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Chapter 1

Classifying applications for
performance analysis

1.1 Classifying applications by bytes-to-flops (B/F) ratio

From the perspective of single central processing unit (single-CPU) performance, applications can be broadly
subdivided into two categories. The first category consists of applications for which the number of bytes
transferred in and out of memory is relatively small compared to the number of floating-point arithmetic
operations (flops) performed; such applications are said to have a low B/F (bytes-to-flops) ratio. An example of
an operation with a low B/F ratio is N×N matrix-matrix multiplication. Here, the number of numerical values
that must be transferred in and out of memory scales like N2 (the number of entries in each matrix), while the
number of arithmetic operations scales like N3, so the ratio of (memory transfers)/(floating-point operations)
scales—in principle—like 1/N . As memory-transfer volumes are typically expressed in terms of byte counts,
each double-precision arithmetic memory transfer involves 8 bytes, thereby yielding a B/F ratio of 8/N . Thus,
for this class of application, the B/F ratio diminishes as N increases.

In matrix-matrix multiplication and other procedures with low B/F-ratios, each numerical value deposited
in cache memory is reused multiple times for arithmetic operations, thus allowing calculations to achieve high
single-CPU performance. In other words, low-B/F-ratio applications can be thought of as applications that
execute “in cache.”

The second category consists of applications with high B/F ratios—that is, applications requiring a large
number of memory transfers per floating-point operation. Applications of this type are fundamentally limited
in their ability to use cache memory efficiently, and thus generally cannot achieve high single-CPU performance.
In other words, high-B/F-ratio applications can be thought of as executing “in memory,” rather than in cache.

An example of a task in this category is matrix-vector multiplication, for which the number of memory
transfers required per arithmetic operation is roughly 1/2 in principle. Assuming 8 bytes per transfer for
double-precision arithmetic, this yields a B/F ratio of 8/2 = 4, which is significantly larger than that required
for matrix-matrix multiplication.

1.2 A performance model accounting for memory, L2 cache, and
functional unit

Let’s consider a program being executed on a system with given main memory, L2 cache, and floating-point
arithmetic unit. Denote the data-transfer volume and effective bandwidth of main memory by Mdata and
Mband, the data-transfer volume and effective bandwidth of the L2 cache by L2data and L2band, the number of
arithmetic operations executed by the program by Nc, and the effective performance of the functional unit by
Ppeak. Next, let tM denote the time required to execute the program assuming main memory to be the primary
performance bottleneck. Similarly, let tL2 and tC denote the program execution times while assuming the L2
cache and functional unit to be the performance-limiting components. Then, we have

tM = Mdata/Mband (1.1)
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6 CHAPTER 1. CLASSIFYING APPLICATIONS FOR PERFORMANCE ANALYSIS

tL2 = L2data/L2band (1.2)

tC = Nc/Ppeak. (1.3)

The program execution time tE and peak performance ratio Cp are then given by

tE = max{tM, tL2, tC} (1.4)

Cp = Nc/(max{tM, tL2, tC} × Ppeak) (1.5)

Figure 1.1: Performance model accounting for memory, L2 cache, and functional unit.

1.3 CPU performance-analysis reports: Busy times

fugaku generates CPU performance-analysis reports similar to that shown in Figure 1.2. The busy times
quoted in these reports for memory, L2 cache, and functional unit agree approximately with the quantities tM,
tL2, and tC discussed in Section 1.2, while the program execution time quoted in the report agrees approximately
with the quantity tE. The reason for the approximate, not exact, agreement of these values is discussed below.

1.4 Application subcategories for busy-time analysis

As noted above, for single-CPU performance analysis, it is useful to classify applications into two broad cate-
gories. On the other hand, for busy-time analysis, it is useful to classify applications into five categories, as we
will discuss in this section.

1.4.1 Optimally-tuned in-memory applications

The first category of applications for busy-time analysis consists of optimally-tuned in-memory applications.
For applications of this type, the program execution time ideally matches the memory busy time as determined
by the effective memory bandwidth, thus indicating that the program is taking full advantage of the effective
memory bandwidth—or, equivalently, that the L2 cache and/or functional unit have excess capacity.

This situation is shown in Figure 1.3.
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Figure 1.2: Fugaku-generated report of CPU performance and busy times.

Figure 1.3: An optimally tuned in-memory application.

1.4.2 Optimally-tuned in-L2-cache applications (1)

The second category of applications for busy-time analysis consists of optimally-tuned in-L2-cache applications
that are not functional unit bound. For applications of this type, the program execution time ideally matches
the L2-cache busy time as determined by the effective L2-cache bandwidth, thus indicating that the program
is taking full advantage of the effective L2-cache bandwidth—or, equivalently, that main memory and/or the
functional unit have excess capacity.

This situation is shown in Figure 1.4.
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Figure 1.4: An optimally-tuned in-L2-cache application (1)

1.4.3 Optimally-tuned in-L2-cache applications (2)

The third category of applications for busy-time analysis consists of optimally-tuned in-L2-cache applications
that are also functional unit bound. For applications of this type, the program execution time ideally matches
the functional unit busy time as determined by the effective functional unit performance, indicating that the
program is extracting the maximum possible performance available from the functional unit—or, equivalently,
that main memory and/or the L2 cache have excess capacity.

This situation is shown in Figure 1.5.

Figure 1.5: An optimally-tuned in-L2-cache application (2)

1.4.4 Optimally-tuned in-L1-cache applications

The fourth category of applications for busy-time analysis consists of optimally-tuned in-L1-cache applications.
For applications of this type, the program execution time ideally matches the L1D-cache busy time, thus
indicating that the program is taking full advantage of the available performance of the L1D cache. The busy
time of the L1D cache is not determined solely by the effective bandwidth of that cache, but rather depends
heavily on factors other than bandwidths. Therefore, applications of this type cannot be described by the model
of Section 1.2, which is based on effective bandwidths. However, for optimally-tuned applications, the program
execution time will match the L1D-cache busy time, thus indicating that main memory, the L2 cache, and/or
functional unit have excess capacity.

This situation is shown in Figure 1.6.
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Figure 1.6: An optimally-tuned in-L1-cache application.

1.4.5 Insufficiently tuned in-memory or in-cache applications

The fifth and final category of applications for busy-time analysis consists of in-memory or in-cache applications
that have not been tuned sufficiently thoroughly to yield optimal performance. For applications of this type, the
program execution time exceeds the individual busy times of all hardware components, thereby indicating that
the application fails to extract the maximum possible performance available from the hardware—or, equivalently,
that all hardware components, including main memory, L2 cache, L1D cache, and functional unit, have excess
capacity. This situation is shown in Figure 1.7.

Figure 1.7: An insufficiently tuned in-memory or in-cache application.

1.5 Application subcategories for single-CPU performance analysis

In Section 1.1 we noted that, for analysis of single-CPU performance, applications might be broadly classified
into two categories: those with low bytes-to-flops (B/F) ratios and those with high B/F ratios. Pursuing this line
of thought slightly further yields the more granular classification scheme of Table 1.1, in which we distinguish
six distinct application subcategories.

Subcategories 1 through 4 are subdivisions of the category of low-B/F-ratio applications. Two applications,
both belonging to this broader class, can nonetheless exhibit significantly different performance levels depending
on (a) whether or not the application can make use of the dgemm library, and (b) whether or not the application
performs manual cache blocking. Applications that perform manual cache-blocking can be further separated
into those that use only the simplest data structures and loop structures versus those that employ slightly more
complicated constructs—such as the list-indexed vectors commonly used in sparse linear algebra, in which the
indices of array elements are themselves stored as components of integer-valued arrays (i.e., lists). The slight
increase in the complexity of loop structures arising in such computations necessitates a different set of tuning
techniques. (Meanwhile, applications involving significantly more complicated loop structures are generally
unable to achieve high performance levels, even with tuning.) Taking these considerations into account yields
the four distinct subcategories of low-B/F-ratio applications listed in rows 1-4 of Table 1.1.

Subcategory 1 consists of calculations that can be arranged in the form of N × N matrix-matrix mul-
tiplications. As noted in Section 1.1, for applications of this type, the numbers of memory transfers and
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arithmetic operations scale respectively, like N2 and N3, thereby yielding low B/F ratios for moderate or large
N . Common examples of calculations in this subcategory include ab-initio quantum-chemistry calculations via
density-functional theory (DFT). Subcategory 2 includes applications in which low B/F ratios allow effective
cache utilization and the bodies of computational loops are relatively short and simple. Examples include nu-
merical differentiation via specialized finite-difference stencils.1 Applications in this category generally achieve
high performance, but unfortunately, practical examples are somewhat rare. Subcategory 3 consists of low-B/F-
ratio calculations that cannot be implemented as matrix-matrix multiplications, but for which cache blocking
is possible. Examples include computations of Coulomb interactions in molecular dynamics or gravitational in-
teractions in gravitational many-body problems. Here, cache blocking is possible because we only need to load
data for n particles into cache to facilitate the computation of n2 particle-particle interactions. Subcategory
3 applications often use compound indices—consisting of lists of data fields—to label particles, which tends
to yield programs in which the computational loop bodies2 are somewhat complicated. The fourth subcate-
gory consists of calculations with low B/F ratios but complicated loop bodies. Of the two types of numerical
calculations arising in computational meteorology—namely, (a) numerical modeling of mechanical processes to
predict the motion of fluids, and (b) numerical modeling of physical processes to predict the behavior of clouds
and similar phenomena— type (b) calculations fall into this subcategory. Applications of this type carry out
complicated sequences of arithmetic operations on relatively small amounts of data loaded from memory, and
the programs thus generally run in-cache—but with loop bodies that tend to be long and convoluted. Another
example of a computational task belonging to this category is the particle-in-cell3 (PIC) method used in the
modeling of plasmas and other systems.

In PIC calculations, the volume of mesh data needed to characterize a particle’s local environment is small
enough to reside in cache, but accessing individual particles often involves manipulating list-form data, thereby
yielding programs with complicated structures and computational loops with long loop bodies. Thus, although
the in-cache execution of subcategory-4 calculations suggests that applications in this class should be capable
of achieving high performance, in practice, this expectation often remains unfulfilled due to the complexity of
the programming required.

The final two rows of Table 1.1 are subdivisions of the broader class of applications with high B/F ra-
tios. Applications with identical large B/F ratios can nonetheless exhibit significantly different performance
levels depending on whether or not they require non-contiguous memory access via linked lists, and we define
subcategories 5 and 6 based on this distinction.

Subcategory 5 consists of applications with high B/F ratios that do not involve indirect memory accesses.
Tasks of this type commonly arise in calculations involving standard low-order stencils, and there are many
examples of subcategory-5 applications, including fluid-dynamical modeling of mechanical processes in meteo-
rology (mentioned above) and numerical modeling of seismic activity. Applications with high B/F ratios that
do require indirect memory access comprise subcategory 6. Computations of this type frequently arise in en-
gineering problems, such as fluid modeling and structural analysis via finite-element methods. Programs using
indirect indexing generate random (non-sequential) memory accesses each time a list element is referenced, thus
making these calculations unsuitable for execution on present-day scalar processor architectures.

In general, computational performance levels are highest for applications in subcategory 1 and deteriorate
progressively as we proceed through subcategories 2, 3, 4, 5, and 6. (However, the order of subcategories 2 and
3 in this sequence can be reversed.)

