop interchange of a specific DO loop, use the LOOP_INTERCHANGE specifier.
This specifier performs nested DO loop interchange in the specified order (var1, var2, …).
var1, var2, var3, ... are DO variable names.

⚫ Interchange is not performed if it is impossible, for example, if the result changes by
interchange.

⚫ Effect
⚫ It is expected to generate effect of improving data access efficiency by loop interchange.

⚫ Point
⚫ It is deemed desirable to switch loops so that data access in the loop becomes continuous

access.
In particular, make the left side of the expression accessed continuously.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_interchange
-Kloop_nointerchange

-O2 or above: -Kloop_interchange
-O1 or below: -Kloop_nointerchange

Optimization Specifier

LOOP_INTERCHANGE(var1,var2[,var3]...)

63

LOOP_INTERCHANGE (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL LOOP_INTERCHANGE(I,J)
DO I=1,M

DO J=1,N
A(I,J) = A(I,J) + B(J,I)

ENDDO
ENDDO

• When the LOOP_INTERCHANGE specifier is not specified, the loops are
put into parallel with DO variable I. When the LOOP_INTERCHANGE
specifier is specified, loops are switched to be put into parallel with DO
variable J.

DO J=1,N
DO I=1,M

A(I,J) = A(I,J) + B(J,I)
ENDDO

ENDDO

Original source Sample source after optimization

64

UNSWITCHING (1/2)

⚫Function outline
⚫This specifier instructs to perform loop unswitching of the specified IF

construct.

⚫Specify this optimization line right before an IF construct unchanged in
the loop.
If it is specified in other location, it becomes invalid.

⚫Effect
⚫It is expected to promote SIMDization and software pipelining because

all the branches in the loop disappear.

⚫Note
⚫If the loop to be the target of loop unswitching has many executable

statements, compilation memory and compilation time may increase
significantly.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

UNSWITCHING

65

UNSWITCHING (2/2)

⚫Examples

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Original source

DO I=1,N
IF (X == 0) THEN
A(I) = B(I)

!OCL UNSWITCHING
ELSE IF (X == 1) THEN
A(I) = C(I)

ELSE
A(I) = D(I)

ENDIF
ENDDO

Loop unswitching is performed only on IF constructs
with the UNSWITCHING specifier specified.
Loop unswitching is not performed on IF constructs
without the UNSWITCHING specifier specified even if
it is in a loop that contains another IF construct with
the UNSWITCHING specifier specified.

DO I=1,N
!OCL UNSWITCHING

IF (X == 0) THEN
A(I) = B(I)

ELSE
A(I) = C(I)

ENDIF
ENDDO

Original source

Loop unswitching of the IF construct is performed.

IF (X == 0) THEN
DO I=1,N

A(I) = B(I)
ENDDO

ELSE
DO I=1,N

A(I) = C(I)
ENDDO

ENDIF

Sample source after optimization

Sample source after optimization

IF (X == 1) THEN
DO I=1,N

IF (X == 0) THEN
A(I) = B(I)

ENDIF
A(I) = C(I)

ENDDO
ELSE
DO I=1,N

IF (X == 0) THEN
A(I) = B(I)

ENDIF
A(I) = D(I)

ENDDO
ENDIF

66

LOOP_PERFECT_NEST

⚫ Function outline
⚫ This option instructs to split an imperfect nested loop into perfect nested loops when “O2 –

Kloop_perfect_net” or -O3 or above is specified.

⚫ To split a specific imperfect nested loop into perfect nested loops, use the LOOP_PERFECT_NEST specifier.

⚫ Effect
⚫ It is expected to produce an effect to promote optimization of loop interchange, loop unnesting, etc. by

making an imperfect nested loop a perfect nested loop.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kloop_perfect_nest
-Kloop_noperfect_nest

-O3 or above: -Kloop_perfect_nest
-O2 or below: -Kloop_noperfect_nest

Optimization Specifier

LOOP_PERFECT_NEST

LOOP_NOPERFECT_NEST

!OCL LOOP_PERFECT_NEST
DO J=1,N ! imperfect nested loop
A(J) = B(J)+1
DO I=1,N

C(J,I) = D(J,I)+A(J)
ENDDO

ENDDO

DO J=1,N
A(J) = B(J)+1

ENDDO
DO J=1,N ! perfect nested loop

DO I=1,N
C(J,I) = D(J,I)+A(J)

ENDDO
ENDDO

Original source Sample source after optimization

Imperfect nested loops J and I are
split into perfect nested loops.

67

-Kzfill (1/3)

⚫Function outline
⚫This option does not load array data that performs only writing in the

loop from the memory but instructs to use an instruction to acquire the
cache line for writing on cache.

⚫By specifying “N”, the data “N” cache lines ahead becomes the
optimization target.
It is recommended not to use the option to apply this to the whole
program but use the ZFILL specifier to apply this to individual loops.

⚫This option becomes valid when -O2 or above is valid. Optimization is
not performed on arrays with reference within the same loops,
discontinuously accessed arrays, or arrays stored under IF constructs.

⚫Effect
⚫It is expected to improve execution performance because writing of

array data that performs only writing in the loop becomes faster.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kzfill[=N]
-Knozfill

-Knozfill

68

-Kzfill (2/3)

⚫Notes
⚫ When the –Kzfill option is applied, the prefetch instruction to L2 cache

is not issued.

⚫ The loop is transformed so that the cache line acquired by this
optimization is always stored. So, the following optimization cannot be
applied.

⚫ Loop unrolling

⚫ Loop striping

⚫ Applying this optimization may degrade execution performance under
any of the following conditions.

⚫ The program is not under the influence of the memory bandwidth
bottleneck.

⚫ The iteration count of the loop is small.

⚫ “N” is used to specify the number of cache lines, and the iteration count is
smaller than the number of elements in the cache line.

⚫ If execution performance degrades by specifying the –Kzfill option, do
not specify the
–Kzfill option.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED69

-Kzfill (2/3)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

DO I=1,N
A(I) = B(I) + C(I)

ENDDO

When –Kzfill is not specified

Register

Cache

Memory

Read cache
line of B

Read B

Read cache
line of C

Read C

Read cache
line of A

Write back
cache line of

A

Read A

When –Kzfill is specified

Register

Cache

Memory

Read cache
line of B

Read B

Read cache
line of C

Read C
Acquire

cache line of
A (ZFILL)

Write back
cache line of

A

Write A

Memory is accessed four times in total. Reading of A from memory is not performed, so
memory is accessed three times in total.

Original source

70

CLONE (1/2)

⚫ Function outline
⚫This specifier instructs to consider the value of variable var as constant in the loop,

generate a branch where the equality with the specified variable “var” and the
value n1[,n2] ... is the condition expression, and copy the loop.

⚫Branches are generated in order of specified values.

⚫ “Var” is an integer-type variable. The kind type parameter is 1, 2, 4, or 8.
N1[,n2] ... is a decimal number or a named constant between -
9223372036854775808 and 9223372036854775807.

⚫This optimization specifier becomes valid when -O3 or above is valid.

⚫Effect
⚫ It is expected to improve execution performance because this promotes other

optimization such as full unrolling.

⚫Notes
⚫The execution result is not guaranteed when variable “var” is updated in the target

loop.

⚫The size of the object program may increase and compilation may take longer
because loops are copied.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

CLONE(var==n1[,n2]...)

71

CLONE (2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL CLONE(N==10)
DO I=1,N
A(I) = I

ENDDO

Original source

IF (N==10) THEN
DO I=1,10
A(I) = I

ENDDO
ELSE

DO I=1,N
A(I) = I

ENDDO
ENDIF

Sample source after optimization

72

PRELOAD (1/2)

⚫ Function outline
⚫ This option performs speculative execution of load instructions after SIMDization of loops with IF

statements (moves load instructions in THEN/ELSE clauses under IF to place it before the IF condition
determination).

⚫ Effect
⚫ It is expected to improve execution performance because it promotes instruction scheduling.

⚫ Point
⚫ While the –Kpreex option and the PREEX specifier move an inequality under an IF statement in a loop to

place it outside of the loop, the -Kpreload option and the PRELOAD specifier move load instructions under
an IF statement in a loop to place it before the IF statement.

⚫ Notes
⚫ An exception that originally should not occur may occur and the execution may abort because a load

instruction that should not be executed according to the program logic is executed.

⚫ Whether the abortion is due to speculative execution of load instructions can be checked by the diagnosis
message at the time of compilation.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kpreload
-Knopreload

-Knopreload

Operation Specifier

PRELOAD

73

PRELOAD (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Example

◼ Load instructions in B(I) and C(I) are moved to place them before the IF statement.

SUBROUTINE FOO(A,B,C,M,N)
REAL(8),DIMENSION(1:N) :: A,B,C
LOGICAL,DIMENSION(1:N) :: M
DO I=1,N

IF (M(I) .GT. 0) THEN
A(I) = B(I) + C(I)

ENDIF
END SUBROUTINE

Original source

SUBROUTINE FOO(A,B,C,M,N)
REAL(8),DIMENSION(1:N) :: A,B,C
LOGICAL,DIMENSION(1:N) :: M
REAL(8) :: TMP
DO I=1,N

TMP = B(I) + C(I)
IF (M(I) .GT. 0) THEN

A(I) = TMP
ENDIF

END SUBROUTINE

Sample source after optimization

74

-Kauto/-Kautoobjstack/-Ktemparraystack
(1/2)

⚫ Function outline
⚫ This option allocates each allocation target to the stack.

⚫ Effect
⚫ It is expected to improve execution performance by allocation to the stack.

⚫ Point
⚫ This option did not operate by default on K computer. However, it operates by default on

Fugaku and allocation to the stack is performed without the users’ awareness.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kauto
-Knoauto

-Kauto

-Kautoobjstack
-Knoautoobjstack

-Kautoobjstack

-Ktemparraystack
-Knotemparraystack

-Ktemparraystack

Option Allocation Target

auto
• Local variables except variables with SAVE attribute and

variables with default value

autoobjstack • Automatic data object

temparraystack
• Interim result of array operation
• Masked evaluation result if the iteration count of DO

CONCURRENT is a constant

75

-Kauto/-Kautoobjstack/-Ktemparraystack
(2/2)

⚫ Notes
⚫ Abnormal termination may occur when the stack runs short.

⚫ To avoid abnormal termination, set a larger bound of the stack, or compile the program with the -Knoauto
option, the -Knoautoobjstack option, or the -Knotemparraystack option to reduce the stack area size.

⚫ For thread parallelized programs, specify the required thread stack size with the environment variable
OMP_STACKSIZE or THREAD_STACK_SIZE.

⚫ If the -Knoauto option is to be specified at the same time as the -Kopenmp option or the –Kparallel option, it
must be specified after the -Kopenmp option or the –Kparallel option.

⚫ If the –Knoauto option is to be specified to an OpenMP program or an automatic parallelized program, the
program may not run correctly.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

SUBROUTINE SUB(N)
REAL(KIND=8),DIMENSION(N) :: A
A=1.
PRINT *,A(N)

END SUBROUTINE

CALL SUB(2000000)
END

$ ulimit -s
8192
$ frt a.f90
$./a.out
Segmentation exception (core dumped)

Example of abnormal termination due to stack
shortage

$ ulimit -s unlimited
$ ulimit -s
unlimited
$ frt a.f90
$./a.out

1.000000000000000

Normal termination with larger stack area

76

EVAL (1/3)

⚫ Function outline
⚫ This option specifies whether to perform optimization to change an operation evaluation

method for a source program.

⚫ Effect
⚫ It is expected to improve execution performance because changing the operation evaluation

method reduces the number of operations (instructions) in a loop and promotes other
optimization such as SIMD and automatic parallelization.

⚫ Notes
⚫ Calculation errors may be generated due to change in the evaluation order of operations.

⚫ When the ｰKfast option is specified, the -Keval option is induced, and calculation errors may be
generated. In such a case, specify the –Knoeval option after the –Kfast option.

⚫ When the –Keval option is specified, the -Kfsimple option, the -Kreduction option (when the
–Kparallel option is valid), and the -Ksimd_reduction_product option (when
-Ksimd[={1|2|auto} is valid) are induced. So, pay attention to side effects of those options.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Keval
-Knoeval

-Knoeval

Optimization Specifier

EVAL
NOEVAL

77

EVAL (2/3)

⚫ Examples
⚫ Operations of two multiplication and one addition are changed to operations of one multiplication and one

addition, reducing one multiplication.

