

FUJITSU Software

FUJITSU

C-SSL II Thread-Parallel Capabilities User's Guide

J2UL-2573-01ENZ0(00) February 2020

Preface

This manual describes the functions and usage of the C Scientific Function Library II Thread-Parallel Capabilities.

C-SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or solve large-scale problems on a shared-memory parallel computer with scalar processors. New algorithms for parallel processing have been adopted.

When using the C-SSL II Thread-Parallel Capabilities for the first time, the user should read the *General Descriptions* first.

The contents of the C-SSL II Thread-Parallel Capabilities may be amended to keep up with the latest technology. That is, if new, revised or updated routines include or surpass the functionality of the current routines, then the current routines may then be deleted from the library.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or US export control laws.

Date of Publication and Version

- 7	** ** - *******************************	
	Version	Manual code
	February 2020, 1st Version	J2UL-2573-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2003-2020

- All rights reserved.
- · The information in this manual is subject to change without notice.

Acknowledgements

SSL II Thread-Parallel Capabilities include some functions using codes and algorithms, with appropriate modifications, which have been developed for SSL II/VPP. SSL II/VPP is the library developed in collaboration with the Australian National University (ANU). Development at the ANU has been led by professors Mike Osborne and Richard Brent and coordinated by Dr. Bob Gingold, Head, ANU Supercomputer Facility. The following is a complete list of those ANU experts involved in the design and implementation of SSL II/VPP. Fujitsu acknowledges their cooperation.

People

Professor Richard Peirce Brent Dr Andrew James Cleary Dr Murray Leslie Dow Mr Christopher Robert Dun Dr Lutz Grosz Dr David Lawrence Harrar II Dr Markus Hegland Ms Judith Helen Jenkinson Dr Margaret Helen Kahn Dr Zbigniew Leyk Mr David John Miron Professor Michael Robert Osborne Dr Peter Frederick Price Dr Stephen Gwyn Roberts Dr David Barry Singleton Dr David Edward Stewart Dr Bing Bing Zhou

How to use this manual

It is strongly recommended that the *General Descriptions* is read carefully by first time users of the C-SSL II Thread-Parallel Capabilities, even if they are familiar with the Fortran SSL II Thread-Parallel Capabilities. The *General Descriptions* provides:

- an overview of the library,
- the library design,
- information on using the library,
- an annotated sample calling program,
- the array storage formats employed,
- an annotated example of what is contained in each routine description.

The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered separately to allow users to locate the relevant section more quickly.

After the *Selection of routines* chapter are *Tables of routines*, which contain summary information for every routine in the library, with cross references to the detailed routine descriptions. This is intended to allow experienced users to quickly locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are listed before routines for more specific cases.

The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. Each description contains an overview, argument descriptions, sample calling program and important information on how to use each routine.

Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library and in the references specified in the *Bibliography*.

Further sources of information

Following manual describes underlying Fortran routines.

• SSL II Thread-Parallel Capabilities User's Guide II.

There are extensive further references provided in the *Bibliography*.

Typographic conventions

Courier and Times fonts are used as follows:

- Courier regular font used for routine names, arguments, program objects, such as arrays and code.
- Times regular font standard font for text.
- Times italic font emphasis, book titles, manual section references, e.g. See Comments on use, components of matrix and vector objects, e.g. a_{ij} .
- Times bold font Whole matrix and vector objects, e.g. Ax = b, as well as section titles.

Mathematical conventions

Throughout this manual, the distinction is made between matrices and arrays.

- Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix \mathbf{A} is a_{11} .
- 2-D and 1-D arrays are C objects indexed from 0, so that the first element of 2-D array a is a [0][0].

When used in mathematical expressions, *i* is usually used to denote the imaginary part of a complex number, for example in z = 5 + i10, $i = \sqrt{-1}$.

The modulus function |x| is used to denote absolute value, including complex absolute value. Unless otherwise delimited, norms such as $\|\mathbf{x}\|$ are the 2-norm (so $\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}$).

Tables of routines

Linear algebra

1. Matrix operations

Routine name	Description	Page
c_dm_vmggm	Matrix multiplication (real matrix).	133
c_dm_vmvscc	Multiplication of a real sparse matrix and a real vector	148
	(compressed column storage method)	
c_dm_vmvsccc	Multiplication of a complex sparse matrix and a complex vector (compressed column	152
	storage method)	
c_dm_vmvsd	Multiplication of a real sparse matrix and a real vector (diagonal format storage method).	157
c_dm_vmvse	Multiplication of a real sparse matrix and a real vector (ELLPACK format storage	160
	method).	

2. Linear equations (Direct method)

Routine name	Description	Page
c_dm_vlax	A system of linear equations with real matrices (blocked LU decomposition method).	93
c_dm_valu	LU decomposition of real matrices (blocked LU decomposition method).	12
c_dm_vlux	A system of linear equations with LU-decomposed real matrices.	131
c_dm_vlsx	A system of linear equations with symmetric positive definite matrices (blocked modified Cholesky decomposition method).	128
c_dm_vsldl	LDL ^T decomposition of symmetric positive definite matrices (blocked modified Cholesky decomposition method).	301
c_dm_vldlx	A system of linear equations with LDL ^T -decomposed symmetric positive definite matrices.	112
c_dm_vlcx	A system of linear equations with complex matrices (blocked LU decomposition method).	109
c_dm_vclu	LU decomposition of complex matrices (blocked LU decomposition method).	56
c_dm_vclux	A system of linear equations with LU-decomposed complex matrix.	59
c_dm_vlbx	A system of linear equations with banded real matrices (Gaussian elimination).	96
c_dm_vblu	LU decomposition of banded real matrices (Gaussian elimination).	37
c_dm_vblux	A system of linear equations with LU-decomposed banded real matrices.	42
c_dm_vschol	LDL ^T decomposition of a symmetric positive definite sparse matrices (Left-looking Cholesky decomposition method)	212
c_dm_vscholx	A system of linear equations with LDL ^T -decomposed symmetric positive definite sparse matrices	224
c_dm_vssps	A system of linear equations with symmetric positive definite sparse matrices (Left-looking LDL ^T decomposition method)	362
c_dm_vsrs	A system of linear equations with unsymmetric real sparse matrices (LU decomposition method)	341

Routine name	Description	Page
c_dm_vsrlu	LU decomposition of an unsymmetric real sparse matrix	304
c_dm_vsrlux	A system of linear equations with LU-decomposed unsymmetric real sparse matrices	324
c_dm_vscs	A system of linear equations with unsymmetric complex sparse matrices (LU decomposition method)	273
c_dm_vsclu	LU decomposition of an unsymmetric complex sparse matrix	233
c_dm_vsclux	A system of linear equations with LU-decomposed unsymmetric complex sparse matrices	255
c_dm_vssss *	A system of linear equations with structurally symmetric real sparse matrices (LU decomposition method)	411
c_dm_vssslu *	LU decomposition of a structurally symmetric real sparse matrix	375
c_dm_vssslux	A system of linear equations with LU-decomposed structurally symmetric real sparse matrices	394

3. Linear equations (Iterative method)

Routine name	Description	Page
c_dm_vcgd	A system of linear equations with symmetric positive definite sparse matrices	46
	(preconditional CG method, diagonal format storage method).	
c_dm_vcge	A system of linear equations with symmetric positive definite sparse matrices	51
	(preconditional CG method, ELLPACK format storage method).	
c_dm_vbcscc	A system of linear equations with unsymmetric positive definite sparse matrices	24
	(BICGSTAB(<i>l</i>) method, compressed column storage method)	
c_dm_vbcsd	System of linear equations with unsymmetric or indefinite sparse matrices	30
	(BICGSTAB(<i>l</i>) method, diagonal format storage method).	
c_dm_vbcse	System of linear equations with unsymmetric or indefinite sparse matrices	34
	(BICGSTAB(<i>l</i>) method, ELLPACK format storage method).	
c_dm_vtfqd	A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR	436
	method, diagonal format storage method).	
c_dm_vtfqe	A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR	439
	method, ELLPACK format storage method).	
c_dm_vamlid	System of linear equations with sparse matrices of M-matrix (Algebraic multilevel	15
	iteration method [ALMI Method], diagonal format storage method).	
c_dm_vmlbife	System of linear equations with sparse matrices (Multilevel iteration method based on	137
	incomplete block factorization, ELLPACK format storage method).	
c_dm_vlcspsxc	System of linear equations with non-Hermitian symmetric complex sparse matrices	101
r1	(Conjugate A-Orthogonal Conjugate Residual method with preconditioning by	
	incomplete LDL ^T decomposition, symmetric compressed row storage method)	
c_dm_vlspaxcr	System of linear equations with unsymmetric real sparse matrices	115
2	(Induced Dimension Reduction method with preconditioning by sparse approximate	
	inverse, compressed row storage method)	

4. Differential equations

Routine name	Description	Page
c_dm_vradau5	System of stiff ordinary differential equations or differential-algebraic equations	174
	(Implicit Runge-Kutta method)	

5. Discretization of partial differential equation

Routine name	Description	Page
c_dm_vpde2d	Generation of System of linear equations with sparse matrices by the finite difference	163
	discretization of a two dimensional boundary value problem for second order partial	
	differential equation.	
c_dm_vpde3d	Generation of System of linear equations with sparse matrices by the finite difference	168
	discretization of a three dimensional boundary value problem for second order partial	
	differential equation.	

6. Inverse matrices

Routine name	Description	Page
c_dm_vminv	Inverse of real matrices (blocked Gauss-Jordan method).	135
c_dm_vcminv	Inverse of complex matrices (blocked Gauss-Jordan method).	61

Eigenvalue problem

Routine name	Description	Page
c_dm_vsevph	Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization,	296
	multisection method, and inverse iteration).	
c_dm_vhevp	Eigenvalues and eigenvectors of Hermite matrices.	68
c_dm_vtdevc	Eigenvalues and eigenvectors of real tridiagonal matrices.	431
c_dm_vgevph	Generalized eigenvalue problem for real symmetric matrices	63
	(eigenvalues and eigenvectors) (tridiagonalization, multisection method, inverse	
	iteration).	
c_dm_vtrid	Tridiagonalization of real symmetric matrices.	442
c_dm_vhtrid	Tridiagonalization of Hermite matrices.	72
c_dm_vjdhecr	Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson method, compressed row storage method)	75
c_dm_vjdnhcr	Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson method, compressed row storage method)	84

Fourier transforms

Routine name	Description	Page
c_dm_v1dcft	One-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	445
c_dm_v1dcft2	One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).	449

Routine name	Description	Page
c_dm_vldmcft	One-dimensional multiple discrete complex Fourier transforms (mixed radix of 2, 3, 5	451
	and 7).	
c_dm_v2dcft	Two-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	461
c_dm_v3dcft	Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	468
c_dm_v3dcft2	Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	471
c_dm_vldrcf	One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	454
c_dm_vldrcf2	One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	458
c_dm_v2drcf	Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	464
c_dm_v3drcf	Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	477
c_dm_v3drcf2	Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	481
c_dm_v3dcpf	Three-dimensional prime factor discrete complex Fourier transforms.	474

Random numbers

Routine name	Description	Page
c_dm_vranu4	Generation of uniform random numbers [0,1).	204
c_dm_vranu5	Generation of uniform random numbers [0,1) (MRG8).	207
c_dm_vrann3	Generation of normal random numbers.	196
c_dm_vrann4	Generation of normal random numbers (Wallace's method).	200

Contents

General Descriptions	1
Outline	1
General rules	
How to Use C-SSL II Thread Parallel Capabilities	
Array storage formats	
- 11 u j 000 u g0 10 11 u u u u	
Description of the C SSL II Doutines	11
Description of the C-SSL II Routines	
c_dm_valu	
c_dm_vamlid	
c_dm_vbesec	
c_dm_vbcsd	
c_dm_vbcse	
c_dm_vblu	
c_dm_vblux	
c_dm_vcgd	
c_dm_vcge	
c_dm_vclu	
c_dm_vclux	
c_dm_vcminv	
c_dm_vgevph	
c_dm_vhevp	
c_dm_vhtrid	
c_dm_vjdhecr	
c_dm_vjdnhcr	
c_dm_vlax	
c_dm_vlbx	
c_dm_vlcspsxcr1	
c_dm_vlcx	
c_dm_vldlx	
c_dm_vlspaxcr2	
c_dm_vlsx	
c_dm_vlux	
c_dm_vmggm.	
c_dm_vminv	
c_dm_vmlbife	
c_dm_vmvscc c_dm_vmvsccc	
c_dm_vmvsd	
c_dm_vmvse	
= = :	
c_dm_vpde3dc dm vradau5	
c dm vrann3	
c dm vrann4	
c dm vranu4	
c dm vranu5	
c dm vschol	
c_dii_vschol	
c_diii_vschoix	
c_diii_vsciu	
c_dm_vsciux c_dm_vscs	
c_diii_vscs	
c dm vsldl	
c dm vsrlu	
V_MIII_VOITU	

c_dm_vsrlux	324
c dm vsrs	341
c dm vssps	362
c dm vssslu	375 *
c dm vssslux	394 *
c_dm_vssss	411 *
c_dm_vtdevc	431
c_dm_vtfqd	436
c_dm_vtfqe	439
c_dm_vtrid	442
c_dm_v1dcft	445
c_dm_v1dcft2	449
c_dm_v1dmcft	451
c_dm_v1drcf	454
c_dm_v1drcf2	458
c_dm_v2dcft	461
c_dm_v2drcf	464
c_dm_v3dcft	468
c_dm_v3dcft2	
c_dm_v3dcpf	474
c_dm_v3drcf	477
c_dm_v3drcf2	481
Bibliography4	485

General Descriptions

Outline

C-SSL II Thread-Parallel Capabilities is a parallel mathematical function library to execute on a shared-memory parallel computer with scalar processors. The library provides functions to efficiently compute such large-scale problems by parallel processing that are intractable on a single processor.

The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is called a thread, share the calculation where each thread is responsible for undertaking pieces of calculation using one CPU in the shared memory system. If the number of created threads is less or equal to the number of CPU available, the process can be executed by threads in parallel with all threads carried out by separated CPU. This Thread-Parallel mechanism enables a calculation to be divided into multiple parallel executions (as far as the algorithm could be parallelized).

Each function of C-SSL II Thread-Parallel Capabilities creates multiple threads internally and solves the problem with a parallel algorithm with these threads. Where, the creation and extinction of the threads, work-sharing constructs and synchronization are directed with OpenMP C/C++ specifications. Therefore C-SSL II Thread-Parallel Capabilities need the run-time execution environment of the OpenMP C/C++.

The number of the threads used by a function of C-SSL II Thread-Parallel Capabilities can be assigned by the user with OpenMP environment variables or run-time library routines. With these, the function can be executed by as any number of threads as specified.

The C-SSL II Thread-Parallel Capabilities only supports double precision double functionality; Double precision complex numbers are also supported via a special dcomplex type definition. In addition, all integer arguments and results are of type int.

The scope of functionality, function names, and calling interface of C-SSL II Thread-Parallel Capabilities are different from those used in the mathematical library C-SSL II or C-SSL II/VP.

General rules

1. Details on the C-SSL II Thread-Parallel Capabilities interface

Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding the prefix c_{-} to the underlying Fortran routine name in lower case. As all of the routines deal with double precision arguments, this means that the all routines start with $c_{-}dm_{-}v$.

From the users' viewpoint the C-SSL II Thread-Parallel Capabilities consists of C routines using standard C conventions for argument passing, argument types and return values. Input-only scalars are passed by value; output and input / output arguments are passed by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do not have to be initialized by the user before the function call. Input / output arguments need to be defined before function calls and are altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled as such, which implies that no user action is required on the initial call, but their output contents may be significant. It is

often possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of the differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.

Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the letters i to n. Arguments of type double or dcomplex start with the letters a to h and o to z.

Every library routine returns a standard int error value. If the routine completed successfully then 0 is returned; if there was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user program can check the error return value and if an error occurred more information about the error condition can be obtained from the icon parameter.