1.6 Correspondences between application subcategories

In this section, we discuss correspondences between the two application-classification schemes discussed in the
preceding sections.

The busy-time category of optimally-tuned functional unit-bound in-cache applications (Section 1.4.3) gen-
erally corresponds to single-CPU-performance subcategory 1: applications that can be rewritten in the form of
matrix-matrix multiplications. Rewriting in this way and using a GEneral Matrix-to-matrix Multiply (GEMM)
library custom-tuned for a given machine allows applications to attain the maximal computational performance
available from the machine. Alternatively, some applications in this busy-time category correspond to single-
CPU-performance subcategory 2: applications with low B/F ratios and simple loop bodies, for which we gave

1In finite-difference arithmetic, a stencil is a rule for computing the ith element of an output array as a weighted sum of elements
{· · · , i− 1, i, i+ 1, · · ·} in an input array.

2The body of a loop is the code executed on each loop iteration.
3A numerical modeling technique that tracks the behavior of particles in a computational lattice.
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Table 1.1: Application subcategories for single-CPU performance analysis.

Subcategory Description Typical application
1 Expressible as matrix-

matrix multiplication
First-principles quantum chemistry (density-
functional theory)

2 Low-B/F ratio, simple loop
bodies

High-order finite-difference stencils

3 Allows cache blocking Molecular dynamics and gravitational many-body
problems

4 Low B/F ratio, complex
loop bodies

Plasma modeling; physical processes in meteorol-
ogy; quantum chemistry

5 High B/F ratio, sequential
and direct memory access

Mechanical processes in meteorology; fluid model-
ing; earthquake modeling; nuclear fusion

6 High B/F ratio with indi-
rect memory access

Structural analysis or fluid modeling via finite-
element methods

the example of high-order computational stencils. The performance attainable by applications of this type is
generally not as impressive as what can be achieved with optimized GEMM libraries but can approach the
maximal effective functional unit performance available in the absence of such libraries. One such example is
discussed below.

Calculations falling within the busy-time categories of optimally-tuned in-L2-cache applications (Section 1.4.2)
or optimally-tuned in-L1D-cache applications (Section 1.4.4) typically correspond to single-CPU-performance
subcategory 3: low-B/F-ratio calculations for which cache blocking is possible, for which we gave the examples
of molecular dynamics or gravitational many-body problems. Applications of this type generally cannot match
the performance levels available for optimally-tuned functional unit-bound in-cache calculations but can achieve
relatively high performance levels. Alternatively, some applications in these busy-time categories correspond to
single-CPU-performance subcategory 2 (low B/F ratios with simple loop bodies).

The busy-time category of suboptimally-tuned in-cache applications (Section 1.4.5) typically corresponds
to single-CPU-performance subcategory 4: applications with low B/F ratios but complicated loop bodies, for
which we gave the examples of plasma modeling, modeling of physical processes in meteorology, and quantum-
chemistry computations. The fact that these applications run in cache suggests that they should be able
to achieve at least somewhat high performance, but in practice, the complicated nature of the programming
involved tends to yield programs whose run times exceed all hardware busy times, i.e., programs that fail to
achieve their highest possible performance levels. Some applications in this busy-time category can correspond
more closely to CPU-performance subcategory 3, i.e., cache-blocking applications such as molecular-dynamics
or gravitational many-body problems.

The busy-time category of optimally-tuned in-memory applications (Section 1.4.1) typically corresponds to
single-CPU-performance subcategories 5 or 6: applications with high B/F ratios that do (subcategory 6) or do
not (subcategory 5) require indirect memory access. Subcategory-5 calculations are typified by applications such
as mechanical-process modeling in meteorology, fluid modeling, earthquake modeling, and nuclear fusion, while
subcategory 6 includes applications such as structural analysis or fluid modeling via finite-element methods.
Note that these categories are for applications that have been successfully tuned for optimal performance. In
contrast, cases in which optimal tuning methods cannot be applied fall within the category of insufficiently-tuned
in-memory applications, discussed in Section 1.4.5.

The correspondences discussed above are depicted graphically in Figure 1.8.
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Figure 1.8: Correspondences between application categories for busy-time analysis (left) and single-CPU per-
formance (right).



Chapter 2

What is single-CPU performance
tuning?

In this chapter, we use the busy-time analysis of the previous chapter to answer the basic question: What is
single-CPU performance tuning? In brief, single-CPU performance tuning can be defined as the task
of ensuring that a program’s run time agrees as closely as possible with the maximum busy time of any
hardware component. This is done by using measured application performance and other data to classify the
program’s behavior—based on the single-CPU performance categories of Section 1.5, the busy-time categories
of Section 1.4, and the correspondence between the two discussed in Section 1.6—and then evaluating whether
or not the program’s busy-time graph exhibits the expected form while addressing any problems that might
arise. This general process is depicted schematically in Figure 2.1.

Figure 2.2 depicts a more involved example of program performance tuning consisting of a two-step process.
In the first step, the program is rewritten to shift data accesses from main memory to the L2 cache. This
reduces the main-memory busy time (magenta) in favor of L2-cache busy time (orange) and establishes a lower
value for the theoretical minimum program run time (indicated by the maximum of the heights of the left four
bars). In the second step, performance problems are addressed to reduce the actual program run time (cyan)
to a value as close as possible to its theoretical limit.

Figure 2.1: single CPU performance tuning (1)

13
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Figure 2.2: single CPU performance tuning (2)



Chapter 3

Case studies of busy-time analysis for
various application types

In this section, we analyze busy times for specific examples of applications in the various categories of Section 1.4.

3.1 Memory-bound application

First, as an example of a memory-bound application, we consider busy times for an optimally tuned in-memory
application. Our test program for this case is listed in Figure 3.1. A property of this test program is that it
accesses main memory rather than running in cache. The use of zfill further ensures that storage operations
do not generate transfers from memory to the L2 cache. In our runtime measurements, we run each program 10
times. For the code shown in Figure 3.1 the total number of inner-loop iterations is then 8000000× 24× 10 =
1.92 · 109. Each inner-loop iteration requires two double-precision values (16 bytes) to be transferred to/from
memory, thereby yielding a total memory-transfer volume of 1.92 · 109 × 16 = 30.72 GB. Assuming an effective
memory bandwidth of 205 GB/sec (80% of peak) as measured for the STREAM triad, the quantity tM defined
in Section 1.2 (the program execution time assuming main memory to be the performance-limiting component)
is tM = 30.72 GB/(205 GB/s) = 0.15 s.

Figure 3.1: Test program for which main memory is the performance-limiting component.

Figure 3.2 shows the CPU performance-analysis report generated upon execution of this program. Here, it
should be noted that the actual measured run time is 0.15 seconds, in agreement with the estimate computed
above. This indicates that the memory is achieving a bandwidth of roughly 205 GB/sec, on par with that of

15
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the STREAM triad. The main-memory busy time reported in the CPU performance-analysis report should
be 0.15 seconds, in agreement with the program execution time. However, from the figure, we see that, in
fact, the reported busy times tend to fall slightly below this expected value. The reason for this is that CPU
performance-analysis reports are computed using a normalization in which a busy ratio of 100% corresponds to
the theoretical peak value. If we instead normalize so that 100% busy ratio corresponds to the effective peak
value, the computed busy time agrees with the predicted value of tM. Note that the L2-cache busy time stands
out prominently. This is discussed in the following section.

Figure 3.2: CPU performance-analysis report for memory-bound test program.

3.2 L2-cache-bound application

Next, as an example of an L2-cache-bound application, we consider an in-cache application for which optimal
L2-cache tuning is possible, as discussed in Section 1.4. The code is listed in Figure 3.3. In this program, main-
memory accesses and L2-cache accesses coexist, and zfill is not used, thus ensuring that storage operations
generate data transfers from main memory to the L2 cache. In this example, each iteration of the innermost loop
generates three main-memory accesses, two L2-cache accesses, and two functional unit operations, so we refer
to it as a 3M-2L2-2F program. In our runtime measurements, we execute the program N2 times, thus yielding
a total of 3610 × 60 × 168 × 60 = 2.18 · 109 innermost-loop iterations. Based on measurements performed
separately, we use a value of 671 GB/sec (67.2% peak value) for the effective L2-cache bandwidth.
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Figure 3.3: Test program accessing both main memory and the cache.

We can use the model of Section 1.2 to compute tM for our 3M-2-2F program. With three double-precision
numbers (24 bytes) transferred on each inner-loop iteration, the total data-transfer volume is 2.18 · 109 × 24 =
52.32 GB. Therefore, for the memory-bound case, we estimate a runtime of tM = (52.32 GB)/(205 GB/s) =
0.255 seconds.

Next, we next compute tL2 for this program. On each inner-loop iteration, the program accesses two array
elements (16 bytes) in the cache and three array elements (24 bytes) in main memory. The total volume of data
transferred through the L2 cache is then 2.18 · 109 × (16 + 24) = 87.2 GB, whereupon we estimate a value of
tL2 = (87.2 GB)/(671 GB/s) = 0.13 seconds for the runtime in the L2-cache-bound case. In the model discussed
in Section 1.2, the program execution time tE is greater than tM and tL2, which is tM in this case.

Figure 3.4 shows the CPU performance-analysis report generated for our 3M-2L2-2F program. Here, it
should be noted that the measured runtime of 0.255 seconds agrees with the estimate obtained above. The
main-memory busy time reported in the performance analysis should be 0.255 seconds, in agreement with the
program run time. However, in practice, it tends to fall short of this expectation, as shown in the graph.
Also, the reported L2-cache busy time should agree with our estimated value of 0.13 seconds, but, in fact, it
significantly exceeds this expectation. These findings are in agreement with the trends noted in the previous
section.

Figure 3.4: CPU performance-analysis report for the 3M-2L2-2F program.

Now, suppose we modify the program by increasing the number of arithmetic operations and L2-cache
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accesses on each loop iteration, converting our 3M-2L2-2F program into a 3M-12L2-12F program. How do
these modifications effect computational performance? As before, we estimate performance using the model
of Section 1.2. Because the modified program involves the same number of memory accesses as the original
program, we use the same estimate of 0.255 seconds for the execution time while assuming memory-bound
conditions. Next, we compute tL2 for this program. We have 12 values (96 bytes) accessed from the L2 cache
and three values (24 bytes) accessed from main memory, so the total volume of data transferred through the L2
cache is 2.18 · 109× (96+24) = 261.6 GB and the program execution time assuming L2-cache-bound conditions
is tL2 = (261.6 GB)/(671 GB/s) = 0.39 seconds. In the model discussed in Section 1.2, the program execution
time tE is the greater of tM and tL2, which is tL2 in this case. (Because, in this case, there are few arithmetic
operations, the functional unit will not be the performance-limiting component. Therefore, we omit the tC
calculation.) Figure 3.5 shows the CPU performance-analysis report generated for our 3M-12L2-12F program.
Here, it should be noted that the measured runtime of 0.384 seconds agrees with the estimate obtained above.

Figure 3.5: CPU performance-analysis report for 3M-12L2-12F program.