⚫ Optimization is performed to change the operation evaluation method in the target loop.
There is no change in three additions on the source but ”A(I)+B(I)” and ”C(I)+D(I)” can be operated in
parallel. So the execution performance may be improved.

⚫ A division is changed to a multiplication of the reciprocal.
Execution performance may be improved by changing the operations to a multiplication instruction shorter in
latency than a division instruction.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL EVAL
DO I=1,N
A(I)=A(I)*B(I)+A(I)+C(I)

ENDDO

Original source

DO I=1,N
A(I)=A(I)*(B(I)+C(I))

ENDDO

Sample source after optimization

!OCL EVAL
DO I=1,N

A(I)=A(I)+B(I)+C(I)+D(I)
ENDDO

Original source

DO I=1,N
A(I)=(A(I)+B(I))+(C(I)+ D(I))

ENDDO

Sample source after optimization

!OCL EVAL
DO I=1, N
A(I)=B(I)/10

ENDDO

Original source

TMP=1/10
DO I=1,N

A(I)=B(I)*TMP
ENDDO

Sample source after optimization

78

EVAL (3/3)

⚫Optimization by changing the operation evaluation method promotes
parallelization of loops with reduction operations.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL EVAL
DO I=1,10000

SUM=SUM+A(I)
ENDDO

Original source

(core 1)
SUM1=0
DO I=1,5000

SUM1=SUM1+A(I)
ENDDO

Sample source after optimization

(core 2)
SUM2=0
DO I=5001,10000

SUM2=SUM2+A(I)
ENDDO

SUM=SUM+SUM1+SUM2

79

EVAL_CONCURRENT (1/2)

⚫ Function outline
⚫ The option performs Tree-Height-Reduction optimization that enhances instruction-level parallelism by

reordering operations in loops.

⚫ This option operates when specified with the -O1 or above and the–Keval option.

⚫ Effect
⚫ Performance may be improved when it is applied to loops with small iteration counts and many operations

unavailable for software pipelining.

⚫ Point
⚫ Tree-Height-Reduction optimization reorders operations in loops so that the height of the operation tree

becomes as low as possible to enhance instruction-level parallelism.
An operation tree expresses operation expressions in the form of tree structure according to the priority of
operations. Values are placed at leaf parts.
As for other joints, operators are placed. The higher the priority of an operator is, the upper the operator
locates in the layers.

⚫ Note
⚫ It is necessary to make the -Keval option valid when this is applied to floating-point operations.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Keval_concurrent
-Keval_noconcurrent

-Keval_noconcurrent

Optimization Specifier

EVAL_CONCURRENT
EVAL_NOCONCURRENT

80

EVAL_CONCURRENT (2/2)

⚫ Example
⚫ This option instructs to prioritize instruction-level parallelism in tree-height-reduction

optimization.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL EVAL_CONCURRENT
DO I=1,N
X(I)=A(I)*B(I)+C(I)*D(I)+E(I)*F(I)+G(I)*H(I)

ENDDO

Original source

DO I=1,N
X(I)=(A(I)*B(I)+C(I)*D(I))+(E(I)*F(I)+G(I)*H(I))

ENDDO

Sample source after optimization

A(I) B(I) C(I) D(I)

X X

X

E(I) F(I)

X

X

G(I) H(I)

X

X

A(I) B(I) C(I) D(I)

X X

X

E(I) F(I)

X

X

G(I) H(I)

X

X

Operation tree before Tree-Height-Reduction optimization Operation tree after Tree-Height-Reduction optimization

81

-Kfz

⚫ Function outline
⚫ This option specifies whether to use flush-to-zero mode.

⚫ In flush-to-zero mode, a denormal operation result or source operand is replaced by 0 with
the original sign.

⚫ Effect
⚫ Denormal execution result or source operand does not affect execution performance.

⚫ Notes
⚫ With the –Kfz option, flush-to-zero mode is used. So, execution results and source operands

to be a denormal number due to underflow are changed to 0.0 with the original sign.

⚫ Generally, execution performance of operations becomes faster with the –Kfz option.
With the –Knofz option, the execution result is guaranteed because a denormal number is
expressed correctly, but execution performance may become slow.

⚫ Example
⚫ Specify the –Kfz option when flush-to-zero mode is used so that load instructions executed

speculatively with the –Kpreex option or the -Ksimd=2 option will not terminate abnormally.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kfz
-Knofz

-Kfz

82

-Kalign_commons

⚫Function outline
⚫This option specifies whether to perform 8-byte boundary alignment for

8-byte integer type, double precision real type, quadruple precision real
type, double precision complex type, and quadruple precision complex
type data in the processing to allocate variables belonging to the
common block to the memory area.

⚫When this option is used, all the program units must be compiled with
the
-Knoalign_commons option.

⚫Effect
⚫It is expected to improve execution performance because effective

access to variables belonging to the common block becomes available.

⚫Note
⚫When 8-byte boundary alignment is performed, the size of the code

increases because the compiler automatically inserts free space.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kalign_commons
-Knoalign_commons

-Kalign_commons

83

ARRAY_DECLARATION_OPT (1/2)

⚫ Function outline
⚫ In SIMDization of a loop with unknown iteration count, this option considers the

number of elements in an array referenced in the loop as the maximum iteration count.
When the maximum iteration count is smaller than the SIMD length, it does not create
two loop structures of a loop iterating by the SIMD length and the remaining loops but
creates only a single structure of the remaining loops.

⚫ Effect
⚫ It is expected to improve spill because the register to be used decreases for the

decrease of the object.

⚫ Note
⚫ No execution result error occurs with the -Karray_declaration_opt option and the

ARRAY_DECLARATION_OPT specifier.
If an execution result error occurs, the program may be performing a loop iteration
more than the array declaration. So, check the iteration count.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Karray_declaration_opt
-Knoarray_declaration_opt

-Knoarray_declaration_opt

Optimization Specifier

ARRAY_DECLARATION_OPT
NOARRAY_DECLARATION_OPT

84

ARRAY_DECLARATION_OPT(2/2)

⚫Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

SUBROUTINE LOOP(A,B,C,N)
REAL*4 A(10),B(10),C(10)

!OCL ARRAY_DECLARATION_OPT
DO I=1,N

A(I) = B(I) + C(I)
ENDDO

END

The maximum iteration count is judged
as 10 because the numbers of elements
in Array A(I), B(I), and C(I) are
declared as 10 respectively.
Only the loop structure of the remaining
loops is created because single precision
type SIMD length (16)>10.

85

-Koptlib_string

⚫ Function outline
⚫This option links optimization libraries of string operation functions (bcopy、bzero、

memchr、memcmp、memccpy、memcpy、memmove、memset、strcat、strcmp、
strcpy、strlen、strncmp、strncpy、strncat) statistically.

⚫Specify this option at compilation and linkage.

⚫Together with the ｰKoptlib_string option, specify the –KSVE option and the -
KA64FX option.

⚫Effect
⚫Cite memcpy as an example. If the copy size is 16 to 128 KBytes, it is expected

memcpy is performed 1.5 to 3.0 times faster than usual libc.

⚫Note
⚫ In memcpy, -Kzfill is valid automatically when the copy size per thread exceeds 4

MiB. However, note that the performance degrades at a single thread execution
(at non-memory busy). Also, it is expected to improve performance at thread
parallel execution (at memory busy) but –Kzfill may not become valid even at
memory busy depending on the copy size.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Koptlib_string
-Knooptlib_string

-Knooptlib_string

86

SCACHE_ISOLATE_WAY (1/2)

⚫ Function outline
⚫ This specifier specifies the maximum number of ways for sector 1 in L1 cache and L2 cache.

⚫ Up to 4 ways for L1 cache and 14 ways for L2 cache can be specified.

⚫ To specify this for a program unit, write the SCACHE_ISOLATE_WAY specifier at a description
position for the program unit. The applicable range of the specification is the whole program.

⚫ To specify this for a part of a program, specify the range by using the SCACHE_ISOLATE_WAY
specifier and the END_SCACHE_ISOLATE_WAY specifier.

⚫ Effect
⚫ By using the SCACHE_ISOLATE_ASSIGN specifier together, control is exercised so that data

reusable in the loop will not be evicted from cache. Thus, it is expected to improve execution
performance.

⚫ Points
⚫ Two or more sectors can be specified for either of L1D cache and L2 cache. The maximum

number of sectors is four for L1D and two for L2.

⚫ The maximum number of ways is a target value. The hardware exercises controls so that each
sector becomes close to the specified number of ways at line replacement.

⚫ Eviction in sectors is controlled by LRU algorithm (discarding least recently used data first).

⚫ Application can determine the usage of sector 0 and 1. Note that a sequence of instructions
are stored in sector 0.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

SCACHE_ISOLATE_WAY(L2=n1[,L1=n2])
END_SCACHE_ISOLATE_WAY

87

SCACHE_ISOLATE_WAY (2/2)

⚫ Notes
⚫ In L2 cache, the assistant core uses two ways all the time. Therefore, the ranges specifiable for n1 and n2

are as follows.

⚫ 0 =< n1 =< “The maximum number of ways for L2 cache -2”

⚫ 0 =< n2 =< “The maximum number of ways for L1 cache”

⚫ In CMG with the assistant core, a part of L2 cache (the amount of two ways = 1 MiB) is used for the
assistant core. So, in CMG with the assistant core, the maximum number of ways for L2 cache is 14 and the
size is 7 MiB.

⚫ The range specification can be written in a part of a program with program unit specification, but the range
specification cannot be nested.

⚫ The name of this specifier in the old specification (K computer, FX100) is the CACHE_SECTOR_SIZE specifier.
It is changed to the SCACHE_ISOLATE_WAY specifier in Fugaku.

⚫ Example
⚫ Access by Array b and Array c prevents reusable Array a from being evicted from cache.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL SCACHE_ISOLATE_WAY(L2=10)

!OCL SCACHE_ISOLATE_ASSIGN(A)

DO J=1,M
DO I=1,N

A(I) = A(I) + B(I,J)＊C(I,J)
ENDDO

ENDDO

!OCL END_SCACHE_ISOLATE_ASSIGN

!OCL END_SCACHE_ISOLATE_WAY

!OCL CACHE_SECTOR_SIZE(4,10)

!OCL CACHE_SUBSECTOR_ASSIGN(A)

DO J=1,M
DO I=1,N

A(I) = A(I) + B(I,J)＊C(I,J)
ENDDO

ENDDO

!OCL END_CACHE_SUBSECTOR

!OCL END_CACHE_SECTOR_SIZE

Specification in the old specification (K computer, FX100) Specification in Fugaku

88

SCACHE_ISOLATE_ASSIGN (1/2)

⚫ Function outline
⚫ This specifier specifies an array to be loaded on sector 1 of the cache.

⚫ To specify this for a program unit, write the SCACHE_ISOLATE_ASSIGN specifier in a
description position of the program unit. The applicable range of the specification is the
whole program.

⚫ To specify this for a part of a program, specify the range by using the
SCACHE_ISOLATE_ASSIGN specifier and the END_SCACHE_ISOLATE_ASSIGN specifier.

⚫ This is valid only when a numeric type or a logical type array is specified.

⚫ Effect
⚫ By using the SCACHE_ISOLATE_WAY specifier together, control is exercised so that data

reusable in the loop will not be evicted from cache. Thus, it is expected to improve
execution performance.

⚫ Notes
⚫ The range specification can be written in a part of a program with program unit

specification, but the range specification cannot be nested.

