
J2UL-2567-01ENZ0(03)
July 2021

FUJITSU Software
Technical Computing Suite V4.0L20

Development Studio
uTofu User's Guide

Preface

Purpose of this Manual

This manual describes how to use uTofu, which is a programming interface for communication using the Tofu interconnect.

In this manual, a computing system with Fujitsu A64FX is called "this computing system".

Intended Readers

The intended readers of this manual are those who develop programs which communicate using the Tofu interconnect. In addition to
knowledge of the C language, readers need to have a basic knowledge of Linux commands, file manipulation, and shell programming.

Structure of This Manual

The structure of this manual is as follows:

Chapter 1 Tofu Interconnect and uTofu Overview

An overview of the Tofu interconnect and uTofu

Chapter 2 uTofu Communication Models

The communication models of uTofu

Chapter 3 uTofu Interface Specifications

The interface specifications of uTofu

Chapter 4 How to Use uTofu

How to use uTofu

Chapter 5 Use Examples of uTofu

Some examples of uTofu use

Chapter 6 System Information

System-specific information

Chapter 7 Error Messages

The error messages of uTofu implementation

Glossary

Terminology

Related Manuals

The following manuals are related to this manual. Refer to these manuals in conjunction with this manual.

- MPI User's Guide

- C User's Guide

- C++ User's Guide

- Fortran User's Guide

Also, refer to the manuals provided with the related software Job Operation Software.

This manual mentions MPI in some places. To learn the MPI standard, refer to the following document:

MPI: A Message-Passing Interface Standard

Version 3.1

Message Passing Interface Forum

June 4, 2015

- i -

Information concerning MPI is available from https://www.mpi-forum.org/.

Expression of Units

In this manual, the following prefixes are used to express units:

Prefix Value Prefix Value

k (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

Conventions Used in this Manual

The typographic conventions below are symbols used with pre-determined special meanings that express syntax.

Symbol name Symbol Explanation

Selection symbols
{} Indicates to select any one of the enclosed items

| Used as a delimiter in a list of items

Omission permitted symbol []
Indicates that the enclosed item can be omitted. This symbol includes the meaning of
the selection symbol "{}".

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code

July 2021, Version 1.3 J2UL-2567-01ENZ0(03)

September 2020, Version 1.2 J2UL-2567-01ENZ0(02)

June 2020, Version 1.1 J2UL-2567-01ENZ0(01)

February 2020, 1st Version J2UL-2567-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2021

Update History

Changes Location Version

Added the following environment variable.

- UTOFU_SWAP_PROTECT

4.3.2.5 Version 1.3

Modified the explanation about concentrated communications. 4.1.4 Version 1.2

Changed the number of available CQs per TNI. 6.1.2

- ii -

http://www.mpi-forum.org/

Changes Location Version

Added the explanation about virtual resource quantities.

Added "Error Messages". Chapter 7

Added "The Behavior When Configured to Change the Communication Path If a Tofu
Interconnect Link is Down".

6.1.4.2 Version 1.1

Improved the explanation. -

All rights reserved.

The information in this manual is subject to change without notice.

- iii -

Contents
Chapter 1 Tofu Interconnect and uTofu Overview..1

1.1 Tofu Interconnect Overview..1
1.1.1 Architecture.. 1
1.1.2 Network.. 1
1.1.3 Communication Methods..3

1.1.3.1 One-Sided Communication..3
1.1.3.2 Barrier Communication... 3

1.2 uTofu Overview...4

Chapter 2 uTofu Communication Models...6
2.1 Execution Unit... 6
2.2 One-Sided Communication..6

2.2.1 VCQ (Virtual Control Queue).. 6
2.2.1.1 TOQ (Transmit Order Queue)... 7
2.2.1.2 TCQ (Transmit Complete Queue)... 7
2.2.1.3 MRQ (Message Receive Queue)... 7

2.2.2 STADD (Steering Address).. 7
2.2.3 Put Communication.. 8
2.2.4 Get Communication..10
2.2.5 ARMW (Atomic Read Modify Write) Communication...12
2.2.6 NOP.. 16
2.2.7 Free Mode... 16
2.2.8 Session Mode..16

2.2.8.1 Behavioral Details of the Session Mode..17
2.2.8.2 Example of Communication Forking Using the Session Mode.. 19
2.2.8.3 Example of Communication Joining Using the Session Mode... 19
2.2.8.4 Example of Communication Pipeline Using the Session Mode.. 21

2.2.9 Maximum Transfer Size and Transmission Gap of Packets...22
2.2.10 Confirmation of Communication Completion and Guarantee of Ordering..22
2.2.11 Cache Injection and Padding.. 23
2.2.12 Communication Error... 23

2.3 Barrier Communication... 23
2.3.1 VBG (Virtual Barrier Gate).. 23
2.3.2 Barrier Circuit... 24
2.3.3 Barrier Synchronization..25
2.3.4 Reduction Operation... 26

2.4 Communication Path..26
2.5 Thread Safety...27

Chapter 3 uTofu Interface Specifications... 28
3.1 Common Definitions..29

3.1.1 Type Definitions... 29
3.1.1.1 typedef... 29

3.1.2 Return Values... 30
3.1.2.1 enum utofu_return_code.. 30

3.2 TNI Query..32
3.2.1 TNI Query Functions.. 32

3.2.1.1 utofu_get_onesided_tnis.. 32
3.2.1.2 utofu_get_barrier_tnis..33
3.2.1.3 utofu_query_onesided_caps...33
3.2.1.4 utofu_query_barrier_caps.. 34

3.2.2 Structures Indicating Available Communication Functions and Limit Values.. 34
3.2.2.1 struct utofu_onesided_caps..34
3.2.2.2 struct utofu_barrier_caps... 35

3.2.3 Flags Indicating Available Communication Functions.. 36
3.2.3.1 UTOFU_ONESIDED_CAP_FLAG_*..36

- iv -

3.2.3.2 UTOFU_BARRIER_CAP_FLAG_*...36
3.2.3.3 UTOFU_ONESIDED_CAP_ARMW_OP_*.. 36
3.2.3.4 UTOFU_BARRIER_CAP_REDUCE_OP_*..36

3.3 VCQ Management... 37
3.3.1 VCQ Creation/Freeing Functions... 37

3.3.1.1 utofu_create_vcq..37
3.3.1.2 utofu_create_vcq_with_cmp_id...38
3.3.1.3 utofu_free_vcq... 39

3.3.2 VCQ ID Manipulation Functions... 39
3.3.2.1 utofu_query_vcq_id... 39
3.3.2.2 utofu_construct_vcq_id... 40
3.3.2.3 utofu_set_vcq_id_path...40

3.3.3 VCQ Query Functions.. 41
3.3.3.1 utofu_query_vcq_info..41

3.3.4 VCQ Flags.. 42
3.3.4.1 UTOFU_VCQ_FLAG_*... 42

3.4 VBG Management... 42
3.4.1 VBG Allocation/Freeing Functions.. 43

3.4.1.1 utofu_alloc_vbg... 43
3.4.1.2 utofu_free_vbg...43

3.4.2 VBG Configuration Functions..44
3.4.2.1 utofu_set_vbg...44

3.4.3 VBG Query Functions.. 45
3.4.3.1 utofu_query_vbg_info... 45

3.4.4 VBG Configuration Structures... 46
3.4.4.1 struct utofu_vbg_setting.. 46

3.4.5 VBG Flags.. 46
3.4.5.1 UTOFU_VBG_FLAG_*... 46

3.4.6 Special Values for VBG Configuration.. 47
3.4.6.1 UTOFU_VBG_ID_NULL...47

3.5 Communication Path Management..47
3.5.1 Communication Path Management Functions..47

3.5.1.1 utofu_get_path_id.. 47
3.5.1.2 utofu_get_path_coords...48

3.5.2 Special Values for Setting of Communication Path... 48
3.5.2.1 UTOFU_PATH_COORD_NULL... 48

3.6 STADD Management.. 49
3.6.1 STADD Management Functions.. 49

3.6.1.1 utofu_reg_mem..49
3.6.1.2 utofu_reg_mem_with_stag.. 50
3.6.1.3 utofu_query_stadd... 51
3.6.1.4 utofu_dereg_mem.. 51

3.6.2 STADD Flags... 52
3.6.2.1 UTOFU_REG_MEM_FLAG_*.. 52
3.6.2.2 UTOFU_DEREG_MEM_FLAG_*...52

3.7 One-Sided Communication Execution.. 53
3.7.1 One-Sided Communication Start Functions... 54

3.7.1.1 utofu_put..54
3.7.1.2 utofu_put_gap.. 55
3.7.1.3 utofu_put_stride... 56
3.7.1.4 utofu_put_stride_gap... 57
3.7.1.5 utofu_put_piggyback... 58
3.7.1.6 utofu_put_piggyback8... 59
3.7.1.7 utofu_get.. 60
3.7.1.8 utofu_get_gap.. 61
3.7.1.9 utofu_get_stride... 62
3.7.1.10 utofu_get_stride_gap... 63

- v -

3.7.1.11 utofu_armw4..64
3.7.1.12 utofu_armw8..65
3.7.1.13 utofu_cswap4... 65
3.7.1.14 utofu_cswap8... 66
3.7.1.15 utofu_nop... 67

3.7.2 One-Sided Communication Preparation Functions.. 68
3.7.2.1 utofu_prepare_put..68
3.7.2.2 utofu_prepare_put_gap.. 68
3.7.2.3 utofu_prepare_put_stride... 69
3.7.2.4 utofu_prepare_put_stride_gap... 69
3.7.2.5 utofu_prepare_put_piggyback... 69
3.7.2.6 utofu_prepare_put_piggyback8... 70
3.7.2.7 utofu_prepare_get.. 70
3.7.2.8 utofu_prepare_get_gap.. 70
3.7.2.9 utofu_prepare_get_stride... 70
3.7.2.10 utofu_prepare_get_stride_gap... 71
3.7.2.11 utofu_prepare_armw4..71
3.7.2.12 utofu_prepare_armw8..71
3.7.2.13 utofu_prepare_cswap4... 72
3.7.2.14 utofu_prepare_cswap8... 72
3.7.2.15 utofu_prepare_nop... 72

3.7.3 One-Sided Communication Batch Start Functions...72
3.7.3.1 utofu_post_toq... 72

3.7.4 One-Sided Communication Completion Confirmation Functions... 73
3.7.4.1 utofu_poll_tcq..73
3.7.4.2 utofu_poll_mrq.. 74

3.7.5 One-Sided Communication Query Functions...75
3.7.5.1 utofu_query_num_unread_tcq... 75

3.7.6 Communication Completion Notification Structures... 75
3.7.6.1 struct utofu_mrq_notice...75

3.7.7 ARMW Operation Types..76
3.7.7.1 enum utofu_armw_op.. 76

3.7.8 Communication Completion Notification Types..77
3.7.8.1 enum utofu_mrq_notice_type.. 77

3.7.9 One-Sided Communication Flags...77
3.7.9.1 UTOFU_ONESIDED_FLAG_*..77
3.7.9.2 UTOFU_ONESIDED_FLAG_PATH... 78
3.7.9.3 UTOFU_ONESIDED_FLAG_SPS... 78

3.7.10 Polling Flags... 79
3.7.10.1 UTOFU_POLL_FLAG_*..79

3.8 Barrier Communication Execution.. 79
3.8.1 Barrier Communication Start Functions... 79

3.8.1.1 utofu_barrier.. 79
3.8.1.2 utofu_reduce_uint64.. 80
3.8.1.3 utofu_reduce_double... 81

3.8.2 Barrier Communication Completion Confirmation Functions... 81
3.8.2.1 utofu_poll_barrier.. 81
3.8.2.2 utofu_poll_reduce_uint64..82
3.8.2.3 utofu_poll_reduce_double... 83

3.8.3 Reduction Operation Types.. 83
3.8.3.1 enum utofu_reduce_op.. 83

3.8.4 Barrier Communication Flags...84
3.8.4.1 UTOFU_BARRIER_FLAG_*.. 84

3.9 Supplemental Features...84
3.9.1 Version Query Functions.. 84

3.9.1.1 utofu_query_tofu_version..84
3.9.1.2 utofu_query_utofu_version..84

- vi -

3.9.2 Compute Node Information Query Functions.. 85
3.9.2.1 utofu_query_my_coords.. 85

3.9.3 Version Information Macros...85
3.9.3.1 UTOFU_VERSION_*...85

Chapter 4 How to Use uTofu..86
4.1 uTofu Program Design...86

4.1.1 Use From a Language Other Than C.. 86
4.1.2 Using uTofu Together With MPI..86
4.1.3 Possible Range of Communication...87
4.1.4 Preventing Concentrated Communications.. 87

4.2 Compiling/Linking a uTofu Program.. 87
4.3 Executing a uTofu Program...87

4.3.1 Spawning a uTofu Process..87
4.3.2 Environment Variables... 88

4.3.2.1 UTOFU_NUM_EXCLUSIVE_CQS...88
4.3.2.2 UTOFU_NUM_SESSION_MODE_CQS... 88
4.3.2.3 UTOFU_NUM_MRQ_ENTRIES... 88
4.3.2.4 UTOFU_NUM_MRQ_ENTRIES_SESSION... 89
4.3.2.5 UTOFU_SWAP_PROTECT... 89

Chapter 5 Use Examples of uTofu... 90
5.1 Use Examples of One-Sided Communication... 90

5.1.1 Example of Ping-Pong Communication Using Put.. 90
5.1.2 Example of Status Check Using Get...93
5.1.3 Example of a Game Using ARMW.. 96
5.1.4 Example of Stride Communication Using Put..97

5.2 Use Examples of Barrier Communication... 100
5.2.1 Example of Barrier Synchronization and Reduction Operation... 100

Chapter 6 System Information..103
6.1 Information of This Computing System.. 103

6.1.1 Version Information of This Computing System... 103
6.1.2 Functional Characteristics of This Computing System.. 103
6.1.3 Behavioral Specifications of This Computing System... 104

6.1.3.1 Strong Order Flag.. 104
6.1.3.2 Page Size Managed by OS...105

6.1.4 Restrictions on This Computing System.. 105
6.1.4.1 Process Creation From Inside a uTofu Program..105
6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu Interconnect Link is Down.................. 105

Chapter 7 Error Messages... 106

Glossary... 107

- vii -

Chapter 1 Tofu Interconnect and uTofu Overview
This chapter provides an overview of the Tofu interconnect and uTofu.

uTofu is a programming interface for writing programs to communicate over the Tofu interconnect.

1.1 Tofu Interconnect Overview

1.1.1 Architecture
The Tofu interconnect is the interconnect for a parallel computing system consisting of a Tofu network, Tofu network interfaces (TNIs),
and Tofu network routers (TNRs). In this manual, Tofu interconnect is a general name. The name collectively refers to the Tofu interconnect
used with the High-end technical computing server MP10 system and Supercomputer PRIMEHPC FX10 system, the Tofu interconnect 2
used with the Supercomputer PRIMEHPC FX100 system, and the Tofu interconnect D used with this computing system.

Each of these parallel computing systems consists of multiple compute nodes, and each compute node has one TNR and at least one TNI.
TNRs are interconnected to make up a Tofu network. A TNI sends and receives packets according to instructions from software. A TNR
and a Tofu network transfer packets from a source TNI to a destination TNI. Simultaneous processing by two or more TNIs in one compute
node enables high-throughput communication. The following figure shows a compute node configuration.

Figure 1.1 Compute Node Configuration

1.1.2 Network
The Tofu interconnect connects multiple compute nodes with a Tofu network.

The Tofu network has a six-dimensional mesh/torus topology. The word mesh refers to a topology without interconnected endpoints on a
coordinate axis. The word torus refers to a topology with interconnected endpoints on a coordinate axis. The following figure shows an
example of a two-dimensional mesh and torus.

- 1 -

Figure 1.2 Example of a Two-Dimensional Mesh and Torus

The six-dimensional coordinate axes of the Tofu network are respectively assigned the letters X, Y, Z, A, B, and C. The three dimensions
of A, B, and C have fixed lengths of 2, 3, and 2, respectively, and the B axis connects them in a torus. The three dimensions of X, Y, and
Z have varying lengths depending on the system, and whether they are connected in a mesh or torus also varies with the system. For this
reason, the TNR of a single compute node has up to 10 Tofu links in total: 1 Tofu link along each of A and C; 2 Tofu links along B; and either
2 Tofu links along each of X, Y, and Z on compute nodes which are not located on mesh endpoints of the axis or 1 Tofu link along each of
X, Y, and Z on compute nodes which are located on mesh endpoints of the axis. The following figure shows these six-dimensional
connections. In this figure, all the connections on the A, B, and C axes have been drawn with solid lines, represented in a rectangular
parallelepiped. The focus for the X, Y, and Z axes is the single compute node at the center, so only the links from this compute node have
been drawn with broken lines.

- 2 -

Figure 1.3 Six-Dimensional Connections of a Tofu Network

Each compute node can be identified by X,Y,Z,A,B,C coordinates on these six dimensions. The coordinates are called compute node
coordinates.

Communication between non-neighboring compute nodes (not directly connected by a Tofu link) in the six-dimensional mesh/torus is
relayed by the TNRs of their intermediate nodes.

1.1.3 Communication Methods
The Tofu interconnect can use two communication methods to communicate from the user space: one-sided communication, and barrier
communication.

1.1.3.1 One-Sided Communication
One-sided communication accesses the main memory of a compute node and updates the main memory of another compute node without
going through the CPU. This communication method has three types of communication function: Put, Get, and ARMW (Atomic Read
Modify Write). The method is generally called RDMA (remote direct memory access).

Put is a communication function that reads contiguous data from the main memory of the local compute node and writes the data to the main
memory of a remote compute node. Get is a communication function that reads contiguous data from the main memory of a remote compute
node and writes the data to the main memory of the local compute node. ARMW is a communication function that reads, calculates, and
writes four-byte or eight-byte data atomically on the main memory of a remote compute node.

ARMW operators, ARMW operands, and the memory regions targeted for reading and writing on the local compute node and remote
compute node are all specified by software on the local compute node.

One-sided communication is executed from a process in the user space without going through the kernel.

1.1.3.2 Barrier Communication
Barrier communication is a communication function that performs barrier synchronization between multiple compute nodes. Barrier
communication is configured beforehand for the processes that will be participating in barrier communication. Each process starts barrier

- 3 -

communication and then waits for it to complete. Once all the processes participating in the barrier communication have started the barrier
communication, the barrier communication with each process is completed. The interconnect can also execute the reduction operation along
with barrier synchronization.

Barrier communication can be used to implement the MPI_BARRIER routine, MPI_ALLREDUCE routine, etc. of MPI.

Barrier communication is executed from a process in the user space without going through the kernel.

1.2 uTofu Overview
uTofu is a low-level application programming interface (API) used by software in the user space to communicate using the Tofu
interconnect. uTofu supports the one-sided communication and barrier communication of the Tofu interconnect. The interface of uTofu is
provided as functions of C. uTofu implementations are provided in the form of a library. In this manual, this implementation is called uTofu
implementation.

The design of uTofu assumes that it is used from libraries (for example, MPI library) or the like for communication between processes by
application programs.

An example when uTofu is used from an MPI library is shown in "Figure 1.4 Example of a Software Stack when uTofu is Used from an
MPI Library".

Figure 1.4 Example of a Software Stack when uTofu is Used from an MPI Library

Nonetheless, application programs can use uTofu directly for performance tuning of communication using MPI as shown in "Figure 1.5
Example of a Software Stack when uTofu is Used Directly from Application Programs

- 4 -

Figure 1.5 Example of a Software Stack when uTofu is Used Directly from Application Programs

The interface can also be used for communication (memory access) within a single thread or between threads in a single process. In this
manual, the libraries and application programs that use uTofu are called uTofu programs. Similarly, the processes that execute uTofu
programs are called uTofu processes.

uTofu does not have any functions for identifying and managing multiple processes like ranks and groups of MPI. If you require such
functions, you will need to use uTofu in combination with MPI-like functions or create original functions.

The functions to start communication and confirm communication completion are separated in uTofu. If the function to start communication
cannot start the communications immediately, that function returns a return value indicating that status. The function to confirm
communication completion returns information on whether or not communication has completed. Because of that, all functions return
within a finite length of time regardless of the process and thread status at the other end of the communication. And, it is necessary to confirm
a return value of functions for making sure to communicate.

- 5 -

Chapter 2 uTofu Communication Models
This chapter describes the communication models of uTofu.

2.1 Execution Unit
The execution unit of uTofu is a process in the user space of the OS. Each execution unit has a communication context. This means, for
example, that:

- a process cannot directly use the communication resources created or allocated by another process, and

- a thread can confirm the completion of communication started by another thread in the same process.

uTofu has functions (VCQ and VBG) to separate the communication context within one process. Using these functions, multiple software
components (MPI library, parallel language runtime environment, etc.) or multiple threads can communicate in a logically independent
manner within one process.

2.2 One-Sided Communication
In one-sided communication, the TNI communicates between two compute nodes by directly accessing and updating the main memory of
the compute nodes and by sending and receiving packets.

2.2.1 VCQ (Virtual Control Queue)
Software can manipulate the TNI through a CQ (control queue). The number of CQs per TNI is finite and varies depending on the type of
Tofu interconnect. For this reason, uTofu virtualizes and abstracts CQs, which are hardware resources, as VCQs (virtual control queues).
uTofu performs all one-sided communication via VCQs.

Communication via a VCQ does not affect the logical behavior of communication via another VCQ. For example, after communication
starts via a VCQ, only this VCQ will be notified of its completion.

If a process creates a VCQ, it obtains a VCQ handle that is valid only within the process. All the functions of one-sided communication of
uTofu have a VCQ handle as a parameter. Also, each VCQ is assigned a VCQ ID. The VCQ ID is a 64-bit unsigned integer identifying the
VCQ, and it is a unique value among all the VCQs within the Tofu network.

One-sided communication is performed between two CQs in the Tofu interconnect. One of the two CQs is the CQ given a communication
instruction by software (local CQ), and the other is the communication target CQ (remote CQ). To perform one-sided communication with
uTofu, software gives the local VCQ handle and a remote VCQ ID to uTofu function parameters. Therefore, the software needs to know
the remote VCQ ID before starting communication.

Each CQ and VCQ consists of the three queues TOQ, TCQ, and MRQ, which have different roles. Software writes and reads data called
descriptors to/from these three queues to issue a communication instruction and confirm the completion of communication.

The following figure shows the TNI, CQ, and VCQ configuration.

- 6 -

Figure 2.1 TNI, CQ, and VCQ Configuration

2.2.1.1 TOQ (Transmit Order Queue)
The TOQ is a transmit order queue. Software uses the queue to issue a communication instruction to the TNI. Software writes a descriptor,
and the TNI reads it. This descriptor is called the TOQ descriptor.

There are multiple types of communication in one-sided communication. TOQ descriptors are subdivided according to the type of
communication. The following table lists the correspondence between the types of communication and the descriptor names. The
subdivided TOQ descriptors are called Put descriptor, etc. Although NOP is not communication, it is included in this table for convenience
because a descriptor exists.

Table 2.1 Correspondence Between the Types of Communication and Descriptor

Types of Communication Descriptor Name

Put
Put

Put Piggyback

Get Get

ARMW ARMW

NOP NOP

2.2.1.2 TCQ (Transmit Complete Queue)
The TCQ is a transmit complete queue. The TNI uses the queue to notify software of data transmission completion. The TNI writes a
descriptor, and software reads it. This descriptor is called the TCQ descriptor.

2.2.1.3 MRQ (Message Receive Queue)
The MRQ is a message receive queue. The TNI uses the queue to notify software of communication completion. The TNI writes a descriptor,
and software reads it. This descriptor is called the MRQ descriptor. There are two types in MRQ descriptors: local notification and remote
notification.

2.2.2 STADD (Steering Address)
Normally, processes in the user space identify memory regions with virtual memory addresses, but the Tofu interconnect does not recognize
virtual addresses because it accesses memory without going through the OS. In the Tofu interconnect, a value called STag (steering tag)
identifies the memory region accessed or updated in one-sided communication.

- 7 -

To make it easy to use the STag, uTofu adopts a value called STADD (steering address). The STADD is a 64-bit unsigned integer, and each
is a unique value within a CQ. One memory region may have different STADD values for different CQs.

STag values (and STADD values) are not automatically assigned to the virtual addresses available to a process. Therefore, before one-sided
communication starts, it is necessary to register memory addresses with a TNI to obtain the corresponding STADD values. Once a memory
address is registered, the corresponding STADD can be used for one-sided communication multiple times. When that use for one-sided
communication ends, that memory address registration with the TNI must be deregistered. If the registration is not deregistered and many
memory addresses remain registered, STag values may be exhausted or the performance of STADD management functions of uTofu may
degrade.

Figure 2.2 Flow from Registration to Deregister of STADD

To perform one-sided communication with uTofu, software gives local and remote STADD values to uTofu function parameters. Therefore,
the software needs to know the remote STADD value before starting communication.

STADD values are managed for each VCQ.

2.2.3 Put Communication
Put is a communication function that writes contiguous data from the memory of the local process (transmission source) to the memory of
a remote process (transmission destination).

A VCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. The
local STADD specifies the start address of the memory of the transmission source. A remote STADD specifies the start address of the
memory of the transmission destination.

- 8 -

The following figure shows the Put communication model executed by the Tofu interconnect. The dotted arrow in the figure represents the
data flow.

Figure 2.3 Put Communication Model

: Data of Transmission Source : Region of Transmission Destination

Put has the following steps.

The steps 1, 6, 10 and 13 in this procedure need to be executed by calling the uTofu functions.

1. The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

2. The local TNI reads the descriptor from the TOQ.

3. The local TNI reads data from memory.

4. The local TNI sends data to the TNR.

5. The local TNI writes a descriptor to the TCQ.

6. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can judge that the data
written to destination memory will not be affected even if the local process update the memory region of the transmission source from
this time.

7. The TNR and the Tofu network transfer the data to the remote TNI.

8. The remote TNI writes the data to memory.

9. The remote TNI writes a remote notification descriptor to the MRQ.

10. The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can find out that the memory region of the transmission destination has been updated.

11. The remote TNI transfers a packet for memory write completion notification to the local TNI via the TNR and Tofu network.

12. The local TNI writes a local notification descriptor to the MRQ.

13. The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the memory region of the transmission destination has been updated.

- 9 -

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.4 Put Steps

For Put, the local TNI reads data from memory after it reads the TOQ descriptor. For the Tofu interconnect, the local process can embed
data in the TOQ descriptor if the data size is small. This is called piggyback. Using piggyback eliminates the local TNI processing that reads
data from memory, thereby enabling low-latency communication. It also eliminates the need for the local process to register a memory
region with the TNI. uTofu can inquire about which data sizes allow piggyback.

For details of the example that performs Put communication, see "5.1.1 Example of Ping-Pong Communication Using Put".