As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine, and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code. Some argument types are described more fully elsewhere in this document: multidimensional-arrays (Section 2), and complex numbers (Section 3).

Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also includes these arguments. This is not normal C programming, where work space is generally allocated within a routine using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually required on subsequent calls to the same function.

The C-SSL II Thread-Parallel Capabilities is provided with a header file cssl.h which contains prototypes for all of the user-accessible functions, and other information such as the dcomplex data type definition. Every user program which calls the C library must include this header file. The function name of the user main program is main or MAIN_ (two underscores after MAIN).

2. Multidimensional arrays

As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast as a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the array.

The approach taken incurs a small performance penalty. This is because the user's code will use C row-ordered arrays, but before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is expected to access the array data.

See the *Array storage formats* section for further details about arrays.

3. Complex numbers

ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef:

```
typedef struct {
  double re, im;
} dcomplex;
```

The C-SSL II Thread-Parallel Capabilities supports complex numbers defined in this manner. Only double precision real and imaginary parts are supported. An example of user code to handle such complex numbers is:

```
/* include C-SSL II header file */
#include "cssl.h"
#define N1 4000
#define N2 3000
#define KX (N1+1)
#define KY (N2+1)
MAIN ()
  int isn, i, j, icon, ierr;
dcomplex x[N2][KX], y[N1][KY];
  /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
  for(i=0; i<N2; i++) {
    for(j=0; j<N1; j++)
      x[i][j].re = N1*i+j+1;
      x[i][j].im = 0.0;
  /* Do the forward transform */
  isn = 1;
  ierr = c_dm_vldcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);
```

4. Condition codes

The icon argument indicates the resultant status after execution of the library function (the condition code) and should always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested in Section 1, the error return value is 0 only if the result is considered to be reliable (i.e. icon < 10000). A value of 1 is returned if the result may be unreliable ($20000 \le icon < 30000$) or if the routine detected an error in the input arguments (icon ≥ 30000).

The following table shows the range into which the icon value normally falls, and how users should interpret the reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000. With such routines, it is important that the user checks the routine documentation for the range of such icon values and their meaning.

Code	Explanation	Reliability of result	Result
0	Processing terminated normally.	Result is reliable as far as the routine	Normal
1 - 9999	Processing terminated normally, but additional	can determine.	
	information is included.		
10000 -	Processing terminated due to an internal restriction	The result is reliable, subject to	Warning
19999	imposed during processing.	restrictions.	
20000 -	Processing is stopped due to an error that occurred	The result is not to be relied upon.	Error
29999	during processing.		
30000	Processing is bypassed due to an error in the input		
	argument(s).		

How to Use C-SSL II Thread Parallel Capabilities

1. Positions of the CALL statements

C-SSL II Thread-Parallel Capabilities consist of OpenMP functions which can be called from both inside and outside of the OpenMP parallel regions in user programs. And these functions also can be called from serial programs without OpenMP directives, and also they can be called from programs that are auto-parallelized by the C/C++ compiler.

In cases where the function is called from inside of the parallel region, it is necessary that every actual argument as input and output, output and work areas which is dealt with by each thread must be mapped to different memory area respectively.

In every calling case above, the fcc/FCC command option "-Kopenmp" must be specified at the time the compiled user program is to be linked with C-SSL II Thread-Parallel Capabilities. The load module can be OpenMP executable with this option. Refer to "C User's Guide" for details.

2. How to specify the number of threads

A function of C-SSL II Thread-Parallel Capabilities is executed by multiple threads in parallel within parallel region which is created internal of the function. The number of threads used by the function can be assigned by the user with an OpenMP environment variable "OMP_NUM_THREADS" or a run-time library routine "omp_set_num_threads()". Usually, specify the number of threads in the former way.

The run-time library routine can be used in situations where the user wants to assign a specific number of threads for the parallel region. Specifying the number of threads with this run-time routine just before the C-SSL II Thread-Parallel function makes it possible to execute the function with a specific number of threads.

Refer to "C User's Guide" and "OpenMP Application Program Interface Version2.5 (May 2005)" for details about OpenMP environment variables and run-time library routines.

3. Size of stack area for each thread

Some functions of C-SSL II Thread-Parallel Capabilities takes work area internally as auto allocatable array on "stack" area for each thread. Suppose that the number of threads to be generated is NT and the total available memory size is M, it is recommended to set the environmental variable OMP_STACKSIZE to about M/(5*NT) as the stack size for each thread before the execution. When compiler option -Nfjomplib is specified, the environmental variable THREAD_STACK_SIZE can be set as the stack size. Refer to "C User's Guide" for details about setting the stack size for OpenMP executables.

4. Example programs

To call a function from outside of the parallel region

The example program below solves a system of linear equations with input of a real coefficient matrix of 4000×4000. If the environment variable OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will be with 4 threads in parallel.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX (4000)
#define LDA
              (NMAX+1)
MAIN__()
        ip[NMAX];
 int
 int
        n, is, isw, icon, ierr, i, j;
 double a[NMAX][LDA], b[NMAX];
 double epsz, c, t, s;
 n = NMAX;
 c = sqrt(2.0/(n+1));
 t = atan(1.0)*4.0/(n+1);
  for(i=1; i<=n; i++) {
   for(j=1; j<=n; j++) {
    a[i-1][j-1] = c*sin(t*i*j);
  for(i=1; i<=n; i++) {
   s = 0.0;
    for(j=1; j<=n; j++) {
     s = s + sin(t*i*j);
   b[i-1] = s*c;
  epsz = 0.0;
  isw = 1;
  ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);
 printf("icon = %d, return code = %d\n", icon, ierr);
 printf("n = %d, b[0] = %f, b[n-1] = %f\n", n, b[0], b[n-1]);
```

To call function from inside of the parallel region

The example program below solves two independent systems of linear equations. One input of a real coefficient matrix is 4000×4000, and the other is 4200×4200. If the environment variable OMP_NUM_THREADS is set to be 2 and OMP_NESTED is set to be TRUE on the system of 4 processors, each system of linear equation is solved with 2 threads respectively. The execution will be parallelized with 4 threads total.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX1
                (4000)
#define NMAX2
                (4200)
#define LDA1
                 (NMAX1+1)
#define LDA2
                (NMAX2+1)
MAIN__()
  int
         ip1[NMAX1], ip2[NMAX2], i, j, num;
         nl, is1, isw1, icon1, ierr1;
n2, is2, isw2, icon2, ierr2;
  double a1[NMAX1][LDA1], b1[NMAX1];
  double a2[NMAX2][LDA2], b2[NMAX2];
  double epsz1, epsz2, c, t, s;
  n1 = NMAX1;
  c = sqrt(2.0/(n1+1));
t = atan(1.0)*4.0/(n1+1);
  for(i=1; i<=n1; i++) {
    for(j=1; j<=n1; j++) {
      a1[i-1][j-1] = c*sin(t*i*j);
  }
```

```
for(i=1; i<=n1; i++) {
    s = 0.0;
    for(j=1; j<=n1; j++) {
    s = s+sin(t*i*j);</pre>
    b1[i-1] = s*c;
  n2 = NMAX2;
    = sqrt(2.0/(n2+1));
  t = atan(1.0)*4.0/(n2+1);
  for(i=1; i<=n2; i++) {
    for(j=1; j<=n2; j++) {
   a2[i-1][j-1] = c*sin(t*i*j);
  for(i=1; i<=n2; i++) {
    s = 0.0;
    for(j=1; j<=n2; j++) {
      s = s + sin(t*i*j);
    b2[i-1] = s*c;
#pragma omp parallel default(shared) private(num)
  num = omp_get_thread_num();
  if(num == 0) {
    epsz1 = 0.0
    ierr1 = c_dm_vlax((double*)al, LDA1, n1, b1, epsz1, isw1, &is1, ip1, &icon1);
  } else {
    epsz2 = 0.0;
    isw2 = 1;
    ierr2 = c_dm_vlax((double*)a2, LDA2, n2, b2, epsz2, isw2, &is2, ip2, &icon2);
  printf("icon1 = %d, return code = %d\n", icon1, ierr1);
  printf("n1 = %d, b1[0] = %f, b1[n1-1] = %f \ n", n1, b1[0], b1[n1-1]);
  printf("icon2 = %d, return code = %d\n", icon2, ierr2);
 printf("n2 = %d, b2[0] = %f, b2[n2-1] = %f\n", n2, b2[0], b2[n2-1]);
```

Array storage formats

The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation in which it is involved.

1. Storage formats for general matrices

When an argument is defined as a matrix, all of the elements of a matrix are assumed significant. A standard 2-D array is used to store the matrix, so that matrix element a_{ij} is stored in array element a[i-1][j-1]. Matrices are indexed from 1, which is standard mathematical usage, while array dimensions are indexed from 0, which is standard C. This also applies to vectors. Again, the mathematical tradition numbers the elements from 1, so that vector element y_i would be stored in array element y[i-1].

Another feature of the 2-D arrays used in the C-SSL II Thread-Parallel Capabilities library is that most routines are designed so that users can specify a larger memory area for a 2-D array than is required for a particular problem. Consider the example in Figure 1, where a 5 by 5 matrix **A** has been stored in an m by k array a. In order for this matrix to be used in a function call, in addition to the matrix size (in this case 5), it is also necessary to specify k, the number of columns of a. In the documentation, this is referred to as the *C fixed dimension*.

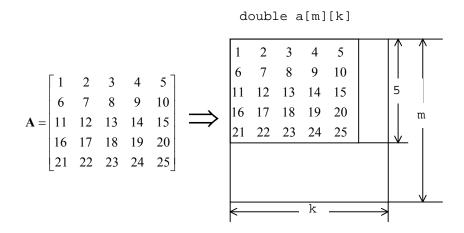


Figure 1 Storage format for general matrices

2. Storage formats for general sparse matrices

ELLPACK storage format

The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix non-zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [40] and [57] for further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in Figure 2 contains the non-zeros of the matrix, stored so that the *i*-th *column* of the array contains the non-zeros on the matrix *row i*+1 and the array icol contains the matrix column index of the corresponding non-zero element in coef. Another input variable is iwidt, the maximum number of non-zeros in any row of **A**. If a row has fewer than iwidt non-zeros, then the associated column of coef must be padded with zeros. The corresponding elements of icol must contain the row number of the row in question.

In Figure 2, row 1 of **A** has non-zeros in columns 1 and 4. Therefore, coef[0][0] has the value 1 and icol[0][0] has the value 1, because $a_{11}=1$. Similarly, coef[1][0] has the value 2 and icol[1][0]=4, because $a_{14}=2$. Row 3 of matrix **A** has fewer than iwidt non-zeros. Therefore, coef[1][2] is zero and icol[1][2]=3. Row 4 of matrix **A** is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column of coef is not important, provided that the same ordering is used in icol.

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 3 & 4 & 0 \\ 0 & 0 & 5 & 0 \\ 6 & 0 & 0 & 0 \end{bmatrix} \implies \mathbf{icol} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 3 & 3 & 4 \end{bmatrix}$$

$$\mathbf{iwidt} = 2$$

Figure 2 ELLPACK storage format for sparse matrices

Diagonal storage format

The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are stored, including the zero elements.

Two arrays are used to store this matrix. The first array, referred to as diag in Figure 3, is a 2-D array whose rows contain the diagonal elements and the second is a 1-D array, referred to as nofst whose *i*-th element contains the offset of the diagonal stored in the *i*-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of zero and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are stored, although it is essential that the elements within a diagonal are stored consecutively.

Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly included. The reason for these is illustrated in figure 3. For further information, see [49] and [54].

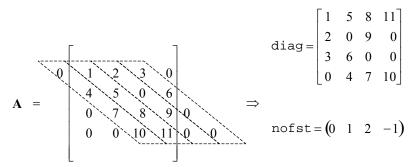


Figure 3 Diagonal storage format for sparse matrices

3. Storage formats for symmetric positive definite sparse matrices

ELLPACK storage format

This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the main diagonal has been normalized to ones. There are some important differences between the way elements are stored for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the upper and lower triangular elements are stored, even though one could be determined from the other. The maximum number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in each row vector of the lower triangular matrix is nsl. If nsh = max(nsl, nsu), then the non-zeros of the upper triangular matrix are stored in rows 0 to nsh - 1 and the non-zeros of the lower triangular matrix are stored in rows nsh to 2*nsh - 1. In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For instance, in Figure 4, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know $a_{32} = 6$. Similarly, coef[0][2] has the value 7, icol[0][2] has the value 4, so that $a_{34} = 7$.

It is the user's responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the solution to $A\mathbf{x} = \mathbf{b}$, obtain the solution to the normalized problem $\mathbf{A}^*\mathbf{y} = \mathbf{b}^*$, where $\mathbf{A}^* = \mathbf{D}^{1/2}\mathbf{A}\mathbf{D}^{1/2}$ and $\mathbf{b}^* = \mathbf{D}^{1/2}\mathbf{b}$ and then obtain the solution from $\mathbf{x} = \mathbf{D}^{1/2}\mathbf{y}$, where \mathbf{D} is the diagonal matrix containing the inverse of the diagonal elements of \mathbf{A} .

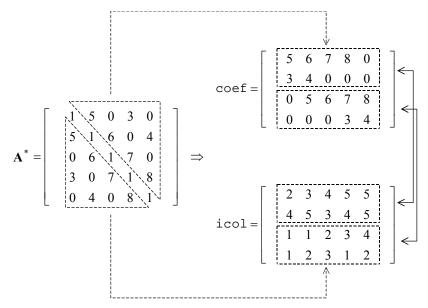


Figure 4 ELLPACK storage format for normalized symmetric positive definite sparse matrices

Diagonal storage format

The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is provided in Figure 5. The order in which the diagonals are stored is now important, with the upper diagonals being stored first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower triangular matrices. The entries for the upper diagonals have trailing zeros, so diagonal *j* will have *j* trailing zeros. The entries for the lower diagonals have leading zeros, so diagonal –*j* will have *j* leading zeros.

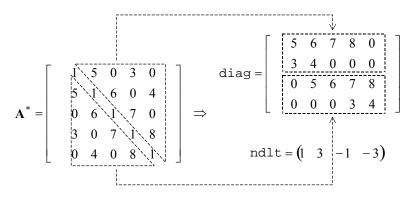


Figure 5 Diagonal storage format for normalized symmetric positive definite sparse matrices

Description of the C-SSL II Routines

c_dm_valu

1. Function

An $n \times n$ non-singular matrix **A** is decomposed by blocked outer product Gaussian elimination.

$$PA = LU (1)$$

where, **P** is the permutation matrix which exchanges the rows of **A** by partial pivoting, **L** is the lower triangular matrix, and **U** is the unit upper triangular matrix ($n \ge 1$).

2. Arguments

The routine is called as follows:

ierr = c_dm_valu((double*)a, k, n, epsz, ip, &is, &icon); where: а double Input Matrix A. a[n][k] Output Matrices L and U. C fixed dimension of array a $(\ge n)$. k int Input int Input Order n of matrix A. n double Input Tolerance for relative zero test of pivots during the decomposition of A epsz (≥ 0) . When epsz is zero, a standard value is used. See *Comments on* use. int ip[n] Output Transposition vector that provides the row exchanges that occurred ip during partial pivoting. See Comments on use. is Output Information for obtaining the determinant of matrix A. When the n int elements of the calculated diagonal of array a are multiplied together, and the result multiplied by is, the determinant is obtained. icon Output Condition code. See below. int

Code	Meaning	Processing
0	No error.	Completed.
20000	Either all of the elements of some row were zero or the pivot became relatively zero. It is highly probable that the coefficient matrix is singular.	Discontinued.
30000	One of the following has occurred:	Bypassed.

3. Comments on use

epsz

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix $A = (a_{ij})$, that is:

$$\left|a_{kk}^{k}\right| \leq \max\left|a_{ij}\right| \cdot \text{epsz}$$

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000. The standard value of epsz is 16μ , where μ is the unit round off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

ip

The transposition vector corresponds to the permutation matrix **P** of LU-decomposition with partial pivoting. In this function, the elements of the array a are actually exchanged in partial pivoting. In the *J*-th stage (J = 1, ..., n) of decomposition, if the *I*-th row has been selected as the pivotal row the elements of the *I*-th row and the elements of the *J*-th row are exchanged. Then, in order to record the history of this exchange, *I* is stored in ip[j-1].