In this case, the execution time assuming L2-bound conditions (0.390 seconds) is in good agreement with
the L2 busy time reported in the graph. This is in marked contrast to what we saw above for the 3M-2L2-2F
program, in which the L2-bound estimate of execution time disagreed with the L2-cache busy time reported in
performance charts. The reason for this is that the L2-cache busy ratio quoted in CPU performance-analysis
reports is computed from L2-cache pipeline values, which are influenced by resources on the memory side when
the memory busy ratio is high. More specifically, when the memory busy ratio is high, L2 prefetch retries
are unavoidably included, thereby yielding high values for the apparent L2 busy ratio. In Section 3.1, we
noted that CPU performance-analysis reports are computed using a normalization in which a busy ratio of
100% corresponds to the theoretical peak value and that the value of tM defined in Section 1.2 is conceptually
equivalent, but not identical, to the memory busy time. Similarly, for the reasons discussed above, the busy
time of Section 1.3 is conceptually equivalent, but not identical, to the value of tL2 defined in Section 1.2.

3.3 functional unit bound application

Finally, as an example of an functional unit bound application, we consider an in-cache application for which
optimal functional unit tuning is possible, as discussed in Section 1.4. First, we must determine how much
performance can be extracted by increasing arithmetic operations with memory accesses held fixed. Test
programs for this purpose are listed in Figures 3.6 and 3.7.
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Figure 3.6: Program to test performance limits (K-computer version).

On the K computer, the use of type-1 coding achieves an arithmetic peak performance level of 88%, which
is on par with the DGEMM library performance. In contrast, type-1 coding on Fugaku fails to achieve peak
performance, while with type-2 coding, we achieve an arithmetic peak performance level of 68%. (On Fugaku,
as on other machines, higher performance can be achieved by using DGEMM libraries or other codes that take
full advantage of the L1D cache.) Type-1 coding involves deep chains of instructions, which are difficult to
execute with high performance on Fugaku. Instead, high performance is achieved by using type-2 coding to
sever instruction chains. Additionally, in comparison to the K computer, Fugaku has fewer registers, higher
latency for arithmetic instructions, and larger single instruction, multiple data (SIMD) widths. These factors
have the effect of slightly decreasing performance relative to arithmetic peak values.

As a specific example of an functional unit bound test program, we use the code listed in Figure 3.8. This
is basically the same test program used in Section 3.2, modified to yield an application of type 3M-6L2-80F; we
use this program to estimate execution times.
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Figure 3.7: Program to test performance limits (Fugaku version).

Figure 3.8: functional unit bound test program.

We run this program N2 times, so the number of inner-loop iterations is 3610×60×168×60=2.18 · 109. We
use the model discussed in Section 1.2 to compute tM for this 3M-6L2-80F program: the total volume of data
transfer to/from main memory is 2.18·109× (24 bytes)=52.32 GB, so the execution time assuming memory-
bound conditions is tM = (52.32 GB)/(205 GB/s) = 0.255 seconds. Next, we compute tL2 for this program. On
each inner-loop iteration, the program accesses six values (48 bytes) in the L2 cache and three elements (24 bytes)
in main memory; the total volume of data transferred through the L2 cache is then 2.18 ·109×(48+24) = 156.96
GB, whereupon we estimate a value of tL2 = (156.96 GB)/(671 GB/s) = 0.234 seconds for the runtime in the L2-
cache-bound case. Finally, the total number of floating-point operations is 2.18·109×80 = 174.4·109 flops, so the
estimated runtime for the functional unit bound case is tC = (174.4 ·109 flops)/(768 ·109 flops/s×0.68) = 0.334
seconds.

In the model of Section 1.2, the program execution time tE is the greatest of tM, tL2, and tC, which is tC in
this case.

Figure 3.9 shows the CPU performance-analysis report generated for this 3M-6L2-80F program. Here, it
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should be noted that the measured runtime of 0.331 seconds agrees with the estimate obtained above. The
functional unit busy time reported in the performance analysis should be 0.331 seconds, in agreement with the
execution-time estimate. However, it tends to be slightly lower. In analogy to the above, the busy time of
Section 1.3 is conceptually equivalent, but not identical, to the value of tC defined in Section 1.2.

Figure 3.9: CPU performance-analysis report for 3M-6L2-80F program.





Chapter 4

Basic approaches for improving
single-CPU performance on Fugaku

4.1 Basic strategies for improving CPU performance on Fugaku

As a prelude to discussing Fugaku performance tuning, we will first explain the software-pipelining (SWPL)
techniques used for performance tuning on the K computer and the FX100. We will base our discussion on the
simple computational code labeled “Target program” shown in Figure 4.1, which we assume to be running on
a model machine with the hardware properties listed in the box at the upper left-hand side of the figure.

If we do not attempt to optimize instruction scheduling and simply compile and run the program in the
bare-bones, unadorned form we see here, we obtain the sequence of machine instructions labeled “Original
Loop” in the figure, whose execution proceeds as follows: First, array elements B(1) and C(1) are loaded from
memory into registers. Three cycles later, the functional unit executes an add operation to compute their sum.
Three cycles after that, the result is stored in memory as array element A(1). This completes the processing
required for the first element of the array, which evidently consumes seven cycles of CPU time. The procedure
is then repeated for array elements 2, 3, · · ·, n, with each element consuming the same seven cycles of CPU
time to process. Thus, in the absence of any instruction-scheduling optimizations, the full loop requires a total
of 7n cycles to complete.

We achieve higher performance by reorganizing the sequence of machine instructions loaded into the pipelined
configuration shown in Figure 4.1. In the pipelined version of the program, instructions to fetch array elements
B(i) and C(i) from memory are issued on every CPU cycle (and not just every seventh cycle, as in the non-
pipelined version). If, for example, the ith array elements are loaded from memory on CPU cycle p, then their
sum is computed by the functional unit on cycle p+3 and stored in memory on cycle p+6. Thus, the processing of
each array element completes on the seventh CPU cycle after it begins. This is as in the non-pipelined case, but
with the difference that the 7-cycle processing intervals for distinct matrix elements now elapse simultaneously
and in parallel, as opposed to the one-element-at-a-time structure of the non-pipelined case. By organizing—
or scheduling—instructions in this way, the kernel portion of the sequence can generate results for one array
element on each successive CPU cycle (as opposed to every seventh cycle in the non-pipelined case), whereupon
the full loop for an n-element array requires a total execution time of just over n cycles. This is a significant
improvement over the 7n cycles required in the non-pipelined case. Of course, in practice, there can be pre-
and/or post-processing steps whose computational costs slightly reduce the magnitude of the speedup achieved
by pipelining. However, the effect of such factors diminishes as the number of array elements increase.
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Figure 4.1: Software pipelining (SWPL).

The performance-optimization technique outlined above is known as instruction scheduling via software
pipelining. Both the K computer and the FX100 were equipped with 128 registers. Compilers could take
advantage of this plentiful register pool to cram the kernel sections of programs chock full of load, arithmetic, and
store instructions, applying SWPL techniques to generate efficient object codes and achieve high performance.
Indeed, one might say that the objective of these machines was to pursue improved performance via in-order
strategies.

In contrast, Fugaku has only 32 registers, significantly reducing the number of instructions that can be
squeezed into program sections. Attempts to overfill programs with more instructions than can be reason-
ably accommodated tend to produce register spills—data leakage from registers to cache—that dramatically
degrade performance. This complicates the task of scheduling instructions via SWPL, thus threatening reduced
performance in the absence of alternative tuning techniques.

Fugaku’s strategy for addressing this situation is to offer an enhanced arsenal of out-of-order (OoO) resources
to compensate for the loss of registers. Out-of-order execution is a paradigm in which judicious decisions
regarding the initiation, execution, and termination of instructions are made to enable automated parallel
processing in hardware using multiple computational resources and based on factors such as data dependency
relationships. Fugaku’s basic strategies for improving CPU performance are to develop ARM-ready compilers
(with SIMD extensions) while continuing to implement scheduling via software pipelining, to take advantage
of the extended out-of-order execution capabilities of the hardware, to improve SWPL scheduling, to develop
other simple scheduling techniques, and to use all of these approaches for application performance tuning.

4.2 Comparison of out-of-order resources between Fugaku and Intel
machines

Although Fugaku boasts an increase in OoO resources, Intel machines offer a greater wealth of resources overall.
We used the RIKEN simulator to conduct performance comparisons with OoO resources and latencies set
comparable to those of Intel machines. The application used for this assessment is a computation-heavy code
that runs in cache and has been fully performance-tuned for execution on Fugaku. The results are shown in
Figure 4.2.

We compared four cases with varying instruction latencies and OoO resources: Fugaku as is, Fugaku en-
hanced to Haswell levels, Fugaku enhanced to Skylake levels, and Fugaku enhanced beyond Skylake levels. Our
findings indicate that enhancing to Haswell levels improves performance by around 30%. This conclusion does
not assume the OoO resources are fully on par with those of Intel machines and is the result of a RIKEN
simulator evaluation, so it should be kept in mind as a reference assessment. Nevertheless, trends like these can
arise in case studies involving arithmetic-heavy in-cache applications.
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Figure 4.2: Comparing Fugaku’s out-of-order resources to those of Intel machines.





Chapter 5

Techniques for tuning single-CPU
performance on Fugaku

In this section, we discuss techniques for tuning the single-CPU performance of Fugaku applications by pre-
senting several methods known at the present time. Since the content of this discussion assumes the use of
present-day compilers, its relevance and accuracy can be affected by future compilers.

5.1 How to read CPU performance-analysis reports

We begin by discussing how to interpret CPU performance-analysis reports to gain insight into program behav-
ior. Each CPU performance-analysis report presents a bar chart like that shown in Figure 5.1. In this graph,
the narrow solid-colored bars in the leftmost column indicate busy times for various hardware components, as
discussed in Section 1.3, while the wider bars in the remaining columns are thread-specific cycle-accounting
displays, in which color-coded segments indicate the contribution of various instruction-commit times and wait
times to the thread’s overall execution time. Light purple segments indicate functional unit wait times, with
large values signifying poor instruction scheduling. Light pink, dark pink, and red segments respectively indi-
cate wait times for accessing the L1D cache, L2 cache, and main memory. These offer at-a-glance insight into
the cache and main-memory latency. Magenta segments indicate barrier-synchronization wait times, which are
significant when threads are imbalanced.

Figure 5.1: Interpretation of CPU performance-analysis reports.
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5.2 Tuning technique 1: Optimizing instruction scheduling

Our first tuning technique is a general-purpose method relevant for applications in multiple subcategories,
including applications with both low and high B/F ratios. The specific subcategories for which this method
can be expected to be effective are shown in Figure 5.2. The schematic diagram shown in Figure 5.3, which
indicates various steps in the method as applied to a typical program, also shows that this is a general-purpose
method applicable to a wide range of applications. These steps are briefly summarized below and discussed in
more detail in the following sections.

1. Loop fusion Starting with a stencil computation involving a three-fold nested loop, we can fuse the two
inner loops to yield a two-fold nested loop (Figure 5.3, upper left) or fuse all three loops to yield a single
loop (Figure 5.3, lower left).

2. Blocking In anticipation of the loop-subdivision step below, we apply blocking to the new, elongated loops
produced by loop fusion, taking care to ensure that the innermost loop remains sufficiently long. This
allows localization of the working arrays is needed to pass information between loops after the loop-
subdivision step.

3. Loop fusion and multithreading If the outermost loop is too short to allow multithreading, it is fused
with the next loop created by blocking to achieve a loop length sufficient for multithreading.