2.2.4 Get Communication
Get is a communication function that writes contiguous data from the memory of a remote process (transmission source) to the memory of
the local process (transmission destination).

A VCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. A
remote STADD specifies the start address of the memory of the transmission source. The local STADD specifies the start address of the
memory of the transmission destination.

The following figure shows the Get communication model executed by the Tofu interconnect. The dotted arrow in the figure represents the
data flow.

- 10 -

Figure 2.5 Get Communication Model

: Data of Transmission Source : Region of Transmission Destination

Get has the following steps.

The steps 1, 5, 9 and 13 in this procedure need to be executed by calling the uTofu functions.

1. The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

2. The local TNI reads the descriptor from the TOQ.

3. The local TNI sends a packet to issue a data transmission instruction to the TNR.

4. The local TNI writes a descriptor to the TCQ.

5. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can find out that the
communication has started.

6. The TNR and the Tofu network transfer the instruction packet to the remote TNI.

7. The remote TNI reads data from memory.

8. The remote TNI writes a remote notification descriptor to the MRQ.

9. The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can judge that the data written to destination memory will not be affected even if the remote process update the memory region of
the transmission source from this time.

10. The remote TNI transfers the data to the local TNI via the TNR and Tofu network.

11. The local TNI writes the data to memory.

12. The local TNI writes a local notification descriptor to the MRQ.

13. The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the memory region of the transmission destination has been updated.

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

- 11 -

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.6 Get Steps

For details of the example that performs Get communication, see "5.1.2 Example of Status Check Using Get".

2.2.5 ARMW (Atomic Read Modify Write) Communication
ARMW is a communication function that reads, calculates, and writes four-byte or eight-byte data atomically on the main memory of a
remote compute node.

The following table lists the operators available for uTofu.

Table 2.2 ARMW Operators

Name Operation

CSWAP Compare and Swap

SWAP Swap

ADD Unsigned integer addition

XOR Bitwise XOR

AND Bitwise AND

OR Bitwise OR

CSWAP is processed as follows.

1. The local process specifies two operands to a TOQ descriptor. They are swap operand and compare operand.

2. The TNI of the remote compute node writes the swap operand value to the target memory only if the pre-operation value is equal to
the compare operand value.

SWAP is processed as follows.

1. The local process specifies one swap operand to a TOQ descriptor.

2. The TNI of the remote compute node writes the swap operand value to the target memory regardless of the pre-operation value on
the target memory.

- 12 -

Other operators are processed as follows.

1. The local process specifies one operand to a TOQ descriptor.

2. The TNI of the remote compute node executes the relevant operation with the pre-operation value and operand, and then the resultant
value is written.

For any operation, the pre-operation value is reported using a local notification MRQ descriptor. For example, for ADD, if the local process
specifies a value 11 as the operand and the pre-operation value on the target memory of the remote compute node is 22, a value 33 is written
to the target memory and the value 22 is notified the local process of by a local notification MRQ descriptor.

In ARMW, the memory access/update operation on a remote compute node is performed atomically. The word atomic means the following:
if more than one memory update operations are performed concurrently, reading, calculating, or writing of no other memory update
operation are performed while reading, calculating, and writing of one memory update operation are being performed. This operation is
guaranteed atomic not only with ARMW execution by the same remote VCQ but also with ARMW execution by another remote VCQ or
another remote TNI, and with execution of an atomic memory access/update instruction by a remote CPU.

For example, assume that ARMW communication of ADD operation is executed simultaneously from two other compute nodes to the same
memory area of one compute node.

In this case, processing is performed regardless of the combination of the VCQ used. First, processing (reading, calculating, and writing)
from one of the compute nodes is performed. Next, processing (reading, calculating, and writing) from the other compute node is performed.
Therefore, the final result written to that memory area is the sum of the two operand values and the original value.

Figure 2.7 When ARMW Communication of the ADD Operation is Executed Simultaneously to the Same Memory
Area

: Memory Area

In the following example, ARMW communication of ADD operation is executed from one compute node to other compute nodes. At the
same time, the CPU of that remote compute node atomically executes addition instructions to the same memory area. Therefore, the final
result written to that memory area is the sum of the three values.

- 13 -

Figure 2.8 When an ARMW Communication of the ADD Operation and an Atomic Add Instruction are Executed
Simultaneously on the Same Memory Area

: Memory Area

A VCQ handle specifies the TNI used by the local compute node. A remote VCQ ID specifies the TNI used by a remote compute node. A
remote STADD specifies the start address of the target memory.

The following figure shows the ARMW communication model executed by the Tofu interconnect. The dotted arrows in the figure represent
the data flows.

Figure 2.9 ARMW Communication Model

- 14 -

: Target Region for the Operation

ARMW has the following steps.

The steps 1, 5, 10 and 13 in this procedure need to be executed by calling the uTofu functions.

1. The local process writes a descriptor to the TOQ to instruct the TNI to start communication.

2. The local TNI reads the descriptor from the TOQ.

3. The local TNI sends an operator and operand to the TNR.

4. The local TNI writes a descriptor to the TCQ.

5. The local process reads the descriptor from the TCQ. By checking this TCQ descriptor, the local process can find out that the
communication has started.

6. The TNR and the Tofu network transfer the operator and operand to the remote TNI.

7. The remote TNI and memory controller read the data from memory, execute the operation, and write the post-operation data to
memory.

8. The remote TNI obtains the pre-operation data.

9. The remote TNI writes a remote notification descriptor to the MRQ.

10. The remote process reads the descriptor from the MRQ. By checking this remote notification MRQ descriptor, the remote process
can find out that the memory region targeted for the operation has been updated.

11. The remote TNI transfers the data to the local TNI via the TNR and Tofu network.

12. The local TNI writes a local notification descriptor to the MRQ.

13. The local process reads the descriptor from the MRQ. By checking this local notification MRQ descriptor, the local process can find
out that the target memory region has been updated.

The choice to notify or not notify can be made for each of the TCQ descriptor, remote notification MRQ descriptor, and local notification
MRQ descriptor when the local process writes the descriptor to the TOQ.

The following figure shows these steps. The numbers in parentheses in this figure correspond to the above steps. The solid arrows in the
figure represent steps executed by calling uTofu functions.

Figure 2.10 ARMW Steps

- 15 -

For details of the example that performs ARMW (Atomic Read Modify Write) communication, see "5.1.3 Example of a Game Using
ARMW".

2.2.6 NOP
NOP does not communicate at all. It is usually used to adjust the number of TOQ descriptors in the session mode described in "2.2.8 Session
Mode". It can also be used in the free mode described in "2.2.7 Free Mode" but it has no effect other than wasting space in a TOQ.

NOP has the following steps. A corresponding MRQ descriptor is not written.

1. The local process writes a descriptor to the TOQ to instruct the TNI to start processing.

2. The local TNI reads the descriptor from the TOQ.

3. The local TNI writes a descriptor to the TCQ.

4. The local process reads the descriptor from the TCQ.

The choice to notify or not notify of the TCQ descriptor can be made when the local process writes the descriptor to the TOQ.

2.2.7 Free Mode
A CQ has the following two modes. One of them is assigned to each CQ when a uTofu program starts. You can select which mode of CQ
to use when you create a VCQ. Both modes cannot be used simultaneously in a VCQ.

- free mode

- session mode

The free mode is a usual mode. Behaviors described from "2.2.3 Put Communication" to "2.2.6 NOP" are those of the free mode. In the free
mode, one-sided communication start functions and one-sided communication batch start functions write a TOQ descriptor and a TNI starts
the communication immediately. Therefore, when two or more processes want to perform a sequence of communications in cooperation
with each other, processes must call a function with proper timing.

A VCQ created on a CQ of the free mode is called a free mode VCQ. A free mode VCQ is created if a mode is not specified when you create
a VCQ.

2.2.8 Session Mode
The session mode is a mode which automatically starts instructed communications when a TNI receives another communication. In the
session mode, one-sided communication start functions and one-sided communication batch start functions write a TOQ descriptor but a
TNI does not start the communication immediately. By receiving another Put communication at the VCQ, the TNI starts the instructed
communication automatically. Therefore, when two or more processes want to perform a sequence of communications in cooperation with
each other, communications except the first communication can be started without involvement of processes. For example, if a process
sends same data to two or more processes, the data can be relayed automatically like the sequence shown in the figure below.

- 16 -

Figure 2.11 Relaying Put Communications by Four Processes

: Data of Transmission Source : Region of Transmission Destination

A VCQ created on a CQ of the session mode is called a session mode VCQ. A session mode VCQ is created if the session mode is specified
when you create a VCQ.

In this subsection, the following terms are used for the purpose of explanation.

Term Explanation

beginning process
Process which starts a communication using a session mode VCQ as a remote VCQ first in a sequence of
communications

relay process Process which sends and receives automatically using a session mode VCQ

terminal process Process which receives from a session mode VCQ in a relay process but does not send

2.2.8.1 Behavioral Details of the Session Mode
In the session mode, a local process (communication origin) specifies the number of communications which are started automatically at a
TNI of a remote process (communication target). This number is called a session progress step (SPS). For example, the process A writes
five descriptors to its session mode VCQ in advance and the process B instructs its VCQ to start a Put communication with SPS 3 to the
session mode VCQ of the process A. When the session mode VCQ of the process A receives the Put communication, the first three TOQ
descriptors are started automatically. Subsequently the process C instructs its VCQ to start a Put communication with SPS 2 to the session
mode VCQ of the process A. When the session mode VCQ of the process A receives the Put communication, the remaining two TOQ
descriptors are started automatically. The following figure shows the sequence.

- 17 -

Figure 2.12 Specifying an SPS

At a local process, an SPS can be specified only in a Put descriptor. If an SPS is specified in a Put Piggyback, Get, ARMW, or NOP
descriptor, the behavior is undefined. Only Put and NOP descriptors can be started automatically at a remote process. If a Put Piggyback,
Get, or ARMW descriptor is written in a session mode VCQ, the behavior is undefined.

A descriptor with an SPS can be used for both a free mode VCQ and a session mode VCQ. A beginning process usually uses a free mode
VCQ. A relay process uses a session mode VCQ. A terminal process can use either a free mode VCQ or a session mode VCQ. If you use
a session mode VCQ at a terminal process, you must specify 0 as an SPS in a Put descriptor targeted to the VCQ.

At a relay process, it is guaranteed that the Put communication to a next relay process or a terminal process starts after data from a beginning
process or a previous relay process is written to memory of the relay process. Therefore, when the value of the local STADD of the Put
communication to send is equal to the value of the remote STADD of the received Put communication, it is guaranteed that exactly the
received data is sent. However, if the memory region is updated by another communication or a CPU almost at the same time, this behavior
is not guaranteed exceptionally.

If a received Put communication has an error because of an incorrect remote STADD value or other reasons, communication instructed in
the session mode VCQ is not started by the Put communication.

You can write TOQ descriptors to a session mode VCQ after receiving a Put communication. When a session mode VCQ receives a Put
communication, if there are TOQ descriptors of which communications are not started yet and the number is less than the SPS of the Put
communication, communications of all existing TOQ descriptors are started. When TOQ descriptors are written by a one-sided
communication start function or one-sided communication batch start function call subsequently, communications of TOQ descriptors
which were lacking are started. If the number of TOQ descriptors is still lacking, the rest of communications are started by subsequent
function calls. The number of lacking TOQ descriptors must be 2000 at most. If the number of lacking TOQ descriptors exceeds 2000,
communications may not be performed correctly. For example, communication may not be started even if a one-sided communication start
function or one-sided communication batch start function is called.

- 18 -

An SPS can be a value from 0 to 15. If a value 16 or greater is specified, the behavior is undefined.

Behaviors other than explained above, for example when TCQ and MRQ descriptors are written, are same as those of the free mode.

2.2.8.2 Example of Communication Forking Using the Session Mode
A relay process can relay Put communication not only one-by-one but with forking.

The following figure shows an example of Put communication forking to two processes at a relay process.

Figure 2.13 Forking at an Relay Process

In this example, Put communication forks in the following steps. The numbers in parentheses in the figure above correspond to the steps
below.

1. The relay process B writes two Put descriptors, one to the terminal process C and the other to the terminal process D.

2. The beginning process A writes a Put descriptor to the relay process B with SPS 2.

3. The Put communication of 2. is started.

4. The Put communications of 1. are started automatically when the TNI of the relay process B receives the Put communication of 3.

In this example, only the process B is a relay process and Put communication forks only one time. However, Put communication can fork
multiple times if the processes C and D are also relay processes.

2.2.8.3 Example of Communication Joining Using the Session Mode
Furthermore, a relay process can relay Put communication with joining.

The following figure shows an example of Put communication joining from three processes at a relay process.

- 19 -

Figure 2.14 Joining at an Relay Process

In this example, Put communications join in the following steps. The numbers in parentheses in the figure above correspond to the steps
below.

1. The relay process D writes two NOP descriptors and one Put descriptor to the terminal process E.

2. The beginning process A writes a Put descriptor to the relay process D with SPS 1.

3. The Put communication of 2. is started.

4. The TNI of the relay process D receives the Put communication of 3. but no communication is started.

5. The beginning process B writes a Put descriptor to the relay process D with SPS 1.

6. The Put communication of 5. is started.

7. The TNI of the relay process D receives the Put communication of 6. but no communication is started.

8. The beginning process C writes a Put descriptor to the relay process D with SPS 1.

9. The Put communication of 8. is started.

10. The Put communication of 1. is started automatically when the TNI of the relay process D receives the Put communication of 9.

In this example, the beginning processes A, B, and C write Put descriptors in this order and the TNI of the relay process D receives Put
communication in the same order. However, the order is not significant. The Put communication from the relay process D is started once
the TNI of the relay process D receives all three Put communications.

In this example, only the process D is a relay process and Put communications join only one time. However, Put communications can join
multiple times if the processes A, B, and C are also relay processes.

- 20 -

2.2.8.4 Example of Communication Pipeline Using the Session Mode
When relaying data using one Put communication, the Put communication to the next relay process or the terminal process is started at a
relay process after receiving data completely from the beginning process or the previous relay process. If the size of data is large, relaying
multiple split data using multiple Put communications may shorten the overall time to deliver data to the terminal process. This type of
relaying style is called a pipeline.

The following figure shows an example of pipelined Put communications when data of 30 bytes is split into thirds.

Figure 2.15 Pipelined Put Communication

In this example, Put communications are pipelined in the following steps. The numbers in parentheses in the figure above correspond to the
steps below.

1. The relay process B writes three Put descriptors to the terminal process C. The first Put communication transfers first 10 bytes. The
second Put communication transfers next 10 bytes. The third Put communication transfers last 10 bytes.

2. The beginning process A writes three Put descriptors to the relay process B with SPS 1 each. Each Put communication transfers data
split in the same way as 1.

3. The Put communications of 2. are started in sequence.

4. The first Put communication of 1. is started automatically when the TNI of the relay process B receives the first Put communication
of 2.

5. The second Put communication of 1. is started automatically when the TNI of the relay process B receives the second Put
communication of 2.

6. The third Put communication of 1. is started automatically when the TNI of the relay process B receives the third Put communication
of 2.

As explained in "2.2.10 Confirmation of Communication Completion and Guarantee of Ordering", local VCQs and communication path
coordinates of all Put descriptors at the beginning process A should be same if pipelined Put communications are used. Otherwise, the order
of receiving Put communications at the relay process B may be different from the order of sending Put communications at the beginning
process A. As the result, the relay process B may send data to the terminal process C which has not been received completely from the
beginning process A.

- 21 -

In this example, only the process B is a relay process and Put communications are pipelined in only two stages. However, Put
communications can be pipelined in more stages if the process C is also a relay process.

2.2.9 Maximum Transfer Size and Transmission Gap of Packets
The Tofu interconnect splits data into units called packets and then transfers them. The maximum transfer size of a packet is called MTU
(maximum transfer unit). When sending data has a size that is larger than the MTU, the Tofu interconnect splits the data into packets of the
MTU and transfers the packets.

When there is contention for a communication path, the effective bandwidth of the path may drop due to congestion. If you know beforehand
that such congestion will occur between multiple communications, you can mitigate that drop by suppressing the packet injection rate. For
Put and Get, the TNI can suppress the injection rate with an interval between packets so as not to immediately send the next packet after
sending a packet. This interval is called transmission gap.

2.2.10 Confirmation of Communication Completion and Guarantee of
Ordering

In Put communication, the TNI writes data to the main memory of a remote compute node. In Get communication, the TNI writes data to
the main memory of the local compute node. In these cases, if the write destination area crosses multiple CPU cache lines, the write sequence
to the main memory between these CPU cache lines is not guaranteed, which may change the order. If the read source area crosses multiple
pages, the write sequence to the main memory between these CPU cache lines is also not guaranteed even if the write destination area does
not cross multiple CPU cache lines, which may change the order.

Consequently, in one communication operation, even if it can be confirmed that an area has been updated with a load instruction, etc. of the
CPU, other areas must not be judged as also having been updated.

However, when a CPU cache line in the write destination area is focused, writing is guaranteed in the unit of granularity of CPU cache line
if the read source area corresponding to the CPU cache line does not cross multiple pages.

Therefore, within the range of a single CPU cache line in the write destination area, if an area has been confirmed as updated with a load
instruction, etc. of the CPU, other areas can be judged as also having been updated only when the read source area corresponding to the CPU
cache line does not cross multiple pages. Thus, when writing is confirmed with a load instruction, etc. of the CPU for each area delimited
by the boundary of a CPU cache line, that may confirm the completion of all writing. In ARMW communication, no area crosses multiple
CPU cache lines.

It is strongly recommended to write with a load instruction, etc. of the CPU for each area delimited by the boundary of a CPU cache line.
Accordingly, the TCQ and MRQ may confirm the completion of data reading or writing in one communication operation as follows.

- TCQ notification may confirm the completion of all data reading from the main memory of the local compute node in Put
communication.

- Remote MRQ notification may confirm the completion of all data writing to the main memory of the remote compute node in Put
communication.

- Remote MRQ notification may confirm the completion of all data reading from the main memory of the remote compute node in Get
communication.

- Local MRQ notification may confirm the completion of all data writing to the main memory of the local compute node in Get
communication.

- Remote MRQ notification may confirm the completion of all data writing to the main memory of the remote compute node in ARMW
communication.

The following orderings are guaranteed, regardless of the combination of Put, Get, and ARMW, when multiple communication instructions
are issued to the TOQ in the same local VCQ. Refer to "6.1.3 Behavioral Specifications of This Computing System" for behavioral
specifications when the strong order flag is set.

- The order of reading and writing the local and remote main memory is not guaranteed by default. The strong order function exists to
guarantee the order to some extent. The following two events are guaranteed when the strong order flag is set in a certain TOQ
descriptor, but only if the communication path coordinates and remote VCQs are the same across the communication instructions. The
first guaranteed event is the start of reading in communication after the reading in the preceding communication is completed. The
second guaranteed event is the start of writing in communication after the writing in the preceding communication is completed.

- TCQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor.

- 22 -

- Remote MRQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor only
if the communication path coordinates and remote VCQs are the same across the communication instructions.

- Local MRQ notifications are guaranteed to occur in the same order as that of communication instructions by the TOQ descriptor only
if the communication path coordinates and remote VCQs are the same across the communication instructions.

This characteristic of the TCQ notification can be used to learn which TCQ notifications correspond to which communication instructions
by TOQ descriptors. Also, the functions that start communication by writing a TOQ descriptor have a parameter specifying callback data.
The function that confirms communication completion by reading a TCQ descriptor has a parameter for returning the callback data specified
when the corresponding TOQ descriptor is written. This callback data can also be used to learn the correspondence between TOQ
descriptors and TCQ descriptors.

Local MRQ notifications do not make it easy to learn which communication instructions by TOQ descriptors correspond to the notifications.
However, the functions that start communication by writing a TOQ descriptor have a parameter specifying a value called EDATA. The
function that confirms communication completion by reading an MRQ descriptor has a parameter for returning a structure object that
includes the EDATA value specified when the corresponding TOQ descriptor is written. This EDATA can also be used to learn the
correspondence between TOQ descriptors and MRQ descriptors.

This structure object is also returned by remote MRQ notifications. Therefore, the EDATA can be used to also learn which communication
has completed in a remote process.

2.2.11 Cache Injection and Padding
The function of cache injection is to decrease the latency that the CPU reads data from the main memory after the TNI writes data to the
main memory. In Put communication, the write destination is a remote compute node. In Get communication, it is the local compute node.
When the cache injection flag is set in the TOQ descriptor, the function writes data to not only the main memory but also the last level cache
of the CPU. This can prevent a cache miss in the last level cache when the CPU accesses the written data.

However, for cache injection to work, conditions have to be met: the write operation must overwrite a cache line entirely, and the cache line
must be clean. A typical case of a clean cache line in the last level cache is a case where the CPU is polling the relevant cache line. If these
conditions are not met, data is written only to the main memory, and a cache miss occurs during the subsequent data read by the CPU.

Put using piggyback has a smaller transfer size than the cache line size, so it cannot overwrite a cache line entirely. Therefore, just setting
the cache injection flag in the TOQ descriptor does not enable Put to write data in the last level cache of the CPU.

Put using piggyback has the cache line padding function to suppress a cache miss. When the cache line padding flag is set in the TOQ
descriptor, Put adds indefinite values to the beginning and end of data to extend up to the cache line boundaries before writing the data. Thus,
with both the cache injection flag and the cache line padding flag specified at the same time, Put can write data in the last level cache of the
CPU. The cache line padding flag is available only for Put using piggyback.

2.2.12 Communication Error
In one-sided communication, successful packet transfer from the source TNI to the destination TNI is guaranteed when communication is
enabled and no failure has occurred in the local TNI, remote TNI, TNRs on the communication path, and Tofu network.

However, a communication error may occur due to the wrong specified STADD value or other reasons. The TCQ reports any error that
occurs when the local TNI sends a packet, and the MRQ reports any error that occurs after this time. You can check error details from the
return value of the one-sided communication completion confirmation functions.

2.3 Barrier Communication
In barrier communication, the TNI sends and receives packets and signals sequentially between multiple compute nodes to achieve barrier
synchronization between these nodes. The reduction operation can also be executed along with barrier synchronization.

2.3.1 VBG (Virtual Barrier Gate)
Each TNI has circuits called BGs (barrier gates). Each BG sends and receives packets and signals. To use barrier communication, the BGs
must be configured on all the compute nodes participating in barrier synchronization before the barrier synchronization starts. The network
of the communication paths configured between the BGs prior to the barrier synchronization is called a barrier circuit.

A barrier circuit is built with the multiple BGs used per TNI. A series of circular dependencies are set among the multiple BGs of each TNI.
Of these BGs, one is the start/end BG, and the others are relay BGs. Packet transfer through a series of BGs begins at a start/end BG and

- 23 -

ends at the BG immediately before a start/end BG. To control the transfer sequence of packets, each BG sends a signal to the next BG at
the same time as it sends a packet.

When barrier communication starts, the start/end BG sends a packet to a preconfigured BG in an arbitrary TNI and a signal to another
preconfigured BG in the same TNI. After that, it waits for a packet from a preconfigured BG in an arbitrary TNI and a signal from another
BG in the same TNI.

A relay BG waits for a packet from a preconfigured BG in an arbitrary TNI and a signal from another preconfigured BG in the same TNI.
Upon receiving both of them, the relay BG sends the packet to a preconfigured BG in an arbitrary TNI and the signal to another
preconfigured BG in the same TNI.

A packet source BG and a packet destination BG can belong to TNIs on the same compute node or TNIs on different compute nodes.

The following figure shows the sending of packets and signals. The figure focuses on one BG at the center, so only the packets and signals
with this BG as their source or destination have been drawn.

Figure 2.16 BG, Packet, and Signal

uTofu abstracts a BG as a VBG (virtual barrier gate). Each VBG is assigned a VBG ID. The VBG ID is a 64-bit unsigned integer identifying
the VBG, and it is a unique value among all the VBGs within the Tofu network.

2.3.2 Barrier Circuit
By setting the following information for each BG participating in barrier synchronization, you can build a barrier circuit. The function
explained in "3.4.1 VBG Allocation/Freeing Functions" can obtain a VBG ID. For the example of setting a VBG ID, see "5.2.1 Example
of Barrier Synchronization and Reduction Operation".

- VBG ID of the signal source (another VBG in the same TNI)

- VBG ID of the packet source (arbitrary VBG)

- VBG ID of the signal destination (another VBG in the same TNI)

- 24 -

- VBG ID of the packet destination (arbitrary VBG)

The following figure shows an example of building a barrier circuit using a 10-process butterfly exchange algorithm.

Figure 2.17 Barrier Circuit Using a 10-Process Butterfly Exchange Algorithm

: Start of a start/end BG : Send/receive relationship of a signal between BGs : Masking signal sending/receiving

: Relay BG : Send/receive relationship of a packet between BGs : Masking packet sending/receiving

: End of a start/end BG

The VBG obtained by the function explained in "3.4.1 VBG Allocation/Freeing Functions" is set in the function explained in "3.4.2 VBG
Configuration Functions".

The settings for all the VBGs participating in barrier synchronization must be completed before barrier communication begins. For example,
take the following typical approach to use barrier communication in the Tofu interconnect for barrier synchronization of MPI. First,
configure the VBGs at the time when the relevant communicator is created. Then, confirm the completion of all the VBG settings by using
one-sided communication or other means.

2.3.3 Barrier Synchronization
The uTofu functions for starting barrier communication will return at the time when they instruct the TNI to start barrier communication.
To confirm barrier synchronization, it is necessary to call a uTofu function that confirms the completion of barrier communication and to
continue polling until the function returns a return value indicating the completion.

Multiple barrier communications can be performed simultaneously when different VBGs are used.

For details of the example that performs barrier communication, see "5.2.1 Example of Barrier Synchronization and Reduction Operation".

- 25 -

2.3.4 Reduction Operation
When input data is given at the barrier communication start time, the reduction operation can be executed along with the barrier
communication.

The following table shows the available operators for uTofu and their data types. However, the operators actually available depend on the
type of Tofu interconnect.

For details on information specific to this computing system, see "Chapter 6 System Information".

Table 2.3 Reduction Operators

Name Data Type Operation

BAND 64-bit unsigned integer Bitwise AND

BOR 64-bit unsigned integer Bitwise OR

BXOR 64-bit unsigned integer Bitwise XOR

MAX 64-bit unsigned integer Maximum value

MAXLOC 64-bit unsigned integer (*1)

SUM 64-bit unsigned integer Addition

BFPSUM Double-precision floating point Addition

*1) For MAXLOC, each process gives a group of two 64-bit unsigned integers as input. For the first element values, it selects the
maximum value like MAX. For the second element values, it selects the element that belongs to the group containing the first element,
which has the maximum value. At this point, if the first element values are the same, it compares the second element values with each
other and selects the smaller value.

For example, for SUM, each process gives a 64-bit unsigned integer, and their sum is calculated.