⚫ The name of this specifier in the old specification (K computer, FX100) is the
CACHE_SUBSECTOR_ASSIGN specifier.
It is changed to the SCACHE_ISOLATE_ASSIGN specifier in Fugaku.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Optimization Specifier

SCACHE_ISOLATE_ASSIGN(array1[,array2]...)
END_SCACHE_ISOLATE_ASSIGN

89

SCACHE_ISOLATE_ASSIGN (2/2)

⚫Examples
⚫Access by Array b and Array c prevents reusable Array a from being

evicted from cache.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

!OCL SCACHE_ISOLATE_WAY(L2=10)

!OCL SCACHE_ISOLATE_ASSIGN(A)

DO J=1,M
DO I=1,N

A(I) = A(I) + B(I,J)＊C(I,J)
ENDDO

ENDDO

!OCL END_SCACHE_ISOLATE_ASSIGN

!OCL END_SCACHE_ISOLATE_WAY

!OCL CACHE_SECTOR_SIZE(4,10)

!OCL CACHE_SUBSECTOR_ASSIGN(A)

DO J=1,M
DO I=1,N

A(I) = A(I) + B(I,J)＊C(I,J)
ENDDO

ENDDO

!OCL END_CACHE_SUBSECTOR

!OCL END_CACHE_SECTOR_SIZE

Specification in the old specification (K computer, FX100) Specification in Fugaku

90

-Klto

⚫Function outline
⚫This option performs optimization at linkage.

⚫This has meaning when -O1 or above is valid.

⚫Notes
⚫This needs to be specified at program compilation and linkage.

⚫When the –g option or the –Ncoverage option is valid, the -Klto option is
invalid.

⚫When the –Klto option and the -xdir=dir_name option are specified
together, the
-xdir=dir_name option is invalid.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Klto
-Knolto

-Knolto

91

-Khpctag

⚫ Function outline
⚫ This option specifies whether to enable optimization of a compiler using tags by using the HPC

tag address override function of A64FX processor.

⚫ The HPC tag address override function is a function to improve performance by using
information set in upper eight bits of the address (tag).
The compiler sets tags at optimization of prefetch and sector cache control.

⚫ To suppress the function, specify the –Knohpctag option.

⚫ This has meaning when the -KA64FX option is valid.

⚫ Effect
⚫ The HPC tag address override function enables the sector cache function and the hardware

prefetch assist function (hardware prefetch function for stride access, etc.). So, it is expected
to improve execution performance.

⚫ Notes
⚫ This needs to be specified at program compilation and linkage.

⚫ Tags take the exclusive OR. So, execution performance may degrade when an application
overwrites tags because tags are interpreted by mistake as information on prefetch or sector
cache control.
In such a case, the HPC tag address overwrite function needs to be disabled.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Khpctag
-Knohpctag

-Khpctag

92

-Nreordered_variable_stack

⚫Function outline
⚫This option specifies whether AUTOMATIC variables are allocated in the

stack area in ascending order of the data size.

⚫Effect
⚫AUTOMATIC variables in the stack are allocated in ascending order of

the data size. Data items with the same size are allocated in ascending
order of alignment. Data items with the same data size and alignment
are allocated in the order of the declaration statements written in the
source program.
Allocating AUTOMATIC variables in ascending order of the data size can
reduce the stack of the whole program.

⚫Note
⚫If the Nnoline and -g0 options are valid, the allocation order is not

guaranteed.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Nreordered_variable_stack
-Nnoreordered_variable_stack

-Nnoreordered_variable_stack

93

-Ncoverage (1/2)

⚫ Function outline
⚫ This option specifies whether to create information to use the code coverage function.

⚫ Effect
⚫ Information to use the code coverage function is generated.

⚫ Point
⚫ -Ncoverage option needs to be specified at program compilation and linkage.

⚫ Notes
⚫ Execution performance may degrade because instructions to measure the execution count are

added.

⚫ This is not available for programs that require the -Kcmodel=large option.

⚫ The execution count may not be measured correctly under any of the following conditions.

⚫ Two or more executable statements are written in one line.

⚫ A STOP statement, an ERROR STOP statement, the EXIT service subroutine, and the SETRCD subroutine
are called.

⚫ An exception is captured.

⚫ The source program contains a #line instruction.

⚫ The compiler optimization is applied.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Ncoverage
-Nnocoverage

-Nnocoverage

94

-Ncoverage (2/2)

⚫Example
⚫Use the code coverage function following the procedure below.

1. Comile (-Ncoverage)

2. Execute

3. Execute the llvm-cov command using
gcov mode

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

source program

1. compile

.gcno file
executable
program

2. execute

.gcda file

3. Execute the llvm-cov command using gcov mode

.gcov file

.gcno file
A binary file with information
obtained during compilation

.gcda file
A binary file with information
obtained during execution

95

-Kopenmp_collapse_except_innermost

⚫ Function outline
⚫ When a loop struct in OpenMP satisfies both of the following conditions, the inner-most loop is excluded from

the target of the COLLAPSE specifier.

⚫ The COLLAPSE specifier covering up to the inner-most loop is specified.

⚫ The compiler can judge at compilation that execution performance may degrade due to the COLLAPSE specifier
covering up to the inner-most loop.

⚫ This has meaning when the –Kopenmp option is valid.

⚫ Effect
⚫ SIMDization of the inner-most loop is not disturbed, so degradation of execution performance due to

COLLAPSE specifier may be prevented.

⚫ Example

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kopenmp_collapse_except_innermost
-Kopenmp_nocollapse_except_innermost

-Kopenmp_nocollapse_except_innermost

38 !$OMP PARALLEL
39 !$OMP DO PRIVATE(K,J,I) COLLAPSE(3)
40 DO K=1,L ! L = 2
41 DO J=1,M ! M = 512
42 DO I=1,N ! N =32
43 A(I,J,K)=B(I,J,K)+C(I,J,K)
44 ENDDO
45 ENDDO
46 ENDDO
47 !$OMP END DO
48 !$OMP END PARALLEL

When -Kopenmp_nocollapse_except_innermost is valid
line 39: Execution performance may degrade because the
COLLAPSE specifier covering up to the inner-most loop is
specified.

When -Kopenmp_collapse_except_innermost is valid

line 39: The inner-most loop is excluded from the target of
COLLAPSE.

96

-Nfjomplib/-Nlibomp

⚫ Function outline
⚫ This option specifies the library to be used in parallelization processing.

⚫ When the –Nfjomplib option is specified, Fujitsu OpenMP library is used in the parallelization
processing.

⚫ When the –Nlibomp option is specified, LLVM OpenMP library is used in the parallelization
processing.

⚫ Point
⚫ This needs to be specified at linkage.

⚫ Note
⚫ The library selection option is valid even with automatic parallelization (the -Kparallel option).

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Nfjomplib
-Nlibomp

-Nlibomp

OpenMP library Option Supported Function

LLVM OpenMP library
-Nlibomp
(default)

A part of OpenMP4.5 and 5.0
Hardware barrier (default: software barrier)
Sector cache
Core bind by default

Fujitsu OpenMP library -Nfjomplib
OpenMP3.1
Hardware barrier
Sector cache

97

Adjustment of Optimization

⚫Purpose
⚫To adjust optimization according to the characteristics of the program.

⚫Points
⚫Optimization is performed based on the following policy.

⚫Two or more –Kassume options can be specified together.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Argument Optimization Policy

shortloop
• If the iteration count of the inner-most loop is unknown at the time

of compilation, it is regarded as large.

memory_bandwidth
• In the inner-most loop, the memory bandwidth is not regarded as

the bottleneck and the bottleneck of the CPU operation is resolved
in priority.

time_saving_compilation
• In programs that consume compilation time, too, making

executable programs faster has priority.

98

ASSUME(SHORTLOOP)

⚫ Function outline
⚫ This option performs optimization regarding the iteration count of the inner-most loop in the program is small

if it is unknown at the time of compilation.

⚫ This option may adjust or suppress optimization such as automatic parallelization, loop unrolling, and software
pipelining.

⚫ This option is valid with -O1 or above.

⚫ Effect
⚫ It is expected to improve execution performance because optimization appropriate for a loop with a small

iteration count.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kassume={shortloop|noshortloop} -Kassume=noshortloop

Optimization Specifier

ASSUME({SHORTLOOP|NOSHORTLOOP})

Optimization Optimization Behavior

Automatic parallelization • The inner-most loop is suppressed.

Loop blocking • The inner-most loop blocking is suppressed.

zfill • Suppressed

prefetch • The inner-most loop is suppressed.

Loop unrolling • Suppressed

Loop redirection • Suppressed due to the suppressed loop unrolling.

Outer loop unrolling • Suppressed

Software pipelining • Performs flexible software pipelining.

99

ASSUME(MEMORY_BANDWIDTH)

⚫ Function outline
⚫ This option performs optimization assuming that the memory bandwidth becomes a

bottleneck in the inner-most loop of the program.

⚫ zfill optimization promotion and optimization such as software pipelining may be adjusted or
suppressed.

⚫ This option is valid with -O1 or above.

⚫ Effect
⚫ It is expected to improve execution performance by optimization to promote locality of data

aiming at reducing memory bandwidth usage and cache-related optimization.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kassume={memory_bandwidth|
nomemory_bandwidth}

-Kassume=nomemory_bandwidth

Optimization Specifier

ASSUME({MEMORY_BANDWIDTH|NOMEMORY_BANDWIDTH})

Optimization Optimization Behavior

Loop fusion • Suppressed

Loop fission • Reduces the number of streams per loop.

zfill • Executed proactively

prefetch • Controls the prefetch width dynamically.

Software pipelining • Performs simple software pipelining.

100

ASSUME(TIME_SAVING_COMPILATION)

⚫ Function outline
⚫ This option performs optimization to shorten the compilation time.

⚫ This option is valid with -O1 or above.

⚫ Effect
⚫ It is expected to improve compilation performance because compilation time is saved by

controlling specific optimization behavior and suppression.

⚫ Point
⚫ This option does not stop a specific function like level control of –O option but restricts and

suppresses optimization as the program becomes huger.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Name Default

-Kassume={time_saving_compilation|
notime_saving_compilation}

-Kassume=notime_saving_compilation

Optimization Specifier

ASSUME({TIME_SAVING_COMPILATION|NOTIME_SAVING_COMPILATION})

Optimization Optimization Behavior

Inline expansion
• Controls thresholds and prevents instructions from increasing due to

too much inline expansion.

Loop fusion • Suppressed

Loop unswitching • Suppressed except OCL.

Loop unrolling
• Narrows down unrolling target loops into cases where unrolling is

effective.

101

• Options That May Affect Execution

• Options That May Accompany Calculation Errors

• Options That Suppress Calculation Errors

Options That Require Attentions
(Side Effects of Optimization)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED102

Options That May Affect Execution

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Function
Side Effect of
Optimization

How to Bypass

-Kpreex

Performs preceding evaluation
on invariants.

(Moves an invariant in an IF
statement in the loop to a
location outside the loop.)

Abnormal termination
may occur during
execution.

This can be bypassed by
either of the following.

•Delete the –Kpreex option.

• Specify the –Knopreex
option at a location after
the –Kpreex option.

-Ksimd=2
SIMDizes IF constructs.
(Executes speculatively an
expression in an IF construct.)

This can be bypassed by
either of the following.

• Change this to the
-Ksimd=1 option.

• Specify the –Knosimd at a
location after -Ksimd=2.

-Kpreload

Executes load instructions
speculatively.
(Moves a load instruction in an
IF statement in the loop to a
location before the IF
statement.)

This can be bypassed by
either of the following.

•Delete the –Kpreload
option.

• Specify -Knopreload option
at a location after the
–Kpreload option.

Abnormal termination may occur during execution because move
instructions are performed with speculative executions

103

Options That May Accompany Calculation
Errors

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Function Side Effect of Optimization How to Bypass

-Keval
Operation evaluation method is
changed as shown above.
When –Kfast is specified,
-Keval is induced.

Calculation errors may occur due to
change in operation evaluation
method.

• Specify –Knoeval in
a location after
-Kfast.

-Kfp_contract

Issues multiply add/subtract
floating-point instructions.
When –Kfast is specified,
-Kfp_contract is induced.

Calculation errors may occur
because multiply add/subtract
floating-point instructions are
issued.

• Specify
-Knofp_contract in
a position after
–Kfast.

-Kfp_relaxed

Calculates floating-point division
or SQRT function by using
reciprocal approximation.
When –Kfast is specified,
-Kfp_relaxed is induced.

Calculation errors may occur
because reciprocal approximation
instructions are issued.

• Specify
-Knofp_relaxed in a
position after
–Kfast.

-Kilfunc

Performs inline expansion on
intrinsic functions.
When –Kfast is specified,
-Kilfunc is induced.

