08
FUJITSU

FUJITSU Software
Technical Computing Suite V4.0L20

Development Studio
uTofu User's Guide

J2UL-2567-01ENZ0(03)
July 2021

Preface

Purpose of this Manual
This manual describes how to use uTofu, which is a programming interface for communication using the Tofu interconnect.

In this manual, a computing system with Fujitsu A64FX is called "this computing system".

Intended Readers

The intended readers of this manual are those who develop programs which communicate using the Tofu interconnect. In addition to
knowledge of the C language, readers need to have a basic knowledge of Linux commands, file manipulation, and shell programming.

Structure of This Manual
The structure of this manual is as follows:
Chapter 1 Tofu Interconnect and uTofu Overview
An overview of the Tofu interconnect and uTofu
Chapter 2 uTofu Communication Models
The communication models of uTofu
Chapter 3 uTofu Interface Specifications
The interface specifications of uTofu
Chapter 4 How to Use uTofu
How to use uTofu
Chapter 5 Use Examples of uTofu
Some examples of uTofu use
Chapter 6 System Information
System-specific information
Chapter 7 Error Messages
The error messages of uTofu implementation
Glossary

Terminology

Related Manuals
The following manuals are related to this manual. Refer to these manuals in conjunction with this manual.

MPI User's Guide

C User's Guide

- C++ User's Guide
- Fortran User's Guide
Also, refer to the manuals provided with the related software Job Operation Software.

This manual mentions MPI in some places. To learn the MPI standard, refer to the following document:

MPI: A Message-Passing Interface Standard
Version 3.1

Message Passing Interface Forum

June 4, 2015

Information concerning MPI is available from https://www.mpi-forum.org/.

Expression of Units

In this manual, the following prefixes are used to express units:

Prefix Value Prefix Value
k (kilo) 108 Ki (kibi) 2w
M (mega) 10° Mi (mebi) 2%
G (giga) 10° Gi (gibi) 2%

Conventions Used in this Manual

The typographic conventions below are symbols used with pre-determined special meanings that express syntax.

Symbol name Symbol Explanation

{3 Indicates to select any one of the enclosed items

Selection symbols — -
| Used as a delimiter in a list of items

Indicates that the enclosed item can be omitted. This symbol includes the meaning of

Omission permitted symbol] the selection symbol "{}".

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks
- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code
July 2021, Version 1.3 J2UL-2567-01ENZ0(03)
September 2020, Version 1.2 J2UL-2567-01ENZ0(02)
June 2020, Version 1.1 J2UL-2567-01ENZ0(01)
February 2020, 1st Version J2UL-2567-01ENZ0(00)

Copyright
Copyright FUJITSU LIMITED 2020-2021

Update History

Changes Location Version
Added the following environment variable. 4325 Version 1.3
- UTOFU_SWAP_PROTECT
Modified the explanation about concentrated communications. 414 Version 1.2
Changed the number of available CQs per TNI. 6.1.2

http://www.mpi-forum.org/

Changes Location Version

Added the explanation about virtual resource quantities.

Added "Error Messages". Chapter 7

Added "The Behavior When Configured to Change the Communication Path If a Tofu 6.1.4.2

Version 1.1
Interconnect Link is Down".

Improved the explanation.

Al rights reserved.
The information in this manual is subject to change w thout notice.

Contents

Chapter 1 Tofu InterconnNect and UTOfU OVEIVIEW.ceiiuuiiiieeeiieiiie e ettt ettt e e e e tttee e e e e astbeeeeeassbaeeeeeaansneeeaaeeansnneaeesannnes 1
1.1 TOFU INTEICONNECT OVEIVIEW. ... veuieiiitisieieteti ettt sttt te e be e sesbe e ebe st e seebe e be st e s e e be e ebe e b e s e e be s s e b e e b e st e b et e b e e b ensebe b eseeb e st ebesaeneate s anennan 1
O N o] =T (1 OO 1

Lo L2 INBEWOTK ettt ket b e ek b e h €2 h b e h e A2 e R £ e b4 £ e E £ e b e h £ Rt R e R e h e £ e R e b e R e R oA £ e R e b e Rt bt R bttt nenn e 1
1.1.3 COMMUNICALION IMELNOTS. ... vttt bbbt bbb e bbbt bbbt b bbbkt bt 3
1.1.3.1 ONE-Sided COMMUNICATION.eiuiuieieietiiteietes ettt sttt esbe st e se st e e be e et e ebe e e be b eseebeneebe b esesbensabesbeseatensebessenensensanens 3

1.1.3.2 Barrier Communication .3

1.2 UTOTU OVEIVIBW. ...uitetiesietet ettt ettt h e £ b b8 b b€t bbbt £ e bR e E bR e bRt e ek e b e Rt E e b b et b et e st bbbt e 4
Chapter 2 uTofu COMMUNICALION MOUEIS.ooiiiiiiii ettt e e et e e e et e e e e e e e sbbb e e e e e e aabbb e e e e e eanbbeeeaeeennenes 6
PN =T ot T T I o | OSSRt 6
2.2 ONE-STAEA COMIMUNICALION.eteittieeteeteiete sttt ettt st ae bt be e st e e e e bt seeheebe £ eb e ee e R e eb e e e eE e e b e s £ b e e e e bt e b e e ebeneeb e e b et ebe e b e b e ebe st ebesbeneanin 6
2.2.1 VCQ (Virtual CoNtrol QUEUE)......c.eiuerietiiteteitiietestest ettt ettt et e se st te st e st st e s ebe b e ssebe s esesaesseb et ese et e e ebe s eseabe s ebesbeseebe s ete et e e eterens 6
2.2.1.1 TOQ (TranSMit OFAEI QUEUE).euererieteetaireetetesesteteie st sttt et sttt ese et eb st s bbbt e b et st b s b b e s et e b e b e et b et st et et eb e ne bbb nnanas 7
2.2.1.2 TCQ (TranSmit COMPIELE QUEUE). ueeeuireeieteeteueete et eteseete et et ste e te e eseebeseebeseeseebeeeebesbe e ebeseeseabe e et e beseabensabeaeeneabenseneneenes 7
2.2.1.3 MRQ (MeSSage RECEIVE QUEUE).......cueiuereeiirteuieteitete sttt sttt ettt e st eb e eb e b et et st e b e b e e ek e s b e st ek e b eb e eb e st ek et e bt eb et et e b e st et e e ene e enes 7

2.2.2 STADD (StEEING AUUIESS)....e.veteiterietestereiteteresteseetessetessestetesesessessasessesessessasessesesseseesesseseabe e ebe s eseebe e ebe st eseeb et ete et eseebe s etesbeneerenee 7

2.2.3 Put Communication
2.2.4 Get Communication
2.2.5 ARMW (Atomic Read Modify Write) Communication.....

2.2.6 NOP..............
2.2.7 Free Mode
2.2.8 SESSION IMIOUE. ...ttt ettt etttk e et b e e h b e b e e b e b e e e b e b e R e e R et e b e E e R e e b e A b e R e A A e R £ e E oAb e b e eR e R e eb e b e Rt eh e R e eb e b e bt nb e e b e e ne e
2.2.8.1 Behavioral Details Of the SESSION MOUE..........cciiuiiiiiiiiiieiiiiceiee bbb bbb
2.2.8.2 Example of Communication Forking Using the SeSSION MOGE...........ceiiiieeiiniieinsee e 19
2.2.8.3 Example of Communication Joining Using the SeSSION MOTE..........cociiiiiiicieieeeeese e 19
2.2.8.4 Example of Communication Pipeline Using the SESSION IMOTE............ccoiiiiiirineiisiereesie ettt 21
2.2.9 Maximum Transfer Size and Transmission Gap OF PACKELS.........ccvciiiiiiiiiscisesces e ene 22
2.2.10 Confirmation of Communication Completion and Guarantee 0f OrderiNg..........cecvrurereirriieinneee s 22
2.2.11 Cache INJECION AN PAAGING.eveierteieieieeetei ettt sttt st a e e e e be e e b e s b et e b e se e b e sb et e b e e b e b e ebe st et e b esesbeneerensenennan 23
2.2.12 COMMUNICALION EFTOT ..ottt bbb bbb bbb bbb bbb bbb bbbt n bbb nna 23
2.3 Barrier CommuniCation............ccceeervrneerinnrceninnnnns BTSSRSO RPN e ———————— 23
2.3.1 VBG (Virtual Barrier Gate)...... e 23
2.3.2 Barrier Circuit.........ccccoeevreenne. TSSOSO PSRN bbbt 24
2.3.3 BaITier SYNCNIONIZALION.c.civiiitiiecti ettt ettt e s b e et b e te st e st e te b e s e et e st et e b e s s et e s b ebe st essebe b eaesaess et e e ebe st eseabeseeneee 25
2.3.4 REAUCLION OPEIALION. ...c.eetetiiiiitetesit sttt ettt eb ettt b et b et bbb b bt n e b bbb s b E bt e bbbt e bbb bt b bt e bt et 26
2.4 COMMUNICALION PAEN.......eiei ittt ettt e et et et e bt s e ea e b2t e R e s e e R e e b e ee e bt e e e R e b e neeb e eb e e ebe st eEeebe e et e ebenesbeneebenbanea 26
2.5 THRPEAA SAFELY.....c.eceeieeietieee ettt bbbt b bbb bt ek e b e R e eh e eHeE £ e bt £ b€ e b e R £ e bt e eh £ e b e e e bR e h e btk b b b et b anen 27
Chapter 3 UTOfU INterface SPECITICALIONS.i ittt e ettt e e e ettt e e e e et e ee e e s aanbeeeeaeeesnnnneeaeeaannens 28
3.1 COMMON DBFINITIONS. ...ttt ettt te st s et e bt e st te st e bt sees et et es e et e st e b e e es e eb e s e e b e neeE e e b e s e ebe e et e e be e et et enesbeneetenbeneas
3L L TYPE DEIINITIONS. ...ttt sttt b e bt st e s e b e e e b e e b e R e b e £ e b2 b e R e e b e e e R e e b ene e b e e eReebentebe s eneebensabeaseneneeneanen
R T0 N 1 01T L) OO TPRTRUPRTSRRN

3.1.2 Return Values
3.1.2.1 enum utofu_return_code

32 TINT QUETY ..ttt ettt bbb bt ekt e b e s e s e e e R £ E e e b £ 4H £ 4R e e h e e x s e R e E e AR £ AR £ A E £ e b £ 28 £ 2 h e e R e e e e R e AR e AR e e b £ e b e e R e e Rt e b e b e ebenbenb e e st eneeneenes
3. 2.1 TINT QUETY FUNCHIONS.vitctitcttite ettt ettt ettt s b bbb et e s b ese et e b ebe s b eas et e b e st e b en s e ke b e R e et e s b ebe st eRs et e b ebessess et e e ebe st eneabe e eneee
3.2.1.1 utofu_get_onesided_tnis
I A V1 (o) (o= o g 1= G g TSSOSOV
3.2.1.3 ULOTU_QUETY _ONESIABA_CAPS. .. e.veueetetetirtenieiert ettt ettt ettt b et bbb e bbb e bt s b e s e e b e e e bt e b e s e e b e e e b e b et e b e b et e sbeneaberenen 33
I N AV (o) (o[0T VA o T 1= o= oL ST 34
3.2.2 Structures Indicating Available Communication Functions and Limit ValUES...........ccoveviiiiiieiiieiseseiese e 34
3.2.2.1 STIUCE ULOTU_ONESIABU_CAPS. .. - ettreeueite ettt see ettt sttt b e b ettt e b e b e st et e b e R e b e e e b e e e eaeeE e e eb e eeeneeb e e eb e eeeneebeesebeseeneaneneenees 34
3.2.2.2 SITUCT ULOTU_DAITIEI _CAPS. ... vevtieteteniieetetet ettt etttk b et b et bbbttt b R bbbt bbbt en et etenn 35
3.2.3 Flags Indicating Available CommUNICAtION FUNCHIONS.........ctiiiiiiiiiiieirie et 36
3.2.3.LUTOFU_ONESIDED _CAP_FLAG *..iiiceeieieiettiesteetststs e e st e s se e sessese e ssesesessssasesesessesesessssesesansssssesessssesensssnsesesen 36

3.2.3.2 UTOFU_BARRIER_CAP_FLAG ...ttt ettt ettt 36

3.2.3.3 UTOFU_ONESIDED_CAP_ARMW _OP_*. ..ottt 36

3.2.3.4 UTOFU_BARRIER_CAP_REDUCE_OP_*......ooiiiiiiiitititett ettt 36
3.3 W CQ IMANAGEIMENT. ...ttt ettt bbbt bt st s et e e e et b e e bt ek e e b e b e e R e e R s e a s e R e R e e H e 4R £ SR £ 2R £ e H e e s e e e e AE e eE e AR e AR e e R e e R e e b b e Reen b e b e nRenRenhenneeneeneenes

3.3.1 VCQ Creation/Fre€inNg FUNCLIONS.ciciiiteieteitee sttt ettt st sese st ess st e e ese st eseebe s esesbe s s ebe st esesbe s ebessete et e s ebesbeseabe s etesbesearin
3.3 1.1 ULOTU_CTBAIE VC. . euvveviuiitetei ettt etttk e bbbk h bbb e bbbk bbb e b bRt e bbb b bt bttt
3.3.1.2 utofu_create_vcq_with_cmp_id
3.3.1.3 utofu_free_Veqg.....cooceverererenienenes

3.3.2 VCQ ID Manipulation Functions........

3.3.2. 1 ULOTU_QUETY _VCO_T0. ..tttk b bbbkt eb bbbt b et
3.3.2.2 ULOTU_CONSEIUCT VOO 0. ettt etttk etk b e stk e et e e e ae e b e e e bt e e e Re e b e eeeneeeeneabeneenesbe e eneseeneanea
3.3.2.3 ULOTU_SBEL_VCO_IO_PAEN.....eeitieceieee et bbbt bbb b bbb bbb e bt b h e e bbb e bt e bt nb et b e e

3.3.3 VCQ QUETY FUNCLIONS.eutetiiiuieteiett sttt ettt et et sttt e s s b e e e be st et e a4 e e et e s b e s e b et e b e b e s e e ke s e b e e b ese e b e b ebe s b e st e be b e s e st ensabessensntennaness
3.3.3. 1 ULOTU_QUETY _VCO_INTO..c. ettt bbbt bbbt b et e bt

BRI YL@ o - T OO OO RSO T T SURR
3.3 4.1 UTORU_VCQ_FLAG _™ ...ttt ettt bbbt b bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb nenas

34 VB G IMABNAGEIMENT. ...ttt ettt ettt r ettt e st h et b e b s e e E b e b e b s e eE e b e b £ R ee e b £ s e b e AR e et e b e 0 e b e b et e b e bt e bt e bt nn et e bt bt n et en e r e

3.4.1 VBG AlIOCAtION/FIEEING FUNCHIONS.c.eivetiiiiietesisisteiet et b et b ettt bt e et n bt
R I V1 (o (V=L Fo LoV oo TR OO OSSO U RPN
3.4.1.2 utofu_free_vbg.....

3.4.2 VBG Configuration Functions.....
3.4.2.1 utofu_set_vbg..........

3.4.3 VBG QUETY FUNCLIONS. ...ttt ettt sttt sttt h et bt b b e b b e b b £ e b e b e s £ e b e e e b e b e s e e b e b e b e e b e st e b e b e bt et entab e b e bt nb e enen
I e T RV (o) {0 [0 1=T VAo Yo L] [OO U ST RPTPRSTPRRRT

3.4.4 \/BG CONFIGUIALION STTUCTUIES.......cutrevetetesiretesenesr ettt ettt es sttt se bbb b s e bt R b h bbbt b bt ne bt r et
3.4.4.1 SEUCE ULOTU_VIIG_ SEEHING. ..ttt b bbb bbbt ek b e bt b e e e b e e e e at et e e e b e nbene e b e e ebenbeneeben

IR 4 =T = - T OO ST TORSSPR
3451 UTOFU VBG_FLAG *......oovoiveeveeeeeseiseeissiesseisseessssssessses s sss s ssss s ssssssssssssasssss s s sssssss s sssssssssssssssssssassssnsenns

3.4.6 Special Values for VBG CONFIGUIALION. ..ottt 47
3.4.6.1 UTORU_VBG_ID_NULL ...ttt s bbb bbb bbb bbb bbb bbb bbb bbb bbb b e bbb ebebeb b e b ebebebenenas 47

3.5 CommUNICALION Path IMTANAGEMENT.......cuiiitiiiiicteiei ettt ettt st b e et e bt e b e s e be st e s e e be st e be b e s e e be s et e b essebe s ebesseneebe s ene s eneene 47

3.5.1 Communication Path Management FUNCLIONS.c.ooiueiiiieiiiies ettt b ettt 47
3.5.1.1 utofu_get_path_id.......ccoeeiiiiiii e ettt ettt ettt e b e ene s 47
3.5.1.2 utofu_get_path_COOTTS.........ccoovrerueeiririee s e 48

3.5.2 Special Values for Setting of Communication Path.... OSSP 48
3.5.2.1 UTOFU_PATH_COORD_NULLcututiiitiiieiiieieieieieieieieieieiesssesesesenens

3.6 STADD MANAGEIMENL.i ittt sttt sttt ettt b s e s b e sb e s bt s bt e s e e st e s e e e e e e oE e eEeeE e 4R £ eR e 4R e e R e e R s e b e b e ab e Ab £ e b £ e b e e b e e b e e e e s e e e b e abeabeaneaneenean

3.6.1 STADD ManagemeNt FUNCLIONS.ceiuiiitiitereitetetestese st te e se st ete e eseste s eae s esesse e ebessesesbe s ebessetesbe e ebesbesesbessabe b esesbensaressenenrin
BB 1. L ULOTU_TBO MM ..tttk b bbb bbb E b bbbt e bt bbbt bbbt b bt bkt n s
3.6.1.2 ULOTU_TEQ_MEM_WITN_STAG. ... evereeeeireiietiisr ettt b et s bt b bt b et e bbbt en s
3.6. 1.3 ULOTU_QUETY _SEAU. ... eeueiteeet ettt b etk bbbt b e b e R e b e e bt b e Rt e b e b e b e e b e R b e b e e e e R e et e e e bt et eat e b e nebenbene b
BTG T0 U (o) (T =T =T T 01104

3.68.2 STADD FIAGS....ttueueueiiuereieieieiereseaeietesesetesebesesebesebebebebe b et e b e b e b e b e b e b e be b e b e b ebe b e b e b e b et e b e b e b et e b e b eb et e bbbt erenene
3.6.2.1 UTOFU_REG_IMEM_FLAG ™.ttt £ttt
3.6.2.2 UTOFU_DEREG_MEM_FLAG _™.....cotttiiitiiieieiiiiteietieeietetesesesesssesese b eseses s sheb s s bbb bbb bbb bbb bbb bbbt ebebebebeberebebesenanas

3.7 One-Sided Communication Execution........................

3.7.1 One-Sided Communication Start Functions
3.7.1.1 utofu_put..........
3.7.1.2 utofu_put_gap
BT L3 ULOTU_ UL STFIT. .. vtttk E bbbt b bt e bbb bbbt b ekt b et
I % V1 (o) (T o 10 L (Lo (T o T TSSOSO
3.7. 1.5 ULOTU_PUL PIGGYDACK. ... ettt bbbttt b et b bbbtk b e bt b e e b e b e bt b et et e bt eeen
3.7.1.6 ULOTU_PUL_PIGOYDACKS.c.eeiiitiiciecieie ettt bbb bbb e be b et b et e R e eb et be s b e s e e b e s ete et e se et e b etesbeneetin
BT LT UBOTU_ QL. .ottt bbb R h R R R R R R R R R bRt b et n bt
R N R V1 (o) (T A - T TSSOSO RPN
KT I I (o) 10T 1=)1 o OO TSP
I % I (O I T o) (Vo T= Y (o (Yo - SRRSO

T T o V=V 10 OSSPSR 64

T % N T o) (V11001 TSSOSO 65
BT L L3 ULOTU_CSWADA ... etttk bbb £ bbb R b e R R bR e b bRt e bbb bbb 65
37114 ULOTU_CSWAPS......eeteeete ettt etttk stttk bttt h b £ 2 b4 bt £ e bt e b e R £ e b e £ e b e b e e e b e £ e b e e b e Rt e b e b e bt b e ne e b et e bt et e n s et e nn e st nteneeben 66
T S R U) (U o] o TSP 67
3.7.2 One-Sided Communication Preparation FUNCIONS. ..ottt bbb 68
3.7.2.1 utofu_prepare_put.........c.coevevrreerennneerenenreeens
3.7.2.2 utofu_prepare_put_gap.............
3.7.2.3 utofu_prepare_put_stride.............
3.7.2.4 utofu_prepare_put_stride_gap
3.7.2.5 utofu_prepare_Put_PIGOYDACK.ci ittt ettt bttt b et b bR e bt bt r et et b e neenen
3.7.2.6 utofu_prepare_put_PIGYDACKS..........c.eiiiiii et b bbbttt bt et e
I O V1 (o) (I o1 =T o L= 1= SO PSOPS
3.7.2.8 ULOTU_IEPAIE B GAP. . . verereertetesireetetesi ettt et es e b st b bt e bbb b bt e b bt e e b b e bbbt b b s bbbt b ekttt b et en s
3.7.2.9 ULOTU_PIEPArE_EE STIIR. .. ueiteeetetet ettt bbbt b e e b e b et b e e bt e b e e e b e b e bt e b et eb e b e b et et ebe b eneenan
3.7.2.10 UtOfU_Prepare_get SITITE GAP......cciieiieietiitee ettt ettt et ettt s et e b e s ess et e b ebe s s e se et e e eae et ensabe e enesbe e ebesrerearen
3.7.2.11 ULOTU_PIEPAIE_BIMWAeiuiiitetieiiet ettt ettt b et bbb bbb bbb b e bbb b e bbbttt b et b ekt
3.7.2.12 ULOTU_PIEPAIE_BIMWS......oiuiiietisiiet ettt b et b et h bt E b bRt bt e b bt e bt e bt n bt n s
3.7.2.13 ULOTU_PIEPAIE_CSWADA.......cteueetieeeueeteeete sttt sttt s e be st e bt b e st b e se e bt e b e e e bt s b e b e eb e e eb e b e Rt e b e s e eb e b e R e e b e b e b e b enteb e s ebe et en s et e e ebenbeneaben
3.7.2.14 utofu_prepare_cswap8.....
3.7.2.15 utofu_prepare_Nop.........cccoveveerneereienenneneeens
3.7.3 One-Sided Communication Batch Start Functions..........
R B RV (o) 1T oo A (oo RO OO SO SO USSP URT PSRV PP
3.7.4 One-Sided Communication Completion Confirmation FUNCLIONS..........cccceiiiiicieiii e 73
BT AL ULOTU_POI_ECO: vttt h R e bR R bR 73
BT 4.2 ULOTU_POIL_IMIIG. ettt b et b bt e b b e b e e b e b e £ b e b e b e b e R e e b e b e b e eben e e b e e e bt nbent e b e nnenesbeneanen 74
3.7.5 One-Sided Communication QUETY FUNCLIONS........ccviiiieiiiiiitiieti sttt st e e st e bt ete st e se et e b ebe st eseebe b eresbessabenseneas 75
3.7.5.1 ULOTU_QUETY _NUM_UNEEAA_TCU.c.e.vvetiiieteitisest etttk bbbkttt b bbbt e bt 75
3.7.6 Communication Completion NOtIfiCAtION SEIUCIUIES...........cveiriiiiiiesieet e 75
3.7.6.1 SEIUCTE ULOTU_MIIG_NOTICE. ... vttt etttk e bt bRt bt e e bt s bt b e e e b b £ e bt s b e b e eb et ekt nb et e b et e b e s be e anan 75
3.7.7 ARMW OPEIALION TYPES. . .viuveviteriitiriarestestasetetessestasessesessestasessasessessasessasessessasessessssessssessesessessssessesessesessessasessessasessasessessasessasens 76
3.7 7.1 ENUM ULOTU_BITTIVW_OP. ettt etttk bbbk 20 b e bt b bbbt b ekt b b 76
3.7.8 Communication Completion Notification Types........cccccoveereierennns TSRS 77
3.7.8.1 enum utofu_mrg_notice_type........cccocerererverenne. e 7
3.7.9 One-Sided Communication Flags.................. ettt ane e ———— 77
3.7.9. 1 UTOFU_ONESIDED _FLAG _™ ...ttt £ttt 77
3.7.9.2 UTOFU_ONESIDED _FLAG_PATH. ...ttt bbbt bbbt bbb bbb 78
3.7.9.3 UTOFU_ONESIDED_FLAG_SPS......coittiiititiiiiiiiiieieititiesestisiesessiesesestseaestses s s sssaeseseseses s s s es s ssssss s sassssesssssssesssssssesssees 78
37,00 POHING FIAYS. ..ttt bbbt b kbt e bbb e b s e bR e bttt bbbt b ettt 79
3.7.10.1 UTORU_POLL_FLAG _™ ...ttt £ttt 79
3.8 Barrier COMMUNICALION EXECULION.ciitiiitirieiiite etttk bbbt et e e bt st e s e bt e e b £ e b et e b e e e h e e b e e bt nb e Rt et et ebene e s e ebe e b e s 79
3.8.1 Barrier CommuniCation SEArt FUNCHIONS.ccoviiiiiiiiiiteeee e 79
381 L ULOTU_DAITIET ...ttt bbb bbbt e bt e b e R bttt bbb bt b bt b e n s 79
3.8.1.2 ULOTU_FEAUCE _UINEBA.... ...ttt sttt sttt bttt e et e st et e e e b e e b e Rt eEem e e bt ee e Rt e R e e e R e eeeae e b e e e me et eseebeneenesbeseaae e ereen 80
3.8. 1.3 ULOTU_TEAUCE AOUDIE.... ..o ctiiieieiecte ettt sttt et b et et e b e s e et e st et et ess et e b ebe s b ess et e s ese st essabeseenssbe e ebesrenaarens 81
3.8.2 Barrier Communication Completion Confirmation Functions.................... et ne 81
3.8.2.1 UtOfU_POII_DAITIEN......ceiiiiicce e ettt e 81
3.8.2.2 utofu_poll_reduce_uint64...................... SRS e —————— 82
3.8.2.3 ULOfU_POIL_redUCE _AOUDIE. ..ottt b et b et b et et e s b e e be st et e s b e s ebe et e s et e s ete b ereeren 83
3.8.3 REAUCLION OPEIALION TYPES....evcviuiietetesirietetest ettt et eb et b et e bbbt es et st b e b et e b bt e bbbt b e e b bt bbbt bbbt nb b bt b et 83
3.8.3.1 ENUM ULOTU_TBAUCE _OP..eueteeitieteiiete ettt ettt ettt sttt te e b et et e b e s e ke e e b e b e st e b eme et e e ene et e e ebeeeem e e b e eeeneabeneabe st enesbeseaneseeneanens 83
3.8.4 Barrier COMMUNICALION FIAQS.ttt ettt bttt bbbt b e bt bRt e b e e e b e b et e bt b e bt eb e e eb et et e b anes 84
3.8 41 UTORU_BARRIER_FLAG ™ ...ttt 84
3.9 SUPPIEMENTAI FEALUIES........c.euiitetiiieeiet ettt bbb bbb e bbb h bbbt b bt bbb bbbt b bt n e 84
3.9.1 VErSioN QUETY FUNCLIONS.cuiitiieiuiteiete ettt ete sttt sttt et st e e be st e be b e e ebe e e se st eaeeee e eseeeem s e b e s eReeeeasebeeeeRe et e e eneseeneabe e eneseeneabeneareen 84
3.9.1.1 ULOTU_QUETY _TOTU VEISION. ...ttt ettt ettt b et bbbt b ettt e b bttt e bt e et et ettt b et et 84
3.9.1.2 ULOTU_QUETY _ULOTU_VEISION.....cuiitiietiitieieie ettt ettt b et et b ettt e s e b et et e e b e s e e b e b et e e b e s e be b ese et e s etesbeneetensenea 84

3.9.2 Compute Node Information QUENY FUNCTIONS.uiiiiiiiiiiiite ettt b ettt b et et e ettt et st nneneene 85
3.9.2.1 ULOTU_QUETY MY _COOTTS. ... ecuiviuiitesieititestetestetestesae bt e e sbe st te b ese et e st e te b e s e et essebe b eseebes s ebesseseebe s eb e s eneebe e enene e s e ebe st ebe st esaebe e eteee 85
3.9.3 Version INFOMMALION IMIACTOS.c.vcuiiieiiiieietisieeste ettt sttt st te b e st st es e te e eb e st eseebe e esesees e e be et ebe s e e st e be st ebeabe e ebe st eresbeseatan 85
3.9.3. L UTORU_VERSION ...ttt ettt ettt sttt s et et me e e e s e e et e R e st e e b e b et s e et e st e b e b e s e e s e e se s e e e e et en e ne st et e ne e nnns 85

Chapter 4 How to Use uTofu .
4.1 UTOTU PrOGIAM DESIGN.teitetetiiiteteitestet ettt ettt ettt h et b ekt h b bbb b0 bbb b bR e bbb bbb bbb ne bttt
4.1.1 Use From a Language Other TRAN C........cvviiiiiieirsree ettt b et n b en s
4.1.2 USINg UTOTU TOGELNET WITh IMIP ...ttt bbbtttk bttt e bt ettt e bt e
4.1.3 Possible Range Of COMMUNICALION.ccciitiiieiiteieeie ettt se b st e se e b e e e besb e s e e b e s ebe st ese et e b etesbeseabe b esesbessabesenea
4.1.4 Preventing Concentrated COMMUNICALIONS.euiiivireriiriteeeisi sttt b ekt b et bbbt ne bbb en s
4.2 Compiling/LinKiNG @ UTOTU PrOGIAM.......ciuiiiiiieiiie ettt ettt et et e e b e s e e st sb e e e bt e e eme et e e e bt eeemeebe e eneseeseane e eneee
4.3 EXECULING @ UTOTU PIOGIAIM.. ...ttt ettt ettt et s b st e bt s b es e b e e e b e e e h e b e e e bt s e e R e e bt e e b e e b e R £ e b e ne e bt e b e st e b e e e b e e b et ek e e ebeab et anin
4.3.1 SPAWNING A UTOTU PIOCESS.c.eiveriiviitereiteietisteseste e e st e e ste st e e st eseete b e se st essebe b ese st essete s eb e ssessebe s ese s s es s ebeseese e b e se et e s ebeabe e et e s eresbe e etin
4.3.2 ENVIFONMENT WVATTADIES. ..ottt et b bbbt bbbt e bttt
4.3.2.1 UTOFU_NUM_EXCLUSIVE_CQS......coiiiititrieisisisisistsisist sttt sttt
4.3.2.2 UTOFU_NUM_SESSION_MODE_CQS.....
4.3.2.3 UTOFU_NUM_MRQ_ENTRIES.......cccovvvimrrerrnnn
4.3.2.4 UTOFU_NUM_MRQ_ENTRIES_SESSION..........
4.3.2.5 UTOFU_SWAP _PROTECT ...ttt £ttt

Chapter 5 Use EXAMPIES OF UTOTU....ceiii ettt ettt e e e sttt e e e e e sat e e e e e e e atbeeeeesaanbeeeeaeeasnnsneeaeeannnnes
5.1 Use Examples of One-Sided COMMUNICALION.ciiiriireriiiiteieise etttk b et e bbbt b e
5.1.1 Example of Ping-Pong CommuUNICatioN USING PUL...........ciiiiiiieiieieese ettt
5.1.2 Example Of Status CHECK USING GEL........cuiiiiiiiiiieiiiteieeit ettt bbb bbbtk b bbbt b st sttt s et et e
5.1.3 Example 0f @ GAmME USING ARMWV........ciiuiiiiieiiii ettt s bttt s be s be s b e s e e be st e be s b e seebesbeteeb et ete st esesbe st etenbenenrin
5.1.4 Example of Stride CommUNICAtION USING PUL.......cviviiiiiiiieiiiiseess ettt

5.2 Use Examples of Barrier COMMUNICALION.couiutruiirteeiieieeerte ettt ettt sesbesbe et e e eb e s be e e besbesesbe e et e sbene st e b ebesbenesbe s anenbeneaee
5.2.1 Example of Barrier Synchronization and Reduction Operation

Chapter 6 SYSTEM INFOMMIELION.iii ittt e e e e et e et e e oo e b bttt e e e s e sttt eee e e anbb et e e e e asbbeeeaeeaannbneeaeeaanne 103
6.1 Information Of ThiS COMPUEING SYSLEIM.......ciiviieiiiiiiteiii ettt b et r e e bbb b neen et nn b e 103
6.1.1 Version Information of This COMPULING SYSIEM.......ccuiiiiiiiiiiiit ettt sttt bt b e ene s 103
6.1.2 Functional Characteristics of This COMPULING SYSIEM.......cc.ciiiiiiiiiieiitii et b et ae e enas 103
6.1.3 Behavioral Specifications of ThisS COMPULING SYSIEIM........cuiiiiirieiiriieiriseee et 104
LT IO RS 1 (a0 W@ T [=T g - Vo OO S POSOTRERSRTORURTRSR 104
6.1.3.2 Page Size MaNAGEA DY OS.......e ittt b etk b st b e bt b e st e b e bR e R R ekt bR £ b e bt bR e b e bt e st bt 105

6.1.4 Restrictions 0N This COMPULING SYSIEM.....ciiuiiiiiieiiiiei ettt e et e et e e e se s b et e be st e s e s be s etesbe e e be b eresbesserensaneas 105
6.1.4.1 Process Creation From InSide & UTOFU PrOGIAML..........ceiriieiiiiiieinseee sttt 105
6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu Interconnect Link is Down.................. 105

(O FoT o1 (=T gl = g o T 1Y LTS Lo T PP PP PPRP PRSP 106
(€110 EES7=1 o PO PP PPRR 107

- Vii -

|Chapter 1 Tofu Interconnect and uTofu Overview

This chapter provides an overview of the Tofu interconnect and uTofu.

uTofu is a programming interface for writing programs to communicate over the Tofu interconnect.