How to use this function

The linear equation can be solved by calling function c_dm_vlux following this function. Normally, the linear equation can be solved in one step by calling function c_dm_vlax.

4. Example program

LU decomposition is executed by inputting a real 4000×4000 matrix.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b)
                 ((a) < (b) ? (a) : (b))
#define NMAX
                  (1000)
#define LDA
                  (NMAX+1)
MAIN__()
 int
        n, is, isw, i, j, icon, ierr;
        ip[NMAX];
 int
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;
      = NMAX;
 epsz = 0.0;
 isw = 1;
#pragma omp parallel for shared(a,n) private(i,j)
  for(i=0; i<n; i++)
   for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
 ierr = c dm valu((double*)a, LDA, n, epsz, ip, &is, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
    exit(1);
  ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon);
```

```
if (icon != 0) {
    printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
    exit(1);
}

s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];

printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

det = is*s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}</pre>
```

5. Method

Consult the entry for DM_VALU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and [52].

c_dm_vamlid

```
System of linear equations with sparse matrices of M-matrix (Algebraic multilevel iteration method [AMLI Method], diagonal format storage method).
```

1. Function

This routine solves, using the iterative method, a system of linear equations with sparse matrices of M-matrix as coefficient matrices.

Ax = b

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors **b** and **x** are *n*-dimensional vectors.

The solution method is ORTHOMIN if **A** is symmetric and GMRES if **A** is non-symmetric. The iteration (called outer iteration) is preconditioned by the algebraic multilevel iteration method (called AMLI) which requires the solution of small linear system that is also solved iteratively (called inner iteration), and stable. (In the preconditioner of the algebraic multilevel iteration method, the generated linear system becomes smaller as the level is deeper.)

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vamlid((double*)a, k, ndiag, n, nofst, b, isw, iguss, info, epsot,
                 epsin, x, w, nw, iw, niw, &icon);
where:
            double
                                  Input
                                             The nonzero elements of a coefficient matrix A are stored in a.
а
            a[n][k]
                                             C fixed dimension of array a (\ge n).
k
            int
                                  Input
                                  Input
                                             Number of columns in array a and size of array nofst. Must be equal
ndiag
            int
                                             to the number of nonzero diagonals in matrix A.
                                             Order n of matrix A.
n
            int
                                  Input
                                  Input
                                             Offsets of diagonals of A stored in array a. Main diagonal has offset 0,
nofst
            int
                                             subdiagonals have negative offsets, and superdiagonals have positive
            nofst[ndiag]
                                             offsets.
                                            The right-side constant vectors of a system of linear equations are stored.
b
            double b[n]
                                  Input
                                  Input
                                             Control information. See Comments on use.
isw
            int
                                                 Initial calling.
                                                 Second or subsequent calling.
                                                 The arrays, a, iw and w, must NOT be changed if the routine is
                                                 called again with isw = 2.
                                            Control information specifying whether iterative computation is to be
iguss
            int
                                  Input
```

performed using the approximate values of the solution vectors specified in array x.

iguss = 0 the approximate values of the solution vectors are not specified and set to zero by c dm vamlid.

iguss $\neq 0$ the iterative computation is performed using the approximate values of the solution vectors specified in array \mathbf{x} .

info int info[14] Input/
Output

The control information of the iteration.

For example, for symmetric coefficient matrix **A**, info is set as follows;

```
info[0] = -1; info[1] = NTHRD*100; info[2] = 0;
info[4] = 1; info[5] = 2000; info[9] = 1;
info[10] = 1000;
```

For example, for unsymmetric coefficient matrix **A**, info is set as follows;

```
info[0] = -1; info[1] = NTHRD*100; info[2] = 0;
info[4] = 2; info[5] = 2000; info[6] = 5;
info[7] = 20; info[9] = 2; info[10] = 1000;
info[11] = 10; info[12] = 0;
```

Where NTHRD is the number of threads which are executed in parallel.

See Comments on use.

info[0] Input MAXLVL.

Maximal number of levels in the algebraic multilevel iteration method.

MAXLVL < 0 The optimal level evaluated internally is used.

MAXLVL = 0 The multi-level method is not used.

MAXLVL > 0 The coarser level than the specified depth is not used.

info[1] Input MINUK.

Minimal number of unknowns for the smallest linear system in the deepest level in the inner iteration. It is recommendable to set MINUK very larger than the number of threads NTHRD and very smaller than n. For example,

 $100 \times NTHRD$.

info[2] Input NORM.

The type of normalization.

NORM < 1 The matrix is normalized from the right and the left by the inverse of the square root of the main diagonal of \mathbf{A} . This effects that the main diagonal of the normalized matrix \mathbf{A} is equal to one and the matrix is symmetric if \mathbf{A} is symmetric.

It is recommendable to use symmetrical normalization. However, in some cases the

non-symmetrical normalization can produce faster convergence. Criterion value for judgment of convergency. $NORM \ge 1$ The matrix is normalized from the left by the inverse of the main diagonal of A. This effects that the main diagonal is equal to one but the normalized matrix will be nonsymmetric even if the matrix **A** is symmetric. Number of levels. info[3] Output info[4] Input METHOT. The iterative method used in the outer iteration. METHOT = 1 Preconditioned ORTHOMIN is used. It should be used if the matrix A is symmetric and a symmetrical normalization is used. METHOT ≠ 1 Restarted and truncated GMRES is used. It should be used if the matrix **A** is non-symmetric or a non-symmetrical normalization is used. info[5] Input ITMXOT. The maximal number of iteration steps in the outer iteration, for example 2000. If the maximum iteration number of outer iteration is reached the processing is terminated and the returned solution does not fulfill the stopping criterion. NRESOT. info[6] Input The number of residuals in the orthogonalization procedure of the outer iteration, i.e. truncation after NRESOT residuals. For example, 5. Only used if GMRES is applied. NRSTOT. info[7] Input After NRSTOT iteration steps the outer iteration is restarted. For example, 20. If it is NRSTOT < 1 there is no restart. Only used if GMRES is applied. info[8] ITEROT. Output The number of iteration steps in the outer iteration procedure. METHIN. info[9] Input The iterative method used in the inner iteration. METHIN = 1 Preconditioned ORTHOMIN is used. It should be used if the matrix A is symmetric and a symmetrical normalization is used.

					METHIN ≠ 1 Restarted and truncated
					GMRES is used. It should be used if the matrix
					A is non-symmetric or a non-symmetrical
					normalization is used.
			info[10]	Input	ITMXIN.
				•	The maximal number of iteration steps in the
					inner iteration, for example 1000.
					If ITMXIN is reached the processing is
					continued on the outer iteration.
			info[11]	Input	NRESIN.
				put	The number of residuals in the
					orthogonalization procedure of the inner
					iteration, ie. truncation after NRESIN
					residuals. For example, 10. Only used if
					GMRES is applied.
			info[12]	Input	NRSTIN.
			IIIIO[12]	при	After NRSTIN iteration steps the inner iteration
					is restarted.
					Only used if GMRES is applied. If it is
					NRSTIN < 1 there is no restart.
			info[13]	Output	The average number of the inner iteration.
epsot	double	Input		-	or the solution. The outer iteration is stopped in
			the k-th iterat	ion step if	the normalized $\hat{\mathbf{r}}_k = \hat{\mathbf{A}}\mathbf{x}_k - \hat{\mathbf{b}}_k$ residual of the
			current appro	ximation x	$\hat{\mathbf{r}}_k$ satisfies the condition $\ \hat{\mathbf{r}}_k\ \le \text{epsot} \ \hat{\mathbf{b}}\ $
			where $\ \mathbf{y}\ ^2$	$= \mathbf{y}^{\mathrm{T}} \mathbf{y} \operatorname{den}$	notes the Euclidean norm $\hat{\hat{\mathbf{A}}}$ and $\hat{\mathbf{b}}$ are the
					ne right hand side of the normalized linear
			system.		
epsin	double	Input	The tolerance	for the in	ner iteration. Normally 10^{-3} is optimal.
x	double x[n]	Input	The approxin	nate values	s of solution vectors can be specified.
		Output	Solution vect		
W	double w[nw]	Work			
nw	int	Input	Size of the we	ork array w	1.
		1		-	$+5) + 3 \times (NLVL + 1) \times NBAND \times MAXT +$
			max(NAMAX		
			`		number of threads which are created in this
			routine.		
			NT = n + MAX	ΥT	
					n of the lower and upper bandwidth of the matrix.
					levels in the algebraic multilevel iteration
			method.	idilloci oi	ieveis in the digeorate matthever teration
			When MAXI	VI < 0 N	л ул је 10
			NAMAX≥nd		10 10.
			if ORTHOM	_	
			$LR0 = 4 \times 1$		
			if GMRES is		
					T NDECINI)
			NRES = ma	x(INKESO	T, NRESIN).

 $LR0 = (2 \times NRES + 1) \times NT.$

See Comments on use.

iw int iw[niw] Work
niw int Input

Size of the work array iw.

 $\mathtt{niw} \geq \mathtt{MAXT} \times ((6 \times \mathtt{MAXT} + 12 \times \mathtt{NAMAX}) \times (\mathtt{NLVL} + 1) + 8 \times \mathtt{NBAND}$

 $+3000) + 4 \times (n + MAXT)$

MAXT is the maximum number of threads which are created in this

routine.

NT = n + MAXT.

 $\ensuremath{\mathsf{NBAND}}$ is the maximum of the lower and upper bandwidth of the matrix.

NLVL is the number of levels in the algebraic multilevel iteration

method.

When MAXLVL < 0, NLVL is 10.

 $NAMAX \ge ndiag.$

See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10700	Vector \mathbf{v}^{pos} could not be found.	Processing is used with $\mathbf{v}^{pos} = (1, 1,, 1)$.
10800	Curable break down in GMRES.	Processing is continued.
20001	Stopping criterion could not be reached within the	Processing is discontinued.
	given number of iteration steps.	The approximate value obtained is output in array
		x, but the precision is not assured.
20003	Non-curable break down in GMRES.	Processing is discontinued.
20005	Non-curable break down in ORTHOMIN by	
	$\mathbf{p}^{\mathrm{T}} \mathbf{A} \mathbf{p} = 0 \text{ with } \mathbf{p} \neq 0.$	
20006	Non-curable break down in ORTHOMIN by	
	$\mathbf{p}^{\mathrm{T}} \mathbf{r} = 0.$	
30000	One of the following has occurred:	
	• n < 1	
	• n > k	
	• ndiag<1	
	• isw ≠ 1, 2	
30104	nofst[i] >n-1	
30105	Main diagonal is missed.	
30200	Matrix is not an M-matrix.	
30210	Matrix condensation fails by non-positive value.	
30212	There is a zero entry on the main diagonal.	
30310	Too small integer work array.	
30320	Too small real work array.	

3. Comments on use

M-matrix

A coefficient matrix arising from order two finite difference discretization or, in some cases, from order one finite element discretization of an elliptical boundary value problem is an M-matrix. It can be produced using the routines for discretization of a boundary value problem for second order partial differential equation (c dm vpde2d, c dm vpde3d).

To be an M-matrix means that

- All main diagonal entries are positive $a_{i,i} > 0$ for all i = 1, ..., n and all other entries are non-positive $a_{i,j} \le 0$ for all i, j = 1, ..., n with $i \ne j$.
- There is a positive vector \mathbf{v}^{pos} so $\mathbf{A}\mathbf{v}^{pos}$ is positive.

If the first condition is not fulfilled, processing is not continued with icon = 30200. This routine can not find the vector \mathbf{v}^{pos} (icon = 10700) it is set $\mathbf{v}^{pos} = (1, ..., 1)$ the matrix \mathbf{A} is assumed and processing is continued with the risk of a breakdown in AMLI with icon = 30212, 30210 or slow convergence or breakdowns in the outer or inner iteration.

To define the coarse levels the rectangular grid used to assemble the coefficient matrix is recovered. If the recovering is not successful there can be a breakdown in AMLI with icon = 30212, 30210, a disproportionately increase of the number of diagonals in the coarser levels or slow convergence or breakdowns in the outer or inner iteration.

isw

When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw = 1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first call are reused.

NAMAX

Normally it is sufficient to set NAMAX = ndiag in the formulas for the length for the work arrays. It can happen that the number of diagonals in the coarse level matrices is larger than the number of diagonals in the given matrix. In this case NAMAX has to be increased.

ORTHOMIN

It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical normalization first if there is a chance that the iteration matrix is symmetric.

GMRES

If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. But it requires longer computation time and larger amount of memory.

The optimal number of levels

This routine tries to find the optimal number of levels. In some rare applications the computing time can be reduced by setting the number of levels by hand but normally the improvements are not significant.

Preconditioning

The preconditioner bases on a nested incomplete block factorizations using the Schur complement. The matrix $A_n(n=1, ..., MAXLVL-1)$ of each level can be blocked as follows choosing the sets of eliminated unknown from the coordination in a virtual grid:

$$\mathbf{A}_n = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

And define a matrix $\mathbf{S} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$, which is called Schur complement. \mathbf{A}_n can be factorized as follows:

$$\mathbf{A}_n = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{S} \end{bmatrix}$$

The matrix A_{n+1} of next level n+1 can be regarded as a Schur complement matrix with approximating the A_{11}^{-1} to a diagonal matrix. These incomplete factorization are used for preconditioning in this routine.

4. Example program

The partial differential equation

$$-\left(\frac{\partial^2 u}{\partial^2 x_1} + \frac{\partial^2 u}{\partial^2 x_2}\right) + cu = 1$$

is solved on the domain $[0, 1]^2$. Dirichlet boundary conditions are set to u = 0.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT
#define N1
                 1281
#define N2
                 1537
#define NLVL
                 (N1)
#define L1
#define L2
                  (N2)
              (N1*N2)
#define KA
#define NA
                ((3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT+11*(KA+MAXT))
#define NW
#define NIW (((6*MAXT+12*NA)*(NLVL+1)+8*N1+2000)*MAXT+4*(KA+MAXT))
int MAIN__()
  double a[NA][KA], b[KA], u[KA], sol[3*N1*N2], rhs[N1*N2], rhsc[N1*N2];
  double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
double c[L2][L1], f[L2][L1], w[NW], epsin, epsot, tmp;
int nofst[NA], info[100], iw[NIW];
         z1, z2, ndiag, n, isw, iguss, nband, i, z, icon;
  /* CREATE NODE COORDINATES */
  for (z1=0; z1<N1; z1++) {
    x1[z1] = (double)(z1)/(double)(N1-1);
  for (z2=0; z2<N2; z2++) \{
    x2[z2] = (double)(z2)/(double)(N2-1);
  /* COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION : */
  for (z2=0; z2<N2; z2++) {
    for (z1=0; z1<N1; z1++) {
      a1[z2][z1] = 1.0;
      a2[z2][z1] = 1.0;
      b1[z2][z1] = 0.0;
```