Calculation errors may occur
because inline expansion of intrinsic
functions applies an algorithm using
the reciprocal approximation
operation instruction, the
trigonometric function auxiliary
instruction, etc.
atan2 is calculated under the
Fortran95 language specification
even when -X03 or -X08 is
specified.

• Specify
-Knoilfunc in a
position after
–Kfast.

The following options may cause calculation errors.

x*y + x*z => x*(y+z)

104

Options That Suppress Calculation Errors
(1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Calculation errors can be suppressed by specifying the following options.

Option Function

-Kfp_precision

Induces the combination of the following options where floating-point
operation does not generate calculation errors.

• -Knoeval (-Knofsimple, -Knoredution, and -Ksimd_noreduction_product
are induced)

• -Knofp_contract

• -Knofp_relaxed

• -Knofz

• -Knoilfunc

• -Knomfunc

• -Kparallel_fp_precision(-Kopenmp_ordered_reduction is induced)

-Knofp_precision disables only the -Kfp_precision specification.

Options are analyzed in the following order. So, even when individual options
induced by -Kfp_precision are specified separately, the options specified
separately are not affected.

1. Which option of -Kfp_precision or -Knofp_precision is valid is analyzed.

2. A combination of options at the location where –Kfp_precision is
specified if Kfp_precision is valid is expanded.

To disable –Kfp_precision set in the profile at compilation, specify
-Knofp_precision.

105

Options That Suppress Calculation Errors
(2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Option Function

-Kparallel_fp_precision

The compiler suppresses optimization when a calculation error is
generated in a floating-point type or complex type operation result due
to the difference in the number of thread parallels.
Execution performance may degrade because a part of optimization is
suppressed.
When a REDUCTION clause of OpenMP is specified, the operation
evaluation order is changed. So, calculation error may be generated
even if -Kparalle_fp_precision is specified.

Specify -Kparalle_fp_precision to create an execution program where
calculation errors are not generated due to the difference in the number
of thread parallels.

Specify -Kparallel_nofp_precision if calculation errors due to the
difference in the number of thread parallels does not matter.

106

• Diagnosis Message/Guidance Message

• Contents of Compilation Information

• Lister (Program List/Optimization Information/Statistical
Information)

• Notes of Compilation Information

Compilation Information

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED107

Diagnosis message from the compilation command frtpx: message body

Diagnosis message from the compiler jwdxxxxz-y file name line number digit position message body

Diagnosis Message/Guidance Message

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Diagnosis message
A diagnosis message is output under any of the following conditions.

• The operand specified with the compilation command contains an
error.

• The program contains an error.
• There is information useful for users.
• There are notes.

◼ Guidance message
When the compile option –Koptmsg=guide is specified, a guidance
message regarding the following optimization (the cause of
optimization failure and actions to take) is output.

• SIMDization
• Automatic parallelization
• Software pipelining
• Inline expansion

jwdxxxxz-y diagnosis message

[Guidance]

Guidance message body

108

Contents of Compilation Information

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• Program list
• Optimization information by loop
• Optimization information by line
• Error messages

The following information is output
as compiler information.

subroutine sub

......

do xxx

yyy

zzz

enddo

......

end

optimization
information by loop

statistical information

Optimization
information by line

-> Outputs sample.lst as compilation information.

Compilation example

$ frtpx –Kfast,parallel –Nlst=t sample.f90

Compiler option format:

-Nlst[=lst_arg] lst_arg:{ a | d | i | m | p | t | x }

The following describes the contents of compilation
information and an output example as a prerequisite
knowledge for compiler
optimization.

program list

109

Lister (Program List/Optimization Information/
Statistical Information)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

(line-no.)(nest)(optimize)

1 subroutine sub(a, b, n)

2 real*8 a(n), b(n)

<<< Loop-information Start >>>

<<< [PARALLELIZATION]

<<< Standard iteration count: 843

<<< [OPTIMIZATION]

<<< SIMD(VL: 8)

<<< SOFTWARE PIPELINING(IPC: 2.57, ITR: 96, MVE: 2)

<<< PREFETCH(HARD) Expected by compiler :

<<< b, a

<<< Loop-information End >>>

3 1 pp 2v do i=1,n-2

4 1 p 2v a(i)=b(i)+b(i+1)+b(i+2)

5 1 p 2v enddo

6 end subroutine sub

Procedure information

Lines : 6

Statements : 6

Stack(byte): 368

Prefetch num: 0

Optimization information by line

• SIMDization

• Parallelization information

• Loop unrolling expansion
function

• Inline expansion information

nesting

line
number

Optimization information by loop

• Loop optimization information
(loop fusion, loop interchange,
etc.)

• SIMDization information

• Parallelization information

• Software pipelining

• Prefetch information

Statistical information

◼ Compilation information output format

110

Notes of Compilation Information (1/2)

⚫Compilation information (optimization information) output by the
compile option -Nlst=p or -Nlst=t may be output incorrectly as
shown below.
⚫ When inline expansion is performed, optimization behavior may vary by the location of inline expansion.

⚫ The output may be as follows.

⚫ Two or more optimization messages are output for a single loop.

⚫ An optimization message with a meaning opposite to compilation information (optimization
information) is output.

⚫ Compilation information (optimization information) is not output.

⚫ The prefetch count is output in total for functions with inline expansion performed.

⚫ Two or more optimizations such as SIMDization, automatic parallelization, loop fusion, and loop fission that
is output as detailed optimization are applied to a single loop.

⚫ The output may be as follows.

⚫ Optimization information by line number is shifted.

⚫ An optimization message with a meaning opposite to compilation information (optimization
information) is output.

⚫ Loop unswitching optimization generates both loops where IF construct conditions are met and loops where
IF construct conditions are not met. Compilation information and an optimization message on any of those
loops are output. Also, optimization information by line number may not be output.

⚫ When two or more loops are written in a single line, optimization information on any of those loops is
output. Prevent loops from being written in a single line as much as possible if you want optimization
information on the loops.

⚫ Detailed optimization information on loops with condition statement and GOTO statement is not output.

Optimization information by line numbers may also be shifted.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED111

Notes of Compilation Information (2/2)

⚫ The compiler may generate a loop under any of the following conditions.
Compilation information (optimization information) output by the compilation option
-Nlst=p or -Nlst=t and an optimization message may be output to the generated
loop.
⚫ The actual argument is a pointer array, an assumed-shape array, or an array section and the corresponding

dummy argument is neither a pointer nor an assumed-shape array.

⚫ The compilation option -Nquickdbg=undef, -Nquickdbg=undefnan, or -Nsetvalue=array is valid.

⚫ A variable name of an array appears in FIRSTPRIVATE, LASTPRIVATE, REDUCTION, COPYIN, or
COPYPRIVATE clause of OpenMP.

⚫ There is a loop with automatic parallelization performed by the compile option
-Karray_private or the optimization specifier ARRAY_PRIVATE, FIRST_PRIVATE, or LAST_PRIVATE.

⚫ When link-time optimization is applied, optimization different from the one shown
in compilation information may be applied at the time of execution.

⚫ When the source program contains a #line directive, compilation information
(optimization information) output by the compile option -Nlst=p or -Nlst=t is output
based on the line number specified in the #line directive.
For example, if a DO statement in line 10 in the source program is specified as line
3 by the #line directive, compilation information (optimization information) of the
DO statement is output for line 3 in the source program.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED112

• Execution Commands

• Parallel Thread Execution

• Combination of OpenMP Libraries

• LLVM OpenMP Library and Fujitsu OpenMP Library
•LLVM OpenMP Library (-Nlibomp)

•Fujitsu OpenMP Library (-Nfjomplib)

Executing a Program

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED113

◼ For sequential execution
The executable program generated at compilation is executed.

Example: Script for sequential execution

Execution Commands

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

#!/bin/sh

#PJM -L "node=1" # Number of nodes

./a.out

./[Executable programs]

◼ For thread parallel (automatic parallelization, OpenMP) execution
The number of threads to operate in parallel is specified in the environment variable
OMP_NUM_THREADS and the executable program is executed.

Example: Script for thread parallel (automatic parallelization or OpenMP) execution

* The standard output and the standard error output of the job are output to the following files.
{pjm-script}.{req-id}.out: Standard output
{pjm-script}.{req-id}.err: Standard error output
pjm-script: PJM script name, req-id: Request number

OMP_NUM_THREADS={the number of threads} ;export OMP_NUM_THREADS
./[executable program]

#!/bin/sh

#PJM -L "node=1" # Number of nodes

OMP_NUM_THREADS=16 ;export OMP_NUM_THREADS

./a.out

114

Parallel Thread Execution

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ Two parallel thread libraries:
• LLVM OpenMP library
• Fujitsu OpenMP

◼ The following compile options determine which library to use.

◼ Notes
⚫ When –Nclang and –Nfjomplib are specified together, a warning is output and LLVM

OpenMP library is linked.
(a process corresponding to –Nlibomp)

⚫ When a function of OpenMP 4.0 or later is used with Fortran and –Nfjomplib is
specified, a linkage error occurs.

⚫ If –Njomplib is specified at mixed language linkage of clang mode object and Fortran, a
link error occurs.

Option Format Function Outline

-Nfjomplib Uses Fujitsu OpenMP library. Up to OpenMP 3.1 is available.

-Nlibomp Uses LLVM OpenMP library. Up to OpenMP 4.5 and a part of OpenMP 5.0 are available.

115

Combination of OpenMP Libraries

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ The following shows combinations available for OpenMP or automatic
parallelization.
• Available OpenMP specifications are shown.
• The precondition is that the parallelization option –Kopenmp or -Kparallel is

specified.
LLVM OpenMP Library

(-Nlibomp)
Fujitsu OpenMP Library

(-Nfjomplib)

C/C++
compiler

trad mode
OpenMP 3.1
a part of OpenMP 4.5 (Note 1)

OpenMP 3.1
a part of OpenMP 4.5 (Note 4)

clang mode
(-Nclang)

OpenMP 4.5 (Note 2)
a part of OpenMP 5.0 (Note 3)

Unavailable

Fortran
compiler

-
OpenMP 4.5
a part of OpenMP 5.0 (Note 3)

OpenMP 3.1
a part of OpenMP 4.5 (Note 4)

Note 1: The following functions of OpenMP 4.5 are
available.
• simd construct
• declare simd construct
• proc_bind clause of parallel construct
• depend clause of task construct
• taskgroup construct

Note 2: The following functions of OpenMP 4.5 are
not available.
• declare simd construct

Note 3: The following functions of OpenMP 5.0 are available.
• in_reduction clause of task construct
• task_reduction clause of taskgroup construct
• reduction clause and in_reduction clause of taskloop

construct
Note 4: The following functions of OpenMP 4.5 are available.

• simd construct
• declare simd construct

116

LLVM OpenMP Library and Fujitsu OpenMP
Library

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ The LLVM OpenMP library is an OpenMP library based on the LLVM
OpenMP Runtime Library extended for the A64FX.

◼ Selection method
◼ Specify in compiler option when linking.

• -Nlibomp (default) : Use LLVM OpenMP Library
• -Nfjomplib : Use Fujitsu OpenMP Library

◼ Difference in specifications
◼ Thread stack size

OpenMP Library Option Supported Functions

LLVM OpenMP library
-Nlibomp

(default)

OpenMP 4.5 and Parts of 5.0

Hardware barrier(Default is Software barrier)

Sector cache

Bind to core (default)

Fujitsu OpenMP library -Nfjomplib

OpenMP 3.1

Hardware barrier

Sector cache

Bind to core (Default when execute on job)

Option Default size
Environment variables for

resizing

-Nlibomp • 8MiB OMP_STACKSIZE

-Nfjomplib

• Inherit the process stack size.

• If the stack size of the process is specified as unlimited.

(Memory size / Number of threads) / 5

OMP_STACKSIZE

or THREAD_STACK_SIZE

117

LLVM OpenMP Library (-Nlibomp) (1/2)

⚫ By default, the software barrier/sector cache is available.

⚫ To use the hardware barrier, specify the FLIB_BARRIER environment
variable.

⚫ FLIB_BARRIER=HARD : Use the hardware barrier.

⚫ FLIB_BARRIER=SOFT ：Use the software barrier.(default)

⚫ Precautions on using the hardware barrier

⚫The number of threads (omp_set_num_threads(), num_threads clause) cannot be
controlled.