1.1 Tofu Interconnect Overview

1.1.1 Architecture

The Tofu interconnect is the interconnect for a parallel computing system consisting of a Tofu network, Tofu network interfaces (TNIs),
and Tofu network routers (TNRs). In this manual, Tofu interconnect is a general name. The name collectively refers to the Tofu interconnect
used with the High-end technical computing server MP10 system and Supercomputer PRIMEHPC FX10 system, the Tofu interconnect 2
used with the Supercomputer PRIMEHPC FX100 system, and the Tofu interconnect D used with this computing system.

Each of these parallel computing systems consists of multiple compute nodes, and each compute node has one TNR and at least one TNI.
TNRs are interconnected to make up a Tofu network. A TNI sends and receives packets according to instructions from software. A TNR
and a Tofu network transfer packets from a source TNI to a destination TNI. Simultaneous processing by two or more TNIs in one compute
node enables high-throughput communication. The following figure shows a compute node configuration.

Figure 1.1 Compute Node Configuration

Compute Node Compute Node

CPU Memory CPU Memory

TNI TNI TNI TNI TNI TNI

= TNR — TNR —

Tofu Network

1.1.2 Network

The Tofu interconnect connects multiple compute nodes with a Tofu network.

The Tofu network has a six-dimensional mesh/torus topology. The word mes/ refers to a topology without interconnected endpoints on a
coordinate axis. The word Zorus refers to a topology with interconnected endpoints on a coordinate axis. The following figure shows an
example of a two-dimensional mesh and torus.

Figure 1.2 Example of a Two-Dimensional Mesh and Torus

..
*

o0 0 o
e iy S N

S dd
S FE.IE 0§

<dR AR AR

Y

Two-Dimensional Mesh Two-Dimensional Toru

o
w

The six-dimensional coordinate axes of the Tofu network are respectively assigned the letters X, Y, Z, A, B, and C. The three dimensions
of A, B, and C have fixed lengths of 2, 3, and 2, respectively, and the B axis connects them in a torus. The three dimensions of X, Y, and
Z have varying lengths depending on the system, and whether they are connected in a mesh or torus also varies with the system. For this
reason, the TNR of a single compute node has up to 10 Tofu links in total: 1 Tofu link along each of A and C; 2 Tofu links along B; and either
2 Tofu links along each of X, Y, and Z on compute nodes which are not located on mesh endpoints of the axis or 1 Tofu link along each of
X, Y, and Z on compute nodes which are located on mesh endpoints of the axis. The following figure shows these six-dimensional
connections. In this figure, all the connections on the A, B, and C axes have been drawn with solid lines, represented in a rectangular
parallelepiped. The focus for the X, Y, and Z axes is the single compute node at the center, so only the links from this compute node have
been drawn with broken lines.

Figure 1.3 Six-Dimensional Connections of a Tofu Network

» X

Each compute node can be identified by X,Y,Z,A,B,C coordinates on these six dimensions. The coordinates are called compute node
coordinates.

Communication between non-neighboring compute nodes (not directly connected by a Tofu link) in the six-dimensional mesh/torus is
relayed by the TNRs of their intermediate nodes.

1.1.3 Communication Methods

The Tofu interconnect can use two communication methods to communicate from the user space: one-sided communication, and barrier
communication.

1.1.3.1 One-Sided Communication

One-sided communication accesses the main memory of a compute node and updates the main memory of another compute node without
going through the CPU. This communication method has three types of communication function: Put, Get, and ARMW (Atomic Read
Modify Write). The method is generally called RDMA (remote direct memory access).

Put is a communication function that reads contiguous data from the main memory of the local compute node and writes the data to the main
memory of aremote compute node. Get is acommunication function that reads contiguous data from the main memory of aremote compute
node and writes the data to the main memory of the local compute node. ARMW is a communication function that reads, calculates, and
writes four-byte or eight-byte data atomically on the main memory of a remote compute node.

ARMW operators, ARMW operands, and the memory regions targeted for reading and writing on the local compute node and remote
compute node are all specified by software on the local compute node.

One-sided communication is executed from a process in the user space without going through the kernel.

1.1.3.2 Barrier Communication

Barrier communication is a communication function that performs barrier synchronization between multiple compute nodes. Barrier
communication is configured beforehand for the processes that will be participating in barrier communication. Each process starts barrier

communication and then waits for it to complete. Once all the processes participating in the barrier communication have started the barrier
communication, the barrier communication with each process is completed. The interconnect can also execute the reduction operation along
with barrier synchronization.

Barrier communication can be used to implement the MPI _BARRI ER routine, MPl _ ALLREDUCE routine, etc. of MPI.

Barrier communication is executed from a process in the user space without going through the kernel.

1.2 uTofu Overview

uTofu is a low-level application programming interface (API) used by software in the user space to communicate using the Tofu
interconnect. uTofu supports the one-sided communication and barrier communication of the Tofu interconnect. The interface of uTofu is
provided as functions of C. uTofu implementations are provided in the form of a library. In this manual, this implementation is called uTofu
implementation.

The design of uTofu assumes that it is used from libraries (for example, MPI library) or the like for communication between processes by
application programs.

An example when uTofu is used from an MPI library is shown in "Figure 1.4 Example of a Software Stack when uTofu is Used from an
MPI Library".

Figure 1.4 Example of a Software Stack when uTofu is Used from an MPI Library

Application Program

MPI Library

uTofu Interface

uTofu Implementation

OS (Kernel)

Tofu Interconnect

Nonetheless, application programs can use uTofu directly for performance tuning of communication using MPI as shown in "Figure 1.5
Example of a Software Stack when uTofu is Used Directly from Application Programs

Figure 1.5 Example of a Software Stack when uTofu is Used Directly from Application Programs

Application Program

MPI Library

uTofu Interface

uTofu Implementation

OS (Kernel)

Tofu Interconnect

The interface can also be used for communication (memory access) within a single thread or between threads in a single process. In this
manual, the libraries and application programs that use uTofu are called uTofu programs. Similarly, the processes that execute uTofu
programs are called uTofu processes.

uTofu does not have any functions for identifying and managing multiple processes like ranks and groups of MPI. If you require such
functions, you will need to use uTofu in combination with MPI-like functions or create original functions.

The functions to start communication and confirm communication completion are separated in uTofu. If the function to start communication
cannot start the communications immediately, that function returns a return value indicating that status. The function to confirm
communication completion returns information on whether or not communication has completed. Because of that, all functions return
within a finite length of time regardless of the process and thread status at the other end of the communication. And, it is necessary to confirm
a return value of functions for making sure to communicate.

IChapter 2 uTofu Communication Models

This chapter describes the communication models of uTofu.

2.1 Execution Unit

The execution unit of uTofu is a process in the user space of the OS. Each execution unit has a communication context. This means, for
example, that:

- aprocess cannot directly use the communication resources created or allocated by another process, and
- athread can confirm the completion of communication started by another thread in the same process.

uTofu has functions (VCQ and VBG) to separate the communication context within one process. Using these functions, multiple software
components (MPI library, parallel language runtime environment, etc.) or multiple threads can communicate in a logically independent
manner within one process.

2.2 One-Sided Communication

In one-sided communication, the TNI communicates between two compute nodes by directly accessing and updating the main memory of
the compute nodes and by sending and receiving packets.

2.2.1 VCQ (Virtual Control Queue)

Software can manipulate the TNI through a CQ (control queue). The number of CQs per TNI is finite and varies depending on the type of
Tofu interconnect. For this reason, uTofu virtualizes and abstracts CQs, which are hardware resources, as VCQs (virtual control queues).
uTofu performs all one-sided communication via VCQs.

Communication via a VCQ does not affect the logical behavior of communication via another VCQ. For example, after communication
starts via a VCQ, only this VCQ will be notified of its completion.

If a process creates a VCQ, it obtains a VCQ handle that is valid only within the process. All the functions of one-sided communication of
uTofu have a VCQ handle as a parameter. Also, each VCQ is assigned a VCQ ID. The VCQ ID is a 64-bit unsigned integer identifying the
VCQ, and it is a unique value among all the VCQs within the Tofu network.

One-sided communication is performed between two CQs in the Tofu interconnect. One of the two CQs is the CQ given a communication
instruction by software (local CQ), and the other is the communication target CQ (remote CQ). To perform one-sided communication with
uTofu, software gives the local VCQ handle and a remote VCQ ID to uTofu function parameters. Therefore, the software needs to know
the remote VCQ ID before starting communication.

Each CQ and VCQ consists of the three queues TOQ, TCQ, and MRQ, which have different roles. Software writes and reads data called
descriptors to/from these three queues to issue a communication instruction and confirm the completion of communication.

The following figure shows the TNI, CQ, and VCQ configuration.

Figure 2.1 TNI, CQ, and VCQ Configuration

VCQ || VCQ

VCQ VCQ || VCQ

VCQ

cQ

CcQ

TOQ TCQ

MRQ TOQ TCQ

MRQ

TNI

2.2.1.1 TOQ (Transmit Order Queue)

The TOQ is a transmit order queue. Software uses the queue to issue a communication instruction to the TNI. Software writes a descriptor,

and the TNI reads it. This descriptor is called the TOQ descriptor.

There are multiple types of communication in one-sided communication. TOQ descriptors are subdivided according to the type of
communication. The following table lists the correspondence between the types of communication and the descriptor names. The
subdivided TOQ descriptors are called Put descriptor, etc. Although NOP is not communication, it is included in this table for convenience

because a descriptor exists.

Table 2.1 Correspondence Between the Types of Communication and Descriptor

Types of Communication Descriptor Name
Put
Put
Put Piggyback
Get Get
ARMW ARMW
NOP NOP

2.2.1.2 TCQ (Transmit Complete Queue)

The TCQ is a transmit complete queue. The TNI uses the queue to notify software of data transmission completion. The TNI writes a

descriptor, and software reads it. This descriptor is called the TCQ descriptor.

2.2.1.3 MRQ (Message Receive Queue)

The MRQ isamessage receive queue. The TNI uses the queue to notify software of communication completion. The TNI writes a descriptor,
and software reads it. This descriptor is called the MRQ descriptor. There are two types in MRQ descriptors: local notification and remote

notification.

2.2.2 STADD (Steering Address)

Normally, processes in the user space identify memory regions with virtual memory addresses, but the Tofu interconnect does not recognize
virtual addresses because it accesses memory without going through the OS. In the Tofu interconnect, a value called STag (steering tag)

identifies the memory region accessed or updated in one-sided communication.

To make it easy to use the STag, uTofu adopts a value called STADD (steering address). The STADD is a 64-bit unsigned integer, and each
is a unique value within a CQ. One memory region may have different STADD values for different CQs.

STag values (and STADD values) are not automatically assigned to the virtual addresses available to a process. Therefore, before one-sided
communication starts, it is necessary to register memory addresses with a TNI to obtain the corresponding STADD values. Once a memory
address is registered, the corresponding STADD can be used for one-sided communication multiple times. When that use for one-sided
communication ends, that memory address registration with the TNI must be deregistered. If the registration is not deregistered and many
memory addresses remain registered, STag values may be exhausted or the performance of STADD management functions of uTofu may
degrade.

Figure 2.2 Flow from Registration to Deregister of STADD

Register a memory address with a TNI through a VCQ
(A STADD is assigned)

One-sided communication

Start a one-sided communication using the STADD
through the VCQ

!

Confirm the completion of the one-sided
communication

Finish Repeat

Deregister the memory address from the TNI through
the VCQ

To perform one-sided communication with uTofu, software gives local and remote STADD values to uTofu function parameters. Therefore,
the software needs to know the remote STADD value before starting communication.

STADD values are managed for each VCQ.

2.2.3 Put Communication

Put is a communication function that writes contiguous data from the memory of the local process (transmission source) to the memory of
a remote process (transmission destination).

AVCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. The
local STADD specifies the start address of the memory of the transmission source. A remote STADD specifies the start address of the
memory of the transmission destination.

The following figure shows the Put communication model executed by the Tofu interconnect. The dotted arrow in the figure represents the
data flow.

Figure 2.3 Put Communication Model

Local Compute Node Remote Compute Node
Local Process Memory Remote Process Memory
STADD = - STADD =
: A
Ve I vea
NI NI
[[
L TNR i R TNR i -

Tofu Network

. : Data of Transmission Source : Region of Transmission Destination

Put has the following steps.

The steps 1, 6, 10 and 13 in this procedure need to be executed by calling the uTofu functions.

1.

The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

. The local TNI reads the descriptor from the TOQ.
. The local TNI reads data from memory.

2
3
4.
5
6

The local TNI sends data to the TNR.

. The local TNI writes a descriptor to the TCQ.

. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can judge that the data

written to destination memory will not be affected even if the local process update the memory region of the transmission source from
this time.

7. The TNR and the Tofu network transfer the data to the remote TNI.

10.

11.
12.
13.

The remote TNI writes the data to memory.
The remote TNI writes a remote notification descriptor to the MRQ.

The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can find out that the memory region of the transmission destination has been updated.

The remote TNI transfers a packet for memory write completion notification to the local TNI via the TNR and Tofu network.
The local TNI writes a local notification descriptor to the MRQ.

The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the memory region of the transmission destination has been updated.

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.4 Put Steps

Tofu Network

Local Compute Node Remote Compute Node
Memory CPU Memory
Q l @) A
(&\13) \10) :
MRQ | T0Q || Tca || MrRa |i
(2)\;« (5)‘? (12)A 9)A 5(8)
TNI TNI
(4) ¥ @ (1) § a
L TNR L L : TNR |

For Put, the local TNI reads data from memory after it reads the TOQ descriptor. For the Tofu interconnect, the local process can embed
data in the TOQ descriptor if the data size is small. This is called piggyback. Using piggyback eliminates the local TNI processing that reads
data from memory, thereby enabling low-latency communication. It also eliminates the need for the local process to register a memory
region with the TNI. uTofu can inquire about which data sizes allow piggyback.

For details of the example that performs Put communication, see "5.1.1 Example of Ping-Pong Communication Using Put".

2.2.4 Get Communication

Get is a communication function that writes contiguous data from the memory of a remote process (transmission source) to the memory of
the local process (transmission destination).

A VCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. A
remote STADD specifies the start address of the memory of the transmission source. The local STADD specifies the start address of the
memory of the transmission destination.

The following figure shows the Get communication model executed by the Tofu interconnect. The dotted arrow in the figure represents the
data flow.

-10 -

Figure 2.5 Get Communication Model

Local Compute Node Remote Compute Node
Local Process Memory Remote Process Memory
STADD =™ STADD —> -
A :
i vea P veaQ
NI NI i
. ——
L TNR S I B TNR L

Tofu Network

. : Data of Transmission Source : Region of Transmission Destination

Get has the following steps.

The steps 1, 5, 9 and 13 in this procedure need to be executed by calling the uTofu functions.

1.

© © N o

10.
11.
12.
13.

The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

. The local TNI reads the descriptor from the TOQ.
. The local TNI sends a packet to issue a data transmission instruction to the TNR.

2
3
4.
5

The local TNI writes a descriptor to the TCQ.

. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can find out that the

communication has started.

The TNR and the Tofu network transfer the instruction packet to the remote TNI.
The remote TNI reads data from memory.

The remote TNI writes a remote notification descriptor to the MRQ.

The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can judge that the data written to destination memory will not be affected even if the remote process update the memory region of
the transmission source from this time.

The remote TNI transfers the data to the local TNI via the TNR and Tofu network.
The local TNI writes the data to memory.
The local TNI writes a local notification descriptor to the MRQ.

The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the memory region of the transmission destination has been updated.

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

-11 -

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.6 Get Steps

Local Compute Node Remote Compute Node
CPU Memory CPU Memory
(‘Ul A F(7)
(M13) \9)
TO0Q || TCQ || MRQ | TOQ || TcQ || MRQ |
@y @A (1A (1) @A
TNI TNI
G) v i (10): i
L TNR i b : TNR |

Tofu Network

For details of the example that performs Get communication, see "'5.1.2 Example of Status Check Using Get".

2.2.5 ARMW (Atomic Read Modify Write) Communication

ARMW is a communication function that reads, calculates, and writes four-byte or eight-byte data atomically on the main memory of a
remote compute node.

The following table lists the operators available for uTofu.

Table 2.2 ARMW Operators

Name Operation
CSWAP Compare and Swap
SWAP Swap
ADD Unsigned integer addition
XOR Bitwise XOR
AND Bitwise AND
OR Bitwise OR

CSWAP is processed as follows.
1. The local process specifies two operands to a TOQ descriptor. They are swap operand and compare operand.

2. The TNI of the remote compute node writes the swap operand value to the target memory only if the pre-operation value is equal to
the compare operand value.

SWARP is processed as follows.
1. The local process specifies one swap operand to a TOQ descriptor.

2. The TNI of the remote compute node writes the swap operand value to the target memory regardless of the pre-operation value on
the target memory.

-12 -

Other operators are processed as follows.
1. The local process specifies one operand to a TOQ descriptor.

2. The TNI of the remote compute node executes the relevant operation with the pre-operation value and operand, and then the resultant
value is written.

For any operation, the pre-operation value is reported using a local notification MRQ descriptor. For example, for ADD, if the local process
specifies a value 11 as the operand and the pre-operation value on the target memory of the remote compute node is 22, a value 33 is written
to the target memory and the value 22 is notified the local process of by a local notification MRQ descriptor.

In ARMW, the memory access/update operation on aremote compute node is performed atomically. The word atomicmeans the following:
if more than one memory update operations are performed concurrently, reading, calculating, or writing of no other memory update
operation are performed while reading, calculating, and writing of one memory update operation are being performed. This operation is
guaranteed atomic not only with ARMW execution by the same remote VCQ but also with ARMW execution by another remote VCQ or
another remote TNI, and with execution of an atomic memory access/update instruction by a remote CPU.

For example, assume that ARMW communication of ADD operation is executed simultaneously from two other compute nodes to the same
memory area of one compute node.

In this case, processing is performed regardless of the combination of the VCQ used. First, processing (reading, calculating, and writing)
from one of the compute nodes is performed. Next, processing (reading, calculating, and writing) from the other compute node is performed.
Therefore, the final result written to that memory area is the sum of the two operand values and the original value.

Figure 2.7 When ARMW Communication of the ADD Operation is Executed Simultaneously to the Same Memory
Area

Remote Compute Node

Memory
PEETER = Crnnns

TNI'1 T

[\

ARMW
(ADD)

ARMW
(ADD)

TEETETRFETTS . =

> Memory Area
In the following example, ARMW communication of ADD operation is executed from one compute node to other compute nodes. At the

same time, the CPU of that remote compute node atomically executes addition instructions to the same memory area. Therefore, the final
result written to that memory area is the sum of the three values.

-13-

Figure 2.8 When an ARMW Communication of the ADD Operation and an Atomic Add Instruction are Executed
Simultaneously on the Same Memory Area

Remote Compute Node

CPU Memory

ARMW
(ADD)

—
TECTRERI EYLS - = z TETRY =

: Memory Area

A VCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. A
remote STADD specifies the start address of the target memory.

The following figure shows the ARMW communication model executed by the Tofu interconnect. The dotted arrows in the figure represent
the data flows.

Figure 2.9 ARMW Communication Model

Local Compute Node Remote Compute Node

Local Process Memory Remote Process Memory
STADD = [=
Y .
A

EJE\VCQ EVCQ
NI § NI £
[[+
| TNR | N TNR: : ||

:llf

Tofu Network

-14-

: Target Region for the Operation

ARMW has the following steps.

The steps 1, 5, 10 and 13 in this procedure need to be executed by calling the uTofu functions.

1.

S

10.

11.
12.
13.

The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

. The local TNI reads the descriptor from the TOQ.
. The local TNI sends an operator and operand to the TNR.

2
3
4.
5

The local TNI writes a descriptor to the TCQ.

. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can find out that the

communication has started.
The TNR and the Tofu network transfer the operator and operand to the remote TNI.

The remote TNI and memory controller read the data from memory, execute the operation, and write the post-operation data to
memory.

The remote TNI obtains the pre-operation data.
The remote TNI writes a remote notification descriptor to the MRQ.

The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can find out that the memory region targeted for the operation has been updated.

The remote TNI transfers the data to the local TNI via the TNR and Tofu network.
The local TNI writes a local notification descriptor to the MRQ.

The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the target memory region has been updated.

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.10 ARMW Steps

Local Compute Node Remote Compute Node
Memory CPU Memory
(1)1 \ (8)iA
(13) (10) ii
TCQ MRQ ToQ | Tca || MRa | i
(2) c.o A (12)A @A i)
TNI TNI
(3) w A (1) A
|| TNR L O P OTNR |
Tofu Network

-15 -

For details of the example that performs ARMW (Atomic Read Modify Write) communication, see "5.1.3 Example of a Game Using
ARMW".

2.2.6 NOP

NOP does not communicate at all. It is usually used to adjust the number of TOQ descriptors in the session mode described in "'2.2.8 Session
Mode". It can also be used in the free mode described in "2.2.7 Free Mode" but it has no effect other than wasting space in a TOQ.

NOP has the following steps. A corresponding MRQ descriptor is not written.
1. The local process writes a descriptor to the TOQ to instruct the TNI to start processing.
2. The local TNI reads the descriptor from the TOQ.
3. The local TNI writes a descriptor to the TCQ.
4. The local process reads the descriptor from the TCQ.

The choice to notify or not notify of the TCQ descriptor can be made when the local process writes the descriptor to the TOQ.

2.2.7 Free Mode

A CQ has the following two modes. One of them is assigned to each CQ when a uTofu program starts. You can select which mode of CQ
to use when you create a VCQ. Both modes cannot be used simultaneously in a VCQ.

- free mode
- session mode

The free mode is a usual mode. Behaviors described from "2.2.3 Put Communication™ to "2.2.6 NOP" are those of the free mode. In the free
mode, one-sided communication start functions and one-sided communication batch start functions write a TOQ descriptor and a TNI starts
the communication immediately. Therefore, when two or more processes want to perform a sequence of communications in cooperation
with each other, processes must call a function with proper timing.

AVCQ created on a CQ of the free mode is called a free mode VCQ. A free mode VCQ is created if a mode is not specified when you create
a VvCQ.

2.2.8 Session Mode

The session mode is a mode which automatically starts instructed communications when a TNI receives another communication. In the
session mode, one-sided communication start functions and one-sided communication batch start functions write a TOQ descriptor but a
TNI does not start the communication immediately. By receiving another Put communication at the VCQ, the TNI starts the instructed
communication automatically. Therefore, when two or more processes want to perform a sequence of communications in cooperation with
each other, communications except the first communication can be started without involvement of processes. For example, if a process
sends same data to two or more processes, the data can be relayed automatically like the sequence shown in the figure below.

-16 -

Figure 2.11 Relaying Put Communications by Four Processes

Compute Node Compute Node Compute Node Compute Node
(Beginning Process) (Relay Process) (Relay Process) (Terminal Process)
Memory. Memory Memory Memory

Put | Put | i Put | i
TOQ | | TOQ | i} TOQ | i} TOQ | i
TN NI i NI § NI
[: | T = |

- TNR P F H O TNRiIH B TNREIEH H O TNREH

Tofu Network

. : Data of Transmission Source : Region of Transmission Destination

AVCQ created on a CQ of the session mode is called a session mode VCQ. A session mode VCQ is created if the session mode is specified
when you create a VCQ.

In this subsection, the following terms are used for the purpose of explanation.

Term Explanation

Process which starts a communication using a session mode VCQ as a remote VCQ first in a sequence of

beginning process L
g gp communications

relay process Process which sends and receives automatically using a session mode VCQ

terminal process Process which receives from a session mode VCQ in a relay process but does not send

2.2.8.1 Behavioral Details of the Session Mode

In the session mode, a local process (communication origin) specifies the number of communications which are started automatically at a
TNI of a remote process (communication target). This number is called a session progress step (SPS). For example, the process A writes
five descriptors to its session mode VCQ in advance and the process B instructs its VCQ to start a Put communication with SPS 3 to the
session mode VCQ of the process A. When the session mode VCQ of the process A receives the Put communication, the first three TOQ
descriptors are started automatically. Subsequently the process C instructs its VCQ to start a Put communication with SPS 2 to the session
mode VCQ of the process A. When the session mode VCQ of the process A receives the Put communication, the remaining two TOQ
descriptors are started automatically. The following figure shows the sequence.

-17 -

Figure 2.12 Specifying an SPS

Process B Process A

Put L (1) Put . —
SPS=3 | [—~—
Put

TOQ

Put

>
Put .
Process C)
Put 3) || Put }

SPS=2

TOQ TOQ

At a local process, an SPS can be specified only in a Put descriptor. If an SPS is specified in a Put Piggyback, Get, ARMW, or NOP
descriptor, the behavior is undefined. Only Put and NOP descriptors can be started automatically at a remote process. If a Put Piggyback,
Get, or ARMW descriptor is written in a session mode VCQ, the behavior is undefined.

A descriptor with an SPS can be used for both a free mode VCQ and a session mode VCQ. A beginning process usually uses a free mode
VCQ. A relay process uses a session mode VCQ. A terminal process can use either a free mode VCQ or a session mode VCQ. If you use
a session mode VVCQ at a terminal process, you must specify 0 as an SPS in a Put descriptor targeted to the VCQ.

Atarelay process, it is guaranteed that the Put communication to a next relay process or a terminal process starts after data from a beginning
process or a previous relay process is written to memory of the relay process. Therefore, when the value of the local STADD of the Put
communication to send is equal to the value of the remote STADD of the received Put communication, it is guaranteed that exactly the
received data is sent. However, if the memory region is updated by another communication or a CPU almost at the same time, this behavior
is not guaranteed exceptionally.

If a received Put communication has an error because of an incorrect remote STADD value or other reasons, communication instructed in
the session mode VCQ is not started by the Put communication.

You can write TOQ descriptors to a session mode VCQ after receiving a Put communication. When a session mode VVCQ receives a Put
communication, if there are TOQ descriptors of which communications are not started yet and the number is less than the SPS of the Put
communication, communications of all existing TOQ descriptors are started. When TOQ descriptors are written by a one-sided
communication start function or one-sided communication batch start function call subsequently, communications of TOQ descriptors
which were lacking are started. If the number of TOQ descriptors is still lacking, the rest of communications are started by subsequent
function calls. The number of lacking TOQ descriptors must be 2000 at most. If the number of lacking TOQ descriptors exceeds 2000,
communications may not be performed correctly. For example, communication may not be started even if a one-sided communication start
function or one-sided communication batch start function is called.

-18 -

An SPS can be a value from 0 to 15. If a value 16 or greater is specified, the behavior is undefined.

Behaviors other than explained above, for example when TCQ and MRQ descriptors are written, are same as those of the free mode.

2.2.8.2 Example of Communication Forking Using the Session Mode

A relay process can relay Put communication not only one-by-one but with forking.

The following figure shows an example of Put communication forking to two processes at a relay process.

Figure 2.13 Forking at an Relay Process

Beginning Process A

Put
Remote=B

(3)

Relay Process B

SPS=2 (2)

TOQ
(Free Mode)

w

Put
Remote=C

(1)

4)

Put
Remote=D

(1)

TOQ
(Session Mode)

Terminal Process C

TOQ
(Free Mode)

(4)

Terminal Process D

TOQ
(Free Mode)

In this example, Put communication forks in the following steps. The numbers in parentheses in the figure above correspond to the steps

below.

1. The relay process B writes two Put descriptors, one to the terminal process C and the other to the terminal process D.

2. The beginning process A writes a Put descriptor to the relay process B with SPS 2.

3. The Put communication of 2. is started.
4. The Put communications of 1. are started automatically when the TNI of the relay process B receives the Put communication of 3.

In this example, only the process B is a relay process and Put communication forks only one time. However, Put communication can fork

multiple times if the processes C and D are also relay processes.

2.2.8.3 Example of Communication Joining Using the Session Mode

Furthermore, a relay process can relay Put communication with joining.

The following figure shows an example of Put communication joining from three processes at a relay process.

-19 -

Figure 2.14 Joining at an Relay Process

Beginning Process A

Put
Remote=D
SPS=1

(2)

3)

TOQ
(Free Mode)

Beginning Process B

Put
Remote=D
SPS=1

()

(6)

Relay Process D

(4)
(7)

o

(19),

TOQ
(Free Mode)

Beginning Process C

Put
Remote=D
SPS=1

(8)

(9)

w

TOQ
(Free Mode)

In this example, Put communications join in the following steps. The numbers in parentheses in the figure above correspond to the steps

below.

1.

© © N o O &~ 0D

[ay
e

In this example, the beginning processes A, B, and C write Put descriptors in this order and the TNI of the relay process D receives Put
communication in the same order. However, the order is not significant. The Put communication from the relay process D is started once

NOP

(1)
NOP

(1)

Put
Remote=E

(1

TOQ

(Session Mode)

Terminal Process E

TOQ
(Free Mode)

The relay process D writes two NOP descriptors and one Put descriptor to the terminal process E.

The beginning process A writes a Put descriptor to the relay process D with SPS 1.

The Put communication of 2. is started.

The TNI of the relay process D receives the Put communication of 3. but no communication is started.

The beginning process B writes a Put descriptor to the relay process D with SPS 1.

The Put communication of 5. is started.

The TNI of the relay process D receives the Put communication of 6. but no communication is started.

The beginning process C writes a Put descriptor to the relay process D with SPS 1.

The Put communication of 8. is started.

The Put communication of 1. is started automatically when the TNI of the relay process D receives the Put communication of 9.

the TNI of the relay process D receives all three Put communications.

In this example, only the process D is a relay process and Put communications join only one time. However, Put communications can join

multiple times if the processes A, B, and C are also relay processes.

-20 -

2.2.8.4 Example of Communication Pipeline Using the Session Mode

When relaying data using one Put communication, the Put communication to the next relay process or the terminal process is started at a
relay process after receiving data completely from the beginning process or the previous relay process. If the size of data is large, relaying
multiple split data using multiple Put communications may shorten the overall time to deliver data to the terminal process. This type of
relaying style is called a pipeline.

The following figure shows an example of pipelined Put communications when data of 30 bytes is split into thirds.

Figure 2.15 Pipelined Put Communication

Beginning Process A Relay Process B Terminal Process C
Put (2) Put (1)
Length=10 (3). Length=10 (4)
LCL_STADD=50 i LCL_STADD=50 i
RMT_STADD=50 RMT_STADD=50
Put (2) Put (1)
Length=10 (3) Length=10 (9)
LCL_STADD=60 i LCL_STADD=60 i
RMT_STADD=60 RMT_STADD=60
Put (2) Put (1)
Length=10 (3). Length=10 (6)’
LCL_STADD=70 i LCL_STADD=70
RMT_STADD=70 RMT_STADD=70
TOQ TOQ TOQ
(Free Mode) (Session Mode) (Free Mode)

In this example, Put communications are pipelined in the following steps. The numbers in parentheses in the figure above correspond to the
steps below.

1.

The relay process B writes three Put descriptors to the terminal process C. The first Put communication transfers first 10 bytes. The
second Put communication transfers next 10 bytes. The third Put communication transfers last 10 bytes.

The beginning process A writes three Put descriptors to the relay process B with SPS 1 each. Each Put communication transfers data
split in the same way as 1.

The Put communications of 2. are started in sequence.

The first Put communication of 1. is started automatically when the TNI of the relay process B receives the first Put communication
of 2.

The second Put communication of 1. is started automatically when the TNI of the relay process B receives the second Put
communication of 2.