```
b2[z2][z1] = 0.0;
    c[z2][z1] = 1.0;
f[z2][z1] = 1.0;
  }
  /* DIRICHLET BOUNDARY CONDITIONS: */
              = 1.0;
= 0.0;
  c[z2][0]
  f[z2][0]
  c[z2][N1-1] = 1.0;
  f[z2][N1-1] = 0.0;
  if (z2 == 0) {
    for (z1=0; z1<N1; z1++) {
      c[0][z1] = 1.0;
       f[0][z1] = 0.0;
  }
  if (z2 == N2-1) {
    for (z1=0; z1<N1; z1++) {
      c[N2-1][z1] = 1.0;
      f[N2-1][z1] = 0.0;
    }
  }
n = N1*N2;
 c_{dm\_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1, \\ (double*)b2, (double*)c, (double*)f, (double*)a, KA, NA, n, \\ \\
              &ndiag, nofst, b, &icon);
printf("icon of c_dm_vpde2d = %d\n", icon);
for (z=0; z< n; z++) {
 rhs[z] = b[z];
nband = 0;
for (i=0; i<ndiag; i++) {
 nband = max(nband,fabs(nofst[i]));
/* CALL DAMLI: */
isw = 1;
iguss = 0;
info[0] = -1;
info[1] = MAXT*100;
info[2] = 0;
info[4] = 1;
info[5] = 2000;
info[9] = 1;
info[10] = 1000;
epsot = 1e-6;
epsin = 1e-3;
printf("icon of c_dm_vamlid = %d\n", icon);
for (i=0; i<nband; i++) {
  sol[i]
                      = 0.0;
  sol[nband+n+i-1] = 0.0;
c_dm_vmvsd((double*)a, KA, ndiag, n, nofst, nband, sol, rhsc, &icon);
tmp = 0.0;
for (z=0; z<n; z++) {
 \texttt{tmp} = \max(\texttt{tmp}, \texttt{fabs}((\texttt{rhs}[\texttt{z}] - \texttt{rhsc}[\texttt{z}]) / (\texttt{rhs}[\texttt{z}] + 1.0)));
printf("error = %e\n", tmp);
return(0);
```

5. Method

 $Consult the entry for DM_VAMLID in the Fortran \textit{SSL II Thread-Parallel Capabilities User's \textit{Guide}.}$

c dm vbcscc

```
System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate Gradient Stabilized (l) [BICGSTAB(l)] method, compressed column storage method)
```

1. Function

This routine solves, using the BICGSTAB(*l*) method, Bi-Conjugate Gradient Stabilized(*l*) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix is stored using the compressed column storage method. Vectors **b** and **x** are *n*-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 "*Iterative linear equation solvers and Convergence*," in Part I, "*Outline*," in the *SSL II Extended Capability User's Guide II*.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, itmax, eps, iguss, l, x, &iter,
                 w, (int*)iw, &icon);
where:
            double a[nz]
                                            The non-zero elements of a coefficient matrix are stored. The non-zero
                                 Input
а
                                            elements of a sparse matrix are stored in a [i], i=0, ..., nz-1. For an
                                            explanation of the compressed column storage method, see Figure
                                            c_dm_vmvscc-1 in the description of a c_dm_vmvscc routine,
                                            "Multiplication of a real sparse matrix and a real vector (compressed
                                            column storage method)".
                                            The total number of the nonzero elements belong to a coefficient matrix
                                 Input
nz
            int
                                            A.
            int nrow[nz]
                                            The row indices used in the compressed column storage method, which
nrow
                                 Input
                                            indicate the row number of each nonzero element stored in an array a.
                                 Input
                                            The position of the first nonzero element stored in an array a by the
nfcnz
            int
                                            compressed column storage method which stores the nonzero elements
            nfcnz[n+1]
                                            column by column.
                                            nfcnz[n] = nz + 1
                                            Order n of matrix A.
            int
                                 Input
n
                                            Constant vector b.
            double b[n]
                                 Input
b
                                            Upper limit of iterations in BICGSTAB(l).(>0) The value of
                                 Input
itmax
            int
                                            itmax should usually be set to about 2000.
```

eps	double	Input	Criterion value for judgment of convergence.
			When eps is zero or less, eps is set to 10^{-6} . See <i>Comments on use</i> .
iguss	int	Input	Control information specifying whether iterative computation is to be
			performed using the approximate values of the solution vectors specified
			in array x.
			iguss = 0: Approximate value of the solution vector is not specified.
			iguss $\neq 0$: The iterative computation starts from the approximate value
			of the solution vector specified in array x.
1	int	Input	The order of stabiliser in the BICGSTAB(l) algorithm.($1 \le 1 \le 8$)
			The value of 1 should usually be set to 1 or 2. See <i>Comments on use</i> .
x	double x[n]	Input	The approximate values of solution vectors can be specified in $x[i-1]$,
			$1 \le i \le n$.
		Output	Solution vector x .
iter	int	Output	Number of iteration performed using the BICGSTAB(<i>l</i>) method.
W	double w[nz]	Work	
iw	<pre>int iw[nz][2]</pre>	Work	
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing is discontinued. The already calculated approximate value is output to array x, but its precision is not assured.
30000	 One of the following has occurred: n < 1 nz < 0 nfcnz[n] ≠ nz+1 itmax ≤ 0 1 < 1 1 > 8 	Bypassed.

3. Comments on use

Convergent criterion

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix **A** condition number and the value of eps.

1

When 1 is set to one, the algorithm is same as that of BICGSTAB method. As the value of 1 is lager, the cost of one iteration becomes larger however the total number of iteration is reduced. Consequently in some cases it becomes faster with larger 1.

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x}=\mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation.

```
-\Delta u + a\nabla u + u = f
```

with zero boundary conditions on a cube and the coefficient $a=(a_1,a_2,a_3)$ where a_1 , a_2 and a_3 are some constants. The matrix **A** in Diagonal format is generated by the function init_mat_diag. Then it is converted into the storage scheme in compressed column storage.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NORD
                (60)
#define NX
#define NY
#define NZ
                (NORD)
#define N
                (NX*NY*NZ)
#define K
                (N+1)
#define NDIAG
                (7)
#define L
                (4)
MAIN__()
  int
         ierr, icon, iguss, iter, itmax;
  int.
         nord, n, l, i, j, k;
  int
         nx, ny, nz, nnz;
  int
         length, nbase, ndiag;
  int
         numnz, ntopcfg, ncol;
  int
         nofst[NDIAG];
         nrow[K*NDIAG];
         nfcnz[N+1];
  int
         iw[K*NDIAG][2];
  int
  double eps;
 double va1, va2, va3, vc;
double err1, err2, err3, err4;
 double x1, y1, z1;
double diag[NDIAG][K];
  double diag2[NDIAG][K];
  double a[K*NDIAG];
  double b[N];
  double w[K*NDIAG];
  double x[N];
  double solex[N];
  double y[N];
  void init_mat_diag(double va1, double va2, double va3, double vc,
               double d_l[], int offset[], int nx, int ny, int nz,
              double x1, double y1, double z1, int ndiag, int len, int ndivp);
  double errnrm(double *x1, double *x2, int len);
  nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG, l=L;
              BICGSTAB(L) METHOD\n");
  printf("
  printf("
              COMPRESSED COLUMN STORAGE\n");
  printf("\n");
  for (i=1; i<=n; i++){
    solex[i-1]=1.0;
  printf("
              EXPECTED SOLUTIONS\n");
  printf("
              X(1) = f X(N) = f n', solex[0], solex[n-1];
  printf("\n");
  va1 = 3.0;
  va2 = 1.0/3.0;
  va3 = 5.0;
  vc = 1.0;
  x1 = 1.0;
  y1 = 1.0;
```

```
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
                   nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
  if (nofst[i-1] < 0)
    nbase=-nofst[i-1];
    length=n-nbase;
    for (j=1; j<=length; j++){}
     diag2[i-1][j-1]=diag[i-1][nbase+j-1];
  else{
    nbase=nofst[i-1];
    length=n-nbase;
    for (j=nbase+1; j<=n; j++){
     diag2[i-1][j-1]=diag[i-1][j-nbase-1];
  }
}
numnz=1;
for (j=1; j<=n; j++){
  ntopcfg = 1;</pre>
  for (i=ndiag; i>=1; i--){
    if (diag2[i-1][j-1]!=0.0){
     ncol=j-nofst[i-1];
      a[numnz-1]=diag2[i-1][j-1];
      nrow[numnz-1]=ncol;
      if (ntopcfg==1) {
       nfcnz[j-1]=numnz;
       ntopcfg=0;
      numnz=numnz+1;
    }
  }
nfcnz[n]=numnz;
nnz=numnz-1;
for (i=1; i<=n; i++){
 x[i-1]=0.0;
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, solex, b, w, (int*)iw, &icon);
err1 = errnrm(solex,x,n);
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
err2 = errnrm(y,b,n);
iguss = 0;
itmax = 2000;
eps = 1.0e-8;
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
err4 = errnrm(y,b,n);
printf("
            COMPUTED VALUES\n");
printf("
            X(1) = f X(N) = f^n, x[0], x[n-1];
printf("\n");
printf("
            c_dm_vbcscc ICON = %d\n", icon);
printf("\n");
printf(" N
           N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
ITER MAX = %d\n",itmax);
           N = %d
printf("
printf("
           ITER
                   = %d\n",iter);
printf("\n");
printf("
            EPS
                    = %e\n",eps);
printf("\n");
printf("
            INITIAL ERROR = %f\n",err1);
printf("
            INITIAL RESIDUAL ERROR = %f\n",err2);
printf("
            CRITERIA RESIDUAL ERROR = %e\n",err2 * eps);
printf("\n");
printf("
           ERROR = e^n, err3;
printf("
           RESIDUAL ERROR = %e\n",err4);
printf("\n");
printf("\n");
```

```
if (err4<=(err2*eps*1.1) && icon==0){
    printf("******** OK ********\n");
  else{
    printf("******* NG *******\n");
}
void init_mat_diag(double va1, double va2, double va3, double vc,
          double d_1[], int offset[], int nx, int ny, int nz,
          double xl, double yl, double zl, int ndiag, int len, int ndivp)
  int i, 1, j;
  int length, numnz, js;
int i0, j0, k0;
  int ndiag_loc;
  int nxy;
  double hx, hy, hz;
double x1, x2;
  double base;
  double ret, remark;
  if (ndiag<1){
    printf("FUNCTION INIT_MAT_DIAG:\n");
printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
    return;
  ndiag_loc = ndiag;
  if (ndiag>7){
   ndiag_loc=7;
  hx = x1 / (nx + 1);
  hy = yl / (ny + 1);
hz = zl / (nz + 1);
  for (i=1; i<=ndivp; i++){
    for (j=1; j<=ndiag; j++){
      d_1[i-1+(j-1)*ndivp] = 0.;
  }
  nxy = nx * ny;
  1 = 1;
  if (ndiag_loc >= 7) {
    offset[1-1] = -nxy;
    ++1;
  if (ndiag_loc >= 5) {
    offset[1-1] = -nx;
  if (ndiag_loc >= 3) {
    offset[1-1] = -1;
    ++1;
  offset[1-1] = 0;
  ++1;
  if (ndiag_loc >= 2) {
    offset[1-1] = 1;
    ++1;
  if (ndiag_loc >= 4) {
    offset[1-1] = nx;
    ++1;
  if (ndiag_loc >= 6) {
    offset[1-1] = nxy;
  for (j = 1; j \le len; ++j) {
    js=j;
k0 = (js - 1) / nxy + 1;
    if (k0 > nz) {
   printf("ERROR; K0.GH.NZ\n");
      return;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
```

```
1 = 1;
     if (ndiag_loc >= 7) {
       if (k0 > 1) {
         d_1[j-1+(1-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
       ++1;
     }
     if (ndiag_loc >= 5) {
       if (j0 > 1) {
 d_1[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
       ++1;
     if (ndiag_loc >= 3) {
       if (i0 > 1) {
         d_1[j-1+(1-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
       ++1;
     }
     d_1[j-1+(1-1)*ndivp] = 2.0/(hx*hx)+ve;
if (ndiag_loc >= 5) {
  d_1[j-1+(1-1)*ndivp] += 2.0/(hy*hy);
       if (ndiag_loc >= 7) {
         d_1[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
     ++1;
     if (ndiag_loc >= 2) {
       if (i0 < nx) {
  d_1[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;</pre>
    if (ndiag_loc >= 4) {
  if (j0 < ny) {
    d_l[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;</pre>
       ++1;
     }
     if (ndiag_loc >= 6) {
       if (k0 < nz) {
 d_1[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
    }
  return;
double errnrm(double *x1, double *x2, int len)
  double ret_val;
  int i;
  double s, ss;
  s = 0.;
  for (i = 1; i <= len; ++i) {
    ss = x1[i-1] - x2[i-1];
     s += ss * ss;
  ret_val = sqrt(s);
  return ret_val;
```

Consult the entry for DM_VBCSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73].

c_dm_vbcsd

```
System of linear equations with unsymmetric or indefinite sparse matrices

(BICGSTAB(I) method, diagonal format storage method).

ierr = c_dm_vbcsd(a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x, &iter, &icon);
```

1. Function

This function solves, using the BICGSTAB(*l*) method, Bi-Conjugate Gradient Stabilized(*l*) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors **b** and **x** are *n*-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 *Iterative linear equation* solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x,
                 &iter, &icon);
where:
            double
                                  Input
                                             Sparse matrix A stored in diagonal storage format. See Comments on
а
            a[ndiag][k]
                                             use.
                                  Input
                                             C fixed dimension of array a (\ge n).
k
            int
                                  Input
                                             The number of diagonal vectors in the coefficient matrix A having non-
ndiag
            int
                                             zero elements.
                                  Input
                                             Order n of matrix A.
            int
n
                                  Input
nofst
                                             Distance from the main diagonal vector corresponding to diagonal
            int
                                             vectors in array a. Super-diagonal vector rows have positive values.
            nofst[ndiag]
                                             Sub-diagonal vector rows have negative values. See Comments on use.
                                  Input
                                             Constant vector b.
b
            double b[n]
                                             Upper limit of iterations in BICGSTAB(l).(>0)
itmax
            int
                                  Input
                                             Tolerance for convergence test.
            double
                                  Input
eps
                                             When eps is zero or less, eps is set to 10^{-6}. See Comments on use.
                                             Control information about whether to start the iterative computation
iguss
            int
                                  Input
                                             from the approximate value of the solution vector specified in array x.
                                             iguss = 0: Approximate value of the solution vector is not specified.
                                             iguss \neq 0: The iterative computation starts from the approximate value
```

of the solution vector specified in array x.

1	int	Input	The order of stabiliser in the BICGSTAB(l) algorithm.(1 \leq 1 \leq 8)
			The value of 1 should usually be set to 1 or 2. See <i>Comments on use</i> .
x	double x[n]	Input	The starting values for the computation. This is optional and relates to
			argument iguss.
		Output	Solution vector x .
iter	int	Output	Number of iteration performed using the BICGSTAB(<i>l</i>) method.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.
		The approximate solution obtained up to this
		stage is returned, but its precision is not
		guaranteed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• k<1	
	• n > k	
	• 1<1	
	• 1>8	
	• ndiag<1	
	• ndiag>k	
	• itmax ≤ 0	
32001	$abs(nofst[i]) > n-1; 0 \le i < ndiag$	

3. Comments on use

Convergent criterion

In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of Matrix $\bf A$ and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

1

The maximum value of 1 is set to 8. For 1=1, this algorithm coincides with BiCGSTAB. Using smaller 1 usually results in faster speed, but in some situations larger 1 brings a good convergence, although the steps of an iteration are more expensive for larger 1.