⚫Thread affinity (proc_bind clause, OMP_PLACES, OMP_PROC_BIND) cannot be
controlled.

⚫Nesting (omp_set_nested(), OMP_NESTED) cannot be controlled.

⚫An undeferred task is always generated for a task construct, and the task will not
be parallelized.

⚫Cancellation is disabled.

⚫ Supports part of OpenMP 5.0 in addition to OpenMP 4.5. Use this library to
use the latest OpenMP standard.

⚫ Select the software barrier when using the main functions of OpenMP
4.5/5.0, such as a task or cancellation.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED118

LLVM OpenMP Library (-Nlibomp) (2/2)

⚫ To bind the initial thread to a specific core, use numactl or taskset.
This does not affect the upper limit on the number of threads in the program.

⚫ For MPI programs, you can use the function of parallelizing memory copy processing
in MPI library with threads. Specify -Nlibomp and at least one of the -Kparallel and -
Kopenmp as options of a compilation/linkage command.

⚫ mpifrtpx –Kopenmp –Nlibomp a.f90

⚫ The following environment variables specific to the Fujitsu OpenMP library cannot be
used (and will be ignored):

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

#!/bin/sh -ex
:

export FLIB_BARRIER=HARD # Use the hardware barrier
#(Use the software barrier when FLIB_BARRIER is SOFT or not set)

numactl -C12 ./a.out # Fix the initial thread to C12

◼ PARALLEL
◼ FLIB_FASTOMP
◼ THREAD_STACK_SIZE
◼ FLIB_SPINWAIT
◼ FLIB_CPU_AFFINITY
◼ FLIB_NOHARDBARRIER

◼ FLIB_HARDBARRIER_MESSAGE
◼ FLIB_CNTL_BARRIER_ERR
◼ FLIB_PTHREAD
◼ FLIB_CPUBIND
◼ FLIB_USE_ALLCPU
◼ FLIB_USE_CPURESOURCE

119

Fujitsu OpenMP Library (-Nfjomplib)

⚫ Details are omitted since they are the same for existing systems
(K computer/FX100).

⚫ By default, the hardware barrier/sector cache is available.

⚫ There is no restriction on generating undeferred tasks while using the hardware
barrier.

⚫ OpenMP 3.1 support.

⚫ Specify -Nfjomplib when compiling with the C/C++ compiler in Trad Mode or with the
Fortran compiler.

⚫ Fortran

⚫ frtpx -Kopenmp -Nfjomplib main.f90

⚫ C/C++ Trad Mode

⚫ fccpx -Kopenmp -Nfjomplib main.c

⚫ –Nfjomplib cannot be used with the C/C++ compiler in Clang Mode.

⚫ To bind to core when execute on job. The environment variable FLIB_CPU_AFFINITY
can be used to control the bind to core when not execute on job.

⚫ The following environment variable specific to the LLVM OpenMP library cannot be
used (and will be ignored):

⚫ FLIB_BARRIER

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED120

• Conditions for SIMDizable Loops

• Conditions for Automatic Parallelizable Loops

• Fujitsu Extension Object Specification

• SIMDization of the Reduction Operation Using the bit Operator

• Large Page

• Notes on transformational function reference of intrinsic
functions

Notes of Developing Programs

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED121

Conditions for SIMDizable Loops

⚫The iteration count of the loop is determined before the
loop is executed.
⚫SIMDization may become available by using the
-Ksimd_uncounted_loop option together.

⚫There is no branch (such as an IF statement) in the loop.
⚫Masked SIMD may become effective depending on, for example,
the TRUE rate of the IF statement.

⚫There is no subroutine call in the loop
⚫SIMDization may become available by using inline expansion
together.

⚫There is no overlapped array area between the right
side and the left side of an expression in the loop.

⚫The calculation at the n-th iteration of the loop does not
depend on the result of the calculation at the n-1-th
iteration.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED122

Conditions for Automatic-Parallelizable
Loops (1/3)

⚫ DO loops (including nested DO loops) and array operating statements (array
expression , array assignment)
⚫ The following cases are excluded from the automatic parallelization target.

① Parallel execution is not expected to shorten execution time.

② Operations of types that are out of the loop slice target are included.

Loops with operations of the following types are not automatically parallelized. Same is the
case when such operations are included in internal DO loops.

⚫ Character type

⚫ Derived type

③ Reference to external procedures, internal procedures, or module procedures is included.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

! Do loops with the small iteration count and the small number of operations are
! out of automated parallelization target.

DO I=1, 10

A(I) = A(I) + B(I)

ENDDO

! Loops including reference to subroutines are out of automatic parallelization
! target.

DO J=1,10

DO I=1,10000

A(I,J) = A(I,J) + B(I,J)

CALL SUB(A)

ENDDO

123

Conditions for Automatically Parallelizable
Loops (2/3)

④ The shape of the DO loop is complicated.

The shapes of Do loops shown below do not become the target of automatic
parallelization.

⚫ DO loop with jump from inside of the DO loop to the outside

⚫ DO loop in a complicated structure

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

DO J=1,10

DO I=1,10000

A(I,J) = A(I,J) + B(I,J)

IF (A(I,J).LT.0) GOTO 20

ENDDO

ENDDO

...

20 CONTINUE

DO J=1,10000

IF(N>0) THEN

ASSIGN 10 TO I

ELSE IF(N<0) THEN

ASSIGN 20 TO I

ELSE

ASSIGN 30 TO I

ENDIF

GOTO I,(10,20,30)

10 A(J)=A(J)+0

20 A(J)=A(J)+1

30 A(J)=A(J)+2

ENDDO

124

Conditions for Automatic Parallelizable
Loops (3/3)

⑤ Loops with the input/output statement or an intrinsic subroutine

DO loops with the input/output statement or an intrinsic subroutine are out of automatic
parallelization target.

⑥ Loops with a data definition reference order such that it may change with sequential execution

DO loops with a data definition reference order such that it changes with sequential
execution are not targets of automatic parallelization.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

DO I=2,10000
A(I) = A(I-1) + B(I)

ENDDO

125

Fujitsu Extension Object Specification

⚫Patterns of objects by compiler options

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

ARMv8 (NEON)

Without Fujitsu

extension
-KGENERIC_CPU –KNOSVE

With Fujitsu

extension
-KA64FX –KNOSVE

ARMv8+SVE

Variable

Length

Without Fujitsu

extension
-KSVE –Ksimd_reg_size=agnostic

With Fujitsu

extension
-KA64FX –Ksimd_reg_size=agnostic

Fixed

Length

Without Fujitsu

extension
-KSVE

With Fujitsu

extension
-KA64FX

◼ -KA64FX
• instructs to output object files for A64FX processors.

◼ -KGENERIC_CPU
• Instructs to output object files for Arm processors.

◼ -Ksimd_reg_size=agnostic
• Compiles programs without considering SVE vector registers as a specific size

and creates executable programs that determine SVE vector register size at the
time of execution.

◼ -KSVE
• Instructs to output object files that use SVE, which is an extension of Armv8-A

architecture.
◼ -KNOSVE

• Instructs to output object files that do not use SVE.

126

SIMDization of the Redirection Operation
Using the bit Operator
⚫bit operator to be redirected

⚫Execution performance improvement is attempted by making the target of
simdization in addition to the redirection operation of ADD, MULT, MAX, and
MIN, redirection operation using the bit operator.

⚫The following patterns are recognized as the redirection operation and made to
be simdization target.

⚫A = IAND(A, B)

⚫A = IOR(A,B)

⚫A = IEOR(A,B)

⚫A = IALL(B) (*1)

⚫A = IANY(B) (*1)

⚫A = IPARITY(B) (*1)

⚫A = ALL(B) (*1)

⚫A = ANY(B) (*1)

(*1) Recognized as the redirection operation when inline expansion is
performed

⚫If the size of A is smaller than the size of B, it becomes out of the
target due to the possible overflow.

⚫Signed integer type, unsigned integer type, and Boolean type are the
target.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED127

Large Page (1/5)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

◼ What is a large page?

◼ Allocating memory (large page) with a larger page size than a
normal page to applications handling data on a larger scale has
the following effects:

• Reduces the overhead incurred by the CPU address translation
process

• Improves memory access performance

◼ In the A64FX system environment, the normal page size is 64
KiB, and the size available as a large page is 2 MiB.
• You can set the following operations by setting environment variables:

✓ Enabling/Disabling the large page allocation operation

✓ Enabling/Disabling the large page allocation operation for the stack area

✓ Selecting the paging method (page allocation trigger) for each memory
area

• The various page sizes that can be used with McKernel 32 MiB, 1 GiB, 16 GiB
and etc.

128

Large Page (2/5)

⚫ Large page specifications

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Memory Area

MP10/FX10/
FX100

A64FX

Page
Size

Page Size
Paging
(Default is

Underlined)
Normal
Page

Large Page
Base

Large Page
Base+Stack

(Default)

Text
(.text)

8 KiB 64 KiB 64 KiB 64 KiB -

Static data
(.data)

4 MiB
(default),

8 KiB,
32 MiB,
256 MiB

64 KiB 2 MiB 2 MiB
Always
prepage

Static data
(.bss)

64 KiB 2 MiB 2 MiB
demand |
prepage

Stack (*1) 64 KiB 64 KiB 2 MiB
demand |
prepage

Dynamic
memory (*2)

64 KiB 2 MiB 2 MiB
demand |
prepage

Shared memory 64 KiB 64 KiB 64 KiB -

*1 This covers the process stack/main thread stack/thread stack area.

*2 This covers the process heap/main thread heap/thread heap/mmap area.

129

Large Page (3/5)

⚫ Environment Variables for Large Page Settings

⚫Basic settings/Paging method settings

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Environment
Variable Name

Specified Value
(Default is Underlined)

Description

XOS_MMM_L_HPAGE_TYPE hugetlbfs | none

With this setting, select whether to enable or disable the operation of
large page allocation using the large page library.
"hugetlbfs" enables large pages using HugeTLBfs.
"none" does not enable large pages using the large page library.

XOS_MMM_L_LPG_MODE base+stack | base

With this setting, select whether to enable or disable the operation of
large page allocation for the stack region and thread stack region.
"base+stack" enables large pages not only for the static data and
Dynamically allocated memory region but also for the stack region and
thread stack region.
"base" enables large pages only for the static data and dynamic
memory storage region. Large pages are not enabled for the stack
region and thread stack region.

XOS_MMM_L_PAGING_POLICY
[demand | prepage]:
[demand | prepage]:
[demand | prepage]

With this setting, select the paging method (page allocation trigger) for
each memory region.
"demand" represents the demand paging method, and "prepage"
represents the prepaging method. This variable specifies the paging
method for three memory region delimited by a colon (:).
The first specified method applies to the .bss region of static region.
(This specified paging method does not cover the .data region of static
data. "prepage" is always the value for this region.)
The second specified method applies to the stack region and thread
stack region.
The third specified method applies to Dynamically allocated memory
region.
If a value not in the Specified Value column is specified, the respective
value in "prepage:demand:prepage" is assumed specified.

130

Large Page (4/5)

⚫ Settings for tuning (Environment variables specific to large pages)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Environment
Variable Name

Specified Value
(Default is Underlined)

Description

XOS_MMM_L_ARENA_
FREE

1 | 2
This setting relates to how to handle the heap area released by free(3).
Specify "1" to immediately release the memory that can be released. Specify "2" to never
release memory but instead pool all memory for reuse.

XOS_MMM_L_ARENA_
LOCK_TYPE

0 | 1
This setting relates to the memory allocation policy.
"0" means memory acquisition performance has priority. "1" means memory utilization
efficiency has priority.

XOS_MMM_L_MAX_
ARENA_NUM

Integer value between 1 and
INT_MAX

[decimal number]

Set the number of arenas that can be generated (total for the process heap area and
thread heap area). This setting is enabled when XOS_MMM_L_ARENA_LOCK_TYPE=0.

XOS_MMM_L_HEAP_S
IZE_MB

Integer value between
MALLOC_MMAP_THRESHOLD x

2 and ULONG_MAX <MiB>
[decimal number]

Set the size of memory acquired when generating and extending the thread heap area in
order to use the thread heap area.