The third Put communication of 1. is started automatically when the TNI of the relay process B receives the third Put communication
of 2.

As explained in "2.2.10 Confirmation of Communication Completion and Guarantee of Ordering", local VCQs and communication path
coordinates of all Put descriptors at the beginning process A should be same if pipelined Put communications are used. Otherwise, the order
of receiving Put communications at the relay process B may be different from the order of sending Put communications at the beginning
process A. As the result, the relay process B may send data to the terminal process C which has not been received completely from the
beginning process A.

-21-

In this example, only the process B is a relay process and Put communications are pipelined in only two stages. However, Put
communications can be pipelined in more stages if the process C is also a relay process.

2.2.9 Maximum Transfer Size and Transmission Gap of Packets

The Tofu interconnect splits data into units called packets and then transfers them. The maximum transfer size of a packet is called MTU
(maximum transfer unit). When sending data has a size that is larger than the MTU, the Tofu interconnect splits the data into packets of the
MTU and transfers the packets.

When there is contention for acommunication path, the effective bandwidth of the path may drop due to congestion. If you know beforehand
that such congestion will occur between multiple communications, you can mitigate that drop by suppressing the packet injection rate. For
Put and Get, the TNI can suppress the injection rate with an interval between packets so as not to immediately send the next packet after
sending a packet. This interval is called transmission gap.

2.2.10 Confirmation of Communication Completion and Guarantee of
Ordering

In Put communication, the TNI writes data to the main memory of a remote compute node. In Get communication, the TNI writes data to
the main memory of the local compute node. In these cases, if the write destination area crosses multiple CPU cache lines, the write sequence
to the main memory between these CPU cache lines is not guaranteed, which may change the order. If the read source area crosses multiple
pages, the write sequence to the main memory between these CPU cache lines is also not guaranteed even if the write destination area does
not cross multiple CPU cache lines, which may change the order.

Consequently, in one communication operation, even if it can be confirmed that an area has been updated with a load instruction, etc. of the
CPU, other areas must not be judged as also having been updated.

However, when a CPU cache line in the write destination area is focused, writing is guaranteed in the unit of granularity of CPU cache line
if the read source area corresponding to the CPU cache line does not cross multiple pages.

Therefore, within the range of a single CPU cache line in the write destination area, if an area has been confirmed as updated with a load
instruction, etc. of the CPU, other areas can be judged as also having been updated only when the read source area corresponding to the CPU
cache line does not cross multiple pages. Thus, when writing is confirmed with a load instruction, etc. of the CPU for each area delimited
by the boundary of a CPU cache line, that may confirm the completion of all writing. In ARMW communication, no area crosses multiple
CPU cache lines.

It is strongly recommended to write with a load instruction, etc. of the CPU for each area delimited by the boundary of a CPU cache line.
Accordingly, the TCQ and MRQ may confirm the completion of data reading or writing in one communication operation as follows.

- TCQ notification may confirm the completion of all data reading from the main memory of the local compute node in Put
communication.

- Remote MRQ notification may confirm the completion of all data writing to the main memory of the remote compute node in Put
communication.

- Remote MRQ notification may confirm the completion of all data reading from the main memory of the remote compute node in Get
communication.

- Local MRQ notification may confirm the completion of all data writing to the main memory of the local compute node in Get
communication.

- Remote MRQ notification may confirm the completion of all data writing to the main memory of the remote compute node in ARMW
communication.

The following orderings are guaranteed, regardless of the combination of Put, Get, and ARMW, when multiple communication instructions
are issued to the TOQ in the same local VCQ. Refer to "6.1.3 Behavioral Specifications of This Computing System" for behavioral
specifications when the strong order flag is set.

- The order of reading and writing the local and remote main memory is not guaranteed by default. The strong order function exists to
guarantee the order to some extent. The following two events are guaranteed when the strong order flag is set in a certain TOQ
descriptor, but only if the communication path coordinates and remote VCQs are the same across the communication instructions. The
first guaranteed event is the start of reading in communication after the reading in the preceding communication is completed. The
second guaranteed event is the start of writing in communication after the writing in the preceding communication is completed.

- TCQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor.

-22 -

- Remote MRQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor only
if the communication path coordinates and remote VCQs are the same across the communication instructions.

- Local MRQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor only
if the communication path coordinates and remote VCQs are the same across the communication instructions.

This characteristic of the TCQ notification can be used to learn which TCQ notifications correspond to which communication instructions
by TOQ descriptors. Also, the functions that start communication by writing a TOQ descriptor have a parameter specifying callback data.
The function that confirms communication completion by reading a TCQ descriptor has a parameter for returning the callback data specified
when the corresponding TOQ descriptor is written. This callback data can also be used to learn the correspondence between TOQ
descriptors and TCQ descriptors.

Local MRQ notifications do not make it easy to learn which communication instructions by TOQ descriptors correspond to the notifications.
However, the functions that start communication by writing a TOQ descriptor have a parameter specifying a value called EDATA. The
function that confirms communication completion by reading an MRQ descriptor has a parameter for returning a structure object that
includes the EDATA value specified when the corresponding TOQ descriptor is written. This EDATA can also be used to learn the
correspondence between TOQ descriptors and MRQ descriptors.

This structure object is also returned by remote MRQ notifications. Therefore, the EDATA can be used to also learn which communication
has completed in a remote process.

2.2.11 Cache Injection and Padding

The function of cache injection is to decrease the latency that the CPU reads data from the main memory after the TNI writes data to the
main memory. In Put communication, the write destination is a remote compute node. In Get communication, it is the local compute node.
When the cache injection flag is set in the TOQ descriptor, the function writes data to not only the main memaory but also the last level cache
of the CPU. This can prevent a cache miss in the last level cache when the CPU accesses the written data.

However, for cache injection to work, conditions have to be met: the write operation must overwrite a cache line entirely, and the cache line
must be clean. A typical case of a clean cache line in the last level cache is a case where the CPU is polling the relevant cache line. If these
conditions are not met, data is written only to the main memory, and a cache miss occurs during the subsequent data read by the CPU.

Put using piggyback has a smaller transfer size than the cache line size, so it cannot overwrite a cache line entirely. Therefore, just setting
the cache injection flag in the TOQ descriptor does not enable Put to write data in the last level cache of the CPU.

Put using piggyback has the cache line padding function to suppress a cache miss. When the cache line padding flag is set in the TOQ
descriptor, Put adds indefinite values to the beginning and end of data to extend up to the cache line boundaries before writing the data. Thus,
with both the cache injection flag and the cache line padding flag specified at the same time, Put can write data in the last level cache of the
CPU. The cache line padding flag is available only for Put using piggyback.

2.2.12 Communication Error

In one-sided communication, successful packet transfer from the source TNI to the destination TNI is guaranteed when communication is
enabled and no failure has occurred in the local TNI, remote TNI, TNRs on the communication path, and Tofu network.

However, a communication error may occur due to the wrong specified STADD value or other reasons. The TCQ reports any error that
occurs when the local TNI sends a packet, and the MRQ reports any error that occurs after this time. You can check error details from the
return value of the one-sided communication completion confirmation functions.

2.3 Barrier Communication

In barrier communication, the TNI sends and receives packets and signals sequentially between multiple compute nodes to achieve barrier
synchronization between these nodes. The reduction operation can also be executed along with barrier synchronization.

2.3.1 VBG (Virtual Barrier Gate)

Each TNI has circuits called BGs (barrier gates). Each BG sends and receives packets and signals. To use barrier communication, the BGs
must be configured on all the compute nodes participating in barrier synchronization before the barrier synchronization starts. The network
of the communication paths configured between the BGs prior to the barrier synchronization is called a barrier circuit.

A barrier circuit is built with the multiple BGs used per TNI. A series of circular dependencies are set among the multiple BGs of each TNI.
Of these BGs, one is the start/end BG, and the others are relay BGs. Packet transfer through a series of BGs begins at a start/end BG and

-23-

ends at the BG immediately before a start/end BG. To control the transfer sequence of packets, each BG sends a signal to the next BG at
the same time as it sends a packet.

When barrier communication starts, the start/end BG sends a packet to a preconfigured BG in an arbitrary TNI and a signal to another
preconfigured BG in the same TNI. After that, it waits for a packet from a preconfigured BG in an arbitrary TNI and a signal from another
BG in the same TNI.

A relay BG waits for a packet from a preconfigured BG in an arbitrary TNI and a signal from another preconfigured BG in the same TNI.
Upon receiving both of them, the relay BG sends the packet to a preconfigured BG in an arbitrary TNI and the signal to another
preconfigured BG in the same TNI.

A packet source BG and a packet destination BG can belong to TNIs on the same compute node or TNIs on different compute nodes.

The following figure shows the sending of packets and signals. The figure focuses on one BG at the center, so only the packets and signals
with this BG as their source or destination have been drawn.

Figure 2.16 BG, Packet, and Signal

Compute Node
TNI

BG BG BG

N
N, Packet

Compute Node ‘\
TNI b Signal
BG BG > BG

Signalf

L Y
-

'\‘Pac ket

Compute Node “\

A
¥

TNI \
BG BG BG

uTofu abstracts aBG as a VBG (virtual barrier gate). Each VBG is assigned a VBG ID. The VBG ID is a 64-bit unsigned integer identifying
the VBG, and it is a unique value among all the VBGs within the Tofu network.

2.3.2 Barrier Circuit

By setting the following information for each BG participating in barrier synchronization, you can build a barrier circuit. The function
explained in "3.4.1 VBG Allocation/Freeing Functions" can obtain a VBG ID. For the example of setting a VBG ID, see "5.2.1 Example
of Barrier Synchronization and Reduction Operation™.

- VBG ID of the signal source (another VBG in the same TNI)
- VBG ID of the packet source (arbitrary VBG)
- VBG ID of the signal destination (another VBG in the same TNI)

-24 -

- VBG ID of the packet destination (arbitrary VBG)

The following figure shows an example of building a barrier circuit using a 10-process butterfly exchange algorithm.

Figure 2.17 Barrier Circuit Using a 10-Process Butterfly Exchange Algorithm

TNI
0 P >®——@

RS
"'ll":' =

]
mET Ty [L] * ¥
["

LY T
l i . [1-‘
- 3
* @
i3

2 P

4 P

"ra,

T L

o B — @ @, ~4
‘t‘!

-]
- " - -
. '. ol " _. ". " ')
) L] 5 % v
R . . .
Y G
6)- ——e @ L
¥ - ® # r * *
Pl - E o * » . P o s s
- + ¥ v - w

r £ i *

.
R o . .
70— @ @ e |
ot ."" - * *a
- 3

8 Ml 11
9 b e

. :Startofastart/end BG ==+ : Send/receive relationship of a signal between BGs Il : Masking signal sending/receiving
. : Relay BG ==» : Send/receive relationship of a packet between BGs : Masking packet sending/receiving

‘ : End of a start/end BG

The VBG obtained by the function explained in "3.4.1 VBG Allocation/Freeing Functions" is set in the function explained in "3.4.2 VBG
Configuration Functions".

The settings for all the VBGs participating in barrier synchronization must be completed before barrier communication begins. For example,
take the following typical approach to use barrier communication in the Tofu interconnect for barrier synchronization of MPI. First,
configure the VBGs at the time when the relevant communicator is created. Then, confirm the completion of all the VBG settings by using
one-sided communication or other means.

2.3.3 Barrier Synchronization

The uTofu functions for starting barrier communication will return at the time when they instruct the TNI to start barrier communication.
To confirm barrier synchronization, it is necessary to call a uTofu function that confirms the completion of barrier communication and to
continue polling until the function returns a return value indicating the completion.

Multiple barrier communications can be performed simultaneously when different VBGs are used.

For details of the example that performs barrier communication, see "5.2.1 Example of Barrier Synchronization and Reduction Operation".

-25-

2.3.4 Reduction Operation

When input data is given at the barrier communication start time, the reduction operation can be executed along with the barrier

communication.

The following table shows the available operators for uTofu and their data types. However, the operators actually available depend on the

type of Tofu interconnect.

For details on information specific to this computing system, see "Chapter 6 System Information”.

Table 2.3 Reduction Operators

Name Data Type Operation
BAND 64-bit unsigned integer Bitwise AND
BOR 64-bit unsigned integer Bitwise OR
BXOR 64-bit unsigned integer Bitwise XOR
MAX 64-bit unsigned integer Maximum value
MAXLOC 64-bit unsigned integer (*1)
SUM 64-bit unsigned integer Addition
BFPSUM Double-precision floating point Addition

*1) For MAXLOC, each process gives a group of two 64-bit unsigned integers as input. For the first element values, it selects the
maximum value like MAX. For the second element values, it selects the element that belongs to the group containing the first element,
which has the maximum value. At this point, if the first element values are the same, it compares the second element values with each
other and selects the smaller value.

For example, for SUM, each process gives a 64-bit unsigned integer, and their sum is calculated.

The number of possible elements of reduction operation executed in one-time barrier communication depends on the type of Tofu
interconnect. If reduction operation with multiple elements can be executed, data is given in the form of an array, and the operation is
executed between elements at the same location. For MAXLOC with four or more elements, the elements are grouped two pairs by two pairs,
and the above operation is executed between an odd-numbered element and even-numbered element.

For details of the example that performs reduction operation, see "5.2.1 Example of Barrier Synchronization and Reduction Operation™.

2.4 Communication Path

Since a Tofu network has a six-dimensional mesh/torus topology, there are multiple paths for a packet to move from a compute node to
another compute node. The communication path is determined with a combination of communication path coordinates and destination
compute node coordinates. A,B,C coordinates specify communication path coordinates, and X,Y,Z,A,B,C coordinates specify destination
compute node coordinates. A packet moves to the A,B,C coordinates specified as the communication path, before moving to the X,Y,Z
coordinates and then the A,B,C coordinates of the destination compute node. For example, suppose that the source compute node is at the
coordinates (X, Y, Zs, A, B, Cy), the destination compute node is at the coordinates (X, Yo, Z5, Aps Bo, Cp), and the communication path
is represented by the coordinates (A., B,, C.). A packet first moves to the coordinates (X, Y., Z;, A, B,, C,) along the shortest path, and
then moves to the coordinates (X,, Yo, Zs, A, B,, C,) along the shortest path. Finally, it moves to the coordinates (X, Yo, Z,, Ag, By, Cp)
along the shortest path. Since the A, B, and C axes have lengths of 2, 3, and 2, respectively, there is a maximum of 12 communication paths.

The following figure shows an example of communication paths on a two-dimensional surface that includes the X and B axes. This example
shows three communication paths in communication from a compute node at X,B coordinates (1,0) to a compute node at X,B coordinates
(4,2), where the B coordinate of the paths is (0), (1), and (2).

-26 -

Figure 2.18 Three Communication Paths on an X-B Two-Dimensional Surface

B

POBEE
O e e

0 1 2 3 4 5

k

X

In a single communication for one-sided communication, packets move back and forth between the local compute node and a remote
compute node. Communication path coordinates specify a communication path from the local compute node to the remote compute node.
This communication path is also used in reverse as the communication path from the remote compute node to the local compute node.

2.5 Thread Safety

The uTofu interface guarantees its correct behavior when multiple threads call it simultaneously without specifications regarding thread
safety, except in the following cases:

- When any of the functions that are classified as follows is called simultaneously for one or more thread-unsafe VCQs that share a CQ
- STADD management
- One-sided communication execution

- When any of the functions that are classified as follows is called simultaneously for one thread-unsafe VBG
- Barrier communication execution

You can specify a thread-safe VCQ or a VCQ that does not share the CQ (CQ-exclusive VCQ) for simultaneous calls from multiple threads.
This also includes the calls of the above-described functions. To do so, instruct that the thread-safe VCQ or CQ-exclusive VCQ be created
at the time when a VCQ is created. You can also instruct that a thread-safe VBG be created at the time when a VBG is created. However,
a thread-safe VCQ or thread-safe VBG may increase the software overhead for function calls.

-27 -

IChapter 3 uTofu Interface Specifications

This chapter describes the interface specifications of uTofu.

uTofu provides interfaces for C (C99 (ISO/IEC 9899:1999 standard) or later). A program that uses uTofu should include the header file

ut of u. h as follows:

#i ncl ude <utof u. h>

The features of uTofu are categorized as follows. For details on corresponding functions to the features of uTofu, see references shown in

the following table.

Table 3.1 Features and Functions of uTofu

Category for Feature

Feature

Details on Corresponding Functions

TNI query

TNI query

"3.2.1 TNI Query Functions"

VCQ management

VCQ creation/freeing

"3.3.1 VCQ Creation/Freeing Functions"

VCQ ID manipulation

"3.3.2 VCQ ID Manipulation Functions"

VCQ query

"3.3.3 VCQ Query Functions"

VBG management

VBG allocation/freeing

"3.4.1 VBG Allocation/Freeing Functions”

VBG configuration

"3.4.2 VBG Configuration Functions"

VBG query

"3.4.3 VBG Query Functions"

Communication path management

Communication path management

"3.5.1 Communication Path Management Functions"

STADD management

STADD management

"3.6.1 STADD Management Functions"

One-sided communication
execution

One-sided communication start

"3.7.1 One-Sided Communication Start Functions"

One-sided communication
preparation

""3.7.2 One-Sided Communication Preparation
Functions"

One-sided communication batch
start

"3.7.3 One-Sided Communication Batch Start
Functions"

One-sided communication
completion confirmation

""3.7.4 One-Sided Communication Completion
Confirmation Functions"

One-sided communication query

""3.7.5 One-Sided Communication Query Functions"

Barrier communication execution

Barrier communication start

"3.8.1 Barrier Communication Start Functions"

Barrier communication completion
confirmation

""3.8.2 Barrier Communication Completion
Confirmation Functions"

Supplemental features

Version query

"3.9.1 Version Query Functions"

Compute node information query

"3.9.2 Compute Node Information Query Functions"

The sections below describe the interface specifications of these features.

The following table shows the notations used in explanations in this chapter.

Table 3.2 Notations Used in Explanations of uTofu Interface Specifications

Notation Meaning
a_* Any functions, enumeration constants, or macros whose identifiers start with a_
a_{b|c} Function, enumeration constant, or macro whose identifierisa_b ora_c
a:b Member b in structure or union a, or parameter b of function a

-28 -

Table 3.3 Notations Used at IN/OUT Column in Tables of Function Parameters

Notation Meaning
IN Input to the function
ouT Output from the function

IN,OUT Input to the function and output from the function

3.1 Common Definitions

3.1.1 Type Definitions

3.1.1.1 typedef

Type definitions for 1Ds, etc.

Explanation

uTofu uses specially defined types for variables of IDs, etc.

Type Definitions

Typedef Name Type Explanation

TNI (Tofu network interface) ID.

utofu tni id.t ui nt 16_t A TNI ID is a 16-bit unsigned integer that identifies a TNI on a compute node, which is
equipped with a number of TNIs. The ID ranges from 0 to "that number of TNIs - 1".
Each TNI ID on the compute node is unique.
CQ (control queue) ID.

utofu_cq_id_t ui nt 16_t A CQ ID is a 16-bit unsigned integer that identifies a CQ on a TNI, which is equipped
with a number of CQs. The ID ranges from 0 to "that number of CQs - 1". Each CQ ID
on the TNI is unique.
BG (barrier gate) ID.

utof u_bg_id_t ui nt 16_t A BG ID is a 16-bit unsigned integer that identifies a BG on a TNI, which is equipped
with a number of BGs. The ID ranges from 0 to "that number of BGs - 1". Each BG ID
on the TNI is unique.
Component ID.

utofu_cmp_id_t uint16_t A component ID is a 16-bit unsigned integer that identifies a VCQ among the VCQs that
share 1 CQ. Each component ID in the CQ is unique.
VCQ (virtual control queue) handle.

utofu_veq_hdl _t | uintptr_t | aAvcQhandleisapointer-sized unsigned integer that references VCQ data in a process.
Each VCQ handle in the process is unique.
VCQ (virtual control queue) ID.

utof u_veq_id_t ui nt 64_t A VCQ ID is a 64-bit unsigned integer that identifies a VCQ in a Tofu network. Each
VCQ ID is unique among all the VCQs in the Tofu network. Default communication
path coordinates can be embedded in a VCQ ID.
VBG (virtual barrier gate) ID.

utofu_vbg_id_t uint64_t A VBG ID is a 64-bit unsigned integer that identifies a VBG in a Tofu network. Each
VBG ID is unique among all the VBGs in the Tofu network.
Communication path ID.

utofu_path_id_t uint8_t

A communication path ID is an 8-bit unsigned integer that represents a communication
path from a compute node to another compute node in a Tofu network. Though a

-29-

Typedef Name Type Explanation

communication path is also used in barrier communication, acommunication path ID is
used only in one-sided communication.

STADD (steering address).

utof u_stadd_t ui nt 64_t A STADD is a 64-bit unsigned integer that represents a memory address that a TNI can
understand. It is used in one-sided communication.

3.1.2 Return Values

3.1.2.1 enum ut of u_r et urn_code
Return values of uTofu functions
Explanation
Enumeration constants shown in the table below are used for the return values of almost all uTofu functions.

The enumeration constant UTOFU_SUCCESS means a successful operation and has the value 0. All other enumeration constants have
negative values. Enumeration constants that are not UTOFU_SUCCESS do not necessarily represent errors. For example, the
ut of u_pol | _tcq() and ut of u_pol | _nrq() functions return UTOFU_ERR_NOT_FOUND when no new TCQ/MRQ entry is
found but this is normal.

In the list of return values in the explanation of each function in this document, only the return codes before
UTOFU_ERR_| NVALI D_ARGin the table below are individually explained. Other return codes may also be returned depending on the
arguments passed to the function or the conditions at the time.

Enumeration Constants

Enumeration Constant Explanation
UTCOFU_SUCCESS The operation succeeded with no problems.
UTOFU_ERR_NOT_FOUND No new entry was found.
UTOFU_ERR_NOT_COVPLETED The operation has not completed yet.
UTOFU_ERR _NOT_PROCESSED The operation has not been processed.

The resource is busy now.
UTOFU_ERR _BUSY
Trying again later may succeed.

The resource is already used.
UTOFU_ERR_USED
Trying again with another resource may succeed.

The resource is full.
UTOFU_ERR FULL
No more of the resource can be allocated.

The resource is not available.
UTOFU_ERR_NOT_AVAI LABLE
The resource cannot be allocated.

UTOFU_ERR_NOT_SUPPORTED The operation is not supported.

An error that cannot be represented by other UTOFU_ERR_TCQ * was reported by a

UTOFU ERR T OTHER
LERR TOQ TCQ descriptor.

A TOQ descriptor error was reported by a TCQ descriptor.
UTOFU_ERR TCQ DESC
The wrong argument may have been passed.

A memory access error was reported by a TCQ descriptor.
UTOFU_ERR_TCQ_MEMORY
The specified STADD may be invalid.

UTCOFU_ERR_TCQ STADD A STADD error was reported by a TCQ descriptor.

-30-

Enumeration Constant

Explanation

The STADD value may be outside the registered memory region.

UTOFU_ERR TCQ LENGTH

An error regarding "STADD + data length" was reported by a TCQ descriptor.

The value of "the specified STADD + the specified data length" may be outside the
registered memory region.

UTOFU_ERR_MRQ OTHER

An error that cannot be represented by other UTOFU_ERR_MRQ_* was reported by an
MRQ descriptor.

UTOFU_ERR_MRQ PEER

A peer process error was reported by an MRQ descriptor.

This error may have been caused by an abort of the peer process.

UTOFU_ERR_MRQ LCL_MEMORY

A local memory access error was reported by an MRQ descriptor.

The specified local STADD may be invalid.

UTOFU_ERR_MRQ RMT_MEMORY

A remote memory access error was reported by an MRQ descriptor.

The specified remote STADD may be invalid.

UTOFU_ERR MRQ LCL_STADD

A local STADD error was reported by an MRQ descriptor.

The local STADD value may be outside the registered memory region.

UTOFU_ERR MRQ RMT_STADD

A remote STADD error was reported by an MRQ descriptor.

The remote STADD value may be outside the registered memory region.

UTOFU_ERR MRQ LCL_LENGTH

An error regarding "local STADD + data length" was reported by an MRQ descriptor.

The value of "the specified local STADD + the specified data length" may be outside
the registered memory region.

UTOFU_ERR_MRQ RMI_LENGTH

Anerror regarding "remote STADD + data length" was reported by an MRQ descriptor.

The value of "the specified remote STADD + the specified data length" may be outside
the registered memory region.

UTOFU_ERR _BARRI ER_OTHER

A barrier communication error that cannot be represented by other
UTOFU_ERR_BARRI ER_* occurred.

UTOFU_ERR_BARRI ER_M SMATCH

Mismatch of reduction operations is detected in barrier communication.

UTOFU_ERR | NVALI D_ARG

An invalid argument was passed.

UTOFU_ERR | NVALI D_POl NTER

An invalid pointer was passed as an argument.

UTOFU_ERR | NVALI D_FLAGS

Invalid flags were passed as an argument.

UTOFU_ERR | NVALI D_COORDS

Invalid compute node coordinates were passed as an argument.

UTOFU_ERR | NVALI D_PATH

Invalid communication path coordinates were passed as an argument.

UTOFU_ERR | NVALID TNl I D

An invalid TNI ID was passed as an argument.

UTOFU_ERR | NVALI D CQ I D

An invalid CQ ID was passed as an argument.

UTOFU_ERR | NVALI D BG | D

An invalid BG ID was passed as an argument.

UTOFU_ERR | NVALI D CMVP_I D

An invalid component ID was passed as an argument.

UTOFU_ERR | NVALI D_VCQ HDL

An invalid VCQ handle was passed as an argument.

UTOFU_ERR | NVALI D_VCQ | D

An invalid VCQ ID was passed as an argument.

UTOFU_ERR | NVALI D_VBG | D

An invalid VBG ID was passed as an argument.

UTOFU_ERR | NVALI D_PATH_ | D

An invalid communication path ID was passed as an argument.

UTOFU_ERR | NVALI D_STADD

An invalid STADD was passed as an argument.

UTOFU_ERR | NVALI D_ADDRESS

An invalid memory address was passed as an argument.

-31-

Enumeration Constant Explanation

UTOFU_ERR | NVALI D_SI ZE An invalid size/length was passed as an argument.
UTOFU_ERR | NVALI D_STAG An invalid STag was passed as an argument.
UTOFU_ERR | NVALI D_EDATA An invalid EDATA was passed as an argument.

UTOFU_ERR | NVALI D_NUMBER An invalid entity number was passed as an argument.

UTOFU_ERR | NVALI D_OP An invalid operation was passed as an argument.
UTOFU_ERR | NVALI D_DESC An invalid descriptor was passed as an argument.
UTCOFU_ERR | NVALI D_DATA Invalid structure data was passed as an argument.

UTOFU_ERR_QUT_OF_RESOURCE A resource (except memory) is exhausted.

UTCFU_ERR_QUT_OF_MEMORY Memory cannot be allocated.

UTOFU_ERR_FATAL A fatal error occurred.

3.2 TNI Query

ATNI (Tofu network interface) is a physical network device supplied with each compute node that performs one-sided communication and
barrier communication. More than one TNI may be supplied with each compute node.

The ut of u_get _onesi ded_t ni s() and ut of u_get _barri er_tni s() functions can query available TNIs.

Theut of u_query_onesi ded_caps() andut of u_query_barri er_caps() functions can query the capabilities of one-sided
communication and barrier communication, respectively.

3.2.1 TNI Query Functions

3.2.1.1 utofu_get onesided tnis

Get an array of 1Ds of the available TNIs for one-sided communication.

Format

int utofu_get_onesided_tnis(
utofu_tni _id_t **tni _ids,
size_t *num tnis)

Explanation

This function returns the IDs of local TNIs that are capable of one-sided communication and available to this process. The number of
available TNIs may be smaller than the number of TNIs supplied with the compute node.

The returned TNI IDs can be used as arguments of the ut of u_query_onesi ded_caps() and ut of u_create_vcq()
functions.

The caller should free the returned t ni _i ds array by using the f r ee() function, unless there is no available TNI.

Parameters

Parameter Name Explanation IN/OUT

Pointer to an array of allocated TNI IDs.
tni_ids ouT
The array length is num_t ni s. If there is no available TNI, NULL is set.

) Number of available TNIs.
numtnis ouT
If there is no available TNI, O is set.

Return values

-32-

Value Explanation
UTCOFU_SUCCESS | Succeeded

other Other UTOFU_ERR _* error

3.2.1.2 utofu_get barrier_tnis

Get an array of 1Ds of the available TNIs for barrier communication.

Format

int utofu_get _barrier_tnis(
utofu_tni_id t **tni _ids,
size_t *num_tnis)

Explanation

This function returns the IDs of local TNIs that are capable of barrier communication and available to this process. The number of
available TNIs may be smaller than the number of TNIs supplied with the compute node.

The returned TNI IDs can be used as arguments of the ut of u_query_barri er _caps() andut of u_al | oc_vbg() functions.
The caller should free the returned t ni _i ds array by using the f r ee() function, unless there is no available TNI.

Parameters

Parameter Name Explanation IN/OUT

Pointer to an allocated array of TNI IDs.
tni_ids ouT
The array length is num_t ni s. If there is no available TNI, NULL is set.

Number of available TNIs.
numtnis ouT
If there is no available TNI, O is set.

Return values

Value Explanation

UTOFU_SUCCESS | Succeeded

other Other UTOFU_ERR _* error

3.2.1.3 utof u_query_onesi ded_caps

Query the available capabilities and limit values of one-sided communication.

Format

i nt utofu_query_onesi ded_caps(
utofu_tni _id_t tni _id,
struct utofu_onesi ded_caps **tni_caps)

Explanation

This function returns a pointer to the memory data managed by the uTofu implementation. The caller must neither free nor overwrite the
t ni _caps structure.

The function can query only TNIs returned from the ut of u_get _onesi ded_t ni s() function.

Parameters
Parameter Name Explanation IN/OUT
tni_id TNI'ID IN
tni _caps Pointer to the one-sided communication capability data of the TNI ouT

-33-

Return values

Value Explanation

UTOFU_SUCCESS | Succeeded

other Other UTOFU_ERR _* error

3.2.1.4 utofu_query_barrier_caps
Query the available capabilities and limit values of barrier communication.

Format

int utofu_query_barrier_caps(
utofu_tni_id_t tni_id,
struct utofu_barrier_caps **tni_caps)

Explanation

This function returns a pointer to the memory data managed by the uTofu implementation. The caller must neither free nor overwrite the
t ni _caps structure.

The function can query only TNIs returned from the ut of u_get _barri er _t ni s() function.

Parameters
Parameter Name Explanation IN/OUT
tni_id TNI'ID IN
tni _caps Pointer to the barrier communication capability data of the TNI ouT

Return values

Value Explanation

UTOFU_SUCCESS | Succeeded

other Other UTOFU_ERR _* error

3.2.2 Structures Indicating Available Communication Functions and Limit
Values

3.2.2.1 struct utofu_onesi ded_caps

Capabilities of one-sided communication

Definition

struct utofu_onesided_caps {
unsigned long int flags;
unsi gned | ong int armv_ops;
unsi gned i nt num cnp_i ds;
unsi gned int num reserved_st ags;
size_t cache_l i ne_si ze;
size_t stag_address_al i gnnent;
size_t max_t og_desc_si ze;
size_t max_put get _si ze;
size_t max_pi ggyback_si ze;
si ze_t mex_edat a_si ze;
size_t max_nt u;
size_t max_gap;

}

-34-

Explanation

The ut of u_query_onesi ded_caps() function returns a pointer to this structure.

Members
Member Name Explanation
Flags for capabilities of one-sided communication.
flags Bitwise OR of UTOFU_ONESI DED_CAP_FLAG *.
Supported ARMW operation types.
ar nw_ops

Bitwise OR of UTOFU_ONESI DED_CAP_ARMN OP_*.

Number of component IDs available.
num cnp_i ds
Used for the ut of u_create_vcqg_w th_cnp_i d() function.

Number of reserved STags per VCQ.
num r eser ved_st ags
Used for the ut of u_reg_nmem wi t h_st ag() function.

_) Line size of the last level cache of the CPU.
cache_l i ne_size
Used for the cache injection feature and confirmation of communication completion.

Alignment of a memory address where a STag can be assigned using the

stag_address_alignment ut of u_reg_nmem w t h_st ag() function.

Maximum byte size of a TOQ descriptor.
max_t oq_desc_si ze
Used for ut of u_pr epar e_* () functions.

Maximum byte size of Put and Get.

max_put get _si ze The | engt h parameter value specified for a one-sided communication start/preparation
function must be less than or equal to this value.

