
FUJITSU Software

FUJITSU

SSL II/MPI User's Guide

(Scientific Subroutine Library)

J2UL-2574-01ENZ0(02)
March 2021

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) iii

Preface

This manual describes the functions and usage of the Scientific Subroutine Library II/MPI
(SSL II/MPI).

SSL II/MPI provides the computational functionality to efficiently compute large-scale
problems on a parallel computer with distributed memory system. The algorithms for parallel
processing have been adopted.

This manual consists of two parts.

Part I General Description

General rules which should be kept in mind when using SSL II/MPI are outlined.

Part II Usage of Subroutines

The functions and usage of each subroutine are described in alphabetical order of their
subroutine names.

Readers of this manual are assumed to be familiar with the MPI system.

For details, refer to the user’s guide for MPI.

The asterisks in the table of contents and subroutine list of this manual indicate items added or
changed from the previous version.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the
regulations of your resident country and/or US export control laws.

Date of Publication and Version

Version Manual code
March 2021, Version 1.2 J2UL-2574-01ENZ0(02)
June 2020, Version 1.1 J2UL-2574-01ENZ0(01)
February 2020, 1st Version J2UL-2574-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2021

iv Fujitsu SSL II/XPF User's Guide (Scientific Subroutine Library)

Update History

Changes Location Version
Single precision routines are added. SS_V3DCFT2X,

SS_V3DRCF2X
Version 1.2

Changed the look according to product upgrades. - Version 1.1
Correction of a wrong word. DS_V3DCFT2X,

DS_V3DRCF2X

• All rights reserved.
• The information in this manual is subject to change without notice.

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) v

SSL II/MPI Subroutine List

Fourier transforms

Subroutine name Item Page

DS_V3DCFT
Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7, slab decomposition)

8

DS_V3DCFT2X
Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7, pencil decomposition)

13

DS_V3DCFT3
Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7, volumetric decomposition)

21

DS_V3DRCF
Three-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7, slab decomposition)

27

DS_V3DRCF2X
Three-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7, pencil decomposition)

33

DS_V3DRCF3
Three-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7, volumetric decomposition)

41

SS_V3DCFT2X *
Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7, pencil decomposition, single
precision)

48

SS_V3DRCF2X *
Three-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7, pencil decomposition, single precision)

56

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) vii

Contents

Part I General Description

Chapter 1 Outline 1

Chapter 2 General Rules 3

2.1 Precision of Subroutines ... 3

2.2 Subroutine Names ... 3

2.3 Parameters ... 3

2.4 How to Use SSL II/MPI... 3

2.5 Condition Codes ... 5

Part II Usage of Subroutines

DS_V3DCFT ... 8

DS_V3DCFT2X .. 13

DS_V3DCFT3 ... 21

DS_V3DRCF .. 27

DS_V3DRCF2X .. 33

DS_V3DRCF3 ... 41

SS_V3DCFT2X .. 48 *

SS_V3DRCF2X .. 56 *

Appendix

Appendix A References 67

Index IN-1

 Part I
General Description

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 1

Chapter 1
Outline

SSL II/MPI is a mathematical software library for parallel execution in a parallel computer
with a distributed memory system. It provides the subroutines needed to efficiently compute
large-scale problems by parallel processing.

Each SSL II/MPI function is supplied as a subroutine in Fortran. Every subroutine can be
referred with a CALL statement.

The functional range, subroutine names, and calling mode of SSL II/MPI are different from
those used in the mathematical software library SSL II of the uni-processor version.

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 3

Chapter 2
General Rules

2.1 Precision of Subroutines
SSL II/MPI provides subroutines that compute in double-precision, and some routines support
the corresponding single-precision.

2.2 Subroutine Names
SSL II/MPI consists of user subroutines, that are callable by users and slave subroutines.
Each user subroutine has DS_V or SS_V in the first four characters of its subroutine name.
Each slave subroutine name has DS_U or SS_U in the first four characters.

This manual describes how to use user subroutines.

2.3 Parameters
(1) Order of parameters sequence

 In general, the order of parameters sequence is the same as that in SSL II:

 (input and output parameter list, input parameter list, output parameter list, ICON)

(2) Parameter types

 Parameters beginning with I, J, K, L, M, or N are integer type. Parameters beginning
with other characters are of the real or complex floating point type. Please refer to the
parameter description of each subroutine for the number of bytes of the integer type and
the single or double precision of the floating point type.

2.4 How to Use SSL II/MPI
(1) The subroutines in SSL II/MPI can be available after the initialization of MPI

environment by calling MPI_INIT.

 The communicator is specified in the argument of the subroutines. The subroutines make
parallel computation in use of the processes belong to the communicator.

 The data must be distributed among the processes belong to the communicator.

(2) An example how to use SSL II/MPI

a. Three dimensional complex Fourier transform is considered as an example.

 A double precision complex three dimensional array X(KX1, KX2, KX3P) is
allocated in each process. The complex three dimensional data to be transformed is
assumed as a matrix of D(N1, N2, N3).

 The (rank+1)-th sub matrix, into which D is partitioned in the third dimension
equally by the size KX3P, is stored in the array X on the process of the rank(0, ..., p-
1) (p is the total number of processes) obtained by MPI_RANK of an MPI subroutine.

How to Compile, Linkedit and Execute User Programs

4 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 X(1:N1, 1:N2, 1:N3P) ← D(1:N1, 1:N2, N3S:N3E) where N3S = KX3Prank+1,
N3E = MIN(N3, KX3P(rank+1)), N3P = MAX(0, N3E-N3S+1).

 The computation is done in parallel using the distributed data along processes as
above.

c ** example program **
 use mpi
 implicit real*8 (a-h,o-z)
 parameter (mpn=8)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (kx1=n1+1)
 parameter (kw2p=((n2+mpn-1)/mpn),kx2=kw2p*mpn)
 parameter (kx3p=((n3+mpn-1)/mpn),kw3=kx3p*mpn)
 parameter (nwork=388)
 complex*16 x(kx1,kx2,kx3p),w(kx1,kw2p,kw3),
 $ wc(kx1,kx2,kx3p)
 real*8 dwork(nwork)
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nump, ierr)
 call mpi_comm_rank(mpi_comm_world, nop, ierr)
 nop=nop+1
c
 ix=1000
c
 ix=ix*nump+nop ! different seed
 do i1=1,kx3p
 call dvrau4(ix,x(1,1,i1),
 $ 2*kx1*kx2,
 & dwork, nwork, icon)
 enddo
c
 do i3=1, kx3p
 do i2=1, n2
 do i1=1, n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isn=1
 call ds_v3dcft(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc
 print*,'icon=',icon
cc
c
 isn=-1
 call ds_v3dcft(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isn,

General Rules

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 5

 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc
 print*,'icon=',icon
c
 errorx=0
 iof3=(nop-1)*kx3p
 do i1=1,n1
 do i2=1,n2
 do i3=1,min(kx3p,max(n3-iof3,0))
 errorx=max(dabs(dble(wc(i1,i2,i3))-
 $ dble(x(i1,i2,i3))/n1/n2/n3),errorx)
 errorx=max(dabs(dimag(wc(i1,i2,i3))-
 $ dimag(x(i1,i2,i3))/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
c
 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 $ mpi_max,mpi_comm_world,ierr)
c
 if(nop.eq.1)then
c
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
c
 endif
 9000 continue
c
 call mpi_finalize(ierr)
c
 stop
 end

 Example 2.1

 Example of using an SSL II/MPI routine

 Fourier transforms (normal and inverse transforms) for three-dimensional complex
data are computed in 8 processes.

b. Parallel computation in threads within each process

 Computation in each process can be parallelized in use of threads. The number of
threads can be specified in the environment variable OMP_NUM_THREADS.

2.5 Condition Codes
The ICON parameter is prepared to indicate the status after the execution of SSL II/MPI.

A value between 0 and 90000 is set as the condition code. The values are classified as shown
below depending on whether the result is guaranteed.

How to Compile, Linkedit and Execute User Programs

6 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

Table 2.1 Condition codes

Code Meaning Integrity of the result Classification

0 Processing has ended
normally.

The results are correct. Normal

1 to 9999 Processing has ended
normally, but auxiliary
information was included.

10000 to 19999 Processing has ended with
the placing of internal
restrictions during execution.

The results are correct
on the restrictions.

Warning

20000 to 29999 Processing was discontinued
due to abnormal conditions
which had occurred during
execution.

The results are not
correct.

Abnormal

30000 to 39999 Processing was discontinued
due to invalid input
parameter.

90000 This routine was deleted
from the library. Use the
currently supported, superior
routine. This comment is
also indicated in a message
output together with these
two routine names to the
standard error output file.
This message is shown
below.

— —

Message output at ICON=90000:

JNO0001-S : The SSL II/MPI routine ‘AAAAA’ no longer available, the
better one ‘BBBBB’ now recommended for use.

Where,

AAAAA : Name of deleted routine

BBBBB : Name of superior routine

Part II
Usage of Subroutines

DS_V3DCFT

8 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

DS_V3DCFT

Three-dimensional discrete complex Fourier transforms. (mixed radices of 2, 3, 5 and 7, slab
decomposition)

CALL DS_V3DCFT (X, KX1, KX2, KX3P, N1, N2, N3, W, KW2P, KW3, ISN, COMM,
 ICON)

(1) Function

 The subroutine DS_V3DCFT performs a three-dimensional complex Fourier transform or
its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

(2) Parameters

X Input. Complex data.

Three dimensional complex data is regarded as a matrix data of D(N1, N2, N3).

DS_V3DCFT

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 9

The matrix data D is equally partitioned in the third dimension by the size of
KX3P into submatrices.

This (rank+1)-th submatrix is stored in an array X on a process of the rank
(0, ... , p-1) (p is the total number of processes), which is known in use of the
subroutine MPI_COMM_RANK of MPI.

X(1:N1, 1:N2, 1:N3P) ← D(1:N1, 1:N2, N3S:N3E), where N3S =
KX3Prank+1, N3E = MIN(N3, KX3P(rank+1)), N3P = MAX(0, N3E-
N3S+1).

Output. Transformed complex data.

Resultant transformed three dimensional data of D(N1, N2, N3) are stored into
an array X in the same distributed way.

This is a double precision complex three-dimensional array X(KX1, KX2,
KX3P).

KX1 Input. The size of the first dimension of arrays X and W(N1).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of an array X.