The number of possible elements of reduction operation executed in one-time barrier communication depends on the type of Tofu
interconnect. If reduction operation with multiple elements can be executed, data is given in the form of an array, and the operation is
executed between elements at the same location. For MAXLOC with four or more elements, the elements are grouped two pairs by two pairs,
and the above operation is executed between an odd-numbered element and even-numbered element.

For details of the example that performs reduction operation, see "5.2.1 Example of Barrier Synchronization and Reduction Operation".

2.4 Communication Path
Since a Tofu network has a six-dimensional mesh/torus topology, there are multiple paths for a packet to move from a compute node to
another compute node. The communication path is determined with a combination of communication path coordinates and destination
compute node coordinates. A,B,C coordinates specify communication path coordinates, and X,Y,Z,A,B,C coordinates specify destination
compute node coordinates. A packet moves to the A,B,C coordinates specified as the communication path, before moving to the X,Y,Z
coordinates and then the A,B,C coordinates of the destination compute node. For example, suppose that the source compute node is at the
coordinates (XS, YS, ZS, AS, BS, CS), the destination compute node is at the coordinates (XD, YD, ZD, AD, BD, CD), and the communication path

is represented by the coordinates (AP, BP, CP). A packet first moves to the coordinates (XS, YS, ZS, AP, BP, CP) along the shortest path, and

then moves to the coordinates (XD, YD, ZD, AP, BP, CP) along the shortest path. Finally, it moves to the coordinates (XD, YD, ZD, AD, BD, CD)

along the shortest path. Since the A, B, and C axes have lengths of 2, 3, and 2, respectively, there is a maximum of 12 communication paths.

The following figure shows an example of communication paths on a two-dimensional surface that includes the X and B axes. This example
shows three communication paths in communication from a compute node at X,B coordinates (1,0) to a compute node at X,B coordinates
(4,2), where the B coordinate of the paths is (0), (1), and (2).

- 26 -

Figure 2.18 Three Communication Paths on an X-B Two-Dimensional Surface

In a single communication for one-sided communication, packets move back and forth between the local compute node and a remote
compute node. Communication path coordinates specify a communication path from the local compute node to the remote compute node.
This communication path is also used in reverse as the communication path from the remote compute node to the local compute node.

2.5 Thread Safety
The uTofu interface guarantees its correct behavior when multiple threads call it simultaneously without specifications regarding thread
safety, except in the following cases:

- When any of the functions that are classified as follows is called simultaneously for one or more thread-unsafe VCQs that share a CQ

- STADD management

- One-sided communication execution

- When any of the functions that are classified as follows is called simultaneously for one thread-unsafe VBG

- Barrier communication execution

You can specify a thread-safe VCQ or a VCQ that does not share the CQ (CQ-exclusive VCQ) for simultaneous calls from multiple threads.
This also includes the calls of the above-described functions. To do so, instruct that the thread-safe VCQ or CQ-exclusive VCQ be created
at the time when a VCQ is created. You can also instruct that a thread-safe VBG be created at the time when a VBG is created. However,
a thread-safe VCQ or thread-safe VBG may increase the software overhead for function calls.

- 27 -

Chapter 3 uTofu Interface Specifications
This chapter describes the interface specifications of uTofu.

uTofu provides interfaces for C (C99 (ISO/IEC 9899:1999 standard) or later). A program that uses uTofu should include the header file
utofu.h as follows:

#include <utofu.h>

The features of uTofu are categorized as follows. For details on corresponding functions to the features of uTofu, see references shown in
the following table.

Table 3.1 Features and Functions of uTofu

Category for Feature Feature Details on Corresponding Functions

TNI query TNI query "3.2.1 TNI Query Functions"

VCQ management

VCQ creation/freeing "3.3.1 VCQ Creation/Freeing Functions"

VCQ ID manipulation "3.3.2 VCQ ID Manipulation Functions"

VCQ query "3.3.3 VCQ Query Functions"

VBG management

VBG allocation/freeing "3.4.1 VBG Allocation/Freeing Functions"

VBG configuration "3.4.2 VBG Configuration Functions"

VBG query "3.4.3 VBG Query Functions"

Communication path management Communication path management "3.5.1 Communication Path Management Functions"

STADD management STADD management "3.6.1 STADD Management Functions"

One-sided communication
execution

One-sided communication start "3.7.1 One-Sided Communication Start Functions"

One-sided communication
preparation

"3.7.2 One-Sided Communication Preparation
Functions"

One-sided communication batch
start

"3.7.3 One-Sided Communication Batch Start
Functions"

One-sided communication
completion confirmation

"3.7.4 One-Sided Communication Completion
Confirmation Functions"

One-sided communication query "3.7.5 One-Sided Communication Query Functions"

Barrier communication execution

Barrier communication start "3.8.1 Barrier Communication Start Functions"

Barrier communication completion
confirmation

"3.8.2 Barrier Communication Completion
Confirmation Functions"

Supplemental features
Version query "3.9.1 Version Query Functions"

Compute node information query "3.9.2 Compute Node Information Query Functions"

The sections below describe the interface specifications of these features.

The following table shows the notations used in explanations in this chapter.

Table 3.2 Notations Used in Explanations of uTofu Interface Specifications

Notation Meaning

a_* Any functions, enumeration constants, or macros whose identifiers start with a_

a_{b|c} Function, enumeration constant, or macro whose identifier is a_b or a_c

a::b Member b in structure or union a, or parameter b of function a

- 28 -

Table 3.3 Notations Used at IN/OUT Column in Tables of Function Parameters
Notation Meaning

IN Input to the function

OUT Output from the function

IN,OUT Input to the function and output from the function

3.1 Common Definitions

3.1.1 Type Definitions

3.1.1.1 typedef
Type definitions for IDs, etc.

Explanation

uTofu uses specially defined types for variables of IDs, etc.

Type Definitions

Typedef Name Type Explanation

utofu_tni_id_t uint16_t

TNI (Tofu network interface) ID.

A TNI ID is a 16-bit unsigned integer that identifies a TNI on a compute node, which is
equipped with a number of TNIs. The ID ranges from 0 to "that number of TNIs -1".

Each TNI ID on the compute node is unique.

utofu_cq_id_t uint16_t

CQ (control queue) ID.

A CQ ID is a 16-bit unsigned integer that identifies a CQ on a TNI, which is equipped
with a number of CQs. The ID ranges from 0 to "that number of CQs -1". Each CQ ID

on the TNI is unique.

utofu_bg_id_t uint16_t

BG (barrier gate) ID.

A BG ID is a 16-bit unsigned integer that identifies a BG on a TNI, which is equipped
with a number of BGs. The ID ranges from 0 to "that number of BGs -1". Each BG ID

on the TNI is unique.

utofu_cmp_id_t uint16_t

Component ID.

A component ID is a 16-bit unsigned integer that identifies a VCQ among the VCQs that
share 1 CQ. Each component ID in the CQ is unique.

utofu_vcq_hdl_t uintptr_t

VCQ (virtual control queue) handle.

A VCQ handle is a pointer-sized unsigned integer that references VCQ data in a process.
Each VCQ handle in the process is unique.

utofu_vcq_id_t uint64_t

VCQ (virtual control queue) ID.

A VCQ ID is a 64-bit unsigned integer that identifies a VCQ in a Tofu network. Each
VCQ ID is unique among all the VCQs in the Tofu network. Default communication
path coordinates can be embedded in a VCQ ID.

utofu_vbg_id_t uint64_t

VBG (virtual barrier gate) ID.

A VBG ID is a 64-bit unsigned integer that identifies a VBG in a Tofu network. Each
VBG ID is unique among all the VBGs in the Tofu network.

utofu_path_id_t uint8_t

Communication path ID.

A communication path ID is an 8-bit unsigned integer that represents a communication
path from a compute node to another compute node in a Tofu network. Though a

- 29 -

Typedef Name Type Explanation

communication path is also used in barrier communication, a communication path ID is
used only in one-sided communication.

utofu_stadd_t uint64_t

STADD (steering address).

A STADD is a 64-bit unsigned integer that represents a memory address that a TNI can
understand. It is used in one-sided communication.

3.1.2 Return Values

3.1.2.1 enum utofu_return_code
Return values of uTofu functions

Explanation

Enumeration constants shown in the table below are used for the return values of almost all uTofu functions.

The enumeration constant UTOFU_SUCCESS means a successful operation and has the value 0. All other enumeration constants have

negative values. Enumeration constants that are not UTOFU_SUCCESS do not necessarily represent errors. For example, the

utofu_poll_tcq() and utofu_poll_mrq() functions return UTOFU_ERR_NOT_FOUND when no new TCQ/MRQ entry is

found but this is normal.

In the list of return values in the explanation of each function in this document, only the return codes before
UTOFU_ERR_INVALID_ARG in the table below are individually explained. Other return codes may also be returned depending on the

arguments passed to the function or the conditions at the time.

Enumeration Constants

Enumeration Constant Explanation

UTOFU_SUCCESS The operation succeeded with no problems.

UTOFU_ERR_NOT_FOUND No new entry was found.

UTOFU_ERR_NOT_COMPLETED The operation has not completed yet.

UTOFU_ERR_NOT_PROCESSED The operation has not been processed.

UTOFU_ERR_BUSY
The resource is busy now.

Trying again later may succeed.

UTOFU_ERR_USED
The resource is already used.

Trying again with another resource may succeed.

UTOFU_ERR_FULL
The resource is full.

No more of the resource can be allocated.

UTOFU_ERR_NOT_AVAILABLE
The resource is not available.

The resource cannot be allocated.

UTOFU_ERR_NOT_SUPPORTED The operation is not supported.

UTOFU_ERR_TCQ_OTHER
An error that cannot be represented by other UTOFU_ERR_TCQ_* was reported by a

TCQ descriptor.

UTOFU_ERR_TCQ_DESC
A TOQ descriptor error was reported by a TCQ descriptor.

The wrong argument may have been passed.

UTOFU_ERR_TCQ_MEMORY
A memory access error was reported by a TCQ descriptor.

The specified STADD may be invalid.

UTOFU_ERR_TCQ_STADD A STADD error was reported by a TCQ descriptor.

- 30 -

Enumeration Constant Explanation

The STADD value may be outside the registered memory region.

UTOFU_ERR_TCQ_LENGTH

An error regarding "STADD + data length" was reported by a TCQ descriptor.

The value of "the specified STADD + the specified data length" may be outside the

registered memory region.

UTOFU_ERR_MRQ_OTHER
An error that cannot be represented by other UTOFU_ERR_MRQ_* was reported by an

MRQ descriptor.

UTOFU_ERR_MRQ_PEER
A peer process error was reported by an MRQ descriptor.

This error may have been caused by an abort of the peer process.

UTOFU_ERR_MRQ_LCL_MEMORY
A local memory access error was reported by an MRQ descriptor.

The specified local STADD may be invalid.

UTOFU_ERR_MRQ_RMT_MEMORY
A remote memory access error was reported by an MRQ descriptor.

The specified remote STADD may be invalid.

UTOFU_ERR_MRQ_LCL_STADD
A local STADD error was reported by an MRQ descriptor.

The local STADD value may be outside the registered memory region.

UTOFU_ERR_MRQ_RMT_STADD
A remote STADD error was reported by an MRQ descriptor.

The remote STADD value may be outside the registered memory region.

UTOFU_ERR_MRQ_LCL_LENGTH

An error regarding "local STADD + data length" was reported by an MRQ descriptor.

The value of "the specified local STADD + the specified data length" may be outside

the registered memory region.

UTOFU_ERR_MRQ_RMT_LENGTH

An error regarding "remote STADD + data length" was reported by an MRQ descriptor.

The value of "the specified remote STADD + the specified data length" may be outside

the registered memory region.

UTOFU_ERR_BARRIER_OTHER
A barrier communication error that cannot be represented by other
UTOFU_ERR_BARRIER_* occurred.

UTOFU_ERR_BARRIER_MISMATCH Mismatch of reduction operations is detected in barrier communication.

UTOFU_ERR_INVALID_ARG An invalid argument was passed.

UTOFU_ERR_INVALID_POINTER An invalid pointer was passed as an argument.

UTOFU_ERR_INVALID_FLAGS Invalid flags were passed as an argument.

UTOFU_ERR_INVALID_COORDS Invalid compute node coordinates were passed as an argument.

UTOFU_ERR_INVALID_PATH Invalid communication path coordinates were passed as an argument.

UTOFU_ERR_INVALID_TNI_ID An invalid TNI ID was passed as an argument.

UTOFU_ERR_INVALID_CQ_ID An invalid CQ ID was passed as an argument.

UTOFU_ERR_INVALID_BG_ID An invalid BG ID was passed as an argument.

UTOFU_ERR_INVALID_CMP_ID An invalid component ID was passed as an argument.

UTOFU_ERR_INVALID_VCQ_HDL An invalid VCQ handle was passed as an argument.

UTOFU_ERR_INVALID_VCQ_ID An invalid VCQ ID was passed as an argument.

UTOFU_ERR_INVALID_VBG_ID An invalid VBG ID was passed as an argument.

UTOFU_ERR_INVALID_PATH_ID An invalid communication path ID was passed as an argument.

UTOFU_ERR_INVALID_STADD An invalid STADD was passed as an argument.

UTOFU_ERR_INVALID_ADDRESS An invalid memory address was passed as an argument.

- 31 -

Enumeration Constant Explanation

UTOFU_ERR_INVALID_SIZE An invalid size/length was passed as an argument.

UTOFU_ERR_INVALID_STAG An invalid STag was passed as an argument.

UTOFU_ERR_INVALID_EDATA An invalid EDATA was passed as an argument.

UTOFU_ERR_INVALID_NUMBER An invalid entity number was passed as an argument.

UTOFU_ERR_INVALID_OP An invalid operation was passed as an argument.

UTOFU_ERR_INVALID_DESC An invalid descriptor was passed as an argument.

UTOFU_ERR_INVALID_DATA Invalid structure data was passed as an argument.

UTOFU_ERR_OUT_OF_RESOURCE A resource (except memory) is exhausted.

UTOFU_ERR_OUT_OF_MEMORY Memory cannot be allocated.

UTOFU_ERR_FATAL A fatal error occurred.

3.2 TNI Query
A TNI (Tofu network interface) is a physical network device supplied with each compute node that performs one-sided communication and
barrier communication. More than one TNI may be supplied with each compute node.

The utofu_get_onesided_tnis() and utofu_get_barrier_tnis() functions can query available TNIs.

The utofu_query_onesided_caps() and utofu_query_barrier_caps() functions can query the capabilities of one-sided

communication and barrier communication, respectively.

3.2.1 TNI Query Functions

3.2.1.1 utofu_get_onesided_tnis
Get an array of IDs of the available TNIs for one-sided communication.

Format

int utofu_get_onesided_tnis(

 utofu_tni_id_t **tni_ids,

 size_t *num_tnis)

Explanation

This function returns the IDs of local TNIs that are capable of one-sided communication and available to this process. The number of
available TNIs may be smaller than the number of TNIs supplied with the compute node.

The returned TNI IDs can be used as arguments of the utofu_query_onesided_caps() and utofu_create_vcq()

functions.

The caller should free the returned tni_ids array by using the free() function, unless there is no available TNI.

Parameters

Parameter Name Explanation IN/OUT

tni_ids
Pointer to an array of allocated TNI IDs.

The array length is num_tnis. If there is no available TNI, NULL is set.
OUT

num_tnis
Number of available TNIs.

If there is no available TNI, 0 is set.
OUT

Return values

- 32 -

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.2.1.2 utofu_get_barrier_tnis
Get an array of IDs of the available TNIs for barrier communication.

Format

int utofu_get_barrier_tnis(

 utofu_tni_id_t **tni_ids,

 size_t *num_tnis)

Explanation

This function returns the IDs of local TNIs that are capable of barrier communication and available to this process. The number of
available TNIs may be smaller than the number of TNIs supplied with the compute node.

The returned TNI IDs can be used as arguments of the utofu_query_barrier_caps() and utofu_alloc_vbg() functions.

The caller should free the returned tni_ids array by using the free() function, unless there is no available TNI.

Parameters

Parameter Name Explanation IN/OUT

tni_ids
Pointer to an allocated array of TNI IDs.

The array length is num_tnis. If there is no available TNI, NULL is set.
OUT

num_tnis
Number of available TNIs.

If there is no available TNI, 0 is set.
OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.2.1.3 utofu_query_onesided_caps
Query the available capabilities and limit values of one-sided communication.

Format

int utofu_query_onesided_caps(

 utofu_tni_id_t tni_id,

 struct utofu_onesided_caps **tni_caps)

Explanation

This function returns a pointer to the memory data managed by the uTofu implementation. The caller must neither free nor overwrite the
tni_caps structure.

The function can query only TNIs returned from the utofu_get_onesided_tnis() function.

Parameters

Parameter Name Explanation IN/OUT

tni_id TNI ID IN

tni_caps Pointer to the one-sided communication capability data of the TNI OUT

- 33 -

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.2.1.4 utofu_query_barrier_caps
Query the available capabilities and limit values of barrier communication.

Format

int utofu_query_barrier_caps(

 utofu_tni_id_t tni_id,

 struct utofu_barrier_caps **tni_caps)

Explanation

This function returns a pointer to the memory data managed by the uTofu implementation. The caller must neither free nor overwrite the
tni_caps structure.

The function can query only TNIs returned from the utofu_get_barrier_tnis() function.

Parameters

Parameter Name Explanation IN/OUT

tni_id TNI ID IN

tni_caps Pointer to the barrier communication capability data of the TNI OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.2.2 Structures Indicating Available Communication Functions and Limit
Values

3.2.2.1 struct utofu_onesided_caps
Capabilities of one-sided communication

Definition

struct utofu_onesided_caps {

 unsigned long int flags;

 unsigned long int armw_ops;

 unsigned int num_cmp_ids;

 unsigned int num_reserved_stags;

 size_t cache_line_size;

 size_t stag_address_alignment;

 size_t max_toq_desc_size;

 size_t max_putget_size;

 size_t max_piggyback_size;

 size_t max_edata_size;

 size_t max_mtu;

 size_t max_gap;

}

- 34 -

Explanation

The utofu_query_onesided_caps() function returns a pointer to this structure.

Members

Member Name Explanation

flags
Flags for capabilities of one-sided communication.

Bitwise OR of UTOFU_ONESIDED_CAP_FLAG_*.

armw_ops
Supported ARMW operation types.

Bitwise OR of UTOFU_ONESIDED_CAP_ARMW_OP_*.

num_cmp_ids
Number of component IDs available.

Used for the utofu_create_vcq_with_cmp_id() function.

num_reserved_stags
Number of reserved STags per VCQ.

Used for the utofu_reg_mem_with_stag() function.

cache_line_size
Line size of the last level cache of the CPU.

Used for the cache injection feature and confirmation of communication completion.

stag_address_alignment
Alignment of a memory address where a STag can be assigned using the
utofu_reg_mem_with_stag() function.

max_toq_desc_size
Maximum byte size of a TOQ descriptor.

Used for utofu_prepare_*() functions.

max_putget_size

Maximum byte size of Put and Get.

The length parameter value specified for a one-sided communication start/preparation

function must be less than or equal to this value.

max_piggyback_size

Maximum byte size of a piggyback.

The length parameter value specified for the utofu_put_piggyback() function

must be less than or equal to this value.

max_edata_size Maximum byte size of a usable EDATA field

max_mtu Maximum value of the MTU (maximum transfer unit) of a packet

max_gap Maximum value of a transmission gap injected between packets

3.2.2.2 struct utofu_barrier_caps
Capabilities of barrier communication

Definition

struct utofu_barrier_caps {

 unsigned long int flags;

 unsigned long int reduce_ops;

 size_t max_uint64_reduction;

 size_t max_double_reduction;

}

Explanation

The utofu_query_barrier_caps() function returns a pointer to this structure.

Members

Member Name Explanation

flags Flags for capabilities of barrier communication.

- 35 -

Member Name Explanation

Bitwise OR of UTOFU_BARRIER_CAP_FLAG_*.

reduce_ops
Supported reduction operation types.

Bitwise OR of UTOFU_BARRIER_CAP_REDUCE_OP_*.

max_uint64_reduction Maximum number of simultaneous 64-bit integer (uint64_t) reduction operations

max_double_reduction Maximum number of simultaneous floating-point (double) reduction operations

3.2.3 Flags Indicating Available Communication Functions

3.2.3.1 UTOFU_ONESIDED_CAP_FLAG_*

Bit flags for the flags member of the utofu_onesided_caps structure

Explanation

They can be used to see whether one-sided communication of a TNI has specific features.

Macros

Macro Name Explanation

UTOFU_ONESIDED_CAP_FLAG_SESSION_MODE Session mode feature

UTOFU_ONESIDED_CAP_FLAG_ARMW Atomic Read Modify Write communication

3.2.3.2 UTOFU_BARRIER_CAP_FLAG_*

Bit flags for the flags member of the utofu_barrier_caps structure

Explanation

They can be used to see whether barrier communication of a TNI has specific features.

No flags are defined in the current version.

3.2.3.3 UTOFU_ONESIDED_CAP_ARMW_OP_*

Bit flags for the armw_ops member of the utofu_onesided_caps structure

Explanation

They can be used to see whether the ARMW (Atomic Read Modify Write) communication of one-sided communication has specific
ARMW operations.

Macros

Macro Name Explanation

UTOFU_ONESIDED_CAP_ARMW_OP_CSWAP Compare and Swap operation

UTOFU_ONESIDED_CAP_ARMW_OP_SWAP Swap operation

UTOFU_ONESIDED_CAP_ARMW_OP_ADD Unsigned integer addition operation

UTOFU_ONESIDED_CAP_ARMW_OP_XOR Bitwise XOR operation

UTOFU_ONESIDED_CAP_ARMW_OP_AND Bitwise AND operation

UTOFU_ONESIDED_CAP_ARMW_OP_OR Bitwise OR operation

3.2.3.4 UTOFU_BARRIER_CAP_REDUCE_OP_*

Bit flags for the reduce_ops member of the utofu_barrier_caps structure

- 36 -

Explanation

They can be used to see whether barrier communication has specific reduction operations.

Macros

Macro Name Explanation

UTOFU_BARRIER_CAP_REDUCE_OP_BARRIER Barrier synchronization (no reduction operation)

UTOFU_BARRIER_CAP_REDUCE_OP_BAND Bitwise AND operation of uint64_t values

UTOFU_BARRIER_CAP_REDUCE_OP_BOR Bitwise OR operation of uint64_t values

UTOFU_BARRIER_CAP_REDUCE_OP_BXOR Bitwise XOR operation of uint64_t values

UTOFU_BARRIER_CAP_REDUCE_OP_MAX Operation that gives maximum unsigned integer of uint64_t values

UTOFU_BARRIER_CAP_REDUCE_OP_MAXLOC
Operation that gives maximum unsigned integer of uint64_t values

and its location

UTOFU_BARRIER_CAP_REDUCE_OP_SUM Unsigned integer summation operation of uint64_t values

UTOFU_BARRIER_CAP_REDUCE_OP_BFPSUM Floating-point (BFP) summation operation of double values

3.3 VCQ Management
A VCQ (virtual control queue) is an interface for uTofu users to control one-sided communication on a TNI.

Before starting one-sided communication, the uTofu user needs to query available local TNIs with the
utofu_get_onesided_tnis() function and then create a VCQ corresponding to the local TNI with the utofu_create_vcq()

function. After using one-sided communication, the uTofu user needs to release the VCQ with the utofu_free_vcq() function.

For the start of one-sided communication, the remote VCQ of the communication peer is specified by a VCQ ID. The
utofu_query_vcq_id() function can obtain the local VCQ ID. To communicate with another process, the process has to notify this

process of the VCQ ID. To start one-sided communication, a communication path must be specified. The
utofu_set_vcq_id_path() function can embed default communication path coordinates into the VCQ ID.

The utofu_query_vcq_info() function can obtain information about a created VCQ.

More than one VCQ can be created for one TNI. Each VCQ has its independent communication context.

Once a VCQ is created in this process, the VCQ can communicate with any other VCQs in remote processes any number of times.

3.3.1 VCQ Creation/Freeing Functions

3.3.1.1 utofu_create_vcq
Create a VCQ on a given TNI on the compute node.

Format

int utofu_create_vcq(

 utofu_tni_id_t tni_id,

 unsigned long int flags,

 utofu_vcq_hdl_t *vcq_hdl)

Explanation

The utofu_free_vcq() function should be used to release the created VCQ.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

tni_id ID of the TNI to create a VCQ on IN

- 37 -

Parameter Name Explanation IN/OUT

flags Bitwise OR of UTOFU_VCQ_FLAG_* IN

vcq_hdl Handle of the created VCQ OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_FULL No more VCQs can be created for this TNI.

UTOFU_ERR_NOT_AVAILABLE No VCQ of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED VCQs of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.3.1.2 utofu_create_vcq_with_cmp_id
Create a VCQ with a component ID on a given TNI on the compute node.

Format

int utofu_create_vcq_with_cmp_id(

 utofu_tni_id_t tni_id,

 utofu_cmp_id_t cmp_id,

 unsigned long int flags,

 utofu_vcq_hdl_t *vcq_hdl)

Explanation

The difference between this function and the utofu_create_vcq() function is that a component ID for an upper layer can be

specified with this function. The component ID is used to distinguish the VCQ of an upper-layer component from the VCQs of the other
components sharing the same CQ. When the utofu_create_vcq() function is used to create a VCQ, the function selects a

component ID not duplicated by the other VCQs and assigns it to the created VCQ. However, when this function is used, the caller must
guarantee that the specified component ID is not or will not be used by another upper-layer component. Otherwise, this function returns
UTOFU_ERR_USED.

The component IDs that can be used range from 0 to "utofu_onesided_caps::num_cmp_ids -1".

The utofu_free_vcq() function should be used to release the created VCQ.

This function call may involve a system call.

Other descriptions that discuss the utofu_create_vcq() function in this document also apply to this function.

Parameters

Parameter Name Explanation IN/OUT

tni_id ID of the TNI to create a VCQ on IN

cmp_id
ID of an upper-layer component.

The value must be smaller than utofu_onesided_caps::num_cmp_ids.
IN

flags Bitwise OR of UTOFU_VCQ_FLAG_* IN

vcq_hdl Handle of the created VCQ OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_USED Another component uses the specified component ID.

- 38 -

Value Explanation

UTOFU_ERR_FULL No more VCQs can be created for this TNI.

UTOFU_ERR_NOT_AVAILABLE No VCQ of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED VCQs of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.3.1.3 utofu_free_vcq
Free a VCQ.

Format

int utofu_free_vcq(

 utofu_vcq_hdl_t vcq_hdl)

Explanation

Double free is not allowed.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl Handle of a VCQ created by the utofu_create_vcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.2 VCQ ID Manipulation Functions

3.3.2.1 utofu_query_vcq_id
Query the ID of the local VCQ.