Maximum byte size of a piggyback.

max_pi ggyback_si ze The | engt h parameter value specified for the ut of u_put _pi ggyback() function
must be less than or equal to this value.

max_edat a_si ze Maximum byte size of a usable EDATA field

max_ntu Maximum value of the MTU (maximum transfer unit) of a packet

max_gap Maximum value of a transmission gap injected between packets

3.2.2.2 struct utofu_barrier_caps

Capabilities of barrier communication

Definition

struct utofu_barrier_caps {
unsigned long int flags;
unsi gned long int reduce_ops;

size_t max_ui nt 64_r educti on;
size_t max_doubl e_r educti on;
}
Explanation

The ut of u_query_barri er_caps() function returns a pointer to this structure.

Members

Member Name Explanation

fl ags Flags for capabilities of barrier communication.

-35-

Member Name Explanation
Bitwise OR of UTOFU BARRI ER CAP_FLAG *.

Supported reduction operation types.
reduce_ops
Bitwise OR of UTOFU_BARRI ER_CAP_REDUCE_OP_*.

max_ui nt 64_r educti on Maximum number of simultaneous 64-bit integer (ui nt 64_t) reduction operations

max_doubl e_r educti on Maximum number of simultaneous floating-point (doubl e) reduction operations

3.2.3 Flags Indicating Available Communication Functions

3.2.3.1 UTOFU_ONESI DED_CAP_FLAG *

Bit flags for the f | ags member of the ut of u_onesi ded_caps structure
Explanation

They can be used to see whether one-sided communication of a TNI has specific features.

Macros
Macro Name Explanation
UTOFU_ONESI DED_CAP_FLAG_SESSI ON_MODE Session mode feature
UTOFU_ONESI DED_CAP_FLAG_ARMWV Atomic Read Modify Write communication

3.2.3.2 UTOFU_BARRI ER_CAP_FLAG *

Bit flags for the f | ags member of the ut of u_barri er _caps structure
Explanation
They can be used to see whether barrier communication of a TNI has specific features.

No flags are defined in the current version.

3.2.3.3 UTOFU_ONESI DED_CAP_ARMW OP_*

Bit flags for the ar mv_ops member of the ut of u_onesi ded_caps structure
Explanation

They can be used to see whether the ARMW (Atomic Read Modify Write) communication of one-sided communication has specific

ARMW operations.
Macros
Macro Name Explanation
UTOFU_ONESI DED_CAP_ARMN OP_CSWAP Compare and Swap operation
UTOFU_ONESI DED_CAP_ARMWV OP_SWAP Swap operation
UTOFU_ONESI DED_CAP_ARMN OP_ADD Unsigned integer addition operation
UTOFU_ONESI DED_CAP_ARMN OP_XOR Bitwise XOR operation
UTOFU_ONESI DED_CAP_ARMN OP_AND Bitwise AND operation
UTOFU_ONESI DED_CAP_ARMWV OP_OR Bitwise OR operation

3.2.3.4 UTOFU_BARRI ER_CAP_REDUCE_OP_*

Bit flags for the r educe_ops member of the ut of u_barri er _caps structure

-36-

Explanation
They can be used to see whether barrier communication has specific reduction operations.

Macros

Macro Name Explanation

UTOFU_BARRI ER_CAP_REDUCE_OP_BARRI ER | Barrier synchronization (no reduction operation)

UTOFU_BARRI ER_CAP_REDUCE OP_BAND Bitwise AND operation of ui nt 64_t values

UTOFU_BARRI ER_CAP_REDUCE OP_BOR Bitwise OR operation of ui nt 64_t values

UTOFU_BARRI ER_CAP_REDUCE_OP_BXOR Bitwise XOR operation of ui nt 64_t values

UTOFU_BARRI ER_CAP_REDUCE_OP_MAX Operation that gives maximum unsigned integer of ui nt 64_t values

Operation that gives maximum unsigned integer of ui nt 64_t values

UTOFU_BARRI ER_CAP_REDUCE_OP_MAXLOC . .
- - - - - and its location

UTOFU_BARRI ER_CAP_REDUCE_OP_SUM Unsigned integer summation operation of ui nt 64_t values

UTOFU_BARRI ER_CAP_REDUCE_OP_BFPSUM Floating-point (BFP) summation operation of doubl e values

3.3 VCQ Management

A VCQ (virtual control queue) is an interface for uTofu users to control one-sided communication on a TNI.

Before starting one-sided communication, the wuTofu user needs to query available local TNIs with the
ut of u_get _onesi ded_t ni s() function and then create a VCQ corresponding to the local TNI with the ut of u_creat e_vcq()
function. After using one-sided communication, the uTofu user needs to release the VCQ with the ut of u_f ree_vcq() function.

For the start of one-sided communication, the remote VCQ of the communication peer is specified by a VCQ ID. The
ut of u_query_vcqg_i d() function can obtain the local VCQ ID. To communicate with another process, the process has to notify this
process of the VCQ |ID. To start one-sided communication, a communication path must be specified. The
ut of u_set _vcq_i d_pat h() function can embed default communication path coordinates into the VCQ ID.

The ut of u_query_vcqg_i nf o() function can obtain information about a created VCQ.
More than one VCQ can be created for one TNI. Each VCQ has its independent communication context.

Once a VCQ is created in this process, the VCQ can communicate with any other VCQs in remote processes any number of times.

3.3.1 VCQ Creation/Freeing Functions

3.3.1.1 utofu_create_vcq
Create a VCQ on a given TNI on the compute node.

Format

int utofu_create_vcq(
utofu_tni_id_t tni_id,
unsigned long int flags,
ut of u_vcqg_hdl _t *vcqg_hdl)

Explanation
The ut of u_free_vcq() function should be used to release the created VCQ.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
tni_id ID of the TNI to create a VCQ on IN

-37-

Parameter Name Explanation IN/OUT

f1ags Bitwise OR of UTOFU_VCQ FLAG * IN

vcq_hdl Handle of the created VCQ ouT

Return values

Value Explanation
UTCOFU_SUCCESS Succeeded
UTOFU_ERR_FULL No more VCQs can be created for this TNI.

UTOFU_ERR_NOT_AVAI LABLE | No VCQ of the type specified by the f | ags parameter is available.

UTOFU_ERR_NOT_SUPPORTED | VCQs of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR_* error

3.3.1.2 utofu_create_vcg_wth_cnp_id
Create a VCQ with a component ID on a given TNI on the compute node.

Format

int utofu_create_vcqg_w th_cnp_id(
utofu_tni_id_t tni_id,
utofu_cnp_id_t cnp_id,
unsigned long int flags,
ut of u_vcqg_hdl _t *vcg_hdl)

Explanation

The difference between this function and the ut of u_creat e_vcq() function is that a component ID for an upper layer can be
specified with this function. The component ID is used to distinguish the VCQ of an upper-layer component from the VCQs of the other
components sharing the same CQ. When the ut of u_creat e_vcq() function is used to create a VCQ, the function selects a
component ID not duplicated by the other VCQs and assigns it to the created VCQ. However, when this function is used, the caller must
guarantee that the specified component ID is not or will not be used by another upper-layer component. Otherwise, this function returns
UTOFU_ERR_USED.

The component IDs that can be used range from 0 to "ut of u_onesi ded_caps: : num cnp_i ds -1"
The ut of u_free_vcq() function should be used to release the created VCQ.
This function call may involve a system call.

Other descriptions that discuss the ut of u_cr eat e_vcq() function in this document also apply to this function.

Parameters
Parameter Name Explanation IN/OUT
tni_id ID of the TNI to create a VCQ on IN

ID of an upper-layer component.
cnp_id IN
The value must be smaller than ut of u_onesi ded_caps: : num cnp_i ds.

flags Bitwise OR of UTOFU_VCQ FLAG * IN

vcq_hdl Handle of the created VCQ ouT

Return values

Value Explanation
UTOFU_SUCCESS Succeeded
UTOFU_ERR_USED Another component uses the specified component ID.

-38-

Value Explanation
UTOFU_ERR_FULL No more VCQs can be created for this TNI.
UTOFU_ERR_NOT_AVAI LABLE No VCQ of the type specified by the f | ags parameter is available.
UTOFU_ERR_NOT_SUPPORTED VCQs of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR_* error

3.3.1.3 utofu_free_vcq
Free a VCQ.

Format

int utofu_free_vcq(
ut of u_vcg_hdl _t vcg_hdl)

Explanation
Double free is not allowed.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
vcq_hdl Handle of a VCQ created by the ut of u_creat e_vcq() function IN

Return values

Value Explanation
UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR _* error

3.3.2 VCQ ID Manipulation Functions

3.3.2.1 utofu_query_vcq_id
Query the ID of the local VCQ.

Format

int utofu_query_vcg_id(
utofu_vcqg_hdl _t vcg_hdl,
utofu_veqg_id t *vcg_id)

Explanation

Though the value of a VCQ handle is valid only for this process, a VCQ ID is valid in all processes and is unique among all the VCQs
in the Tofu network.

The A,B,C coordinates of the compute node are embedded in the VCQ ID as default communication path coordinates.

Parameters
Parameter Name Explanation IN/OUT
vcq_hdl Handle of a VCQ created by the ut of u_cr eat e_vcq() function IN
vcg_id ID of the VCQ ouT

Return values

-39 -

Value Explanation
UTCOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.2.2 utofu_construct __vcqg_id

Construct a VCQ ID.

Format

int utofu_construct_vcq_id(
uint8_t coords[],
utofu_tni _id_t tni_id,
utofu_cq_id_t cq_id,
utofu_cnp_id_t cnp_id,
utofu_vecqg_id_t *vcq_id)

Explanation

The VCQ ID of a VCQ created by the ut of u_creat e_vcqg_wi t h_crp_i d() function can be computed from the compute node
coordinates, TNI ID, CQ ID, and component ID by this function. The ID of a VCQ created on a remote compute node can also be
computed.

The A,B,C coordinates of the specified compute node are embedded in the VCQ ID as default communication path coordinates.

Parameters

Parameter Name Explanation IN/OUT

Compute node coordinates of a VCQ in the order of X, Y, Z, A, B, C.
coords IN
The array length must be 6.

tni _id TNI ID of a VCQ IN
cq_id CQID ofaVCQ IN
cnp_id Component ID of a VCQ IN
veq_id Constructed VCQ ID ouT

Return values

Value Explanation
UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.2.3 utofu_set _vcqg_id_path

Update the default communication path coordinates embedded in a VCQ ID.

Format

int utofu_set _vcq_id_path(
utofu_veq_id_t *vcg_id,
ui nt8_t pat h_coords[])

Explanation

To call a one-sided communication start/preparation function, a communication path can be specified by either a remote VCQ ID
(rnt_veq_id parameter) or bit flags (fl ags parameter). The utofu_query_vcq_id() and
ut of u_construct _vcq_i d() functions embed the A,B,C coordinates of a compute node into a VCQ ID as default
communication path coordinates. This function updates the communication path coordinates.

-40 -

Note that this function updates the communication path coordinates locally and the information managed by uTofu implementation is
not updated. For example, if there are two variables whose VCQ IDs are the same and this function is called for the one VCQ ID variable,
the communication path coordinates of the other VCQ ID variable is not updated.

This function can be called for a VCQ ID variable more than once. The communication path coordinates in a communication using the
VCQ ID variable is the value set by the last call of this function for the variable.

Parameters
Parameter Name Explanation IN/OUT
vcg_id VCQ ID IN,OUT
Default communication path coordinates in the order of A, B, C to embed in the VCQ.
pat h_coor ds The array length must be 3. NULL can be specified. In that case, appropriate communication IN
- path coordinates are automatically selected for the one-sided communications from the local
compute node to the remote compute node specified by the VCQ ID.

Return values

Value Explanation
UTCOFU_SUCCESS Succeeded
other Other UTOFU_ERR_* error

3.3.3 VCQ Query Functions

3.3.3.1 utofu_query_vcqg_info
Query the compute node coordinates, TNI ID, and CQ ID of a given VCQ.

Format

int utofu_query_vcq_info(
utofu_vcqg_id_t vcq_id
uint8_t coords[],
utofu_tni _id_ t *tni_id,
utofu_cqg_id t *cqg_.id,
uint16_t *extra_val)

Explanation
The function can also query information about VCQs created on remote compute nodes.

This information may be used for performance tuning and debugging. For example, if there are multiple processes on one compute node,
and you want each process to use a distinct TNI in simultaneous communications, this information can be used.

Parameters
Parameter Name Explanation IN/OUT
veg_id VCQ ID IN

Compute node coordinates of the VCQ in the order of X, Y, Z, A, B, C.
coords ouT
The array length must be 6 or greater.

TNI ID of the VCQ.
tni_id ouT
The TNI ID ranges from 0 to "the number of TNIs supplied with the compute node - 1".

CQ ID of the VCQ.
cq_id ouT
The CQ ID ranges from 0 to "the number of CQs supplied with the TNI - 1".

Extra value for internal use in the uTofu implementation.
extra_val ouT
The value has no meaning for uTofu users.

-41-

Return values

Value

Explanation

UTCOFU_SUCCESS Succeeded

other Other UTOFU_ERR _* error

3.3.4 VCQ Flags

3.3.4.1 UTOFU VCQ FLAG *

Bit flags for the f | ags parameter of the ut of u_creat e_vcq() function

Explanation

These flags can specify behaviors for creating a VCQ.

Macros

Macro Name

Explanation

UTOFU_VCQ FLAG THREAD SAFE

Thread-safe VCQ.

This flag requests the ut of u_creat e_vcq() or

utof u_create_vcqg_wi th_cnp_i d() function to create a new thread-safe
VCQ. You can call STADD management functions and one-sided communication
execution functions from multiple threads simultaneously for the single VCQ created
with the flag. You can also call those functions simultaneously for the VCQ created with
the flag and another VCQ.

UTOFU_VCQ FLAG EXCLUSI VE

CQ-exclusive VCQ.

This flag requeststhe ut of u_cr eat e_vcq() functionto create anew CQ-exclusive
VCQ, which does not share a CQ with other VCQs. You can call STADD management
functions and one-sided communication execution functions from multiple threads
simultaneously for this VCQ created with the flag and another VCQ. Those functions
still cannot be called simultaneously for asingle VCQ created with this flag but not with
the UTOFU_VCQ FLAG THREAD_SAFE flag. The advantage of this flag over the
UTOFU_VCQ FLAG THREAD_ SAFEflag is that simultaneous calls of those functions
for different CQs are not serialized in the uTofu implementation and hardware access.
So communication throughput may be improved. If this flag is specified but CQs are
exhausted, theut of u_cr eat e_vcq() function fails. The flag cannot be used for the
ut of u_create_vcqg_wi th_cnp_i d() function.

UTOFU_VCQ FLAG SESSI ON_MODE

Session mode VCQ.

This flag requests the ut of u_cr eat e_vcq() function to create a new VCQ of the
session mode type. If the flag is specified but the TNI does not support session mode or
the CQs for session mode are exhausted, the ut of u_cr eat e_vcq() function fails.
The flag cannot be used for the ut of u_create_vcq_w t h_cnp_i d() function.
This flag cannot be used together with the UTOFU_VCQ_FLAG_EXCLUSI VE flag.

3.4 VBG Management

A VBG (virtual barrier gate) is a TNI component that sends and receives barrier signals and barrier packets.

Before using barrier communication, the uTofu user needs to query available TNIs with the ut of u_get _barri er _t ni s() function,
allocate VBGs on a TNI with the ut of u_al | oc_vbg() function, and build a barrier circuit with the ut of u_set _vbg() function.
After using barrier communication, the uTofu user needs to free the VBGs with the ut of u_free_vbg() function. The
ut of u_query_vbg_i nf o() function can obtain information about an allocated VBG.

To communicate with remote compute nodes, the remote compute nodes also have to allocate their VBGs.

-42-

More than one VBG can be allocated for one TNI. Actually, multiple VBGs are usually required for building a barrier circuit.

Once a barrier circuit is built, barrier synchronization and reduction operation can be executed on the barrier circuit any number of times.

3.4.1 VBG Allocation/Freeing Functions

3.4.1.1 utofu_all oc_vbg
Allocate VBGs for a given TNI on the compute node.

Format

int utofu_alloc_vbg(
utofu_tni _id_t tni_id,
size_t num vbgs,
unsigned long int flags,
utof u_vbg_id_t vbg_ids[])

Explanation
This function writes VBG IDs to the caller-supplied vbg_i ds array.
The first element of the array corresponds to a start/end BG and the remaining elements correspond to relay BGs.
The ut of u_free_vbg() function should be used to release the allocated VBGs.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
tni _id ID of the TNI to allocate VBGs on IN

Number of VBGs required.
num vbgs IN
The value must be greater than 0.

flags Bitwise OR of UTOFU_VBG_FLAG * IN

Array of IDs of the allocated VBGs.
vbg_i ds ouT
The array length must be num_vbgs or greater.

Return values

Value Explanation
UTOFU_SUCCESS Succeeded
UTCOFU_ERR_FULL The specified number of VBGs cannot be allocated on this TNI.

UTOFU_ERR_NOT_AVAI LABLE No VBG of the type specified by the f | ags parameter is available.

UTOFU_ERR_NOT_SUPPORTED VBGs of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR_* error

3.4.1.2 utofu_free_vbg
Free VBGs.

Format

int utofu_free_vbg(
utofu_vbg_id_t vbg ids[],
size_t num vbgs)

-43-

Explanation

Though each VBG ID is unique among all the VBGs in the Tofu network, this function can simply free the VBGs allocated by this
process.

Double free is not allowed.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
Array of IDs of VBGs allocated by the ut of u_al | oc_vbg() function.
vbg_i ds The array contents must be the same as the array returned by the ut of u_al | oc_vbg() IN
function. The array length must be num vbgs.
Number of VBGs.
num vbgs The value must be same as the value passed to the corresponding ut of u_al | oc_vbg() IN
function call.
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
other Other UTOFU_ERR _* error

3.4.2 VBG Configuration Functions

3.4.2.1 utofu_set _vhg

Configure VBGs to build a barrier circuit.

Format

int utofu_set_vbg(
struct utofu_vbg setting vbg_settings[],
size_t num vbg_settings)

Explanation
Each VBG receives an input signal and input packet and then sends an output signal and output packet.

- The input signal is received from another VBG on the same TNI (local source).

The input packet is received from a VBG on a TNI on the same or a remote compute node (remote source).
- The output signal is sent to another VBG on the same TNI (local destination).
- The output packet is sent to a VBG on a TNI on the same or a remote compute node (remote destination).

A barrier circuit is built by combining all participating VBGs. To build one barrier circuit, this function must be called for the local VBG
set on every compute node participating in the barrier circuit.

This function configures multiple local VBGs allocated by a single ut of u_al | oc_vbg() function call at once. The set of values of
ut of u_vbg_setting::vbg_idinthevbg_settings array must be the same as or a subset of the VBG IDs returned by the
ut of u_al I oc_vbg() function. The first VBG ID inthe vbg_set t i ngs array corresponds to a start/end BG and must be the first
VBG ID returned by the ut of u_al | oc_vbg() function. However, the remaining VBG IDs do not need to be in the same order as
the VBG IDs returned by the ut of u_al | oc_vbg() function.

If this function is called for a VBG set more than once, the last call takes effect.
This function call may involve a system call.

Parameters

- 44 -

Parameter Name Explanation IN/OUT
Array of VBG settings.
vbg_settings IN
The array length must be num vbg_setti ngs.
Number of VBGs to configure.
num.vbg_settings | The value must be greater than 0 and less than or equal to the value passed to the IN
corresponding ut of u_al | oc_vbg() function call.
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
other Other UTOFU_ERR_* error
3.4.3 VBG Query Functions
3.4.3.1 utofu_query _vbg_info
Query the compute node coordinates, TNI ID, and BG ID of a given VBG.
Format
int utofu_query_vbg_ info(
utofu_vbg_id_ t vbg_ id
ui nt 8_t coords[],
utofu_tni _id_ t *tni_id,
utofu_bg_id_t *bg_id
uint16_t *extra_val)
Explanation
The function can also query information about a VBG allocated on a remote compute node.
This information may be used for debugging.
Parameters
Parameter Name Explanation IN/OUT
vbg_id VBG ID IN
Compute node coordinates of the VBG in the order of X, Y, Z, A, B, C.
coords ouT
The array length must be 6 or greater.
TNI ID of the VBG.
tni_id ouT
The TNI ID ranges from 0 to "the number of TNIs supplied with the compute node - 1".
BG ID of the VBG.
bg_id ouT
The BG ID ranges from 0 to "the number of BGs supplied with the TNI - 1".
Extra value for internal use in the uTofu implementation.
extra_val ouT
The value has no meaning for uTofu users.

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

other

Other UTOFU_ERR_* error

-45-

3.4.4 VBG Configuration Structures

3.4.4.1 struct utofu_vbg_setting

VBG settings

Definition

utofu_vbg_id_t
utofu_vbg_id_t
utofu_vbg_id_t
utof u_vbg_id_t
utof u_vbg_id_t
uint8_t

}

struct utofu_vbg_setting {

vbg_id;
src_lcl_vbg_ id;
src_rnt_vbg_ id;
dst _Icl_vbg_id;

dst _rmt_vbg_id;

dst _pat h_coords[3];

Explanation

The ut of u_set _vbg() function requires an array of this structure as the vbg_set t i ngs parameter.

For a VBG that does not

receive/send one of the signals/packets, UTOFU_VBG | D_NULL should be specified as the VBG ID for the

corresponding local/remote source/destination VBG.

Members

Member Name

Explanation

vbg_id

ID of the local VBG to configure

src_lcl_vbg_id

ID of the local source VBG of an input signal to the VBG

src_rnt_vbg_id

ID of the remote source VBG of an input packet to the VBG

dst _lcl_vbg_id

ID of the local destination VBG of an output signal from the VBG

dst_rnt_vbg_id

ID of the remote destination VBG of an output packet from the VBG

dst _pat h_coords

Communication path coordinates in the order of A, B, C to the remote destination VBG.

If UTOFU_PATH_COCORD_NULL is specified as the coordinate A (dst _pat h_coor ds[0]),
appropriate communication path coordinates are automatically selected. In this case, the coordinates B
and C (dst _pat h_coords[1] and dst _pat h_coor ds[2]) are ignored.

3.4.5 VBG Flags

3.4.5.1 UTOFU VBG FLAG *

Bit flags for the f | ags parameter of the ut of u_al | oc_vbg() function

Explanation

These flags can specify behaviors for allocating a VBG.

Macros

Macro Name Explanation

UTOFU_VBG_FLAG THREAD_SAFE

Thread-safe VBG.

This flag requests the ut of u_al | oc_vbg() function to allocate new thread-safe
VBGs. Barrier communication execution functions can be called from multiple threads
simultaneously for the single VBG allocated with the flag.

- 46 -

3.4.6 Special Values for VBG Configuration

3.4.6.1 UTOFU_VBG_ | D_NULL

Macros

Macro Name Explanation

Null VBG ID.

UTOFU_VBG_I D_NULL This special VBG ID is used to represent no input signal/packet or no outgoing signal/packet for the
ut of u_set _vbg() function.

3.5 Communication Path Management

To start each one-sided communication or build each barrier circuit, a communication path on a Tofu network must be specified.

In the case of one-sided communication, a communication path can be specified with either a remote VCQ ID (r nt _vcq_i d parameter)
or bit flags (fl ags parameter) to call a one-sided communication start/preparation function. For a remote VCQ ID, the
ut of u_query_vcqg_i d() andut of u_construct_vcq_i d() functions embed default communication path coordinates into the
VCQ ID, and the wutofu_set_vcq_id path() function updates the coordinates. For bit flags, the
UTOFU_ONESI DED_FLAG PATH function-like macro specifies the communication path. The UTOFU_ONESI DED_FLAG PATH
function-like macro takes a parameter of a communication path ID.

The utofu_get_path_id() function creates a communication path ID from communication path coordinates. The
ut of u_get _pat h_coor ds() function can query the communication path coordinates from the communication path ID.

In the case of barrier communication, communication path coordinates can be specified when calling a VBG configuration function.

3.5.1 Communication Path Management Functions

3.5.1.1 utofu_get path_id

Create a communication path 1D from communication path coordinates.

Format

int utofu_get_path_id(
utofu_veq_id_t veq_id
ui nt 8_t pat h_coords[],
utofu_path_id_t *path_id)

Explanation

A communication path ID is defined for each remote VCQ ID. So a communication path ID cannot be used for a different remote VCQ
ID than the remote VCQ ID specified in this function argument, even if the communication path coordinates are the same.

A VCQ ID with default communication path coordinates embedded by the ut of u_set _vcq_i d_pat h() function can also be
specified asthe veq_i d parameter. However, the returned communication path ID is valid only for the specified VCQ ID. When new
default communication path coordinates are embedded in the VCQ ID, a new communication path ID should be created with the new

VCQ ID.
Parameters
Parameter Name Explanation IN/OUT
Remote VCQ ID.
veg_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.
pat h_coords Communication path coordinates in the order of A, B, C. IN

-47 -

Parameter Name Explanation IN/OUT

The array length must be 3. NULL can be specified. In that case, appropriate coordinates are
automatically selected for the communication path from the local compute node to the remote
compute node specified by the VCQ ID.

path_id Corresponding communication path ID ouT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.5.1.2 utofu_get path_coords
Query the communication path coordinates of a communication path ID.

Format

int utofu_get path_coords(
utofu_veq_id_t vcq_id,
utofu_path_id_t path_id,
ui nt 8_t path_coords[])

Explanation

A communication path ID is defined for each remote VCQ ID. So the specified remote VCQ ID must match that specified for the
ut of u_get _pat h_i d() function.

Parameters

Parameter Name Explanation IN/OUT

Remote VCQ ID.
vcg_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.

path_id Communication path ID created by the ut of u_get _pat h_i d() function. IN

Corresponding communication path coordinates in the order of A, B, C.
pat h_coords ouT
The array length must be 3 or greater.

Return values

Value Explanation
UTOFU_SUCCESS Succeeded
other Other UTOFU_ERR_* error

3.5.2 Special Values for Setting of Communication Path

3.5.2.1 UTOFU_PATH_COORD_NULL

Macros
Macro Name Explanation
Null communication path coordinate.
UTOFU_PATH_COORD_NULL This special path coordinate is used to represent automatic selection of communication path
coordinates for the ut of u_set _vbg() function.

- 48 -

3.6 STADD Management

A STADD (steering address) is a memory address that a TNI can understand. Because a memory address in a user-space process is a virtual
address assigned by the operating system, a TNI cannot understand such an address. A STADD is used to steer a TNI toward the right
memory address in one-sided communication.

The ut of u_r eg_nen() function assigns a STADD for a VCQ by registering a memory region to the VCQ. The assigned STADD can
be passed to a one-sided communication start/preparation function. After use, the assigned STADD must be freed, and the memory region
must be deregistered using the ut of u_der eg_rnen() function.

Theut of u_r eg_nen() function can register amemory region to a VCQ more than once. In this case, the same STADD value is returned
every time. Also, an overlapping memory region may be registered. The ut of u_der eg_nen() function must be called as many times as
ut of u_r eg_men() function calls.

To register amemory region, the region must be accessible from the calling process. Without the UTOFU_REG_MEM FLAG_READ _ONLY
flag, the memory region must be readable and writable. With the UTOFU_REG _MEM FLAG_READ_ONLY flag, the memory region must
at least be readable.

To use a memory region for one-sided communications via two or more VCQs, the memory region must be registered to each VCQ.
However, the returned STADD values may not be same.

Most one-sided communication start/preparation functions have | cl _st add andr nt _st add parameters. The | cl _st add parameter
is the STADD assigned on the compute node (communication origin). The r nt _st add parameter is the STADD assigned on a remote
compute node (communication target). So before one-sided communication starts, the local process must be informed of the STADD on
the remote compute node by the remote process. Once a STADD is assigned for a VCQ, the STADD can be used for multiple one-sided
communications on the VCQ, even for concurrent communications.

A registered memory region must be deregistered before the memory region is freed by the free() function, etc. With the Put
communication, the local memory region can be deregistered after the corresponding TCQ descriptor or local notification MRQ descriptor
is written. With the Get communication, the local memory region can be deregistered after the corresponding local notification MRQ
descriptor is written. With all communications, the remote memory region can be deregistered after the corresponding remote notification
MRQ descriptor is written on the remote compute node or the corresponding local notification MRQ descriptor is written on this node.

Usually, a device driver (the Tofu driver) assigns a STADD when the ut of u_r eg_nen() function is called. The value is not predictable
to uTofu users. As an alternative, the ut of u_r eg_nmem wi t h_st ag() function can assign a predictable STADD. A STag is an integer
thatis a part of a64-bit STADD value. A specific range of STags is reserved for uTofu users. If the local process knows that a remote process
has registered its memory region with a predictable STag, the ut of u_query_st add() function in the local process can obtain its
STADD. A memory region registered by the ut of u_reg_mem w t h_st ag() function must likewise be deregistered by the
ut of u_der eg_men() function. Theut of u_reg_nmem wi t h_st ag() function cannot be called for the same STag more than once
unless the STag has not been deregistered by the utof u_dereg_nem() function. Once the STag is deregistered, the
ut of u_reg_nmem w t h_st ag() function can reuse the same STag for the same or a different memory region.

A STADD is a 64-bit unsigned integer. One-sided communication can be posted for a sub-region in a registered memory region by
specifying a STADD calculated based on an offset. For example, if you want to transfer random segments in a large memory region, you
can first register the whole region and get the STADD head_st add. Then, you can call the ut of u_put () function with the value of
"head_st add + random of f set "asthel cl _st add parameter. r nt _st add can also be calculated in the same way.

3.6.1 STADD Management Functions

3.6.1.1 utofu_reg_nem
Register a memory region to a VCQ.

Format

int utofu_reg_men(
ut of u_vcqg_hdl _t vcg_hdl

voi d *addr
size_t si ze,
unsigned long int flags,
utof u_stadd_t *st add)

-49-

Explanation

The ut of u_der eg_nen() function should be used to deregister the registered memory.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
vcq_hdl VCQ handle IN
addr Pointer to the beginning of a memory region IN
_ Byte size of a memory region.
si ze IN
The value must be greater than 0.
flags Bitwise OR of UTOFU_REG_MEM FLAG * IN
st add STADD of the beginning of the memory region ouT
Return values
Value Explanation
UTOFU_SUCCESS Succeeded
No more STADDs can be assigned for this VCQ.
UTOFU_ERR_FULL

Trying again after calling the ut of u_der eg_nen{() function may succeed.

UTOFU_ERR_NOT_AVAI LABLE

No STADD of the type specified by the f | ags parameter is available.

UTOFU_ERR_NOT_SUPPORTED

STADD:s of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR_* error
3.6.1.2 utofu_reg_memw t h_stag
Register a memory region to a VCQ with a STag.
Format
int utofu_reg_nmemwith_stag(
ut of u_vcg_hdl _t vcq_hdl,
voi d *addr,
size_t si ze,
unsi gned i nt st ag,
unsigned long int flags,
utof u_stadd_t *st add)
Explanation
The STags that can be assigned range from 0 to "ut of u_onesi ded_caps: : num reserved_stags -1"
The ut of u_der eg_nen() function should be used to deregister the registered memory.
Until the STag is freed by the ut of u_der eg_nen() function, the same STag cannot be reused.
This function call may involve a system call.
Parameters
Parameter Name Explanation IN/OUT
vcq_hdl VCQ handle IN
Pointer to the beginning of a memory region.
addr IN

The memory address must be a multiple of
ut of u_onesi ded_caps: : stag_address_al i gnnent .

-50 -

Parameter Name Explanation IN/OUT

Byte size of a memory region.

si ze The size must be a multiple of IN
ut of u_onesi ded_caps: : stag_address_al i gnnent.

STag.
st ag IN
The value must be smaller than ut of u_onesi ded_caps: : num r eser ved_st ags.
flags Bitwise OR of UTOFU_REG_MEM FLAG * IN
st add STADD of the beginning of the memory region ouT

Return values

Value Explanation
UTOFU_SUCCESS Succeeded
UTOFU_ERR_USED The specified STag is already used on this VCQ.

UTOFU_ERR_NOT_AVAI LABLE No STag of the type specified by the f | ags parameter is available.

UTOFU_ERR_NOT_SUPPORTED STags of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR _* error

3.6.1.3 utof u_query_st add
Query the STADD of the memory region where a STag is assigned.

Format

int utofu_query_stadd(
utofu_veq_id_t vcq_id,
unsi gned int st ag,
utofu_stadd_t *stadd)

Explanation

This function can query the STADD of a memory region in both the local process and a remote process. The STADD returned by the
function is the same as the STADD returned by the ut of u_r eg_nem w t h_st ag() function.

This function can be called more than once for each STag.