KX2 = KW2Pp (N2), and p is the total number of processes.

Integer(INTEGER*4).

KX3P Input. The size of the third dimension of an array X.

The size by which the third dimension is equally partitioned (KX3Pp N3, and
p is the total number of processes.).

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

W Work area. This is double precision complex three dimensional array W(KX1,
KW2P, KW3).

KW2P Input. The size of the second dimension of an array W.

(KW2Pp N2, and p is the total number of processes.)

Integer (INTEGER*4)

KW3 Input. The size of the third dimension of an array W.

DS_V3DCFT

10 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

KW3 = KX3Pp, and p is the total number of processes.

Integer(INTEGER*4).

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

COMM Input. The communicator indicating a set of processes on which data are
distributed and by which computation is done in parallel.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DCFT-1.

Table DS_V3DCFT-1 Condition codes

Code Meaning Processing

0 No error

30000 N1<1, N2<1, N3<1, KX1<N1, KX2KW2Pp,
KX3PpKW3, KX2<N2, KW3<N3, the value
of ISN is incorrect.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

DS_V3DCFT

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 11

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) The relation between the size of array X and W, and the performance.

 The data amounts for communication become minimal when KX1 is close to N1,
KX2=KW2Pp is the minimum value satisfying KX2N2 and KW3=KX3Pp is
the minimum value satisfying KW3N3. p is the total number of processes.

b. Example

 Three-dimensional FFT is computed in 8 processes.

c ** example program **
 use mpi
 implicit real*8 (a-h,o-z)
 parameter (mpn=8)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (kx1=n1+1)
 parameter (kw2p=((n2+mpn-1)/mpn),kx2=kw2p*mpn)
 parameter (kx3p=((n3+mpn-1)/mpn),kw3=kx3p*mpn)
 parameter (nwork=388)
 complex*16 x(kx1,kx2,kx3p),w(kx1,kw2p,kw3),
 $ wc(kx1,kx2,kx3p)
 real*8 dwork(nwork)
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nump, ierr)
 call mpi_comm_rank(mpi_comm_world, nop, ierr)
 nop=nop+1
c
 ix=1000
c
 ix=ix*nump+nop ! different seed
 do i1=1,kx3p
 call dvrau4(ix,x(1,1,i1),
 $ 2*kx1*kx2,
 & dwork, nwork, icon)
 enddo
c
 do i3=1, kx3p
 do i2=1, n2
 do i1=1, n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isn=1
 call ds_v3dcft(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc

DS_V3DCFT

12 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 print*,'icon=',icon
cc
c
 isn=-1
 call ds_v3dcft(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc
 print*,'icon=',icon
c
 errorx=0
 iof3=(nop-1)*kx3p
 do i1=1,n1
 do i2=1,n2
 do i3=1,min(kx3p,max(n3-iof3,0))
 errorx=max(dabs(dble(wc(i1,i2,i3))-
 $ dble(x(i1,i2,i3))/n1/n2/n3),errorx)
 errorx=max(dabs(dimag(wc(i1,i2,i3))-
 $ dimag(x(i1,i2,i3))/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
c
 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 $ mpi_max,mpi_comm_world,ierr)
c
 if(nop.eq.1)then
c
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
c
 endif
 9000 continue
c
 call mpi_finalize(ierr)
c
 stop
 end

DS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 13

DS_V3DCFT2X

Three-dimensional discrete complex Fourier transforms. (mixed radices of 2, 3, 5 and 7,
pencil decomposition)

CALL DS_V3DCFT2X (X, KX1, KX2, KX2P, KX3P, Z, KZ1, KZ2, KZ3,
 NZ1B, NZ1E, NZ2B, NZ2E, N1, N2, N3,
 W, NW, ISN, IDIR, COMM2, COMM3, ICON)

(1) Function

 The subroutine DS_V3DCFT2X performs a three-dimensional complex Fourier transform
or its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality using pencil
decomposition. The global data of the three-dimensional array is to be distributed among
a two-dimensional process grid. The local input array and output array of each process
store distinct shapes by dividing the global data in different directions of pencils. This

DS_V3DCFT2X

14 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

allows the routine to omit communication for transposing back to the original distribution
shape.

(2) Parameters

 In the following, the global three dimensional complex data is regarded as an array D(N1,
N2, N3) virtually, and the process grid is regarded as ND2 ND3 shape.

X Input when IDIR = 1. Complex data.

The local array X stores a subarray of D, which corresponds to a columnwise
decomposed part of the global array by dividing the second and third
dimensions by ND2 and ND3 respectively.

If each Nm is divisible by NDm (m=2,3), setting a width parameter
KXmP=Nm/NDm is recommended, then the sizes of the subarray can be
(N1,KX2P,KX3P) uniformly.

If Nm is not divisible by NDm, setting KXmP=Nm/NDm+1 is recommended,
then the sizes of the subarrays that are assigned to the edge of the process grid
are less than KXmP.

The array X in each process stores the subarray of D as follows:
X(1:N1, 1:NX2P, 1:NX3P) D(1:N1, NX2B:NX2E, NX3B:NX3E)
 NX2B = KX2P rank2 + 1
 NX2E = MIN(N2, KX2P (rank2 + 1))
 NX2P = MAX(0, NX2E - NX2B + 1)
 NX3B = KX3P rank3 + 1
 NX3E = MIN(N3, KX3P (rank3 1))
 NX3P = MAX(0, NX3E - NX3B 1),

where the rank2 and rank3 are ranks of the process in the communicator
COMM2 and COMM3 respectively, which are obtained by subroutine
MPI_COMM_RANK of MPI.

The input values are not retained after the calculation.

 Output when IDIR = -1. Transformed complex data.

Resultant transformed three dimensional data of D(N1, N2, N3) are stored into
the array X in the same distributed way as stated above.

This is a double precision complex three-dimensional array X(KX1, KX2,
NX3P).

KX1 Input. The size of the first dimension of the array X (N1).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (NX2P).

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension of D is equally partitioned when
the data are stored in the array X. (KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension of D is equally partitioned when
the data are stored in the array X. (KX3PND3 N3)

Integer(INTEGER*4).

Z Output when IDIR = 1. Transformed complex data.

DS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 15

The local array Z stores a subarray of D, which corresponds to a columnwise
decomposed part of the global array by dividing the first and second dimensions
by ND2 and ND3 respectively.

The array Z in each process stores the subarray of D as follows:
Z(1:NZ1P, 1:NZ2P, 1:N3) D(NZ1B:NZ1E, NZ2B:NZ2E, 1:N3)
 NZ1P = MAX(0, NZ1E – NZ1B + 1)
 NZ2P = MAX(0, NZ2E – NZ2B 1).

 Input when IDIR = -1. Complex data.

The local array Z stores the subarray of D in the same distributed way as stated
above.

This is a double precision complex three-dimensional array Z(KZ1, KZ2, KZ3).

KZ1 Output when NW = 0. The recommended size for the first dimension of the
array Z.

Input when NW 0. The size of the first dimension of the array Z (NZ1E-
NZ1B+1).

Integer(INTEGER*4).

KZ2 Output when NW = 0. The recommended size for the second dimension of the
array Z.

Input when NW 0. The size of the second dimension of the array Z (
NZ2E-NZ2B+1).

Integer(INTEGER*4).

KZ3 Output when NW = 0. The recommended size of the third dimension of the
array Z.

Input when NW 0. The size of the third dimension of the array Z (N3).

Integer(INTEGER*4).

NZ1B Output. The starting index for the first dimension of the global array D.

Integer(INTEGER*4).

NZ1E Output. The ending index for the first dimension of the global array D.
NZ1B and NZ1E indicate which portion of the first dimension within the global
array is stored in the local array Z.

Integer(INTEGER*4).

NZ2B Output. The starting index for the second dimension of the global array D.

Integer(INTEGER*4).

NZ2E Output. The ending index for the second dimension of the global array D.
NZ2B and NZ2E indicate which portion of the second dimension within the
global array is stored in the local array Z.

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

DS_V3DCFT2X

16 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

W Work area. This is double precision complex one-dimensional array W(NW).

NW Input / Output. The size of the work array W.

When NW = 0 specified, the recommended sizes of NW, KZ1, KZ2, and KZ3
are set respectively, and index information is set to NZ1B, NZ1E, NZ2B, and
NZ2E.

Integer (INTEGER*8). (See note 4) in (3), “Comments on use.”)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

IDIR Input. The direction of transform between arrays is indicated.

IDIR = 1 for the transform from the array X to the array Z.

IDIR = -1 for the transform from the array Z to the array X.

Integer (INTEGER*4).

COMM2 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND2, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 2) in (3), “Comments on use.”)

Integer (INTEGER*4).

COMM3 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND3, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 2) in (3), “Comments on use.”)

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DCFT2X-1.

Integer (INTEGER*4).

Table DS_V3DCFT2X-1 Condition codes

Code Meaning Processing

0 No error

DS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 17

Table DS_V3DCFT2X-1 Condition codes

Code Meaning Processing

1000 NW = 0 is specified. The recommended sizes of
NW, KZ1, KZ2, and KZ3
are set.
Index information is set to
NZ1B, NZ1E, NZ2B, and
NZ2E.

There is no output to array X
or Z.

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1, KX1 < N1, KX2 < NX2P,
N2 > KX2P ND2, N3 > KX3P ND3, or the
value of ISN or IDIR is incorrect.

30008 The order of the transform is not radix 2/3/5/7.

30100 COMM2 or COMM3 is incorrect.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) Process shape ND2 and ND3

DS_V3DCFT2X

18 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 Note that the performance of this routine may deteriorate when ND2 and ND3
do not match the shape of the executing process grid on a system which can
specify the shape of the process grid. Refer to the Job Operation Software
manual whether the system can assign a shape of the process grid.

3) Consistency of parameters among processes

 The parameters KX2P,KX3P,N1,N2,N3,NW,ISN, and IDIR needs to have same
value respectively among all processes, otherwise the result is not guaranteed.