4. Automatic and manual loop splitting For loops with long loop bodies, there can be too few registers
to allow instruction scheduling. In this case, we must split loops to achieve shorter loop bodies, thereby
reducing the number of registers needed. Loop splitting can be performed automatically or manually.

5. Prefetching If hardware prefetching is not enabled, we enable software prefetching or introduce explicit
software-prefetch instructions into the source code.

6. Promoting SWPL SWPL is an important approach to instruction scheduling. A number of techniques
are used to make maximal use of this capability.

Figure 5.2: Application subcategories to which tuning technique 1 is applicable.
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Figure 5.3: Outline of various steps in Tuning Technique 1.

5.2.1 Promoting SWPL and increasing cache efficiency: Loop splitting/loop fu-
sion and blocking

In this section, we discuss the use of loop splitting/loop fusion and blocking as tuning methods to promote SWPL
and increase cache efficiency. As mentioned above, Fugaku has 32 registers, which is considerably fewer than
the 128 registers of the K-computer and the FX100. For this reason, when codes written for the K-computer or
FX100 are executed without modification on Fugaku, there often arises a shortage of registers for SWPL and
other scheduling purposes, thus causing register spills and other performance-degrading problems. An effective
method for addressing this issue is to split loops to reduce the number of registers used within loop bodies.

However, even loops that have been split cannot be successfully scheduled if the loop length is insufficient.
In such cases, fusing loops to increase loop length is an effective tuning strategy. On the other hand, the use of
loop fusion and loop splitting requires data transfers between subdivided loops, which—for loops that are too
long—tend to degrade performance due to the large number of memory accesses involved. This prompts the
use of loop blocking as an effective tuning method for ensuring the innermost loops are long enough to allow
adequate scheduling after loop fusion.

To demonstrate these ideas, we apply them to the task of tuning a three-fold nested loop. The original
(untuned) and tuned programs are listed in Figures 5.4 and 5.5. The performance effect of this tuning is
displayed graphically in Figure 5.6 and tabulated quantitatively in Figure 5.7.

1⃝ r4 tune02

The array-dimension rearrangement, loop splitting, prefetching, and other tuning steps accelerate the
tuned code to levels higher than the original version. Because the number of iterations of the innermost
loop is rather small (128), SWPL is not applied, and there is some functional unit wait time. The outermost
loop over k is parallelized, but the region of private arrays and the region used for one-dimensional (1D)
loop splitting are both relatively small.

2⃝ r4 collapsed.tune02

The two inner loops over i and j are fused into a single loop over ij to promote SWPL. As this yields
a large iteration count for the ij loop (16,900), we parallelize this loop over 12 threads, each executing
16900/12=1408 iterations. The application of SWPL reduces functional unit wait time relative to 1⃝.
However, because accesses terminate every 1408 iterations, the efficiency of prefetching is degraded, thus
increasing the cache wait time.

3⃝ r4 collapsed.tune03
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Multithreading was restored to the loop over k to improve prefetching efficiency, but the large iteration
count of the ij loop increased the sizes of the working arrays used to pass data between loops, thus increas-
ing main-memory accesses and degrading performance. Therefore, we perform blocking (with block size
128) to localize local arrays and reduce main-memory accesses. We also improve the compiler’s optimiza-
tion capabilities to allow the application of SWPL to loops with as few as 128 iterations. Furthermore,
only identical calculations are aggregated and subdivided to reduce working arrays. As a side effect of the
modified sequence of arithmetic operations, the number of FMA instructions increases while the number of
ordinary floating-point instructions and the overall instruction count decrease. Compared to the untuned
program, the performance of this fully tuned code more closely approaches the theoretical performance
limit set by the L2-cache busy time.

Figure 5.4: Asis (untuned) version of loop splitting/loop fusion and blocking.
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Figure 5.5: Tuned version of loop splitting/loop fusion and blocking (r4 collapsed.tune03).

Figure 5.6: Performance charts showing the effect of loop splitting/loop fusion and blocking.

5.2.2 Automatic loop splitting: A first example

Fujitsu developed automated loop-splitting functionality for the Fugaku project. This mechanism supersedes
the previous approach—in which loops were split at user-specified branch points indicated by control lines in
the source code—with a new technique for automatically identifying appropriate branch points. In this section,
we demonstrate the use of automated loop-splitting to tune a meteorology code for modeling microphysics
processes. The original (untuned) and final (fully tuned) codes are listed, in abbreviated form, in Figures 5.8
and 5.9. The performance levels of the original, partially tuned, and fully tuned codes are displayed graphically
in Figure 5.10 and tabulated quantitatively in Figure 5.11. From the code listing of Figure 5.8, we can see that
the loop body is extremely long, thus prohibiting the effective application of SWPL. Additionally, because the
code uses both single- and double-precision floating-point values, only 8-SIMD instructions are applied, thus
resulting in large numbers of register spill/fills.
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Figure 5.7: Performance data of loop splitting/loop fusion and blocking.

In the tuned code of Figure 5.9, automatic loop splitting has been applied at label loop fission target.
We specify the option -Kloop fission threshold=40 to set the loop-splitting threshold to 40. This option can
be left unspecified, in which case the loop-splitting precision is determined automatically. Here, we manually set
the precision to 40, which is a value that has produced good performance for multiple floating-point precisions.
Applying only this loop-splitting optimization yields a partially-tuned version of the code named tune1. To
complete the tuning, we further apply a blocking step to address the growth in the working arrays expected
to accompany loop splitting. This yields our final fully-tuned code, tune2. From Figure 5.10, we see that the
partially-tuned tune1 code achieves a reduction in functional unit wait time, but the benefit is partly offset by
increased wait times for main-memory and cache accesses. Overall, tune1 reduces total execution time by 35%
compared to the unmodified code. The fully-tuned tune2 code improves both memory and cache wait times
and achieves a 62% reduction in execution time versus the unmodified code.
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Figure 5.8: Asis version of test code showing automatic loop splitting.

Figure 5.9: tuned version of the test code (tune2)
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Figure 5.10: Performance comparison of three versions

Figure 5.11: Performance data for the three code versions.

5.2.3 Automatic loop splitting: A second example

As a second example of automatic loop splitting, we next consider a fluid-modeling code based on hierarchical
Cartesian meshes, focusing on the portion of this code responsible for advection computations. Figure 5.12
shows the performance of the code before tuning (far left) and after tuning via automatic loop splitting at 10
distinct values of the splitting threshold (-Kloop fission threshold) ranging from 10 to 100 (indicated by x-
axis labels). For threshold values between 40 and 50, the automated loop-splitting algorithm yields performance
on par with that achieved by manually splitting into 31 subdivided loops. In passing, we note that this data
set was assembled based on program run times obtained with slightly older compilers and RIKEN simulators,
so it may be somewhat out of date.
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Figure 5.12: Performance charts of automatic loop splitting at various splitting threshold values

5.2.4 Promoting SWPL and enhancing cache efficiency via loop fusion and block-
ing, loop splitting, and prefetching

Our next example demonstrates how a stencil-based computation can be tuned via loop fusion and blocking, loop
splitting, and prefetching to promote SWPL and increase cache efficiency. The final code produced by the tuning
process in this case is outlined in Figure 5.13 (we omit a listing of the original code), while the performance of the
code before and after tuning is displayed graphically in Figure 5.14 and tabulated quantitatively in Table 5.15.
The tuning process uses loop splitting to achieve SWPL, as well as improving wait times for main-memory and
cache access. For this reason, we perform loop blocking with a block size of 128 and add prefetch directives to
the loop code. From Figure 5.14, we see that the application of SWPL improves scheduling and significantly
reduces functional unit wait time, thereby yielding a 40% reduction in overall execution time. Also noteworthy
is the increase in the L1-cache reuse and busy time compared to the unmodified program, both reducing L2-
cache busy time—which sets the theoretical lower bound on overall runtime in this case—and pushing down
the actual runtime to approach this limit more closely than was possible before tuning.
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Figure 5.13: example of loop fusion, blocking, loop splitting, and prefetch (tune).

Figure 5.14: Performance chart for the example code before and after tuning.

5.2.5 Adding prefetch directives

When array elements are accessed sequentially, hardware prefetching is typically in effect. However, even in
the computational stencils whose arrays are sequentially accessed arrays, there can be cases which exhibit long
wait times for cache access, thereby resulting in high rates of cache misses and demand misses for the L1D and
L2D caches. The miss rate of a cache is an aggregate of three contributions: the miss rate due to hardware
prefetching, the miss rate due to software prefetching, and the demand miss rate. Together these three factors
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Figure 5.15: Performance data before and after tuning.

yield 100% of the cache miss rate. Large contributions from the first two factors are harmless, but high values
of the demand miss rate can cause problems. An effective method for increasing performance in such cases is
to add prefetch directives to the source code to induce the generation of software prefetches.

Figure 5.16 shows an example of a loop tuned by the addition of prefetch directives. In this case, the
loop over ij is ascending but the loop over k is descending, and successive iterations of the k loop do not
yield sequential array accesses. This destroys the sequential pattern of array accesses and precludes the use of
hardware prefetching. We rectify this difficulty by specifying L2-cache prefetch directives to ensure that the
array elements to be accessed on the next iteration of the k loop are preloaded into the L2 cache.

In the code listing of Figure 5.17, we have added several more prefetch directives to complete the tuning
of this loop. We suppose that the loop body involves eight sets of array accesses; then prefetching 256 bytes
worth of cache lines amounts to prefetching eight sets × 256 bytes = 2048 bytes = 2 kB, a data volume that is
easily accommodated by Fugaku’s 64-kB L1D cache. Since 256 bytes corresponds to 64 single-precision array
elements, the directives in Figure 5.17 serve to prefetch the next 64 array elements into the L1D cache.

The performance effect of adding prefetch directives is displayed graphically in Figure 5.18 and tabulated
quantitatively in Figure 5.19.

For the untuned code, we find high demand-miss rates of 63.40% and 49.98%, respectively, for the L1D and
L2 caches, which indicate problematically large wait times for accessing main memory and cache. The addition of
prefetch directives to reduce these demand-miss rates significantly reduces wait times for both main memory and
cache—and also reduces L2-cache busy time, thereby yielding an overall reduction of 30% in program execution
time. Indeed, the high performance of the tuned code drives down overall runtime to levels approaching the
theoretical lower bound given by the L2-cache busy time. The number of executed instructions appears to have
increased, but, in fact, the only new instructions generated are prefetch instructions and address-evaluation
instructions resulting from the addition of prefetch directives.
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Figure 5.16: A two-fold nested loop partially tuned by adding two prefetch directives, with diagrams illustrating
the effect of the directives on the L2 cache.

Figure 5.17: The program of Figure 5.16 after adding additional prefetch directives.

Figure 5.18: Performance charts showing the effect of adding prefetch directives.
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Figure 5.19: Performance data showing the effect of adding prefetch directives.

5.2.6 Using multiple structure load/store instructions

Nested loops in which the outermost loop runs over indices of an array, such as the loop in the blue rectangle
near the bottom of the code listing on the left side in Figure 5.20, typically generate inefficient gather load or
scatter store instructions. However, if the length of the outermost loop (i.e., the length of the corresponding
array dimension) is four or less, it can be possible to use efficient multiple structure load/store instructions
instead. In this section, we discuss how this observation can be used to tune for performance.