Parameters
Parameter Name Explanation IN/OUT
VCQ ID corresponding to the VCQ handle used inaut of u_reg_nmem wi t h_stag()
veq_ i d function call. IN
To query a STADD in a remote process, this VCQ ID must be one in the remote process.
st ag STag used inaut of u_reg_nmem w t h_st ag() function call IN
st add STADD of the beginning of the memory region ouT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.6.1.4 utof u_dereg_nmem

Deregister a memory region from a VCQ.

-51-

Format

int utofu_dereg_men(
utof u_vecqg_hdl _t vcg_hdl,
utof u_stadd_t st add,
unsigned long int flags)

Explanation

Double free (deregistration) is not allowed.

This function call may involve a system call.

Parameters
Parameter Name Explanation IN/OUT
vcq_hdl VCQ handle IN

STADD of the beginning of a memory region.

st add The STADD must be one that was returned by the ut of u_r eg_nen() or IN
ut of u_reg_mem w t h_st ag() function.

flags Bitwise OR of UTOFU_DEREG_MEM * IN

Return values

Value

Explanation

UTOFU_SUCCESS Succeeded

UTCOFU_ERR_NOT_AVAI LABLE No STADD of the type specified by the f | ags parameter is available.

UTOFU_ERR_NOT_SUPPORTED STADD:s of the type specified by the f | ags parameter are not supported.

other Other UTOFU_ERR_* error

3.6.2 STADD Flags

3.6.2.1 UTOFU_REG _MEM FLAG *

Bit flags for the f | ags parameter of the ut of u_r eg_nen{() and ut of u_reg_nem wi t h_st ag() functions

Explanation

These flags can specify behaviors of memory registration.

Macros

Macro Name

Explanation

UTOFU_REG MEM FLAG READ ONLY

Read-only.

This flag indicates the memory region will not be updated in one-sided
communication, neither by the local process nor by a remote process. If the STADD
of the memory region registered by the flag is used as the remote STADD of Put or
ARMW, or the local STADD of Get, a communication error occurs and the error is
reported by the TCQ or MRQ. The flag must be specified for any memory region that
cannot be written from the registering process. One memory region can be in a state
where it is registered both with and without the flag.

3.6.2.2 UTOFU_DEREG _MEM FLAG *

Bit flags for the f | ags parameter of the ut of u_der eg_nmem() function

Explanation

These flags can specify behaviors of memory deregistration.

-52-

No flags are defined in the current version.

3.7 One-Sided Communication Execution

ATOQ (transmit order queue), TCQ (transmit complete queue), and MRQ (message receive queue) are VCQ components. They are queues
that a TNI reads and writes.

A TOQ descriptor is posted to a TOQ via the ut of u_put () function, etc. Once the TOQ descriptor is posted, the TNI corresponding to
the VCQ reads the descriptor, and one-sided communication starts. The different kinds of TOQ descriptor are Put, Put Piggyback, Get, and
ARMW (Atomic Read Modify Write).

The completion of one-sided communication can be confirmed in three ways.

- If the UTOFU_ONESI DED_FLAG TCQ NOTI CE flag is specified in the one-sided communication start function call, a TCQ
descriptor is written to the TCQ corresponding to the local VCQ when packets are sent out from the local compute node. For a Put TOQ
descriptor, the TCQ descriptor indicates that the local memory can be overwritten with other data.

- If the UTOFU_ONESI DED_FLAG LOCAL_MRQ NOTI CE flag is specified in the one-sided communication start function call, an
MRQ descriptor is written to the MRQ corresponding to the local VCQ when the communication completes on both the local compute
node and remote compute node. For a Put TOQ descriptor and an ARMW TOQ descriptor, the MRQ descriptor indicates that the remote
memory has been updated. For a Get TOQ descriptor, the MRQ descriptor indicates that the local memory has been updated and the
updated data in the memory can be read. For an ARMW TOQ descriptor, the MRQ descriptor includes the value in the remote memory
before the update.

- If the UTOFU_ONESI DED_FLAG_REMOTE_MRQ_NOTI CE flag is specified in the one-sided communication start function call, an
MRQ descriptor is written to the MRQ on the remote compute node corresponding to the remote VCQ when the communication
completes on the remote compute node. For a Put TOQ descriptor and an ARMW TOQ descriptor, the MRQ descriptor indicates that
the remote memory has been updated. For a Get TOQ descriptor, the MRQ descriptor indicates that the remote memory can be
overwritten with other data.

If the source memory is overwritten before the packet sending or communication completion, the contents of the destination memory are
not guaranteed to have the value from before or after the overwriting. If the destination memory is read before the communication
completion, the contents of the data are not guaranteed to have the value from before or after the communication.

The ut of u_pol | _tcq() function can poll a TCQ. For one-sided communication start functions except the ut of u_{ put |
get}_stride() andutof u_{put|get}_stride_gap() functions, if the UTOFU_ONESI DED_FLAG _TCQ NOTI CE flag is
specified, one function call results in one TCQ descriptor, and the ut of u_pol | _t cq() function returns UTOFU_SUCCESS for it. For
the ut of u_{put|get}_stride() and ut of u_{put|get}_stride_gap() functions, if the
UTOFU_ONESI DED_FLAG_TCQ _NOTI CE flag is specified, one function call results in the same number of TCQ descriptors as the
number of TOQ descriptors given by the num.blocks parameter. However, regardless of the
UTCOFU_ONESI DED_FLAG_TCQ _NOTI CE flag, if an error occurs when the TNI sends out a packet from the local compute node, the
utofu_pol | _tcq() function returns UTOFU_ERR _TCQ *. Al one-sided communication start functions and the
ut of u_pol | _tcq() function have a cbdat a parameter. The cbdat a value passed to one-sided communication start functions is set
in chdat a in the ut of u_pol | _tcq() function so that the uTofu user can identify the completed communication when the
ut of u_pol | _t cq() function returns a code other than UTOFU_ERR_NOT_FOUND.

The ut of u_pol | _nr g() function can poll an MRQ. The number of reported MRQ descriptors per one-sided communication start
function call is determined in the same manner as the ut of u_pol | _t cq() function. The ut of u_pol I _nrq() function returns
UTCOFU_SUCCESS for communication completed successfully and returns UTOFU_ERR_MRQ _* for communication with an error. The
completed communication can be identified using the not i ce parameter of the ut of u_pol | _nr q() function.

Even if no UTOFU_ONESI DED_FLAG * _NOTI CE flags are specified, the ut of u_pol | _tcq() and utofu_poll _nrq()
functions must be called in order to confirm the occurrence of any errors and to make space in queues. When the TCQ is full because of
insufficient calls of the ut of u_pol | _tcq() function, one-sided communication start functions and batch start functions return
UTOFU_ERR_BUSY. When the MRQ is full because of insufficient calls of the ut of u_pol | _nr q() function, an MRQ overflow error
occurs. In order to make enough space in the TCQ, repeat calling the ut of u_pol | _tcq() function until the function returns
UTOFU_ERR _TCQ * or UTOFU_ERR_NOT_FOUND. Similarly, in order to make enough space in the MRQ, repeat calling the
ut of u_pol | _nrq() function until the function returns UTOFU_ERR_MRQ _* or UTOFU_ERR_NOT_FOUND.

-53-

All one-sided communication start functions have ther nt _vcq_i d andr mt _st add parameters. Their values should be obtained in any
way (e.g., out-of-band communication other than uTofu) from the remote compute nodes unless the ut of u_r eg_nem wi t h_st ag()
function is used for the r it _st add parameter.

To post a TOQ descriptor, a communication path can be specified by either a remote VCQ ID (r nt _vcq_i d parameter) or bit flags
(f I ags parameter). If both specify communication paths, the communication path specified by bit flags is used.

An MTU and a transmission gap can be explicitly specified with utofu_*_gap() functions. Other functions use
ut of u_onesi ded_caps: : max_umt u for an MTU and O for a transmission gap. To call ut of u_*_gap() functions, a value from 0
uptout of u_onesi ded_caps: : max_gap can be specified as the gap parameter. If 0 is specified, no gap is injected between packets.
If a value other than 0 is specified, a gap is injected between packets and the injection rate is throttled to "8/ (gap+8) " compared to the
case of 0. For example, the injection rate would be 50% for gap 8 and 25% for gap 24.

To transfer multiple data of the same size with the same interval in a memory region using Put or Get, the ut of u_{ put |
get} _stride() and utofu_{put|get}_stride_gap() functions can be used. These functions post multiple Put/Get TOQ
descriptors at once in one function call. The distance between the start addresses of neighboring data is called a stride. A local STADD is
| cl _st add, aremote STADD isr nt _st add, the data length is | engt h, and the stride length is st r i de. The first Put transfers the
region between| cl _staddand"l cl _stadd + | engt h"tothe region betweenr nt _staddand"rnt _stadd + | engt h". The
second Put transfers the region between "l ¢l _stadd + stride"and"l cl _stadd + stride + | engt h"tothe region between
"rmt_stadd + stride"and"rnt_stadd + stride + | ength". The third Puttransfers the region between "l cl _st add +
(stride * 2)"and"l cl _stadd + (stride * 2) + |ength"totheregionbetween"rnt_stadd + (stride * 2)"
and"rnt _stadd + (stride * 2) + |ength".

All the one-sided communication start functions ut of u_* () have the corresponding one-sided communication preparation functions
ut of u_prepar e_* () . These functions do not post a TOQ descriptor to a TOQ but write it to caller-supplied memory. The one-sided
communication batch start function ut of u_post _t oq() can post the written descriptor to the TOQ. If the uTofu users repeatedly
executes the same communication, these functions can be used to reduce the overhead in creating TOQ descriptors.

3.7.1 One-Sided Communication Start Functions

3.7.1.1 ut of u_put
Post a Put descriptor to a TOQ.

Format
int utofu_put(
ut of u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _vcq_id,
ut of u_stadd_t I cl _stadd
ut of u_stadd_t rmt _stadd
size_t | engt h,
ui nt 64 _t edat a,
unsigned long int flags
voi d *cbdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN

Given by the ut of u_cr eat e_vcq() function in this process.

Remote VCQ ID.
rm _veq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.

STADD of the start address of the local (data source) memory region.
I cl _stadd IN
Given by the ut of u_r eg_nemn() function in this process.

STADD of the start address of a remote (data destination) memory region.
rm _stadd IN
Given by the ut of u_r eg_nemn() function in a remote process.

-54-

Parameter Name

Explanation

IN/OUT

Data length in bytes.

I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
fl ags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.2 utof u_put _gap
Post a Put descriptor with a transmission gap to a TOQ.
Format
int utofu_put_gap(
ut of u_vcqg_hdl _t vcq_hdl,
utof u_veq_id_t rmt _vcq_id,
utof u_stadd_t I cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
uint64_t edat a,
unsigned long int flags,
size_t ntu,
size_t gap,
voi d *chdat a)
Explanation
The parameters other than nt u and gap are the same as for the ut of u_put () function.
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rmt_veq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.
STADD of the start address of the local (data source) memory region.
I cl _stadd IN
Given by the ut of u_r eg_ment() function in this process.
STADD of the start address of a remote (data destination) memory region.
rnt_stadd IN
Given by the ut of u_r eg_nen() function in a remote process.
Data length in bytes.
I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.

-55-

Parameter Name Explanation IN/OUT
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
fl ags Bitwise OR of UTOFU_ONESI DED_FLAG _* IN
MTU (maximum transfer unit) of a packet.
ntu IN
A value up to ut of u_onesi ded_caps: : max_nt u can be specified.
Transmission gap injected between packets.
gap IN
A value up to ut of u_onesi ded_caps: : nax_gap can be specified.
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.3 utofu_put _stride
Post multiple Put descriptors to a TOQ.
Format
int utofu_put_stride(
utof u_vcqg_hdl _t vcg_hdl,
utof u_vcq_id_t rnt_vcq_id,
ut of u_stadd_t I cl _stadd,
ut of u_stadd_t rm _stadd,
size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt 64_t edat a,
unsigned long int flags,
voi d *cbdat a)
Explanation
The parameters other than st r i de and num_bl ocks are the same as for the ut of u_put () function.
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rm _veq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.
STADD of the start address of the local (data source) memory region.
I cl _stadd IN
Given by the ut of u_r eg_nen{() function in this process.
STADD of the start address of a remote (data destination) memory region.
rm _stadd IN
Given by the ut of u_r eg_nen() function in a remote process.

-56 -

Parameter Name Explanation IN/OUT

Data length in bytes.
I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.

stride Stride length in bytes IN

num bl ocks Number of Put descriptors IN

EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

flags Bitwise OR of UTOFU_ONESI DED_FLAG * IN

cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.4 utofu_put _stride_gap

Post multiple Put descriptors with a transmission gap to a TOQ.

Format
int utofu_put_stride_gap(

ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rm _vcq_id,
utof u_stadd_t I cl _stadd,
utof u_stadd_t rnt _stadd,
size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt 64_t edat a,
unsigned long int flags,
size_t ntu,
size_t gap,
voi d *cbdat a)

Explanation

The parameters other than st ri de, num_bl ocks, nt u, and gap are the same as for the ut of u_put () function.

Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN

Given by the ut of u_cr eat e_vcq() function in this process.

Remote VCQ ID.
rm _veq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.

STADD of the start address of the local (data source) memaory region.
I cl _stadd IN
Given by the ut of u_r eg_nen() function in this process.

rnt _stadd STADD of the start address of a remote (data destination) memory region. IN

-57 -

Parameter Name

Explanation

IN/OUT

Given by the ut of u_r eg_nen() function in a remote process.

Data length in bytes.

I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.
stride Stride length in bytes IN
num bl ocks Number of Put descriptors IN
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
flags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
MTU (maximum transfer unit) of a packet.
nmu IN
A value up to ut of u_onesi ded_caps: : nax_nt u can be specified.
Transmission gap injected between packets.
gap IN
A value up to ut of u_onesi ded_caps: : nax_gap can be specified.
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.5 utof u_put _pi ggyback
Post a Put Piggyback descriptor to a TOQ.
Format
i nt utofu_put_piggyback(
ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rnt_veq_id,
voi d *| cl _data,
utof u_stadd_t rmt _stadd,
size_t | engt h,
ui nt 64_t edat a,
unsigned long int flags,
voi d *chdat a)
Explanation
Data up to ut of u_onesi ded_caps: : max_pi ggyback_si ze bytes can be transferred.
The parameters other than | ¢l _dat a are the same as for the ut of u_put () function.
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rm _vecqg_id IN

Given by the ut of u_query_vcqg_i d() function in a remote process.

-58 -

Parameter Name Explanation IN/OUT

Pointer to the local data.
I cl _data IN
The memory can be reused safely after this function returns.

STADD of the start address of a remote (data destination) memory region.
rm _stadd IN
Given by the ut of u_r eg_men() function in a remote process.

Data length in bytes.
I ength IN
A value up to ut of u_onesi ded_caps: : max_pi ggyback_si ze can be specified.

EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

flags Bitwise OR of UTOFU_ONESI DED_FLAG _* IN

chdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded
The TOQ is full.

UTOFU_ERR BUSY
Call the ut of u_pol | _t cq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.6 utof u_put _pi ggyback8
Post a Put Piggyback descriptor to a TOQ (up to 8 bytes).

Format
int utofu_put_piggyback8(

ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rm _veq_id,
ui nt 64_t | cl _data,
utof u_stadd_t rnt _stadd,
size_t | engt h,
uint64_t edat a,
unsigned long int flags,
voi d *cbdat a)

Explanation

Data of up to 8 bytes can be transferred. If the length of the data is less than 8 bytes, the less significant bits of | ¢l _dat a are transferred.

The parameters other than | cl _dat a are the same as for the ut of u_put () function.

Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcqg_hdl IN

Given by the ut of u_cr eat e_vcq() function in this process.

Remote VCQ ID.
rm _vcg_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.

I cl _data Value of the local data IN

STADD of the start address of a remote (data destination) memory region.
rm _stadd IN
Given by the ut of u_r eg_nmen() function in a remote process

-59-

Parameter Name

Explanation

IN/OUT

Data length in bytes.

I ength IN
A value up to 8 can be specified.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
flags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol I _t cq() function IN
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR_BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.7 ut of u_get
Post a Get descriptor to a TOQ.
Format
int utofu_get(
ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rnt_veq_id,
utof u_stadd_t I cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
ui nt 64_t edat a,
unsigned long int flags,
voi d *chdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcg_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rmt _vecq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.
STADD of the start address of the local (data destination) memory region.
| cl _stadd IN
Given by the ut of u_r eg_ment() function in this process.
STADD of the start address of a remote (data source) memory region.
rnt_stadd IN
Given by the ut of u_r eg_ment() function in a remote process.
Data length in bytes.
I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
fl ags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

-60 -

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

The TOQ is full.

Call the ut of u_pol | _t cq() function before trying again.

other

Other UTOFU_ERR_* error

3.7.1.8 utof u_get gap

Post a Get descriptor with a transmission gap to a TOQ.

Format

int utofu_get_gap(

ut of u_vcg_hdl _t vcq_hdl,
utof u_veq_id_t rmt _veq_id,
ut of u_stadd_t | cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
ui nt64_t edat a,
unsigned long int flags,
size_t ntu,
size_t gap,
voi d *chdat a)
Explanation

The parameters other than nt u and gap are the same as for the ut of u_get () function.

Parameters
Parameter Name Explanation IN/OUT

Local VCQ handle.

vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.

rmt _vecq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.
STADD of the start address of the local (data destination) memory region.

I cl _stadd IN
Given by the ut of u_r eg_ment() function in this process.
STADD of the start address of a remote (data source) memory region.

rnt_stadd IN
Given by the ut of u_r eg_nem() function in a remote process.
Data length in bytes.

I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.
EDATA that is passed by the ut of u_pol | _nr q() function.

edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

fl ags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
MTU (maximum transfer unit) of a packet.

nu IN
A value up to ut of u_onesi ded_caps: : max_nt u can be specified.
Transmission gap injected between packets.

gap _ o IN
A value up to ut of u_onesi ded_caps: : nax_gap can be specified.

cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

-61-

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

The TOQ is full.

Call the ut of u_pol | _t cq() function before trying again.

other

Other UTOFU_ERR_* error

3.7.1.9 utofu_get _stride

Post multiple Get descriptors to a TOQ.

Format

int utofu_get_stride(

ut of u_vcqg_hdl _t vcq_hdl,
utof u_veq_id_t rmt _vcq_id,
ut of u_stadd_t | cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt 64_t edat a,
unsigned long int flags,
voi d *chdat a)
Explanation

The parameters other than st r i de and num_bl ocks are the same as for the ut of u_get () function.

Parameters
Parameter Name Explanation IN/OUT

Local VCQ handle.

vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.

rmt _vecq_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.
STADD of the start address of the local (data destination) memory region.

I cl _stadd IN
Given by the ut of u_r eg_ment() function in this process.
STADD of the start address of a remote (data source) memory region.

rnt_stadd IN
Given by the ut of u_r eg_nem() function in a remote process.
Data length in bytes.

I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.

stride Stride length in bytes IN

num bl ocks Number of Get descriptors IN
EDATA that is passed by the ut of u_pol | _nr q() function.

edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

fl ags Bitwise OR of UTOFU_ONESI DED_FLAG _* IN

chdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

Return values

-62-

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

The TOQ is full.
Call the ut of u_pol | _t cq() function before trying again.

other

Other UTOFU_ERR_* error

3.7.1.10 ut of u_get

_stride_gap

Post multiple Get descriptors with a transmission gap to a TOQ.

Format
int utofu_get_stride_gap(

utof u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _vcq_id,
ut of u_st add_t I cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt64_t edat a,
unsigned long int flags,
size_t ntu,
size_t gap,
voi d *chdat a)

Explanation

The parameters other than st ri de, num_bl ocks, it u, and gap are the same as for the ut of u_get () function.

Parameters
Parameter Name Explanation IN/OUT

Local VCQ handle.

vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.

rmt _vecq_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.
STADD of the start address of the local (data destination) memory region.

I cl _stadd IN
Given by the ut of u_r eg_ment() function in this process.
STADD of the start address of a remote (data source) memory region.

rnt_stadd IN
Given by the ut of u_r eg_nemn() function in a remote process.
Data length in bytes.

I ength IN
A value up to ut of u_onesi ded_caps: : max_put get _si ze can be specified.

stride Stride length in bytes IN

num bl ocks Number of Get descriptors IN
EDATA that is passed by the ut of u_pol | _nr q() function.

edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

fl ags Bitwise OR of UTOFU_ONESI DED_FLAG _* IN
MTU (maximum transfer unit) of a packet.

ntu IN
A value up to ut of u_onesi ded_caps: : max_nt u can be specified.

gap Transmission gap injected between packets. IN

-63-

Parameter Name Explanation

IN/OUT

A value up to ut of u_onesi ded_caps: : nax_gap can be specified.

cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.11 ut of u_ar m#4
Post a 32-bit ARMW descriptor to a TOQ (except Compare and Swap).
Format
int utofu_armv(
ut of u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _veq_id,
enum ut of u_armv_op ar nw_op,
uint32_t op_val ue,
utof u_stadd_t rmt _stadd,
ui nt64_t edat a,
unsi gned long int flags,
voi d *cbdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rm _veq_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.
ar mnw_op ARMW operation type IN
op_val ue Local operand IN
STADD of the start address of a remote (data read/modify/write) memory region.
rnt_stadd Given by the ut of u_r eg_men{) function in a remote process. The remote memory IN
address must be aligned to 4 bytes.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
fl ags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.

-64 -

Value Explanation

other Other UTOFU_ERR_* error

3.7.1.12 ut of u_ar mn8
Post a 64-bit ARMW descriptor to a TOQ (except Compare and Swap).

Format
int utofu_armB(
ut of u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _veq_id,
enum ut of u_armw _op arnw_op,
ui nt 64_t op_val ue,
ut of u_st add_t rm _stadd,
ui nt 64 _t edat a,
unsi gned | ong int fl ags,
voi d *chdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN

Given by the ut of u_creat e_vcq() function in this process.

Remote VCQ ID.
rm _vecqg_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.

ar mv_op ARMW operation type IN

op_val ue Local operand IN

STADD of the start address of a remote (data read/modify/write) memory region.

rnt_stadd Given by the ut of u_r eg_nen() function in a remote process. The remote memory IN
address must be aligned to 8 bytes.

EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.

flags Bitwise OR of UTOFU_ONESI DED_FLAG * IN

cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

Return values

Value Explanation

UTCOFU_SUCCESS Succeeded

The TOQ is full.
UTOFU_ERR_BUSY
Call the ut of u_pol | _t cq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.13 ut of u_cswap4
Post a 32-bit Compare and Swap ARMW descriptor to a TOQ.

Format

int utofu_cswap4(
utof u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt_vcq_id,

-65-

ui nt32_t ol d_val ue,
ui nt 32_t new_val ue,
ut of u_stadd_t rmt _stadd,
ui nt 64_t edat a,
unsigned long int flags,
voi d *chdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcg_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Remote VCQ ID.
rmt_vecq_id IN
Given by the ut of u_query_vcq_i d() function in a remote process.
ol d_val ue Old value (compare operand) IN
new_val ue New value (swap operand) IN
STADD of the start address of a remote (data read/modify/write) memory region.
rnt_stadd Given by the ut of u_r eg_nen() function in a remote process. The remote memory IN
address must be aligned to 4 bytes.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
flags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR _BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR_* error
3.7.1.14 ut of u_cswap8
Post a 64-bit Compare and Swap ARMW descriptor to a TOQ.
Format
int utofu_cswap8(
ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rnt_vcq_id,
ui nt64_t ol d_val ue,
uint64_t new_val ue,
utof u_stadd_t rmt _stadd,
ui nt 64_t edat a,
unsigned long int flags,
voi d *chdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcg_hdl IN

Given by the ut of u_cr eat e_vcq() function in this process.

- 66 -

Parameter Name Explanation IN/OUT
Remote VCQ ID.
rm _veqg_id IN
Given by the ut of u_query_vcqg_i d() function in a remote process.
ol d_val ue Old value (compare operand) IN
new_val ue New value (swap operand) IN
STADD of the start address of a remote (data read/modify/write) memory region.
rnt_stadd Given by the ut of u_r eg_men{() function in a remote process. The remote memory IN
address must be aligned to 8 bytes.
EDATA that is passed by the ut of u_pol | _nr q() function.
edat a IN
A value within ut of u_onesi ded_caps: : max_edat a_si ze bytes can be specified.
fl ags Bitwise OR of UTOFU_ONESI DED FLAG * IN
chdat a Callback data that is passed by the ut of u_pol | _t cq() function IN
Return values
Value Explanation
UTCOFU_SUCCESS Succeeded
The TOQ is full.
UTOFU_ERR_BUSY
Call the ut of u_pol | _t cq() function before trying again.
other Other UTOFU_ERR _* error
3.7.1.15 ut of u_nop
Post a NOP descriptor to a TOQ.
Format
int utofu_nop(
ut of u_vcqg_hdl _t vcg_hdl
unsigned long int flags
voi d *cbdat a)
Parameters
Parameter Name Explanation IN/OUT
Local VCQ handle.
vcq_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
fl ags Bitwise OR of UTOFU_ONESI DED_FLAG * IN
cbdat a Callback data that is passed by the ut of u_pol | _t cq() function IN

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

The TOQ is full.
Call the ut of u_pol | _t cq() function before trying again.

other

Other UTOFU_ERR _* error

-67-

3.7.2 One-Sided Communication Preparation Functions

A one-sided communication preparation function writes a TOQ descriptor to the memory specified as an argument.

All the one-sided communication preparation functions ut of u_pr epar e_* () have the corresponding one-sided communication start
functions ut of u_* (') . In comparison to the corresponding one-sided communication start function, the cbdat a parameter is removed
and the desc and desc_si ze parameters are added.

Described below, the desc and desc_si ze parameters and return values are the same among all one-sided communication preparation
functions. Therefore, explanations of parameters and return values are omitted from the explanation of each one-sided communication

preparation function.

Parameters
Parameter Name Explanation IN/OUT

Written descriptor.
Forut of u_prepare_*_stride() functions, the byte size of memory must be

desc "ut of u_onesi ded_caps: : max_t oq_desc_si ze * num bl ocks" or greater. ouT
For other functions, the byte size of memory must be
ut of u_onesi ded_caps: : max_t oq_desc_si ze or greater. The memory address
must be aligned to 8 bytes.
Byte size of the written descriptor.

desc_si ze ouT

The value may be smaller than "ut of u_onesi ded_caps: : max_t oq_desc_si ze *
num bl ocks" or ut of u_onesi ded_caps: : max_t oq_desc_si ze.

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

other

Other UTOFU_ERR_* error

3.7.2.1 ut of u_prepare_put

Prepare a Put descriptor.

Format

int utofu_prepare_put
ut of u_vcg_hdl _t
utof u_veq_id_t
utof u_stadd_t
utof u_stadd_t
size_t
ui nt 64_t
unsi gned long int
voi d
size_t

(
vcq_hdl,
rmt _veq_id,
I cl _stadd,
rmt _stadd,
| engt h,
edat a,
fl ags,
*desc,
*desc_si ze)

3.7.2.2 utof u_prepare_put _gap

Prepare a Put descriptor with a

Format

transmission gap.

int utofu_prepare_put
ut of u_vcqg_hdl _t
utofu_veq_id_t
utof u_stadd_t
ut of u_st add_t
size_t

_gap(
vcq_hdl,
rmt _vcq_id,
I cl _stadd,
rmt _stadd,
| engt h,

-68 -

ui nt 64 _t

unsi gned | ong int
size_t

size_t

voi d

size_t

edat a,
flags,
nu,
gap,
*desc,
*desc_si ze)

3.7.2.3 utofu_prepare_put _stride

Prepare multiple Put descriptors.

Format

utof u_vcqg_hdl _t
utofu_veq_id_t
utof u_stadd_t
utof u_stadd_t

si ze_t

size_t

size_t

ui nt 64_t

unsi gned | ong int
voi d

si ze_t

int utofu_prepare_put_stride(

vcq_hdl,
rmt _vecq_id,
I cl _stadd,
rm _stadd,
| engt h,
stride,
num bl ocks,
edat a,
flags,
*desc,
*desc_si ze)

3.7.2.4 utofu_prepare_put _stride_gap

Prepare multiple Put descriptors with a transmission gap.

Format

utof u_vcqg_hdl _t
utofu_veq_id_t
ut of u_st add_t
utof u_stadd_t
size_t

size_t

size_t

ui nt 64_t

unsi gned | ong int
size_t

size_t

voi d

size_t

int utofu_prepare_put_stride_gap(

vcg_hdl,
rmt _veq_id,
I cl _stadd,
rmt _stadd,
| engt h,
stride,
num bl ocks,
edat a,
flags,
nu,
gap,
*desc,
*desc_si ze)

3.7.2.5 ut of u_prepare_put _pi ggyback
Prepare a Put Piggyback descriptor.

Format

utof u_vcqg_hdl _t
utof u_vcq_id_t
voi d

ut of u_stadd_t
size_t

ui nt 64 _t

unsi gned long int
voi d

size_t

int utofu_prepare_put_piggyback(

vcq_hdl,

rnt_vceq_id,
*| cl _dat a,

rm _stadd,

| engt h,

edat a,

flags,
*desc,
*desc_si ze)

-69 -

3.7.2.6 utof u_prepare_put _pi ggyback8
Prepare a Put Piggyback descriptor (up to 8 bytes).

Format

ut of u_vcqg_hdl _t
utofu_veq_id_t

ui nt 64_t

ut of u_stadd_t
size_t

ui nt 64_t

unsi gned long int
voi d

size_t

int utofu_prepare_put_piggyback8(

vcq_hdl,
rmt _veq_id,
| cl _data,

rm _stadd,
| engt h,
edat a,
flags,

*desc,
*desc_si ze)

3.7.2.7 utof u_prepare_get

Prepare a Get descriptor.

Format
int utofu_prepare_get(

ut of u_vcqg_hdl _t vcq_hdl,
utof u_veq_id_t rnt_veq_id,
utof u_stadd_t I cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
ui nt 64_t edat a,
unsigned long int flags,
voi d *desc,
size_t *desc_si ze)

3.7.2.8 utof u_prepare_get _gap

Prepare a Get descriptor with a transmission gap.

Format
int utofu_prepare_get_gap(

ut of u_vcqg_hdl _t vcq_hdl,
utof u_veq_id_t rmt _vcq_id,
ut of u_stadd_t I cl _stadd,
utof u_stadd_t rmt _stadd,
size_t | engt h,
ui nt64_t edat a,
unsigned long int flags,
size_t ntu,
size_t gap,
voi d *desc,
size_t *desc_si ze)

3.7.2.9 utof u_prepare_get _stride
Prepare multiple Get descriptors.

Format

int utofu_prepare_get_stride(

utof u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _veq_id,
ut of u_stadd_t I cl _stadd,
ut of u_st add_t rm _stadd,

-70 -

size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt 64_t edat a,
unsigned long int flags,

voi d *desc,
size_t *desc_si ze)

3.7.2.10 ut of u_prepare_get _stri de_gap

Prepare multiple Get descriptors with a transmission gap.

Format

int utofu_prepare_get_stride_gap(
ut of u_vcqg_hdl _t vcg_hdl,
utofu_veq_id_t rmt _veq_id,
utof u_stadd_t I cl _stadd,
ut of u_st add_t rm _stadd,
size_t | engt h,
size_t stride,
size_t num bl ocks,
ui nt 64_t edat a,
unsigned long int flags,
si ze_t nmu,
size_t gap,
voi d *desc,
size_t *desc_si ze)

3.7.2.11 utof u_prepare_ar m#4
Prepare a 32-bit ARMW descriptor.

Format
int utofu_prepare_ar m(

ut of u_vcqg_hdl _t vcg_hdl,
utof u_veq_id_t rm _vcq_id,
enum ut of u_armw_op armwv_op,
ui nt32_t op_val ue,
utof u_stadd_t rmt _stadd,
ui nt 64 _t edat a,
unsi gned | ong int flags,
voi d *desc,
size_t *desc_si ze)

3.7.2.12 ut of u_prepare_ar m8
Prepare a 64-bit ARMW descriptor.

Format

i nt utofu_prepare_ar mg(

ut of u_vcqg_hdl _t
utofu_veq_id_t
enum ut of u_ar mw_op
ui nt 64_t

ut of u_stadd_t

ui nt 64 _t

unsi gned | ong int
voi d

size_t

vcg_hdl,

rmt _veq_id,

ar myv_op,

op_val ue,

rm _stadd,

edat a,

fl ags,
*desc,
*desc_si ze)

3.7.2.13 ut of u_pr epare_cswap4
Prepare a 32-bit Compare and Swap ARMW descriptor.

Format

ut of u_vcqg_hdl _t
utofu_veq_id_t

ui nt 32_t

uint32_t

utof u_stadd_t

ui nt 64_t

unsi gned long int
voi d

size_t

int utofu_prepare_cswap4(

vcq_hdl,
rmt _veq_id,
ol d_val ue,
new_val ue,
rmt _stadd,
edat a,
flags,
*desc,
*desc_si ze)

3.7.2.14 utof u_pre

pare_cswap8

Prepare a 64-bit Compare and Swap ARMW descriptor.