4) The size of work area W

 The size of the work array NW needs to be about twice the size of array X or Z
to be used as send/receive buffers for MPI communication inside the routine.
Note that the parameter NW is an 8-byte integer type.

b. Example

 Three-dimensional FFT is computed in 23 processes.

c ** example program **
 use mpi
 implicit real*8 (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd2=2,nd3=3)
 parameter (kx1=n1)
 parameter (kx2p=((n2+nd2-1)/nd2),kx2=kx2p)
 parameter (kx3p=((n3+nd3-1)/nd3))
 parameter (nwrand=388)
 real*8 dwork(nwrand)
 integer comm2,comm3
 integer*8 nw
 complex*16 x(kx1,kx2,kx3p),wc(kx1,kx2,kx3p)
 complex*16,allocatable :: z(:,:,:),w(:)
c --- prepare sub-communicator ---
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nsize, ierr)
 call mpi_comm_rank(mpi_comm_world, nrank, ierr)
 ncolory=nrank/nd2
 call mpi_comm_split(mpi_comm_world,ncolory,nrank,
 & comm2,ierr)
 call mpi_comm_size(comm2, nsize2, ierr)
 call mpi_comm_rank(comm2, nrank2, ierr)
 ncolorz=mod(nrank,nd2)
 call mpi_comm_split(mpi_comm_world,ncolorz,nrank,
 & comm3,ierr)
 call mpi_comm_size(comm3, nsize3, ierr)
 call mpi_comm_rank(comm3, nrank3, ierr)
 if(nsize.ne.nd2*nd3 .or. nsize2.ne.nd2 .or.
 & nsize3.ne.nd3) then
 print*,'nsize=',nsize,nsize2,nsize3
 go to 9000
 endif
c --- prepare test-data ---
 nx2=min(kx2p,max(n2-nrank2*kx2p,0))
 nx3=min(kx3p,max(n3-nrank3*kx3p,0))
 ix=1000

DS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 19

 ix=ix+nrank ! different seed
 do i3=1,nx3
 do i2=1,nx2
 call dvrau4(ix,x(1,i2,i3),2*n1,dwork,nwrand,icon)
 do i1=1,n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c --- inquire necessary size ---
 nw=0
 call ds_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.1000) then
 print*,'icon=',icon
 go to 9000
 endif
 allocate (z(kz1,kz2,kz3),w(nw))
 print*,'nrank,nrank2,nrank3=',nrank,nrank2,nrank3,
 & ' Z-pencil x-range=',nz1b,nz1e,
 & ' y-range=',nz2b,nz2e,
 & ' z-range=',1,n3
c --- forward FFT ---
 idir=1
 isn=1
 call ds_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- backward FFT ---
 idir=-1
 isn=-1
 call ds_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- check result ---
 errorx=0
 do i3=1,nx3
 do i2=1,nx2
 do i1=1,n1
 errorx=max(cdabs(wc(i1,i2,i3)-
 & x(i1,i2,i3)/n1/n2/n3),errorx)
 enddo
 enddo
 enddo

DS_V3DCFT2X

20 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 & mpi_max,mpi_comm_world,ierr)
 if(nrank.eq.0)then
 print*,'num proc=',nsize
 print*,'nd2,nd3=',nsize2,nsize3
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
c
 9000 continue
 call mpi_comm_free(comm2,ierr)
 call mpi_comm_free(comm3,ierr)
 call mpi_finalize(ierr)
 stop
 end

DS_V3DCFT3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 21

DS_V3DCFT3

Three-dimensional discrete complex Fourier transforms. (mixed radices of 2, 3, 5 and 7,
volumetric decomposition)

CALL DS_V3DCFT3 (X, KX1, KX2, KX1P, KX2P, KX3P, N1, N2, N3, ND1, ND2, ND3,
 W, NW, ISN, COMM, ICON)

(1) Function

 The subroutine DS_V3DCFT3 performs a three-dimensional complex Fourier transform
or its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality on a massively
parallel machine. The global data of the three-dimensional array can be distributed among
processes which are regarded as a three-dimensional grid, therefore the volumetric
decomposition allows the distribution of work more efficiently than a slabwise
decomposition in an environment where massively parallel processes are available.

DS_V3DCFT3

22 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

(2) Parameters

X Input. Complex data.

When the global three dimensional complex data is regarded as an array D(N1,
N2, N3) virtually, the local array X stores subarray of D distributed along with
the shape of the process grid.

If each Nm is divisible by NDm (m=1,2,3), setting a width parameter
KXmP=Nm/NDm is recommended, then the sizes of the subarray can be
(KX1P,KX2P,KX3P) uniformly.

If Nm is not divisible by NDm, setting KXmP=Nm/NDm+1 is recommended,
then the sizes of the subarrays that are assigned to the edge of the process grid
are less than KXmP.

The array X in each process stores the subarray of D as follows:
X(1:N1P, 1:N2P, 1:N3P) D(N1S:N1E, N2S:N2E, N3S:N3E),
 N1S = KX1P rank1 + 1,
 N1E = MIN(N1, KX1P (rank1 + 1)),
 N1P = MAX(0, N1E - N1S + 1),
 N2S = KX2P rank2 + 1,
 N2E = MIN(N2, KX2P (rank2 + 1)),
 N2P = MAX(0, N2E - N2S + 1),
 N3S = KX3P rank3 + 1,
 N3E = MIN(N3, KX3P (rank3 1)),
 N3P = MAX(0, N3E - N3S 1).

The rank1,rank2 and rank3 are coordinates of the process grid calculated as
follows from the rank value, which is obtained by subroutine
MPI_COMM_RANK of MPI.
 rank1 = mod(rank, ND1),
 rank2 = mod(rank/ND1, ND2),
 rank3 = rank/(ND1ND2).

Output. Transformed complex data.

Resultant transformed three dimensional data of D(N1, N2, N3) are stored into
the array X in the same distributed way.

This is a double precision complex three-dimensional array X(KX1, KX2,
KX3P).

KX1 Input. The size of the first dimension of the array X (KX1P).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (KX2P).

Integer(INTEGER*4).

KX1P Input. The size by which the first dimension is equally
partitioned.(KX1PND1 N1)

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension is equally
partitioned.(KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension is equally partitioned
(KX3PND3 N3)

DS_V3DCFT3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 23

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

ND1 Input. The number of processes by which the first dimension is partitioned.

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

ND2 Input. The number of processes by which the second dimension is partitioned.

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

ND3 Input. The number of processes by which the third dimension is partitioned.

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

W Work area. This is double precision complex one-dimensional array W(NW).

NW Input. The size of the work array W (NW MAX(KX1 ND1, KX2P ND2,
KX3P ND3) 3). It is recommended to specify a sufficiently large size for
efficiency. (See note 2) in (2), “Comments on use.”)

Integer (INTEGER*4)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

COMM Input. The communicator indicating a set of processes on which data are
distributed and by which computation is done in parallel.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DCFT3-1.

Integer (INTEGER*4).

DS_V3DCFT3

24 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

Table DS_V3DCFT3-1 Condition codes

Code Meaning Processing

0 No error

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1, KX1 < KX1P, KX2 <
KX2P, N1 > KX1P ND1, N2 > KX2P
ND2, N3 > KX3P ND3, or the value of ISN
is incorrect.

30008 The order of the transform is not radix 2/3/5/7.

30100 ND1ND2ND3 is not equal to total
processes.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) The size of work area W

 The size of the work array determines partition sizes for transferring data among
nodes and calculation on each node in this routine. Setting the size NW of work
area W much larger than MAX(KX1ND1, KX2PND2, KX3PND3) 3
(number of threads in a process) is recommended. For example, setting NW >
500,000 is expected to be efficient when the assigned cache size to the process is
8MB and the array X is partitionable by that size of the work area.

DS_V3DCFT3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 25

3) Parameters ND1, ND2 and ND3

 When using volumetric decomposition, it is recommended to adjust ND1,ND2
and ND3 to be about the comparable value of cube root of the number of total
process ND1ND2ND3 for overall efficiency of transferring data. Note that the
performance of this routine may deteriorate when ND1,ND2 and ND3 do not
match the shape of the executing process grid on a system which can specify the
shape of the process grid. Refer to the Job Operation Software manual whether
the system can assign a shape of the process grid.

 Additionally, this routine can be used for slabwise decomposition or 2-
dimensional decomposition also by setting any of ND1,ND2 or ND3 to 1, when
user's program exploits specific decomposition or available shape of the process
grid on a system is limited.

4) Consistency of parameters among processes

 The parameters KX1,KX2,KX1P,KX2P,KX3P,N1,N2,N3,ND1,ND2,ND3,NW
and ISN needs to have same value respectively among all processes, otherwise
the result is not guaranteed.

b. Example

 Three-dimensional FFT is computed in 222 processes.

c ** example program **
 use mpi
c
 implicit real*8 (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd1=2,nd2=2,nd3=2)
 parameter (kx1p=((n1+nd1-1)/nd1),kx1=kx1p)
 parameter (kx2p=((n2+nd2-1)/nd2),kx2=kx2p)
 parameter (kx3p=((n3+nd3-1)/nd3))
 parameter (nw=kx1*kx2*kx3p)
 parameter (nwork=388)
 real*8 dwork(nwork)
 complex*16 x(kx1,kx2,kx3p),w(nw),
 $ wc(kx1,kx2,kx3p)
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nump, ierr)
 call mpi_comm_rank(mpi_comm_world, nop, ierr)
 nrank1=mod(nop,nd1)
 nrank2=mod(nop/nd1,nd2)
 nrank3=nop/(nd1*nd2)
c
 ix=1000
 ix=ix*nump+nop ! different seed
 do i1=1,kx3p
 call dvrau4(ix,x(1,1,i1),
 $ 2*kx1*kx2,
 & dwork, nwork, icon)
 enddo
c
 do i3=1, kx3p
 do i2=1, kx2p

DS_V3DCFT3

26 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 do i1=1, kx1p
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isn=1
 call ds_v3dcft3(x,kx1,kx2,kx1p,kx2p,kx3p,
 $ n1,n2,n3,nd1,nd2,nd3,w,nw,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc
 print*,'icon=',icon
c
 isn=-1
 call ds_v3dcft3(x,kx1,kx2,kx1p,kx2p,kx3p,
 $ n1,n2,n3,nd1,nd2,nd3,w,nw,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
cc
 print*,'icon=',icon
c
 errorx=0
 iof1=nrank1*kx1p
 iof2=nrank2*kx2p
 iof3=nrank3*kx3p
 do i1=1,min(kx1p,max(n1-iof1,0))
 do i2=1,min(kx2p,max(n2-iof2,0))
 do i3=1,min(kx3p,max(n3-iof3,0))
 errorx=max(dabs(dble(wc(i1,i2,i3))-
 $ dble(x(i1,i2,i3))/n1/n2/n3),errorx)
 errorx=max(dabs(dimag(wc(i1,i2,i3))-
 $ dimag(x(i1,i2,i3))/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
c
 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 $ mpi_max,mpi_comm_world,ierr)
c
 if(nop.eq.1)then
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
 9000 continue
c
 call mpi_finalize(ierr)
c
 stop
 end

DS_V3DRCF

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 27

DS_V3DRCF

Three-dimensional discrete real Fourier transforms. (mixed radices of 2, 3, 5 and 7, slab
decomposition)

CALL DS_V3DRCF(X, KX1, KX2, KX3P, N1, N2, N3, W, KW2P, KW3, ISIN, ISN,
 COMM, ICON)

(1) Function

 The subroutine DS_V3DRCF performs a three-dimensional real Fourier transform or its
inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of
the powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321

 r = r =

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

rkj
n

rkj
n

rkj
n

n

=j

n

=j

n

=j

jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

1or1

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

 r = r =

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

rkj
n

rkj
n

rkj
n

n

=k

n

=k

n

=k

kkkjjj

 (1.2)

(2) Parameters

X Input/Output. Three-dimensional real data.