The blue-framed loop in Figure 5.20 effects an in-place component-wise multiplication of the FXYZ array by
a coefficient array. To this end, elements are both loaded from and stored to FXYZ on each loop iteration. The
idea behind the tuning strategy is to introduce working arrays that allow the loading and storing operations
to be carried out on separate arrays, thereby enabling all gather load and scatter store instructions to be
replaced by multiple structure load/store instructions. Note that the need to perform this tuning step
by hand is a limitation of the current compiler version. In the future, we expect that multiple structure

load/store instructions will be used automatically, thus obviating the need to rewrite loops by hand, as seen
in the example above.
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Figure 5.20: Using multiple structure load instructions.

The performance of the original and tuned codes is plotted in Figure 5.21 and tabulated in Figure 5.22.
For example, whereas the use of gather load generates one instruction for each SIMD gather/load of a single
element of FXYZ(1, ·, ·), switching to multiple structure load causes just one SIMD instruction to be issued
for the full set of elements {FXYZ(1, ·, ·), · · · , FXYZ(3, ·, ·)}. From Figure 5.22, we see that replacing gather

load/scatter store with multiple structure load/store significantly reduces the number of load/store
instructions, while from Figure 5.21, we see that the generation of efficient load/store instructions greatly
reduces both the wait time for L1 cache access and cache busy time, thus enabling program performance levels
that approach the upper bound set by the main-memory bandwidth. These improvements reduce the overall
program runtime from 1.73 to 1.22 seconds.

Figure 5.21: performance chart showing the effecgt og multiple structure load/store (1)
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Figure 5.22: performance data showing the effecgt og multiple structure load/store (1) instructions.

A second example is presented in Figure 5.23. Here we have rearranged the dimensions of two arrays:
in the upper half of the code, the first array dimension (whose index runs over values 1-6) has become the
third dimension, while in the lower half, the first array dimension (with index running from one to three) has
become the third dimension. The results of these tuning steps are shown in Figure 5.24, which also shows cycle-
accounting charts for the original, untuned code (left), the code after the first array rearrangement (center), and
the code after both array rearrangements (right). With previous compilers, rearranging array dimensions often
yielded significant performance improvements. However, compilers have become more sophisticated and are
now able to auto-generate multiple structure load instructions, in some cases involving loops of length four
or below. This includes, in particular, the loop in the second half of Figure 5.23, for which the rearrangement
we performed by hand above was, in fact, already done automatically by the compiler for the original (untuned)
source code. This is why no performance improvement results from going from the center to the right column of
Figure 5.24. We conclude that the tuning method of this section is unnecessary for array dimensions of length
1-4, for which multiple structure load instructions are generated automatically.

On the other hand, the first of the arrays we rearranged above has a length greater than four, so in this case,
the tuning method of this section should improve performance by increasing contiguous memory access. The
fact that we see almost no difference between the left and center columns of Figure 5.24 is due to the relatively
minimal cost of the upper half of the program in comparison to the lower half. Nevertheless, in general, we
recommend tuning via array-dimension reorganization for loops whose first dimension has a length greater than
four.
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Figure 5.23: example of exploiting multiple structure load (2)

Figure 5.24: Performance chart showing the effect of multiple structure load (2)

5.2.7 Using SWP options

In Section 4.1, we discussed SWPL. The cycle distance between the start of instructions for loop iterations i
and i+1, shown in Figure 4.1, is known as the initiation interval (II) (see also Figure 5.25). In those figures, it
can be seen that shorter II values allow greater numbers of instructions to be squeezed together at the expense
of requiring more registers, while long II values reduce the number of registers required to run a program.
However, they also prohibit dense packing of instructions, thereby yielding sparse machine codes and reducing
the effect of instruction scheduling.

For the K computer and the FX100, instruction scheduling proceeded by expanding from short-II regions,
seeking instruction sequences offering maximal benefit for the available number of registers. If no satisfactory
instruction sequences could be found, the scheduling attempt was abandoned. In other words, the SWPL
strategy was to seek only a single type of solution and simply to give up if it was not found. For the Fugaku
project, the expansion of OoO resources was accompanied by the adoption of a “strong SWPL” philosophy,
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in which OoO is used to increase the efficiency of spills due to register shortages. As a result, user-selectable
options for applying SWPL—even at the expense of generating register spills—were added to the compiler.

Figure 5.25: Strong SWPL.

An example of strong SWPL is shown in Figure 5.26, which shows an original compiler listing (left) and
the same listing after specifying the swp strong option. We see that SWPL has been applied to the listing
at the right. The swp strong option is available in fortran and c/c++ trad modes. The performance
effect of strong SWPL is displayed graphically in Figure 5.55 and tabulated quantitatively in Figure 5.56. In
this example, the introduction of SWPL improves functional unit wait time but does not significantly improve
performance. Nevertheless, we expect there will be some cases in which the swp strong option has a noticeable
effect and have thus included it in this survey of tuning techniques.

Figure 5.26: An example of strong SWPL.
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Figure 5.27: Performance charts showing the effect of strong SWPL.

Figure 5.28: Performance data showing the effect of strong SWPL.
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5.2.8 Summary of the instruction scheduling tuning

The various tuning techniques discussed in the previous seven subsections are shown in Figure 5.29 and can be
summarized as follows:

• Improving functional unit wait times requires instruction-scheduling methods such as SWPL. An effective
tool for this purpose is loop splitting to reduce register use. Loop fusion to increase loop lengths can also
be effective.

• Cache wait times can be improved by prefetching to reduce cache-access latency.

• An effective technique for improving main-memory-access wait times is blocking loops after loop splitting
to reduce the size of working arrays.

• Barrier-synchronization wait times can be reduced by fusing loops to yield loops of longer length and then
reducing any thread imbalances that arise.

• Instruction commit times can be reduced by converting non-contiguous data accesses to contiguous ac-
cesses, thus increasing the efficiency of load instructions.

Figure 5.29: Summary of Section 5.2.

5.3 Tuning Technique 2: indirect access applications

The tuning technique discussed in this section is applicable to applications with low B/F ratios that use indirect
memory access (Figure 5.30), typically seen in unstructured applications such as FEM. Although applications
in this category are considered to be the most difficult of all applications to tune for high performance, for
applications to which the tuning technique presented here is applicable, it is possible to achieve ideal performance
for in-memory calculations.

5.3.1 Node ordering to improve locality of node indices

Next, we consider the typical sparse matrix-vector multiplication program of Figure 5.31. Here, matrices and
vectors are stored in compressed-row storage (CRS) format, so matrix entries are accessed contiguously, while
vectors are accessed via lists of indices.

We use the roof-line model to estimate the performance of this program. Since the data used in this
estimation are for the K computer, we are really estimating performance for execution on that machine. The
roof-line model makes the idealized assumption that list-accessed vector components reside in cache. If we
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Figure 5.30: Application categories to which Tuning Technique 2 is applicable.

assume that the relevant portions of vectors are present in the L1 cache, we can then entirely neglect main-
memory access for vector components, so only matrix entries and list indices require loading from memory.
Then, the number of bytes loaded on each inner-loop iteration (for this single-precision program) is 2×4 bytes
= 8 bytes. (We neglect the instruction that stores product-vector entries, as this occurs outside the inner loop
and is, thus, executed relatively few times.) The inner loop performs one multiplication and one addition, for a
total of two floating-point operations. Hence, the B/F ratio for this program is 8/2=4. The theoretical memory
bandwidth of the K-computer hardware is 64 GB/s. With an effective memory bandwidth of 46 gigabytes/s and
a theoretical CPU performance of 128 gigaflops/s, the effective hardware B/F ratio is 46/128=0.36. Therefore,
with the idealized assumption that vector components reside in cache, the peak performance ratio estimated
by the roof-line model is the ratio of the effective hardware B/F ratio (0.36) to the program’s B/F ratio (4), or
0.36/4=9%. However, actual measurements for the program of Figure 5.31 on the K computer revealed poor
performance, with values ranging from 1/5 to 1/10 of this estimate.

Figure 5.31: Sparse matrix-vector multiplication program.

This poor performance is due to the failure of the assumption that vector components will be present in
the L1D cache when accessed. To understand this, it is helpful to visualize the node number relationship
between the calculated node and the referenced node. Figures 5.32 shows such relationship plot for tetrahedron
element model, and Figure-5.33 for hexahedron element model. For tetrahedron element model, consisted of
the approximately 2.7 million nodes in total, each node requires the access to wide range of random access.
For hexahedron elements, consisted of the approximately 27.0 million nodes in total, the first 1 million nodes
require random access and the other nodes require bipolar pattern access.

To mitigate the phenomenon of index sets distributed effectively randomly over wide ranges, we rearrange
the ordering of mesh-node indices to ensure that physically neighboring nodes are assigned to neighboring
components of vectors. More specifically, as shown in Figure 5.34, we first segment the physical region into
blocks by subdividing each coordinate axis into multiple intervals. We subdivide each block into exterior
and interior regions and order nodes within the block from interior to exterior based on physical coordinates.
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Figure 5.32: node definition and reference plot for the tetrahedron element model

Figure 5.33: node definition and reference plot for the hexahedron element model

Ordering nodes in this way ensures that the indices of the nodes comprising a single element have neighboring
values. By adjusting the block sizes, we can arrange for the majority of indirect vector-component accesses to
be served by the L1D cache.

After reordering nodes, the component-index plots of Figures 5.32 and 5.33 for the quadrilateral and par-
allelepiped are transformed into Figures 5.35 and 5.36. In both cases, points appear to be clustered in three
lines. However, closer inspection reveals that the random distributions of indices over wide ranges have been
successfully localized.
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Figure 5.34: Schematic depiction of node-ordering algorithm.

Figure 5.35: node definition and reference relationship plot for tetrahedron element model - after node ordering.

Figure 5.36: node definition and reference relationship plot for hexahedron element model - after node ordering.

Figure 5.37 details performance results obtained on the K computer for the two FEM structures before and
after node ordering. For both the tetrahedron model and hexahedron model, the node-ordering optimization
increases the performance, achieving the sustained performance of close to 9% which is the theoretical upper
bound for K computer estimated on the assumption that all vector components reside in the L1 cache.
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Figure 5.37: K-computer results after node ordering.

Next, the performance effect of node ordering for execution on Fugaku is displayed graphically in Figure 5.38
and tabulated quantitatively in Figure 5.39. The node ordering ensures that many indirect array-element
accesses reference data present in cache, thereby reducing L1D cache misses and decreasing wait times for
memory and cache access. For hexahedron element model, the number of executed instructions for thread 0 of
tuned version increases compared to asis version, but the number of aggregate instructions of all threads reduces.
For tetrahedron element model, the number of floating point operations for thread 0 of tuned version increases
compared to asis version, but the number of aggregate f.p. operations stay the same. Evidently, performance
is significantly improved for both the hexahedron element model and the tetrahedron element model.

Figure 5.38: Performance charts showing the effect of node ordering for execution on Fugaku.
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Figure 5.39: performance data showing the effect of node ordering for execution on Fugaku.