Notes on using the diagonal format

A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the resulting x vector is checked against the original version.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX
                 (1000)
#define UBANDW
                (2)
#define LBANDW
                 (1)
#define NDIAG
                 (UBANDW + LBANDW + 1)
#define L
                 (2)
MAIN___()
  double one=1.0, bcoef=10.0, eps=1.e-6;
  int
         ierr, icon, nub, nlb, n, i, j, k;
  int
         itmax, iguss, iter;
  int
         nofst[NDIAG];
  double a[NDIAG][NMAX], b[NMAX], x[NMAX];
  nub
        = UBANDW;
        = LBANDW;
  nlb
        = NMAX;
        = NMAX;
  /* Set A-mat & b */
  for (i=1; i<=nub; i++) {
    for (j=0; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n; j++) a[i][j] = 0.0;
   nofst[i] = i;
  for (i=1; i<=nlb; i++) {
    for (j=0 ; j<i+1; j++) a[nub+i][j] = 0.0;
for (j=i+1; j<n ; j++) a[nub+i][j] = -2.0;
    nofst[nub+i] = -i;
  nofst[0] = 0;
  for (j=0; j< n; j++) {
            = bcoef;
    a[0][j] = bcoef;
    for (i=1; i<NDIAG; i++) b[j] += a[i][j];
  /* solve the nonsymmetric system of linear equations */
  itmax = n;
  iguss = 0;
  ierr = c_dm_vbcsd ((double*)a, k, NDIAG, n, nofst, b, itmax, eps,
                   iguss, L, x, &iter, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_vbcsd failed with icon = %d\n", icon);
    exit(1);
  /* check result */
  for (i=0;i<n;i++) {
    if (fabs(x[i]-one) > eps*10.0) {
      printf("WARNING: result maybe inaccurate\n");
      exit(1);
    }
 printf("Result OK\n");
 return(0);
```

Consult the entry for DM_VBCSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73]

c_dm_vbcse

```
System of linear equations with unsymmetric or indefinite sparse matrices

(BICGSTAB(I) method, ELLPACK format storage method).

ierr = c_dm_vbcse(a, k, iwidt, n, icol, b, itmax, eps, iguss, l, x, &iter, &icon);
```

1. Function

This function solves, using the BICGSTAB(*l*) method, Bi-Conjugate Gradient Stabilized(*l*) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix is stored using the ELLPACK format storage method. Vectors **b** and **x** are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 *Iterative linear equation* solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,
                 1, x, &iter, &icon);
where:
                                             Sparse matrix A stored in ELLPACK storage format.
            double
                                  Input
а
            a[iwidt][k]
                                  Input
                                             C fixed dimension of array a and icol (\geq n).
k
            int
iwidt
                                             The maximum number of non-zero elements in any row vectors of A
                                  Input
            int
                                             (\geq 0).
                                             Order n of matrix A.
            int
                                  Input
n
                                             Column indices used in the ELLPACK format, showing to which
icol
                                  Input
            int
                                             column the elements corresponding to a belong.
            icol[iwidt][k]
            double b[n]
                                             Constant vector b.
b
                                  Input
                                  Input
                                             Upper limit of iterations in BICGSTAB(l) method.(>0)
itmax
            int
                                             Tolerance for convergence test.
            double
                                   Input
eps
                                             When eps is zero or less, eps is set to 10^{-6}. See Comments on use.
                                  Input
                                             Control information about whether to start the iterative computation
iguss
            int
                                             from the approximate value of the solution vector specified in array x.
                                             iguss = 0: Approximate value of the solution vector is not set.
                                             iguss \neq 0: The iterative computation starts from the approximate
                                                         value of the solution vector specified in array x.
                                             The order of stabiliser in the BICGSTAB(l) algorithm.(1 \le 1 \le 8)
1
            int
                                  Input
```

			The value of 1 should usually be set to 1 or 2. See <i>Comments on use</i>
х	double x[n]	Input	The starting values for the computation. This is optional and relates to
			argument iguss.
		Output	Solution vector x .
iter	int	Output	The real number of iteration steps in BICGSTAB(<i>l</i>) method.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.
		The approximate solution obtained up to this
		stage is returned, but its precision is not
		guaranteed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• k < 1	
	• n>k	
	• 1<1	
	• 1>8	
	• iwidt < 1	
	• iwidt > k	
	• itmax≤0	
30001	The band width is zero.	

3. Comments on use

Convergent criterion

In the BICGSTAB(*l*) method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and obtained approximate solution is equal to the product of the condition number of matrix **A** and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

1

The maximum value of 1 is set to 8. For 1=1, this algorithm coincides with BiCGSTAB. Using smaller 1 usually results in faster speed, but in some situations larger 1 brings a convergence, although the steps of a iteration are more expensive for larger 1.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the resulting x vector is checked against the original version.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
```

```
#include "cssl.h" /* standard C-SSL header file */
#define NMAX
                (1000)
#define UBANDW
                (2)
#define LBANDW
                (1)
#define TWIDT
                 (UBANDW + LBANDW + 1)
#define L
                (2)
MAIN__()
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
         ierr, icon, nlb, nub, n, k, itmax, iguss, iter, i, j, ix;
         icol[IWIDT][NMAX];
 double a[IWIDT][NMAX], b[NMAX], x[NMAX];
 nub
       = UBANDW;
 nlb
        = LBANDW;
        = NMAX;
 n
        = NMAX;
 for (i=0; i<IWIDT; i++)</pre>
   for (j=0; j<n; j++) {
    a[i][j] = 0.0;
      icol[i][j] = j+1;
  /* Set A-mat & b */
 for (j=0; j<nlb; j++) {
  for (i=0; i<j; i++) a[i][j] = lcf;
    a[j][j] = bcoef;
           = bcoef+(double)j*lcf+(double)nub*ucf;
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
  for (j=nlb; j<n-nub; j++) {</pre>
    for (i=0; i<nlb; i++) a[i][j] = lcf;
    a[nlb][j] = bcoef;
              = bcoef+(double)nlb*lcf+(double)nub*ucf;
   b[i]
   for (i=nlb+1; i<IWIDT; i++) a[i][j] = ucf;</pre>
   for (i=0; i<IWIDT; i++) icol[i][j] = i+1+j-nlb;
 for (j=n-nub; j< n; j++){
   for (i=0; i<nlb; i++) a[i][j] = lcf;
    a[nlb][j] = bcoef;
   b[j]
              = bcoef+(double)nlb*lcf+(double)(n-j-1)*ucf;
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
    ix = n - (j+nub-nlb-1);
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
  /* solve the nonsymmetric system of linear equations */
  itmax = 2000;
  iguss = 0;
 ierr = c_dm_vbcse ((double*)a, k, IWIDT, n, (int*)icol, b, itmax,
                  eps, iguss, L, x, &iter, &icon);
  if (icon != 0) {
   printf("ERROR: c_dm_vbcse failed with icon = %d\n", icon);
    exit(1);
  /* check result */
  for (i=0; i< n; i++) {
    if (fabs(x[i]-one) > eps*10.0) {
     printf("WARNING: result maybe inaccurate\n");
      exit(1);
 printf("Result OK\n");
 return(0);
```

Consult the entry for DM_VBCSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73].

c_dm_vblu

1. Function

This routine executes LU decomposition for banded matrix **A** of $n \times n$, lower bandwidth h_1 , and upper bandwidth h_2 using Gaussian elimination.

$$PA = LU$$

where, **P** is the permutation matrix of the row vector, **L** is the unit lower banded matrix, and **U** is the upper banded matrix. $n > h_1 \ge 0$, $n > h_2 \ge 0$.

2. Arguments

The routine is called as follows:

	c_dm_vblu((doub	le*)a, k	n, nh1, nh2, epsz, &is, ip, &icon);
where: a	double	Input	Store banded coefficient matrix A .
	a[n][k]		See Figure c_dm_vblu-1.
		Output	LU-decomposed matrices L and U are stored.
			See Figure c_dm_vblu-2.
			The value of a is not assured after operation.
k	int	Input	C fixed dimension of array a $(\ge 2 \times nh1 + nh2 + 1)$.
n	int	Input	Order n of matrix \mathbf{A} .
nh1	int	Input	Lower bandwidth size h_1 .
nh2	int	Input	Upper bandwidth size h_2 .
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0). When epsz is zero, the
			standard value is set. See Comments on use.
is	int	Output	Indicates row vector exchange count. See Comments on use.
			1 exchange count is even.
			−1 exchange count is odd.
ip	int ip[n]	Output	The transposition vector to contain row exchange information is stored.
			See Comments on use.
icon	int	Output	Condition code. See below.

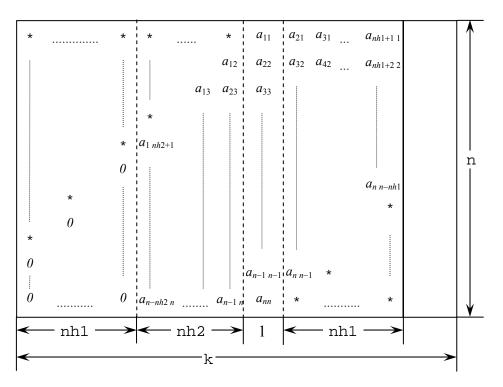


Figure c dm vblu-1. Storing matrix A in array a

The column vector of matrix **A** is continuously stored in columns of array a in the same manner as diagonal elements of banded matrix **A** a_{ii} , i = 1, ..., n, are stored in a [i-1] [h_1 + h_2].

Upper banded matrix part:

$$a_{j-i,j}, i=1,\ldots,h_2, j=1,\ldots,n, j-i\geq 1$$
 is stored in a[i][j], i=0,..., $n-1$, j= h_1,\ldots,h_1+h_2-1 .

Lower banded matrix part:

$$a_{j+i,j}, i = 1, ..., h_1, j = 1, ..., n, j + i \le n$$
 is stored in a [i][j], i = 0, ..., $n-1$, j = h_1+h_2+1 , ..., $2 \times h_1+h_2$.

For a [i][j], i = 0, ..., n-1, j = 0, ..., h_1-1 , set zero for the elements of matrix **A** outside the band.

^{*} indicates undefined values.

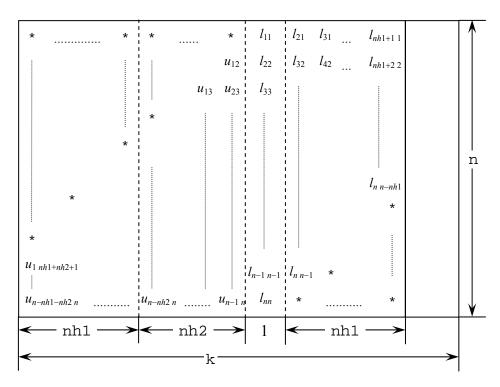


Figure c_dm_vblu-2. Storing LU-decomposed matrix L and U in array a

LU-decomposed unit upper banded matrix except diagonal elements $u_{j-i+1,j}$, $i=1,\ldots,h_1+h_2,j=1,\ldots,n,j-i+1\geq 1$ is stored in a [i][j], i=0,..., n-1, j=0,..., h_1+h_2 .

Lower banded matrix part:

 $l_{j+i,j}, i=0, \dots, h_2, j=1, \dots, n, j+i \leq n \text{ is stored in a[i][j]}, i=0, \dots, n-1, \ j=h_1+h_2, \dots, 2\times h_1+h_2.$

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	All elements in some row of array a were zero, or	Discontinued.
	the pivot became relatively zero. Matrix A may	
	be singular.	
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• nh1≥n	
	• nh1 < 0	
	• nh2≥n	
	• nh2<0	
	• $k \le 2 \times nh1 + nh2 + 1$	
	• epsz<0	

^{*} indicates undefined values.

3. Comments on use

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$.

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

ip

In this routine, the row vector is exchanged using partial pivoting. That is, when the *I*-th row $(I \ge J)$ is selected as the pivot row in the *J*-th stage (J = 1, ..., n) of decomposition, the contents of the *I*-th row and *J*-th row are exchanged. To indicate this exchange, *I* is stored in ip[J-1].

How to use this function

The linear equation can be solved by calling function c_dm_vblux following this function. Normally, the linear equation can be solved in one step by calling function c_dm_vlbx.

is

The determinant can be obtained by multiplying is and a [i] $[h_1 + h_2]$, where i = 0, ..., n-1.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, $nh_1 = 2000$, $nh_2 = 3000$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
                  ((a) > (b) ? (a) : (b))
#define max(a,b)
                  ((a) < (b) ? (a) : (b))
#define min(a,b)
#define NH1
              2000
              3000
#define NH2
              10000
#define N
#define KA
              (2*NH1+NH2+1)
#define NWORK 4500
int MAIN__()
 double a[N][KA], b[N], dwork[NWORK];
 double tt1, tt2, tmp, epsz;
        ip[N], i, j, is, ix, icon, nptr, nbase, nn;
  ix = 123;
 nn = NH1+NH2+1;
  for (i=0; i<N; i++)
   c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
 printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
  /* zero clear */
  for (j=0; j<N; j++) {
    for (i=0; i<NH1; i++) {
     a[j][i] = 0.0;
  /* left upper triangular part */
 for (j=0; j<NH2; j++) {
```

```
for (i=0; i<NH2-j; i++) {
    a[j][i+NH1] = 0.0;
  }
}
/* right rower triangular part */
nbase = 2*NH1+NH2+1;
for (j=0; j<NH1; j++) {
  for (i=0; i<j; i++) {
     a[N-NH1+j][nbase-i-1] = 0.0;
/* set right hand constant vector */
for (i=0; i<N; i++) {
  b[i] = 0.0;
for (i=0; i< N; i++) {
  nptr = i;
  for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
  b[j] += a[i][j-i+NH1+NH2];</pre>
  }
}
epsz = 0.0;
c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);
tmp = 0.0;
for (i=0; i<N; i++) {
  tmp = max(tmp,fabs(b[i]-1));
printf("maximum error = %e\n", tmp);
return(0);
```

Consult the entry for DM_VBLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vblux

```
A system of linear equations with LU-decomposed banded real matrices.

ierr = c_dm_vblux(b, fa, k, n, nh1, nh2, ip, &icon);
```

1. Function

This routine solves a linear equation having an LU-decomposed banded matrix as coefficient.

$$LUx = b$$

where, **L** is a unit lower banded matrix of lower bandwidth h_1 , **U** is an upper banded matrix of upper bandwidth $h(= \min(h_1+h_2, n-1))$, and **b** is an n-dimensional real constant vector. The order of matrix **A** before LU decomposition, lower bandwidth, and upper bandwidth is n, h_1 , and h_2 . $n > h_1 \ge 0$, $n > h_2 \ge 0$.

2. Arguments

The routine is called as follows:

ierr = c	_dm_vblux(b, (d	double*):	fa, k, n, nh1, nh2, ip, &icon);
where:			
b	double b[n]	Input	Constant vector b .
		Output	Solution vector x .
fa	double	Input	LU-decomposed matrices L and U are stored.
	fa[n][k]		See Figure c_dm_vblux-1.
			The value of fa[i][j], $i = 0,, n-1, j = 2 \times nh1 + nh2 + 1,,$
			k-1, is not assured after operation.
k	int	Input	C fixed dimension of array a ($\geq 2 \times nh1 + nh2 + 1$).
n	int	Input	Order n of matrix \mathbf{A} .
nh1	int	Input	Lower bandwidth size h_1 .
nh2	int	Input	Upper bandwidth size h_2 .
ip	<pre>int ip[n]</pre>	Output	The transposition vector to contain row exchange information is stored.
			See Comments on use.
icon	int	Output	Condition code. See below.

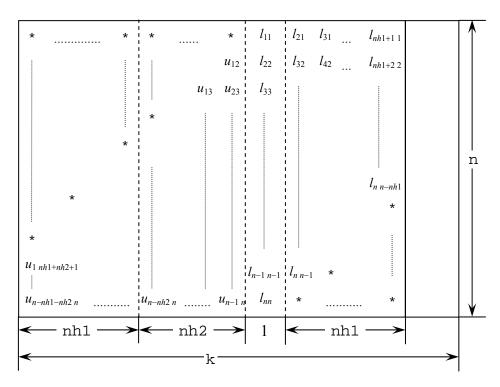


Figure c_dm_vblux-1. Storing LU-decomposed matrices L and U into array fa

LU-decomposed unit upper banded matrix except diagonal elements $u_{j-i+1,j}$, $i=1,\ldots,h_1+h_2,j=1,\ldots,n,j-i+1\geq 1$ is stored in a [i][j], i=0,..., n-1, j=0,..., h_1+h_2 .

Lower banded matrix part:

 $l_{j+i,j}, i=0, \dots, h_2, j=1, \dots, n, j+i \leq n \text{ is stored in a [i] [j]}, i=0, \dots, n-1, \ j=h_1+h_2, \dots, 2\times h_1+h_2.$

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• nh1≥n	
	• nh1<0	
	• nh2≥n	
	• nh2 < 0	
	• $k < 2 \times nh1 + nh2 + 1$	
	Diagonal element of lower banded matrix	
	was zero.	
	Contents of ip are invalid.	

^{*} indicates undefined values.