Three dimensional real data is regarded as a matrix data of D(N1, N2, N3).

DS_V3DRCF

28 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

The matrix data D is equally partitioned in the third dimension by the size of
KX3P into submatrices.

This (rank+1)-th submatrix is stored in an array X on a process of the rank
(0, ... , p-1) (p is the total number of processes), which is known in use of the
subroutine MPI_COMM_RANK of MPI.

X(1:N1, 1:N2, 1:N3P) ← D(1:N1, 1:N2, N3S:N3E)

Where N3S = KX3Prank+1, N3E = MIN(N3, KX3P(rank+1)), N3P =
MAX(0, N3E-N3S+1).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = -1), data is output.

Output/input. The real and imaginary parts of the transformed complex data.

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = -1), data is input.

The complex data CD(N1, N2, N3) obtained from real data D(N1, N2, N3) by
Fourier transform has the complex conjugate relation so the about a half of the
first dimension(1～N1/2+1) is used to store the complex data.

(See note 2) in (3), “Comments on use.”)

Regarding an array X as X(2, KX1/2, KX2, KX3P), the real and imaginary
parts are stored in X(1, 1:N1/2+1, 1:N2, 1:N3) and X(2, 1:N1/2+1, 1:N2, 1:N3)
respectively.

This is a double precision real three dimensional array X(KX1, KX2, KX3P).

KX1 Input. The size of the first dimension of array X and W(2N1/2+1). KX1
must be even.

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of an array X.

KX2 = KW2Pp, where p is the total number of processes (N2).

Integer(INTEGER*4).

KX3P Input. The size of the third dimension of an array X.

The size by which the third dimension is equally partitioned (KX3Pp N3, and
p is the total number of processes.).

Integer(INTEGER*4).

N1 Input. The length n1 of real data in the first dimension to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of real data in the second dimension to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of real data in the third dimension to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

DS_V3DRCF

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 29

W Work area. This is double precision real three dimensional array W(KX1,
KW2P, KW3).

KW2P Input. The size of the second dimension of an array W.

(KW2Pp N2, and p is the total number of processes.)

Integer (INTEGER*4)

KW3 Input. The size of the third dimension of an array W.

KW3 = KX3Pp, and p is the total number of processes.

Integer(INTEGER*4).

ISIN Input. The direction of the transformation.

r = 1 for 1.

r = -1 for -1.

Integer (INTEGER*4)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

COMM Input. The communicator indicating a set of processes on which data are
distributed and by which computation is done in parallel.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DRCF-1.

Table DS_V3DRCF-1 Condition codes

Code Meaning Processing

0 No error

30000 KX < 2(N1/2+1), KX1 is not even,
KX2KW2Pp, KX3PpKW3, KX2<N2,
KW3<N3, N1<1, N2<1, N3<1, ISIN1, -1,
ISN1, -1.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

DS_V3DRCF

30 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 n k

 n k

 n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j

jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k

kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left
term of (3.1) or (3.2), respectively. The normalization of the results may be
required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 k nk nknkkk (3.3)

 The remainder of the data is obtained from data in k1 = 0, ..., n1–1, k2 = 0, ..., n2–
1, and k3 = 0, ..., n3/2.

b Example

 Three-dimensional real FFT is computed in 8 processes.

cc ** example program **
 use mpi
 implicit real*8 (a-h,o-z)
c
 parameter (mpn=8)
 parameter (n1=512,n2=n1,n3=n1)
 parameter (kx1=(n1/2+1)*2)
 parameter (kw2p=((n2+mpn-1)/mpn),kx2=kw2p*mpn)
 parameter (kx3p=((n3+mpn-1)/mpn),kw3=kx3p*mpn)
 parameter (nwork=388)
 real*8 x(kx1,kx2,kx3p),w(kx1,kw2p,kw3),
 $ wc(kx1,kx2,kx3p)
 real*8 dwork(nwork)
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nump, ierr)
 call mpi_comm_rank(mpi_comm_world, nop, ierr)
 nop=nop+1
c
 ix=1000
c

DS_V3DRCF

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 31

 ix=ix*nump+nop ! different seed
 do i1=1,kx3p
 call dvrau4(ix,x(1,1,i1),
 $ kx1*kx2,
 & dwork, nwork, icon)
 enddo
c
 do i3=1, kx3p
 do i2=1, n2
 do i1=1, n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isin=1
 isn=1 ! real to complex
 call ds_v3drcf(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isin,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
 print*,'icon=',icon
c
 isin=1 ! same direction
 isn=-1 ! comprex to real
 call ds_v3drcf(x,kx1,kx2,kx3p,
 $ n1,n2,n3,w,kw2p,kw3,isin,isn,
 $ mpi_comm_world,icon)
 if(icon.ne.0) go to 9000
 print*,'icon=',icon
c
 iof3=(nop-1)*kx3p
 error=0
 do i1=1,n1
 do i2=1,n2
 do i3=1,min(kx3p,max(n3-iof3,0))
 error=max(dabs(wc(i1,i2,i3)-
 $ x(i1,i2,i3)/n1/n2/n3),error)
 enddo
 enddo
 enddo
 call mpi_allreduce(error,errormax,1,mpi_double_precision,
 $ mpi_max,mpi_comm_world,ierr)
c
 if(nop.eq.1)then
c
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
c
 endif
 9000 continue
c
 call mpi_finalize(ierr)

DS_V3DRCF

32 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

c
 stop
 end

DS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 33

DS_V3DRCF2X

Three-dimensional discrete real Fourier transforms. (mixed radices of 2, 3, 5 and 7, pencil
decomposition)

CALL DS_V3DRCF2X (X, KX1, KX2, KX2P, KX3P, Z, KZ1, KZ2, KZ3,
 NZ1B, NZ1E, NZ2B, NZ2E, N1, N2, N3,
 W, NW, ISN, IDIR, COMM2, COMM3, ICON)

(1) Function

 The subroutine DS_V3DRCF2X performs a three-dimensional real Fourier transform or
its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality using pencil
decomposition. The global data of the three-dimensional array is to be distributed among
a two-dimensional process grid. The local input array and output array of each process
store distinct shapes by dividing the global data in different directions of pencils. This

DS_V3DRCF2X

34 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

allows the routine to omit communication for transposing back to the original distribution
shape.

(2) Parameters

 In the following, the global three dimensional real data is regarded as an array DR(N1, N2,
N3), and the transformed global three dimensional complex data is regarded as an array
DC(N1/2+1, N2, N3) virtually, and the process grid is regarded as ND2 ND3 shape.

X Input when IDIR = 1. Real data.

The local array X stores a subarray of DR, which corresponds to a columnwise
decomposed part of the global array by dividing the second and third
dimensions by ND2 and ND3 respectively.

If each Nm is divisible by NDm (m=2,3), setting width parameters
KXmP=Nm/NDm is recommended, then the data size settled in the subarray can
be (N1,KX2P,KX3P) uniformly.

If Nm is not divisible by NDm, setting KXmP=Nm/NDm+1 is recommended,
then the sizes of the subarrays that are assigned to the edge of the process grid
are less than KXmP.

The array X in each process stores the subarray of DR as follows:
X(1:N1, 1:NX2P, 1:NX3P) DR(1:N1, NX2B:NX2E, NX3B:NX3E),
 NX2B = KX2P rank2 + 1
 NX2E = MIN(N2, KX2P (rank2 + 1))
 NX2P = MAX(0, NX2E - NX2B + 1)
 NX3B = KX3P rank3 + 1
 NX3E = MIN(N3, KX3P (rank3 1))
 NX3P = MAX(0, NX3E - NX3B 1),

where, rank2 and rank3 are the ranks of the process in the communicator
COMM2 and COMM3 respectively, which are obtained by subroutine
MPI_COMM_RANK of MPI.

The input values are not retained after the calculation.

 Output when IDIR = -1. Transformed real data.

Resultant transformed three dimensional real data from DC(N1/2+1, N2, N3)
are stored into the array X in the same distributed way as stated above.

This is a double precision real three-dimensional array X(KX1, KX2, KX3P).

KX1 Input. The size of the first dimension of the array X. KX1 must be even. (N1).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (NX2P).

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension of DR is equally partitioned.
(KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension of DR is equally partitioned.
(KX3PND3 N3)

Integer(INTEGER*4).

Z Output when IDIR = 1. Transformed complex data.

DS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 35

The complex data obtained from real data DR(N1, N2, N3) by Fourier
transform has the complex conjugate relation so the about a half of the first
dimension is used to store. The local array Z stores a subarray of DC(N1/2+1,
N2, N3), which corresponds to a columnwise decomposed part of the global
array by dividing the first and second dimensions by ND2 and ND3 respectively.

The array Z in each process stores the subarray of DC as follows:
Z(1:NZ1P, 1:NZ2P, 1:N3) DC(NZ1B:NZ1E, NZ2B:NZ2E, 1:N3)
 NZ1P = MAX(0, NZ1E – NZ1B + 1)
 NZ2P = MAX(0, NZ2E – NZ2B 1).

 Input when IDIR = -1. Complex data.

The local array Z stores the subarray of DC in the same distributed way as
stated above.