Format

int utofu_query_vcq_id(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t *vcq_id)

Explanation

Though the value of a VCQ handle is valid only for this process, a VCQ ID is valid in all processes and is unique among all the VCQs
in the Tofu network.

The A,B,C coordinates of the compute node are embedded in the VCQ ID as default communication path coordinates.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl Handle of a VCQ created by the utofu_create_vcq() function IN

vcq_id ID of the VCQ OUT

Return values

- 39 -

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.2.2 utofu_construct_vcq_id
Construct a VCQ ID.

Format

int utofu_construct_vcq_id(

 uint8_t coords[],

 utofu_tni_id_t tni_id,

 utofu_cq_id_t cq_id,

 utofu_cmp_id_t cmp_id,

 utofu_vcq_id_t *vcq_id)

Explanation

The VCQ ID of a VCQ created by the utofu_create_vcq_with_cmp_id() function can be computed from the compute node

coordinates, TNI ID, CQ ID, and component ID by this function. The ID of a VCQ created on a remote compute node can also be
computed.

The A,B,C coordinates of the specified compute node are embedded in the VCQ ID as default communication path coordinates.

Parameters

Parameter Name Explanation IN/OUT

coords
Compute node coordinates of a VCQ in the order of X, Y, Z, A, B, C.

The array length must be 6.
IN

tni_id TNI ID of a VCQ IN

cq_id CQ ID of a VCQ IN

cmp_id Component ID of a VCQ IN

vcq_id Constructed VCQ ID OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.2.3 utofu_set_vcq_id_path
Update the default communication path coordinates embedded in a VCQ ID.

Format

int utofu_set_vcq_id_path(

 utofu_vcq_id_t *vcq_id,

 uint8_t path_coords[])

Explanation

To call a one-sided communication start/preparation function, a communication path can be specified by either a remote VCQ ID
(rmt_vcq_id parameter) or bit flags (flags parameter). The utofu_query_vcq_id() and

utofu_construct_vcq_id() functions embed the A,B,C coordinates of a compute node into a VCQ ID as default

communication path coordinates. This function updates the communication path coordinates.

- 40 -

Note that this function updates the communication path coordinates locally and the information managed by uTofu implementation is
not updated. For example, if there are two variables whose VCQ IDs are the same and this function is called for the one VCQ ID variable,
the communication path coordinates of the other VCQ ID variable is not updated.

This function can be called for a VCQ ID variable more than once. The communication path coordinates in a communication using the
VCQ ID variable is the value set by the last call of this function for the variable.

Parameters

Parameter Name Explanation IN/OUT

vcq_id VCQ ID IN,OUT

path_coords

Default communication path coordinates in the order of A, B, C to embed in the VCQ.

The array length must be 3. NULL can be specified. In that case, appropriate communication

path coordinates are automatically selected for the one-sided communications from the local
compute node to the remote compute node specified by the VCQ ID.

IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.3 VCQ Query Functions

3.3.3.1 utofu_query_vcq_info
Query the compute node coordinates, TNI ID, and CQ ID of a given VCQ.

Format

int utofu_query_vcq_info(

 utofu_vcq_id_t vcq_id,

 uint8_t coords[],

 utofu_tni_id_t *tni_id,

 utofu_cq_id_t *cq_id,

 uint16_t *extra_val)

Explanation

The function can also query information about VCQs created on remote compute nodes.

This information may be used for performance tuning and debugging. For example, if there are multiple processes on one compute node,
and you want each process to use a distinct TNI in simultaneous communications, this information can be used.

Parameters

Parameter Name Explanation IN/OUT

vcq_id VCQ ID IN

coords
Compute node coordinates of the VCQ in the order of X, Y, Z, A, B, C.

The array length must be 6 or greater.
OUT

tni_id
TNI ID of the VCQ.

The TNI ID ranges from 0 to "the number of TNIs supplied with the compute node -1".
OUT

cq_id
CQ ID of the VCQ.

The CQ ID ranges from 0 to "the number of CQs supplied with the TNI -1".
OUT

extra_val
Extra value for internal use in the uTofu implementation.

The value has no meaning for uTofu users.
OUT

- 41 -

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.3.4 VCQ Flags

3.3.4.1 UTOFU_VCQ_FLAG_*

Bit flags for the flags parameter of the utofu_create_vcq() function

Explanation

These flags can specify behaviors for creating a VCQ.

Macros

Macro Name Explanation

UTOFU_VCQ_FLAG_THREAD_SAFE

Thread-safe VCQ.

This flag requests the utofu_create_vcq() or

utofu_create_vcq_with_cmp_id() function to create a new thread-safe

VCQ. You can call STADD management functions and one-sided communication
execution functions from multiple threads simultaneously for the single VCQ created
with the flag. You can also call those functions simultaneously for the VCQ created with
the flag and another VCQ.

UTOFU_VCQ_FLAG_EXCLUSIVE

CQ-exclusive VCQ.

This flag requests the utofu_create_vcq() function to create a new CQ-exclusive

VCQ, which does not share a CQ with other VCQs. You can call STADD management
functions and one-sided communication execution functions from multiple threads
simultaneously for this VCQ created with the flag and another VCQ. Those functions
still cannot be called simultaneously for a single VCQ created with this flag but not with
the UTOFU_VCQ_FLAG_THREAD_SAFE flag. The advantage of this flag over the

UTOFU_VCQ_FLAG_THREAD_SAFE flag is that simultaneous calls of those functions

for different CQs are not serialized in the uTofu implementation and hardware access.
So communication throughput may be improved. If this flag is specified but CQs are
exhausted, the utofu_create_vcq() function fails. The flag cannot be used for the

utofu_create_vcq_with_cmp_id() function.

UTOFU_VCQ_FLAG_SESSION_MODE

Session mode VCQ.

This flag requests the utofu_create_vcq() function to create a new VCQ of the

session mode type. If the flag is specified but the TNI does not support session mode or
the CQs for session mode are exhausted, the utofu_create_vcq() function fails.

The flag cannot be used for the utofu_create_vcq_with_cmp_id() function.

This flag cannot be used together with the UTOFU_VCQ_FLAG_EXCLUSIVE flag.

3.4 VBG Management
A VBG (virtual barrier gate) is a TNI component that sends and receives barrier signals and barrier packets.

Before using barrier communication, the uTofu user needs to query available TNIs with the utofu_get_barrier_tnis() function,

allocate VBGs on a TNI with the utofu_alloc_vbg() function, and build a barrier circuit with the utofu_set_vbg() function.

After using barrier communication, the uTofu user needs to free the VBGs with the utofu_free_vbg() function. The

utofu_query_vbg_info() function can obtain information about an allocated VBG.

To communicate with remote compute nodes, the remote compute nodes also have to allocate their VBGs.

- 42 -

More than one VBG can be allocated for one TNI. Actually, multiple VBGs are usually required for building a barrier circuit.

Once a barrier circuit is built, barrier synchronization and reduction operation can be executed on the barrier circuit any number of times.

3.4.1 VBG Allocation/Freeing Functions

3.4.1.1 utofu_alloc_vbg
Allocate VBGs for a given TNI on the compute node.

Format

int utofu_alloc_vbg(

 utofu_tni_id_t tni_id,

 size_t num_vbgs,

 unsigned long int flags,

 utofu_vbg_id_t vbg_ids[])

Explanation

This function writes VBG IDs to the caller-supplied vbg_ids array.

The first element of the array corresponds to a start/end BG and the remaining elements correspond to relay BGs.

The utofu_free_vbg() function should be used to release the allocated VBGs.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

tni_id ID of the TNI to allocate VBGs on IN

num_vbgs
Number of VBGs required.

The value must be greater than 0.
IN

flags Bitwise OR of UTOFU_VBG_FLAG_* IN

vbg_ids
Array of IDs of the allocated VBGs.

The array length must be num_vbgs or greater.
OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_FULL The specified number of VBGs cannot be allocated on this TNI.

UTOFU_ERR_NOT_AVAILABLE No VBG of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED VBGs of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.4.1.2 utofu_free_vbg
Free VBGs.

Format

int utofu_free_vbg(

 utofu_vbg_id_t vbg_ids[],

 size_t num_vbgs)

- 43 -

Explanation

Though each VBG ID is unique among all the VBGs in the Tofu network, this function can simply free the VBGs allocated by this
process.

Double free is not allowed.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

vbg_ids

Array of IDs of VBGs allocated by the utofu_alloc_vbg() function.

The array contents must be the same as the array returned by the utofu_alloc_vbg()

function. The array length must be num_vbgs.

IN

num_vbgs

Number of VBGs.

The value must be same as the value passed to the corresponding utofu_alloc_vbg()

function call.

IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.4.2 VBG Configuration Functions

3.4.2.1 utofu_set_vbg
Configure VBGs to build a barrier circuit.

Format

int utofu_set_vbg(

 struct utofu_vbg_setting vbg_settings[],

 size_t num_vbg_settings)

Explanation

Each VBG receives an input signal and input packet and then sends an output signal and output packet.

- The input signal is received from another VBG on the same TNI (local source).

- The input packet is received from a VBG on a TNI on the same or a remote compute node (remote source).

- The output signal is sent to another VBG on the same TNI (local destination).

- The output packet is sent to a VBG on a TNI on the same or a remote compute node (remote destination).

A barrier circuit is built by combining all participating VBGs. To build one barrier circuit, this function must be called for the local VBG
set on every compute node participating in the barrier circuit.

This function configures multiple local VBGs allocated by a single utofu_alloc_vbg() function call at once. The set of values of

utofu_vbg_setting::vbg_id in the vbg_settings array must be the same as or a subset of the VBG IDs returned by the

utofu_alloc_vbg() function. The first VBG ID in the vbg_settings array corresponds to a start/end BG and must be the first

VBG ID returned by the utofu_alloc_vbg() function. However, the remaining VBG IDs do not need to be in the same order as

the VBG IDs returned by the utofu_alloc_vbg() function.

If this function is called for a VBG set more than once, the last call takes effect.

This function call may involve a system call.

Parameters

- 44 -

Parameter Name Explanation IN/OUT

vbg_settings
Array of VBG settings.

The array length must be num_vbg_settings.
IN

num_vbg_settings

Number of VBGs to configure.

The value must be greater than 0 and less than or equal to the value passed to the
corresponding utofu_alloc_vbg() function call.

IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.4.3 VBG Query Functions

3.4.3.1 utofu_query_vbg_info
Query the compute node coordinates, TNI ID, and BG ID of a given VBG.

Format

int utofu_query_vbg_info(

 utofu_vbg_id_t vbg_id,

 uint8_t coords[],

 utofu_tni_id_t *tni_id,

 utofu_bg_id_t *bg_id,

 uint16_t *extra_val)

Explanation

The function can also query information about a VBG allocated on a remote compute node.

This information may be used for debugging.

Parameters

Parameter Name Explanation IN/OUT

vbg_id VBG ID IN

coords
Compute node coordinates of the VBG in the order of X, Y, Z, A, B, C.

The array length must be 6 or greater.
OUT

tni_id
TNI ID of the VBG.

The TNI ID ranges from 0 to "the number of TNIs supplied with the compute node -1".
OUT

bg_id
BG ID of the VBG.

The BG ID ranges from 0 to "the number of BGs supplied with the TNI -1".
OUT

extra_val
Extra value for internal use in the uTofu implementation.

The value has no meaning for uTofu users.
OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

- 45 -

3.4.4 VBG Configuration Structures

3.4.4.1 struct utofu_vbg_setting
VBG settings

Definition

struct utofu_vbg_setting {

 utofu_vbg_id_t vbg_id;

 utofu_vbg_id_t src_lcl_vbg_id;

 utofu_vbg_id_t src_rmt_vbg_id;

 utofu_vbg_id_t dst_lcl_vbg_id;

 utofu_vbg_id_t dst_rmt_vbg_id;

 uint8_t dst_path_coords[3];

}

Explanation

The utofu_set_vbg() function requires an array of this structure as the vbg_settings parameter.

For a VBG that does not receive/send one of the signals/packets, UTOFU_VBG_ID_NULL should be specified as the VBG ID for the

corresponding local/remote source/destination VBG.

Members

Member Name Explanation

vbg_id ID of the local VBG to configure

src_lcl_vbg_id ID of the local source VBG of an input signal to the VBG

src_rmt_vbg_id ID of the remote source VBG of an input packet to the VBG

dst_lcl_vbg_id ID of the local destination VBG of an output signal from the VBG

dst_rmt_vbg_id ID of the remote destination VBG of an output packet from the VBG

dst_path_coords

Communication path coordinates in the order of A, B, C to the remote destination VBG.

If UTOFU_PATH_COORD_NULL is specified as the coordinate A (dst_path_coords[0]),

appropriate communication path coordinates are automatically selected. In this case, the coordinates B
and C (dst_path_coords[1] and dst_path_coords[2]) are ignored.

3.4.5 VBG Flags

3.4.5.1 UTOFU_VBG_FLAG_*

Bit flags for the flags parameter of the utofu_alloc_vbg() function

Explanation

These flags can specify behaviors for allocating a VBG.

Macros

Macro Name Explanation

UTOFU_VBG_FLAG_THREAD_SAFE

Thread-safe VBG.

This flag requests the utofu_alloc_vbg() function to allocate new thread-safe

VBGs. Barrier communication execution functions can be called from multiple threads
simultaneously for the single VBG allocated with the flag.

- 46 -

3.4.6 Special Values for VBG Configuration

3.4.6.1 UTOFU_VBG_ID_NULL
Macros

Macro Name Explanation

UTOFU_VBG_ID_NULL

Null VBG ID.

This special VBG ID is used to represent no input signal/packet or no outgoing signal/packet for the
utofu_set_vbg() function.

3.5 Communication Path Management
To start each one-sided communication or build each barrier circuit, a communication path on a Tofu network must be specified.

In the case of one-sided communication, a communication path can be specified with either a remote VCQ ID (rmt_vcq_id parameter)

or bit flags (flags parameter) to call a one-sided communication start/preparation function. For a remote VCQ ID, the

utofu_query_vcq_id() and utofu_construct_vcq_id() functions embed default communication path coordinates into the

VCQ ID, and the utofu_set_vcq_id_path() function updates the coordinates. For bit flags, the

UTOFU_ONESIDED_FLAG_PATH function-like macro specifies the communication path. The UTOFU_ONESIDED_FLAG_PATH

function-like macro takes a parameter of a communication path ID.

The utofu_get_path_id() function creates a communication path ID from communication path coordinates. The

utofu_get_path_coords() function can query the communication path coordinates from the communication path ID.

In the case of barrier communication, communication path coordinates can be specified when calling a VBG configuration function.

3.5.1 Communication Path Management Functions

3.5.1.1 utofu_get_path_id
Create a communication path ID from communication path coordinates.

Format

int utofu_get_path_id(

 utofu_vcq_id_t vcq_id,

 uint8_t path_coords[],

 utofu_path_id_t *path_id)

Explanation

A communication path ID is defined for each remote VCQ ID. So a communication path ID cannot be used for a different remote VCQ
ID than the remote VCQ ID specified in this function argument, even if the communication path coordinates are the same.

A VCQ ID with default communication path coordinates embedded by the utofu_set_vcq_id_path() function can also be

specified as the vcq_id parameter. However, the returned communication path ID is valid only for the specified VCQ ID. When new

default communication path coordinates are embedded in the VCQ ID, a new communication path ID should be created with the new
VCQ ID.

Parameters

Parameter Name Explanation IN/OUT

vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

path_coords Communication path coordinates in the order of A, B, C. IN

- 47 -

Parameter Name Explanation IN/OUT

The array length must be 3. NULL can be specified. In that case, appropriate coordinates are

automatically selected for the communication path from the local compute node to the remote
compute node specified by the VCQ ID.

path_id Corresponding communication path ID OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.5.1.2 utofu_get_path_coords
Query the communication path coordinates of a communication path ID.

Format

int utofu_get_path_coords(

 utofu_vcq_id_t vcq_id,

 utofu_path_id_t path_id,

 uint8_t path_coords[])

Explanation

A communication path ID is defined for each remote VCQ ID. So the specified remote VCQ ID must match that specified for the
utofu_get_path_id() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

path_id Communication path ID created by the utofu_get_path_id() function. IN

path_coords
Corresponding communication path coordinates in the order of A, B, C.

The array length must be 3 or greater.
OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.5.2 Special Values for Setting of Communication Path

3.5.2.1 UTOFU_PATH_COORD_NULL
Macros

Macro Name Explanation

UTOFU_PATH_COORD_NULL

Null communication path coordinate.

This special path coordinate is used to represent automatic selection of communication path
coordinates for the utofu_set_vbg() function.

- 48 -

3.6 STADD Management
A STADD (steering address) is a memory address that a TNI can understand. Because a memory address in a user-space process is a virtual
address assigned by the operating system, a TNI cannot understand such an address. A STADD is used to steer a TNI toward the right
memory address in one-sided communication.

The utofu_reg_mem() function assigns a STADD for a VCQ by registering a memory region to the VCQ. The assigned STADD can

be passed to a one-sided communication start/preparation function. After use, the assigned STADD must be freed, and the memory region
must be deregistered using the utofu_dereg_mem() function.

The utofu_reg_mem() function can register a memory region to a VCQ more than once. In this case, the same STADD value is returned

every time. Also, an overlapping memory region may be registered. The utofu_dereg_mem() function must be called as many times as

utofu_reg_mem() function calls.

To register a memory region, the region must be accessible from the calling process. Without the UTOFU_REG_MEM_FLAG_READ_ONLY

flag, the memory region must be readable and writable. With the UTOFU_REG_MEM_FLAG_READ_ONLY flag, the memory region must

at least be readable.

To use a memory region for one-sided communications via two or more VCQs, the memory region must be registered to each VCQ.
However, the returned STADD values may not be same.

Most one-sided communication start/preparation functions have lcl_stadd and rmt_stadd parameters. The lcl_stadd parameter

is the STADD assigned on the compute node (communication origin). The rmt_stadd parameter is the STADD assigned on a remote

compute node (communication target). So before one-sided communication starts, the local process must be informed of the STADD on
the remote compute node by the remote process. Once a STADD is assigned for a VCQ, the STADD can be used for multiple one-sided
communications on the VCQ, even for concurrent communications.

A registered memory region must be deregistered before the memory region is freed by the free() function, etc. With the Put

communication, the local memory region can be deregistered after the corresponding TCQ descriptor or local notification MRQ descriptor
is written. With the Get communication, the local memory region can be deregistered after the corresponding local notification MRQ
descriptor is written. With all communications, the remote memory region can be deregistered after the corresponding remote notification
MRQ descriptor is written on the remote compute node or the corresponding local notification MRQ descriptor is written on this node.

Usually, a device driver (the Tofu driver) assigns a STADD when the utofu_reg_mem() function is called. The value is not predictable

to uTofu users. As an alternative, the utofu_reg_mem_with_stag() function can assign a predictable STADD. A STag is an integer

that is a part of a 64-bit STADD value. A specific range of STags is reserved for uTofu users. If the local process knows that a remote process
has registered its memory region with a predictable STag, the utofu_query_stadd() function in the local process can obtain its

STADD. A memory region registered by the utofu_reg_mem_with_stag() function must likewise be deregistered by the

utofu_dereg_mem() function. The utofu_reg_mem_with_stag() function cannot be called for the same STag more than once

unless the STag has not been deregistered by the utofu_dereg_mem() function. Once the STag is deregistered, the

utofu_reg_mem_with_stag() function can reuse the same STag for the same or a different memory region.

A STADD is a 64-bit unsigned integer. One-sided communication can be posted for a sub-region in a registered memory region by
specifying a STADD calculated based on an offset. For example, if you want to transfer random segments in a large memory region, you
can first register the whole region and get the STADD head_stadd. Then, you can call the utofu_put() function with the value of

"head_stadd + random_offset" as the lcl_stadd parameter. rmt_stadd can also be calculated in the same way.

3.6.1 STADD Management Functions

3.6.1.1 utofu_reg_mem
Register a memory region to a VCQ.

Format

int utofu_reg_mem(

 utofu_vcq_hdl_t vcq_hdl,

 void *addr,

 size_t size,

 unsigned long int flags,

 utofu_stadd_t *stadd)

- 49 -

Explanation

The utofu_dereg_mem() function should be used to deregister the registered memory.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl VCQ handle IN

addr Pointer to the beginning of a memory region IN

size
Byte size of a memory region.

The value must be greater than 0.
IN

flags Bitwise OR of UTOFU_REG_MEM_FLAG_* IN

stadd STADD of the beginning of the memory region OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_FULL
No more STADDs can be assigned for this VCQ.

Trying again after calling the utofu_dereg_mem() function may succeed.

UTOFU_ERR_NOT_AVAILABLE No STADD of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED STADDs of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.6.1.2 utofu_reg_mem_with_stag
Register a memory region to a VCQ with a STag.

Format

int utofu_reg_mem_with_stag(

 utofu_vcq_hdl_t vcq_hdl,

 void *addr,

 size_t size,

 unsigned int stag,

 unsigned long int flags,

 utofu_stadd_t *stadd)

Explanation

The STags that can be assigned range from 0 to "utofu_onesided_caps::num_reserved_stags -1".

The utofu_dereg_mem() function should be used to deregister the registered memory.

Until the STag is freed by the utofu_dereg_mem() function, the same STag cannot be reused.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl VCQ handle IN

addr

Pointer to the beginning of a memory region.

The memory address must be a multiple of
utofu_onesided_caps::stag_address_alignment.

IN

- 50 -

Parameter Name Explanation IN/OUT

size

Byte size of a memory region.

The size must be a multiple of
utofu_onesided_caps::stag_address_alignment.

IN

stag
STag.

The value must be smaller than utofu_onesided_caps::num_reserved_stags.
IN

flags Bitwise OR of UTOFU_REG_MEM_FLAG_* IN

stadd STADD of the beginning of the memory region OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_USED The specified STag is already used on this VCQ.

UTOFU_ERR_NOT_AVAILABLE No STag of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED STags of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.6.1.3 utofu_query_stadd
Query the STADD of the memory region where a STag is assigned.

Format

int utofu_query_stadd(

 utofu_vcq_id_t vcq_id,

 unsigned int stag,

 utofu_stadd_t *stadd)

Explanation

This function can query the STADD of a memory region in both the local process and a remote process. The STADD returned by the
function is the same as the STADD returned by the utofu_reg_mem_with_stag() function.

This function can be called more than once for each STag.

Parameters

Parameter Name Explanation IN/OUT

vcq_id

VCQ ID corresponding to the VCQ handle used in a utofu_reg_mem_with_stag()

function call.

To query a STADD in a remote process, this VCQ ID must be one in the remote process.

IN

stag STag used in a utofu_reg_mem_with_stag() function call IN

stadd STADD of the beginning of the memory region OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.6.1.4 utofu_dereg_mem
Deregister a memory region from a VCQ.

- 51 -

Format

int utofu_dereg_mem(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_stadd_t stadd,

 unsigned long int flags)

Explanation

Double free (deregistration) is not allowed.

This function call may involve a system call.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl VCQ handle IN

stadd

STADD of the beginning of a memory region.

The STADD must be one that was returned by the utofu_reg_mem() or

utofu_reg_mem_with_stag() function.

IN

flags Bitwise OR of UTOFU_DEREG_MEM_* IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_NOT_AVAILABLE No STADD of the type specified by the flags parameter is available.

UTOFU_ERR_NOT_SUPPORTED STADDs of the type specified by the flags parameter are not supported.

other Other UTOFU_ERR_* error

3.6.2 STADD Flags

3.6.2.1 UTOFU_REG_MEM_FLAG_*

Bit flags for the flags parameter of the utofu_reg_mem() and utofu_reg_mem_with_stag() functions

Explanation

These flags can specify behaviors of memory registration.

Macros

Macro Name Explanation

UTOFU_REG_MEM_FLAG_READ_ONLY

Read-only.

This flag indicates the memory region will not be updated in one-sided
communication, neither by the local process nor by a remote process. If the STADD
of the memory region registered by the flag is used as the remote STADD of Put or
ARMW, or the local STADD of Get, a communication error occurs and the error is
reported by the TCQ or MRQ. The flag must be specified for any memory region that
cannot be written from the registering process. One memory region can be in a state
where it is registered both with and without the flag.

3.6.2.2 UTOFU_DEREG_MEM_FLAG_*

Bit flags for the flags parameter of the utofu_dereg_mem() function

Explanation

These flags can specify behaviors of memory deregistration.

- 52 -

No flags are defined in the current version.

3.7 One-Sided Communication Execution
A TOQ (transmit order queue), TCQ (transmit complete queue), and MRQ (message receive queue) are VCQ components. They are queues
that a TNI reads and writes.

A TOQ descriptor is posted to a TOQ via the utofu_put() function, etc. Once the TOQ descriptor is posted, the TNI corresponding to

the VCQ reads the descriptor, and one-sided communication starts. The different kinds of TOQ descriptor are Put, Put Piggyback, Get, and
ARMW (Atomic Read Modify Write).

The completion of one-sided communication can be confirmed in three ways.

- If the UTOFU_ONESIDED_FLAG_TCQ_NOTICE flag is specified in the one-sided communication start function call, a TCQ

descriptor is written to the TCQ corresponding to the local VCQ when packets are sent out from the local compute node. For a Put TOQ
descriptor, the TCQ descriptor indicates that the local memory can be overwritten with other data.

- If the UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE flag is specified in the one-sided communication start function call, an

MRQ descriptor is written to the MRQ corresponding to the local VCQ when the communication completes on both the local compute
node and remote compute node. For a Put TOQ descriptor and an ARMW TOQ descriptor, the MRQ descriptor indicates that the remote
memory has been updated. For a Get TOQ descriptor, the MRQ descriptor indicates that the local memory has been updated and the
updated data in the memory can be read. For an ARMW TOQ descriptor, the MRQ descriptor includes the value in the remote memory
before the update.

- If the UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE flag is specified in the one-sided communication start function call, an

MRQ descriptor is written to the MRQ on the remote compute node corresponding to the remote VCQ when the communication
completes on the remote compute node. For a Put TOQ descriptor and an ARMW TOQ descriptor, the MRQ descriptor indicates that
the remote memory has been updated. For a Get TOQ descriptor, the MRQ descriptor indicates that the remote memory can be
overwritten with other data.

If the source memory is overwritten before the packet sending or communication completion, the contents of the destination memory are
not guaranteed to have the value from before or after the overwriting. If the destination memory is read before the communication
completion, the contents of the data are not guaranteed to have the value from before or after the communication.