3. Comments on use

How to use this function

A system of linear equations with banded matrices can be solved by calling this routine following the routine c_dm_vblu. In this case, specify the output parameters of the routine c_dm_vblu without modification of the input parameters (except the constant vector) of this routine. Normally, a solution can be obtained in one step by calling the routine c_dm_vlbx.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, $nh_1 = 2000$, $nh_2 = 3000$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define \max(a,b) ((a) > (b) ? (a) : (b)) #define \min(a,b) ((a) < (b) ? (a) : (b))
#define NH1
                2000
#define NH2
                3000
#define N
                10000
#define KA
                (2*NH1+NH2+1)
#define NWORK 4500
int MAIN__()
  double a[N][KA], b[N], dwork[NWORK];
  double tt1, tt2, tmp, epsz;
int ip[N], i, j, is, ix, icon, nptr, nbase, nn;
  ix = 123;
  nn = NH1+NH2+1;
  for (i=0; i< N; i++)
    c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
  printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
  /* zero clear */
  for (j=0; j<N; j++) {
    for (i=0; i<NH1; i++) {
      a[j][i] = 0.0;
  /* left upper triangular part */
  for (j=0; j<NH2; j++) {
  for (i=0; i<NH2-j; i++) {
      a[j][i+NH1] = 0.0;
  }
  /* right rower triangular part */
  nbase = 2*NH1+NH2+1;
  for (j=0; j< NH1; j++)
    for (i=0; i<j; i++) {
      a[N-NH1+j][nbase-i-1] = 0.0;
  /* set right hand constant vector */
  for (i=0; i<N; i++) {
    b[i] = 0.0;
  for (i=0; i<N; i++) \{
    nptr = i;
    for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {</pre>
```

```
b[j] += a[i][j-i+NH1+NH2];
}

epsz = 0.0;
c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);

tmp = 0.0;
for (i=0; i<N; i++) {
   tmp = max(tmp,fabs(b[i]-1));
}

printf("maximum error = %e\n", tmp);
return(0);
}</pre>
```

Consult the entry for DM_VBLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vcgd

```
A system of linear equations with symmetric positive definite sparse matrices (preconditional CG method, diagonal format storage method)
```

1. Function

This routine solves a linear equation having an $n \times n$ normalized symmetric positive definite sparse matrix as coefficient matrix using the preconditioned CG method.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

The $n \times n$ matrix coefficient is normalized so that its diagonal elements are 1, and non-zero elements except the diagonal elements are stored using the diagonal format spares matrix storage method.

2. Arguments

The routine is called as follows:

ierr =	c_dm_vcgd((double	e*)a,	k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps,
iguss, x, &iter,		iter,	&rz, (double*)w, (int*)iw, &icon);
where:			
a	double a[nw][k]	Input	Sparse matrix A stored in diagonal normalized symmetric positive
			definite storage format.
			The value of a is not assured after operation.
k	int	Input	C fixed dimension of array a $(\ge n)$.
nw	int	Input	Number of vectors in the diagonal direction where the coefficient matrix
			A is stored using the diagonal format storage method. Even number. The
			size of the second dimension of array a
n	int	Input	Order n of matrix A .
ndlt	<pre>int ndlt[nw]</pre>	Input	Indicate the distance from the main diagonal vector.
b	double b[n]	Input	Constant vector b .
ipc	int	Input	Preconditioner control information. See Comments on use.
			1 No preconditioner.
			2 Neumann preconditioner.
			3 Preconditioner using block incomplete Cholesky decomposition.
			In this case, omega needs to be specified.
itmax	int	Input	Upper limit of iterations.
isw	int	Input	Control information. See Comments on use.
			1 Initial call.
			2 Subsequent calls.
			The arrays, a, ndlt, w and iw, must NOT be changed as the values
			set on the initial call are reused.
omega	double	Input	Modification factor for incomplete Cholesky decomposition, $0 \leq omega$

eps	double	Input	\leq 1. Only use when ipc=3. See <i>Comments on use</i> . Tolerance for convergence test. When eps is zero or less, eps is set to $\varepsilon \cdot \ \mathbf{b}\ $, with $\varepsilon = 10^{-6}$. See
iguss	int	Input	Comments on use. Sets the information indicating whether the iteration is started from an approximate value of solution vector specified in array x. When 0 is set, the approximate value of solution vector is not specified. When non-zero is set, the iterative computation is started from an approximate value of the solution vector specified in array x.
x	double x[n]	Input	An approximate value of the solution vector of the linear equation can be specified in x.
		Output	The solution vector linear equation is stored in x.
iter	int	Output	The actual iteration count.
rz	double	Output	The square root of the residual rz after the convergency judgment.
			See Comments on use.
W	double	Work	When $ipc = 3$, $Wlen1 = nw + 8$, $Wlen2 = n + maxt$.
	w[Wlen1][Wlen2]		When $ipc \neq 3$, $Wlen1 = 7$, $Wlen2 = n + maxt$, where $maxt$ is the maximum number of threads executed in parallel.
iw	int	Work	When $ipc = 3$, $Iwlen1 = 4$, $Iwlen2 = n + 2 \times maxt$.
	iw[<i>Iwlen1</i>][<i>Iwlen2</i>]		When $ipc \neq 3$, $Iwlen1 = 2$, $Iwlen2 = maxt$, where $maxt$ is the maximum
		0-4	number of threads executed in parallel.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10000	Diagonal vectors in a were reordered as U/L in	Processing is continued.
	ascending distance order.	
20001	The upper iteration count limit was reached.	Processing stopped.
20003	Break down occurred.	The approximate value obtained is output in array
		x, but the precision is not assured.
30003	$itmax \le 0$	Processing stopped.
30005	k < n	
30006	Incomplete $\mathbf{L}\mathbf{L}^T$ decomposition could not be	
	performed.	
30007	The pivot became minus.	
30089	nw is not an even number.	
30091	nband = 0	
30092	$nw \le 0$	
30093	$k \le 0, n \le 0$	
30096	omega < 0 or omega > 1	
30097	ipc < 1 or ipc > 3	
30102	Upper triangular part is not correctly stored.	
30103	Lower triangular part is not correctly stored.	

Code	Meaning	Processing
30104	The number of diagonal vectors in the upper	Processing stopped.
	triangular does not equal that in the lower	
	triangular.	
30105	isw≠1 or 2	
30200	abs(ndlt[i]) > n-1 or	
	$ndlt[i] = 0; 0 \le i < nw$	

3. Comments on use

isw

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc = 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2. In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz

The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set tolerance, eps:

$$rz = \sqrt{rz} < eps$$
 (2)

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}_{m} \tag{3}$$

The residual vector \mathbf{r} for the solution at the *m*-th iteration is obtained from (3) and with the preconditioner matrix \mathbf{M} , rz is calculated by equation (4).

$$rz = \mathbf{r}^{\mathrm{T}}\mathbf{M}^{-1}\mathbf{r} \tag{4}$$

ipc and omega

Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A = I - N, the preconditioner M of the linear equation (I - N)x = b is as follows for the different values of ipc:

- 1. No preconditioner, M = I.
- 2. Neumann, $\mathbf{M}^{-1} = (\mathbf{I} + \mathbf{N})$.
- 3. Incomplete Cholesky decomposition, $\mathbf{M} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$.

When ipc = 2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix (I + N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega ($0 \le omega \le 1$). For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00.

4. Example program

This example solves a system of linear equations with symmetric positive definition matrices.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT (4)
#define ND
                                 (20)
                                 (ND*ND*ND)
#define N
#define K
                                 (N)
#define NW
                                (6)
MAIN__()
    double a[NW][K], b[N], x[N], w[7][N+MAXT];
    double omega, eps, rz;
    int
                     ndlt[NW], iw[2][MAXT];
    int
                      k, nw, n, ipc, itmax, isw, iguss, iter, icon;
                     i, j, nx, ny, iy, iz, l;
rhs(double*, int, int, int, double*, int*, double*);
     int
     for(j=0; j<NW; j++) {</pre>
        for(i=0; i<N; i++) {
             a[j][i] = 0.0;
         }
    }
    for(i=0; i<NW; i++) \{
        ndlt[i] = 0;
    nx = ND;
    ny = ND;
     for(i=0; i<N; i++) {
         1 = i+1;
         iz = (1-1)/(nx*ny);
         iy = (1-1-iz*nx*ny)/nx;
          if ((1/nx)*nx != 1 \&\& 1 <= N-1) {
             a[0][i] = -1.0/6.0;
          if (1 <= N-nx && iy != ny-1) {
             a[1][i] = -1.0/6.0;
          if (1 <= N-nx*ny) {
              a[2][i] = -1.0/6.0;
          if (((1-1)/nx)*nx != 1-1 && 1 >= 2 && 1 <= N) {
              a[3][i] = -1.0/6.0;
          if (1 \ge nx+1 \&\& 1 \le N \&\& iy != 0) {
             a[4][i] = -1.0/6.0;
          if (1 >= nx*ny+1 && 1 <= N) {
              a[5][i] = -1.0/6.0;
    ndlt[0] = 1, ndlt[1] = nx, ndlt[2] = nx*ny;
    ndlt[3] = -1, ndlt[4] = -nx, ndlt[5] = -nx*ny;
    rhs((double*)a, N, K, NW, (double*)w, ndlt, b);
                 = 1e-6i
     eps
     itmax = 2000;
                 = 1;
     isw
     iguss = 0;
    ipc
                  = 2;
    \verb|c_dm_vcgd|((double*)a, K, NW, N, ndlt, b, ipc, itmax, isw, omega, eps, iguss, x, ipc, itmax, i
                              &iter, &rz, (double*)w, (int*)iw, &icon);
    printf("icon = %d\n", icon);
    printf("x[0] = e, x[n-1] = e\n", x[0], x[N-1]);
```

```
return(0);
}
int rhs(double *a, int n, int k, int ndiag, double *dp, int *ndlt, double *b)
{
  int i, nlb, icon;
  nlb = 0;
  for (i=0; i < ndiag; i++) {
     nlb = max(fabs(ndlt[i]), nlb);
  }

  for (i=0; i < n*3; i++) {
     dp[i] = 0.0;
  }

  for (i=0; i < n; i++) {
     dp[i + nlb] = 1.0;
     b[i] = 0.0;
  }

  c_dm_vmvsd((double*)a, k, ndiag, n, ndlt, nlb, dp, b, &icon);
  for (i = 0; i < n; i++) {
     b[i] += dp[i+nlb];
  }

  return(0);
}</pre>
```

Consult the entry for DM_VCGD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43], [50], [51] and [55].

c_dm_vcge

1. Function

This routine solves a linear equation having an $n \times n$ normalized symmetric positive definite sparse matrix as a coefficient matrix using the preconditioned CG method.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

The $n \times n$ coefficient matrix is normalized so that the diagonal elements are 1, and the non-zero elements except the diagonal elements are stored by the ELLPACK format storage method.

2. Arguments

The routine is called as follows:

ierr =	c_dm_vcge((double	e*)a, }	k, nw, n, (int*)icol, b, ipc, itmax, isw, omega,			
	eps, iguss,	x, ⁢	ter, &rz, (double*)w, (int*)iw, &icon);			
where:						
a	<pre>double a[nw][k]</pre>	Input	Sparse matrix ${\bf A}$ stored in the ELLPACK normalized symmetric positive			
			definite storage format.			
k	int	Input	C fixed dimension of array a $(\ge n)$.			
nw	int	Input	When the maximum numbers of non-zero elements of row vectors of			
			upper and lower triangular matrices are NSU and NSL, respectively, 2 \times			
			max (NSU, NSL).			
n	int	Input	Order n of matrix \mathbf{A} .			
icol	<pre>int icol[nw][k]</pre>	Input	The information on the column vector to which non-zero elements			
			belong is stored in icol.			
b	double b[n]	Input	Constant vector b .			
ipc	int	Input	Preconditioner control information. See Comments on use.			
			1 No preconditioner.			
			2 Neumann preconditioner.			
			3 Preconditioner with incomplete Cholesky decomposition.			
			In this case, omega must be specified.			
itmax	int	Input	Upper limit of iterations.			
isw	int	Input	Control information. See Comments on use.			
			1 Initial call.			
			2 Subsequent calls.			
			The arrays, a, icol, w and iw, must NOT be changed as the values			
			set on the initial call are reused.			
omega	double	Input	Modification factor for incomplete Cholesky decomposition, $0 \leq omega$			

			\leq 1. Only use when ipc=3. See <i>Comments on use</i> .
eps	double	Input	Tolerance for convergence test.
			When eps is zero or less, eps is set to $\varepsilon \cdot \ \mathbf{b}\ $, with $\varepsilon = 10^{-6}$. See
			Comments on use.
iguss	int	Input	Sets the information indicating whether the iteration is started from an
			approximate value of solution vector specified in array x.
			When 0 is set, the approximate value of solution vector is not specified.
			When non-zero is set, the iterative computation is started from an
			approximate value of the solution vector specified in array \mathbf{x} .
x	double x[n]	Input	An approximate value of the solution vector of the linear equation can be
			specified in x.
		Output	The solution vector linear equation is stored in x.
iter	int	Output	The actual iteration count.
rz	double	Output	The square root of the residual rz after the convergency judgment.
			See Comments on use.
W	double	Work	When $ipc = 3$, $Wlen1 = nw + 8$, $Wlen2 = n + maxt$.
	w[<i>Wlen1</i>][<i>Wlen2</i>]		When $ipc \neq 3$, Wlen $l = 7$, Wlen $l = n + maxt$, where maxt is the
			maximum number of threads executed in parallel.
iw	int	Work	When $ipc = 3$, $Iwlen1 = nw + 5$, $Iwlen2 = n + 2 \times maxt$.
	iw[<i>Iwlen1</i>][<i>Iwlen2</i>]		When $ipc \neq 3$, $Iwlen 1 = 2$, $Iwlen 2 = maxt$, where $maxt$ is the maximum
			number of threads executed in parallel.
icon	int	Output	Condition code. See below.
ıcon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10000	Elements of a and icol are rearranged as U/L.	Processing continues.
20001	The iteration count reaches the upper limit.	Processing stopped.
20003	Break down occurred.	The approximate solution obtained up to this
		stage is returned, but its precision is not
		guaranteed.
30003	itmax≤0	Processing stopped.
30005	k < n	
30006	Incomplete $\mathbf{L}\mathbf{L}^{\mathrm{T}}$ decomposition could not be	
	executed.	
30007	Pivot became minus.	
30092	$nw \le 0$	
30093	$k \le 0, n \le 0$	
30096	omega < 0 or omega > 1	
30097	ipc<1 or ipc>3	
30098	isw≠1 or 2	
30100	$nw \neq 2 \times max(NSU, NSL)$	
30104	The upper triangular part or the lower triangular	
	part is not correctly stored.	
negative	The non-diagonal element is present in the	
number	-icon row.	

3. Comments on use

a, nw and icol

The sparse matrix **A** is normalized in such a way that the main diagonal elements are ones. The non-zero elements other than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats section of the General description.

Apart from the incomplete Cholesky decomposition preconditioner (ipc = 3), both the storage formats for ELLPACK, normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), $nw = 2 \times max(NSU, NSL)$ is not required.

isw

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc = 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2. In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz

The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set tolerance, eps:

$$rz = \sqrt{rz} < eps$$
 (2)

$$\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}_{m} \tag{3}$$

The residual vector \mathbf{r} for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix \mathbf{M} , rz is calculated by equation (4).

$$rz = \mathbf{r}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{r} \tag{4}$$

ipc and omega

Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A = I - N, the preconditioner M of the linear equation (I - N)x = b is as follows for the different values of ipc:

- 1. No preconditioner, M = I.
- 2. Neumann, $M^{-1} = (I + N)$.
- 3. Incomplete Cholesky decomposition, $\mathbf{M} = \mathbf{L}\mathbf{L}^{\mathrm{T}}$.

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix (I + N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega ($0 \le omega \le 1$). For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00.