This is a double precision complex three-dimensional array Z(KZ1, KZ2, KZ3).

 (See note 2) in (3), “Comments on use.”)

KZ1 Output when NW = 0. The recommended size for the first dimension of the
array Z.

Input when NW 0. The size of the first dimension of the array Z (NZ1E-
NZ1B+1).

Integer(INTEGER*4).

KZ2 Output when NW = 0. The recommended size for the second dimension of the
array Z.

Input when NW 0. The size of the second dimension of the array Z (
NZ2E-NZ2B+1).

Integer(INTEGER*4).

KZ3 Output when NW = 0. The recommended size of the third dimension of the
array Z.

Input when NW 0. The size of the third dimension of the array Z (N3).

Integer(INTEGER*4).

NZ1B Output. The starting index for the first dimension of the global array DC.

Integer(INTEGER*4).

NZ1E Output. The ending index for the first dimension of the global array DC.
NZ1B and NZ1E indicate which portion of the first dimension within the global
array is stored in the local array Z.

Integer(INTEGER*4).

NZ2B Output. The starting index for the second dimension of the global array DC.

Integer(INTEGER*4).

NZ2E Output. The ending index for the second dimension of the global array DC.
NZ2B and NZ2E indicate which portion of the second dimension within the
global array is stored in the local array Z.

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

DS_V3DRCF2X

36 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

W Work area. This is double precision complex one-dimensional array W(NW).

NW Input / Output. The size of the work array W.

When NW = 0 specified, the recommended sizes of NW, KZ1, KZ2, and KZ3
are set respectively, and the index information is set to NZ1B, NZ1E, NZ2B,
and NZ2E.

Integer (INTEGER*8). (See note 5) in (3), “Comments on use.”)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

IDIR Input. The direction of transform between arrays is indicated.

IDIR = 1: from the real array X to the complex array Z.

IDIR = -1: from the complex array Z to the real array X.

Integer (INTEGER*4).

COMM2 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND2, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 3) in (3), “Comments on use.”)

Integer (INTEGER*4).

COMM3 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND3, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 3) in (3), “Comments on use.”)

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DRCF2X-1.

Integer (INTEGER*4).

Table DS_V3DRCF2X-1 Condition codes

Code Meaning Processing

DS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 37

Table DS_V3DRCF2X-1 Condition codes

Code Meaning Processing

0 No error

1000 NW = 0 is specified The recommended sizes of
NW, KZ1, KZ2 and KZ3 are
set.
Index information is set to
NZ1B, NZ1E, NZ2B, and
NZ2E.

There is no output to array X
or Z.

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1,
KX1 < N1, KX1 is not even,
KX2 < NX2P,
N2 > KX2P ND2, N3 > KX3P ND3,
(N1/2+1) 2 > KZ1 ND2,
ISN1, -1, IDIR1, -1.

30008 The order of the transform is not radix 2/3/5/7.

30100 COMM2 or COMM3 is incorrect.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

DS_V3DRCF2X

38 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 k nk nknkkk (3.3)

 The remainder of the data is obtained from data in k1 = 0, ..., n1–1, k2 = 0, ..., n2–
1, and k3 = 0, ..., n3/2.

3) Process shape ND2 and ND3

 Note that the performance of this routine may deteriorate when ND1,ND2 and
ND3 do not match the shape of the executing process grid on a system which can
specify the shape of the process grid. Refer to the Job Operation Software
manual whether the system can assign a shape of the process grid.

4) Consistency of parameters among processes

 The parameters KX2P, KX3P, N1, N2, N3, NW, ISN and IDIR needs to have
same value respectively among all processes, otherwise the result is not
guaranteed.

5) The size of work area W

 The size of the work array NW needs to be about twice the size of array X or Z
to be used as send/receive buffers for MPI communication inside the routine.
Note that the parameter NW is an 8-byte integer type.

b. Example

 Three-dimensional FFT is computed in 23 processes.

c ** example program **
 use mpi
 implicit real*8 (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd2=2,nd3=3)
 parameter (n1c=n1/2+1,kx1=n1c*2)
 parameter (kx2p=((n2+nd2-1)/nd2),kx2=kx2p)
 parameter (kx3p=((n3+nd3-1)/nd3))
 parameter (nwrand=388)
 real*8 dwork(nwrand)
 integer comm2,comm3
 integer*8 nw
 real*8 x(kx1,kx2,kx3p),wc(kx1,kx2,kx3p)
 complex*16,allocatable :: z(:,:,:)
 real*8,allocatable :: w(:)
c --- prepare sub-communicator ---
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nsize, ierr)
 call mpi_comm_rank(mpi_comm_world, nrank, ierr)
 ncolory=nrank/nd2
 call mpi_comm_split(mpi_comm_world,ncolory,nrank,
 & comm2,ierr)
 call mpi_comm_size(comm2, nsize2, ierr)
 call mpi_comm_rank(comm2, nrank2, ierr)

DS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 39

 ncolorz=mod(nrank,nd2)
 call mpi_comm_split(mpi_comm_world,ncolorz,nrank,
 & comm3,ierr)
 call mpi_comm_size(comm3, nsize3, ierr)
 call mpi_comm_rank(comm3, nrank3, ierr)
 if(nsize.ne.nd2*nd3 .or. nsize2.ne.nd2 .or.
 & nsize3.ne.nd3) then
 print*,'nsize=',nsize,nsize2,nsize3
 go to 9000
 endif
c --- prepare test-data ---
 nx2=min(kx2p,max(n2-nrank2*kx2p,0))
 nx3=min(kx3p,max(n3-nrank3*kx3p,0))
 ix=1000
 ix=ix+nrank ! different seed
 do i3=1,nx3
 do i2=1,nx2
 call dvrau4(ix,x(1,i2,i3),n1,dwork,nwrand,icon)
 do i1=1,n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c --- inquire necessary size ---
 nw=0
 call ds_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.1000) then
 print*,'icon=',icon
 go to 9000
 endif
 allocate (z(kz1,kz2,kz3),w(nw))
 print*,'nrank,nrank2,nrank3=',nrank,nrank2,nrank3,
 & ' Z-pencil x-range=',nz1b,nz1e,
 & ' y-range=',nz2b,nz2e,
 & ' z-range=',1,n3
c --- forward FFT ---
 idir=1
 isn=1
 call ds_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- backward FFT ---
 idir=-1
 isn=-1
 call ds_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)

DS_V3DRCF2X

40 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- check result ---
 errorx=0
 do i3=1,nx3
 do i2=1,nx2
 do i1=1,n1
 errorx=max(dabs(wc(i1,i2,i3)-
 & x(i1,i2,i3)/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 & mpi_max,mpi_comm_world,ierr)
 if(nrank.eq.0)then
 print*,'num proc=',nsize
 print*,'nd2,nd3=',nsize2,nsize3
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
c
 9000 continue
 call mpi_comm_free(comm2,ierr)
 call mpi_comm_free(comm3,ierr)
 call mpi_finalize(ierr)
 stop
 end

DS_V3DRCF3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 41

DS_V3DRCF3

Three-dimensional discrete real Fourier transforms. (mixed radices of 2, 3, 5 and 7, volumetric
decomposition)

CALL DS_V3DRCF3 (X, KX1, KX2, KX1P, KX2P, KX3P, N1, N2, N3, ND1, ND2, ND3,
 W, NW, ISIN, ISN, COMM, ICON)

(1) Function

 The subroutine DS_V3DRCF3 performs a three-dimensional real Fourier transform or its
inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321

 r = r =

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

rkj
n

rkj
n

rkj
n

n

=j

n

=j

n

=j

jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

1or1

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

 r = r =

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

rkj
n

rkj
n

rkj
n

n

=k

n

=k

n

=k

kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality on a massively
parallel machine. The global data of the three-dimensional array can be distributed among
processes which are regarded as a three-dimensional grid, therefore the volumetric

DS_V3DRCF3

42 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

decomposition allows the distribution of work more efficiently than a slabwise
decomposition in an environment where massively parallel processes are available.

(2) Parameters

X Input/Output. Real data.

When the global three dimensional real data is regarded as an array D(N1, N2,
N3) virtually, the local array X stores subarray of D distributed along with the
shape of the process grid.

If each Nm is divisible by NDm (m=1,2,3) and N1/ND1 is an even number,
setting width parameters KXmP=Nm/NDm is acceptable, then the data size
settled in the subarray can be (KX1P,KX2P,KX3P) in most processes, except
the edge processes of the first dimension of the process grid, which have the
data size of (KX1P +2,KX2P,KX3P). Note that the array with the slightly-
increased area is necessary for every process.

If Nm is not divisible by NDm for m=2,3, setting KXmP=Nm/NDm+1 is
recommended, then the sizes of the subarrays that are assigned to the edge of
the process grid are less than KXmP. As for m=1, set an even number to KX1P
such that (N1/2+1) 2 KX1P ND1, when KX1P ND1 = N1 is not
adoptable.

The array X in each process stores the subarray of D as follows:
X(1:N1P, 1:N2P, 1:N3P) D(N1S:N1E, N2S:N2E, N3S:N3E),
 N1S = KX1P rank1 + 1,
 N1E = MIN(N1, KX1P (rank1 + 1)),
 N1P = MAX(0, N1E - N1S + 1),
 N2S = KX2P rank2 + 1,
 N2E = MIN(N2, KX2P (rank2 + 1)),
 N2P = MAX(0, N2E - N2S + 1),
 N3S = KX3P rank3 + 1,
 N3E = MIN(N3, KX3P (rank3 1)),
 N3P = MAX(0, N3E - N3S 1),

where, rank1,rank2 and rank3 are coordinates of the process grid calculated as
follows from the rank value, which is obtained by subroutine
MPI_COMM_RANK of MPI:
 rank1 = mod(rank, ND1),
 rank2 = mod(rank/ND1, ND2),
 rank3 = rank/(ND1ND2).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = -1), data is output.

Output/input. The real and imaginary parts of the transformed complex data.

The complex data CD(N1, N2, N3) obtained from real data D(N1, N2, N3) by
Fourier transform has the complex conjugate relation so the about a half of the
first dimension(1～N1/2+1) is used to store the complex data.

(See note 2) in (3), “Comments on use.”)