The utofu_poll_tcq() function can poll a TCQ. For one-sided communication start functions except the utofu_{put|

get}_stride() and utofu_{put|get}_stride_gap() functions, if the UTOFU_ONESIDED_FLAG_TCQ_NOTICE flag is

specified, one function call results in one TCQ descriptor, and the utofu_poll_tcq() function returns UTOFU_SUCCESS for it. For

the utofu_{put|get}_stride() and utofu_{put|get}_stride_gap() functions, if the

UTOFU_ONESIDED_FLAG_TCQ_NOTICE flag is specified, one function call results in the same number of TCQ descriptors as the

number of TOQ descriptors given by the num_blocks parameter. However, regardless of the

UTOFU_ONESIDED_FLAG_TCQ_NOTICE flag, if an error occurs when the TNI sends out a packet from the local compute node, the

utofu_poll_tcq() function returns UTOFU_ERR_TCQ_*. All one-sided communication start functions and the

utofu_poll_tcq() function have a cbdata parameter. The cbdata value passed to one-sided communication start functions is set

in cbdata in the utofu_poll_tcq() function so that the uTofu user can identify the completed communication when the

utofu_poll_tcq() function returns a code other than UTOFU_ERR_NOT_FOUND.

The utofu_poll_mrq() function can poll an MRQ. The number of reported MRQ descriptors per one-sided communication start

function call is determined in the same manner as the utofu_poll_tcq() function. The utofu_poll_mrq() function returns

UTOFU_SUCCESS for communication completed successfully and returns UTOFU_ERR_MRQ_* for communication with an error. The

completed communication can be identified using the notice parameter of the utofu_poll_mrq() function.

Even if no UTOFU_ONESIDED_FLAG_*_NOTICE flags are specified, the utofu_poll_tcq() and utofu_poll_mrq()

functions must be called in order to confirm the occurrence of any errors and to make space in queues. When the TCQ is full because of
insufficient calls of the utofu_poll_tcq() function, one-sided communication start functions and batch start functions return

UTOFU_ERR_BUSY. When the MRQ is full because of insufficient calls of the utofu_poll_mrq() function, an MRQ overflow error

occurs. In order to make enough space in the TCQ, repeat calling the utofu_poll_tcq() function until the function returns

UTOFU_ERR_TCQ_* or UTOFU_ERR_NOT_FOUND. Similarly, in order to make enough space in the MRQ, repeat calling the

utofu_poll_mrq() function until the function returns UTOFU_ERR_MRQ_* or UTOFU_ERR_NOT_FOUND.

- 53 -

All one-sided communication start functions have the rmt_vcq_id and rmt_stadd parameters. Their values should be obtained in any

way (e.g., out-of-band communication other than uTofu) from the remote compute nodes unless the utofu_reg_mem_with_stag()

function is used for the rmt_stadd parameter.

To post a TOQ descriptor, a communication path can be specified by either a remote VCQ ID (rmt_vcq_id parameter) or bit flags

(flags parameter). If both specify communication paths, the communication path specified by bit flags is used.

An MTU and a transmission gap can be explicitly specified with utofu_*_gap() functions. Other functions use

utofu_onesided_caps::max_mtu for an MTU and 0 for a transmission gap. To call utofu_*_gap() functions, a value from 0

up to utofu_onesided_caps::max_gap can be specified as the gap parameter. If 0 is specified, no gap is injected between packets.

If a value other than 0 is specified, a gap is injected between packets and the injection rate is throttled to "8/(gap+8)" compared to the

case of 0. For example, the injection rate would be 50% for gap 8 and 25% for gap 24.

To transfer multiple data of the same size with the same interval in a memory region using Put or Get, the utofu_{put|

get}_stride() and utofu_{put|get}_stride_gap() functions can be used. These functions post multiple Put/Get TOQ

descriptors at once in one function call. The distance between the start addresses of neighboring data is called a stride. A local STADD is
lcl_stadd, a remote STADD is rmt_stadd, the data length is length, and the stride length is stride. The first Put transfers the

region between lcl_stadd and "lcl_stadd + length" to the region between rmt_stadd and "rmt_stadd + length". The

second Put transfers the region between "lcl_stadd + stride" and "lcl_stadd + stride + length" to the region between

"rmt_stadd + stride" and "rmt_stadd + stride + length". The third Put transfers the region between "lcl_stadd +

(stride * 2)" and "lcl_stadd + (stride * 2) + length" to the region between "rmt_stadd + (stride * 2)"

and "rmt_stadd + (stride * 2) + length".

All the one-sided communication start functions utofu_*() have the corresponding one-sided communication preparation functions

utofu_prepare_*(). These functions do not post a TOQ descriptor to a TOQ but write it to caller-supplied memory. The one-sided

communication batch start function utofu_post_toq() can post the written descriptor to the TOQ. If the uTofu users repeatedly

executes the same communication, these functions can be used to reduce the overhead in creating TOQ descriptors.

3.7.1 One-Sided Communication Start Functions

3.7.1.1 utofu_put
Post a Put descriptor to a TOQ.

Format

int utofu_put(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data source) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data destination) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

- 54 -

Parameter Name Explanation IN/OUT

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.2 utofu_put_gap
Post a Put descriptor with a transmission gap to a TOQ.

Format

int utofu_put_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *cbdata)

Explanation

The parameters other than mtu and gap are the same as for the utofu_put() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data source) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data destination) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

- 55 -

Parameter Name Explanation IN/OUT

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

mtu
MTU (maximum transfer unit) of a packet.

A value up to utofu_onesided_caps::max_mtu can be specified.
IN

gap
Transmission gap injected between packets.

A value up to utofu_onesided_caps::max_gap can be specified.
IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.3 utofu_put_stride
Post multiple Put descriptors to a TOQ.

Format

int utofu_put_stride(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Explanation

The parameters other than stride and num_blocks are the same as for the utofu_put() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data source) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data destination) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

- 56 -

Parameter Name Explanation IN/OUT

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

stride Stride length in bytes IN

num_blocks Number of Put descriptors IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.4 utofu_put_stride_gap
Post multiple Put descriptors with a transmission gap to a TOQ.

Format

int utofu_put_stride_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *cbdata)

Explanation

The parameters other than stride, num_blocks, mtu, and gap are the same as for the utofu_put() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data source) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd STADD of the start address of a remote (data destination) memory region. IN

- 57 -

Parameter Name Explanation IN/OUT

Given by the utofu_reg_mem() function in a remote process.

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

stride Stride length in bytes IN

num_blocks Number of Put descriptors IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

mtu
MTU (maximum transfer unit) of a packet.

A value up to utofu_onesided_caps::max_mtu can be specified.
IN

gap
Transmission gap injected between packets.

A value up to utofu_onesided_caps::max_gap can be specified.
IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.5 utofu_put_piggyback
Post a Put Piggyback descriptor to a TOQ.

Format

int utofu_put_piggyback(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 void *lcl_data,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Explanation

Data up to utofu_onesided_caps::max_piggyback_size bytes can be transferred.

The parameters other than lcl_data are the same as for the utofu_put() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

- 58 -

Parameter Name Explanation IN/OUT

lcl_data
Pointer to the local data.

The memory can be reused safely after this function returns.
IN

rmt_stadd
STADD of the start address of a remote (data destination) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_piggyback_size can be specified.
IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.6 utofu_put_piggyback8
Post a Put Piggyback descriptor to a TOQ (up to 8 bytes).

Format

int utofu_put_piggyback8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 uint64_t lcl_data,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Explanation

Data of up to 8 bytes can be transferred. If the length of the data is less than 8 bytes, the less significant bits of lcl_data are transferred.

The parameters other than lcl_data are the same as for the utofu_put() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_data Value of the local data IN

rmt_stadd
STADD of the start address of a remote (data destination) memory region.

Given by the utofu_reg_mem() function in a remote process
IN

- 59 -

Parameter Name Explanation IN/OUT

length
Data length in bytes.

A value up to 8 can be specified.
IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.7 utofu_get
Post a Get descriptor to a TOQ.

Format

int utofu_get(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data destination) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data source) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

- 60 -

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.8 utofu_get_gap
Post a Get descriptor with a transmission gap to a TOQ.

Format

int utofu_get_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *cbdata)

Explanation

The parameters other than mtu and gap are the same as for the utofu_get() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data destination) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data source) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

mtu
MTU (maximum transfer unit) of a packet.

A value up to utofu_onesided_caps::max_mtu can be specified.
IN

gap
Transmission gap injected between packets.

A value up to utofu_onesided_caps::max_gap can be specified.
IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

- 61 -

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.9 utofu_get_stride
Post multiple Get descriptors to a TOQ.

Format

int utofu_get_stride(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Explanation

The parameters other than stride and num_blocks are the same as for the utofu_get() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data destination) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data source) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

stride Stride length in bytes IN

num_blocks Number of Get descriptors IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

- 62 -

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.10 utofu_get_stride_gap
Post multiple Get descriptors with a transmission gap to a TOQ.

Format

int utofu_get_stride_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *cbdata)

Explanation

The parameters other than stride, num_blocks, mtu, and gap are the same as for the utofu_get() function.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

lcl_stadd
STADD of the start address of the local (data destination) memory region.

Given by the utofu_reg_mem() function in this process.
IN

rmt_stadd
STADD of the start address of a remote (data source) memory region.

Given by the utofu_reg_mem() function in a remote process.
IN

length
Data length in bytes.

A value up to utofu_onesided_caps::max_putget_size can be specified.
IN

stride Stride length in bytes IN

num_blocks Number of Get descriptors IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

mtu
MTU (maximum transfer unit) of a packet.

A value up to utofu_onesided_caps::max_mtu can be specified.
IN

gap Transmission gap injected between packets. IN

- 63 -

Parameter Name Explanation IN/OUT

A value up to utofu_onesided_caps::max_gap can be specified.

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.11 utofu_armw4
Post a 32-bit ARMW descriptor to a TOQ (except Compare and Swap).

Format

int utofu_armw4(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 enum utofu_armw_op armw_op,

 uint32_t op_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

armw_op ARMW operation type IN

op_value Local operand IN

rmt_stadd

STADD of the start address of a remote (data read/modify/write) memory region.

Given by the utofu_reg_mem() function in a remote process. The remote memory

address must be aligned to 4 bytes.

IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

- 64 -

Value Explanation

other Other UTOFU_ERR_* error

3.7.1.12 utofu_armw8
Post a 64-bit ARMW descriptor to a TOQ (except Compare and Swap).

Format

int utofu_armw8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 enum utofu_armw_op armw_op,

 uint64_t op_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

armw_op ARMW operation type IN

op_value Local operand IN

rmt_stadd

STADD of the start address of a remote (data read/modify/write) memory region.

Given by the utofu_reg_mem() function in a remote process. The remote memory

address must be aligned to 8 bytes.

IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.13 utofu_cswap4
Post a 32-bit Compare and Swap ARMW descriptor to a TOQ.

Format

int utofu_cswap4(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

- 65 -

 uint32_t old_value,

 uint32_t new_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

old_value Old value (compare operand) IN

new_value New value (swap operand) IN

rmt_stadd

STADD of the start address of a remote (data read/modify/write) memory region.

Given by the utofu_reg_mem() function in a remote process. The remote memory

address must be aligned to 4 bytes.

IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.14 utofu_cswap8
Post a 64-bit Compare and Swap ARMW descriptor to a TOQ.

Format

int utofu_cswap8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 uint64_t old_value,

 uint64_t new_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

- 66 -

Parameter Name Explanation IN/OUT

rmt_vcq_id
Remote VCQ ID.

Given by the utofu_query_vcq_id() function in a remote process.
IN

old_value Old value (compare operand) IN

new_value New value (swap operand) IN

rmt_stadd

STADD of the start address of a remote (data read/modify/write) memory region.

Given by the utofu_reg_mem() function in a remote process. The remote memory

address must be aligned to 8 bytes.

IN

edata
EDATA that is passed by the utofu_poll_mrq() function.

A value within utofu_onesided_caps::max_edata_size bytes can be specified.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.1.15 utofu_nop
Post a NOP descriptor to a TOQ.

Format

int utofu_nop(

 utofu_vcq_hdl_t vcq_hdl,

 unsigned long int flags,

 void *cbdata)

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

flags Bitwise OR of UTOFU_ONESIDED_FLAG_* IN

cbdata Callback data that is passed by the utofu_poll_tcq() function IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

- 67 -

3.7.2 One-Sided Communication Preparation Functions
A one-sided communication preparation function writes a TOQ descriptor to the memory specified as an argument.

All the one-sided communication preparation functions utofu_prepare_*() have the corresponding one-sided communication start

functions utofu_*(). In comparison to the corresponding one-sided communication start function, the cbdata parameter is removed

and the desc and desc_size parameters are added.

Described below, the desc and desc_size parameters and return values are the same among all one-sided communication preparation

functions. Therefore, explanations of parameters and return values are omitted from the explanation of each one-sided communication
preparation function.

Parameters

Parameter Name Explanation IN/OUT

desc

Written descriptor.

For utofu_prepare_*_stride() functions, the byte size of memory must be

"utofu_onesided_caps::max_toq_desc_size * num_blocks" or greater.

For other functions, the byte size of memory must be
utofu_onesided_caps::max_toq_desc_size or greater. The memory address

must be aligned to 8 bytes.

OUT

desc_size

Byte size of the written descriptor.

The value may be smaller than "utofu_onesided_caps::max_toq_desc_size *

num_blocks" or utofu_onesided_caps::max_toq_desc_size.

OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.7.2.1 utofu_prepare_put
Prepare a Put descriptor.

Format

int utofu_prepare_put(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.2 utofu_prepare_put_gap
Prepare a Put descriptor with a transmission gap.

Format

int utofu_prepare_put_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

- 68 -

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *desc,

 size_t *desc_size)

3.7.2.3 utofu_prepare_put_stride
Prepare multiple Put descriptors.

Format

int utofu_prepare_put_stride(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.4 utofu_prepare_put_stride_gap
Prepare multiple Put descriptors with a transmission gap.

Format

int utofu_prepare_put_stride_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *desc,

 size_t *desc_size)

3.7.2.5 utofu_prepare_put_piggyback
Prepare a Put Piggyback descriptor.

Format

int utofu_prepare_put_piggyback(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 void *lcl_data,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

- 69 -

3.7.2.6 utofu_prepare_put_piggyback8
Prepare a Put Piggyback descriptor (up to 8 bytes).

Format

int utofu_prepare_put_piggyback8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 uint64_t lcl_data,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.7 utofu_prepare_get
Prepare a Get descriptor.

Format

int utofu_prepare_get(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.8 utofu_prepare_get_gap
Prepare a Get descriptor with a transmission gap.

Format

int utofu_prepare_get_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *desc,

 size_t *desc_size)

3.7.2.9 utofu_prepare_get_stride
Prepare multiple Get descriptors.

Format

int utofu_prepare_get_stride(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

- 70 -

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.10 utofu_prepare_get_stride_gap
Prepare multiple Get descriptors with a transmission gap.

Format

int utofu_prepare_get_stride_gap(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_stadd,

 utofu_stadd_t rmt_stadd,

 size_t length,

 size_t stride,

 size_t num_blocks,

 uint64_t edata,

 unsigned long int flags,

 size_t mtu,

 size_t gap,

 void *desc,

 size_t *desc_size)

3.7.2.11 utofu_prepare_armw4
Prepare a 32-bit ARMW descriptor.

Format

int utofu_prepare_armw4(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 enum utofu_armw_op armw_op,

 uint32_t op_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.12 utofu_prepare_armw8
Prepare a 64-bit ARMW descriptor.

Format

int utofu_prepare_armw8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 enum utofu_armw_op armw_op,

 uint64_t op_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

- 71 -

3.7.2.13 utofu_prepare_cswap4
Prepare a 32-bit Compare and Swap ARMW descriptor.

Format

int utofu_prepare_cswap4(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 uint32_t old_value,

 uint32_t new_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.14 utofu_prepare_cswap8
Prepare a 64-bit Compare and Swap ARMW descriptor.

Format

int utofu_prepare_cswap8(

 utofu_vcq_hdl_t vcq_hdl,

 utofu_vcq_id_t rmt_vcq_id,

 uint64_t old_value,

 uint64_t new_value,

 utofu_stadd_t rmt_stadd,

 uint64_t edata,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.2.15 utofu_prepare_nop
Prepare a NOP descriptor.

Format

int utofu_prepare_nop(

 utofu_vcq_hdl_t vcq_hdl,

 unsigned long int flags,

 void *desc,

 size_t *desc_size)

3.7.3 One-Sided Communication Batch Start Functions

3.7.3.1 utofu_post_toq
Post descriptors to a TOQ to start the communication at once.

Format

int utofu_post_toq(

 utofu_vcq_hdl_t vcq_hdl,

 void *desc,

 size_t desc_size,

 void *cbdata)

Explanation

This function posts a TOQ descriptor to a TOQ to start one-sided communication. A utofu_prepare_*() function can create the

TOQ descriptor for posting.

- 72 -

If a utofu_prepare_*() function is called multiple times and the TOQ descriptors are written to contiguous memory regions,

passing the memory region to this function can start those multiple communications at once. Also, communications of different types
can be started.

This function also starts one-sided communications that have not yet started due to the UTOFU_ONESIDED_FLAG_DELAY_START

flag.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl
Local VCQ handle.

Given by the utofu_create_vcq() function in this process.
IN

desc

Descriptors created by utofu_prepare_*() functions.

All local VCQ handles specified for those utofu_prepare_*() functions must be same

as the VCQ handle specified for this function. This parameter is ignored if desc_size is 0.

IN

desc_size

Total byte size of descriptors.

If 0, this function is starts only the one-sided communications that have not yet started due to
the UTOFU_ONESIDED_FLAG_DELAY_START flag.

IN

cbdata

Callback data that is passed by the utofu_poll_tcq() function.

This parameter is ignored if desc_size is 0. The same callback data is used for all

communications if multiple TOQ descriptors are posted.

IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY
The TOQ is full.

Call the utofu_poll_tcq() function before trying again.

other Other UTOFU_ERR_* error

3.7.4 One-Sided Communication Completion Confirmation Functions

3.7.4.1 utofu_poll_tcq
Poll a TCQ.

Format

int utofu_poll_tcq(

 utofu_vcq_hdl_t vcq_hdl,

 unsigned long int flags,

 void **cbdata)

Explanation

This function returns UTOFU_SUCCESS and sets cbdata when a new TCQ descriptor for the specified VCQ is found. The function

returns UTOFU_ERR_NOT_FOUND when no new TCQ descriptor for the specified VCQ is found.

The order of TCQ descriptors is the same as the order of TOQ descriptors posted with the UTOFU_ONESIDED_FLAG_TCQ_NOTICE

flag.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl Local VCQ handle IN

- 73 -

Parameter Name Explanation IN/OUT

flags Bitwise OR of UTOFU_POLL_FLAG_* IN

cbdata

Pointer to the storage for storing the callback data that was passed to the utofu_put()

function, etc.

The callback data is stored only if this function returns a code other than
UTOFU_ERR_NOT_FOUND.

OUT

Return values

Value Explanation

UTOFU_SUCCESS A new TCQ descriptor for successfully completed communication was found.

UTOFU_ERR_NOT_FOUND No new TCQ descriptor was found.

UTOFU_ERR_TCQ_* A new TCQ descriptor for communication with an error was found.

other Other UTOFU_ERR_* error

3.7.4.2 utofu_poll_mrq
Poll an MRQ.

Format

int utofu_poll_mrq(

 utofu_vcq_hdl_t vcq_hdl,

 unsigned long int flags,

 struct utofu_mrq_notice *notice)

Explanation

This function returns UTOFU_SUCCESS and writes data in notice when a new MRQ descriptor for the specified VCQ is found. The

function returns UTOFU_ERR_NOT_FOUND when no new MRQ descriptor for the specified VCQ is found.

This function handles both local notification MRQ descriptors and remote notification MRQ descriptors. The type of completed
communication can be confirmed using notice.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl Local VCQ handle IN

flags Bitwise OR of UTOFU_POLL_FLAG_* IN

notice

MRQ notification.

MRQ notification is set only when this function returns a code other than
UTOFU_ERR_NOT_FOUND.

OUT

Return values

Value Explanation

UTOFU_SUCCESS A new MRQ descriptor for successfully completed communication was found.

UTOFU_ERR_NOT_FOUND No new MRQ descriptor was found.

UTOFU_ERR_MRQ_* A new MRQ descriptor for communication with an error was found.

other Other UTOFU_ERR_* error

- 74 -

3.7.5 One-Sided Communication Query Functions

3.7.5.1 utofu_query_num_unread_tcq
Query the number of unread TCQ descriptors.

Format

int utofu_query_num_unread_tcq(

 utofu_vcq_hdl_t vcq_hdl,

 size_t *count)

Explanation

This function can be used to estimate how busy the TNI is now.

This function returns the number of written TOQ descriptors whose corresponding TCQ descriptors have not been read by the uTofu
implementation. This number is approximately equal to the number of one-sided communications that are scheduled but not yet
completed. If the function returns 0, the next one-sided communication start function call can start the communications immediately.

Though this function requires a VCQ handle as a parameter, the number of descriptors is counted per CQ, not VCQ. This is because a
TNI processes TOQ descriptors in order per CQ. So if a CQ is shared among some VCQs, the returned number may be different from
the number managed per VCQ.

Parameters

Parameter Name Explanation IN/OUT

vcq_hdl Local VCQ handle IN

count Number of unread TCQ descriptors OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.7.6 Communication Completion Notification Structures

3.7.6.1 struct utofu_mrq_notice
Contents of MRQ notification

Definition

struct utofu_mrq_notice {

 uint8_t notice_type;

 uint8_t padding1[7];

 utofu_vcq_id_t vcq_id;

 uint64_t edata;

 uint64_t rmt_value;

 utofu_stadd_t lcl_stadd;

 utofu_stadd_t rmt_stadd;

 uint64_t reserved[2];

}

Explanation

The utofu_poll_mrq() function writes this structure.

Members

- 75 -

Member Name Explanation

notice_type

MRQ notification type.

The value is one of the enumeration constants UTOFU_MRQ_TYPE_* in the

utofu_mrq_notice_type enumeration.

padding1
Padding field.

Do not use this field.

vcq_id

VCQ ID of the communication peer.

The value is a remote (communication target) VCQ ID for local notification and the local (communication
origin) VCQ ID for remote notification. Communication path coordinates embedded in this VCQ ID are the
A,B,C coordinates of the compute node, which are the same as the ones obtained by the
utofu_query_vcq_id() and utofu_construct_vcq_id() functions. So if other default

communication path coordinates are embedded by the utofu_set_vcq_id_path() function, this

value may differ from the remote VCQ ID specified in one-sided communication.

edata
Value of the EDATA specified in the corresponding one-sided communication start/preparation function
call

rmt_value

Value in remote memory before the update.

The more significant bits are 0 if 32-bit ARMW is used. This field is set only for
UTOFU_MRQ_TYPE_LCL_ARMW.

lcl_stadd

Local (communication origin) STADD.

This STADD points to the end of data ("lcl_stadd + length" when posting a TOQ descriptor) for Put/

Get and the beginning of data (lcl_stadd when posting a TOQ descriptor) for ARMW. This field is set

only for UTOFU_MRQ_TYPE_{LCL|RMT}_GET.

rmt_stadd

Remote (communication target) STADD.

This STADD points to the end of data ("rmt_stadd + length" when posting a TOQ descriptor) for Put/

Get and the beginning of data (rmt_stadd when posting a TOQ descriptor) for ARMW. This field is set

only for UTOFU_MRQ_TYPE_{LCL|RMT}_PUT, UTOFU_MRQ_TYPE_RMT_GET, and

UTOFU_MRQ_TYPE_{LCL|RMT}_ARMW.

reserved
Reserved field for future extensions.

Do not use this field.

3.7.7 ARMW Operation Types

3.7.7.1 enum utofu_armw_op
ARMW (Atomic Read Modify Write) operation types of one-sided communication

Explanation

These enumeration constants are used for the arguments of utofu_armw4(), utofu_armw8(), and their corresponding

utofu_prepare_*() functions to start one-sided communication.

Enumeration Constants

Enumeration Constant Explanation

UTOFU_ARMW_OP_SWAP Swap operation

UTOFU_ARMW_OP_ADD Unsigned integer addition operation

UTOFU_ARMW_OP_XOR Bitwise XOR operation

UTOFU_ARMW_OP_AND Bitwise AND operation

UTOFU_ARMW_OP_OR Bitwise OR operation

- 76 -

3.7.8 Communication Completion Notification Types

3.7.8.1 enum utofu_mrq_notice_type
MRQ descriptor types

Explanation

These enumeration constants are set in utofu_mrq_notice::notice_type when a new MRQ descriptor is found on the

utofu_poll_mrq() function.

Enumeration Constants

Enumeration Constant Explanation

UTOFU_MRQ_TYPE_LCL_PUT Local MRQ notification of the Put communication

UTOFU_MRQ_TYPE_RMT_PUT Remote MRQ notification of the Put communication

UTOFU_MRQ_TYPE_LCL_GET Local MRQ notification of the Get communication

UTOFU_MRQ_TYPE_RMT_GET Remote MRQ notification of the Get communication

UTOFU_MRQ_TYPE_LCL_ARMW Local MRQ notification of the ARMW communication

UTOFU_MRQ_TYPE_RMT_ARMW Remote MRQ notification of the ARMW communication

3.7.9 One-Sided Communication Flags

3.7.9.1 UTOFU_ONESIDED_FLAG_*

Bit flags for the flags parameter of one-sided communication start functions and one-sided communication preparation functions.

Explanation

They can specify behaviors of one-sided communication.

Macros

Macro Name Explanation

UTOFU_ONESIDED_FLAG_TCQ_NOTICE

TCQ notification.

This flag orders the utofu_poll_tcq() function to return the

corresponding TCQ notification.

UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE

Remote MRQ notification.

This flag orders the utofu_poll_mrq() function to return the

corresponding remote MRQ notification.

UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE

Local MRQ notification.

This flag orders the utofu_poll_mrq() function to return the

corresponding local MRQ notification.

UTOFU_ONESIDED_FLAG_STRONG_ORDER

Strong order.

This flag ensures that this one-sided communication reads from
memory or writes to memory after prior one-sided communications
with the same local VCQ, same remote VCQ, and same communication
path have read from memory or written to memory.

UTOFU_ONESIDED_FLAG_CACHE_INJECTION

Cache injection.

This flag orders the local/remote TNI to write data to the last level cache
of the CPU in addition to memory.

UTOFU_ONESIDED_FLAG_PADDING Cache line padding.

- 77 -

Macro Name Explanation

This flag orders the remote TNI to write indefinite values in an area that
is not the Put Piggyback target area but is on the target cache line. Used
only for Put Piggyback, the flag works with the
UTOFU_ONESIDED_FLAG_CACHE_INJECTION flag to use the

cache injection feature with Put Piggyback.

UTOFU_ONESIDED_FLAG_DELAY_START

Delay starting communication.