4. Example program

This example solves the system of linear equations with symmetric positive definition matrix.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define MAXT (4)
#define ND
              (80)
              (ND*ND*ND)
#define N
#define K
              (N)
#define NW
              (6)
MAIN__()
  double a[NW][K], b[N], x[N], xx[N], w[7][N+MAXT];
  double omega, eps, rz;
         icol[NW][K], iw[2][MAXT];
         ipc, itmax, isw, iguss, iter, icon;
         i, j, nx, ny, iy, iz, l;
  for(j=0; j<NW; j++) {
  for(i=0; i<N; i++) {
    a[j][i] = 0.0;</pre>
      icol[j][i] = j+1;
    }
  }
  nx = ND;
  ny = ND;
  for(i=0; i<N; i++) {
    1 = i+1;
    iz = i/(nx*ny);
    iy = (i-iz*nx*ny)/nx;
    if ((1/nx)*nx != 1 \&\& 1 <= N-1) {
      a[0][i] = -1.0/6.0;
      icol[0][i] = 1+1;
    if (1 <= N-nx && iy != ny-1) {
      a[1][i]
                 = -1.0/6.0;
      icol[1][i] = 1+nx;
    if (1 <= N-nx*ny) {
      a[2][i] = -1.0/6.0;
icol[2][i] = 1+nx*ny;
    if (((1-1)/nx)*nx != 1-1 \&\& 1 >= 2 \&\& 1 <= N)
      a[3][i] = -1.0/6.0;

icol[3][i] = 1-1;
    if (1 \ge nx+1 \&\& 1 \le N \&\& iy != 0) {
      a[4][i]
                 = -1.0/6.0;
      icol[4][i] = 1-nx;
    if (1 >= nx*ny+1 && 1 <= N) {
      a[5][i]
                 = -1.0/6.0;
      icol[5][i] = l-nx*ny;
  for (i=0; i<N; i++) \{
    xx[i] = 1.0;
  c_dm_vmvse((double*)a, K, NW, N, (int*)icol, xx, b, &icon);
  for (i=0; i<N; i++) {
    b[i] += 1.0;
```

Consult the entry for DM_VCGE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43] and [51].

c_dm_vclu

LU decomposition of complex matrices (blocked LU decomposition					
method)					
<pre>ierr = c_dm_vclu(za,</pre>	k,	n,	epsz,	ip,	&is,
&icon);					

1. Function

This routine executes LU decomposition for non-singular complex $n \times n$ matrices using blocked outer product type Gaussian elimination.

$$PA = LU (1)$$

where, **P** is the permutation matrix which exchanges rows by partial pivoting, **L** is the lower triangular matrix, and **U** is unit upper triangular matrix ($n \ge 1$).

ierr = c_dm_vclu((dcomplex*)za, k, n, epsz, ip, &is, &icon);

2. Arguments

where:

icon

The routine is called as follows:

Input Matrix A. dcomplex za za[n][k]Output Matrices L and U. k int Input C fixed dimension of array $za (\ge n)$. Order n of matrix A. int Input n double Input Judgment of relative zero of the pivot (≥ 0.0). epsz When epsz is 0.0, the standard value is assumed. See Comments on int ip[n] Output The transposition vector indicating the history of row exchange by ip partial pivoting. One-dimensional array of size n. See Comments on use. is int Output Information to obtain the determinant of matrix A. The determinant is obtained by multiplying the n diagonal elements of array za by the value of is after the operation.

The complete list of condition codes is given below.

int

Output

Code	Meaning	Processing
0	No error.	Completed.
20000	All elements in some row of array za were zero,	Discontinued.
	or the pivot became relatively zero. Matrix A	
	may be singular.	
30000	One of the following has occurred:	Bypassed.
	• k <n< td=""><td></td></n<>	
	• n<1	
	• epsz<0.0	

Condition code. See below.

3. Comments on use

epsz

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by Crout's method, the pivot value is assumed to be zero and computation is discontinued with icon = 20000.

The standard value of epsz is normally 16μ , where μ is the unit round off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

ip

The transposition vector corresponds to the permutation matrix **P** of LU-decomposition with partial pivoting. In this function, the elements of the array za are actually exchanged in partial pivoting. In the *J*-th stage (J = 1, ..., n) of decomposition, if the *I*-th row has been selected as the pivotal row the elements of the *I*-th row and the elements of the *J*-th row are exchanged. Then, in order to record the history of this exchange, *I* is stored in ip[j-1].

How to use this function

The linear equation can be solved by calling routine c_dm_vclux following this routine. Normally, the linear equation can be solved in one step by calling routine c dm vlcx.

4. Example program

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)
MAIN__()
  dcomplex za[N][K], zb[N];
  double
           epsz, c, t, s, error;
           ip[N];
  int
           is, icon, i, j;
  c = sqrt(1.0/(double)(N+1));
  t = atan(1.0)*8.0/(N+1);
  for (j=0; j<N; j++) {
    for (i=0; i<N; i++) {
      za[j][i].re = c*cos(t*(i+1)*(j+1));
      za[j][i].im = c*sin(t*(i+1)*(j+1));
  }
  for (i=0; i<N; i++) {
    s = 0.0;
    for (j=0; j<N; j++) {
      s += cos(t*(i+1)*(j+1));
      zb[i].re = s*c;
      zb[i].im = 0.0;
  }
  epsz = 0.0;
  c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon);
  c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon);
```

```
printf("icon = %d\n", icon);
error = 0.0;

for (i=0; i<N; i++) {
    error = max(fabs(1.0-zb[i].re), error);
}

printf("error = %f\n", error);
printf("ORDER = %d\n", N);
printf("zb[0] = %e\n", zb[0].re);
printf("zb[n-1] = %e\n", zb[N-1].re);
return(0);
}</pre>
```

Consult the entry for DM_VCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and [52].

c dm vclux

A system of linear equations with LU-decomposed complex matrix					
<pre>ierr = c_dm_vclux(zb,</pre>	zfa,	kfa,	n,	ip,	&icon);

1. Function

This routine solves a linear equation with an LU-decomposed complex coefficient matrices.

$$\mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{P}\mathbf{b} \tag{1}$$

where, **L** is a lower triangular matrix of $n \times n$, **U** is a unit upper triangular matrix of $n \times n$, and **P** is a permutation matrix. (Rows are exchanged by partial pivoting when the coefficient matrix is LU-decomposed.) **b** is an *n*-dimensional complex constant vector, and **x** is an *n*-dimensional solution vector ($n \ge 1$).

2. Arguments

The routine is called as follows:

ierr = c_dm_vclux(zb, (dcomplex*)zfa, kfa, n, ip, &icon); where: Input Constant vector b. zb dcomplex zb[n] Output Solution vector x. zfa dcomplex Input Matrices L and U. zfa[n][kfa] kfa int Input C fixed dimension of array $zfa (\ge n)$. Input Order of matrices L and U. int n ip int ip[n] Input The transposition vector which indicates the history of row exchange by partial pivoting. icon Output Condition code. See below. int The complete list of condition codes is:

Code	Meaning	Processing	
0	No error.	Completed.	
20000	The coefficient matrix was singular.	Discontinued.	
30000	One of the following occurred:	Bypassed.	-
	• n < 1		
	• kfa <n< td=""><td></td><td></td></n<>		
	• ip was invalid.		

3. Comments on use

The linear equations can be solved by calling routine <code>c_dm_vclu</code>, LU-decomposing the coefficient matrix, then calling this routine. Normally, the solution can be obtained in one step by calling routine <code>c_dm_vlcx</code>.

4. Example program

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)
MAIN__()
  dcomplex za[N][K], zb[N];
           epsz, c, t, s, error;
ip[N];
  double
  int
  int
            is, icon, i, j;
  c = sqrt(1.0/(double)(N+1));
  t = atan(1.0)*8.0/(N+1);
  for (j=0; j<N; j++) {
    for (i=0; i<N; i++) {
      za[j][i].re = c*cos(t*(i+1)*(j+1));
       za[j][i].im = c*sin(t*(i+1)*(j+1));
  }
  for (i=0; i<N; i++) {
    s = 0.0;
    for (j=0; j<N; j++) {
      s += cos(t*(i+1)*(j+1));
      zb[i].re = s*c;
      zb[i].im = 0.0;
    }
  }
  epsz = 0.0;
  c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon);
  c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon);
                     = %d\n", icon);
  printf("icon
  error = 0.0;
  for (i=0; i<N; i++) {
  error = max(fabs(1.0-zb[i].re), error);</pre>
  printf("error = %f\n", error);
printf("ORDER = %d\n", N);
printf("zb[0] = %e\n", zb[0].re);
printf("zb[n-1] = %e\n", zb[N-1].re);
  return(0);
```

5. Method

Consult the entry for DM_VCLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

c_dm_vcminv

Inverse of complex matrix (blocked Gauss-Jordan method)				
<pre>ierr = c_dm_vcminv(za,</pre>	k, n, epsz, &icon);			

1. Function

This routine obtains the inverse A^{-1} of the $n \times n$ non-singular complex matrix A using the Gauss-Jordan method.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vcminv((dcomplex*)za, k, n, epsz, &icon);
where:
            dcomplex
                                 Input
                                           Matrix A.
za
            za[n][k]
                                 Output
                                           Matrix A^{-1}.
                                           C fixed dimension of array za (\ge n).
            int
                                 Input
k
            int
                                 Input
                                           Order of matrix A.
            double
                                 Input
                                           Judgment of relative zero of the pivot. (\geq 0.0)
epsz
                                           When epsz is 0.0, the standard value is assumed.
            int
                                 Output
                                           Condition code. See below.
```

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	All row elements in matrix A are zero or the pivot	Discontinued.
	becomes a relatively zero. Matrix A may be	
	singular.	
30000	One of the following occurred:	
	• n < 1	
	• k <n< td=""><td></td></n<>	
	• epsz < 0.0	

3. Comments on use

epsz

When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16u. If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

4. Example program

The inverse of a matrix is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
```

```
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N 2000
#define K (N+1)
int MAIN__()
  dcomplex a[N][K], as[N][K], tmpz;
  double c, t, error, epsz;
int i, j, icon;
  c = sqrt(1.0/(double)N);
  t = atan(1.0)*8.0/N;
  for (j=0; j<N; j++) {
    for (i=0; i<N; i++) {
      a[j][i].re = c*cos(t*i*j);
a[j][i].im = c*sin(t*i*j);
as[j][i].re = a[j][i].re;
      as[j][i].im = -a[j][i].im;
  }
  epsz = 0.0;
  c_dm_vcminv((dcomplex*)a, K, N, epsz, &icon);
  error = 0.0;
  for (j=0; j<N; j++) \{
   for (i=0; i<N; i++)
      tmpz.re = fabs(a[j][i].re-as[j][i].re);
      tmpz.im = fabs(a[j][i].im-as[j][i].im);
      error = max(error,tmpz.re+tmpz.im);
 printf("order = %d, error = %e\n", N, error);
 return(0);
```

Consult the entry for DM_VCMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vgevph

1. Function

This routine obtains all the eigenvalues and eigenvectors to solve a generalized eigenvalue problem.

$$Ax = \lambda Bx$$

where, **A** is an $n \times n$ real symmetric matrix and **B** is an $n \times n$ positive definite matrix.

2. Arguments

The routine is called as follows:

ierr =			k, n, (double*)b, epsz, nf, nl, ivec, &etol,
	&ctol, nev,	e, max	ne, (int*)m, (double*)ev, &icon);
where:			
a	double a[n][k]	Input	The upper triangular part $\{a_{ij} \mid i \le j\}$ of real symmetric matrix A is
			stored in the upper triangular part $\{a[i-1][j-1], i \le j\}$ of a.
			The value of a is not assured after operation.
k	int	Input	C fix dimension of matrix A . $(k \ge n)$
n	int	Input	Order n of matrix \mathbf{A} .
b	<pre>double b[n][k]</pre>	Input	The upper triangular part $\{b_{ij} i \le j\}$ of the positive definite symmetric
			matrix B is stored in the upper triangular part $\{b[i-1][j-1], i \le j\}$
			of b.
		Output	The LL ^T -decomposed matrix is stored.
			The upper triangular matrix L $\{l_{ij} i \le j\}$ is stored in the upper
			triangular part $\{b[i-1][j-1], i \le j\}$ of b.
epsz	double	Input	The zero judgment value of the pivot when B is LL^{T} -decomposed. (\geq
		-	0.0)
			When epsz is 0.0, the standard value is assumed.
nf	int	Input	Number assigned to the first eigenvalue to be acquired by numbering
		F	eigenvalues in ascending order. (Multiple eigenvalues are numbered so
			that one number is assigned to one eigenvalue.)
nl	int	Input	Number assigned to the last eigenvalue to be acquired by numbering
111	1110	трис	eigenvalues in ascending order. (Multiple eigenvalues are numbered so
			that one number is assigned to one eigenvalue.)
	1 m.t.	Innut	
ivec	int	Input	Control information.
			ivec = 1 if both the eigenvalues and eigenvectors are sought.
			ivec $\neq 1$ if only the eigenvalues are sought.

etol	double	Input	Criterion value for checking whether the eigenvalues are numerically different from each other or are multiple.
		Output	When etol is less than 3.0×10^{-16} this value is used as the standard value. See <i>Comments on use</i> .
ctol	double	Input	Criterion value for checking whether the adjacent eigenvalues can be considered to be approximately equal to each other. This value is used to assure the linear independence of the eigenvector corresponding to the eigenvalue belonging to approximately multiple eigenvalues (clusters). The value of ctol should be generally 5.0×10^{-12} . For a very large cluster, a large ctol value is required. $10^{-6} \ge \text{ctol} \ge \text{etol}$.
		Output	When condition $ctol > 10^{-6}$ occurs, $ctol$ is set to 10^{-6} . When condition $ctol < etol$ occurs, $ctol = 10 \times etol$ is set as the
nev	int nev[5]	Output	standard value. See <i>Comments on use</i> . Number of eigenvalues calculated. Details are given below.
			nev[0] indicates the number of different eigenvalues calculated. nev[1] indicates the number of approximately multiple different eigenvalues (different clusters) calculated. nev[2] indicates the total number of eigenvalues (including multiple eigenvalues) calculated.
			nev[3] indicates the number representing the first of the eigenvalues calculated. nev[4] indicates the number representing the last of the eigenvalues
е	double	Output	calculated. Eigenvalues. Stored in e[i-1], i = 1,, nev[2].
	e[maxne]	.	
maxne	int	Input	Maximum number of eigenvalues that can be computed. When it can be considered that there are two or more eigenvalues with multiplicity m , maxne must be set to a larger value than $nl - nf + l + 2 \times m$ that is bounded by n . When condition $nev[2] > maxne$ occurs, the eigenvectors cannot be calculated. See <i>Comments on use</i> .
m	<pre>int m[2][maxne]</pre>	Output	Information about multiplicity of eigenvalues calculated. $m[0][i-1]$ indicates the multiplicity of the <i>i</i> -th eigenvalue λ_i . $m[1][i-1]$ indicates the multiplicity of the <i>i</i> -th cluster when the
ev	double ev[maxne][k]	Output	adjacent eigenvalues are regarded as clusters. See <i>Comments on use</i> . When ivec = 1, the eigenvectors corresponding to the eigenvalues are stored in ev.
	C. Lundane J [K]		The eigenvectors are stored in ev[i-1][j-1], $i = 1,, nev[2], j = 1,, n$.
icon	int	Output	Condition code. See below.
The comple	ete list of condition codes	is:	

Code	Meaning	Processing
0	No error	Completed

Code	Meaning	Processing
20000	The pivot becomes negative at LL ^T	Discontinued.
	decomposition of matrix B . Matrix B is not	
	positive.	
20100	The pivot becomes relatively zero at LL ^T	
	decomposition of matrix B . Matrix B may be	
	singular.	
20200	During calculation of clustered eigenvalues, the	Discontinued. The eigenvectors cannot be
	total number of eigenvalues exceeded the value of	calculated, but the different eigenvalues
	maxne.	themselves are already calculated.
		A suitable value for maxne to allow calculation
		to proceed is returned in nev[2].
		See Comments on use.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• k <n< td=""><td></td></n<>	
	• nf < 1	
	• nl>n	
	• nl < nf	
	• maxne < nl - nf + 1	
	• epsz < 0	

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LL^T decomposition. In this case, processing is discontinued with icon = 20100. When unit round off is u, the standard value of epsz is 16u. When the computation is to be continued even if the pivot is small, assign, the minimum value to epsz. In this case, however, the result is not assured.

etol and ctol

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).

When $\varepsilon = \text{etol}$, the following condition is satisfied for consecutive eigenvalues λ_j $(j = s - 1, s, ..., s + k, (k \ge 0))$:

$$\frac{|\lambda_{i} - \lambda_{i-1}|}{1 + \max(|\lambda_{i-1}|, |\lambda_{i}|)} \le \varepsilon, \tag{1}$$

If formula (1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues λ_i (j = s - 1, s, ..., s + k) are numerically multiple.

The standard value of etol is 3.0×10^{-16} (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (1) is not satisfied when $\varepsilon = \text{etol}$, it can be considered that λ_{i-1} and λ_i are distinct eigenvalues.

When $\varepsilon = \text{etol}$, assume that consecutive eigenvalues λ_m (m = t - 1, t, ..., t + k ($k \ge 0$)) are different eigenvalues. Also, when $\varepsilon = \text{ctol}$, assume that formula (1) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t + k + 1. In this case, it is assumed that the distinct eigenvalues λ_m (m = t - 1, t, ..., t + k) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to λ_m (m = t - 1, t, ..., t + k) are reorthogonalized.

maxne

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20200 is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i-1], i=1, ..., nev[0]. The multiplicity of the corresponding eigenvalues is stored in m[0][i-1], i=1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be nt(nt = nl - nf + 1) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is m, the maxne value must be at least $nt + 2 \times m$.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

4. Example program

This example calculates the specified eigenvalues and eigenvectors of a generalized eigenvalue problem whose eigenvalues and eigenvectors are known.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
#define N 2000
#define K
           (N+1)
#define NF 1
#define NL N
#define MAXNE (NL-NF+1)
int MAIN__()
    double a[N][K], b[N][K], b2[N][K], c[N][K], d[N][K];
    double e[MAXNE], ev[MAXNE][K];
    double pai, coef, ctol, etol, epsz, temp;
    int
           nev[5], m[2][MAXNE];
           i, j, k, ivec, icon;
    pai = atan(1.0) * 4.0;
    coef = sqrt(2.0/(N+1));
    for (j=0; j<N; j++) {
     for (i=0; i<N; i++) {
```

```
d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
for (j=0; j<N; j++) \{
 /* B = LL^t , A <- LALt */
for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
   b[i][j] = 1.0/sqrt(1.0);
   b2[i][j] = min(i+1,j+1)/1.0;
}
for (j=0; j<N; j++) { for (k=N-1; k>=0; k--) {
   temp = a[j][k];
a[j][k] *= b[k][k];
   for (i=k+1; i<N; i++) {
     a[j][i] += temp*b[k][i];
  }
}
for (j=N-1; j>=0; j--) {
  temp = b[j][j];
  for (i=0; i<N; i++) {
   a[j][i] *= temp;
  for (k=0; k<j; k++) {
   temp=b[j][k];
for (i=0; i<N; i++) {
    a[j][i] += temp*a[k][i];
    }
  }
}
ivec
        = 1;
        = 1.0e-15;
etol
ctol
        = 1.0e-10;
epsz
        = 0;
c_dm_vgevph((double*)a, K, N, (double*)b2, epsz, NF, NL, ivec, &etol, &ctol,
           nev, e, MAXNE, (int*)m, (double*)ev, &icon);
for (i=0; i<nev[2]; i+=nev[2]/10) {
 printf("eigen value in e[%d] = %f\n", i, e[i]);
return(0);
```