Regarding an array X as X(2, KX1/2, KX2, KX3P), the real and imaginary
parts are stored in X(1, 1:N1P, 1:N2P, 1:N3P) and X(2, 1:N1P, 1:N2P, 1:N3P)
respectively, where,

 N1S = KX1P/2 rank1 + 1,
 N1E = MIN(N1/2+1, KX1P/2 (rank1 + 1)),
 N1P = MAX(0, N1E - N1S + 1).

DS_V3DRCF3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 43

Additionally, the edge processes of the first dimension of the process grid have
the increased data in X(1:2, N1P+1, 1:N2P, 1:N3P), when the condition KX1P
 ND1 = N1 is satisfied.

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = -1), data is input.

This is a double precision real three-dimensional array X(KX1, KX2, KX3P).

KX1 Input. The size of the first dimension of the array X. KX1 must be even.

The condition KX1 KX1P + 2 must be satisfied if KX1P ND1 = N1.
Otherwise, KX1 KX1P.

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (KX2P).

Integer(INTEGER*4).

KX1P Input. The size by which the first dimension is equally partitioned
(KX1PND1 N1). KX1P must be even.

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension is equally
partitioned.(KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension is equally partitioned
(KX3PND3 N3)

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

ND1 Input. The number of processes by which the first dimension is partitioned.

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

ND2 Input. The number of processes by which the second dimension is partitioned.

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

ND3 Input. The number of processes by which the third dimension is partitioned.

DS_V3DRCF3

44 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

Integer (INTEGER*4)
(See note 2) in (3), “Comments on use.”)

W Work area. This is double precision complex one-dimensional array W(NW).

NW Input. The size of the work array W (NW MAX(KX1 ND1, KX2P ND2,
KX3P ND3) 6). It is recommended to specify a sufficiently large size for
efficiency. (See note 2) in (2), “Comments on use.”)

Integer (INTEGER*4)

ISIN Input. The direction of the transformation.

ISIN = 1 for r = 1.

ISIN = -1 for r = -1.

Integer (INTEGER*4).

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

COMM Input. The communicator indicating a set of processes on which data are
distributed and by which computation is done in parallel.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DRCF3-1.

Integer (INTEGER*4).

Table DS_V3DRCF3-1 Condition codes

Code Meaning Processing

0 No error

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1,
KX1 < KX1P, KX1 or KX1P is not even,
KX2 < KX2P, N1 > KX1P ND1,
N2 > KX2P ND2, N3 > KX3P ND3,
(N1/2+1) 2 > KX1 ND1,
ISIN1, -1, ISN1, -1.

30008 The order of the transform is not radix 2/3/5/7.

30100 ND1ND2ND3 is not equal to total
processes.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

DS_V3DRCF3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 45

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 k nk nknkkk (3.3)

 The remainder of the data is obtained from data in k1 = 0, ..., n1–1, k2 = 0, ..., n2–
1, and k3 = 0, ..., n3/2.

3) The size of work area W

 The size of the work array determines partition sizes for transferring data among
nodes and calculation on each node in this routine. Setting the size NW of work
area W much larger than MAX(KX1ND1, KX2PND2, KX3PND3) 6
(number of threads in a process) is recommended. For example, setting NW >
1,000,000 is expected to be efficient when the assigned cache size to the process
is 8MB and the array X is partitionable by that size of the work area.

4) Parameters ND1, ND2 and ND3

 When using volumetric decomposition, it is recommended to adjust ND1,ND2
and ND3 to be about the comparable value of cube root of the number of total
process ND1ND2ND3 for overall efficiency of transferring data. Note that the
performance of this routine may deteriorate when ND1,ND2 and ND3 do not
match the shape of the executing process grid on a system which can specify the
shape of the process grid. Refer to the Job Operation Software manual whether
the system can assign a shape of the process grid.

 Additionally, this routine can be used for slabwise decomposition or 2-
dimensional decomposition also by setting any of ND1,ND2 or ND3 to 1, when
user's program exploits specific decomposition or available shape of the process
grid on a system is limited.

DS_V3DRCF3

46 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

5) Consistency of parameters among processes

 The parameters KX1, KX2, KX1P, KX2P, KX3P, N1, N2, N3, ND1, ND2, ND3,
NW, ISIN and ISN needs to have same value respectively among all processes,
otherwise the result is not guaranteed.

b. Example

 Three-dimensional FFT is computed in 222 processes.

c ** example program **
 use mpi
c
 implicit real*8 (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd1=2,nd2=2,nd3=2)
 parameter (kx1p=((n1+nd1-1)/nd1+1)/2*2)
 parameter (kx1=((n1/2+1)+nd1-1)/nd1*2)
 parameter (kx2p=(n2+nd2-1)/nd2,kx2=kx2p)
 parameter (kx3p=(n3+nd3-1)/nd3)
 parameter (nw=kx1*kx2p*kx3p)
 parameter (nwork=388)
 real*8 dwork(nwork)
 real*8 x(kx1,kx2,kx3p),w(nw),wc(kx1,kx2,kx3p)
c
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nump, ierr)
 call mpi_comm_rank(mpi_comm_world, nop, ierr)
 nrank1=mod(nop,nd1)
 nrank2=mod(nop/nd1,nd2)
 nrank3=nop/(nd1*nd2)
c
 ix=1000
 ix=ix*nump+nop ! different seed
 do i1=1,kx3p
 call dvrau4(ix,x(1,1,i1),
 $ kx1*kx2,
 & dwork, nwork, icon)
 enddo
c
 do i3=1, kx3p
 do i2=1, kx2p
 do i1=1, kx1p
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isin=1
 isn=1
 call ds_v3drcf3(x,kx1,kx2,kx1p,kx2p,kx3p,
 $ n1,n2,n3,nd1,nd2,nd3,w,nw,isin,isn,
 $ mpi_comm_world,icon)
 print*,'icon=',icon
 if(icon.ne.0) go to 9000

DS_V3DRCF3

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 47

c
 isn=-1
 call ds_v3drcf3(x,kx1,kx2,kx1p,kx2p,kx3p,
 $ n1,n2,n3,nd1,nd2,nd3,w,nw,isin,isn,
 $ mpi_comm_world,icon)
 print*,'icon=',icon
 if(icon.ne.0) go to 9000
c
 errorx=0
 iof1=nrank1*kx1p
 iof2=nrank2*kx2p
 iof3=nrank3*kx3p
 do i1=1,min(kx1p,max(n1-iof1,0))
 do i2=1,min(kx2p,max(n2-iof2,0))
 do i3=1,min(kx3p,max(n3-iof3,0))
 errorx=max(dabs(wc(i1,i2,i3)-
 $ x(i1,i2,i3)/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
c
 call mpi_allreduce(errorx,errormax,1,mpi_double_precision,
 $ mpi_max,mpi_comm_world,ierr)
c
 if(nop.eq.0)then
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
 9000 continue
c
 call mpi_finalize(ierr)
c
 stop
 end

SS_V3DCFT2X

48 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

SS_V3DCFT2X

Three-dimensional discrete complex Fourier transforms. (mixed radices of 2, 3, 5 and 7,
pencil decomposition, single precision)

CALL SS_V3DCFT2X (X, KX1, KX2, KX2P, KX3P, Z, KZ1, KZ2, KZ3,
 NZ1B, NZ1E, NZ2B, NZ2E, N1, N2, N3,
 W, NW, ISN, IDIR, COMM2, COMM3, ICON)

(1) Function

 The subroutine SS_V3DCFT2X performs a three-dimensional complex Fourier transform
or its inverse Fourier transform using a mixed radix FFT with single-precision.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality using pencil
decomposition. The global data of the three-dimensional array is to be distributed among
a two-dimensional process grid. The local input array and output array of each process
store distinct shapes by dividing the global data in different directions of pencils. This

SS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 49

allows the routine to omit communication for transposing back to the original distribution
shape. This subroutine is the single-precision version of the DS_V3DCFT2X.

(2) Parameters

 In the following, the global three dimensional complex data is regarded as an array D(N1,
N2, N3) virtually, and the process grid is regarded as ND2 ND3 shape.

X Input when IDIR = 1. Complex data.

The local array X stores a subarray of D, which corresponds to a columnwise
decomposed part of the global array by dividing the second and third
dimensions by ND2 and ND3 respectively.

If each Nm is divisible by NDm (m=2,3), setting a width parameter
KXmP=Nm/NDm is recommended, then the sizes of the subarray can be
(N1,KX2P,KX3P) uniformly.

If Nm is not divisible by NDm, setting KXmP=Nm/NDm+1 is recommended,
then the sizes of the subarrays that are assigned to the edge of the process grid
are less than KXmP.

The array X in each process stores the subarray of D as follows:
X(1:N1, 1:NX2P, 1:NX3P) D(1:N1, NX2B:NX2E, NX3B:NX3E)
 NX2B = KX2P rank2 + 1
 NX2E = MIN(N2, KX2P (rank2 + 1))
 NX2P = MAX(0, NX2E - NX2B + 1)
 NX3B = KX3P rank3 + 1
 NX3E = MIN(N3, KX3P (rank3 1))
 NX3P = MAX(0, NX3E - NX3B 1),

where the rank2 and rank3 are ranks of the process in the communicator
COMM2 and COMM3 respectively, which are obtained by subroutine
MPI_COMM_RANK of MPI.

The input values are not retained after the calculation.

 Output when IDIR = -1. Transformed complex data.

Resultant transformed three dimensional data of D(N1, N2, N3) are stored into
the array X in the same distributed way as stated above.

This is a single precision complex three-dimensional array X(KX1, KX2,
NX3P).

KX1 Input. The size of the first dimension of the array X (N1).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (NX2P).

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension of D is equally partitioned when
the data are stored in the array X. (KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension of D is equally partitioned when
the data are stored in the array X. (KX3PND3 N3)

Integer(INTEGER*4).

Z Output when IDIR = 1. Transformed complex data.

SS_V3DCFT2X

50 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

The local array Z stores a subarray of D, which corresponds to a columnwise
decomposed part of the global array by dividing the first and second dimensions
by ND2 and ND3 respectively.

The array Z in each process stores the subarray of D as follows:
Z(1:NZ1P, 1:NZ2P, 1:N3) D(NZ1B:NZ1E, NZ2B:NZ2E, 1:N3)
 NZ1P = MAX(0, NZ1E – NZ1B + 1)
 NZ2P = MAX(0, NZ2E – NZ2B 1).

 Input when IDIR = -1. Complex data.