5.3.2 apply SIMD via loop re-rolling

The original source code of the loop considered in this section is shown in Figure 5.40. At line 489 and elsewhere,
we have manually unrolled a loop over the values 1, 2, and 3 for the first index of the FXYZ array. Additionally,
at line 474, we have unrolled a loop over values 1-8 for the first index of the NODE array, corresponding to
nodes in the loop over NE. These program sections have not been SIMD applied. We now re-roll these manually
unrolled loops to restore the loop structures. The resulting code is outlined in Figure 5.41. The length of the
innermost loop is set to eight to match Fugaku’s SIMD width, but the number of elements actually used is
three (for x, y, and z). Iterations 1-8 of the surrounding loop correspond to the number of nodes contained in
each component and are re-rolled. The effect of the re-rolling is to SIMD apply the innermost loop. The eight
iterations of the surrounding loop are automatically unrolled. Additionally, the outer loop over components is
subjected to SWPL.

The results of this SIMD apply via loop re-rolling are discussed in the next section.

Figure 5.41: Loop structure of the tuned code.
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Figure 5.40: Loop structure of the original code.

5.3.3 Reduce indirect stores - converting from element loops to node loops

We first explain the original loop structure, referring to the diagram of Figure 5.42 and the code listing of
Figure 5.43. In this code, the indices of nodes for which values are stored are accessed via lists, so scatter

store instructions are used. The penalty incurred by the use of these instructions was not significant on the K
computer due to its narrow SIMD width (two), but is significant for Fugaku (SIMD width eight), thus suggesting
a degradation in execution efficiency.

• Use a loop structure in which we iterate over elements

• Values must be stored for each node

• Indices of nodes for which values are stored are accessed via lists

• Store-side list accesses are slow and should be avoided whenever possible

• Stores involve recurrence, requiring coloring to eliminate recurrence

Next, we will explain the tuning steps used to improve the original loop structure, referring to the diagram
of Figure 5.44 and the code listing of Figure 5.45. The tuning involves restructuring loops to iterate over
nodes instead of iterating over elements. This has the effect of avoiding performance-degrading scatter-store

instructions, thus allowing efficient contiguous access for storage operations.

• Loop restructured to iterate over nodes rather than iterating over elements

• Relevant values for neighboring nodes are accumulated

• Indices of nodes for which values are stored yield contiguous accesses

• No need for coloring
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Figure 5.42: Schematic depiction of original procedure (asis)

Figure 5.43: Source code for original procedure (asis)
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Figure 5.44: Schematic depiction of tuned procedure (tune02)

Figure 5.45: Source code for tuned procedure (tune02)

The performance effect of the tuning step described in this section is displayed graphically in Figure 5.46
and tabulated quantitatively in Figure 5.47. tune01 refers to the partially-tuned code produced by SIMD-ed
via loop re-rolling. tune02 refers to the fully-tuned code involving both SIMD-ed via loop re-rolling and loop
restructuring from elements to nodes.

tune01 achieves the desired effect of significantly reducing the execution count via SIMD. However, the effect
of indirect data access remains significant, and the DM rate for the L1D cache misses increases as prefetching
fails to achieve its objective. Wait times for memory and cache access also contribute prominently. Consequently,
the first partial tuning step makes only a minimal contribution to improving overall execution time, but yields
a large reduction in instruction count that significantly decreases the L1D cache and functional unit busy times,
thus making it a useful precursor for the next tuning step. The node reordering step in tune02 dramatically
reduces indirect access in storage operations, significantly reducing L1D-cache busy time and greatly enhancing
memory throughput to yield a major performance improvement. The execution time of the fully tuned program
then approaches the L2-cache busy time, thereby yielding performance close to theoretical limits.
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Figure 5.46: Performance charts showing the effect of loop restructuring from elements to nodes (tune02)

Figure 5.47: Performance data showing the effect of loop restructuring from elements to nodes (tune02)

5.3.4 Adding prefetch directives for indirect memory accesses

Prefetching typically yields minimal performance gains for indirect memory accesses, but can have a nonnegli-
gible effect in the following situations:

• When a comparison of contiguous to non-contiguous (indirect) memory accesses reveals that the latter
are more prevalent.

• When arithmetic operations are present to some extent, but indirect memory accesses are more numerous.

• When the indices of nodes for which values are to be stored are themselves accessed via list.

• When cache wait times are responsible for a significant portion of the execution time.

• When storage operations involve recurrence, the elimination of which requires coloring.

If conditions such as these are present, it can be possible to improve performance by inserting software-
prefetch optimization directives into the source code. These directives improve performance by preloading into
the L1 cache the values that will be needed on the following loop iteration.
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Asis (untuned) and partially tuned versions of a program demonstrating this technique are shown in Fig-
ure 5.48. The partially tuned program (tune01) specifies that eight values from the list-accessed FXYZ array are
to be prefetched on each loop iteration.

Figure 5.48: Asis (left) and partially-tuned (right) versions showing the use of prefetch directives

Further tuning to improve efficiency via prefetching yields the final fully-tuned program tune02 of Fig-
ure 5.49. Whereas tune01 invokes eight scalar prefetch instructions and non-SIMD loads to access list indices
in the NODE array, tune02 replaces the scalar prefetches with an efficient gathering prefetch instruction and
uses SIMD loading to access list indices, thereby yielding further improvements in efficiency.

Figure 5.49: Fully-tuned version (tune02)

The performance effect of adding prefetch directives is displayed graphically in Figure 5.50 and tabulated
quantitatively in Figure 5.51. The partially-tuned tune01 program reduces the execution time from 10.6 to
8.83 seconds, but the addition of eight prefetch directives increases the instruction count. In the fully-tuned
tune02 program, the SIMD-ed loads from the NODE array determining the locations of prefetches, and the
use of gathering prefetching for prefetch instructions, reduces the load/store instruction count. tune02 also
increases the SIMD instruction ratio from 24.15% to 77.24% and reduces the execution time from 8.83 seconds
(for tune01) to 6.18 seconds. Finally, tune02 improves memory throughput to a level near its theoretical upper
bound.
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Figure 5.50: Performance charts showing the effect of prefetching directives for indirect memory accesses.

Figure 5.51: Performance data showing the effect of prefetching directives for indirect memory accesses.

5.4 Tuning Technique 3: Assorted optimizations for complex pro-
grams

The tuning techniques discussed in this section are applicable to in-cache applications with low B/F ratios for
which optimal tuning is difficult due to the complexity of the code (Figure 5.52).

As noted previously, in comparison to the K computer, Fugaku has fewer registers, higher latency for
arithmetic instructions, and larger SIMD width. These factors make it more difficult to apply instruction
scheduling, and thus even in-cache applications often fail to achieve optimal performance. In this section, we
discuss tuning methods that have succeeded in improving performance—if only slightly—for applications in this
category.



5.4. TUNING TECHNIQUE 3: ASSORTED OPTIMIZATIONS FOR COMPLEX PROGRAMS 57

Figure 5.52: Application categories to which Tuning Technique 3 is applicable.

5.4.1 Expanding SIMD length

This technique is shown by the code listed in Figure 5.53. In this code, the innermost loop has been SIMD-ed.
However, because NB=4, only four lanes are active, with the remaining 12 lanes deactivated by the predicate.
We also note that the second index of the rg array ranges over the values 1-3.

Figure 5.53: Asis version for SIMD expansion.

Our tuned version of this program is shown in Figure 5.54. By increasing ivec from four to NB×3=12, we
access 12 contiguous components, thereby activating 12 SIMD lanes. In fortran we could achieve the same
effect by changing accesses to the form rg(ivec,1,·,·).



58 CHAPTER 5. TECHNIQUES FOR TUNING SINGLE-CPU PERFORMANCE ON FUGAKU

Figure 5.54: Tuned version of SIMD expansion.

The performance effect of this tuning step is displayed graphically in Figure 5.55 and tabulated quanti-
tatively in Figure 5.56. The execution time is improved by around 7%. The reduction in the number of
instructions executed—particularly load/store instructions—reduces instruction commit time. Additionally,
software pipelining is applied to the outer loop, thereby improving instruction scheduling.

Figure 5.55: Graphical representation of performance benefit from SIMD expansion.
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Figure 5.56: Performance data with and without SIMD expansion.

5.4.2 Suppressing inter-loop optimization to reduce register use

When the length of an innermost loop is short with a compiler-determined iteration count, the loop can be
eliminated at compile time in favor of SIMD instructions. In this case, registers are used to share common
expressions and loaded variables between loops, and, in actual calculations, a shortage of registers can result in
large numbers of spill/fill events, frequently degrading performance. A useful tuning technique for such cases is
to suppress inter-loop optimization by enclosing each loop inside IF statements that use provisional parameters
to evaluate conditions. This process is shown in Figure 5.57.

Figure 5.57: Suppressing inter-loop optimization (tune06).

Suppressing inter-loop optimization can cause a single calculation to be performed multiple times, thereby
increasing the number of instructions executed. However, the use of fewer registers and the reduced occurrence
of register spills have the effect of improving instruction scheduling while also reducing functional unit wait
times and cache-access wait times, thus raising overall performance. For recent compiler versions, the OCL

opt barrier directive can be used instead of adding explicit IF statements.

The effect of this tuning step is depicted graphically in Figure 5.58, in which the left, center, and right perfor-
mance charts are for the original (untuned) program, the program tuned by adding explicit IF statements, and
the program tuned by adding the OCL opt barrier directive, respectively. Note that both tuning approaches
yield nearly identical performance levels.
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Figure 5.58: Performance chart of suppressing inter-loop optimization (tune06).

5.4.3 Improving instruction scheduling

Next, let’s consider a program that loads a value from an array using list-based indirect indexing, performs
some computation, and stores the result in the same array, with this procedure corresponding to several lines
of source code. An example is shown in Figure 5.59.

In cases like this, the compiler determines, at compile time, that multiple indirect array element accesses
from different lines of source code can involve the same address, in which case data storage on iteration i can
come after data loading on iteration i+ 1. This prohibits instruction scheduling.

Figure 5.59: improving instruction scheduling (asis)

In cases like this, if list accesses are known not to overlap, load and store operations can be explicitly
separated, as shown in Figure 5.60, to allow the compiler to invoke efficient scheduling.
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Figure 5.60: improving instruction scheduling (opt1)

The performance effect of this tuning step is displayed graphically in Figure 5.61 and tabulated quantitatively
in Figure 5.62. The numbers of executed instructions and of load/store instructions both decrease, thus reducing
program runtime by around 17%. The difference between the untuned and tuned codes shows the effect of
instruction scheduling. By explicitly invoking advance data loading from array rg in the source code, we modify
the scheduling of instructions, thereby ensuring adequate separation between array accesses. The reduction in
load/store instructions comes together with a reduction in load instructions for array cny (as a side effect).

Figure 5.61: Performance charts showing the effect of improved instruction scheduling.
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Figure 5.62: Performance data showing the effect of improved instruction scheduling.

5.4.4 Reducing the number of instructions executed

Using the Fugaku compiler to translate kernel programs increases the prevalence of mov and add instructions
for integer arithmetic. These instructions are used as follows to access arrays or other entities in memory.

x1 ← 5600 Load explicit value 5600 into register x1 (generates mov instruction)

x2 ← sp + x1 Set x2 to sp+5600 (generates add instruction)

z1 ← [x2] Load data from address stored in x2

The add instructions allows explicit operands in the range [-4096,+4095]. Addresses separated from the
stack pointer (sp) by more than 4096 bytes must be computed by using a mov instruction to load an offset into
a register. No mov instruction is required for addresses near the stack pointer, so the number of mov instructions
can be reduced by positioning frequently-accessed arrays at nearby locations. In this section, we discuss tuning
procedures for reducing mov instructions.