XOS_MMM_L_COLORI
NG

0 | 1

With this setting, enable or disable cache coloring. Cache coloring mitigates L1 cache
conflicts of the processor. "0" does not enable cache coloring. "1" enables cache coloring
when the size of memory being acquired by mmap(2) is equal to or greater than
MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).

XOS_MMM_L_FORCE_
MMAP_THRESHOLD

0 | 1

Set whether to prioritize mmap(2) when the size of memory being acquired is equal to or
greater than MALLOC_MMAP_THRESHOLD_ (default: 128 MiB).
"0" does not prioritize mmap(2). First, a search for free memory in the heap area returns
any free memory found in the area. Then, mmap(2) acquires memory only when no free
memory has been found in the heap area. "1" prioritizes mmap(2). Without a search for
free memory in the heap area, mmap(2) acquires memory (in spite of any free memory).

◼ For details on environment variables (MALLOC_MMAP_THRESHOLD_, etc.) for glibc , see the user’s guide.

131

Large Page (5/5)

⚫ Precautions (Side Effects) Related to Memory Usage

⚫Static data (.data) area

Both side effects 1 and 2 always occur.

⚫Static data (.bss) area

If the following conditions are met, side effects 1 and 2 occur.

a. The .dynsym section (dynamic section) has a symbol.

b. The symbol has an address within the range of the bss area
(bss_start, bss_end) of the main program.

c. The symbol is global (STB_GLOBAL) or weak (STB_WEAK).

d. The symbol type is variable (STT_OBJECT).

e. The size of the symbol is larger than 0.

⚫Side effects

1. A large page may use double or triple the memory area.

2. The prepaging method ("prepage") is the active method even when
the demand paging method ("demand") is set for the static data
(.bss) area in XOS_MMM_L_PAGING_POLICY.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED132

Notes on transformational function reference
of intrinsic functions
⚫Notes on transformational function reference such as SPREAD

⚫At run time, the execution cost of an intrinsic transformational function can be
high if it is called repeatedly.

⚫ If the execution cost of an intrinsic function is a problem, avoid it by writing a
program that performs the equivalent processing instead of the intrinsic
function reference.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED133

• Timer Specifications

• Timer Precision

Timers Supported by Fortran

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED134

Timer Specifications (1/3)

⚫ Specifications of the major timer routines

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Routine Name Function Format
What is

Measured

Unit
Returned

by Routine

1
DATE_AND_TIMEb

uilt-in subroutine
Obtains the date and time.

CALL DATE_AND_TIME ([DATE , TIME , ZONE , VALUES])
DATE: Sets the current date in the CCYYMMDD format.
(CC: century, YY: year, MM: month, DD: day)
TIME: Sets the current time in the hhmmss.sss format.
(hh: hour, mm: minute, ss.sss: second)
ZONE: Sets the time zone offset from UTC in the shhmm format.
(s: sign, hh: hour, mm: minute)
VALUES(1): Year
VALUES(2): Month
VALUES(3): Day
VALUES(4): Time zone offset from UTC in minutes
VALUES(5): Hour
VALUES(6): Minute
VALUES(7): Second
VALUES(8): Millisecond

Current

date/time

2
GETTIM

service subroutine
Obtains the current time.

CALL GETTIM (hour , minute , second , second1_100)
hour: Sets the current hour.
minute: Sets the current minute.
second: Sets the current second.
second1_100: Sets the current hundredth of a second.

Current time

3
FDATE

service subroutine

Obtains the current date and time by
converting them to ASCII code.

CALL FDATE (string)
string: Sets the current date and time in the order of day of the
week, month, day, time, and year.

Current date

and time

4
ITIME

service subroutine

Obtains the current hour, minute, and
second.

CALL ITIME (ia)
ia(1): Sets the current hour.
ia(2): Sets the current minute.
ia(3): Sets the current second.

Current hour,

minute, and

second

5
GETTOD
service subroutine

Obtains the current real time. The real time
is the time in microseconds elapsed since a
specific time point in the past. Usually, it
represents the time since system boot.

CALL GETTOD (g)
g: Sets the elapsed time in microseconds.

Wall clock
time

Microsecond

135

Timer Specifications (2/3)

⚫ Specifications of the major timer routines

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No.
Routine

Name
Function Format

What is

Measured

Unit
Returned

by Routine

6
GMTIME

service subroutine

Obtains the specified system clock time information to
show the second, minute, hour, day, month, year, day
of the week, total number of days since January 1, and
observation of daylight saving time according to
Greenwich Mean Time.

CALL GMTIME (time , t)
time: Specifies the system clock time.
The following array is set from the system clock time with the specified "time" value
according to Greenwich Mean Time:
t(1): Second
t(2): Minute
t(3): Hour
t(4): Day
t(5): Month
t(6): Total number of years since 1990
t(7): Total number of days since Sunday
t(8): Total number of days since January 1
t(9): The setting is 0 for standard time and 1 for daylight saving time.

Wall clock time

7
LTIME

service subroutine

Obtains the specified system clock time information to
show the second, minute, hour, day, month, year, day
of the week, total number of days since January 1, and
observation of daylight saving time according to the
local time.

CALL LTIME (time , t)
time: Specifies the system clock time.
The following array is set from the system clock time with the specified "time" value
according to the local time:
t(1): Second
t(2): Minute
t(3): Hour
t(4): Day
t(5): Month
t(6): Total number of years since 1990
t(7): Total number of days since Sunday
t(8): Total number of days since January 1
t(9): The setting is 0 for standard time and 1 for daylight saving time.

Wall clock time

8
omp_get_wtime

routine

Obtains the current real time. The real time is the time
in seconds elapsed since a specific time point in the
past. Usually, it represents the time since system boot.

y = omp_get_wtime ()
y: Returns the elapsed time in seconds. Wall clock time Second

9
SECNDS

service function

Obtains the number of seconds by subtracting the value
specified in the first argument from the number of
seconds elapsed since midnight in the system clock
time.

y = SECNDS (sec)
y: Returns the number of seconds obtained by subtracting the sec value from the
number of seconds elapsed since midnight in the system clock time.
sec: Specifies a value in seconds to subtract from the number of seconds elapsed since
midnight in the system clock time.

Wall clock time Second

10
SYSTEM_CLOCK
built-in
subroutine

Obtains the total time elapsed since midnight. The total
time is an elapsed time in seconds. Usually, it represents
the time since system boot.

CALL SYSTEM_CLOCK ([COUNT , COUNT_RATE , COUNT_MAX])
COUNT: Sets the time elapsed from midnight until the present time.
COUNT_RATE: Sets the rate of counting (=1000) per second by the processing system.
COUNT_MAX: Sets the maximum COUNT value (=86399999).

Wall clock time Millisecond

11
RTC
service function

Obtains the total number of seconds elapsed since 0:00
on January 1, 1970 in UTC.

y = RTC ()
y: Sets the total number of seconds elapsed since 0:00 on January 1, 1970. Wall clock time Second

136

Timer Specifications (3/3)

⚫ Specifications of the major timer routines

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No.
Routine

Name
Function Format

What is

Measured

Unit Returned
by Routine

12
TIME

service

function

Obtains the time elapsed in seconds since 00:00:00 GMT (January 1, 1970).
iy = TIME ()
iy: Returns the elapsed time in seconds since 00:00:00 GMT
(January 1, 1970).

Wall clock time Second

13
TIMEF

service

function

Returns the elapsed time since the last called TIMEF service function.
y = TIMEF ()
y: Returns the elapsed time since the last executed TIMEF
service function.

Wall clock time Second

14
TIMER

service

subroutine

Obtains the time elapsed in hundredths of seconds since midnight.
CALL TIMER(ix)
ix: Sets the time elapsed in hundredths of seconds since
midnight.

Wall clock time Second

15
CLOCK
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CLOCK (g , i1 , i2)
g: Sets the CPU time in the unit specified in i1.
i1: Specifies the unit (second, millisecond, microsecond) for
the return value.
i2: Specifies the type of the variable specified in g.

CPU time used by
current processes and
their internal threads

Any of following units
depending on
specification:
- Second
- Millisecond
- Microsecond

16
CLOCKM
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CLOCKM (i)
i: Sets the CPU time in milliseconds.

CPU time used by
current processes and
their internal threads

Millisecond

17
CLOCKV
service

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.
The routine is compatible with vector machines.

CALL CLOCKV (g1 , g2 , i1 , i2)
g1: Always sets 0. * VU time is set in vector machines.
g2: Sets the CPU time in the unit specified in i1.
i1: Specifies the unit (second, millisecond, microsecond) for
the return value.
i2: Specifies the type of the variable specified in g2.

CPU time used by
current processes and
their internal threads

Any of following units
depending on
specification:
- Second
- Millisecond
- Microsecond

18
CPU_TIME
built-in

subroutine

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

CALL CPU_TIME (TIME)
TIME: Sets the CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

19
DTIME
service

function

Obtains the CPU time from the last called DTIME service function. The CPU
time represents the time used by the processes executing the program and
all their internal threads.

y = DTIME (tm)
y: Returns the CPU time since the last called DTIME service
function.
tm(1): Sets the user CPU time in seconds.
tm(2): Sets the system CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

20
ETIME
service

function

Obtains the CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

y = ETIME (tm)
y: Returns the CPU time elapsed since the execution start of
an executable program.
tm(1): Sets the user CPU time in seconds.
tm(2): Sets the system CPU time in seconds.

CPU time used by
current processes and
their internal threads

Second

21
SECOND
service

function

Obtains the user CPU time elapsed since the execution start of an executable
program. The CPU time represents the time used by the processes executing
the program and all their internal threads.

y = SECOND ()
y: Returns the user CPU time in seconds elapsed since the
execution start of an executable program.

CPU time used by
current processes and
their internal threads

Second

137

Timer Precision (1/2)

⚫ Precision of the major timer routines (Timer overhead)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Routine Name
Precision

Resolution
Overhead
(µs)

Thread
Safe

Implementation
GCC

Overhead
(µs)

Fujitsu/G

CC
Remarks

1
DATE_AND_TIME

built-in subroutine
1/1,000,000

77.37
(Improved

version)
47.27

✔
gettimeofday
localtime 163.13 0.47

2
GETTIM

service subroutine
1/1,000,000 38.37 ✔

gettimeofday
localtime

3
FDATE

service subroutine
1/1,000,000 18.58 ✔

time
ctime_r 78.71 0.24

4
ITIME

service subroutine
1/1,000,000 36.07 ✔

time
localtime

69.27 0.52

5
GETTOD
service subroutine

1/100,000,000 0.02 ✔

arm asm instruction
time stamp counter
gmtime_r
localtime_r

Resolution: Value of (1/cntfrq_el0)

6
GMTIME
service subroutine

5.72 ✔ gmtime_r 58.21 0.10

7
LTIME
service subroutine

10.81 ✔ localtime_r 67.59 0.16

8
omp_get_wtime
routine

FJOMP:
1/100,000,000
libomp:
1/1,000,000

1.00 ✔

FJOMP:
arm asm instruction time stamp
counter
libomp: gettimeofday
localtime

6.05 0.17 Resolution: Value of (1/cntfrq_el0)

9
SECNDS
service function

1/1,000,000 49.05 ✔
gettimeofday
localtime 77.31 0.63

10
SYSTEM_CLOCK
built-in subroutine

1/100,000,000

20.98
(Improved

version)
1.42

✔ arm asm instruction
time stamp counter 5.23

4.01
(Improve

d
version)

0.27

Resolution: Value of (1/cntfrq_el0)

11
RTC
service function

1/1,000,000 5.21 ✔ time

138

Timer Precision (2/2)

⚫ Precision of the major timer routines (Timer overhead)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Routine Name
Precision

Resolution
Overhead
(µs)

Thread
Safe

Implementation
GCC

Overhead
(µs)

Fujitsu/G

CC
Remarks

12
TIME

service function
1/1,000,000 5.28 ✔ time 5.03 1.05

13
TIMEF

service function
1/1,000,000 7.26 ✔ time

14
TIMER
service
subroutine

1/1,000,000 49.85 ✔
gettimeofday
localtime

15
CLOCK
service
subroutine

1/1,000,000 12.82 ✔ getrusage

16
CLOCKM
service
subroutine

1/1,000,000 13.70 ✔ getrusage

17
CLOCKV
service
subroutine

1/1,000,000 14.12 ✔ getrusage

18
CPU_TIME
built-in
subroutine

1/1,000,000 18.09 ✔ getrusage 5.39 3.36

19
DTIME
service function

1/1,000,000 14.12 ✔ getrusage 10.20 1.38

20
ETIME
service function

1/1,000,000 13.33 ✔ getrusage 9.37 1.42

21
SECOND
service function

1/1,000,000 14.27 ✔ getrusage 5.91 2.41

139

• Attribute List

• allocatable Attribute

• pointer Attribute

• contiguous Attribute

• intent(in) Attribute

• intent(out) Attribute

• intent(inout) Attribute

• value Attribute

• pure Attribute

• save Attribute

• Other Grammatical Notes

Relation of Fortran Data Attributes
and Optimization

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED140

Attribute List (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Attribute Name Attribute Outline Standard Remarks
Detailed

Explanation

1

dimension (array-spec)

• Explicit array
shape promotes
optimization.