The local array Z stores the subarray of D in the same distributed way as stated
above.

This is a single precision complex three-dimensional array Z(KZ1, KZ2, KZ3).

KZ1 Output when NW = 0. The recommended size for the first dimension of the
array Z.

Input when NW 0. The size of the first dimension of the array Z (NZ1E-
NZ1B+1).

Integer(INTEGER*4).

KZ2 Output when NW = 0. The recommended size for the second dimension of the
array Z.

Input when NW 0. The size of the second dimension of the array Z (
NZ2E-NZ2B+1).

Integer(INTEGER*4).

KZ3 Output when NW = 0. The recommended size of the third dimension of the
array Z.

Input when NW 0. The size of the third dimension of the array Z (N3).

Integer(INTEGER*4).

NZ1B Output. The starting index for the first dimension of the global array D.

Integer(INTEGER*4).

NZ1E Output. The ending index for the first dimension of the global array D.
NZ1B and NZ1E indicate which portion of the first dimension within the global
array is stored in the local array Z.

Integer(INTEGER*4).

NZ2B Output. The starting index for the second dimension of the global array D.

Integer(INTEGER*4).

NZ2E Output. The ending index for the second dimension of the global array D.
NZ2B and NZ2E indicate which portion of the second dimension within the
global array is stored in the local array Z.

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

SS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 51

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

W Work area. This is single precision complex one-dimensional array W(NW).

NW Input / Output. The size of the work array W.

When NW = 0 specified, the recommended sizes of NW, KZ1, KZ2, and KZ3
are set respectively, and index information is set to NZ1B, NZ1E, NZ2B, and
NZ2E.

Integer (INTEGER*8). (See note 4) in (3), “Comments on use.”)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

IDIR Input. The direction of transform between arrays is indicated.

IDIR = 1 for the transform from the array X to the array Z.

IDIR = -1 for the transform from the array Z to the array X.

Integer (INTEGER*4).

COMM2 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND2, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 2) in (3), “Comments on use.”)

Integer (INTEGER*4).

COMM3 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND3, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 2) in (3), “Comments on use.”)

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DCFT2X-1.

Integer (INTEGER*4).

Table SS_V3DCFT2X-1 Condition codes

Code Meaning Processing

0 No error

SS_V3DCFT2X

52 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

Table SS_V3DCFT2X-1 Condition codes

Code Meaning Processing

1000 NW = 0 is specified. The recommended sizes of
NW, KZ1, KZ2, and KZ3
are set.
Index information is set to
NZ1B, NZ1E, NZ2B, and
NZ2E.

There is no output to array X
or Z.

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1, KX1 < N1, KX2 < NX2P,
N2 > KX2P ND2, N3 > KX3P ND3, or the
value of ISN or IDIR is incorrect.

30008 The order of the transform is not radix 2/3/5/7.

30100 COMM2 or COMM3 is incorrect.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) Process shape ND2 and ND3

SS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 53

 Note that the performance of this routine may deteriorate when ND2 and ND3
do not match the shape of the executing process grid on a system which can
specify the shape of the process grid. Refer to the Job Operation Software
manual whether the system can assign a shape of the process grid.

3) Consistency of parameters among processes

 The parameters KX2P,KX3P,N1,N2,N3,NW,ISN, and IDIR needs to have same
value respectively among all processes, otherwise the result is not guaranteed.

4) The size of work area W

 The size of the work array NW needs to be about twice the size of array X or Z
to be used as send/receive buffers for MPI communication inside the routine.
Note that the parameter NW is an 8-byte integer type.

b. Example

 Three-dimensional FFT is computed in 23 processes.

c ** example program **
 use mpi
 implicit real (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd2=2,nd3=3)
 parameter (kx1=n1)
 parameter (kx2p=((n2+nd2-1)/nd2),kx2=kx2p)
 parameter (kx3p=((n3+nd3-1)/nd3))
 integer comm2,comm3
 integer*8 nw
 complex x(kx1,kx2,kx3p),wc(kx1,kx2,kx3p)
 complex,allocatable :: z(:,:,:),w(:)
c --- prepare sub-communicator ---
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nsize, ierr)
 call mpi_comm_rank(mpi_comm_world, nrank, ierr)
 ncolory=nrank/nd2
 call mpi_comm_split(mpi_comm_world,ncolory,nrank,
 & comm2,ierr)
 call mpi_comm_size(comm2, nsize2, ierr)
 call mpi_comm_rank(comm2, nrank2, ierr)
 ncolorz=mod(nrank,nd2)
 call mpi_comm_split(mpi_comm_world,ncolorz,nrank,
 & comm3,ierr)
 call mpi_comm_size(comm3, nsize3, ierr)
 call mpi_comm_rank(comm3, nrank3, ierr)
 if(nsize.ne.nd2*nd3 .or. nsize2.ne.nd2 .or.
 & nsize3.ne.nd3) then
 print*,'nsize=',nsize,nsize2,nsize3
 go to 9000
 endif
c --- prepare test-data ---
 nx2=min(kx2p,max(n2-nrank2*kx2p,0))
 nx3=min(kx3p,max(n3-nrank3*kx3p,0))
 ix=1000
 ix=ix+nrank ! different seed
 do i3=1,nx3

SS_V3DCFT2X

54 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 do i2=1,nx2
 call ranu2(ix,x(1,i2,i3),2*n1,icon)
 do i1=1,n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c --- inquire necessary size ---
 nw=0
 call ss_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.1000) then
 print*,'icon=',icon
 go to 9000
 endif
 allocate (z(kz1,kz2,kz3),w(nw))
 print*,'nrank,nrank2,nrank3=',nrank,nrank2,nrank3,
 & ' Z-pencil x-range=',nz1b,nz1e,
 & ' y-range=',nz2b,nz2e,
 & ' z-range=',1,n3
c --- forward FFT ---
 idir=1
 isn=1
 call ss_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- backward FFT ---
 idir=-1
 isn=-1
 call ss_v3dcft2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- check result ---
 errorx=0
 do i3=1,nx3
 do i2=1,nx2
 do i1=1,n1
 errorx=max(cabs(wc(i1,i2,i3)-
 & x(i1,i2,i3)/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
 call mpi_allreduce(errorx,errormax,1,mpi_real,
 & mpi_max,mpi_comm_world,ierr)

SS_V3DCFT2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 55

 if(nrank.eq.0)then
 print*,'num proc=',nsize
 print*,'nd2,nd3=',nsize2,nsize3
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
c
 9000 continue
 call mpi_comm_free(comm2,ierr)
 call mpi_comm_free(comm3,ierr)
 call mpi_finalize(ierr)
 stop
 end

SS_V3DRCF2X

56 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

SS_V3DRCF2X

Three-dimensional discrete real Fourier transforms. (mixed radices of 2, 3, 5 and 7, pencil
decomposition, single precision)

CALL SS_V3DRCF2X (X, KX1, KX2, KX2P, KX3P, Z, KZ1, KZ2, KZ3,
 NZ1B, NZ1E, NZ2B, NZ2E, N1, N2, N3,
 W, NW, ISN, IDIR, COMM2, COMM3, ICON)

(1) Function

 The subroutine SS_V3DRCF2X performs a three-dimensional real Fourier transform or
its inverse Fourier transform using a mixed radix FFT with single-precision.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the
powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321321

i/n

i/n

i/n

n k

n k

n k

xnnn

n

n

n

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2exp(,

)2exp(,

)2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

i/n

i/n

i/n

 n j

 n j

n j

x

n

n

n

kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

 (1.2)

 This subroutine provides an efficient and scalable 3D FFT functionality using pencil
decomposition. The global data of the three-dimensional array is to be distributed among
a two-dimensional process grid. The local input array and output array of each process
store distinct shapes by dividing the global data in different directions of pencils. This

SS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 57

allows the routine to omit communication for transposing back to the original distribution
shape. This subroutine is the single-precision version of the DS_V3DRCF2X.

(2) Parameters

 In the following, the global three dimensional real data is regarded as an array DR(N1, N2,
N3), and the transformed global three dimensional complex data is regarded as an array
DC(N1/2+1, N2, N3) virtually, and the process grid is regarded as ND2 ND3 shape.

X Input when IDIR = 1. Real data.

The local array X stores a subarray of DR, which corresponds to a columnwise
decomposed part of the global array by dividing the second and third
dimensions by ND2 and ND3 respectively.

If each Nm is divisible by NDm (m=2,3), setting width parameters
KXmP=Nm/NDm is recommended, then the data size settled in the subarray can
be (N1,KX2P,KX3P) uniformly.

If Nm is not divisible by NDm, setting KXmP=Nm/NDm+1 is recommended,
then the sizes of the subarrays that are assigned to the edge of the process grid
are less than KXmP.

The array X in each process stores the subarray of DR as follows:
X(1:N1, 1:NX2P, 1:NX3P) DR(1:N1, NX2B:NX2E, NX3B:NX3E),
 NX2B = KX2P rank2 + 1
 NX2E = MIN(N2, KX2P (rank2 + 1))
 NX2P = MAX(0, NX2E - NX2B + 1)
 NX3B = KX3P rank3 + 1
 NX3E = MIN(N3, KX3P (rank3 1))
 NX3P = MAX(0, NX3E - NX3B 1),

where, rank2 and rank3 are the ranks of the process in the communicator
COMM2 and COMM3 respectively, which are obtained by subroutine
MPI_COMM_RANK of MPI.

The input values are not retained after the calculation.

 Output when IDIR = -1. Transformed real data.

Resultant transformed three dimensional real data from DC(N1/2+1, N2, N3)
are stored into the array X in the same distributed way as stated above.

This is a single precision real three-dimensional array X(KX1, KX2, KX3P).

KX1 Input. The size of the first dimension of the array X. KX1 must be even. (N1).

Integer(INTEGER*4).

KX2 Input. The size of the second dimension of the array X (NX2P).

Integer(INTEGER*4).

KX2P Input. The size by which the second dimension of DR is equally partitioned.
(KX2PND2 N2)

Integer(INTEGER*4).

KX3P Input. The size by which the third dimension of DR is equally partitioned.
(KX3PND3 N3)

Integer(INTEGER*4).

Z Output when IDIR = 1. Transformed complex data.