Format

ut of u_vcqg_hdl _t
utof u_veq_id_t

ui nt 64_t

ui nt 64_t

utof u_stadd_t

ui nt 64_t

unsi gned | ong int
voi d

size_t

i nt utofu_prepare_cswap8(

vcq_hdl,
rnt_veq_id,
ol d_val ue,
new_val ue,
rmt _stadd,
edat a,
flags,
*desc,
*desc_si ze)

3.7.2.15 utof u_pre

Prepare a NOP descriptor.

Format

par e_nop

i nt utofu_prepare_nop
ut of u_vcqg_hdl _t
unsi gned | ong int
voi d
size_t

(
vcq_hdl,
flags,
*desc,
*desc_si ze)

3.7.3 One-Sided Communication Batch Start Functions

3.7.3.1 utof u_post _toq

Post descriptors to a TOQ to start the communication at once.

Format
int utofu_post_toq(
utofu_vcqg_hdl _t vcg_hdl,
voi d *desc,
size_t desc_si ze,
voi d *chdat a)
Explanation

This function posts a TOQ descriptor to a TOQ to start one-sided communication. A ut of u_pr epar e_* () function can create the
TOQ descriptor for posting.

-72-

If a ut of u_pr epare_*() function is called multiple times and the TOQ descriptors are written to contiguous memory regions,
passing the memory region to this function can start those multiple communications at once. Also, communications of different types

can be started.

This function also starts one-sided communications that have not yet started due to the UTOFU_ONESI DED_FLAG_DELAY_START

flag.
Parameters
Parameter Name Explanation IN/OUT

Local VCQ handle.

vcg_hdl IN
Given by the ut of u_cr eat e_vcq() function in this process.
Descriptors created by ut of u_pr epar e_* () functions.

desc All local VCQ handles specified for those ut of u_pr epar e_* () functions must be same IN
as the VCQ handle specified for this function. This parameter is ignored if desc_si ze is0.
Total byte size of descriptors.

desc_si ze If 0, this function is starts only the one-sided communications that have not yet started due to IN
the UTOFU_ONESI DED_FLAG DELAY_START flag.
Callback data that is passed by the ut of u_pol | _t cq() function.

cbdat a This parameter is ignored if desc_si ze is 0. The same callback data is used for all IN
communications if multiple TOQ descriptors are posted.

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

The TOQ is full.
Call the ut of u_pol | _t cq() function before trying again.

other

Other UTOFU_ERR_* error

3.7.4 One-Sided Communication Completion Confirmation Functions

3.7.4.1 utofu_pol | _tcq

Poll a TCQ.

Format

int utofu_poll _tcq(

ut of u_vcqg_hdl _t vcg_hdl

unsi gned | ong int flags

voi d **chdat a)
Explanation

This function returns UTOFU_SUCCESS and sets cbdat a when a new TCQ descriptor for the specified VCQ is found. The function
returns UTOFU_ERR_NOT_FOUND when no new TCQ descriptor for the specified VCQ is found.

The order of TCQ descriptors is the same as the order of TOQ descriptors posted with the UTOFU_ONESI DED _FLAG _TCQ NOTI CE

flag.
Parameters
Parameter Name Explanation IN/OUT
vcg_hdl Local VCQ handle IN

-73-

Parameter Name Explanation IN/OUT

flags Bitwise OR of UTOFU_POLL_FLAG * IN

Pointer to the storage for storing the callback data that was passed to the ut of u_put ()

function, etc.
chdat a ouT
The callback data is stored only if this function returns a code other than

UTOFU_ERR_NOT_FOUND.

Return values

Value Explanation

UTOFU_SUCCESS A new TCQ descriptor for successfully completed communication was found.

UTCFU_ERR_NOT_FOUND No new TCQ descriptor was found.

UTCFU_ERR_TCQ * A new TCQ descriptor for communication with an error was found.

other Other UTOFU_ERR _* error

3.7.4.2 utofu_poll _nrq
Poll an MRQ.

Format

int utofu_poll _nrq(
ut of u_vcqg_hdl _t vcq_hdl,
unsi gned long int flags,
struct utofu_nmrqg_notice *notice)

Explanation

This function returns UTOFU_SUCCESS and writes data in not i ce when a new MRQ descriptor for the specified VCQ is found. The
function returns UTOFU_ERR_NOT_FOUND when no new MRQ descriptor for the specified VCQ is found.

This function handles both local notification MRQ descriptors and remote notification MRQ descriptors. The type of completed
communication can be confirmed using not i ce.

Parameters
Parameter Name Explanation IN/OUT
vcq_hdl Local VCQ handle IN
flags Bitwise OR of UTOFU_POLL_FLAG * IN
MRQ notification.
notice MRQ notification is set only when this function returns a code other than ouT
UTOFU_ERR_NOT_FOUND.

Return values

Value Explanation

UTOFU_SUCCESS A new MRQ descriptor for successfully completed communication was found.

UTCFU_ERR_NOT_FOUND No new MRQ descriptor was found.

UTOFU_ERR_MRQ * A new MRQ descriptor for communication with an error was found.

other Other UTOFU_ERR _* error

-74 -

3.7.5 One-Sided Communication Query Functions

3.7.5.1 utofu_query numunread _tcq

Query the number of unread TCQ descriptors.

Format

int utofu_query_numunread_tcq(
utofu_vcqg_hdl _t vcqg_hdl,
size_t *count)

Explanation
This function can be used to estimate how busy the TNI is now.

This function returns the number of written TOQ descriptors whose corresponding TCQ descriptors have not been read by the uTofu
implementation. This number is approximately equal to the number of one-sided communications that are scheduled but not yet
completed. If the function returns 0, the next one-sided communication start function call can start the communications immediately.

Though this function requires a VCQ handle as a parameter, the number of descriptors is counted per CQ, not VCQ. This is because a
TNI processes TOQ descriptors in order per CQ. So if a CQ is shared among some VCQs, the returned number may be different from
the number managed per VCQ.

Parameters
Parameter Name Explanation IN/OUT
vcg_hdl Local VCQ handle IN
count Number of unread TCQ descriptors ouT

Return values

Value Explanation

UTCOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.7.6 Communication Completion Notification Structures

3.7.6.1 struct utofu_nrqg_notice
Contents of MRQ notification

Definition

struct utofu_nrqg_notice {

uint8_t notice_type;
ui nt8_t paddi ng1[7] ;
utofu_vcqg_id_t vcq_id;

ui nt 64_t edat a;

ui nt 64 _t rmt _val ue;

utofu_stadd_t |cl_stadd;
utofu_stadd_t rnt_stadd;
ui nt 64_t reserved[2] ;

}

Explanation
The ut of u_pol | _nr q() function writes this structure.

Members

-75-

Member Name Explanation

MRQ notification type.

notice_type The value is one of the enumeration constants UTOFU_MRQ _TYPE_* in the
ut of u_nr g_not i ce_t ype enumeration.
Padding field.

paddi ngl

Do not use this field.

VCQ ID of the communication peer.

The value is a remote (communication target) VCQ ID for local notification and the local (communication
origin) VCQ ID for remote notification. Communication path coordinates embedded in this VCQ ID are the
veq_id A,B,C coordinates of the compute node, which are the same as the ones obtained by the

ut of u_query_vcqg_i d() andut of u_construct _vcq_i d() functions. So if other default
communication path coordinates are embedded by the ut of u_set _vcq_i d_pat h() function, this
value may differ from the remote VCQ ID specified in one-sided communication.

Value of the EDATA specified in the corresponding one-sided communication start/preparation function

edat a
call
Value in remote memory before the update.
rnt_val ue The more significant bits are 0 if 32-bit ARMW is used. This field is set only for
UTOFU_MRQ _TYPE_LCL_ARMWV
Local (communication origin) STADD.
lcl stadd This STADD pointstotheend of data ("l cl _st add + | engt h" when postinga TOQ descriptor) for Put/

Get and the beginning of data (I cl _st add when posting a TOQ descriptor) for ARMW. This field is set
only for UTOFU_MRQ TYPE_{ LCL| RMT} _GET.

Remote (communication target) STADD.

This STADD pointstotheend of data ("r nt _st add + | engt h" when postinga TOQ descriptor) for Put/
rnt_stadd Get and the beginning of data (r mt _st add when posting a TOQ descriptor) for ARMW. This field is set
only for UTOFU_MRQ _TYPE_{ LCL| RMT} _PUT, UTOFU_MRQ TYPE_RMI_GET, and

UTOFU_MRQ TYPE_{ LCL| RMT} _ARMW

Reserved field for future extensions.
reserved
Do not use this field.

3.7.7 ARMW Operation Types

3.7.7.1 enum ut of u_ar nw_op
ARMW (Atomic Read Modify Write) operation types of one-sided communication
Explanation

These enumeration constants are used for the arguments of ut of u_ar mv(), ut of u_arma8(), and their corresponding
ut of u_pr epar e_*() functions to start one-sided communication.

Enumeration Constants

Enumeration Constant Explanation
UTOFU_ARMN OP_SWAP Swap operation
UTOFU_ARMW OP_ADD Unsigned integer addition operation
UTOFU_ARMW OP_XOR Bitwise XOR operation
UTOFU_ARMW OP_AND Bitwise AND operation
UTOFU_ARMWN OP_OR Bitwise OR operation

-76 -

3.7.8 Communication Completion Notification Types

3.7.8.1 enum utofu_nrqg_notice_type
MRQ descriptor types
Explanation

These enumeration constants are set in ut of u_nr q_noti ce: : noti ce_t ype when a new MRQ descriptor is found on the
ut of u_pol | _nrq() function.

Enumeration Constants

Enumeration Constant Explanation
UTOFU_MRQ TYPE_LCL_PUT Local MRQ natification of the Put communication
UTOFU_MRQ _TYPE_RMT_PUT Remote MRQ natification of the Put communication
UTOFU_MRQ TYPE_LCL_GET Local MRQ natification of the Get communication
UTOFU_MRQ TYPE_RMT_GET Remote MRQ notification of the Get communication
UTOFU_MRQ _TYPE_LCL_ARMWV Local MRQ notification of the ARMW communication
UTOFU_MRQ_TYPE_RMI_ARMWV Remote MRQ notification of the ARMW communication

3.7.9 One-Sided Communication Flags

3.7.9.1 UTOFU_ONESI DED FLAG *

Bit flags for the f | ags parameter of one-sided communication start functions and one-sided communication preparation functions.
Explanation
They can specify behaviors of one-sided communication.

Macros

Macro Name Explanation

TCQ natification.

UTOFU_ONESI DED_FLAG_TCQ_NOTI CE This flag orders the ut of u_pol I _t cq() function to return the
corresponding TCQ notification.

Remote MRQ notification.

UTOFU_ONESI DED_FLAG_REMOTE_MRQ_NOTI CE | Thjs flag orders the ut of u_pol | _nr g() function to return the
corresponding remote MRQ notification.

Local MRQ natification.

UTOFU_ONESI DED_FLAG_LCCAL_MRQ NOTI CE This flag orders the ut of u_pol | _nr q() function to return the
corresponding local MRQ notification.

Strong order.

This flag ensures that this one-sided communication reads from
UTOFU_ONESI DED_FLAG_STRONG_ORDER memory or writes to memory after prior one-sided communications
with the same local VCQ, same remote VCQ, and same communication
path have read from memory or written to memory.

Cache injection.

UTOFU_ONESI DED_FLAG_CACHE_I NJECTI ON This flag orders the local/remote TNI to write data to the last level cache
of the CPU in addition to memory.
UTOFU_ONESI DED_FLAG_PADDI NG Cache line padding.

-77-

Macro Name

Explanation

This flag orders the remote TNI to write indefinite values in an area that
is not the Put Piggyback target area but is on the target cache line. Used
only for Put Piggyback, the flag works with the

UTOFU_ONESI DED_FLAG_CACHE_I NJECTI ON flag to use the
cache injection feature with Put Piggyback.

UTOFU_ONESI DED_FLAG DELAY_START

Delay starting communication.

This flag orders a one-sided communication start function not to start
communication immediately and to put it in a pending state if possible.
The next one-sided communication start function call for the same VCQ
without the flag oraut of u_post _t oq() function call for the same
VCQ starts the pending communication. The flag may be ignored if the
TOQ is full due to the pending one-sided communication or for other
reasons. The flag can be used to speed up repeated one-sided
communication start function calls because starting communication
incurs some costs. Because a one-sided communication start function
may start communication even if the flag is specified, the
communication must be ready to start when the function is called. For
example, a remote VCQ must have been created and the source data
must have been written to memory. The flag does not have an effect on
one-sided communication preparation functions because these
functions by their nature do not start communications.

3.7.9.2 UTOFU_ONESI DED_FLAG_PATH

Bit flags for specifying a communication path by the f | ags parameter of a one-sided communication start/preparation function

Macro

UTOFU_ONESI DED_FLAG PATH(pat h_i d)

Explanation

To call a one-sided communication start/preparation function, a communication path can be specified by either a remote VCQ ID

(rnt _vcq_i d parameter) or bit flags (f | ags parameter).

This function-like macro gives a communication path value that can be setin the f | ags parameter of a one-sided communication start/
preparation function. This bit flag can be combined with other UTOFU_ONESI DED_FLAG_* macros by bitwise OR.

Parameters
Parameter Name Explanation IN/OUT
path_id Communication path 1D created by the ut of u_get _pat h_i d() function IN

3.7.9.3 UTOFU_ONESI DED_FLAG_SPS

Bit flags for specifying a session progress step (SPS) by the f | ags parameter of a one-sided communication start/preparation function

Macro

UTOFU_ONESI DED_FLAG_SPS(sps)

Explanation

To call a one-sided communication start/preparation function for a remote VCQ created as a session mode VCQ), a session progress step

(SPS) must be specified by the f | ags parameter.

This function-like macro gives an SPS value that can be set in the f | ags parameter of a one-sided communication start/preparation
function. This bit flag can be combined with other UTOFU_ONESI DED_FLAG_* macros by bitwise OR.

-78 -

If the remote VCQ was not created as a session mode VCQ, this flag is ignored. If the remote VCQ was created as a session mode VCQ
but no SPS is set in the f | ags parameter of the one-sided communication start/preparation function, the SPS is treated as 0.

Parameters
Parameter Name Explanation IN/OUT
sps SPS of the session mode IN

3.7.10 Polling Flags

3.7.10.1 UTOFU_POLL_FLAG *

Bit flags for specifying by the f | ags parameter of one-sided communication completion confirmation functions or barrier communication
completion confirmation functions

Explanation
They can specify behaviors of polling functions.

No flags are defined in the current version.

3.8 Barrier Communication Execution

Barrier communication is started by a barrier communication start function and its completion can be confirmed by the barrier
communication completion confirmation function corresponding to the barrier communication start function used. When a reduction
operation is executed with barrier synchronization, the input data is passed to a barrier communication start function, and the corresponding
output data (operation results) is obtained from a barrier communication completion confirmation function.

Only one barrier communication is performed with one barrier circuit built by the ut of u_set _vbg() function. Before starting the next
barrier communication, completion of the previous barrier communication must be confirmed. Using multiple barrier circuits, multiple
barrier communications can be performed at the same time.

In one barrier communication, all processes participating in the barrier communication must call the same barrier communication start
function and specify the same reduction operation type. If not, the corresponding barrier communication completion confirmation function
returns UTOFU_ERR_BARRI ER_M SNATCH.

The first parameter vbg_i d of barrier communication start functions and barrier communication completion confirmation functions
determines which barrier circuit is used. The VBG ID must be the first local VBG ID in the VBG ID array returned by the
ut of u_al | oc_vbg() function. It corresponds to a start/end BG.

3.8.1 Barrier Communication Start Functions

3.8.1.1 utofu_barrier

Start barrier synchronization on a barrier circuit.

Format

int utofu_barrier(
utof u_vbg_id_t vbg_id
unsi gned long int flags)

Explanation

This function is nonblocking. The ut of u_pol | _barri er () function can confirm the completion of the barrier synchronization.

Parameters
Parameter Name Explanation IN/OUT
Local first VBG ID.
vbg_id IN
Given by the ut of u_al | oc_vbg() function in this process.

-79-

Parameter Name Explanation IN/OUT

Bitwise OR of UTOFU_BARRI ER_FLAG *.
flags IN
All processes participating in the barrier communication must specify the same value.

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTCFU_ERR_BUSY Barrier communication has been already started on the barrier circuit.

other Other UTOFU_ERR_* error

3.8.1.2 utof u_reduce_ui nt 64

Start reduction operation of ui nt 64_t values on a barrier circuit.

Format
i nt utofu_reduce_uint 64(

utof u_vbg_id_t vbg_id,
enum ut of u_r educe_op op,
ui nt64_t data[],
size_t num dat a,
unsi gned | ong int flags)

Explanation

This function is nonblocking. The ut of u_pol | _reduce_ui nt 64() function can confirm the completion of the reduction

operation.
Parameters
Parameter Name Explanation IN/OUT
Local first VBG ID.
vbg_id IN
Given by the ut of u_al | oc_vbg() function in this process.
Reduction operation type.
op Only operations for ui nt 64_t are allowed. All processes participating in the barrier IN

communication must specify the same value.

Avrray of reduction input data.
data IN
The array length must be num dat a.

Reduction input data count.

The value must be in a range from 1 to IN
ut of u_barrier_caps:: max_ui nt 64_reducti on. All processes participating in
the barrier communication must specify the same value.

Bitwise OR of UTOFU_BARRI ER_FLAG *.

flags IN
All processes participating in the barrier communication must specify the same value.

num dat a

Return values

Value Explanation

UTCOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY Barrier communication has been already started on the barrier circuit.

other Other UTOFU_ERR _* error

-80-

3.8.1.3 utof u_reduce_doubl e

Start reduction operation of doubl e values on a barrier circuit.

Format

doubl e
size_t

unsi gned | ong int

int utofu_reduce_doubl e(
utofu_vbg_id_t
enum ut of u_r educe_op op,

vbg_id,

datal],
num dat a,
flags)

Explanation

This function is nonblocking. The ut of u_pol | _doubl e() function can confirm the completion of the reduction operation.

Parameters
Parameter Name Explanation IN/OUT

Local first VBG ID.

vbg_id IN
Given by the ut of u_al | oc_vbg() function in this process.
Reduction operation type.

op Only operations for doubl e are allowed. All processes participating in the barrier IN
communication must specify the same value.
Array of reduction input data.

dat a IN
The array length must be num_dat a.
Reduction input data count.

num dat a The value must be in a range from 1 to IN
ut of u_barri er_caps: : max_doubl e_r educt i on. All processes participating in
the barrier communication must specify the same value.
Bitwise OR of UTOFU_BARRI ER_FLAG *.

flags IN

All processes participating in the barrier communication must specify the same value.

Return values

Value

Explanation

UTOFU_SUCCESS

Succeeded

UTOFU_ERR_BUSY

Barrier communication has been already started on the barrier circuit.

other

Other UTOFU_ERR_* error

3.8.2 Barrier Communication Completion Confirmation Functions

3.8.2.1 utofu_pol | _barrier

Poll the completion of barrier synchronization.

Format

int utofu_poll_barrier(
utof u_vbg_id_t
unsi gned long int flags)

vbg_id,

Explanation

Before this function is called, the ut of u_barri er () function must have started barrier synchronization.

-81-

This function is nonblocking. The function returns UTOFU_SUCCESS when the barrier synchronization is completed. Otherwise, it
returns UTOFU_ERR_NOT_COMPLETED immediately.

Parameters
Parameter Name Explanation IN/OUT
Local first VBG ID.
vbg_id IN

Given by the ut of u_al | oc_vbg() function in this process.

Bitwise OR of UTOFU _POLL_FLAG *.
fl ags IN
All processes participating in the barrier communication must specify the same value.

Return values

Value Explanation
UTOFU_SUCCESS Completed
UTOFU_ERR_NOT_COVPLETED Not yet completed
UTOFU_ERR BUSY Barrier communication has not been started on the barrier circuit.
UTOFU_ERR _BARRI ER * A barrier communication error occurred.
other Other UTOFU_ERR _* error

3.8.2.2 utofu_pol | _reduce_ui nt 64
Poll the completion of reduction operation of ui nt 64_t values.

Format

int utofu_poll_reduce_uint 64(
ut of u_vbg_id_t vbg_id,
unsigned long int flags,
ui nt 64_t data[])

Explanation
Before this function is called, the ut of u_r educe_ui nt 64() function must have started reduction operation.

This function is nonblocking. The function returns UTOFU_SUCCESS and fills result data when the reduction operation is completed.
Otherwise, it returns UTOFU_ERR_NOT_ COVPLETED immediately.

Parameters
Parameter Name Explanation IN/OUT
Local first VBG ID.
vbg_id IN

Given by the ut of u_al | oc_vbg() function in this process.

Bitwise OR of UTOFU _POLL_FLAG *.
fl ags IN
All processes participating in the barrier communication must specify the same value.

Array of ui nt 64_t reduction result data.

The array length must be the num_dat a specified in the ut of u_r educe_ui nt 64() ouT
function call or greater. Only the first num_dat a elements are updated. The array contents
are updated only when this function returns UTOFU_SUCCESS.

dat a

Return values

Value Explanation

UTOFU_SUCCESS Completed

UTCOFU_ERR_NOT_COVPLETED Not yet completed

-82-

Value Explanation

UTOFU_ERR_BUSY Barrier communication has not been started on the barrier circuit.
UTOFU_ERR_BARRI ER * A barrier communication error occurred.
other Other UTOFU_ERR_* error

3.8.2.3 utofu_pol | _reduce_doubl e
Poll the completion of reduction operation of doubl e values.

Format

int utofu_poll_reduce_doubl e(
utofu_vbg_id_t vbg_id,
unsigned long int flags,
doubl e datal])

Explanation
Before this function is called, the ut of u_r educe_doubl e() function must have started reduction operation.

This function is nonblocking. The function returns UTOFU_SUCCESS and fills result data when the reduction operation is completed.
Otherwise, it returns UTOFU_ERR_NOT_COVPLETED immediately.

Parameters
Parameter Name Explanation IN/OUT
Local first VBG ID.
vbg_id IN

Given by the ut of u_al | oc_vbg() function in this process.

Bitwise OR of UTOFU_POLL_FLAG *.
fl ags IN
All processes participating in the barrier communication must specify the same value.

Array of doubl e reduction result data.

The array length must be the num_dat a specified in the ut of u_r educe_doubl e() ouT
function call or greater. Only the first num_dat a elements are updated. The array contents
are updated only when this function returns UTOFU_SUCCESS.

dat a

Return values

Value Explanation

UTOFU_SUCCESS Completed

UTOFU_ERR _NOT_COVPLETED Not yet completed

UTOFU_ERR_BUSY Barrier communication has not been started on the barrier circuit.
UTCOFU_ERR _BARRI ER_* A barrier communication error occurred.
other Other UTOFU_ERR_* error

3.8.3 Reduction Operation Types

3.8.3.1 enum ut of u_r educe_op
Reduction operation types of barrier communication
Explanation

These enumeration constants are used for arguments of the ut of u_r educe_ui nt 64() and ut of u_r educe_doubl e()
functions to start barrier communication.

-83-

Enumeration Constants

Enumeration Constant

Explanation

UTOFU_REDUCE_CP_BARRI ER

Barrier synchronization (no reduction operation)

UTOFU_REDUCE_OP_BAND

Bitwise AND operation of ui nt 64_t values

UTOFU_REDUCE_OP_BOR

Bitwise OR operation of ui nt 64_t values

UTOFU_REDUCE_OP_BXOR

Bitwise XOR operation of ui nt 64_t values

UTOFU_REDUCE_OP_MAX

Operation that gives maximum unsigned integer of ui nt 64_t values

UTOFU_REDUCE_OP_MAXLOC

Operation that gives maximum unsigned integer of ui nt 64_t values and its location

UTOFU_REDUCE_OP_SUM

Unsigned integer summation operation of ui nt 64_t values

UTOFU_REDUCE_OP_BFPSUM

Floating-point (BFP) summation operation of doubl e values

3.8.4 Barrier Communication Flags

3.8.4.1 UTOFU_BARRI ER _FLAG *

Bit flags for the f | ags parameter of barrier communication start functions

Explanation

They can specify behaviors of barrier communication.

No flags are defined in the current version.

3.9 Supplemental Features

3.9.1 Version Query Functions

3.9.1.1 utofu_query tofu_version

Query the version of the Tofu interconnect.

Format

int *major_ver,
int *mnor_ver)

voi d utofu_query_tofu_version(

Explanation

For details on returned version values, see "Chapter 6 System Information".

Version values returned by this function are numbered by uTofu, and they differ from the version of the Tofu interconnect itself.

Parameters
Parameter Name Explanation IN/OUT
maj or _ver Major version ouT
m nor _ver Minor version ouT

3.9.1.2 utof u_query_utofu_version

Query the version of the uTofu runtime API.

-84 -

Format

int *major_ver,

int *m nor_ver)

voi d utofu_query_utof u_version(

Parameters
Parameter Name Explanation IN/OUT
maj or _ver Major version ouT
m nor _ver Minor version ouT

3.9.2 Compute Node Information Query Functions

3.9.2.1 utofu_query_ny_coords

Query the coordinates of this compute node in the Tofu network.

Format

int utofu_query_my_coords(
uint8_t coords[])

Parameters

Parameter Name

Explanation IN/OUT

coords

Compute node coordinates in the order of X, Y, Z, A, B, C.
ouT

The array length must be 6 or greater.

Return values

Value

Explanation

UTCOFU_SUCCESS

Succeeded

other

Other UTOFU_ERR _* error

3.9.3 Version Information Macros

3.9.3.1 UTOFU_VERSI ON_*

uTofu compile-time API version

Explanation

These macros show the uTofu compile-time API version (header file).

The ut of u_query_ut of u_ver si on() function can obtain the uTofu runtime API version (library file).

Macros

Macro Name

Explanation

UTOFU_VERSI ON_MAJCR uTofu APl major version

UTCFU_VERSI ON_M NOR uTofu API minor version

-85-

IChapter 4 How to Use uTofu

This chapter describes how to use uTofu.

4.1 uTofu Program Design

This section describes necessary matters regarding uTofu program design.

4.1.1 Use From a Language Other Than C

The uTofu header file ut of u. h for C, if processed by a C++ compiler, provides declarations of functions, etc. with the C linkage
specification (ext ern " C"). Therefore, the including of the ut of u. h header file from a C++ source program enables use of uTofu
through its C interfaces in the C++ program. Also, by using mixed language programming technic, linking a Fortran program with a C object
program or C++ object program that uses uTofu enables indirect use of uTofu in the Fortran program. For the meanings of linkage
specifications and mixed language programming, see the C++ standard and respective compiler manuals.

4.1.2 Using uTofu Together With MPI

gn Note

The descriptions here assume the use of Fujitsu MPI. They may not apply when another MPI library is used.

uTofu and MPI can be used together in one program. Since uTofu and MPI communicate logically independently over the Tofu
interconnect, one of them can communicate while the other is also communicating.

The following restrictions apply when one program uses uTofu together with MPI.

- A call of uTofu function must be within the period between a call of the MPI _I NI T routine or MPI _I NI T_THREAD routine of MPI
and a call of the MPI _FI NALI ZE routine of MPI. This is because the MPI _I| NI T or MPI _I NI T_THREAD outine call appropriately
allocates communication resources (CQs) between processes on a compute node or between uTofu and MPI within a process. This is
also because the MPI _I NI T or MPI _I NI T_THREAD routine call enables automatic selection of appropriate communication paths.
For details on MPI routines, see the MPI standard.

- The VCQ created with uTofu in the following two cases must be created as a thread-safe VCQ or CQ-exclusive VCQ. In one case,
multiple threads may call uTofu functions and MPI routines simultaneously. In the other case, the MPI function for promoting
asynchronous communication using an assistant core is used. For details on this function, see the MPI library manual.

The following restrictions apply when one program does not use uTofu and MPI together.

- If there is an MPI process on a compute node, the other processes in the compute node cannot use uTofu. This is due to a conflict of
communication resources between MPI processes and uTofu processes. This also means that a child process created from the MPI
process cannot use uTofu.

You need to note the following points when one program does not use uTofu and MPI together.

- Each process communicating with another process needs to notify the other process of the VCQ ID, VBG ID, etc. before communicating
using uTofu. However, the means of this notification must be other than MPI communication.

- Duplication of communication resources (CQs) between processes must be prevented when multiple uTofu processes are executed on
a single compute node.

If you want to easily write a uTofu program, we recommend calling the MPI _I NI T routine or MPI _I NI T_THREAD routine and sending
information of the VCQ ID, VBG ID, etc. with MPI communication even if MPI communication is unnecessary.

Note that this manual collectively refers to functions in C, Fortran, and C++ and subroutines in Fortran as routines, according to the notation
used in the MPI standard. All the MPI routine names are capitalized.

-86 -

4.1.3 Possible Range of Communication

A uTofu program is executed as a job on a compute node, as described in "4.3.1 Spawning a uTofu Process". The possible range of
communication by a uTofu process executed as a job is the range of the job. This is the same as the possible range of communication by
an MPI process.

4.1.4 Preventing Concentrated Communications

If many communications (more than several thousands or several tens of thousands) concentrate on one compute node at the same time, the
Tofu network has a bottleneck near this compute node. Consequently, network processing becomes extremely slow. If a device driver (the
Tofu driver) detects such a phenomenon, the uTofu implementation may output an error message and force the program to exit.

As examples of measures to prevent many communications from concentrating on one compute node at the same time, take the following
actions.

- Review algorithms so that communications do not concentrate on specific compute nodes.
- Insert synchronization among processes to distribute communications temporally.

- For repeated communications to one compute node, maintain an interval between the repetitions in order to distribute the
communications temporally.

4.2 Compiling/Linking a uTofu Program

You can compile/link a uTofu program in a similar way to other C programs. However, for linking, the - | t of ucomoption must be handed
over to the compiler or linker to link the | i bt of ucom so shared library to the executable program.

The directories where the ut of u. h header file existsand the | i bt of ucom so shared library exists are usually included in the standard
search path list of the compiler or the linker. Therefore, no directory specification is required in the - | option or - L option.

For compiling/linking a uTofu program, use the cross compiler on the login node or the native compiler on a compute node. To use uTofu
together with MPI in one program, use the compile/link command of MPI. For details on the cross compiler or the native compiler, see the
respective compiler manuals. For details on the compile/link command of MPI, see the MPI library manual.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of the npi f ccpx command compiling/linking an MPI program

1. Compilethet est . c user program to create the t est . o object program.

$ npifccpx -c test.c

2. Linkthet est. o object program to create the t est executable program.

$ mpifccpx -Itofucom-o test test.o

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.3 Executing a uTofu Program

This section describes necessary matters regarding uTofu program execution.

4.3.1 Spawning a uTofu Process

uTofu programs must be executed on compute nodes. The user does not directly execute a uTofu program on a compute node but instead
requests the Job Operation Software to submit a job that executes the program. For details on how to submit the job, see the Job Operation
Software manuals.

When using uTofu and MPI together in one program, use the npi exec command in a job to execute the uTofu program. No special
preparations are necessary except that you can set uTofu-specific environment variables, which are described in "4.3.2 Environment
Variables", as needed. For details on how to use the npi exec command, see the MPI library manual.

-87 -

Even when not using uTofu and MPI together in one program, you can use the npi exec command in a job to execute the uTofu program.
The number and locations of spawned uTofu processes are the same as for an MPI program. The - - debugl i b option in the npi exec
command of Fujitsu MPI is ignored. Among the MCA parameters that can be specified in the - - nca or - amoption in the npi exec
command of Fujitsu MPI, the parameters relating only to MPI library behavior are ignored.

Also when not using uTofu and MPI together in one program, you can directly execute a uTofu program without using the npi exec
command.

If the job type is node-sharing job, uTofu cannot be used. For details on node-sharing jobs, see the Job Operation Software manuals.

4.3.2 Environment Variables

You can change parts of uTofu behavior by using environment variables. The environment variables of uTofu must be set before the first
uTofu or MPI function call in a uTofu process. If an environment variable of uTofu is set, changed, or removed after even one uTofu or MPI
function is called, the behavior is not guaranteed.

4.3.2.1 UTOFU_NUM EXCLUSI VE_CQS

You can set the required number of CQs for CQ-exclusive VCQs per TNI by using the UTOFU_NUM_EXCLUSI VE_CQS environment
variable.

You can specify 0 or higher. The default is 0.