No

Explicit-shape array
• Specifies the bounds by an integer expression.

Example: dimension(2:3) :: array
77

Assumed-shape
array

• Specifies the shape in the dummy array assumed from
the caller.

• Explicit interface is required (such as interface block)
Example: dimension(2:) :: array

90

Deferred-shape array

• Specifies allocatable array and pointer array
• Explicit interface is required for the function results and

dummy arguments.
Example: dimension(:) :: array

90

Assumed-size array
• Specifies the dummy array to assume the size implicitly.

Example: dimension(2:＊) :: array
77

Implicit-shape array

• Specifies a named constant array of the same shape as
the constant expression.
Example: Named constant array of shape[3]
integer, parameter, dimension(2:＊) :: array = [1,2,3]

08

2 allocatable
• Allocates an object by the allocate statement or the

intrinsic assignment statement (2003).
• Can allocate a scalar (2003).

90
03

• Objects are not
unknown like
pointers.

• But extra
instructions are
issued, compared
to explicit shape.

Yes

3 pointer • Specifies it is a pointer. 90
• Data overlap

relation is
unknown.

Yes

4 target
• Specifies an object for which pointer association is

available.
90 No

141

Attribute List (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Attribute Name Attribute Outline Standard Remarks
Detailed

Explanation

5

Contiguous: Specifies that the pointer array or the assumed-shape array are contiguous.

• Data contiguity is
guaranteed.

Yes

Pointer array
+ contiguous

• The pointer association destination is contiguous.
The program needs to assure the association destination is
contiguous.

• If the dummy argument of a pointer array has the contiguous
attribute, the actual argument is a pointer with the contiguous
attribute. A fault leads to compilation error.

08

Yes

Assumed-shape array
＋contiguous

• The compiler guarantees that the array is contiguous even when the
actual argument is not contiguous (The 2008 standard specification
changed, implemented on post-K computer compiler).

Yes

6

intent (in / inout / out): Specifies intents of the dummy argument.

• The intent attribute is
used for optimization
when the –Kintentopt
option is specified.

• The –Kintentopt option
becomes valid with
-O1 or above.

Yes

in

• Pointer: Does not change the association status of the pointer. The
associated value can be changed.

• Allocation: Does not change allocation status/the dummy argument
value.

• Other than allocation/pointer: Does not change the dummy argument
value.

90

inout
• Pointer: Changes the association status and the value of the pointer.
• Other than pointer: References and changes the value of the actual

argument to be associated.
90

out

• Allocation: Deallocates the field before the procedure is executed.
• Pointer: Makes the association status of the point unstable when the

procedure is called.
• Other than the above: Value definition is required prior to reference

to the dummy argument during the execution of the procedure.

90

7 value

• Specified in the dummy argument. This specifies the argument is
assumed by the value.

Difference from intent(in)
The dummy argument of the subprogram can be changed. It does
not have an affect on the actual argument.

• The actual argument is assigned to a temporary area and the
temporary area is associated with the dummy argument.

• The array can be also specified (the temporary area of the array is
generated).

03

08

• With effect of the
optimization promotion

Yes

142

Attribute List (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

No. Attribute Name Attribute Outline Standard Remarks
Detailed

Explanation

8 pure

• Specified for a procedure without side effects.
• Specified for the function statement or the subroutine

statement.
• Reference to a procedure in “do concurrent” requires to have

the pure attribute.

03
08

• With effect of
optimization
promotion

Yes

9 save

• Retains the allocation status, the definition status, and the
value even after the return statement or the end statement is
executed.

• The save variable is not thread-safe.

77 Yes

10 intrinsic • Specifies it is an intrinsic procedure. 77 No

11 optional
• Specifies a dummy argument is not necessarily associated

with an actual argument in reference to a procedure.
90 No

12 parameter • Specifies that it is a named constant. 77 No

13 private / public
• Specifies whether entities in a module can be referenced by

use association in the module specification part.
90 No

14 protected
• Restricts the locations to use entities other than the specified

module.
03 No

15 volatile • Specifies that the object is not the target of optimization. 03
• Optimization is not

performed.
No

16 asynchronous

• Specifies to be used at asynchronous input/output.
• Optimization by the compiler is not performed because it may

be being referenced at the asynchronous input/output
statement.

03
• Optimization is not

performed.
No

17 external
• Specifies that it is an external procedure, a dummy procedure,

or a procedure pointer.
77 No

18 bind • Specifies that it is interoperated with C language. 03 No

19
codimension
[coarray-spec]

• Specifies a coarray, a co-dimension, and co-bounds. 08 No

143

allocatable Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The initial state is “unallocated.”
• The object of a subprogram without the save attribute

is deallocated at the end of the procedure.

• When the allocatable attribute is specified for a
structure component, the components of the left side
are deallocated and reallocated with the bounds of the
components of the right side.
Note: Specification of Fortran 2003 and later

This operates regardless of option specification.

• Allocation available by the assignment statement, too.
• When the left side of the assignment statement is a

variable with the allocatable attribute and the shape is
different from the right side, the variable of the left
side is reallocated in the shape of the right side.
Note: The specification is extended when Fortran 95 is
upgraded to Fortran 2003.
Vendors make this work only when the compile option
is specified to maintain execution performance up to
Fortran 95.
The compile option on Fujitsu is -Nalloc_assign.

Grammatical notes

Reallocation by the assignment
statement (2003)

subroutine foo
real,dimension(:,:), allocatable :: a
allocate(a(2,3))
end ! Variable a is deallocated.

integer,allocatable::a(:)
integer:: b(3)=1
allocate(a(2))
print *,shape(a) ! The shape of a is [2].
a = b ! Variable a is deallocated and allocated

! with the bounds of b, and
! if the left side is a(:) with an index,
! the shape remains [2].

print *,shape(a) ! The shape of a is [3].

type x ; integer,allocatable:: a(:) ; end type
type (x) :: y , z
allocate(y%a(2) , z%a(3)) ;
y = z ! Variable y%a is deallocated and allocated

! newly with the bounds (1:3) of z%a.

Reallocation by the assignment
statement of a derived-type variable

144

pointer Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The elements of the pointer array may overlap
with those of an array or pointer array with
the target attribute.

• The pointer array is not necessarily contiguous.
(There may be a gap between elements.)

• Pointer array with the contiguous attribute
To be explained on the next page.

• There are two kinds of pointers: a data pointer
and a procedure pointer.

real,dimension(:,:),pointer :: a ! data pointer
procedure(),pointer:: prc ! procedure pointer

real,dimension(:,:), pointer :: a,b
real,dimension(2,3), target :: t
a=> t
b=> a(:: 2, :)

Grammatical notes

Data pointer

interface
function foo(d)
intent(in):: d

end function
end interface
procedure(foo), pointer :: p
p=> foo
print *, p(1.0)

Procedure pointer

• A procedure pointer is specified in the
procedure statement.

145

contiguous Attribute (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• Can be specified for a pointer array or an
assumed-shape array.

• Declares that the associating object is
contiguous.

• For “pointer array with the contiguous
attribute,” see pointer Attribute.

subroutine foo(a)
real,dimension(:,:), contiguous :: a
real,dimension(:,:), pointer, contiguous :: p

Grammatical notes

• A pointer array with the contiguous
attribute is contiguous.

• Therefore, the pointer needs to be
associated with the contiguous data.

integer,pointer:: pa(:) ! without
! contiguous attribute

call foo(pa) ! compilation error
contains
subroutine foo(p)
integer,pointer,contiguous:: p(:)
integer,target :: t(5)=[1,2,3,4,5]
p=> t(:: 2) ! compilation error
k=2; p=> t(:: k) ! object not in a

! contiguous area
print *,p(2) ! The value is unstable.

end subroutine

Pointer array with the contiguous
attribute

146

contiguous Attribute (2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• If the actual argument may be not
contiguous, whether it is contiguous is
judged dynamically and the compiler
guarantees that it is contiguous.

• If the actual argument is a pointer array
or an assumed-shape array, and if the
array is contiguous, the actual argument
should be specified with the contiguous
attribute, too. If it is with the contiguous
attribute, the compiler does not
generate the judgement on whether it is
contiguous but assumes it directly.

subroutine sub(pa , pac)
integer,pointer, dimension(:,:):: pa ! Possible to

! be non-contiguous
call foo(pa) ! pa cannot be assumed as an

! actual argument as it is.
! The compiler generates the following.
! if (pa is contiguous) then
! call foo(pa)
! else
! tmp = pa // tmp is a compiler-generated
! array (contiguous)
! call foo(tmp)
! pa = tmp
! endif

contains
subroutine foo(d)
integer, dimension(:,:),contiguous::d ! Assumed-

: shape array

Assumed-shape array with
contiguous attribute (2)

integer:: a(3)
call foo(a(:: 2)) ! non-contiguous

! The compiler generates the following.
! tmp = a(:: 2) // tmp is a
! compiler-generated array (contiguous）
! call foo(tmp)
! a(::2) = tmp

contains
subroutine foo(d)
integer, dimension(:,:),contiguous:: d

• Declares an assumed-shape array to be
contiguous.

• Even when the actual argument is
contiguous, the compiler guarantees the
array is contiguous. (See the comment
on the left.)

Assumed-shape array with
contiguous attribute (1)

147

intent(in) Attribute (1/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The value in the association
destination can be defined.
Where the pointer points to cannot be
changed but what is pointed can be
changed.

• Pointer association cannot be changed.

• Allocation or deallocation cannot be
performed.
The difference from pointer is
whether a value can be defined.

• A value cannot be defined.

• A value cannot be defined.

subroutine foo(p)
real, intent(in), pointer :: p(:,:)
p=1.0 ! The value can be defined.
allocate(p(2,3)) ! Change in association
end ! results in a compilation error.

subroutine foo(a)
real, intent(in), allocatable :: a(:,:)
a=1.0 ! The value definition results

! in a compilation error.
allocate(a(2,3)) ! Allocation results in a
end ! compilation error.

subroutine foo(a)
real, intent(in):: a
a=a+1.0 ! The value definition
end ! results in a compilation error.

intent(in) of a pointer

Allocatable intent(in)

intent(in)

148

intent(in) Attribute(2/2)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• When the intent(in) variable value
is defined, the behavior is not
guaranteed.

• When the intent(in) variable is
specified with an actual argument
and the value is defined at the
destination of the procedure call,
this problem is hard to be found.

real:: a
a=1.0
call sub(a) ! Associated with intent(in) dummy

! argument.
print *, a ! The value is unstable.
contains

subroutine sub(d)
real, intent(in):: d
call def(d) ! Intents of the argument is implicit.

end subroutine
end
subroutine def(dd)
real:: dd
dd=2.0 ! The value of the dummy argument
end ! is defined, the actual argument of

! intent(in) is updated.

Variable value definition by
intent(in) is incorrect

Check available with the debug option
-Ha
A definition error of the intent(in)
variable value is detected during
execution.

149

intent(out) Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The pointer is unstable when the procedure is
called.

• Allocatable is deallocated when the procedure
is called.

• Association or allocation is required before
reference.