This flag orders a one-sided communication start function not to start
communication immediately and to put it in a pending state if possible.
The next one-sided communication start function call for the same VCQ
without the flag or a utofu_post_toq() function call for the same

VCQ starts the pending communication. The flag may be ignored if the
TOQ is full due to the pending one-sided communication or for other
reasons. The flag can be used to speed up repeated one-sided
communication start function calls because starting communication
incurs some costs. Because a one-sided communication start function
may start communication even if the flag is specified, the
communication must be ready to start when the function is called. For
example, a remote VCQ must have been created and the source data
must have been written to memory. The flag does not have an effect on
one-sided communication preparation functions because these
functions by their nature do not start communications.

3.7.9.2 UTOFU_ONESIDED_FLAG_PATH

Bit flags for specifying a communication path by the flags parameter of a one-sided communication start/preparation function

Macro

UTOFU_ONESIDED_FLAG_PATH(path_id)

Explanation

To call a one-sided communication start/preparation function, a communication path can be specified by either a remote VCQ ID
(rmt_vcq_id parameter) or bit flags (flags parameter).

This function-like macro gives a communication path value that can be set in the flags parameter of a one-sided communication start/

preparation function. This bit flag can be combined with other UTOFU_ONESIDED_FLAG_* macros by bitwise OR.

Parameters

Parameter Name Explanation IN/OUT

path_id Communication path ID created by the utofu_get_path_id() function IN

3.7.9.3 UTOFU_ONESIDED_FLAG_SPS

Bit flags for specifying a session progress step (SPS) by the flags parameter of a one-sided communication start/preparation function

Macro

UTOFU_ONESIDED_FLAG_SPS(sps)

Explanation

To call a one-sided communication start/preparation function for a remote VCQ created as a session mode VCQ, a session progress step
(SPS) must be specified by the flags parameter.

This function-like macro gives an SPS value that can be set in the flags parameter of a one-sided communication start/preparation

function. This bit flag can be combined with other UTOFU_ONESIDED_FLAG_* macros by bitwise OR.

- 78 -

If the remote VCQ was not created as a session mode VCQ, this flag is ignored. If the remote VCQ was created as a session mode VCQ
but no SPS is set in the flags parameter of the one-sided communication start/preparation function, the SPS is treated as 0.

Parameters

Parameter Name Explanation IN/OUT

sps SPS of the session mode IN

3.7.10 Polling Flags

3.7.10.1 UTOFU_POLL_FLAG_*

Bit flags for specifying by the flags parameter of one-sided communication completion confirmation functions or barrier communication

completion confirmation functions

Explanation

They can specify behaviors of polling functions.

No flags are defined in the current version.

3.8 Barrier Communication Execution
Barrier communication is started by a barrier communication start function and its completion can be confirmed by the barrier
communication completion confirmation function corresponding to the barrier communication start function used. When a reduction
operation is executed with barrier synchronization, the input data is passed to a barrier communication start function, and the corresponding
output data (operation results) is obtained from a barrier communication completion confirmation function.

Only one barrier communication is performed with one barrier circuit built by the utofu_set_vbg() function. Before starting the next

barrier communication, completion of the previous barrier communication must be confirmed. Using multiple barrier circuits, multiple
barrier communications can be performed at the same time.

In one barrier communication, all processes participating in the barrier communication must call the same barrier communication start
function and specify the same reduction operation type. If not, the corresponding barrier communication completion confirmation function
returns UTOFU_ERR_BARRIER_MISMATCH.

The first parameter vbg_id of barrier communication start functions and barrier communication completion confirmation functions

determines which barrier circuit is used. The VBG ID must be the first local VBG ID in the VBG ID array returned by the
utofu_alloc_vbg() function. It corresponds to a start/end BG.

3.8.1 Barrier Communication Start Functions

3.8.1.1 utofu_barrier
Start barrier synchronization on a barrier circuit.

Format

int utofu_barrier(

 utofu_vbg_id_t vbg_id,

 unsigned long int flags)

Explanation

This function is nonblocking. The utofu_poll_barrier() function can confirm the completion of the barrier synchronization.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

- 79 -

Parameter Name Explanation IN/OUT

flags
Bitwise OR of UTOFU_BARRIER_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY Barrier communication has been already started on the barrier circuit.

other Other UTOFU_ERR_* error

3.8.1.2 utofu_reduce_uint64

Start reduction operation of uint64_t values on a barrier circuit.

Format

int utofu_reduce_uint64(

 utofu_vbg_id_t vbg_id,

 enum utofu_reduce_op op,

 uint64_t data[],

 size_t num_data,

 unsigned long int flags)

Explanation

This function is nonblocking. The utofu_poll_reduce_uint64() function can confirm the completion of the reduction

operation.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

op

Reduction operation type.

Only operations for uint64_t are allowed. All processes participating in the barrier

communication must specify the same value.

IN

data
Array of reduction input data.

The array length must be num_data.
IN

num_data

Reduction input data count.

The value must be in a range from 1 to
utofu_barrier_caps::max_uint64_reduction. All processes participating in

the barrier communication must specify the same value.

IN

flags
Bitwise OR of UTOFU_BARRIER_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY Barrier communication has been already started on the barrier circuit.

other Other UTOFU_ERR_* error

- 80 -

3.8.1.3 utofu_reduce_double

Start reduction operation of double values on a barrier circuit.

Format

int utofu_reduce_double(

 utofu_vbg_id_t vbg_id,

 enum utofu_reduce_op op,

 double data[],

 size_t num_data,

 unsigned long int flags)

Explanation

This function is nonblocking. The utofu_poll_double() function can confirm the completion of the reduction operation.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

op

Reduction operation type.

Only operations for double are allowed. All processes participating in the barrier

communication must specify the same value.

IN

data
Array of reduction input data.

The array length must be num_data.
IN

num_data

Reduction input data count.

The value must be in a range from 1 to
utofu_barrier_caps::max_double_reduction. All processes participating in

the barrier communication must specify the same value.

IN

flags
Bitwise OR of UTOFU_BARRIER_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

UTOFU_ERR_BUSY Barrier communication has been already started on the barrier circuit.

other Other UTOFU_ERR_* error

3.8.2 Barrier Communication Completion Confirmation Functions

3.8.2.1 utofu_poll_barrier
Poll the completion of barrier synchronization.

Format

int utofu_poll_barrier(

 utofu_vbg_id_t vbg_id,

 unsigned long int flags)

Explanation

Before this function is called, the utofu_barrier() function must have started barrier synchronization.

- 81 -

This function is nonblocking. The function returns UTOFU_SUCCESS when the barrier synchronization is completed. Otherwise, it

returns UTOFU_ERR_NOT_COMPLETED immediately.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

flags
Bitwise OR of UTOFU_POLL_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

Return values

Value Explanation

UTOFU_SUCCESS Completed

UTOFU_ERR_NOT_COMPLETED Not yet completed

UTOFU_ERR_BUSY Barrier communication has not been started on the barrier circuit.

UTOFU_ERR_BARRIER_* A barrier communication error occurred.

other Other UTOFU_ERR_* error

3.8.2.2 utofu_poll_reduce_uint64

Poll the completion of reduction operation of uint64_t values.

Format

int utofu_poll_reduce_uint64(

 utofu_vbg_id_t vbg_id,

 unsigned long int flags,

 uint64_t data[])

Explanation

Before this function is called, the utofu_reduce_uint64() function must have started reduction operation.

This function is nonblocking. The function returns UTOFU_SUCCESS and fills result data when the reduction operation is completed.

Otherwise, it returns UTOFU_ERR_NOT_COMPLETED immediately.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

flags
Bitwise OR of UTOFU_POLL_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

data

Array of uint64_t reduction result data.

The array length must be the num_data specified in the utofu_reduce_uint64()

function call or greater. Only the first num_data elements are updated. The array contents

are updated only when this function returns UTOFU_SUCCESS.

OUT

Return values

Value Explanation

UTOFU_SUCCESS Completed

UTOFU_ERR_NOT_COMPLETED Not yet completed

- 82 -

Value Explanation

UTOFU_ERR_BUSY Barrier communication has not been started on the barrier circuit.

UTOFU_ERR_BARRIER_* A barrier communication error occurred.

other Other UTOFU_ERR_* error

3.8.2.3 utofu_poll_reduce_double

Poll the completion of reduction operation of double values.

Format

int utofu_poll_reduce_double(

 utofu_vbg_id_t vbg_id,

 unsigned long int flags,

 double data[])

Explanation

Before this function is called, the utofu_reduce_double() function must have started reduction operation.

This function is nonblocking. The function returns UTOFU_SUCCESS and fills result data when the reduction operation is completed.

Otherwise, it returns UTOFU_ERR_NOT_COMPLETED immediately.

Parameters

Parameter Name Explanation IN/OUT

vbg_id
Local first VBG ID.

Given by the utofu_alloc_vbg() function in this process.
IN

flags
Bitwise OR of UTOFU_POLL_FLAG_*.

All processes participating in the barrier communication must specify the same value.
IN

data

Array of double reduction result data.

The array length must be the num_data specified in the utofu_reduce_double()

function call or greater. Only the first num_data elements are updated. The array contents

are updated only when this function returns UTOFU_SUCCESS.

OUT

Return values

Value Explanation

UTOFU_SUCCESS Completed

UTOFU_ERR_NOT_COMPLETED Not yet completed

UTOFU_ERR_BUSY Barrier communication has not been started on the barrier circuit.

UTOFU_ERR_BARRIER_* A barrier communication error occurred.

other Other UTOFU_ERR_* error

3.8.3 Reduction Operation Types

3.8.3.1 enum utofu_reduce_op
Reduction operation types of barrier communication

Explanation

These enumeration constants are used for arguments of the utofu_reduce_uint64() and utofu_reduce_double()

functions to start barrier communication.

- 83 -

Enumeration Constants

Enumeration Constant Explanation

UTOFU_REDUCE_OP_BARRIER Barrier synchronization (no reduction operation)

UTOFU_REDUCE_OP_BAND Bitwise AND operation of uint64_t values

UTOFU_REDUCE_OP_BOR Bitwise OR operation of uint64_t values

UTOFU_REDUCE_OP_BXOR Bitwise XOR operation of uint64_t values

UTOFU_REDUCE_OP_MAX Operation that gives maximum unsigned integer of uint64_t values

UTOFU_REDUCE_OP_MAXLOC Operation that gives maximum unsigned integer of uint64_t values and its location

UTOFU_REDUCE_OP_SUM Unsigned integer summation operation of uint64_t values

UTOFU_REDUCE_OP_BFPSUM Floating-point (BFP) summation operation of double values

3.8.4 Barrier Communication Flags

3.8.4.1 UTOFU_BARRIER_FLAG_*

Bit flags for the flags parameter of barrier communication start functions

Explanation

They can specify behaviors of barrier communication.

No flags are defined in the current version.

3.9 Supplemental Features

3.9.1 Version Query Functions

3.9.1.1 utofu_query_tofu_version
Query the version of the Tofu interconnect.

Format

void utofu_query_tofu_version(

 int *major_ver,

 int *minor_ver)

Explanation

For details on returned version values, see "Chapter 6 System Information".

Version values returned by this function are numbered by uTofu, and they differ from the version of the Tofu interconnect itself.

Parameters

Parameter Name Explanation IN/OUT

major_ver Major version OUT

minor_ver Minor version OUT

3.9.1.2 utofu_query_utofu_version
Query the version of the uTofu runtime API.

- 84 -

Format

void utofu_query_utofu_version(

 int *major_ver,

 int *minor_ver)

Parameters

Parameter Name Explanation IN/OUT

major_ver Major version OUT

minor_ver Minor version OUT

3.9.2 Compute Node Information Query Functions

3.9.2.1 utofu_query_my_coords
Query the coordinates of this compute node in the Tofu network.

Format

int utofu_query_my_coords(

 uint8_t coords[])

Parameters

Parameter Name Explanation IN/OUT

coords
Compute node coordinates in the order of X, Y, Z, A, B, C.

The array length must be 6 or greater.
OUT

Return values

Value Explanation

UTOFU_SUCCESS Succeeded

other Other UTOFU_ERR_* error

3.9.3 Version Information Macros

3.9.3.1 UTOFU_VERSION_*
uTofu compile-time API version

Explanation

These macros show the uTofu compile-time API version (header file).

The utofu_query_utofu_version() function can obtain the uTofu runtime API version (library file).

Macros

Macro Name Explanation

UTOFU_VERSION_MAJOR uTofu API major version

UTOFU_VERSION_MINOR uTofu API minor version

- 85 -

Chapter 4 How to Use uTofu
This chapter describes how to use uTofu.

4.1 uTofu Program Design
This section describes necessary matters regarding uTofu program design.

4.1.1 Use From a Language Other Than C
The uTofu header file utofu.h for C, if processed by a C++ compiler, provides declarations of functions, etc. with the C linkage

specification (extern "C"). Therefore, the including of the utofu.h header file from a C++ source program enables use of uTofu

through its C interfaces in the C++ program. Also, by using mixed language programming technic, linking a Fortran program with a C object
program or C++ object program that uses uTofu enables indirect use of uTofu in the Fortran program. For the meanings of linkage
specifications and mixed language programming, see the C++ standard and respective compiler manuals.

4.1.2 Using uTofu Together With MPI

 Note

The descriptions here assume the use of Fujitsu MPI. They may not apply when another MPI library is used.

uTofu and MPI can be used together in one program. Since uTofu and MPI communicate logically independently over the Tofu
interconnect, one of them can communicate while the other is also communicating.

The following restrictions apply when one program uses uTofu together with MPI.

- A call of uTofu function must be within the period between a call of the MPI_INIT routine or MPI_INIT_THREAD routine of MPI

and a call of the MPI_FINALIZE routine of MPI. This is because the MPI_INIT or MPI_INIT_THREAD routine call appropriately

allocates communication resources (CQs) between processes on a compute node or between uTofu and MPI within a process. This is
also because the MPI_INIT or MPI_INIT_THREAD routine call enables automatic selection of appropriate communication paths.

For details on MPI routines, see the MPI standard.

- The VCQ created with uTofu in the following two cases must be created as a thread-safe VCQ or CQ-exclusive VCQ. In one case,
multiple threads may call uTofu functions and MPI routines simultaneously. In the other case, the MPI function for promoting
asynchronous communication using an assistant core is used. For details on this function, see the MPI library manual.

The following restrictions apply when one program does not use uTofu and MPI together.

- If there is an MPI process on a compute node, the other processes in the compute node cannot use uTofu. This is due to a conflict of
communication resources between MPI processes and uTofu processes. This also means that a child process created from the MPI
process cannot use uTofu.

You need to note the following points when one program does not use uTofu and MPI together.

- Each process communicating with another process needs to notify the other process of the VCQ ID, VBG ID, etc. before communicating
using uTofu. However, the means of this notification must be other than MPI communication.

- Duplication of communication resources (CQs) between processes must be prevented when multiple uTofu processes are executed on
a single compute node.

If you want to easily write a uTofu program, we recommend calling the MPI_INIT routine or MPI_INIT_THREAD routine and sending

information of the VCQ ID, VBG ID, etc. with MPI communication even if MPI communication is unnecessary.

Note that this manual collectively refers to functions in C, Fortran, and C++ and subroutines in Fortran as routines, according to the notation
used in the MPI standard. All the MPI routine names are capitalized.

- 86 -

4.1.3 Possible Range of Communication
A uTofu program is executed as a job on a compute node, as described in "4.3.1 Spawning a uTofu Process". The possible range of
communication by a uTofu process executed as a job is the range of the job. This is the same as the possible range of communication by
an MPI process.

4.1.4 Preventing Concentrated Communications
If many communications (more than several thousands or several tens of thousands) concentrate on one compute node at the same time, the
Tofu network has a bottleneck near this compute node. Consequently, network processing becomes extremely slow. If a device driver (the
Tofu driver) detects such a phenomenon, the uTofu implementation may output an error message and force the program to exit.

As examples of measures to prevent many communications from concentrating on one compute node at the same time, take the following
actions.

- Review algorithms so that communications do not concentrate on specific compute nodes.

- Insert synchronization among processes to distribute communications temporally.

- For repeated communications to one compute node, maintain an interval between the repetitions in order to distribute the
communications temporally.

4.2 Compiling/Linking a uTofu Program
You can compile/link a uTofu program in a similar way to other C programs. However, for linking, the -ltofucom option must be handed

over to the compiler or linker to link the libtofucom.so shared library to the executable program.

The directories where the utofu.h header file exists and the libtofucom.so shared library exists are usually included in the standard

search path list of the compiler or the linker. Therefore, no directory specification is required in the -I option or -L option.

For compiling/linking a uTofu program, use the cross compiler on the login node or the native compiler on a compute node. To use uTofu
together with MPI in one program, use the compile/link command of MPI. For details on the cross compiler or the native compiler, see the
respective compiler manuals. For details on the compile/link command of MPI, see the MPI library manual.

 Example

Example of the mpifccpx command compiling/linking an MPI program

1. Compile the test.c user program to create the test.o object program.

$ mpifccpx -c test.c

2. Link the test.o object program to create the test executable program.

$ mpifccpx -ltofucom -o test test.o

4.3 Executing a uTofu Program
This section describes necessary matters regarding uTofu program execution.

4.3.1 Spawning a uTofu Process
uTofu programs must be executed on compute nodes. The user does not directly execute a uTofu program on a compute node but instead
requests the Job Operation Software to submit a job that executes the program. For details on how to submit the job, see the Job Operation
Software manuals.

When using uTofu and MPI together in one program, use the mpiexec command in a job to execute the uTofu program. No special

preparations are necessary except that you can set uTofu-specific environment variables, which are described in "4.3.2 Environment
Variables", as needed. For details on how to use the mpiexec command, see the MPI library manual.

- 87 -

Even when not using uTofu and MPI together in one program, you can use the mpiexec command in a job to execute the uTofu program.

The number and locations of spawned uTofu processes are the same as for an MPI program. The --debuglib option in the mpiexec

command of Fujitsu MPI is ignored. Among the MCA parameters that can be specified in the --mca or -am option in the mpiexec

command of Fujitsu MPI, the parameters relating only to MPI library behavior are ignored.

Also when not using uTofu and MPI together in one program, you can directly execute a uTofu program without using the mpiexec

command.

If the job type is node-sharing job, uTofu cannot be used. For details on node-sharing jobs, see the Job Operation Software manuals.

4.3.2 Environment Variables
You can change parts of uTofu behavior by using environment variables. The environment variables of uTofu must be set before the first
uTofu or MPI function call in a uTofu process. If an environment variable of uTofu is set, changed, or removed after even one uTofu or MPI
function is called, the behavior is not guaranteed.

4.3.2.1 UTOFU_NUM_EXCLUSIVE_CQS

You can set the required number of CQs for CQ-exclusive VCQs per TNI by using the UTOFU_NUM_EXCLUSIVE_CQS environment

variable.

You can specify 0 or higher. The default is 0.

To enable high-performance collective communication, the MPI library may use multiple CQs per TNI. Some CQs are reserved for this
purpose. However, the number of the CQs is finite. Due to a shortage of CQs, you may not be able to create CQ-exclusive VCQs with the
utofu_create_vcq() function.

When the required number of CQs for CQ-exclusive VCQs is set in this environment variable, the uTofu implementation tries to reserve
as many CQs as possible up to the required number for CQ-exclusive VCQs. It may not be able to reserve as many CQs as the required
number since the number of CQs is finite and CQs are distributed to all the processes on the compute node.

If uTofu and MPI are used together, setting a value of 1 or greater decreases the number of CQs for collective communication of the MPI
library. This may affect its performance.

For details on the CQ-exclusive VCQ, see the description of the UTOFU_VCQ_FLAG_EXCLUSIVE macro in "3.3.4.1

UTOFU_VCQ_FLAG_*".

4.3.2.2 UTOFU_NUM_SESSION_MODE_CQS

You can set the required number of CQs for session mode VCQs per TNI by using the UTOFU_NUM_SESSION_MODE_CQS environment

variable.

You can specify 0 or higher. The default is 3.

To enable high-performance collective communication, the MPI library may use multiple session mode CQs per TNI. However, the number
of the CQs is finite. Due to a shortage of CQs, you may not be able to create session mode VCQs with the utofu_create_vcq()

function.

When the required number of CQs for session mode VCQs is set in this environment variable, the uTofu implementation tries to reserve
as many CQs as possible up to the required number. It may not be able to reserve as many CQs as the required number since the number
of CQs is finite and CQs are distributed to all the processes on the compute node.

If both this environment variable and the UTOFU_NUM_EXCLUSIVE_CQS environment variable are set and the number of CQs is

insufficient, the UTOFU_NUM_EXCLUSIVE_CQS environment variable has priority.

If uTofu and MPI are used together, setting a value of 2 or less decreases the number of CQs for collective communication of the MPI library.
This may affect its performance.

For details on the session mode VCQ, see "2.2.8 Session Mode".

4.3.2.3 UTOFU_NUM_MRQ_ENTRIES

You can set the number of MRQ entries of a free mode VCQ by using the UTOFU_NUM_MRQ_ENTRIES environment variable.

- 88 -

You can specify any of the following numerical values: 2048, 8192, 32768, 131072, 524288, and 2097152. The default is 131072. Instead
of these numerical values, you can also specify any of the following character strings: 2Ki, 8Ki, 32Ki, 128Ki, 512Ki, and 2Mi. The specified
characters are not case-sensitive. If the specified numerical value is not one of the above, the above value closest to it is assumed specified.
If two values are equally close to it, the higher value is assumed specified.

The Tofu interconnect reports the completion of communication by writing a descriptor in the MRQ. If the utofu_poll_mrq() function

is not called and descriptors continue to accumulate in the MRQ, an error called MRQ overflow occurs. A higher number of MRQ entries
can reduce the probability of an MRQ overflow event. However, the downside is increased memory consumption.

4.3.2.4 UTOFU_NUM_MRQ_ENTRIES_SESSION

You can set the number of MRQ entries of a session mode VCQ by using the UTOFU_NUM_MRQ_ENTRIES_ENTRIES environment

variable.

Values which can be specified are same as those of UTOFU_NUM_MRQ_ENTRIES.

For details on the session mode VCQ, see "2.2.8 Session Mode".

4.3.2.5 UTOFU_SWAP_PROTECT
On a compute node, an allocated memory region may be swapped out due to memory shortage or other reasons. When a memory region
used for communication on the Tofu interconnect is swapped out, an error may occur in communication using the memory region. In this
case, the one-sided communication completion confirmation functions return any of the following return values.

Which the utofu_poll_tcq() function or the utofu_poll_mrq() function returns the return value of the error depends on when

swap out occurs.

- Case of the utofu_poll_tcq() function

- UTOFU_ERR_TCQ_MEMORY

- Case of the utofu_poll_mrq() function

- UTOFU_ERR_MRQ_LCL_MEMORY

- UTOFU_ERR_MRQ_RMT_MEMORY

By specifying the environment variable UTOFU_SWAP_PROTECT, you can select whether to exclude the memory region for

communication from swap out.

An integer value 0 or 1 can be specified, and the default value is 0. If a value other than 0 or 1 is specified, it is assumed to be 1.

When the value 1 is specified for this environment variable, the mlock system call is called inside the uTofu implementation and the memory
region used for communication on the Tofu interconnect is guaranteed not to be subject to swap out. The size of the memory region that can
be excluded from the swap out target is subject to the software resource limit RLIMIT_MEMLOCK. See the Job Operation Software manual

for details on how to check or change the RLIMIT_MEMLOCK at job execution.

When the value 0 is specified for this environment variable, the memory region used for communication on the Tofu interconnect may be
subject to swap out.

 Note

Communication performance may decrease if a memory region for communication is excluded from swap out.

If the value of RLIMIT_MEMLOCK is less than the total size of the memory region for communication used by the job, the communication

error due to swap out may not be avoided even if the value 1 is specified for this environment variable.

- 89 -

Chapter 5 Use Examples of uTofu
This chapter provides some examples of uTofu use.

The sample programs in this chapter are written in the following style.

- MPI is also used for simplified processing, as described in "4.1.2 Using uTofu Together With MPI".

- Error checks using function return values are mostly omitted in order to focus on program flow, though they are necessary in practical
programs.

- The assert() function-like macro is used to explain values set in a program.

- lcl means a local process, rmt means a remote process, and num means a number in variable names.

5.1 Use Examples of One-Sided Communication

5.1.1 Example of Ping-Pong Communication Using Put
In this program, two processes alternately perform Put communications. This communication pattern is generally called ping-pong
communication.

Each process performs Put communication after it receives data of Put communication from its peer process. The first half of the program
confirms receiving data by remote MRQ notification. The last half of the program confirms receiving data by polling the memory region
to be updated.

This program runs with two processes.