To enable high-performance collective communication, the MPI library may use multiple CQs per TNI. Some CQs are reserved for this
purpose. However, the number of the CQs is finite. Due to a shortage of CQs, you may not be able to create CQ-exclusive VCQs with the
ut of u_create_vcq() function.

When the required number of CQs for CQ-exclusive VCQs is set in this environment variable, the uTofu implementation tries to reserve
as many CQs as possible up to the required number for CQ-exclusive VCQs. It may not be able to reserve as many CQs as the required
number since the number of CQs is finite and CQs are distributed to all the processes on the compute node.

If uTofu and MPI are used together, setting a value of 1 or greater decreases the number of CQs for collective communication of the MPI
library. This may affect its performance.

For details on the CQ-exclusive VCQ, see the description of the UTOFU_VCQ FLAG EXCLUSI VE macro in "3.3.4.1
UTOFU_VCQ FLAG *".

4.3.2.2 UTOFU_NUM SESSI ON_MODE_CQS

You can set the required number of CQs for session mode VCQs per TNI by using the UTOFU_NUM_SESSI ON_MODE_CQS environment
variable.

You can specify 0 or higher. The default is 3.

To enable high-performance collective communication, the MPI library may use multiple session mode CQs per TNI. However, the number
of the CQs is finite. Due to a shortage of CQs, you may not be able to create session mode VCQs with the ut of u_creat e_vcq()
function.

When the required number of CQs for session mode VCQs is set in this environment variable, the uTofu implementation tries to reserve
as many CQs as possible up to the required number. It may not be able to reserve as many CQs as the required number since the number
of CQs is finite and CQs are distributed to all the processes on the compute node.

If both this environment variable and the UTOFU_NUM_EXCLUSI VE_CGQS environment variable are set and the number of CQs is
insufficient, the UTOFU_NUM_EXCLUSI VE_CQS environment variable has priority.

If uTofu and MPI are used together, setting a value of 2 or less decreases the number of CQs for collective communication of the MPI library.
This may affect its performance.

For details on the session mode VCQ, see "2.2.8 Session Mode".

4.3.2.3 UTOFU_NUM_MRQ_ENTRI ES

You can set the number of MRQ entries of a free mode VCQ by using the UTOFU_NUM_MRQ_ENTRI ES environment variable.

-88 -

You can specify any of the following numerical values: 2048, 8192, 32768, 131072, 524288, and 2097152. The default is 131072. Instead
of these numerical values, you can also specify any of the following character strings: 2Ki, 8Ki, 32Ki, 128Ki, 512Ki, and 2Mi. The specified
characters are not case-sensitive. If the specified numerical value is not one of the above, the above value closest to it is assumed specified.
If two values are equally close to it, the higher value is assumed specified.

The Tofu interconnect reports the completion of communication by writing a descriptor in the MRQ. Ifthe ut of u_pol | _nr g() function
is not called and descriptors continue to accumulate in the MRQ, an error called MRQ overflow occurs. A higher number of MRQ entries
can reduce the probability of an MRQ overflow event. However, the downside is increased memory consumption.

4.3.2.4 UTOFU_NUM _MRQ _ENTRI ES_SESSI ON

You can set the number of MRQ entries of a session mode VCQ by using the UTOFU_NUM_MRQ_ENTRI ES_ENTRI ES environment
variable.

Values which can be specified are same as those of UTOFU_NUM_MRQ_ENTRI ES.

For details on the session mode VCQ, see "2.2.8 Session Mode".

4.3.2.5 UTOFU_SWAP_PROTECT

On a compute node, an allocated memory region may be swapped out due to memory shortage or other reasons. When a memory region
used for communication on the Tofu interconnect is swapped out, an error may occur in communication using the memory region. In this
case, the one-sided communication completion confirmation functions return any of the following return values.

Which the ut of u_pol | _t cq() functionorthe ut of u_pol | _nr q() function returns the return value of the error depends on when
swap out occurs.

- Case of the ut of u_pol | _t cq() function
- UTOFU_ERR TCQ MEMORY

- Case of the ut of u_pol I _nr gq() function
- UTOFU_ERR_MRQ_LCL_MEMORY
- UTOFU_ERR_MRQ RMT_MEMORY

By specifying the environment variable UTOFU_SWAP_PROTECT, you can select whether to exclude the memory region for
communication from swap out.

An integer value 0 or 1 can be specified, and the default value is 0. If a value other than 0 or 1 is specified, it is assumed to be 1.

When the value 1 is specified for this environment variable, the mlock system call is called inside the uTofu implementation and the memory
region used for communication on the Tofu interconnect is guaranteed not to be subject to swap out. The size of the memory region that can
be excluded from the swap out target is subject to the software resource limit RLI M T_MEM_COCK. See the Job Operation Software manual
for details on how to check or change the RLI M T_MEMLOCK at job execution.

When the value 0 is specified for this environment variable, the memory region used for communication on the Tofu interconnect may be
subject to swap out.

& Note

Communication performance may decrease if a memory region for communication is excluded from swap out.

If the value of RLI M T_MEMLOCK is less than the total size of the memory region for communication used by the job, the communication
error due to swap out may not be avoided even if the value 1 is specified for this environment variable.

-89 -

|Chapter 5 Use Examples of uTofu

This chapter provides some examples of uTofu use.

The sample programs in this chapter are written in the following style.

- MPI is also used for simplified processing, as described in "4.1.2 Using uTofu Together With MPI".

Error checks using function return values are mostly omitted in order to focus on program flow, though they are necessary in practical
programs.

The assert () function-like macro is used to explain values set in a program.

I ¢l means a local process, r nt means a remote process, and nummeans a number in variable names.

5.1 Use Examples of One-Sided Communication

5.1.1 Example of Ping-Pong Communication Using Put

In this program, two processes alternately perform Put communications. This communication pattern is generally called ping-pong
communication.

Each process performs Put communication after it receives data of Put communication from its peer process. The first half of the program
confirms receiving data by remote MRQ notification. The last half of the program confirms receiving data by polling the memory region
to be updated.

This program runs with two processes.

#i ncl ude <stdlib. h>
#i ncl ude <assert. h>
#i ncl ude <npi . h>

#i ncl ude <utof u. h>

/'l send data and confirmits conpletion

static void send(utofu_vcqg_hdl _t vcq_hdl, utofu_vcqg_id_t rmt_vcq_id,
utofu_stadd_t Icl_send_stadd, utofu_stadd_t rnt_recv_stadd, size_t |length,
uint64_t edata, uintptr_t cbvalue, unsigned long int post_flags)

int rc;

/1 instruct the TNI to performa Put communication
utofu_put(vecq_hdl, rnt_vcqg_id, Icl_send_stadd, rmt _recv_stadd, |ength,
edata, post_flags, (void *)cbval ue);

/1 confirmthe TCQ notification

if (post_flags & UTOFU_ONESI DED FLAG TCQ NOTI CE) {
voi d *cbdat a;
do {

rc = utofu_poll_tcq(vcq_hdl, 0, &chdata);

} while (rc == UTOFU_ERR_NOT_FOUND) ;
assert(rc == UTOFU_SUCCESS) ;
assert((uintptr_t)chdata == chval ue);

}

/1 confirmthe local MRQ notification

if (post_flags & UTOFU_ONESI DED_FLAG LOCAL_MRQ NOTI CE) {
struct utofu_nrqg_notice notice;
do {

rc = utofu_poll_nrq(vcq_hdl, 0, ¬ice);

} while (rc == UTOFU_ERR_NOT_FOUND) ;
assert (rc == UTOFU_SUCCESS) ;
assert(notice.notice_type == UTOFU_MRQ TYPE_LCL_PUT);
assert(notice. edata == edata);

-90 -

/'l confirmreceiving data

static void recv(utofu_vcg_hdl _t vcq_hdl, volatile uint64_t *recv_buffer,

uint64_t edata, unsigned long int post_flags)

{
int rc;
/1 confirmthe renmote MRQ notification or the nenory update
if (post_flags & UTOFU_ONESI DED FLAG REMOTE_MRQ NOTI CE) ({
struct utofu_nrqg_notice notice;
do {
rc = utofu_poll_mq(vcq_hdl, 0, ¬ice);
} while (rc == UTOFU_ERR_NOT_FOUND) ;
assert (rc == UTOFU_SUCCESS) ;
assert(notice.notice_type == UTOFU_MRQ TYPE_RMI_PUT) ;
assert(notice.edata == edata);
assert(*recv_buffer == expected_val ue);
} else {
while (*recv_buffer != expected_val ue);
}
}

int main(int argc, char *argv[])
{
int i, rc, iteration = 100, numprocesses, |cl_rank, rnt_rank;
unsi gned | ong int post_flags;
size_t numtnis, length = sizeof (uint64_t);
uint64_t edata, send_buffer;
vol atile uint64_t recv_buffer;
uintptr_t cbval ue;
utofu_tni_id_t tni_id, *tni_ids;
utof u_vcqg_hdl _t vcqg_hdl;
utofu_veq_id_t lcl_veqg_id, rmt_vcq_id;
utofu_stadd_t Icl_send_stadd, Icl_recv_stadd, rnt_recv_stadd;
struct utofu_onesi ded_caps *onesi ded_caps;

MPl _Init(&argc, &argv);

MPI _Conm si ze(MPI _COVM WORLD, &num processes);

if (numprocesses != 2) {
MPI _Abort (MPI _COW WORLD, 1);
return 1,

MPI _Conm r ank(MPI _COVM WORLD, &l cl _rank);
rnt_rank = (lcl_rank == 0) ? 1 : 0;

/1 get an ID of a TNl available for one-sided commrunication
rc = utofu_get_onesided_tnis(&ni_ids, &umtnis);
if (rc !'= UTOFU_SUCCESS || numtnis == 0) {
MPI _Abort (MPI _COVWM WORLD, 1);
return 1;
}
tni_id = tni_ids[0];
free(tni_ids);

/'l query the capabilities of one-sided comrunication of the TN
ut of u_query_onesi ded_caps(tni _id, &onesided_caps);

/] create a VCQ and get its VCQID
utofu_create_vcq(tni _id, 0, &cq_hdl);

-901-

ui nt64_t expected_val ue,

utof u_query_vcq_id(vecqg_hdl, & cl _vcq_id);
/'l register
ut of u_reg_nen(vcq_hdl,
ut of u_reg_nen(vcq_hdl,

menory regions and get their
(void *)&send_buffer,
(void *)& ecv_buffer,

/'l notify peer
MPI _Sendrecv(& cl _vcqg_id, 1, MPI_U NT64_T,
& nt_vcqg_id, 1, MPI_U NT64_T,

STADDs
I ength, O,
I ength, O,

processes of the VCQ ID and the STADD
rnt_rank, O,
rmt _rank, O,

MPI _COMM WORLD, MPl _STATUS | GNORE) ;

MPl _Sendrecv(& cl _recv_stadd, 1, MPI_UI NT64_T,
& nmt_recv_stadd, 1, MPI_UI NT64_T,

rm _rank, O,
rnt_rank, O,

&l cl _send_st add);
& cl _recv_stadd);

MPI _COMM WORLD, MPl _STATUS_| GNORE) ;

/] enbed the default conmmunication path coordinates into the received VCQ I D.
utof u_set _vcqg_id_path(&nt_vcq_id, NULL);

recv_buffer = U NT64_MAX;
MPI _Barrier (Ml _COVW WORLD) ;

/1 perform pi ng- pong conmuni cati on using the renpte MRQ notification

post _flags = UTOFU_ONESI DED FLAG TCQ NOTI CE |
UTOFU_ONESI DED_FLAG REMOTE_MRQ NOTI CE |
UTOFU_ONESI DED_FLAG_LOCAL_MRQ NOTI CE;
/1 The MRQ of recv corresponding to the TOQ executed with send can be identified by

/1 changi ng the edata value of each iteration.
for (i =0; i < iteration; i++) {
/'l The edata that can be used is 8 bytes.
/1 times every 256 tines.

Because of that, edata is reset to 0O

edata =i % (1UL << (8 * onesi ded_caps->nmax_edata_si ze));
cbvalue = i;
send_buffer =i;
if (lcl_rank == 0) {
send(vcq_hdl, rnt_vcq_id, |cl_send_stadd, rnt_recv_stadd, |ength,
edata, chval ue, post_flags);
recv(vcqg_hdl, & ecv_buffer, send_buffer, edata, post_flags);
recv_buffer = U NT64_MAX;
} else {
recv(vcqg_hdl, & ecv_buffer, send_buffer, edata, post_flags);
recv_buffer = U NT64_MAX;
send(vcqg_hdl, rnt_vcqg_id, lcl_send_stadd, rnt_recv_stadd, |ength,
edata, cbval ue, post_flags);
}
}
recv_buffer = U NT64_MAX;

MPI _Barrier (Ml _COW WORLD) ;

/1 perform pi ng- pong conmuni cati on using the nmenory update

post_flags = UTOFU_ONESI DED_FLAG TCQ NOTI CE |
UTOFU_ONESI DED_FLAG _LOCAL_MRQ_NOTI CE;
/1 The MRQ of recv corresponding to the TOQ executed with send can be identified by

/1 changi ng the edata value of each iteration.
for (i =0; i <iteration; i++) {
/1 The edata that can be used is 8 bytes.
/1 times every 256 tines.

Because of that, edata is reset to O

edata = i % (1UL << (8 * onesi ded_caps->nmax_edata_si ze));
cbvalue = i;
send_buffer =i;
if (lcl_rank == 0) {
send(vcq_hdl, rnt_vcq_id, lcl_send_stadd, rnt_recv_stadd, |ength,

-902-

edata, cbval ue, post_flags);
recv(vcqg_hdl, & ecv_buffer, send_buffer, edata, post_flags);
recv_buffer = U NT64_MAX;
} else {
recv(vcg_hdl, & ecv_buffer, send_buffer, edata, post_flags)
recv_buffer = U NT64_MAX;
send(vcq_hdl, rnt_vcq_id, lcl_send_stadd, rnt_recv_stadd, |ength,
edata, cbval ue, post_flags);

}

/1 free resources

ut of u_dereg_nem(vcqg_hdl, Icl_send_stadd, 0);
ut of u_dereg_nenm(vcqg_hdl, Icl_recv_stadd, 0);
utof u_free_vcqg(vecq_hdl);

MPI _Fi nal i ze()

return O;

5.1.2 Example of Status Check Using Get

In this program, rank 0 performs computation while rank 1 checks its progress status.

Rank 0 writes the progress status of the computation to the variable st ep as needed. Rank 1 uses Get communication to read the value of
this variable every five seconds.

In order that optimization by the compiler does not eliminate updating the variable st ep, you need to add the vol at i | e qualifier to the
declaration of the variable st ep. This program assumes that the CPU performs a store operation to the memory region of the st ep variable
atomically.

This program runs with two processes.

#defi ne _POSI X_C_SOURCE 200809L // for clock_gettine

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <assert. h>
#i ncl ude <uni std. h>
#i ncl ude <tinme. h>

#i ncl ude <npi . h>

#i ncl ude <utofu. h>

static volatile unsigned |ong step
static unsigned [ong sum
static int |oop_sec = 60

/] computation
static void conpute(void)

{

struct tinespec start_tinme, current_time;

/1 get the start tine
cl ock_getti me(CLOCK_MONOTONI C, &start_tine);

do {
/1 compute
for (int i =0; i < 10000; i++) {
sum += i;
}

/'l update the variable to hold the progress status

-03-

st ep++;

/1 get the current tine
cl ock_getti me(CLOCK_MONOTONI C, ¤t_tine);
} while(current_time.tv_sec - start_tine.tv_sec <= | oop_sec);

}

/] status checking

static void check(utofu_vcqg_hdl _t vcqg_hdl, utofu_vcqg_id_t rmt_vcq_id,

utofu_stadd_t |cl_stadd,

0, post_flags,

utofu_stadd_t rnt_stadd)
{
int rc;
unsi gned long int post_flags = UTOFU_ONESI DED_FLAG LOCAL_MRQ NOTI CE;
voi d *cbdat a;
struct utofu_nmrqg_notice notice;
struct tinespec start_time, current_time;
/'l get the start tine
clock_getti me(CLOCK_MONOTONI C, &start_tine);
do {
sl eep(5);
// instruct the TNl to performa Get conmunication to copy the step variable in the renote
process to the step variable in the local process
while (1) {
rc = utofu_get(vecq_hdl, rnt_vcq_id, lcl_stadd, rmt_stadd, sizeof(step),
NULL) ;
if (rc !'= UTOFU_ERR BUSY) ({
br eak;
}
utofu_poll _tcqg(vecq_hdl, 0, &chdata);
}
assert (rc == UTOFU_SUCCESS) ;
/1 confirmthe |local MRQ notice
do {
rc = utofu_poll_mq(vcq_hdl, 0, ¬ice);
} while (rc == UTOFU_ERR_NOT_FOUND) ;
assert (rc == UTOFU_SUCCESS) ;
assert(notice.notice_type == UTOFU_MRQ TYPE_LCL_GCET);
/] output the obtained progress status
printf("step: %u\n", step);
fflush(stdout);
/'l get the current tine
cl ock_getti me(CLOCK_MONOTONI C, ¤t_tinme);
} while(current_tine.tv_sec - start_tine.tv_sec <= | oop_sec);
}
int main(int argc, char *argv[])
{
int rc, numprocesses, rank;
size_t numtnis;
utofu_tni _id_t tni_id, *tni_ids;
utof u_vcqg_hdl _t vcqg_hdl;
utofu_veq_id_t lcl_veqg_id, rmt_vcq_id;
utofu_stadd_t |cl_stadd, rm _stadd,

MPl I nit(&argc, &argv);

MPI _Conm si ze(MPI _COVM WORLD, &num processes);

-94 -

if (num_processes != 2) {
MPI _Abort (MPI _COWM WORLD, 1);
return 1;

}
MPI _Conm r ank(MPI _COWM WORLD, &r ank);

/1 get an ID of a TNl available for one-sided conmmunication
rc = utofu_get_onesided_tnis(&ni_ids, &umtnis);
if (rc !'= UTOFU_SUCCESS || numtnis == 0) {
MPI _Abor t (MPI _COW WORLD, 1);
return 1;
}
tni_id = tni_ids[0];
free(tni_ids);

/1l create a VCQ
utofu_create_vcq(tni _id, 0, &cqg_hdl);

/'l register a nenory region and get its STADD
utof u_reg_nen(vcq_hdl, (void *)&step, sizeof(step), 0, & cl_stadd);

if (rank == 0) {

/1 get the VCQ ID
ut of u_query_vcq_id(vecqg_hdl, & cl_vcq_id);

/1 notify rank 1 of the VCQ ID and the STADD
MPl _Send(& cl _vecqg_id, 1, MPI_UINT64_T, 1, 0, MPI_COVM WORLD);
MPI _Send(& cl _stadd, 1, MPI_UINT64_T, 1, 0, MPI_COWM WORLD);

} else {

/'l receive the VCQ ID and the STADD fromrank 0O
MPI _Recv(& nt_vcq_id, 1, MPI_UNT64_T, 0, 0, MPI_COWM WORLD, MPI _STATUS_ | GNORE);
MPI _Recv(& nt_stadd, 1, MPI_UINT64_T, O, 0, MPI_COWM WORLD, MPI _STATUS | GNORE);

/1 enbed the default communication path coordinates into the received VCQ ID.
utof u_set _vcqg_id_path(&nt_vecq_id, NULL);

}

MPI _Barrier (Ml _COVW WORLD) ;
if (rank == 0) {
conpute();
} else {
check(vcq_hdl, rnt_vcq_id, lcl_stadd, rnt_stadd);
}
MPI _Barrier (Ml _COVW WORLD) ;

/1 free resources
ut of u_dereg_nem(vcqg_hdl, |cl_stadd, 0);
utofu_free_vcqg(vecq_hdl);

MPI _Finalize();

return O;

-05-

5.1.3 Example of a Game Using ARMW

Inthis program, the ranks other than rank 0 repeat incrementing a variable number in rank 0 all together, and the rank that fortunately updates
the variable just for the ten thousandth time is determined as a winner.

L:n Note

If many communications concentrate on one process like the case of this program, network processing may become extremely slow. Do not
execute this program with several thousands of processes or more processes. For details, see "4.1.4 Preventing Concentrated
Communications”.

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <assert. h>
#i ncl ude <npi . h>

#i ncl ude <utofu. h>

int main(int argc, char *argv[])
{
int rc, numprocesses, rank;
unsigned long int post_flags = UTOFU_ONESI DED FLAG LOCAL_MRQ NOTI CE;
size_t numtnis;
uint64_t nunber = 1, |ucky_nunmber = 10000;
utofu_tni_id t tni_id, *tni_ids;
utof u_vcqg_hdl _t vcqg_hdl;
utofu_veqg_id_t veq_id;
utof u_stadd_t stadd;
voi d *cbdat a;
struct utofu_nrqg_notice notice;

MPl I nit(&argc, &argv);

MPI _Conm si ze(MPI _COVM WORLD, &nhum processes);
if (num_processes < 2) {

MPI _Abort (MPI _COW WORLD, 1);

return 1;

}
MPI _Conm r ank(MPI _COVM WORLD, &r ank);

/1 get an ID of a TNl avail able for one-sided conmunication
rc = utofu_get_onesided_tnis(&ni_ids, &umtnis);
if (rc !'= UTOFU_SUCCESS || numtnis == 0) {
MPI _Abort (MPI_COMM WORLD, 1);
return 1;
}
tni_id = tni_ids[0];
free(tni_ids);

/] create a VCQ and get its VCQID
utofu_create_vcq(tni _id, 0, &cq_hdl);
ut of u_query_vcq_i d(vecqg_hdl, &vcqg_id);

/] register a nenory region and get its STADD at rank O
if (rank == 0) {

utof u_reg_nen(vcq_hdl, &nunber, sizeof (nunber), 0, &stadd);
}

/1 broadcast the VCQ ID and the STADD fromrank 0 to the ranks other than 0
MPI _Bcast (&vcq_id, 1, MPI_UINT64_T, 0, MPI_COW WORLD);
MPl _Bcast (&stadd, 1, MPI_UINT64_T, 0, MPI_COVM WORLD);

-06 -

MPI _Barrier (Ml _COW WORLD) ;

if (rank I'=0) {
/'l enbed the default conmunication path coordinates into the received VCQ I D.
utof u_set _vcq_i d_path(&vcqg_id, NULL);

do {
/1 instruct the TNl to performan ARMN communi cation to increnent the nunber variable at
rank 0

while (1) {
rc = utofu_arm8(vcqg_hdl, vcqg_id, UTOFU ARMN OP_ADD, 1, stadd, 0, post_flags, NULL);
if (rc !'= UTOFU_ERR _BUSY) {

br eak;

}
utofu_pol | _tcg(vecq_hdl, 0, &chdata);

}
assert(rc == UTOFU_SUCCESS) ;

/1 confirmthe local MRQ notification
do {
rc = utofu_poll_nmrq(vcq_hdl, 0, ¬ice);
} while (rc == UTOFU_ERR_NOT_FOUND) ;
assert(rc == UTOFU_SUCCESS) ;
assert(notice.notice_type == UTOFU_MRQ TYPE_LCL_ARWN ;

/1 confirmthe value before the incrementation
if (notice.rnt_value == | ucky_nunber) {
printf("The winner is rank %l!\n", rank);

}

} while (notice.rnt_value < |ucky_nunber);

}
MPI _Barrier (MPl _COVM WORLD) ;
/1 free resources
if (rank == 0) {
ut of u_dereg_nem(vcq_hdl, stadd, 0);
}
utof u_free_vcqg(veq_hdl);

MPI _Finalize();

return O;

5.1.4 Example of Stride Communication Using Put

In this program, each process exchanges data that is placed discretely on the memory mutually with the processes next to it on its both sides.

In this program, multiple processes repeat computation in parallel. On each stage of computation, each process requires a part of
computation result on the previous stage of each of the preceding and next ranks. This communication pattern is a version of so-called halo
exchange which is modified for code simplicity.

To reduce the costs for creating TOQ descriptors at the time of communication, the program first creates TOQ descriptors and reuses them.

This program performs one Put communication per data which is contiguous on the memory. In order that the TCQ notification and the
remote MRQ notification are performed when all Put communications complete, these notifications are enabled only for the last Put
communication.

This program has the conput e_cent er and conput e_edge function to show timing of computation and communication. However,
they are not implemented because computation content has nothing to do with the explanation.

This program runs with three or more processes.

-97 -

#i ncl ude <stdlib. h>
#i ncl ude <npi . h>
#i ncl ude <utof u. h>

#defi ne NX 100
#define NY 100

static void conpute_center(doubl e data[NY][NX])

{
/'l compute a part of data which does not require received data
}
static void conmpute_edge(doubl e data[NY][NX])
{
/'l compute a part of data which requires received data
}

int main(int argc, char *argv[])
{
int i, rc, iteration = 100, num processes, lcl_rank, rm _ranks[2];
unsigned long int post_flags = UTOFU_ONESI DED FLAG TCQ NOTI CE |
UTOFU_ONESI DED_FLAG _REMOTE_MRQ _NOTI CE;
size_t numtnis, length, stride, toq_desc_sizes[2], toq_desc_size;
utofu_tni_id t tni_id, *tni_ids;
utof u_vecqg_hdl _t vcqg_hdl s[2];
utofu_veq_id_t lcl_veq_ids[2], rnt_vcq_ids[2];
utofu_stadd_t Ilcl_stadds[2], rnt_stadds[2], Icl_offset, rnt_offset;
doubl e dat a[NY] [NX] ;
struct utofu_onesi ded_caps *onesi ded_caps[2];
void *toq_descs[2], *cbdata;
struct utofu_nrqg_notice notice;

MPl _Init(&argc, &argv);

MPI _Conm si ze(MPI _COVM WORLD, &num processes);
if (num.processes < 3) {

MPI _Abort (MPI _COW WORLD, 1);

return 1,

MPI _Conm r ank(MPI _COVM WORLD, &l cl _rank);
rnt _ranks[0] = (lcl_rank + num processes - 1) % num processes; // preceding rank
rnt_ranks[1] = (lcl_rank + 1) % num processes; /'l next rank

/1 get I1Ds of available TNIs for one-sided communication
rc = utofu_get_onesided_tnis(&ni_ids, &umtnis);
if (rc !'= UTOFU_SUCCESS || numtnis == 0) {

MPI _Abort (MPI _COW WORLD, 1);

return 1;

for (i =0; i < 2; i++) {
/1 use distinct TNIs for two peer processes for |load balancing if there are two or nore TN s
avai l abl e
tni_id = (i =0 || numtnis == 1) ? tni_ids[0] : tni_ids[1];

/1 query the capabilities of one-sided conmunication of the TNI's
ut of u_query_onesi ded_caps(tni _id, &onesided_caps[i]);

/] create two VCQ and get their VCQ | Ds

utofu_create_vecq(tni _id, 0, &cqg_hdls[i]);
utof u_query_vcq_id(veqg_hdls[i], & cl_vcqg_ids[i]);

-08 -

/1 register menory regions and get their STADDs
utofu_reg_nen(vcq_hdl s[i], data, sizeof(data), 0, & cl_stadds[i]);
}

free(tni_ids);

/1 notify the VCQ IDs and the STADDs to the preceding rank and the next rank
MPI _Sendrecv(& cl _vcqg_ids[0], 1, MPI_UINT64_T, rnt_ranks[0O], O,

& nt _veq_ids[1], 1, MPI_UNT64_T, rnt_ranks[1], O,

MPI _COVMM WORLD, MPI _STATUS | GNORE) ;

MPl _Sendrecv(& cl _vcq_ids[1], 1, MPI_U NT64_T, rnt_ranks[1], O,
& nt_vcq_ids[0], 1, MPI_U NT64_T, rnt_ranks[O0], O,
MPl _COWM WORLD, MPI _STATUS_| GNORE) ;

MPI _Sendrecv(& cl _stadds[0], 1, MPI _UNT64_T, rnt_ranks[O0], O,
& nt_stadds[1], 1, MPI_UINT64_T, rnt_ranks[1], O,
MPI _COWM WORLD, MPI _STATUS_| GNORE) ;

MPI _Sendrecv(& cl _stadds[1], 1, MPI_UNT64_T, rnt_ranks[1], O,
& nt _stadds[0], 1, MPI_U NT64_T, rnt_ranks[O0], O,

MPI _COMM WORLD, MPl _STATUS_| GNORE) ;

/'l enbed the default communication path coordinates into received VCQ I Ds.
utof u_set_vcqg_id_path(&nt_vcq_ids[0], NULL);
utof u_set_vcq_id_path(&nt_vcq_ids[1], NULL);

/| prepare Put conmunications to
/1 send left-edge data of a NX * NY rectangle to the preceding rank and
/1 send right-edge data of a NX * NY rectangle to the next rank
I ength = sizeof (doubl e);
stride = length * NX;
for (i =0; i < 2; i++) {
tog_descs[i] = malloc(onesided_caps[i]->max_toq_desc_size * NY);
/1 disable the TCQ notifications and renpte MRQ notifications for NY - 1 Put conmunications
lcl_offset = length * ((i ==0) ?2 1: (NX- 2));
rm_offset = length * ((i == 0) 2 0: (NX- 1));
ut of u_prepare_put _stride(vecqg_hdls[i], rm_vcqg_ids[i], lcl_stadds[i] + Icl_offset,
rm _stadds[i] + rnt_offset,

length, stride, NY - 1, 0, 0, toq_descs[i], & oq_desc_sizes[i]);

/1 enable the TCQ notification and remote MRQ notification for the |Iast Put communication

lcl _offset += stride * (NY - 1);

rm_offset += stride * (NY - 1);

/1 When not identifying the correspondence between a TOQ descriptor and MRQ descriptor,

/1 0 can be specified for an edata.

ut of u_prepare_put (veqg_hdl s[i], rnt_vcqg_ids[i], lcl_stadds[i] + lcl_offset, rnt_stadds[i] +
rmt _of fset,

length, 0, post_flags, (char *)toq_descs[i] + toq_desc_sizes[i],

& oq_desc_si ze);

tog_desc_sizes[i] += toqg_desc_si ze;

}

for (i =0; i <iteration; i++) {
/1 instruct the TNIs to performthe prepared Put comunications
/1 (send data conmputed in the previous | oop stage)
ut of u_post _toqg(vcq_hdl s[0], toq_descs[0], toqg_desc_sizes[0], NULL);
ut of u_post _tog(vcq_hdl s[1], toq_descs[1l], tog_desc_sizes[1], NULL);

/1 confirmthe TCQ notifications (send conpletion) of the |ast Put conmunications
do {
rc = utofu_poll_tcq(vecq_hdls[0], 0, &cbdata);
} while (rc == UTOFU_ERR_NOT_FOUND) ;
do {
rc = utofu_poll _tcq(vcqg_hdls[1], 0, &chdata);
} while (rc == UTOFU_ERR _NOT_FOUND) ;

/'l compute a part of data which does not require received data

-99 -

/1 (data in the send data regi on can be updated because the send operation has conpl et ed)
conpute_center(data);

/1 confirmthe remote MRQ notifications (receive conpletion) of the |ast Put conmunications
do {
rc = utofu_poll _nrqg(vcg_hdls[0], 0, ¬ice)
} while (rc == UTOFU_ERR _NOT_FOUND) ;
do {
rc = utofu_poll_mrq(vecq_hdls[1], 0, ¬ice);
} while (rc == UTOFU_ERR_NOT_FOUND) ;

/'l conmpute a part of data which requires received data
/Il (data in the receive data region can be referenced because the recei ve operation has
conpl et ed)
conput e_edge(dat a) ;
}

/1 free resources

for (i =0; i <2; i++) {
ut of u_dereg_nenm(vcq_hdl s[i], lcl_stadds[i], 0);
utofu_free_vcqg(veq_hdl s[i]);
free(toq_descs[i]);

}
MPI _Finalize();

return O;

5.2 Use Examples of Barrier Communication

5.2.1 Example of Barrier Synchronization and Reduction Operation

This program performs barrier synchronization and reduction operation among processes. In the reduction operation, the sum of the
floating-point data owned by all the processes is calculated.

When a process gets out of the loop of the ut of u_pol | _barrier() or utofu_poll _reduce_doubl e() function, it is
guaranteed that the ut of u_barri er () orut of u_reduce_doubl e() function is called in all the other processes.

In the reduction operation, all the processes obtain the same calculation result.

This program runs with eight processes.