• Unstable when the procedure is called.
• The actual argument must be definable.
• The value must be defined before it is

referenced.

subroutine foo(p, a)
real, intent(out), allocatable :: a(:,:)
real, intent(out), pointer :: p(:,:)
allocate(p(2,3), a(2,3)) ! Association/allocation
p=1.0 ! before reference
a=1.0
end

real :: a
a=1.0
call foo(a)
print *, a ! The result is unstable.
contains
subroutine foo(d)
real, intent(out) :: d
d=d+1.0 ! The value cannot be referenced

end subroutine ! before it is defined.
end

pointer/allocatable intent(out)

intent(out) other than above

Check available with the debug option -Hx
An unassociated pointer error is detected
during execution.

Check available with the debug option -Hu
An undefined variable referencing error is
detected during execution.

150

Intent(inout) Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The dummy argument can be
referenced or defined.

• Association change, allocation, or
deallocation is available.

• The actual argument must be
definable.

• When the intent attribute is
omitted and not defined at the
time of execution, the
corresponding actual argument is
not necessarily definable.
* In the left figure, a compilation
error does not occur if the
intent(inout) does not exist.

subroutine foo(p, a, d)
real, intent(inout), allocatable :: a(:,:)
real, intent(inout), pointer :: p(:,:)
real, intent(inout) :: d(2,3)
:

end

call foo(1.0) ! The actual argument cannot
! be defined. Compilation error

contains
subroutine foo1(d)
real, intent(inout) :: d
end subroutine
end

intent(inout)

Actual argument for intent(inout)

151

value Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• Indispensable at mutual reference when the
argument is assumed with the value in
association with C language.

• Change in the dummy argument value and
definition status does not affect the actual
argument.

• The actual argument is assigned to a
temporary area and the temporary area is
associated with the dummy argument.

• A procedure that has the dummy argument
with the value attribute needs interface
block.

• The argument is assumed via the stack or a
register except the following.

✓ Array (not specifiable in association with C
language)
2008 specification

✓ Character type of a procedure without procedure
language binding specifier (bind (c))

✓ Derived type whose component contains a pointer
or allocation

✓ Derived type other than above (following ABI)
✓ optional attribute

C program

subroutine sub(k) bind(c) ! Called from a C
integer,value :: k ! program.
k=k+1 ! The value can be assigned, no
print *,‘k=‘,k ! impact on the actual argument.
end
interface

subroutine foo(k) bind(c) ! Explicitly indicates the
integer,value :: k ! procedure of the program.

end subroutine
end interface
integer::n
n=1
call foo(n) ! A call of a C program
end

void sub(int);
int foo(int k) {
sub(k) ; /* A call of a Fortran program */
return 0 ;

}

Grammatical notes

152

pure Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• A procedure with pure (or elemental)
specified in the function statement or the
subroutine statement defines there is no
side effect.

• Restrictions of a pure procedure
✓ The dummy argument of a function needs to have

the intent(in) or value attribute (2008) unless it
has the pointer attribute.

✓ The dummy argument of a subroutine needs to
have the intent attribute unless it has the pointer
attribute.

✓ For local variables, an explicit initial value and the
save attribute cannot be specified.

✓ Variables in the common block and variables
referenceable by a host association or a use
association must not be defined.

✓ All the procedures referenced in pure procedures
must be pure procedures.
etc.

module mod
contains

pure function foo(d)
real , intent(in):: d
foo = d + 1.0

end function
end
subroutine test(a,b)
use mod
real,dimension(1000) :: a,b
do concurrent(i=1:1000)

a(i) = a(i) + foo(b(i)) ! The procedure in
enddo ! do concurrent is pure.
end subroutine test

Grammatical notes

Relation to optimization

Specifying pure promotes optimization
including automatic parallelization.

153

save Attribute

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• Data is saved even after return or end.
=> to guarantee the value of the variable
at re-entry

• The “save” variable is not thread-safe.
• In K computer, “save” was the default

because the specification can be traced
back to main frames.

If the save attribute is unnecessarily specified,
variables that should be dead variables cannot
be eliminated and redundant store may remain.

subroutine sub_save()
real(8),save :: a
a = a + 1.0

end subroutine sub_save

Grammatical notes

Relation of the save attribute and
optimization

At the time of re-entry,
variable a with the save
attribute guarantees the
value at the time of the
return of the last entry.

subroutine sub_flocal()
real(8) :: a
a = a + 1.0

end subroutine sub_flocal

✓ Variable “a” is stored in a register or the stack.
✓ The value of variable “a” declared without the save

attribute is undefined at the time of re-entry.
✓ The definition of variable “a” becomes unreferenced,

and optimization deletes “a = a + 1.0”.

Making –Kauto the default

Impact of making -Kauto default

154

Other Grammatical Notes

⚫The case where the compiler generates a temporary array
internally

⚫Three examples of temporary array generated by the compiler
according to the grammar (mentioned later)

⚫A non-contiguous actual argument array is associated with an explicit-shape
array or an assumed-shape array with the contiguous attribute.

⚫The actual array is an array or a dummy array with the value attribute.

⚫An array assignment statement has an overlapping array element in the left
side and the right side of the expression.

⚫Problems in temporary arrays generated by the compiler

⚫Overhead of allocate / deallocate to generate a temporary array

✓ The action to generate a temporary array in the stack (-Kauto,
-Ktemparraystack) is made to the default, so there is no worry about overhead.
(The stack size needs attention.)

⚫Overhead of copy-in / copy-back to a temporary array

✓ The compiler performs optimization if possible, but if it cannot, overhead occurs.

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED155

Case where an array that does not exist in
the program is generated (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• A non-contiguous actual argument array is associated with
an explicit-shape array or an assumed-shape array with the
contiguous attribute.

subroutine sub(a)
real(8),dimension(1:1000) :: a
interface

subroutine foo(a,m)
real(8),dimension(1:m) :: a
end subroutine

end interface
call foo(a(1:1000:2),500)
end subroutine

Sample compiler output when a
non-contiguous data is received
in an explicit-shape array

tmp(1:500) = a(1:1000:2)
call foo(tmp,500)
a(1:1000:2) = tmp

156

Case where an array that does not exist in
the program is generated (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• The actual argument is an array or a dummy array with the
VALUE attribute (Fortran 2008)

subroutine sub(x)
integer(4),dimension(1:80) :: x
interface

subroutine foo(a)
integer(4),dimension(:),value :: a

end subroutine foo
end interface
call foo(x)

end subroutine sub

Sample compiler output when
the actual argument is an array
or a dummy array with the
value attribute

tmp(1:80) = x(1:80)
call foo(tmp)

Grammar: “Change in the value and the definition status of a
dummy argument does not affect the actual argument.”
That is, the result of defining a on foo side must not be reflected to
x. Therefore, consider “value attribute = reference only” and x
cannot be passed as it is.

157

Case where an array that does not exist in
the program is generated (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

• An array assignment statement may have an overlapping array
element between the left side and the right side.
The grammar of the array description indicates assignment
to the left side is performed after the right side is evaluated.

! Case to get an incorrect result unless the

! assignment to the left side is performed

! after the right side is calculated.

subroutine sub(a,b,n,m)
real(8),dimension(1:n) :: a,b
a(2:m+1) = a(1:m) + b(1:m)
end subroutine

There is no problem in loop fusion of the
left side loop and the right side loop.

subroutine sub(a,b,n,m)
real(8),dimension(1:n) :: a,b
a(1:m) = a(2:m+1) + b(1:m)
end subroutine

! Assignment is implemented by using
! the compiler generated array (temp).
! Same as when the argument is a pointer, etc.

tmp(1:m) = a(1:m) + b(1:m)
a(2:m+1) = tmp(1:m)

! The above example can be optimized by
! inverting the loop (implemented on the
! compiler). A compiler generated array
! becomes unnecessary.

a(m+1:2:-1) = a(m:1:-1) + b(m:1:-1)

158

• Difference Between pointer and allocatable

• Performance Tuning by pointer

• Performance Tuning by Argument Interface Improvement

Example of Performance Tuning by
pointer and Argument Interface
Improvement

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED159

Difference Between pointer and allocatable

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Difference in Grammatical Interpretation and
Optimization Effect by Correction Difference

pointer allocatable

Data dependency of definition array and reference array Unknown No

Data dependency beyond an iteration Unknown No

Access continuity in the first dimension of the inner-
most loop

Unknown Yes

Access continuity of the whole nested loop Unknown Unknown

Possibility of optimization
effect by correction

Automatic parallelization No Yes

SIMD No Yes

(Effective) SWP No Yes

* allocatable has more address calculations than explicit-shape.

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:), pointer :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:), allocatable :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

160

Performance Tuning by pointer (1/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Difference in Grammatical Interpretation and
Optimization Effect by Correction Difference

pointer
Left Column +

contiguous

Data dependency of definition array and reference array Unknown Unknown

Data dependency beyond an iteration Unknown Unknown

Access continuity in the first dimension in the inner-
most loop

Unknown Yes

Access continuity of the whole nested loop Unknown Unknown

Possibility of optimization
effect by correction

Automatic parallelization No No

SIMD No No

(Effective) SWP No No

* Address calculation group in the inner-most loop is improved by specifying contiguous.

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:), pointer :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:), pointer,contiguous :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

◼ Effect of contiguous

161

Performance Tuning by pointer (2/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Difference in Grammatical Interpretation and
Optimization Effect by Correction Difference

pointer+contiguos
Left Column

+norecurrence

Data dependency of definition array and reference array Unknown No

Data dependency beyond an iteration Unknown No

Access continuity in the first dimension in the inner-most
loop

Yes Yes

Access continuity of the whole nested loop Unknown Unknown

Possibility of optimization
effect by correction

Automatic parallelization No Yes

SIMD No Yes

(Effective) SWP No Yes

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:),
pointer,contiguous :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:),
pointer,contiguous :: a,b
!ocl norecurrence
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

◼ Resolution of data dependency by the norecurrence optimization specifier

162

Performance Tuning by pointer (3/3)

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Difference in Grammatical Interpretation and
Optimization Effect by Correction Difference

pointer+contiguos
Left Column +do

concurrent

Data dependency of definition array and reference array Unknown No

Data dependency beyond an iteration Unknown No

Access continuity in the first dimension in the inner-
most loop

Yes Yes

Access continuity of the whole nested loop Unknown Unknown

Possibility of optimization
effect by correction

Automatic parallelization No Yes

SIMD No Yes

(Effective) SWP No Yes

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:),
pointer,contiguous :: a,b
do j=1,n2

do i=1,n1
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

subroutine test(a,b,n1,n2)
real(kind=8),dimension(:,:),
pointer,contiguous :: a,b
do concurrent(j=1:n2)

do concurrent(i=1:n1)
a(i,j) = a(i,j) + b(i,j)

enddo
enddo
end subroutine test

◼ Resolution of data dependency by do concurrent

163

Performance Tuning by Argument Interface
Improvement

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

Difference in Grammatical Interpretation and
Optimization Effect by Correction Difference

Without intent With intent

Update of a in foo Yes Yes

Update of b in foo Yes No

Optimization by constant propagation of a - -

Optimization by constant propagation of b No Yes

subroutine sub()
real(kind=8) :: a,b
a = 1.0
b = 1.0
call foo(a,b)
print *,a,b
end subroutine sub

subroutine sub()
interface

subroutine foo(a,b)
real(kind=8),intent(inout) :: a
real(kind=8),intent(in) :: b

end subroutine foo
end interface
real(kind=8) :: a,b
a = 1.0
b = 1.0
call foo(a,b) ! b is not updated.
print *,a,b ! b can be replaced by 1.0.
end subroutine sub

Fujitsu compiler uses the intent attribute
for optimization when –Kintentopt is valid.
(default)
Note: Incorrect intent attribute use results
in an error.

◼ Optimization promotion by using the intent attribute

164

Revision History

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

⚫ Revision History

Version Date Details

1.0 Aug. 2020 - First published

1.3 Mar. 2021
- Correcting typographical errors and expressions by
reviewing articles

1.5 Jul. 2022

- Changed slide design
- Changed default value for –Karray_declaration_opt
- Corrected feature descriptions of –O
- Added methods for dealing with stack shortages
- Added note on -Knotemparraystack

1.6 Mar. 2023
- Correcting typographical errors and expressions by

reviewing articles

165

DO NOT REDISTRIBUTE NOR DISCLOSE TO PUBLIC. Copyright 2023 FUJITSU LIMITED