SS_V3DRCF2X

58 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

The complex data obtained from real data DR(N1, N2, N3) by Fourier
transform has the complex conjugate relation so the about a half of the first
dimension is used to store. The local array Z stores a subarray of DC(N1/2+1,
N2, N3), which corresponds to a columnwise decomposed part of the global
array by dividing the first and second dimensions by ND2 and ND3 respectively.

The array Z in each process stores the subarray of DC as follows:
Z(1:NZ1P, 1:NZ2P, 1:N3) DC(NZ1B:NZ1E, NZ2B:NZ2E, 1:N3)
 NZ1P = MAX(0, NZ1E – NZ1B + 1)
 NZ2P = MAX(0, NZ2E – NZ2B 1).

 Input when IDIR = -1. Complex data.

The local array Z stores the subarray of DC in the same distributed way as
stated above.

This is a single precision complex three-dimensional array Z(KZ1, KZ2, KZ3).

 (See note 2) in (3), “Comments on use.”)

KZ1 Output when NW = 0. The recommended size for the first dimension of the
array Z.

Input when NW 0. The size of the first dimension of the array Z (NZ1E-
NZ1B+1).

Integer(INTEGER*4).

KZ2 Output when NW = 0. The recommended size for the second dimension of the
array Z.

Input when NW 0. The size of the second dimension of the array Z (
NZ2E-NZ2B+1).

Integer(INTEGER*4).

KZ3 Output when NW = 0. The recommended size of the third dimension of the
array Z.

Input when NW 0. The size of the third dimension of the array Z (N3).

Integer(INTEGER*4).

NZ1B Output. The starting index for the first dimension of the global array DC.

Integer(INTEGER*4).

NZ1E Output. The ending index for the first dimension of the global array DC.
NZ1B and NZ1E indicate which portion of the first dimension within the global
array is stored in the local array Z.

Integer(INTEGER*4).

NZ2B Output. The starting index for the second dimension of the global array DC.

Integer(INTEGER*4).

NZ2E Output. The ending index for the second dimension of the global array DC.
NZ2B and NZ2E indicate which portion of the second dimension within the
global array is stored in the local array Z.

Integer(INTEGER*4).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

SS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 59

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

W Work area. This is a single precision complex one-dimensional array W(NW).

NW Input / Output. The size of the work array W.

When NW = 0 specified, the recommended sizes of NW, KZ1, KZ2, and KZ3
are set respectively, and the index information is set to NZ1B, NZ1E, NZ2B,
and NZ2E.

Integer (INTEGER*8). (See note 5) in (3), “Comments on use.”)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

Integer (INTEGER*4).

IDIR Input. The direction of transform between arrays is indicated.

IDIR = 1: from the real array X to the complex array Z.

IDIR = -1: from the complex array Z to the real array X.

Integer (INTEGER*4).

COMM2 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND2, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 3) in (3), “Comments on use.”)

Integer (INTEGER*4).

COMM3 Input. The MPI communicator that represents a set of processes whose size of
the process group is ND3, which is obtained by MPI_COMM_SIZE, in the
process shape ND2 ND3. (See note 3) in (3), “Comments on use.”)

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DS_V3DRCF2X-1.

Integer (INTEGER*4).

Table SS_V3DRCF2X-1 Condition codes

Code Meaning Processing

SS_V3DRCF2X

60 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

Table SS_V3DRCF2X-1 Condition codes

Code Meaning Processing

0 No error

1000 NW = 0 is specified The recommended sizes of
NW, KZ1, KZ2 and KZ3 are
set.
Index information is set to
NZ1B, NZ1E, NZ2B, and
NZ2E.

There is no output to array X
or Z.

25000 Too small work area. Processing is discontinued.

30000 N1<1, N2<1, N3<1,
KX1 < N1, KX1 is not even,
KX2 < NX2P,
N2 > KX2P ND2, N3 > KX3P ND3,
(N1/2+1) 2 > KZ1 ND2,
ISN1, -1, IDIR1, -1.

30008 The order of the transform is not radix 2/3/5/7.

30100 COMM2 or COMM3 is incorrect.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

n k

n k

n k

x
nnn

kj
n

kj
n

kj
n

n

=j

n

=j

n

=j
jjjkkk

1,...,1,0,

1,...,1,0,

1,...,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321

321
321

 (3.1)

 n j

 n j

n j

x kj
n

kj
n

kj
n

n

=k

n

=k

n

=k
kkkjjj

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321

 (3.2)

 where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

SS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 61

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 k nk nknkkk (3.3)

 The remainder of the data is obtained from data in k1 = 0, ..., n1–1, k2 = 0, ..., n2–
1, and k3 = 0, ..., n3/2.

3) Process shape ND2 and ND3

 Note that the performance of this routine may deteriorate when ND1,ND2 and
ND3 do not match the shape of the executing process grid on a system which can
specify the shape of the process grid. Refer to the Job Operation Software
manual whether the system can assign a shape of the process grid.

4) Consistency of parameters among processes

 The parameters KX2P, KX3P, N1, N2, N3, NW, ISN and IDIR needs to have
same value respectively among all processes, otherwise the result is not
guaranteed.

5) The size of work area W

 The size of the work array NW needs to be about twice the size of array X or Z
to be used as send/receive buffers for MPI communication inside the routine.
Note that the parameter NW is an 8-byte integer type.

b. Example

 Three-dimensional FFT is computed in 23 processes.

c ** example program **
 use mpi
 implicit real (a-h,o-z)
 parameter (n1=512,n2=n1,n3=n2)
 parameter (nd2=2,nd3=3)
 parameter (n1c=n1/2+1,kx1=n1c*2)
 parameter (kx2p=((n2+nd2-1)/nd2),kx2=kx2p)
 parameter (kx3p=((n3+nd3-1)/nd3))
 integer comm2,comm3
 integer*8 nw
 real x(kx1,kx2,kx3p),wc(kx1,kx2,kx3p)
 complex,allocatable :: z(:,:,:)
 real,allocatable :: w(:)
c --- prepare sub-communicator ---
 call mpi_init(ierr)
 call mpi_comm_size(mpi_comm_world, nsize, ierr)
 call mpi_comm_rank(mpi_comm_world, nrank, ierr)
 ncolory=nrank/nd2
 call mpi_comm_split(mpi_comm_world,ncolory,nrank,
 & comm2,ierr)
 call mpi_comm_size(comm2, nsize2, ierr)
 call mpi_comm_rank(comm2, nrank2, ierr)
 ncolorz=mod(nrank,nd2)
 call mpi_comm_split(mpi_comm_world,ncolorz,nrank,

SS_V3DRCF2X

62 Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library)

 & comm3,ierr)
 call mpi_comm_size(comm3, nsize3, ierr)
 call mpi_comm_rank(comm3, nrank3, ierr)
 if(nsize.ne.nd2*nd3 .or. nsize2.ne.nd2 .or.
 & nsize3.ne.nd3) then
 print*,'nsize=',nsize,nsize2,nsize3
 go to 9000
 endif
c --- prepare test-data ---
 nx2=min(kx2p,max(n2-nrank2*kx2p,0))
 nx3=min(kx3p,max(n3-nrank3*kx3p,0))
 ix=1000
 ix=ix+nrank ! different seed
 do i3=1,nx3
 do i2=1,nx2
 call ranu2(ix,x(1,i2,i3),n1,icon)
 do i1=1,n1
 wc(i1,i2,i3)=x(i1,i2,i3)
 enddo
 enddo
 enddo
c --- inquire necessary size ---
 nw=0
 call ss_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.1000) then
 print*,'icon=',icon
 go to 9000
 endif
 allocate (z(kz1,kz2,kz3),w(nw))
 print*,'nrank,nrank2,nrank3=',nrank,nrank2,nrank3,
 & ' Z-pencil x-range=',nz1b,nz1e,
 & ' y-range=',nz2b,nz2e,
 & ' z-range=',1,n3
c --- forward FFT ---
 idir=1
 isn=1
 call ss_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon
 go to 9000
 endif
c --- backward FFT ---
 idir=-1
 isn=-1
 call ss_v3drcf2x(x,kx1,kx2,kx2p,kx3p,z,kz1,kz2,kz3,
 & nz1b,nz1e,nz2b,nz2e,n1,n2,n3,w,nw,isn,idir,
 & comm2,comm3,icon)
 if(icon.ne.0) then
 print*,'icon=',icon

SS_V3DRCF2X

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 63

 go to 9000
 endif
c --- check result ---
 errorx=0
 do i3=1,nx3
 do i2=1,nx2
 do i1=1,n1
 errorx=max(abs(wc(i1,i2,i3)-
 & x(i1,i2,i3)/n1/n2/n3),errorx)
 enddo
 enddo
 enddo
 call mpi_allreduce(errorx,errormax,1,mpi_real,
 & mpi_max,mpi_comm_world,ierr)
 if(nrank.eq.0)then
 print*,'num proc=',nsize
 print*,'nd2,nd3=',nsize2,nsize3
 print*,'-----(',n1,',',n2,',',n3,')-----'
 print*,'error=',errormax
 endif
c
 9000 continue
 call mpi_comm_free(comm2,ierr)
 call mpi_comm_free(comm3,ierr)
 call mpi_finalize(ierr)
 stop
 end

Appendix

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) 67

Appendix A
References

 [1] Markus Hegland

 Block Algorithms for FFTs on Vector and Parallel Computers. PARCO 93, Grenoble,
1993.

 [2] Charles Van Loan

 Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.

Fujitsu SSL II/MPI User's Guide (Scientific Subroutine Library) IN-1

Index

Ｍ
mixed radices 8, 13, 21, 27, 33, 41, 48, 56

Ｔ
Three-dimensional discrete complex Fourier

transforms 8, 13, 21, 48
Three-dimensional discrete real Fourier

transforms 27, 33, 41, 56

	FUJITSUSSL II/MPI User's Guide(Scientific Subroutine Library)
	Preface
	SSL II/MPI Subroutine List
	Contents
	Part IGeneral Description
	Chapter 1Outline
	Chapter 2General Rules
	2.1 Precision of Subroutines
	2.2 Subroutine Names
	2.3 Parameters
	2.4 How to Use SSL II/MPI
	2.5 Condition Codes

	Part IIUsage of Subroutines
	DS_V3DCFT
	DS_V3DCFT2X
	DS_V3DCFT3
	DS_V3DRCF
	DS_V3DRCF2X
	DS_V3DRCF3
	SS_V3DCFT2X
	SS_V3DRCF2X

	Appendix
	Appendix AReferences

	Index