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <assert. h>
#i ncl ude <npi . h>

#i ncl ude <utof u. h>

int main(int argc, char *argv[])
{
int i, rc, iteration = 100, num processes, rank;
doubl e data_in, data_out;
size_t numtnis;
utofu_tni_id_t tni_id, *tni_ids;
utofu_vbg_id_t lcl_vbg_ids[3], rnt_vbg_ ids[8][3];
struct utofu_vbg_setting vbg_settings[3];

MPl I nit(&argc, &argv);

MPI _Conm si ze(MPI _COVM WORLD, &nhum processes);
if (num_processes != 8) {

-100 -

MPI _Abort (MPI _COVWM WORLD, 1);
return 1;

}
MPI _Conm r ank(MPI _COVM WORLD, &r ank) ;

/1 get an ID of a TNl available for barrier communication
rc = utofu_get_barrier_tnis(&ni_ids, &umtnis);
if (rc !'= UTOFU_SUCCESS || numtnis == 0) {
MPl _Abort (MPI _COMM WORLD, 1);
return 1;
}
tni _id = tni_ids[rank % numtnis];
free(tni_ids);

/1 allocate VBGs
utofu_alloc_vbg(tni_id, 3, 0, lcl_vbg_ids);

/1 share VBG IDs allocated in all processes
MPI _Al I gather(lcl_vbg_ ids, 3, MPI_UINT64_T, rnt_vbg_ ids, 3, MPI_UINT64_T, MPI_COVMM WORLD);

/1 build a barrier circuit using an 8-process butterfly exchange al gorithm

vbg_settings[0].vbg_id = Icl_vbg_ids[0];

vbg _settings[0].src_lcl_vbg id = Icl_vbg ids[2];
vbg_settings[0].src_rnt_vbg id = rnt_vbg_ids[rank ® 4][2];
vbg_settings[0].dst_Icl_vbg id = Icl_vbg ids[1];
vbg_settings[0].dst_rnt_vbg_ id = rnt_vbg_ids[rank ~ 1][1];
vbg_settings[0].dst_path_coords[0] = UTOFU_PATH COORD_NULL;

vbg_settings[1].vbg_id = lcl_vbg_ids[1];

vbg _settings[1].src_lcl_vbg id = Icl_vbg ids[0];
vbg_settings[1].src_rnt_vbg_ id = rnt_vbg_ids[rank ~ 1][0];
vbg_settings[1].dst_Icl_vbg_ id = Icl_vbg_ids[2];
vbg_settings[1].dst_rnt_vbg_id = rnt_vbg_ids[rank * 2][2];
vbg_settings[1].dst_path_coords[0] = UTOFU_PATH COORD NULL;

vbg_settings[2].vbg_id = Icl_vbg_ids[2];
vbg_settings[2].src_lcl_vbg id = Icl_vbg_ ids[1];
vbg_settings[2].src_rnt_vbg_ id = rnt_vbg_ids[rank ~ 2][1];
vbg_settings[2].dst_Ilcl_vbg_id = Icl_vbg_ids[0];
vbg_settings[2].dst_rnt_vbg_id = rnt_vbg_ids[rank ~ 4][0];
vbg_settings[2].dst_path_coords[0] = UTOFU_PATH COORD_NULL;

/1 configure VBGs
ut of u_set _vbg(vbg_settings, 3);

/1 wait conpletion of configuring VBGs at all processes using MPI_Barrier before perform ng
barrier comrunication
MPI _Barrier (Ml _COW WORLD) ;

for (i =0; i <iteration; i++) {

// start barrier synchronization
utofu_barrier(lcl_vbg_ids[0], 0);

/1 wait conpletion of the barrier synchronization
do {

rc = utofu_poll_barrier(lcl_vbg_ids[0], 0);
} while (rc == UTOFU_ERR _NOT_COWPLETED) ;
assert(rc == UTOFU_SUCCESS) ;

-101 -

for (i =0; i <iteration; i++) {
/] start reduction operation
data_in =i + 0.1 * rank;

ut of u_r educe_doubl e(l cl _vbg_i ds[0],

/1 wait conpletion of the reduction operation

do {

rc = utofu_poll_reduce_doubl e(lcl_vbg_ids[O0],
} while (rc == UTOFU_ERR _NOT_COWPLETED) ;
assert(rc == UTOFU_SUCCESS) ;

}
/1 wait conpletion of barrier comunication at al
resour ces

MPI _Barrier (Ml _COVW WORLD) ;

/1 free resources
utofu_free_vbg(lcl _vbg_ids, 3);
MPI _Fi nalize();

return O;

UTOFU_REDUCE_OP_BFPSUM &data_in, 1,

0, &data_out);

processes using MPl _Barrier

0);

before freeing

-102 -

IChapter 6 System Information

This chapter describes system-specific information.

6.1 Information of This Computing System

This section describes information specific to this computing system.

6.1.1 Version Information of This Computing System

The following table lists the return values of the ut of u_query_t of u_ver si on() function.

Table 6.1 Tofu Interconnect Versions for This Computing System
Type Value

major version 3

minor version 0

6.1.2 Functional Characteristics of This Computing System

The following table lists hardware resource quantities.

Table 6.2 This Computing System Hardware Resource Quantities

Resource Value
Number of TNIs per compute node 6
Number of available CQs per TNI 9

The following table lists virtual resource quantities.

Table 6.3 This Computing System Virtual Resource Quantities
Resource Value

Number of available VCQs per CQ 8
Number of available VBGs per TNI (Number of start/end VBGs, Number of relay VBGSs) 48 (16, 32)

The ut of u_query_onesi ded_caps() function sets the following table values in each member of the ut of u_onesi ded_caps
structure object. For the meaning of each member, see "3.2.2.1 struct utofu_onesided_caps".

Table 6.4 One-Sided Communication Functions of This Computing System

Member Name Value
£l ags UTOFU_ONESI DED_CAP_FLAG_SESSI ON_MODE |
9 UTOFU_ONESI DED _CAP_FLAG ARMW
UTOFU_ONESI DED_CAP_ARMNA OP_CSWAP |
UTOFU_ONESI DED_CAP_ARMN OP_SWAP |
A T ODS UTOFU_ONESI DED_CAP_ARMNA OP_ADD |
Lop UTOFU_ONESI DED_CAP_ARMA OP_XCR |
UTOFU_ONESI DED_CAP_ARMNA OP_AND |
UTOFU_ONESI DED_CAP_ARMN OP_OR
num cnp_i ds 8
num r eserved_st ags 256
cache_line_size 256
st ag_address_al i gnnment 256

-103 -

Member Name Value

max_t oq_desc_si ze 64

16,777,215 (2 - 1)

max_put get _si ze

max_pi ggyback_si ze 32
max_edat a_si ze 1
max_ntu 1920
max_gap 255

The ut of u_query_barri er_caps() function sets the following table values in each member of the ut of u_barri er _caps
structure object. For the meaning of each member, see "3.2.2.2 struct utofu_barrier_caps".

Table 6.5 Barrier Communication Functions of This Computing System
Member Name

Value

fl ags 0

UTOFU_BARRI ER_CAP_REDUCE_OP_BARRI ER |
UTOFU_BARRI ER_CAP_REDUCE_OP_BAND |
UTOFU_BARRI ER_CAP_REDUCE_OP_BCR |
UTOFU_BARRI ER_CAP_REDUCE_OP_BXCR |

reduce_ops UTOFU_BARRI ER_CAP_REDUCE_OP_MAX |
UTOFU_BARRI ER_CAP_REDUCE_OP_MAXLCC |
UTOFU_BARRI ER_CAP_REDUCE_OP_SUM |
UTOFU_BARRI ER_CAP_REDUCE_OP_BFPSUM

max_ui nt 64_r educti on 6

max_doubl e_r educti on 3

6.1.3 Behavioral Specifications of This Computing System

The applicable specifications include the following behavioral specifications in addition to the interface specifications.

6.1.3.1 Strong Order Flag

When the strong order flag is set for one-sided communication, the order of read and write operations on the main memory is guaranteed
relative to the preceding communication in accordance with the interface specification. In addition, that also partially guarantees the order
of read and write operations between CPU cache lines in one Put or Get communication. In particular, contents in the following table is also
guaranteed when the read source area or write destination area in the main memory of the local compute node or a remote compute node
crosses multiple CPU cache lines:

Target of Guarantee Condition Contents of Guarantee

The last CPU cache line in the read source
area

Acrbitrary Reading from the last CPU cache line starts
after reading from another CPU cache line

is completed

The last CPU cache line in the write
destination area

The corresponding area in the read source
area does not cross multiple pages

Writing to the last CPU cache line starts
after writing to another CPU cache lines is
completed

The corresponding area in the read source
area crosses multiple pages

Writing to the area in the last CPU cache
line corresponding to after the page
boundary starts after writing to another
CPU cache lines and the rest area in the last
CPU cache line are completed

-104 -

Accordingly, by polling the last byte in the last CPU cache line to confirm that it was written, you can confirm that the entire write operation
has completed. Furthermore, an arbitrary byte in the last CPU cache line can be used for polling if the user ensured that the corresponding
area in the read source buffer does not cross multiple pages.

6.1.3.2 Page Size Managed by OS
In this computing system, the page sizes managed by the OS are the following.
- 2097152 bytes or 65536 bytes if the largepage is enabled
- 65536 bytes if the largepage is disabled

As described in "2.2.10 Confirmation of Communication Completion and Guarantee of Ordering", in order to guarantee writing to a CPU
cache line in the unit of granularity of CPU cache line, it is necessary that the read source area corresponding to the CPU cache line in the
write destination area does not cross multiple pages. Whether the largepage is enabled or not, if the quotient of the start address of a memory
region divided by 65536 is equal to the quotient of "the end address of the memory region - 1" divided by 65536, it can be judged that the
memory region does not cross multiple pages. Similarly, if the quotient of the start address of a memory region divided by 256 is equal to
the quotient of "the end address of the memory region - 1" divided by 256, it can be judged that the memory region does not cross multiple
CPU cache lines because the CPU cache line size is 256 bytes in this computing system.

6.1.4 Restrictions on This Computing System

6.1.4.1 Process Creation From Inside a uTofu Program

The following restriction applies to uTofu programs if they create a child process using a system call (for example, f or k), library function
(for example, sy st em), service routine provided by a Fortran system (for example, FORK), or the like.

- Ifthere isa memory region registered by the ut of u_r eg_nen() functionorut of u_reg_nem w t h_st ag() function but not
deregistered by the corresponding ut of u_der eg_nen{() function at the time of process creation, pages containing the memory
region are not inherited to child processes. Therefore, child processes cannot access pages containing the memory region and the child
process cannot access the pages.

If the same memory region is registered multiple times or an overlapping memory regions are registered, the memory region is not
considered to be deregistered until deregistration is done as many times as the registration times.

For example, suppose that a child process created by the f or k system call accesses such a memory region before the process calls the
execve system call or _exi t system call. Then, due to this restriction, a segmentation fault error will occur in the child process.

Whether accessible or not is decided for each page managed by the OS. Therefore, if amemory region is registered, the neighboring memory
regions cannot also be accessed. Note that, if the largepage is enabled, each page is treated as the large page.

6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu
Interconnect Link is Down

The behavior of uTofu programs is unpredictable when they are executed by a job configured to change the communication path if a Tofu
interconnect link is down.

Refer to the Job Operation Software manual for information on specifying the operation when a Tofu interconnect link is down.

-105 -

ICha

pter 7 Error Messages

This chapter explains the error messages output by the uTofu implementation.

utofu:

utofu:

asynchronous error: description on TNI tniid BG bgid
Description
An internal error was detected in barrier communication. Execution of the uTofu program ends.
Parameters
description : Error message corresponding to the detected internal error
tniid : 1D of the TNI which detected the error
bgid . 1D of the BG which detected the error
Action method

Consult System Engineer about the message that was output.

asynchronous error: description on TNI tniid CQ cqid
Description
An internal error was detected in one-sided communication. Execution of the uTofu program ends.
Parameters
description : Error message corresponding to the detected internal error
tniid : 1D of the TNI which detected the error
cqid . 1D of the CQ which detected the error
Action method

If the description is "MRQ Overflow", it means that the number of MRQ descriptors written in the MRQ exceeded the number of
MRQ entries. Revise the processing of the one-sided communication completion confirmation in the uTofu program, or increase
the number of MRQ entries as describped in "4.323 UTOFU_NUM_MRQ_ENTRIES" and "4.3.24
UTOFU_NUM_MRQ_ENTRIES_SESSION".

If the description is "CQs Cacheflush Timeout", it means that congestion was detected on the Tofu interconnect. Revise the
processing of the uTofu program so that communication is not congested to specific compute nodes. For details, see "4.1.4
Preventing Concentrated Communications".

In cases other than the above, consult System Engineer about the message that was output.

- 106 -

Glossary

ARMW (Atomic Read Modify Write)

One-sided communication function for reading, calculating, and writing on the main memory of another compute node atomically.
ARMW is executed using an ARMW descriptor of a TOQ.

barrier communication

Communication function for barrier synchronization between compute nodes. The reduction operation can be executed along with the
barrier synchronization. Protocol processing is completely offloaded, and control by the CPU is unnecessary.

barrier synchronization

Synchronization processing between BGs using barrier communication. BGs that will be participating in barrier communication are
configured beforehand. Barrier communication starts at each start/end BG. Once the barrier communication has started at all the start/
end BGs participating in the barrier communication, the barrier communication at each start/end BG is completed.

BG (barrier gate)
One of the TNI resources. The BG is used to build a barrier circuit. Each BG has functions to wait for signals or packets one by one,
execute the reduction operation, and send signals or packets one by one. The types of BG are start/end BG and relay BG.

callback data
Value that is specified when a TOQ descriptor is written and that is returned when a TCQ descriptor is read. Callback data can be used
to learn the correspondence between a TOQ descriptor and TCQ descriptor.

communication path

Path traveled by a packet on a Tofu network in communication from one compute node to another compute node

communication path coordinates
Three-dimensional coordinates of A, B, and C, showing the communication path from one compute node to another compute node
communicating on a Tofu network

communication path 1D

Value used to specify acommunication path when one-sided communication is performed. The communication path ID is created by the
ut of u_get _pat h_i d() function. The UTOFU_ONESI DED_FLAG_PATH function-like macro specifies this ID for a one-sided
communication start function or one-sided communication preparation function.

component ID

Value used to distinguish the VCQ of multiple upper-layer components that share a CQ

compute node
Unit of hardware equipped with a CPU, main memory, TNIs, and TNR. Usually, the compute node is also the unit of a running OS (host
0S).

compute node coordinates

Six-dimensional coordinates of X, Y, Z, A, B, and C, showing the location of a compute node on a Tofu network

CQ (control queue)

Queue for controlling a TNI from software in one-sided communication. The CQ consists of three types of queue: TOQ, TCQ, and MRQ.
There are multiple CQs per TNI.

-107 -

CQ-exclusive VCQ

VCQ that does not share the CQ with another VCQ. Multiple threads can simultaneously call functions of STADD management or one-
sided communication execution for the CQ-exclusive VCQ and another VCQ. When these functions are called for different CQs, uTofu
implementation and hardware access may be processed in parallel, and communication throughput may increase. You can create a CQ-
exclusive VCQ by specifying the UTOFU_VCQ_FLAG_EXCLUSI VE flag for the time when a VCQ is created.

default communication path

Communication path used when no communication path ID is specified for a one-sided communication start function or one-sided
communication preparation function. The default communication path is used by embedding communication path coordinates inaVCQ
ID by the ut of u_set _vcq_i d_pat h() function.

descriptor

Control data showing a data transfer instruction or completion notification. The three types of descriptor are TOQ descriptor, TCQ
descriptor, and MRQ descriptor. Software writes a TOQ descriptor in a TOQ to instruct the Tofu interconnect to transfer data, and the
Tofu interconnect reads and executes the instruction. The Tofu interconnect writes a TCQ descriptor or MRQ descriptor ina TCQ or
MRQ, respectively, to notify software of the completion of a data transfer. The software reads the descriptor to confirm the completion.
TOQ descriptors are further subdivided into Put, Get, and other descriptors according to the contents of the instruction. And TCQ and
MRQ descriptors are also subdivided according to the contents of the completion notification.

EDATA

Value that is specified when a TOQ descriptor is written and that is returned when an MRQ descriptor is read. EDATA can be used to
learn the correspondence between a TOQ descriptor and MRQ descriptor.

free Mode

Usual mode of a CQ. One-sided communication start functions and one-sided communication batch start functions write a TOQ
descriptor and a TNI starts the communication immediately. A VCQ created on a CQ of the free mode is called a free mode VCQ.

Fujitsu MPI
MPI library included in Technical Computing Suite

Get

One-sided communication function for reading data from the main memory of another compute node. Get is executed using a Get
descriptor of a TOQ.

local

VCQ that issues the communication instruction when one-sided communication is used for communication between two VCQs. Local
also refers to the compute node, process, TNI, STADD, etc. of this one of the VCQs. Those of the other one are called "remote™.

main memory

Memory area that exists on a compute node and is read or written by the load, store, and other instructions of the CPU and by the one-
sided communication of the Tofu interconnect. In this manual, the main memory is also simply called memory.

MRQ (message receive queue)

Queue, one per CQ, in the main memory and used for notification of data transfer completion in one-sided communication. The
notification is written to an MRQ. The UTOFU_NUM_MRQ_ENTRI ES environment variable can specify the number of entries in the
MRQ.

MRQ overflow

Phenomenon where MRQ descriptors of local notifications or remote notifications are written continually to the MRQ and the MRQ
overflows with these descriptors. The MRQ overflow is caused by the ut of u_pol | _nr g() function not being called even as MRQ
descriptors continue to be written.

-108 -

MTU (maximum transfer unit)

Maximum packet transfer size. In one-sided communication, when sending or receiving data with a larger size than the MTU, a TNI
splits the data into packets with the size of the MTU and transfers the packets.

NOP

One-sided communication function which does nothing. NOP is executed using a NOP descriptor of a TOQ. It is used to adjust the
number of TOQ descriptors in the session mode.

one-sided communication

Communication function for accessing and updating the main memory of another compute node. One-sided communication has the
functions of Put, Get, ARMW, and NOP. This communication method is generally called RDMA (remote direct memory access).
Protocol processing is completely offloaded, and control by the CPU is unnecessary.

packet

Unit of transmission of communication data in a Tofu network. In one-sided communication, when sending or receiving a large size of
data, a TNI splits the data into packets and transfers them. In barrier communication, packets are sent and received between BGs in the
same TNI or different TNIs to relay the data.

piggyback

Mechanism for low-latency communication using Put. Normally, for Put, software gives a transmission instruction to a TNI by means
of a TOQ descriptor, and the TNI reads data from the main memory. By using piggyback, software embeds the data in the TOQ
descriptor. Using piggyback eliminates the need for the TNI to read the data from the main memory, enabling low-latency
communication.

Put

One-sided communication function for writing data to the main memory of another compute node. Put is executed using a Put descriptor
or Put Piggyback descriptor of a TOQ.

reduction operation

Operation that derives one value from multiple values

remote

VCQ that is the communication target when one-sided communication is used for communication between two VCQs. Remote also
refers to the compute node, process, TNI, STADD, etc. of this one of the VCQs. Those of the other one are called "local".

session mode

Special mode of a CQ. One-sided communication start functions and one-sided communication batch start functions write a TOQ
descriptor but a TNI does not start the communication immediately. By receiving another Put communication at the VCQ, a TNI starts
the instructed communication automatically. A VCQ created on a CQ of the session mode is called a session mode VCQ.

signal

Data relayed between BGs in the same TNI in barrier communication

STADD (steering address)

Memory address that a TNI can understand. In one-sided communication, the TNI reads from and writes to main memory to transfer
data between compute nodes. However, the TNI cannot understand virtual addresses assigned by the OS. The virtual addresses are
ordinary memory addresses that can be seen from user processes. Therefore, in one-sided communication, a virtual address of memory
isconverted toa STADD, which the TNI can understand, before the communication starts. The TNI is notified of this STADD to perform
the communication.

STag (steering tag)

Integer value that indicates a memory region and is understandable to a TNI. Normally, uTofu uses the STag in the form of a STADD.

-109 -

TCQ (transmit complete queue)

Queue, one per CQ, in the main memory and used for notification of the completion of a data transmission in one-sided communication.
The TCQ has as many entries as in the TOQ in the same CQ, and the entries of the TOQ and TCQ have one-to-one correspondence.

thread-safe VBG

VBG that can be used concurrently by multiple threads. Multiple threads can simultaneously call a function of barrier communication
execution for a single thread-safe VBG. You can allocate a thread-safe VBG by specifying the UTOFU_VBG_FLAG_THREAD_SAFE
flag for the time when a VVBG is allocated.

thread-safe VCQ

VCQ that can be used concurrently by multiple threads. Multiple threads can simultaneously call functions of STADD management or
one-sided communication execution for a single thread-safe VCQ. Also, multiple threads can simultaneously call these functions for the
thread-safe VCQ and another VCQ. You can create a thread-safe VCQ by specifying the UTOFU_VCQ FLAG THREAD_ SAFE flag
for the time when a VCQ is created.

TNI (Tofu network interface)

Network interface of the Tofu interconnect. The TNI sends and receives packets according to instructions from software, and performs
one-sided communication and barrier communication. There is at least one TNI per compute node, and it is connected to the main
memory and a TNR.

TNR (Tofu network router)

Network router of the Tofu interconnect. The TNR relays a packet sent from a TNI to deliver it to the destination TNI. There isone TNR
per compute node, and it is connected to TNIs and a Tofu network.

Tofu interconnect

General name for the interconnects between compute nodes used in the High-end technical computing server MP10 system,
Supercomputer PRIMEHPC FX10 system, Supercomputer PRIMEHPC FX100 system, and this computing system. Its configuration
includes TNIs, TNRs, and a Tofu network. The Tofu interconnect is also simply called Tofu.

Tofu network

Network of the Tofu interconnect. The Tofu network has a six-dimensional coordinate space. It is built by interconnecting TNRs.

TOQ (transmit order queue)

Queue, one per CQ, in the main memory and used to issue a communication instruction in one-sided communication.

transmission gap

Interval between packets when they are transmitted. In a Tofu network, when there is contention for a communication path, the effective
bandwidth of the path may drop due to congestion. If you know beforehand that such congestion will occur, you can mitigate that drop
by suppressing the injection rate of transmitted data. In one-sided communication, you can suppress the injection rate by specifying a
value other than 0 for the transmission gap so that the TNI does not send the next packet immediately after sending a packet.

uTofu
Programming interface used by processes in the user space to communicate through the Tofu interconnect.

It is named for "user-level Tofu communication interface".

VBG (virtual barrier gate)
Abstracted BG by means of software. The unique 64-bit integer value identifying the VBG in a Tofu network is called a VBG ID.

-110 -

VCQ (virtual control queue)

Abstracted and virtualized CQ by means of software. The VCQ is used to virtualize a CQ since asingle CQ is shared by multiple software
components in uTofu. The 64-bit unsigned integer value that uniquely identifies the VCQ in a Tofu network is called a VCQ ID. uTofu
uses a handle called a VCQ handle to handle the VCQ created in a process by the process.

-111-

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Tofu Interconnect and uTofu Overview
	1.1 Tofu Interconnect Overview
	1.1.1 Architecture
	1.1.2 Network
	1.1.3 Communication Methods
	1.1.3.1 One-Sided Communication
	1.1.3.2 Barrier Communication

	1.2 uTofu Overview

	Chapter 2 uTofu Communication Models
	2.1 Execution Unit
	2.2 One-Sided Communication
	2.2.1 VCQ (Virtual Control Queue)
	2.2.1.1 TOQ (Transmit Order Queue)
	2.2.1.2 TCQ (Transmit Complete Queue)
	2.2.1.3 MRQ (Message Receive Queue)

	2.2.2 STADD (Steering Address)
	2.2.3 Put Communication
	2.2.4 Get Communication
	2.2.5 ARMW (Atomic Read Modify Write) Communication
	2.2.6 NOP
	2.2.7 Free Mode
	2.2.8 Session Mode
	2.2.8.1 Behavioral Details of the Session Mode
	2.2.8.2 Example of Communication Forking Using the Session Mode
	2.2.8.3 Example of Communication Joining Using the Session Mode
	2.2.8.4 Example of Communication Pipeline Using the Session Mode

	2.2.9 Maximum Transfer Size and Transmission Gap of Packets
	2.2.10 Confirmation of Communication Completion and Guarantee of Ordering
	2.2.11 Cache Injection and Padding
	2.2.12 Communication Error

	2.3 Barrier Communication
	2.3.1 VBG (Virtual Barrier Gate)
	2.3.2 Barrier Circuit
	2.3.3 Barrier Synchronization
	2.3.4 Reduction Operation

	2.4 Communication Path
	2.5 Thread Safety

	Chapter 3 uTofu Interface Specifications
	3.1 Common Definitions
	3.1.1 Type Definitions
	3.1.1.1 typedef

	3.1.2 Return Values
	3.1.2.1 enum utofu_return_code

	3.2 TNI Query
	3.2.1 TNI Query Functions
	3.2.1.1 utofu_get_onesided_tnis
	3.2.1.2 utofu_get_barrier_tnis
	3.2.1.3 utofu_query_onesided_caps
	3.2.1.4 utofu_query_barrier_caps

	3.2.2 Structures Indicating Available Communication Functions and Limit Values
	3.2.2.1 struct utofu_onesided_caps
	3.2.2.2 struct utofu_barrier_caps

	3.2.3 Flags Indicating Available Communication Functions
	3.2.3.1 UTOFU_ONESIDED_CAP_FLAG_*
	3.2.3.2 UTOFU_BARRIER_CAP_FLAG_*
	3.2.3.3 UTOFU_ONESIDED_CAP_ARMW_OP_*
	3.2.3.4 UTOFU_BARRIER_CAP_REDUCE_OP_*

	3.3 VCQ Management
	3.3.1 VCQ Creation/Freeing Functions
	3.3.1.1 utofu_create_vcq
	3.3.1.2 utofu_create_vcq_with_cmp_id
	3.3.1.3 utofu_free_vcq

	3.3.2 VCQ ID Manipulation Functions
	3.3.2.1 utofu_query_vcq_id
	3.3.2.2 utofu_construct_vcq_id
	3.3.2.3 utofu_set_vcq_id_path

	3.3.3 VCQ Query Functions
	3.3.3.1 utofu_query_vcq_info

	3.3.4 VCQ Flags
	3.3.4.1 UTOFU_VCQ_FLAG_*

	3.4 VBG Management
	3.4.1 VBG Allocation/Freeing Functions
	3.4.1.1 utofu_alloc_vbg
	3.4.1.2 utofu_free_vbg

	3.4.2 VBG Configuration Functions
	3.4.2.1 utofu_set_vbg

	3.4.3 VBG Query Functions
	3.4.3.1 utofu_query_vbg_info

	3.4.4 VBG Configuration Structures
	3.4.4.1 struct utofu_vbg_setting

	3.4.5 VBG Flags
	3.4.5.1 UTOFU_VBG_FLAG_*

	3.4.6 Special Values for VBG Configuration
	3.4.6.1 UTOFU_VBG_ID_NULL

	3.5 Communication Path Management
	3.5.1 Communication Path Management Functions
	3.5.1.1 utofu_get_path_id
	3.5.1.2 utofu_get_path_coords

	3.5.2 Special Values for Setting of Communication Path
	3.5.2.1 UTOFU_PATH_COORD_NULL

	3.6 STADD Management
	3.6.1 STADD Management Functions
	3.6.1.1 utofu_reg_mem
	3.6.1.2 utofu_reg_mem_with_stag
	3.6.1.3 utofu_query_stadd
	3.6.1.4 utofu_dereg_mem

	3.6.2 STADD Flags
	3.6.2.1 UTOFU_REG_MEM_FLAG_*
	3.6.2.2 UTOFU_DEREG_MEM_FLAG_*

	3.7 One-Sided Communication Execution
	3.7.1 One-Sided Communication Start Functions
	3.7.1.1 utofu_put
	3.7.1.2 utofu_put_gap
	3.7.1.3 utofu_put_stride
	3.7.1.4 utofu_put_stride_gap
	3.7.1.5 utofu_put_piggyback
	3.7.1.6 utofu_put_piggyback8
	3.7.1.7 utofu_get
	3.7.1.8 utofu_get_gap
	3.7.1.9 utofu_get_stride
	3.7.1.10 utofu_get_stride_gap
	3.7.1.11 utofu_armw4
	3.7.1.12 utofu_armw8
	3.7.1.13 utofu_cswap4
	3.7.1.14 utofu_cswap8
	3.7.1.15 utofu_nop

	3.7.2 One-Sided Communication Preparation Functions
	3.7.2.1 utofu_prepare_put
	3.7.2.2 utofu_prepare_put_gap
	3.7.2.3 utofu_prepare_put_stride
	3.7.2.4 utofu_prepare_put_stride_gap
	3.7.2.5 utofu_prepare_put_piggyback
	3.7.2.6 utofu_prepare_put_piggyback8
	3.7.2.7 utofu_prepare_get
	3.7.2.8 utofu_prepare_get_gap
	3.7.2.9 utofu_prepare_get_stride
	3.7.2.10 utofu_prepare_get_stride_gap
	3.7.2.11 utofu_prepare_armw4
	3.7.2.12 utofu_prepare_armw8
	3.7.2.13 utofu_prepare_cswap4
	3.7.2.14 utofu_prepare_cswap8
	3.7.2.15 utofu_prepare_nop

	3.7.3 One-Sided Communication Batch Start Functions
	3.7.3.1 utofu_post_toq

	3.7.4 One-Sided Communication Completion Confirmation Functions
	3.7.4.1 utofu_poll_tcq
	3.7.4.2 utofu_poll_mrq

	3.7.5 One-Sided Communication Query Functions
	3.7.5.1 utofu_query_num_unread_tcq

	3.7.6 Communication Completion Notification Structures
	3.7.6.1 struct utofu_mrq_notice

	3.7.7 ARMW Operation Types
	3.7.7.1 enum utofu_armw_op

	3.7.8 Communication Completion Notification Types
	3.7.8.1 enum utofu_mrq_notice_type

	3.7.9 One-Sided Communication Flags
	3.7.9.1 UTOFU_ONESIDED_FLAG_*
	3.7.9.2 UTOFU_ONESIDED_FLAG_PATH
	3.7.9.3 UTOFU_ONESIDED_FLAG_SPS

	3.7.10 Polling Flags
	3.7.10.1 UTOFU_POLL_FLAG_*

	3.8 Barrier Communication Execution
	3.8.1 Barrier Communication Start Functions
	3.8.1.1 utofu_barrier
	3.8.1.2 utofu_reduce_uint64
	3.8.1.3 utofu_reduce_double

	3.8.2 Barrier Communication Completion Confirmation Functions
	3.8.2.1 utofu_poll_barrier
	3.8.2.2 utofu_poll_reduce_uint64
	3.8.2.3 utofu_poll_reduce_double

	3.8.3 Reduction Operation Types
	3.8.3.1 enum utofu_reduce_op

	3.8.4 Barrier Communication Flags
	3.8.4.1 UTOFU_BARRIER_FLAG_*

	3.9 Supplemental Features
	3.9.1 Version Query Functions
	3.9.1.1 utofu_query_tofu_version
	3.9.1.2 utofu_query_utofu_version

	3.9.2 Compute Node Information Query Functions
	3.9.2.1 utofu_query_my_coords

	3.9.3 Version Information Macros
	3.9.3.1 UTOFU_VERSION_*

	Chapter 4 How to Use uTofu
	4.1 uTofu Program Design
	4.1.1 Use From a Language Other Than C
	4.1.2 Using uTofu Together With MPI
	4.1.3 Possible Range of Communication
	4.1.4 Preventing Concentrated Communications

	4.2 Compiling/Linking a uTofu Program
	4.3 Executing a uTofu Program
	4.3.1 Spawning a uTofu Process
	4.3.2 Environment Variables
	4.3.2.1 UTOFU_NUM_EXCLUSIVE_CQS
	4.3.2.2 UTOFU_NUM_SESSION_MODE_CQS
	4.3.2.3 UTOFU_NUM_MRQ_ENTRIES
	4.3.2.4 UTOFU_NUM_MRQ_ENTRIES_SESSION
	4.3.2.5 UTOFU_SWAP_PROTECT

	Chapter 5 Use Examples of uTofu
	5.1 Use Examples of One-Sided Communication
	5.1.1 Example of Ping-Pong Communication Using Put
	5.1.2 Example of Status Check Using Get
	5.1.3 Example of a Game Using ARMW
	5.1.4 Example of Stride Communication Using Put

	5.2 Use Examples of Barrier Communication
	5.2.1 Example of Barrier Synchronization and Reduction Operation

	Chapter 6 System Information
	6.1 Information of This Computing System
	6.1.1 Version Information of This Computing System
	6.1.2 Functional Characteristics of This Computing System
	6.1.3 Behavioral Specifications of This Computing System
	6.1.3.1 Strong Order Flag
	6.1.3.2 Page Size Managed by OS

	6.1.4 Restrictions on This Computing System
	6.1.4.1 Process Creation From Inside a uTofu Program
	6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu Interconnect Link is Down

	Chapter 7 Error Messages
	Glossary