To simplify this discussion, before explaining the tuning method itself, we will first explain the actual tuning
procedure carried out in this case. Figure 5.63 shows the tuning process that converts tune06 into tune07.
Here, we are rearranging computations as indicated in Figure 5.63. The objectives of this rearrangement
include sharing common expressions, recasting arithmetic operations as accumulations, and ensuring adequate
separation between stores to the same variable.
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Figure 5.63: The tuning process from tune06 to tune07.

Next, we will explain the tuning procedure for reducing mov instructions. Private variables in OpenMP are
stored on the stack and can be assumed to be ordered in the sequence specified in private sections, so we
can reduce mov instructions by declaring private variables in decreasing order of access frequency, as shown in
Figure 5.64.

Figure 5.64: Tuning the order in which private variables are declared.

Additionally, the load instructions used to access arrays allow the specification of offsets for each SIMD
width, so we can reduce mov and add instructions by aggregating arrays, as shown in Figure 5.65. Applying
this tuning step to tune07 yields tune08.

The performance effect of reducing executed instructions is displayed graphically in Figure 5.66 and tabulated
quantitatively in Figure 5.67. The instruction count is significantly reduced when transitioning from tune07

to tune08, which demonstrates the benefit of eliminating mov instructions. Execution time is also reduced by
13%.
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Figure 5.65: Aggregating arrays to reduce executed instructions.

Figure 5.66: Performance charts showing the effect of reducing executed instructions.

Figure 5.67: Performance data showing the effect of reducing executed instructions.

5.4.5 Using enhanced compiler optimization features

Improvements in compiler optimization capabilities now allow SIMD processing of leftover loop portions resulting
from SIMD loops with lengths shorter than the SIMD width of the machine. This feature is enabled by default,
so the “original” (untuned) version of the program, in this case, is obtained by adding a compiler directive to
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disable it. We refer to the code version without this compiler directive as tune1. The effect of this tuning step
is discussed in Section 5.4.7 below.

Figure 5.68: apply SIMD to residual loop portions (original, untuned code).

5.4.6 supplement compiler optimization - use explicit arguments instead of pointer
variables

The use of data structures containing pointer types can obstruct the compiler optimization process. To avoid
this, subroutines accepting array-valued arguments are rewritten with additional new arguments specifying array
dimensions, as shown in Figure 5.69. In some cases, this can allow compiler optimization to proceed, thereby
yielding improved performance. Array declarations appear on the receiving side. Applying this tuning step
together with the tuning step discussed in Section 5.3.4 (adding prefetch directives to codes using list-accessed
arrays) yields a new program version named tune2. The effect of this tuning step is discussed in Section 5.4.7
below.

Figure 5.69: supplement compiler optimization - use explicit arguments instead of pointer variables

5.4.7 supplement compiler optimization - adding contiguous attribute to array of
pointers

In the previous section, we noted that converting pointer variables to subroutine parameters can improve
performance in some cases. However, carrying out this step for real-world applications can involve a significant
amount of effort because the program portions that require revision can be rather extensive. If the contents
of the data structures in question are stored contiguously in memory and do not overlap other regions, pointer
variables can be declared with the contiguous attribute to indicate that they refer to contiguous memory
regions. This is demonstrated by the program shown in Figure 5.70. Specifying the contiguous attribute
allows compiler optimization to proceed on the assumption that the memory region in question is contiguous,
thus achieving the same effect as the specification of subroutine parameters. Applying this tuning technique
yields the code labeled tune3.
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Figure 5.70: Adding contiguous attribute.

The performance effect of the tuning techniques discussed in this section and the previous two sections is
shown graphically in Figure 5.71 and tabulated quantitatively in Figure 5.72. Applying the technique discussed
Section 5.4.5 to the original (untuned) code yields the partially-tuned code tune1, which reduces the number
of instructions executed from 1.02·107 to 8.11·106 because the application of SIMD improves performance by a
factor of 1.06. Furthermore, applying the technique of Section 5.4.6 yields the partially-tuned code tune2, in
which the issuance of prefetches increases the number of instructions executed but slashes the L1D demand-miss
rate from 87.13% to 20.95%, thereby improving performance by a factor of 1.33. Finally, applying the technique
discussed in Section 5.4.7 yields our final, fully-tuned code tune3. The performance of tune3 is essentially
equivalent to that of tune2, but the tuning step required to produce tune3 is very simple—requiring only that
certain pointer variables be assigned the contiguous attribute—and is less labor-intensive than the process of
rewriting the subroutine calling conventions required to produce tune2.
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Figure 5.71: Performance charts showing the effect of the tuning techniques discussed in subsections 5.4.5,
5.4.6, and 5.4.7.

Figure 5.72: Performance data showing the effect of the tuning techniques discussed in Sections 5.4.5, 5.4.6,
and 5.4.7.

5.4.8 Parallelization via dynamic thread scheduling

When applications are parallelized via multithreading, the emergence of significant load imbalances between
threads can degrade performance. In such cases, the method of dynamic thread scheduling, shown in Figure 5.73,
can improve performance. In the original (untuned) version of Figure 5.73, the loop is parallelized by cyclic de-
composition of the loop over i. The tuning step is simply to add the directive !$omp do schedule(dynamic,1)

to enable dynamic thread scheduling.
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Figure 5.73: Program demonstrating dynamic thread scheduling.

The performance effect of parallelization via dynamic thread scheduling is displayed graphically in Figure 5.74
and tabulated quantitatively in Figure 5.75. Compared to parallelization via simple cyclic splitting of the i

loop in Figure 5.73, the dynamic approach achieves a 9.0% improvement in performance.

Figure 5.74: Performance charts showing the effect of dynamic thread scheduling.

Figure 5.75: Performance data showing the effect of dynamic thread scheduling.

5.4.9 Eliminating array-index computations

This tuning method is shown by the original (untuned) program discussed in Figure 5.76. In this program, the
index ij is obtained by using the loop counter k as an index into the nb15 calc list array, after which the
value of ij is used to compute values for indices j and iy, which are used to access the force array.
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Figure 5.76: Original (untuned) program demonstrating elimination of array-index computations.

We rewrite the code of Figure 5.76 as shown in Figure 5.77. This rewrite eliminates the calculations of indices
j and iy, and uses only index ij to access the force array. In fortran, the same effect can be achieved by
writing force(1,ij,1,id+1).

Figure 5.77: The Figure 5.76 program after eliminating array-index computations (tune).

The performance effect of eliminating array-index calculations is displayed graphically in Figure 5.78 and
tabulated quantitatively in Figure 5.79. These figures show that the performance of the tuned program is
1.11 times greater than that of the untuned program. The number of executed instructions is reduced from
2.44·1010 to 1.97·1010. Presumably, the eliminated instructions are used for array-index computations (integer
arithmetic). The L1D cache-access wait time is reduced from 10.5 to 8.73 seconds, and instruction scheduling
improves as well.
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Figure 5.78: Performance charts showing the effect of eliminating array-index calculations.

Figure 5.79: Performance data showing the effect of eliminating array-index calculations.

5.4.10 Disabling SIMD

Next, let’s consider the program listed in Figure 5.80, and suppose the number of threads is nthread=3. Working
in single-precision arithmetic, we have a SIMD width of 16. The code performs a reduction calculation, which—
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on a 16SIMD machine—proceeds via the reduction pattern 16→8→4→2→1 and thus requires four computation
stages. In some cases, applying SIMD can degrade performance by significantly increasing the number of
arithmetic operations performed. In such cases, the !ocl nosimd compiler directive can easily be used to
disable SIMD, as shown in Figure 5.80.

Figure 5.80: Program demonstrating the use of a compiler directive to disable SIMD.

The performance effect of disabling SIMD is displayed graphically in Figure 5.81 and tabulated quantitatively
in Figure 5.82. From Figure 5.82, we can see that the number of floating-point arithmetic operations in the
original (untuned) code is approximately 16 times greater than in the tuned code.

To understand this result, we first consider the number of arithmetic operations executed by the original
code. force tmp(1-3) is computed by summing force omp and force pbc, entailing (SIMD width 16)×(6
arithmetic operations)=96 operations. The number of operations performed in the SIMD-reduced calculation
is 16×(4 stages)×(3 elements) = 192. Hence, the total number of arithmetic operations for the original code is
96+192=288. In contrast, the tuned code executes a total of (three iterations)×(6 operations)=18 operations.
As a result, the ratio of arithmetic operations in the original and tuned codes is 288/18 = 16, as expected. In
cases like this, disabling SIMD as in Figure 5.80 is a useful technique.

Figure 5.81: Performance charts showing the effect of disabling SIMD.
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Figure 5.82: Performance data showing the effect of disabling SIMD.

5.4.11 Rearrangement via ACLE

The process of rearrangement via ACLE is outlined in Figure 5.83. The original (untuned) code is shown at
the left of this figure. This code is separated into computation and rearrangement portions, and the latter is
rewritten using the Arm C Language Extensions (ACLE).

Figure 5.83: Overview of rearrangement via ACLE (4vec opt7).

Rearrangement via ACLE is carried out via the following procedure, which is shown in Figure 5.83:

(1) Load first data element into register Z0.

(2) Load second data element, shifted by 16 bytes, into register Z1.

(3) Load third data element into register Z2.

(4) Load fourth data element, shifted by 16 bytes, into register Z3.

(5) Use a SEL instruction to extract x and z data from Z0 and Z1 and store the results in register Z4.
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(6) Use a SEL instruction to extract x and z data from Z2 and Z3 and store the results in register Z5.

(7) Use a SEL instruction to extract y data from Z0 and Z1 and store the results in register Z6.

(8) Use a SEL instruction to extract y data from Z2 and Z3 and store the results in register Z7.

(9) Use a SPLICE instruction to combine the contents of Z4 and Z5, then store the x data in Z8. (This
completes the x rearrangement.)

(10) Use a COMPACT instruction to shift the z data for Z4 to the front of the register and store it in Z9.

(11) Use a COMPACT instruction to shift the y data for Z7 to the front of the register and store it in Z10.

(12) Use a SEL instruction to extract z data from Z5 and Z9 and store it in Z11. (This completes the z
rearrangement.)

(13) Use a SPLICE instruction to combine the contents of Z6 and Z10, then store the y data in Z12. (This
completes the y rearrangement.)

The performance effect of rearranging via ACLE is displayed graphically in Figure 5.84 and tabulated
quantitatively in Figure 5.85. Code regions that were not SIMD-ed in 4vec opt3 are SIMD-ed in 4vec opt7.
The number of instructions executed decreases, and the SIMD rate improves from 54% to 59%. Instruction
scheduling is also improved, and functional unit wait time is reduced. The reduction in instructions executed
reduces instruction commit time. Overall execution time improves by approximately 8%.

Note: ACLE is available for C/C++ in clang mode.

Figure 5.84: Performance charts showing the effect of rearranging via ACLE.
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Figure 5.85: Performance data showing the effect of rearranging via ACLE.

5.4.12 Manual scheduling

The manual scheduling technique is depicted schematically in Figure 5.86.

Figure 5.86: Schematic diagram showing manual scheduling.

The original (untuned) program demonstrating this technique is listed at the left of Figure 5.86. We now
proceed to apply manual scheduling to this program, based on the following reasoning:

(1) The B/F ratio of the L1D cache is 4 bytes/flops.