#include <stdlib.h>

#include <assert.h>

#include <mpi.h>

#include <utofu.h>

// send data and confirm its completion

static void send(utofu_vcq_hdl_t vcq_hdl, utofu_vcq_id_t rmt_vcq_id,

 utofu_stadd_t lcl_send_stadd, utofu_stadd_t rmt_recv_stadd, size_t length,

 uint64_t edata, uintptr_t cbvalue, unsigned long int post_flags)

{

 int rc;

 // instruct the TNI to perform a Put communication

 utofu_put(vcq_hdl, rmt_vcq_id, lcl_send_stadd, rmt_recv_stadd, length,

 edata, post_flags, (void *)cbvalue);

 // confirm the TCQ notification

 if (post_flags & UTOFU_ONESIDED_FLAG_TCQ_NOTICE) {

 void *cbdata;

 do {

 rc = utofu_poll_tcq(vcq_hdl, 0, &cbdata);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 assert(rc == UTOFU_SUCCESS);

 assert((uintptr_t)cbdata == cbvalue);

 }

 // confirm the local MRQ notification

 if (post_flags & UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE) {

 struct utofu_mrq_notice notice;

 do {

 rc = utofu_poll_mrq(vcq_hdl, 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 assert(rc == UTOFU_SUCCESS);

 assert(notice.notice_type == UTOFU_MRQ_TYPE_LCL_PUT);

 assert(notice.edata == edata);

- 90 -

 }

}

// confirm receiving data

static void recv(utofu_vcq_hdl_t vcq_hdl, volatile uint64_t *recv_buffer, uint64_t expected_value,

 uint64_t edata, unsigned long int post_flags)

{

 int rc;

 // confirm the remote MRQ notification or the memory update

 if (post_flags & UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE) {

 struct utofu_mrq_notice notice;

 do {

 rc = utofu_poll_mrq(vcq_hdl, 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 assert(rc == UTOFU_SUCCESS);

 assert(notice.notice_type == UTOFU_MRQ_TYPE_RMT_PUT);

 assert(notice.edata == edata);

 assert(*recv_buffer == expected_value);

 } else {

 while (*recv_buffer != expected_value);

 }

}

int main(int argc, char *argv[])

{

 int i, rc, iteration = 100, num_processes, lcl_rank, rmt_rank;

 unsigned long int post_flags;

 size_t num_tnis, length = sizeof(uint64_t);

 uint64_t edata, send_buffer;

 volatile uint64_t recv_buffer;

 uintptr_t cbvalue;

 utofu_tni_id_t tni_id, *tni_ids;

 utofu_vcq_hdl_t vcq_hdl;

 utofu_vcq_id_t lcl_vcq_id, rmt_vcq_id;

 utofu_stadd_t lcl_send_stadd, lcl_recv_stadd, rmt_recv_stadd;

 struct utofu_onesided_caps *onesided_caps;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

 if (num_processes != 2) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 MPI_Comm_rank(MPI_COMM_WORLD, &lcl_rank);

 rmt_rank = (lcl_rank == 0) ? 1 : 0;

 // get an ID of a TNI available for one-sided communication

 rc = utofu_get_onesided_tnis(&tni_ids, &num_tnis);

 if (rc != UTOFU_SUCCESS || num_tnis == 0) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 tni_id = tni_ids[0];

 free(tni_ids);

 // query the capabilities of one-sided communication of the TNI

 utofu_query_onesided_caps(tni_id, &onesided_caps);

 // create a VCQ and get its VCQ ID

 utofu_create_vcq(tni_id, 0, &vcq_hdl);

- 91 -

 utofu_query_vcq_id(vcq_hdl, &lcl_vcq_id);

 // register memory regions and get their STADDs

 utofu_reg_mem(vcq_hdl, (void *)&send_buffer, length, 0, &lcl_send_stadd);

 utofu_reg_mem(vcq_hdl, (void *)&recv_buffer, length, 0, &lcl_recv_stadd);

 // notify peer processes of the VCQ ID and the STADD

 MPI_Sendrecv(&lcl_vcq_id, 1, MPI_UINT64_T, rmt_rank, 0,

 &rmt_vcq_id, 1, MPI_UINT64_T, rmt_rank, 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Sendrecv(&lcl_recv_stadd, 1, MPI_UINT64_T, rmt_rank, 0,

 &rmt_recv_stadd, 1, MPI_UINT64_T, rmt_rank, 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 // embed the default communication path coordinates into the received VCQ ID.

 utofu_set_vcq_id_path(&rmt_vcq_id, NULL);

 recv_buffer = UINT64_MAX;

 MPI_Barrier(MPI_COMM_WORLD);

 // perform ping-pong communication using the remote MRQ notification

 post_flags = UTOFU_ONESIDED_FLAG_TCQ_NOTICE |

 UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE |

 UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE;

 // The MRQ of recv corresponding to the TOQ executed with send can be identified by

 // changing the edata value of each iteration.

 for (i = 0; i < iteration; i++) {

 // The edata that can be used is 8 bytes. Because of that, edata is reset to 0

 // times every 256 times.

 edata = i % (1UL << (8 * onesided_caps->max_edata_size));

 cbvalue = i;

 send_buffer = i;

 if (lcl_rank == 0) {

 send(vcq_hdl, rmt_vcq_id, lcl_send_stadd, rmt_recv_stadd, length,

 edata, cbvalue, post_flags);

 recv(vcq_hdl, &recv_buffer, send_buffer, edata, post_flags);

 recv_buffer = UINT64_MAX;

 } else {

 recv(vcq_hdl, &recv_buffer, send_buffer, edata, post_flags);

 recv_buffer = UINT64_MAX;

 send(vcq_hdl, rmt_vcq_id, lcl_send_stadd, rmt_recv_stadd, length,

 edata, cbvalue, post_flags);

 }

 }

 recv_buffer = UINT64_MAX;

 MPI_Barrier(MPI_COMM_WORLD);

 // perform ping-pong communication using the memory update

 post_flags = UTOFU_ONESIDED_FLAG_TCQ_NOTICE |

 UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE;

 // The MRQ of recv corresponding to the TOQ executed with send can be identified by

 // changing the edata value of each iteration.

 for (i = 0; i < iteration; i++) {

 // The edata that can be used is 8 bytes. Because of that, edata is reset to 0

 // times every 256 times.

 edata = i % (1UL << (8 * onesided_caps->max_edata_size));

 cbvalue = i;

 send_buffer = i;

 if (lcl_rank == 0) {

 send(vcq_hdl, rmt_vcq_id, lcl_send_stadd, rmt_recv_stadd, length,

- 92 -

 edata, cbvalue, post_flags);

 recv(vcq_hdl, &recv_buffer, send_buffer, edata, post_flags);

 recv_buffer = UINT64_MAX;

 } else {

 recv(vcq_hdl, &recv_buffer, send_buffer, edata, post_flags);

 recv_buffer = UINT64_MAX;

 send(vcq_hdl, rmt_vcq_id, lcl_send_stadd, rmt_recv_stadd, length,

 edata, cbvalue, post_flags);

 }

 }

 // free resources

 utofu_dereg_mem(vcq_hdl, lcl_send_stadd, 0);

 utofu_dereg_mem(vcq_hdl, lcl_recv_stadd, 0);

 utofu_free_vcq(vcq_hdl);

 MPI_Finalize();

 return 0;

}

5.1.2 Example of Status Check Using Get
In this program, rank 0 performs computation while rank 1 checks its progress status.

Rank 0 writes the progress status of the computation to the variable step as needed. Rank 1 uses Get communication to read the value of

this variable every five seconds.

In order that optimization by the compiler does not eliminate updating the variable step, you need to add the volatile qualifier to the

declaration of the variable step. This program assumes that the CPU performs a store operation to the memory region of the step variable

atomically.

This program runs with two processes.

#define _POSIX_C_SOURCE 200809L // for clock_gettime

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

#include <unistd.h>

#include <time.h>

#include <mpi.h>

#include <utofu.h>

static volatile unsigned long step;

static unsigned long sum;

static int loop_sec = 60;

// computation

static void compute(void)

{

 struct timespec start_time, current_time;

 // get the start time

 clock_gettime(CLOCK_MONOTONIC, &start_time);

 do {

 // compute

 for (int i = 0; i < 10000; i++) {

 sum += i;

 }

 // update the variable to hold the progress status

- 93 -

 step++;

 // get the current time

 clock_gettime(CLOCK_MONOTONIC, ¤t_time);

 } while(current_time.tv_sec - start_time.tv_sec <= loop_sec);

}

// status checking

static void check(utofu_vcq_hdl_t vcq_hdl, utofu_vcq_id_t rmt_vcq_id, utofu_stadd_t lcl_stadd,

utofu_stadd_t rmt_stadd)

{

 int rc;

 unsigned long int post_flags = UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE;

 void *cbdata;

 struct utofu_mrq_notice notice;

 struct timespec start_time, current_time;

 // get the start time

 clock_gettime(CLOCK_MONOTONIC, &start_time);

 do {

 sleep(5);

 // instruct the TNI to perform a Get communication to copy the step variable in the remote

process to the step variable in the local process

 while (1) {

 rc = utofu_get(vcq_hdl, rmt_vcq_id, lcl_stadd, rmt_stadd, sizeof(step), 0, post_flags,

NULL);

 if (rc != UTOFU_ERR_BUSY) {

 break;

 }

 utofu_poll_tcq(vcq_hdl, 0, &cbdata);

 }

 assert(rc == UTOFU_SUCCESS);

 // confirm the local MRQ notice

 do {

 rc = utofu_poll_mrq(vcq_hdl, 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 assert(rc == UTOFU_SUCCESS);

 assert(notice.notice_type == UTOFU_MRQ_TYPE_LCL_GET);

 // output the obtained progress status

 printf("step: %lu\n", step);

 fflush(stdout);

 // get the current time

 clock_gettime(CLOCK_MONOTONIC, ¤t_time);

 } while(current_time.tv_sec - start_time.tv_sec <= loop_sec);

}

int main(int argc, char *argv[])

{

 int rc, num_processes, rank;

 size_t num_tnis;

 utofu_tni_id_t tni_id, *tni_ids;

 utofu_vcq_hdl_t vcq_hdl;

 utofu_vcq_id_t lcl_vcq_id, rmt_vcq_id;

 utofu_stadd_t lcl_stadd, rmt_stadd;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

- 94 -

 if (num_processes != 2) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // get an ID of a TNI available for one-sided communication

 rc = utofu_get_onesided_tnis(&tni_ids, &num_tnis);

 if (rc != UTOFU_SUCCESS || num_tnis == 0) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 tni_id = tni_ids[0];

 free(tni_ids);

 // create a VCQ

 utofu_create_vcq(tni_id, 0, &vcq_hdl);

 // register a memory region and get its STADD

 utofu_reg_mem(vcq_hdl, (void *)&step, sizeof(step), 0, &lcl_stadd);

 if (rank == 0) {

 // get the VCQ ID

 utofu_query_vcq_id(vcq_hdl, &lcl_vcq_id);

 // notify rank 1 of the VCQ ID and the STADD

 MPI_Send(&lcl_vcq_id, 1, MPI_UINT64_T, 1, 0, MPI_COMM_WORLD);

 MPI_Send(&lcl_stadd, 1, MPI_UINT64_T, 1, 0, MPI_COMM_WORLD);

 } else {

 // receive the VCQ ID and the STADD from rank 0

 MPI_Recv(&rmt_vcq_id, 1, MPI_UINT64_T, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Recv(&rmt_stadd, 1, MPI_UINT64_T, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 // embed the default communication path coordinates into the received VCQ ID.

 utofu_set_vcq_id_path(&rmt_vcq_id, NULL);

 }

 MPI_Barrier(MPI_COMM_WORLD);

 if (rank == 0) {

 compute();

 } else {

 check(vcq_hdl, rmt_vcq_id, lcl_stadd, rmt_stadd);

 }

 MPI_Barrier(MPI_COMM_WORLD);

 // free resources

 utofu_dereg_mem(vcq_hdl, lcl_stadd, 0);

 utofu_free_vcq(vcq_hdl);

 MPI_Finalize();

 return 0;

}

- 95 -

5.1.3 Example of a Game Using ARMW
In this program, the ranks other than rank 0 repeat incrementing a variable number in rank 0 all together, and the rank that fortunately updates
the variable just for the ten thousandth time is determined as a winner.

 Note

If many communications concentrate on one process like the case of this program, network processing may become extremely slow. Do not
execute this program with several thousands of processes or more processes. For details, see "4.1.4 Preventing Concentrated
Communications".

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

#include <mpi.h>

#include <utofu.h>

int main(int argc, char *argv[])

{

 int rc, num_processes, rank;

 unsigned long int post_flags = UTOFU_ONESIDED_FLAG_LOCAL_MRQ_NOTICE;

 size_t num_tnis;

 uint64_t number = 1, lucky_number = 10000;

 utofu_tni_id_t tni_id, *tni_ids;

 utofu_vcq_hdl_t vcq_hdl;

 utofu_vcq_id_t vcq_id;

 utofu_stadd_t stadd;

 void *cbdata;

 struct utofu_mrq_notice notice;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

 if (num_processes < 2) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // get an ID of a TNI available for one-sided communication

 rc = utofu_get_onesided_tnis(&tni_ids, &num_tnis);

 if (rc != UTOFU_SUCCESS || num_tnis == 0) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 tni_id = tni_ids[0];

 free(tni_ids);

 // create a VCQ and get its VCQ ID

 utofu_create_vcq(tni_id, 0, &vcq_hdl);

 utofu_query_vcq_id(vcq_hdl, &vcq_id);

 // register a memory region and get its STADD at rank 0

 if (rank == 0) {

 utofu_reg_mem(vcq_hdl, &number, sizeof(number), 0, &stadd);

 }

 // broadcast the VCQ ID and the STADD from rank 0 to the ranks other than 0

 MPI_Bcast(&vcq_id, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD);

 MPI_Bcast(&stadd, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD);

- 96 -

 MPI_Barrier(MPI_COMM_WORLD);

 if (rank != 0) {

 // embed the default communication path coordinates into the received VCQ ID.

 utofu_set_vcq_id_path(&vcq_id, NULL);

 do {

 // instruct the TNI to perform an ARMW communication to increment the number variable at

rank 0

 while (1) {

 rc = utofu_armw8(vcq_hdl, vcq_id, UTOFU_ARMW_OP_ADD, 1, stadd, 0, post_flags, NULL);

 if (rc != UTOFU_ERR_BUSY) {

 break;

 }

 utofu_poll_tcq(vcq_hdl, 0, &cbdata);

 }

 assert(rc == UTOFU_SUCCESS);

 // confirm the local MRQ notification

 do {

 rc = utofu_poll_mrq(vcq_hdl, 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 assert(rc == UTOFU_SUCCESS);

 assert(notice.notice_type == UTOFU_MRQ_TYPE_LCL_ARMW);

 // confirm the value before the incrementation

 if (notice.rmt_value == lucky_number) {

 printf("The winner is rank %d!\n", rank);

 }

 } while (notice.rmt_value < lucky_number);

 }

 MPI_Barrier(MPI_COMM_WORLD);

 // free resources

 if (rank == 0) {

 utofu_dereg_mem(vcq_hdl, stadd, 0);

 }

 utofu_free_vcq(vcq_hdl);

 MPI_Finalize();

 return 0;

}

5.1.4 Example of Stride Communication Using Put
In this program, each process exchanges data that is placed discretely on the memory mutually with the processes next to it on its both sides.

In this program, multiple processes repeat computation in parallel. On each stage of computation, each process requires a part of
computation result on the previous stage of each of the preceding and next ranks. This communication pattern is a version of so-called halo
exchange which is modified for code simplicity.

To reduce the costs for creating TOQ descriptors at the time of communication, the program first creates TOQ descriptors and reuses them.

This program performs one Put communication per data which is contiguous on the memory. In order that the TCQ notification and the
remote MRQ notification are performed when all Put communications complete, these notifications are enabled only for the last Put
communication.

This program has the compute_center and compute_edge function to show timing of computation and communication. However,

they are not implemented because computation content has nothing to do with the explanation.

This program runs with three or more processes.

- 97 -

#include <stdlib.h>

#include <mpi.h>

#include <utofu.h>

#define NX 100

#define NY 100

static void compute_center(double data[NY][NX])

{

 // compute a part of data which does not require received data

}

static void compute_edge(double data[NY][NX])

{

 // compute a part of data which requires received data

}

int main(int argc, char *argv[])

{

 int i, rc, iteration = 100, num_processes, lcl_rank, rmt_ranks[2];

 unsigned long int post_flags = UTOFU_ONESIDED_FLAG_TCQ_NOTICE |

UTOFU_ONESIDED_FLAG_REMOTE_MRQ_NOTICE;

 size_t num_tnis, length, stride, toq_desc_sizes[2], toq_desc_size;

 utofu_tni_id_t tni_id, *tni_ids;

 utofu_vcq_hdl_t vcq_hdls[2];

 utofu_vcq_id_t lcl_vcq_ids[2], rmt_vcq_ids[2];

 utofu_stadd_t lcl_stadds[2], rmt_stadds[2], lcl_offset, rmt_offset;

 double data[NY][NX];

 struct utofu_onesided_caps *onesided_caps[2];

 void *toq_descs[2], *cbdata;

 struct utofu_mrq_notice notice;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

 if (num_processes < 3) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 MPI_Comm_rank(MPI_COMM_WORLD, &lcl_rank);

 rmt_ranks[0] = (lcl_rank + num_processes - 1) % num_processes; // preceding rank

 rmt_ranks[1] = (lcl_rank + 1) % num_processes; // next rank

 // get IDs of available TNIs for one-sided communication

 rc = utofu_get_onesided_tnis(&tni_ids, &num_tnis);

 if (rc != UTOFU_SUCCESS || num_tnis == 0) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 for (i = 0; i < 2; i++) {

 // use distinct TNIs for two peer processes for load balancing if there are two or more TNIs

available

 tni_id = (i == 0 || num_tnis == 1) ? tni_ids[0] : tni_ids[1];

 // query the capabilities of one-sided communication of the TNIs

 utofu_query_onesided_caps(tni_id, &onesided_caps[i]);

 // create two VCQs and get their VCQ IDs

 utofu_create_vcq(tni_id, 0, &vcq_hdls[i]);

 utofu_query_vcq_id(vcq_hdls[i], &lcl_vcq_ids[i]);

- 98 -

 // register memory regions and get their STADDs

 utofu_reg_mem(vcq_hdls[i], data, sizeof(data), 0, &lcl_stadds[i]);

 }

 free(tni_ids);

 // notify the VCQ IDs and the STADDs to the preceding rank and the next rank

 MPI_Sendrecv(&lcl_vcq_ids[0], 1, MPI_UINT64_T, rmt_ranks[0], 0,

 &rmt_vcq_ids[1], 1, MPI_UINT64_T, rmt_ranks[1], 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Sendrecv(&lcl_vcq_ids[1], 1, MPI_UINT64_T, rmt_ranks[1], 0,

 &rmt_vcq_ids[0], 1, MPI_UINT64_T, rmt_ranks[0], 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Sendrecv(&lcl_stadds[0], 1, MPI_UINT64_T, rmt_ranks[0], 0,

 &rmt_stadds[1], 1, MPI_UINT64_T, rmt_ranks[1], 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Sendrecv(&lcl_stadds[1], 1, MPI_UINT64_T, rmt_ranks[1], 0,

 &rmt_stadds[0], 1, MPI_UINT64_T, rmt_ranks[0], 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 // embed the default communication path coordinates into received VCQ IDs.

 utofu_set_vcq_id_path(&rmt_vcq_ids[0], NULL);

 utofu_set_vcq_id_path(&rmt_vcq_ids[1], NULL);

 // prepare Put communications to

 // send left-edge data of a NX * NY rectangle to the preceding rank and

 // send right-edge data of a NX * NY rectangle to the next rank

 length = sizeof(double);

 stride = length * NX;

 for (i = 0; i < 2; i++) {

 toq_descs[i] = malloc(onesided_caps[i]->max_toq_desc_size * NY);

 // disable the TCQ notifications and remote MRQ notifications for NY - 1 Put communications

 lcl_offset = length * ((i == 0) ? 1 : (NX - 2));

 rmt_offset = length * ((i == 0) ? 0 : (NX - 1));

 utofu_prepare_put_stride(vcq_hdls[i], rmt_vcq_ids[i], lcl_stadds[i] + lcl_offset,

rmt_stadds[i] + rmt_offset,

 length, stride, NY - 1, 0, 0, toq_descs[i], &toq_desc_sizes[i]);

 // enable the TCQ notification and remote MRQ notification for the last Put communication

 lcl_offset += stride * (NY - 1);

 rmt_offset += stride * (NY - 1);

 // When not identifying the correspondence between a TOQ descriptor and MRQ descriptor,

 // 0 can be specified for an edata.

 utofu_prepare_put(vcq_hdls[i], rmt_vcq_ids[i], lcl_stadds[i] + lcl_offset, rmt_stadds[i] +

rmt_offset,

 length, 0, post_flags, (char *)toq_descs[i] + toq_desc_sizes[i],

&toq_desc_size);

 toq_desc_sizes[i] += toq_desc_size;

 }

 for (i = 0; i < iteration; i++) {

 // instruct the TNIs to perform the prepared Put communications

 // (send data computed in the previous loop stage)

 utofu_post_toq(vcq_hdls[0], toq_descs[0], toq_desc_sizes[0], NULL);

 utofu_post_toq(vcq_hdls[1], toq_descs[1], toq_desc_sizes[1], NULL);

 // confirm the TCQ notifications (send completion) of the last Put communications

 do {

 rc = utofu_poll_tcq(vcq_hdls[0], 0, &cbdata);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 do {

 rc = utofu_poll_tcq(vcq_hdls[1], 0, &cbdata);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 // compute a part of data which does not require received data

- 99 -

 // (data in the send data region can be updated because the send operation has completed)

 compute_center(data);

 // confirm the remote MRQ notifications (receive completion) of the last Put communications

 do {

 rc = utofu_poll_mrq(vcq_hdls[0], 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 do {

 rc = utofu_poll_mrq(vcq_hdls[1], 0, ¬ice);

 } while (rc == UTOFU_ERR_NOT_FOUND);

 // compute a part of data which requires received data

 // (data in the receive data region can be referenced because the receive operation has

completed)

 compute_edge(data);

 }

 // free resources

 for (i = 0; i < 2; i++) {

 utofu_dereg_mem(vcq_hdls[i], lcl_stadds[i], 0);

 utofu_free_vcq(vcq_hdls[i]);

 free(toq_descs[i]);

 }

 MPI_Finalize();

 return 0;

}

5.2 Use Examples of Barrier Communication

5.2.1 Example of Barrier Synchronization and Reduction Operation
This program performs barrier synchronization and reduction operation among processes. In the reduction operation, the sum of the
floating-point data owned by all the processes is calculated.

When a process gets out of the loop of the utofu_poll_barrier() or utofu_poll_reduce_double() function, it is

guaranteed that the utofu_barrier() or utofu_reduce_double() function is called in all the other processes.

In the reduction operation, all the processes obtain the same calculation result.

This program runs with eight processes.

#include <stdlib.h>

#include <stdio.h>

#include <assert.h>

#include <mpi.h>

#include <utofu.h>

int main(int argc, char *argv[])

{

 int i, rc, iteration = 100, num_processes, rank;

 double data_in, data_out;

 size_t num_tnis;

 utofu_tni_id_t tni_id, *tni_ids;

 utofu_vbg_id_t lcl_vbg_ids[3], rmt_vbg_ids[8][3];

 struct utofu_vbg_setting vbg_settings[3];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &num_processes);

 if (num_processes != 8) {

- 100 -

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // get an ID of a TNI available for barrier communication

 rc = utofu_get_barrier_tnis(&tni_ids, &num_tnis);

 if (rc != UTOFU_SUCCESS || num_tnis == 0) {

 MPI_Abort(MPI_COMM_WORLD, 1);

 return 1;

 }

 tni_id = tni_ids[rank % num_tnis];

 free(tni_ids);

 // allocate VBGs

 utofu_alloc_vbg(tni_id, 3, 0, lcl_vbg_ids);

 // share VBG IDs allocated in all processes

 MPI_Allgather(lcl_vbg_ids, 3, MPI_UINT64_T, rmt_vbg_ids, 3, MPI_UINT64_T, MPI_COMM_WORLD);

 // build a barrier circuit using an 8-process butterfly exchange algorithm

 vbg_settings[0].vbg_id = lcl_vbg_ids[0];

 vbg_settings[0].src_lcl_vbg_id = lcl_vbg_ids[2];

 vbg_settings[0].src_rmt_vbg_id = rmt_vbg_ids[rank ^ 4][2];

 vbg_settings[0].dst_lcl_vbg_id = lcl_vbg_ids[1];

 vbg_settings[0].dst_rmt_vbg_id = rmt_vbg_ids[rank ^ 1][1];

 vbg_settings[0].dst_path_coords[0] = UTOFU_PATH_COORD_NULL;

 vbg_settings[1].vbg_id = lcl_vbg_ids[1];

 vbg_settings[1].src_lcl_vbg_id = lcl_vbg_ids[0];

 vbg_settings[1].src_rmt_vbg_id = rmt_vbg_ids[rank ^ 1][0];

 vbg_settings[1].dst_lcl_vbg_id = lcl_vbg_ids[2];

 vbg_settings[1].dst_rmt_vbg_id = rmt_vbg_ids[rank ^ 2][2];

 vbg_settings[1].dst_path_coords[0] = UTOFU_PATH_COORD_NULL;

 vbg_settings[2].vbg_id = lcl_vbg_ids[2];

 vbg_settings[2].src_lcl_vbg_id = lcl_vbg_ids[1];

 vbg_settings[2].src_rmt_vbg_id = rmt_vbg_ids[rank ^ 2][1];

 vbg_settings[2].dst_lcl_vbg_id = lcl_vbg_ids[0];

 vbg_settings[2].dst_rmt_vbg_id = rmt_vbg_ids[rank ^ 4][0];

 vbg_settings[2].dst_path_coords[0] = UTOFU_PATH_COORD_NULL;

 // configure VBGs

 utofu_set_vbg(vbg_settings, 3);

 // wait completion of configuring VBGs at all processes using MPI_Barrier before performing

barrier communication

 MPI_Barrier(MPI_COMM_WORLD);

 for (i = 0; i < iteration; i++) {

 // start barrier synchronization

 utofu_barrier(lcl_vbg_ids[0], 0);

 // wait completion of the barrier synchronization

 do {

 rc = utofu_poll_barrier(lcl_vbg_ids[0], 0);

 } while (rc == UTOFU_ERR_NOT_COMPLETED);

 assert(rc == UTOFU_SUCCESS);

 }

- 101 -

 for (i = 0; i < iteration; i++) {

 // start reduction operation

 data_in = i + 0.1 * rank;

 utofu_reduce_double(lcl_vbg_ids[0], UTOFU_REDUCE_OP_BFPSUM, &data_in, 1, 0);

 // wait completion of the reduction operation

 do {

 rc = utofu_poll_reduce_double(lcl_vbg_ids[0], 0, &data_out);

 } while (rc == UTOFU_ERR_NOT_COMPLETED);

 assert(rc == UTOFU_SUCCESS);

 }

 // wait completion of barrier communication at all processes using MPI_Barrier before freeing

resources

 MPI_Barrier(MPI_COMM_WORLD);

 // free resources

 utofu_free_vbg(lcl_vbg_ids, 3);

 MPI_Finalize();

 return 0;

}

- 102 -

Chapter 6 System Information
This chapter describes system-specific information.

6.1 Information of This Computing System
This section describes information specific to this computing system.

6.1.1 Version Information of This Computing System
The following table lists the return values of the utofu_query_tofu_version() function.

Table 6.1 Tofu Interconnect Versions for This Computing System

Type Value

major version 3

minor version 0

6.1.2 Functional Characteristics of This Computing System
The following table lists hardware resource quantities.

Table 6.2 This Computing System Hardware Resource Quantities

Resource Value

Number of TNIs per compute node 6

Number of available CQs per TNI 9

The following table lists virtual resource quantities.

Table 6.3 This Computing System Virtual Resource Quantities

Resource Value

Number of available VCQs per CQ 8

Number of available VBGs per TNI (Number of start/end VBGs, Number of relay VBGs) 48 (16, 32)

The utofu_query_onesided_caps() function sets the following table values in each member of the utofu_onesided_caps

structure object. For the meaning of each member, see "3.2.2.1 struct utofu_onesided_caps".

Table 6.4 One-Sided Communication Functions of This Computing System

Member Name Value

flags
UTOFU_ONESIDED_CAP_FLAG_SESSION_MODE |

UTOFU_ONESIDED_CAP_FLAG_ARMW

armw_ops

UTOFU_ONESIDED_CAP_ARMW_OP_CSWAP |

UTOFU_ONESIDED_CAP_ARMW_OP_SWAP |

UTOFU_ONESIDED_CAP_ARMW_OP_ADD |

UTOFU_ONESIDED_CAP_ARMW_OP_XOR |

UTOFU_ONESIDED_CAP_ARMW_OP_AND |

UTOFU_ONESIDED_CAP_ARMW_OP_OR

num_cmp_ids 8

num_reserved_stags 256

cache_line_size 256

stag_address_alignment 256

- 103 -

Member Name Value

max_toq_desc_size 64

max_putget_size 16,777,215 (224 - 1)

max_piggyback_size 32

max_edata_size 1

max_mtu 1920

max_gap 255

The utofu_query_barrier_caps() function sets the following table values in each member of the utofu_barrier_caps

structure object. For the meaning of each member, see "3.2.2.2 struct utofu_barrier_caps".