(2) Thus, we expect that a calculation with a B/F ratio of one single-precision load to one FMA (4 bytes / 2
flops) should run in the L1D cache, and should thus achieve high performance.
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(3) Assuming we have two instruction pipelines and an arithmetic latency of nine cycles, we should be able
to achieve high performance by executing 18 computational chains in a round-robin configuration.

(4) However, it must be possible to execute the full set of calculations envisioned in item (3) without mutual
interdependencies.

(5) In the original program shown on the left-hand side of Figure 5.86, the arithmetic operations indicated by
red arrows satisfy the condition of Item (4), which means the program can be rewritten to execute these
operations in the same loop.

(6) The upper section in the original code runs over the two values i=0 and i=1, with eight lines of code
executed for each value.

(7) Combining this with the lower section of the original code yields 16 lines of code.

(8) These 16 lines of code execute 32 separate 16-FMA operations.

(9) 16 registers are needed for storage, and a maximum of 12 registers are needed for loading, this indicating
a total of 28 registers are required.

(10) The abovementioned register-count requirement is satisfied by Fugaku, which has 32 registers.

(11) The ratio of registers to arithmetic operations is 28:16, which we assume to be equivalent to or greater
than Condition (2) assuming the use of cache.

(12) Thus, the conditions of Items (3) and (4) are satisfied, and we expect the code to achieve high performance
after tuning.

The performance effect of manual rescheduling is displayed graphically in Figure 5.87 and tabulated quanti-
tatively in Figure 5.88. Subdividing the polynomial into mutually independent computational subtasks improves
functional unit wait time by approximately 44%, from 532 µs to 296 µs. Additionally, the reduction in register
spill/fill events decreases the number of load/store instructions, while overall runtime is improved by approxi-
mately 9%.

Figure 5.87: Performance charts showing the effect of manual rescheduling.
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Figure 5.88: Performance data showing the effect of manual rescheduling.

5.4.13 Eliminating SIMD reductions to decrease instruction count

The applying SIMD to an inner-product (vector-vector product) calculation increases the number of instructions
executed due to SIMD handling of component-component reductions, as shown in Figure 5.89. In this figure,
red-shaded regions indicate the contributions of redundant or unnecessary instructions to the instruction count
growth. The effect of this instruction count increase is particularly significant on wide-SIMD machines such as
Fugaku.

Figure 5.89: SIMD handling of component-component reductions.

Therefore, it is best to reduce SIMD handling of inner products as much as possible. More specifically, one
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might consider computing the inner product of two long vectors via the method outlined in Figure 5.90, in
which the long vectors are decomposed into smaller vectors of appropriate lengths, whose inner products are
separately computed and later summed to yield a single scalar result. However, if we are attempting to minimize
the use of reduction operations, we might proceed instead via the more efficient method outlined in Figure 5.91.
Here, the long vectors are again subdivided into smaller vectors of appropriate lengths, but then accumulation
operations are performed with the vector format retained, executing only a single reduction operation at the
end of the calculation to yield the scalar result.

Figure 5.90: Schematic diagram illustrating one approach to inner-product calculation.

Figure 5.91: Schematic diagram illustrating an alternative approach to inner-product calculation.

The performance effect of eliminating SIMD reductions to decrease the instruction count is displayed graph-
ically in Figure 5.92 and tabulated quantitatively in Figure 5.93. In these figures, it can be seen that numbers
of floating-point operations and executed instructions are both significantly reduced, and that overall execution
time decreases by approximately 22%. Additionally, memory busy time increases to a high value, and memory
throughput grows to around 213 GB/s, which is close to the theoretical limits.

5.5 Tuning Technique 4: Making data access contiguous

The tuning technique discussed in this section is applicable to in-cache applications with low B/F ratios for
which optimal tuning is possible (Figure 5.94).
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Figure 5.92: Performance charts showing the effect of eliminating SIMD reductions to decrease the instruction
count.

Figure 5.94: Application categories to which Tuning Technique 4 is applicable.

5.5.1 Making data access contiguous: Method 1

When the full range of a multidimensional fortran array is accessed sequentially, the multidimensional array
can be treated as a 1D array to facilitate efficient contiguous storage. In the example of Figure 5.95, we create
a new subroutine to initialize the rg array, take the formal parameters to have the shape of a 1D array, and
then construct a loop to initialize it.
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Figure 5.93: Performance data showing the effect of eliminating SIMD reductions to decrease the instruction
count.

Figure 5.95: Making data accesses contiguous: Method 1 (4vec opt3).

The performance effect of Method 1 for making data access contiguous is displayed graphically in Figure 5.96.
Here, it can be seen that busy time increases, and that memory throughput rises to levels close to the theoretical
limits.
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Figure 5.96: Performance charts showing the effect of Method 1 for making data access contiguous.

5.5.2 Making data access contiguous: Method 2

Filling zero values is frequently required in many applications, and in some applications its cost can be non-
negligible. For such cases, system provided routines such as memset can provide efficient continuous zero
value filling operations. Use memset in combination with zfill (the DC ZVA instruction), thereby increasing
efficiency. This is shown by the program presented in Figure 5.97.

Figure 5.97: Making data access contiguous: Method 2

The performance effect of Method 2 for making data access contiguous is displayed graphically in Figure 5.98
and tabulated quantitatively in Figure 5.99. These figures show that instruction count and the number of
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cache misses both decrease significantly, while the L2-cache busy ratio rises to the high value of 82%, thus
indicating performance close to the theoretical limits. Linking fast memset can be accomplished by providing
-Koptlib string option to the compiler/linker.

Figure 5.98: Performance charts showing the effect of Method 2 for making data access contiguous.

Figure 5.99: Performance data showing the effect of Method 2 for making data access contiguous.

5.5.3 Making data access contiguous: Method 3

The third example for making data access contiguous is to replace the gather load and scatter store in-
structions with contiguous memory accesses. This is shown by the program seen in Figure 5.100. Whereas the
original (unmodified) program accesses memory in blocks of size three, the tuning process rewrites the code to
use contiguous access instead.
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Figure 5.100: Making data access contiguous: Method 3 (tune13).

The performance effect of Method 3 for making data access contiguous is displayed graphically in Fig-
ure 5.101 and tabulated quantitatively in Figure 5.102. Looking at the breakdown of the load/store instruction
count, we see that gather load and scatter store instructions have been replaced with contiguous loads
and stores. Because scatter store instructions are no longer needed, prefetch instructions are also no longer
needed. Instead, hardware prefetching is used. Eliminating the computation of gather load and scatter

store addresses further reduces the instruction count. The final result is that we achieve performance at levels
very near the theoretical upper limit for memory bandwidth.

Figure 5.101: Performance charts showing the effect of Method 3 for making data access contiguous.
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Figure 5.102: Performance data showing the effect of Method 3 for making data access contiguous.

5.6 Tuning Technique 5: Avoiding excessive SFI

In this section, we present a tuning technique that addresses the performance-degrading phenomenon known
as excessive store/fetch interlock , aka excessive SFI, a problem that can arise for applications in any of the
categories we have discussed.

5.6.1 Avoiding excessive SFI

Let’s consider an array A whose layout in memory corresponds to a nested loop structure, and suppose the
innermost loop has length six. Because six is less than the SIMD width of eight, applying SIMD to the inner
loop involves the use of compiler directives to mask the two leftover SIMD slots. Now, suppose an accumulation
operation is performed to add a second array to array A. Because this is an accumulation, A appears both as
the array from which values are loaded on the right-hand side and the array to which values are stored on
the left-hand side. In cases like this, SIMD is used for the innermost loop, and because the outer loop (whose
index we call i) typically does not involve recurrence, instruction scheduling can be used to achieve overlapping
execution.

Inspecting the pattern of memory accesses generated in this case reveals that the storage operation for
iteration i overlaps with the load operation for iteration i + 1 and the masked SIMD slots. This situation is
shown in Figure 5.103.

Logically, this overlap should not prevent the two operations from proceeding simultaneously. However, the
hardware is designed to ensure that loads do not precede the stores if the masked portion between the overlap
region containing the stores, which is called store fetch interlock. This SFI is a hardware feature to assure the
safe loads and stores. There can be an occasion where SFI is activated more than necessary, which is called
excessive SFI. If excessive SFI occurs, load and store instructions are not scheduled optimally, and affect pipeline
efficiency, thus causing performance degradation.

Excessive SFI can be avoided by the use of array padding, as demonstrated by the code of Figure 5.104.
In this example, the second and third loops are candidates for possible SFI activation, so we pad the tmp and
result2 arrays.

The performance effect of excessive SFI avoidance is displayed graphically in Figure 5.105 and tabulated
quantitatively in Figure 5.106. These figures show that the frequency of SFI occurrence is greatly reduced,
as are the wait times for L1D cache access and functional unit operations, thereby cutting overall execution
time by 87%. The memory busy ratio increases significantly, and memory throughput rises to 213 GB/s, thus
approaching its theoretical upper bound.

Compilers have been enhanced to apply SWPL and scheduling operations in advance so that the (i + 1)th
load instruction is issued after the ith store instruction, the occasions of excessive SFI situations have been
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Figure 5.103: Overlap between storage for iteration i and loading for iteration i+ 1.

reduced. Nonetheless, in case the the emergence of excessive SFI is observed, the tuning technique described
above maybe useful. SFI values are included in CPU performance analysis reports. If the value is high, it should
trigger suspicions that excessive SFI is occurring.

5.6.2 Avoiding excessive SFI: Consequences of aggregating gather load instruc-
tions

When arrays are accessed indirectly using index list, compilers will generate gather load instructions. For
these gather load instructions, two adjacent elements belonging to the same 128-byte block can be combined
and handled in a single flow. In the address-pattern example shown in Figure 5.107, the items outlined in blue
are aggregated for loading together as two elements.

Figure 5.107: Aggregating gather load instructions.

In array accumulation operations, a list-accessed array can appear on both the right- and left-hand sides
of arithmetic operations, as shown in the code outlined in Figure 5.108. In such cases, the gather load

instructions described above are used and can be aggregated.
Arrays list1 through list5, which store list indices used to access array F, are guaranteed not to contain

two or more copies of any one index value. Additionally, we assume that the addresses used in the loop to
access F elements are known never to coincide. The absence of identical indices does not preclude the presence
of nearby indices, so insertions into the F array in Figure 5.108 can generate data storage on identical cache
lines. If this happens and aggregation procedures are in effect, excessive SFI will result, thus preventing loads
from preceding stores and potentially degrading performance.
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Figure 5.104: Program demonstrating padding used to prevent excessive SFI.

Whenever possible, present-day compilers use SWPL or other scheduling methods to ensure that the gather
load instruction on the second line here is generated before the scatter store instruction on the first line, so
this situation rarely gives rise to excessive SFI. However, since scheduling may not be possible due to a shortage
of registers or other factors, it can be useful, in such cases, to tune the codes so that loads explicitly precede
stores, as shown in Figure 5.109.



86 CHAPTER 5. TECHNIQUES FOR TUNING SINGLE-CPU PERFORMANCE ON FUGAKU

Figure 5.105: Performance charts showing the effect of excessive SFI prevention.

Figure 5.106: Performance data showing the effect of excessive SFI prevention.

Figure 5.108: An example of a program in which aggregating gather load instructions can cause excessive
SFI.
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Figure 5.109: Program demonstrating tuning via aggregation of gather load instructions to avoid excessive
SFI.