Table 6.5 Barrier Communication Functions of This Computing System

Member Name Value

flags 0

reduce_ops

UTOFU_BARRIER_CAP_REDUCE_OP_BARRIER |

UTOFU_BARRIER_CAP_REDUCE_OP_BAND |

UTOFU_BARRIER_CAP_REDUCE_OP_BOR |

UTOFU_BARRIER_CAP_REDUCE_OP_BXOR |

UTOFU_BARRIER_CAP_REDUCE_OP_MAX |

UTOFU_BARRIER_CAP_REDUCE_OP_MAXLOC |

UTOFU_BARRIER_CAP_REDUCE_OP_SUM |

UTOFU_BARRIER_CAP_REDUCE_OP_BFPSUM

max_uint64_reduction 6

max_double_reduction 3

6.1.3 Behavioral Specifications of This Computing System
The applicable specifications include the following behavioral specifications in addition to the interface specifications.

6.1.3.1 Strong Order Flag
When the strong order flag is set for one-sided communication, the order of read and write operations on the main memory is guaranteed
relative to the preceding communication in accordance with the interface specification. In addition, that also partially guarantees the order
of read and write operations between CPU cache lines in one Put or Get communication. In particular, contents in the following table is also
guaranteed when the read source area or write destination area in the main memory of the local compute node or a remote compute node
crosses multiple CPU cache lines:

Target of Guarantee Condition Contents of Guarantee

The last CPU cache line in the read source
area

Arbitrary Reading from the last CPU cache line starts
after reading from another CPU cache line
is completed

The last CPU cache line in the write
destination area

The corresponding area in the read source
area does not cross multiple pages

Writing to the last CPU cache line starts
after writing to another CPU cache lines is
completed

The corresponding area in the read source
area crosses multiple pages

Writing to the area in the last CPU cache
line corresponding to after the page
boundary starts after writing to another
CPU cache lines and the rest area in the last
CPU cache line are completed

- 104 -

Accordingly, by polling the last byte in the last CPU cache line to confirm that it was written, you can confirm that the entire write operation
has completed. Furthermore, an arbitrary byte in the last CPU cache line can be used for polling if the user ensured that the corresponding
area in the read source buffer does not cross multiple pages.

6.1.3.2 Page Size Managed by OS
In this computing system, the page sizes managed by the OS are the following.

- 2097152 bytes or 65536 bytes if the largepage is enabled

- 65536 bytes if the largepage is disabled

As described in "2.2.10 Confirmation of Communication Completion and Guarantee of Ordering", in order to guarantee writing to a CPU
cache line in the unit of granularity of CPU cache line, it is necessary that the read source area corresponding to the CPU cache line in the
write destination area does not cross multiple pages. Whether the largepage is enabled or not, if the quotient of the start address of a memory
region divided by 65536 is equal to the quotient of "the end address of the memory region -1" divided by 65536, it can be judged that the

memory region does not cross multiple pages. Similarly, if the quotient of the start address of a memory region divided by 256 is equal to
the quotient of "the end address of the memory region -1" divided by 256, it can be judged that the memory region does not cross multiple

CPU cache lines because the CPU cache line size is 256 bytes in this computing system.

6.1.4 Restrictions on This Computing System

6.1.4.1 Process Creation From Inside a uTofu Program
The following restriction applies to uTofu programs if they create a child process using a system call (for example, fork), library function

(for example, system), service routine provided by a Fortran system (for example, FORK), or the like.

- If there is a memory region registered by the utofu_reg_mem() function or utofu_reg_mem_with_stag() function but not

deregistered by the corresponding utofu_dereg_mem() function at the time of process creation, pages containing the memory

region are not inherited to child processes. Therefore, child processes cannot access pages containing the memory region and the child
process cannot access the pages.

If the same memory region is registered multiple times or an overlapping memory regions are registered, the memory region is not
considered to be deregistered until deregistration is done as many times as the registration times.

For example, suppose that a child process created by the fork system call accesses such a memory region before the process calls the

execve system call or _exit system call. Then, due to this restriction, a segmentation fault error will occur in the child process.

Whether accessible or not is decided for each page managed by the OS. Therefore, if a memory region is registered, the neighboring memory
regions cannot also be accessed. Note that, if the largepage is enabled, each page is treated as the large page.

6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu
Interconnect Link is Down

The behavior of uTofu programs is unpredictable when they are executed by a job configured to change the communication path if a Tofu
interconnect link is down.

Refer to the Job Operation Software manual for information on specifying the operation when a Tofu interconnect link is down.

- 105 -

Chapter 7 Error Messages
This chapter explains the error messages output by the uTofu implementation.

utofu: asynchronous error: description on TNI tniid BG bgid

- Description

An internal error was detected in barrier communication. Execution of the uTofu program ends.

- Parameters

description : Error message corresponding to the detected internal error

tniid : ID of the TNI which detected the error

bgid : ID of the BG which detected the error

- Action method

Consult System Engineer about the message that was output.

utofu: asynchronous error: description on TNI tniid CQ cqid

- Description

An internal error was detected in one-sided communication. Execution of the uTofu program ends.

- Parameters

description : Error message corresponding to the detected internal error

tniid : ID of the TNI which detected the error

cqid : ID of the CQ which detected the error

- Action method

If the description is "MRQ Overflow", it means that the number of MRQ descriptors written in the MRQ exceeded the number of
MRQ entries. Revise the processing of the one-sided communication completion confirmation in the uTofu program, or increase
the number of MRQ entries as described in "4.3.2.3 UTOFU_NUM_MRQ_ENTRIES" and "4.3.2.4
UTOFU_NUM_MRQ_ENTRIES_SESSION".

If the description is "CQs Cacheflush Timeout", it means that congestion was detected on the Tofu interconnect. Revise the
processing of the uTofu program so that communication is not congested to specific compute nodes. For details, see "4.1.4
Preventing Concentrated Communications".

In cases other than the above, consult System Engineer about the message that was output.

- 106 -

Glossary

ARMW (Atomic Read Modify Write)

One-sided communication function for reading, calculating, and writing on the main memory of another compute node atomically.
ARMW is executed using an ARMW descriptor of a TOQ.

barrier communication

Communication function for barrier synchronization between compute nodes. The reduction operation can be executed along with the
barrier synchronization. Protocol processing is completely offloaded, and control by the CPU is unnecessary.

barrier synchronization

Synchronization processing between BGs using barrier communication. BGs that will be participating in barrier communication are
configured beforehand. Barrier communication starts at each start/end BG. Once the barrier communication has started at all the start/
end BGs participating in the barrier communication, the barrier communication at each start/end BG is completed.

BG (barrier gate)

One of the TNI resources. The BG is used to build a barrier circuit. Each BG has functions to wait for signals or packets one by one,
execute the reduction operation, and send signals or packets one by one. The types of BG are start/end BG and relay BG.

callback data

Value that is specified when a TOQ descriptor is written and that is returned when a TCQ descriptor is read. Callback data can be used
to learn the correspondence between a TOQ descriptor and TCQ descriptor.

communication path

Path traveled by a packet on a Tofu network in communication from one compute node to another compute node

communication path coordinates

Three-dimensional coordinates of A, B, and C, showing the communication path from one compute node to another compute node
communicating on a Tofu network

communication path ID

Value used to specify a communication path when one-sided communication is performed. The communication path ID is created by the
utofu_get_path_id() function. The UTOFU_ONESIDED_FLAG_PATH function-like macro specifies this ID for a one-sided

communication start function or one-sided communication preparation function.

component ID

Value used to distinguish the VCQ of multiple upper-layer components that share a CQ

compute node

Unit of hardware equipped with a CPU, main memory, TNIs, and TNR. Usually, the compute node is also the unit of a running OS (host
OS).

compute node coordinates

Six-dimensional coordinates of X, Y, Z, A, B, and C, showing the location of a compute node on a Tofu network

CQ (control queue)

Queue for controlling a TNI from software in one-sided communication. The CQ consists of three types of queue: TOQ, TCQ, and MRQ.
There are multiple CQs per TNI.

- 107 -

CQ-exclusive VCQ

VCQ that does not share the CQ with another VCQ. Multiple threads can simultaneously call functions of STADD management or one-
sided communication execution for the CQ-exclusive VCQ and another VCQ. When these functions are called for different CQs, uTofu
implementation and hardware access may be processed in parallel, and communication throughput may increase. You can create a CQ-
exclusive VCQ by specifying the UTOFU_VCQ_FLAG_EXCLUSIVE flag for the time when a VCQ is created.

default communication path

Communication path used when no communication path ID is specified for a one-sided communication start function or one-sided
communication preparation function. The default communication path is used by embedding communication path coordinates in a VCQ
ID by the utofu_set_vcq_id_path() function.

descriptor

Control data showing a data transfer instruction or completion notification. The three types of descriptor are TOQ descriptor, TCQ
descriptor, and MRQ descriptor. Software writes a TOQ descriptor in a TOQ to instruct the Tofu interconnect to transfer data, and the
Tofu interconnect reads and executes the instruction. The Tofu interconnect writes a TCQ descriptor or MRQ descriptor in a TCQ or
MRQ, respectively, to notify software of the completion of a data transfer. The software reads the descriptor to confirm the completion.
TOQ descriptors are further subdivided into Put, Get, and other descriptors according to the contents of the instruction. And TCQ and
MRQ descriptors are also subdivided according to the contents of the completion notification.

EDATA

Value that is specified when a TOQ descriptor is written and that is returned when an MRQ descriptor is read. EDATA can be used to
learn the correspondence between a TOQ descriptor and MRQ descriptor.

free Mode

Usual mode of a CQ. One-sided communication start functions and one-sided communication batch start functions write a TOQ
descriptor and a TNI starts the communication immediately. A VCQ created on a CQ of the free mode is called a free mode VCQ.

Fujitsu MPI

MPI library included in Technical Computing Suite

Get

One-sided communication function for reading data from the main memory of another compute node. Get is executed using a Get
descriptor of a TOQ.

local

VCQ that issues the communication instruction when one-sided communication is used for communication between two VCQs. Local
also refers to the compute node, process, TNI, STADD, etc. of this one of the VCQs. Those of the other one are called "remote".

main memory

Memory area that exists on a compute node and is read or written by the load, store, and other instructions of the CPU and by the one-
sided communication of the Tofu interconnect. In this manual, the main memory is also simply called memory.

MRQ (message receive queue)

Queue, one per CQ, in the main memory and used for notification of data transfer completion in one-sided communication. The
notification is written to an MRQ. The UTOFU_NUM_MRQ_ENTRIES environment variable can specify the number of entries in the

MRQ.

MRQ overflow

Phenomenon where MRQ descriptors of local notifications or remote notifications are written continually to the MRQ and the MRQ
overflows with these descriptors. The MRQ overflow is caused by the utofu_poll_mrq() function not being called even as MRQ

descriptors continue to be written.

- 108 -

MTU (maximum transfer unit)

Maximum packet transfer size. In one-sided communication, when sending or receiving data with a larger size than the MTU, a TNI
splits the data into packets with the size of the MTU and transfers the packets.

NOP

One-sided communication function which does nothing. NOP is executed using a NOP descriptor of a TOQ. It is used to adjust the
number of TOQ descriptors in the session mode.

one-sided communication

Communication function for accessing and updating the main memory of another compute node. One-sided communication has the
functions of Put, Get, ARMW, and NOP. This communication method is generally called RDMA (remote direct memory access).
Protocol processing is completely offloaded, and control by the CPU is unnecessary.

packet

Unit of transmission of communication data in a Tofu network. In one-sided communication, when sending or receiving a large size of
data, a TNI splits the data into packets and transfers them. In barrier communication, packets are sent and received between BGs in the
same TNI or different TNIs to relay the data.

piggyback

Mechanism for low-latency communication using Put. Normally, for Put, software gives a transmission instruction to a TNI by means
of a TOQ descriptor, and the TNI reads data from the main memory. By using piggyback, software embeds the data in the TOQ
descriptor. Using piggyback eliminates the need for the TNI to read the data from the main memory, enabling low-latency
communication.

Put

One-sided communication function for writing data to the main memory of another compute node. Put is executed using a Put descriptor
or Put Piggyback descriptor of a TOQ.

reduction operation

Operation that derives one value from multiple values

remote

VCQ that is the communication target when one-sided communication is used for communication between two VCQs. Remote also
refers to the compute node, process, TNI, STADD, etc. of this one of the VCQs. Those of the other one are called "local".

session mode

Special mode of a CQ. One-sided communication start functions and one-sided communication batch start functions write a TOQ
descriptor but a TNI does not start the communication immediately. By receiving another Put communication at the VCQ, a TNI starts
the instructed communication automatically. A VCQ created on a CQ of the session mode is called a session mode VCQ.

signal

Data relayed between BGs in the same TNI in barrier communication

STADD (steering address)

Memory address that a TNI can understand. In one-sided communication, the TNI reads from and writes to main memory to transfer
data between compute nodes. However, the TNI cannot understand virtual addresses assigned by the OS. The virtual addresses are
ordinary memory addresses that can be seen from user processes. Therefore, in one-sided communication, a virtual address of memory
is converted to a STADD, which the TNI can understand, before the communication starts. The TNI is notified of this STADD to perform
the communication.

STag (steering tag)

Integer value that indicates a memory region and is understandable to a TNI. Normally, uTofu uses the STag in the form of a STADD.

- 109 -

TCQ (transmit complete queue)

Queue, one per CQ, in the main memory and used for notification of the completion of a data transmission in one-sided communication.
The TCQ has as many entries as in the TOQ in the same CQ, and the entries of the TOQ and TCQ have one-to-one correspondence.

thread-safe VBG

VBG that can be used concurrently by multiple threads. Multiple threads can simultaneously call a function of barrier communication
execution for a single thread-safe VBG. You can allocate a thread-safe VBG by specifying the UTOFU_VBG_FLAG_THREAD_SAFE

flag for the time when a VBG is allocated.

thread-safe VCQ

VCQ that can be used concurrently by multiple threads. Multiple threads can simultaneously call functions of STADD management or
one-sided communication execution for a single thread-safe VCQ. Also, multiple threads can simultaneously call these functions for the
thread-safe VCQ and another VCQ. You can create a thread-safe VCQ by specifying the UTOFU_VCQ_FLAG_THREAD_SAFE flag

for the time when a VCQ is created.

TNI (Tofu network interface)

Network interface of the Tofu interconnect. The TNI sends and receives packets according to instructions from software, and performs
one-sided communication and barrier communication. There is at least one TNI per compute node, and it is connected to the main
memory and a TNR.

TNR (Tofu network router)

Network router of the Tofu interconnect. The TNR relays a packet sent from a TNI to deliver it to the destination TNI. There is one TNR
per compute node, and it is connected to TNIs and a Tofu network.

Tofu interconnect

General name for the interconnects between compute nodes used in the High-end technical computing server MP10 system,
Supercomputer PRIMEHPC FX10 system, Supercomputer PRIMEHPC FX100 system, and this computing system. Its configuration
includes TNIs, TNRs, and a Tofu network. The Tofu interconnect is also simply called Tofu.

Tofu network

Network of the Tofu interconnect. The Tofu network has a six-dimensional coordinate space. It is built by interconnecting TNRs.

TOQ (transmit order queue)

Queue, one per CQ, in the main memory and used to issue a communication instruction in one-sided communication.

transmission gap

Interval between packets when they are transmitted. In a Tofu network, when there is contention for a communication path, the effective
bandwidth of the path may drop due to congestion. If you know beforehand that such congestion will occur, you can mitigate that drop
by suppressing the injection rate of transmitted data. In one-sided communication, you can suppress the injection rate by specifying a
value other than 0 for the transmission gap so that the TNI does not send the next packet immediately after sending a packet.

uTofu

Programming interface used by processes in the user space to communicate through the Tofu interconnect.

It is named for "user-level Tofu communication interface".

VBG (virtual barrier gate)

Abstracted BG by means of software. The unique 64-bit integer value identifying the VBG in a Tofu network is called a VBG ID.

- 110 -

VCQ (virtual control queue)

Abstracted and virtualized CQ by means of software. The VCQ is used to virtualize a CQ since a single CQ is shared by multiple software
components in uTofu. The 64-bit unsigned integer value that uniquely identifies the VCQ in a Tofu network is called a VCQ ID. uTofu
uses a handle called a VCQ handle to handle the VCQ created in a process by the process.

- 111 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Tofu Interconnect and uTofu Overview
	1.1 Tofu Interconnect Overview
	1.1.1 Architecture
	1.1.2 Network
	1.1.3 Communication Methods
	1.1.3.1 One-Sided Communication
	1.1.3.2 Barrier Communication

	1.2 uTofu Overview

	Chapter 2 uTofu Communication Models
	2.1 Execution Unit
	2.2 One-Sided Communication
	2.2.1 VCQ (Virtual Control Queue)
	2.2.1.1 TOQ (Transmit Order Queue)
	2.2.1.2 TCQ (Transmit Complete Queue)
	2.2.1.3 MRQ (Message Receive Queue)

	2.2.2 STADD (Steering Address)
	2.2.3 Put Communication
	2.2.4 Get Communication
	2.2.5 ARMW (Atomic Read Modify Write) Communication
	2.2.6 NOP
	2.2.7 Free Mode
	2.2.8 Session Mode
	2.2.8.1 Behavioral Details of the Session Mode
	2.2.8.2 Example of Communication Forking Using the Session Mode
	2.2.8.3 Example of Communication Joining Using the Session Mode
	2.2.8.4 Example of Communication Pipeline Using the Session Mode

	2.2.9 Maximum Transfer Size and Transmission Gap of Packets
	2.2.10 Confirmation of Communication Completion and Guarantee of Ordering
	2.2.11 Cache Injection and Padding
	2.2.12 Communication Error

	2.3 Barrier Communication
	2.3.1 VBG (Virtual Barrier Gate)
	2.3.2 Barrier Circuit
	2.3.3 Barrier Synchronization
	2.3.4 Reduction Operation

	2.4 Communication Path
	2.5 Thread Safety

	Chapter 3 uTofu Interface Specifications
	3.1 Common Definitions
	3.1.1 Type Definitions
	3.1.1.1 typedef

	3.1.2 Return Values
	3.1.2.1 enum utofu_return_code

	3.2 TNI Query
	3.2.1 TNI Query Functions
	3.2.1.1 utofu_get_onesided_tnis
	3.2.1.2 utofu_get_barrier_tnis
	3.2.1.3 utofu_query_onesided_caps
	3.2.1.4 utofu_query_barrier_caps

	3.2.2 Structures Indicating Available Communication Functions and Limit Values
	3.2.2.1 struct utofu_onesided_caps
	3.2.2.2 struct utofu_barrier_caps

	3.2.3 Flags Indicating Available Communication Functions
	3.2.3.1 UTOFU_ONESIDED_CAP_FLAG_*
	3.2.3.2 UTOFU_BARRIER_CAP_FLAG_*
	3.2.3.3 UTOFU_ONESIDED_CAP_ARMW_OP_*
	3.2.3.4 UTOFU_BARRIER_CAP_REDUCE_OP_*

	3.3 VCQ Management
	3.3.1 VCQ Creation/Freeing Functions
	3.3.1.1 utofu_create_vcq
	3.3.1.2 utofu_create_vcq_with_cmp_id
	3.3.1.3 utofu_free_vcq

	3.3.2 VCQ ID Manipulation Functions
	3.3.2.1 utofu_query_vcq_id
	3.3.2.2 utofu_construct_vcq_id
	3.3.2.3 utofu_set_vcq_id_path

	3.3.3 VCQ Query Functions
	3.3.3.1 utofu_query_vcq_info

	3.3.4 VCQ Flags
	3.3.4.1 UTOFU_VCQ_FLAG_*

	3.4 VBG Management
	3.4.1 VBG Allocation/Freeing Functions
	3.4.1.1 utofu_alloc_vbg
	3.4.1.2 utofu_free_vbg

	3.4.2 VBG Configuration Functions
	3.4.2.1 utofu_set_vbg

	3.4.3 VBG Query Functions
	3.4.3.1 utofu_query_vbg_info

	3.4.4 VBG Configuration Structures
	3.4.4.1 struct utofu_vbg_setting

	3.4.5 VBG Flags
	3.4.5.1 UTOFU_VBG_FLAG_*

	3.4.6 Special Values for VBG Configuration
	3.4.6.1 UTOFU_VBG_ID_NULL

	3.5 Communication Path Management
	3.5.1 Communication Path Management Functions
	3.5.1.1 utofu_get_path_id
	3.5.1.2 utofu_get_path_coords

	3.5.2 Special Values for Setting of Communication Path
	3.5.2.1 UTOFU_PATH_COORD_NULL

	3.6 STADD Management
	3.6.1 STADD Management Functions
	3.6.1.1 utofu_reg_mem
	3.6.1.2 utofu_reg_mem_with_stag
	3.6.1.3 utofu_query_stadd
	3.6.1.4 utofu_dereg_mem

	3.6.2 STADD Flags
	3.6.2.1 UTOFU_REG_MEM_FLAG_*
	3.6.2.2 UTOFU_DEREG_MEM_FLAG_*

	3.7 One-Sided Communication Execution
	3.7.1 One-Sided Communication Start Functions
	3.7.1.1 utofu_put
	3.7.1.2 utofu_put_gap
	3.7.1.3 utofu_put_stride
	3.7.1.4 utofu_put_stride_gap
	3.7.1.5 utofu_put_piggyback
	3.7.1.6 utofu_put_piggyback8
	3.7.1.7 utofu_get
	3.7.1.8 utofu_get_gap
	3.7.1.9 utofu_get_stride
	3.7.1.10 utofu_get_stride_gap
	3.7.1.11 utofu_armw4
	3.7.1.12 utofu_armw8
	3.7.1.13 utofu_cswap4
	3.7.1.14 utofu_cswap8
	3.7.1.15 utofu_nop

	3.7.2 One-Sided Communication Preparation Functions
	3.7.2.1 utofu_prepare_put
	3.7.2.2 utofu_prepare_put_gap
	3.7.2.3 utofu_prepare_put_stride
	3.7.2.4 utofu_prepare_put_stride_gap
	3.7.2.5 utofu_prepare_put_piggyback
	3.7.2.6 utofu_prepare_put_piggyback8
	3.7.2.7 utofu_prepare_get
	3.7.2.8 utofu_prepare_get_gap
	3.7.2.9 utofu_prepare_get_stride
	3.7.2.10 utofu_prepare_get_stride_gap
	3.7.2.11 utofu_prepare_armw4
	3.7.2.12 utofu_prepare_armw8
	3.7.2.13 utofu_prepare_cswap4
	3.7.2.14 utofu_prepare_cswap8
	3.7.2.15 utofu_prepare_nop

	3.7.3 One-Sided Communication Batch Start Functions
	3.7.3.1 utofu_post_toq

	3.7.4 One-Sided Communication Completion Confirmation Functions
	3.7.4.1 utofu_poll_tcq
	3.7.4.2 utofu_poll_mrq

	3.7.5 One-Sided Communication Query Functions
	3.7.5.1 utofu_query_num_unread_tcq

	3.7.6 Communication Completion Notification Structures
	3.7.6.1 struct utofu_mrq_notice

	3.7.7 ARMW Operation Types
	3.7.7.1 enum utofu_armw_op

	3.7.8 Communication Completion Notification Types
	3.7.8.1 enum utofu_mrq_notice_type

	3.7.9 One-Sided Communication Flags
	3.7.9.1 UTOFU_ONESIDED_FLAG_*
	3.7.9.2 UTOFU_ONESIDED_FLAG_PATH
	3.7.9.3 UTOFU_ONESIDED_FLAG_SPS

	3.7.10 Polling Flags
	3.7.10.1 UTOFU_POLL_FLAG_*

	3.8 Barrier Communication Execution
	3.8.1 Barrier Communication Start Functions
	3.8.1.1 utofu_barrier
	3.8.1.2 utofu_reduce_uint64
	3.8.1.3 utofu_reduce_double

	3.8.2 Barrier Communication Completion Confirmation Functions
	3.8.2.1 utofu_poll_barrier
	3.8.2.2 utofu_poll_reduce_uint64
	3.8.2.3 utofu_poll_reduce_double

	3.8.3 Reduction Operation Types
	3.8.3.1 enum utofu_reduce_op

	3.8.4 Barrier Communication Flags
	3.8.4.1 UTOFU_BARRIER_FLAG_*

	3.9 Supplemental Features
	3.9.1 Version Query Functions
	3.9.1.1 utofu_query_tofu_version
	3.9.1.2 utofu_query_utofu_version

	3.9.2 Compute Node Information Query Functions
	3.9.2.1 utofu_query_my_coords

	3.9.3 Version Information Macros
	3.9.3.1 UTOFU_VERSION_*

	Chapter 4 How to Use uTofu
	4.1 uTofu Program Design
	4.1.1 Use From a Language Other Than C
	4.1.2 Using uTofu Together With MPI
	4.1.3 Possible Range of Communication
	4.1.4 Preventing Concentrated Communications

	4.2 Compiling/Linking a uTofu Program
	4.3 Executing a uTofu Program
	4.3.1 Spawning a uTofu Process
	4.3.2 Environment Variables
	4.3.2.1 UTOFU_NUM_EXCLUSIVE_CQS
	4.3.2.2 UTOFU_NUM_SESSION_MODE_CQS
	4.3.2.3 UTOFU_NUM_MRQ_ENTRIES
	4.3.2.4 UTOFU_NUM_MRQ_ENTRIES_SESSION
	4.3.2.5 UTOFU_SWAP_PROTECT

	Chapter 5 Use Examples of uTofu
	5.1 Use Examples of One-Sided Communication
	5.1.1 Example of Ping-Pong Communication Using Put
	5.1.2 Example of Status Check Using Get
	5.1.3 Example of a Game Using ARMW
	5.1.4 Example of Stride Communication Using Put

	5.2 Use Examples of Barrier Communication
	5.2.1 Example of Barrier Synchronization and Reduction Operation

	Chapter 6 System Information
	6.1 Information of This Computing System
	6.1.1 Version Information of This Computing System
	6.1.2 Functional Characteristics of This Computing System
	6.1.3 Behavioral Specifications of This Computing System
	6.1.3.1 Strong Order Flag
	6.1.3.2 Page Size Managed by OS

	6.1.4 Restrictions on This Computing System
	6.1.4.1 Process Creation From Inside a uTofu Program
	6.1.4.2 The Behavior When Configured to Change the Communication Path If a Tofu Interconnect Link is Down

	Chapter 7 Error Messages
	Glossary