Consult the entry for DM_VGEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vhevp

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of an *n*-dimensional Hermite matrix.

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.\tag{1}$$

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vhevp((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh,
                  maxne, (int*)m, (dcomplex*)zev, &icon);
where:
             dcomplex
                                      Input
                                                 The upper triangular part \{a_{ij} | i \le j\} of Hermite matrix A whose
za
                                                 eigenvalues and eigenvectors are to be calculated is stored in the upper
             za[n][k]
                                                 triangular part \{za[i-1][j-1], i \le j\} of za. The value of a is not
                                                 assured after operation.
                                      Input
                                                 C fix dimension of matrix A. (k \ge n)
k
             int
             int
                                      Input
                                                 Order n of matrix A.
n
                                                 Number assigned to the first eigenvalue to be acquired by numbering
             int
                                      Input
nf
                                                 eigenvalues in ascending order. (Multiple eigenvalues are numbered so
                                                 that one number is assigned to one eigenvalue.)
                                                 Number assigned to the last eigenvalue to be acquired by numbering
nl
             int
                                      Input
                                                 eigenvalues in ascending order. (Multiple eigenvalues are numbered so
                                                 that one number is assigned to one eigenvalue.)
ivec
             int
                                      Input
                                                 Control information.
                                                 ivec = 1 if both the eigenvalues and eigenvectors are sought.
                                                 ivec \neq 1 if only the eigenvalues are sought.
             double
                                      Input
                                                 Criterion value for checking whether the eigenvalues are different from
etol
                                                 each other or equal to each other.
                                                 When etol is less than 3\times10^{-16}, this value is used as the standard
                                      Output
                                                 value.
                                                 See Comments on use.
             double
                                                 Criterion value for checking whether the adjacent eigenvalues are
ctol
                                      Input
                                                 approximately equal to each other. ctol is used to assure the linear
                                                 independence of the eigenvector corresponding to the eigenvalue
                                                 belonging to approximately multiple eigenvalues (clusters).
                                                 The ctol value should generally be 5.0 \times 10^{-12}. For a very large cluster,
                                                 a large ctol value is required.
                                                 10^{-6} \ge \text{ctol} \ge \text{etol}.
```

		Output	When condition $ctol > 10^{-6}$ occurs, $ctol$ is set to 10^{-6} .
			When condition $ctol < etol$ occurs, $ctol = 10 \times etol$ is set as the
			standard value. See Comments on use.
nev	int nev[5]	Output	Number of eigenvalues calculated.
			Details are given below.
			nev[0] indicates the number of different eigenvalues calculated.
			nev[1] indicates the number of approximately multiple different
			eigenvalues (different clusters) calculated.
			nev[2] indicates the total number of eigenvalues (including multiple
			eigenvalues) calculated.
			nev[3] indicates the number representing the first of the eigenvalues
			calculated.
			nev[4] indicates the number representing the last of the eigenvalues
			calculated.
eh	double	Output	Eigenvalues. Stored in $eh[i-1]$, $i = 1,, nev[2]$.
	eh[maxne]		
maxne	int	Input	Maximum number of eigenvalues that can be computed. See Comments
			on use.
m	int	Output	Information about the multiplicity of eigenvalues calculated.
	m[2][maxne]		$m[0][i-1]$ indicates the multiplicity of the <i>i</i> -th eigenvalue λ_i
			calculated.
			m[1][i-1] indicates the multiplicity of the <i>i</i> -th cluster calculated
			when the adjacent eigenvalues are regarded as approximately multiple
			eigenvalues (clusters).
zev	dcomplex	Output	When ivec = 1, the eigenvectors corresponding to the eigenvalues are
	zev[maxne][k]		stored in zev.
			The eigenvectors are stored in zev[$i-1$][$j-1$], $i=1,$, nev[2],
			j = 1,,n.
icon	int	Output	Condition code. See below.
The comple	ete list of condition codes	is.	

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	During calculation of clustered eigenvalues, the	Discontinued. The eigenvectors cannot be
	total number of eigenvalues exceeded maxne.	calculated, but the different eigenvalues
		themselves are already calculated.
		A suitable value for maxne to allow calculation
		to proceed is returned in nev[2].
		See Comments on use.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• k <n< td=""><td></td></n<>	
	• nf < 1	
	• nl > n	
	• nl < nf	
	• $maxne < nl - nf + 1$	

etol and ctol

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).

When $\varepsilon = \text{etol}$, the following condition is satisfied for consecutive eigenvalues λ_j $(j = s - 1, s, ..., s + k, (k \ge 0))$:

$$\frac{|\lambda_i - \lambda_{i-1}|}{1 + \max(|\lambda_{i-1}|, |\lambda_i|)} \le \varepsilon,$$
(2)

If formula (2) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues λ_i (j = s - 1, s, ..., s + k) are numerically multiple.

The standard value of etol is 3.0×10^{-16} (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (2) is not satisfied when $\varepsilon = \text{etol}$, it can be considered that λ_{i-1} and λ_i are distinct eigenvalues.

When $\varepsilon = \text{etol}$, assume that consecutive eigenvalues λ_m (m = t - 1, t, ..., t + k ($k \ge 0$)) are different eigenvalues. Also, when $\varepsilon = \text{ctol}$, assume that formula (2) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t + k + 1. In this case, it is assumed that the distinct eigenvalues λ_m (m = t - 1, t, ..., t + k) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to λ_m (m = t - 1, t, ..., t + k) are reorthogonalized.

maxne

The maximum number of eigenvalues calculated can be specified in maxne. When the ctol value is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the maxne value. In this case, decrease the ctol value or increase the maxne value.

If the total number of eigenvalues calculated exceeds the maxne value, icon = 20000 is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in eh[i-1], i=1, ..., nev[0]. The multiplicity of the corresponding eigenvalues is stored in m[0][i-1], i=1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be nt(nt = n1-nf+1) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is m, the maxne value must be at least $nt + 2 \times m$.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

```
#include <stdio.h>
```

```
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */
#define N
                        512
#define K
                         N
#define NF
                          1
#define NL
                         28
#define MAXNE
                   NL-NF+1
MAIN__()
 dcomplex za[N][K], zev[MAXNE][K];
 double
           eh[MAXNE];
 double
           etol, ctol;
           nev[5], m[2][MAXNE];
 int
           ierr, icon;
  int
           i, j, k, n, nf, nl, maxne, ivec;
        = N;
 n
 k
        = K;
 nf
        = NF;
 nl
        = NL;
  ivec = 1;
 maxne = MAXNE;
 etol = 1.0e-14;
ctol = 5.0e-12;
 printf("Number of data points = %d\n", n);
 printf(" Parameter k = %d\n", k);
 printf(" Eigenvalue calculation tolerance = %12.4e\n", etol);
 printf(" Cluster tolerance = %12.4e\n", ctol);
 printf(" First eigenvalue to be found is %d\n", nf);
 printf(" Last eigenvalue to be found is %d\n", nl);
  /* Set up real and imaginary parts of matrix in AR and AI */
 for(i=0; i<n; i++) {
    for(j=0; j<n; j++) {
      za[i][j].re = (double)(i+j+2)/(double)n;
      if(i==i) {
        za[i][j].im = 0.0;
        za[i][j].re = (double)(j+1);
      } else
        za[i][j].im = (double)((i+1)*(j+1))/(double)(n*n);
      }
   }
  for(i=0; i<n; i++) {
    for(j=0; j<n; j++)
     if(i > j) za[i][j].im = -za[i][j].im;
  /* Call complex eigensolver */
  ierr = c_dm_vhevp ((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh,
                  maxne, (int*)m, (dcomplex*)zev, &icon);
  if (icon > 20000) {
   printf("ERROR: c_dm_vhevp failed with icon = %d\n", icon);
    exit(1);
 printf("icon = %i\n", icon);
/* print eigenvalues */
 printf("Number of Hermitian eigenvalues = %d\n", nev[2]);
  printf(" Eigenvaluse of complex Hermitian matrix\n");
  for(i=0; i<nev[2]; i++) {
   printf(" eh[%d] = %12.4e\n", i, eh[i]);
 return(0);
```

Consult the entry for DM VHEVP in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [57].

c_dm_vhtrid

Tridiagonalization of Hermite matrices			
<pre>ierr = c_dm_vhtrid(za, k, n, d, sl, zs,</pre>			
&icon);			

1. Function

This routine reduces an Hermite matrix into an Hermite tridiagonal matrix and this matrix is transformed into a real tridiagonal matrix using diagonal unitary transform.

$$H = P^*AP$$
$$T = V^*HV$$

A is an $n \times n$ Hermite matrix, **P** is an $n \times n$ unitary matrix. **V** is an $n \times n$ diagonal unitary matrix and **T** is a real tridiagonal matrix.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vhtrid((dcomplex*)za, k, n, d, sl, zs, &icon);
```

where	:
where	:

za	dcomplex	Input	The upper triangular part $\{a_{ij} i \le j\}$ of Hermite matrix A is stored in the
	za[n][k]		upper triangular part $\{za[i-1][j-1], i \le j\}$ of za.
		Output	The information on Householder transforms used for Hermite
			tridiagonalization is stored in the upper triangular part
			$\{za[i-1][j-1], i \le j\}$ of za. The values in the lower triangular part
			of za is not assured after operation.
			See Comments on use.
k	int	Input	C fixed dimension of matrix $za.(k \ge n)$
n	int	Input	Order n of Hermite matrix \mathbf{A} .
d	double d[n]	Output	The diagonal elements of the reduced tridiagonal matrix are stored.
sl	double sl[n]	Output	The subdiagonal elements of reduced tridiagonal matrix are stored in
			sl[i-1], i=2,,n. $sl[0] = 0.$
zs	dcomplex zs[n]	Output	Diagonal elements of the diagonal unitary matrix are stored in zs[i-
			1], $i=1,,n$.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	k < n, n < 2.	Processing is discontinued.

za

Hermite tridiagonalization is performed by the repeated transforms varying k = 1, ..., n-2.

$$\mathbf{A}^k = \mathbf{P}_k^* \mathbf{A}^{k-1} \mathbf{P}_k , \quad \mathbf{A}^0 = \mathbf{A}$$

Put $\mathbf{b}^{T} = (0, ..., 0, \mathbf{A}^{k}(k+1, k), ..., \mathbf{A}^{k}(n, k)) \cdot (\mathbf{A}^{k-1}(i, j))$ means i, j element of \mathbf{A}^{k-1}

$$\mathbf{b}^{\mathrm{T}} = (0, \dots, 0, b_{k+1}, \dots, b_n)$$

$$\mathbf{b}^* \cdot \mathbf{b} = S^2 \text{ and put } \mathbf{w}^T = (0, \dots, 0, \ b_{k+1} \left(1 + \frac{|S|}{|b_{k+1}|} \right), \ b_{k+2}, \dots, b_n).$$

Then the transform matrix is represented as follows.

$$\mathbf{P}_k = \mathbf{I} - \alpha \mathbf{w} \cdot \mathbf{w}^*, \ \alpha = \frac{1}{\mathbf{S}^2 + |b_{k+1}\mathbf{S}|}$$

 $\mathbf{w}(i-1)$ (i=k+1, ..., n) and α are stored in za[k-1][i-1] and za[k-1][k-1] respectively.

4. Example program

This example calculates the tridiagonalization of a Hermite matrix with the known eigenvalues.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define N
                           2000
#define K
                           Ν
#define NE
                           Ν
#define MAX NEV
                           NE
MAIN__()
    dcomplex a[N][K],b[N][K],c[N][K],d[N][K],dh[N][K];
    dcomplex alpha, beta, tr[N];
             eval[MAX_NEV],evec[MAX_NEV][K],dd[N],sld[N],sud[N];
    double
    double
              pai2, coef, part1, part2, eval_tol, clus_tol;
    int
              nev[5], mult[2][MAX_NEV];
    int
               i, j, k, n, nf, nl, ivec, icon ,in, im, ik;
    n
          = N;
          = K;
    pai2 = 8.0 * atan(1.0);
    coef = sqrt(1.0/(N));
    for (j=0; j<N; j++) {
      for (i=0; i<N; i++) {
  part1 = coef * cos(pai2/N*i*j);
  part2 = coef * sin(pai2/N*i*j);
         d[i][j].re = part1;
         d[i][j].im = part2;
        dh[i][j].re = part1;
dh[i][j].im = -part2;
    for (j=0; j< N; j++) {
       for (i=0; i< N; i++) {
        if (i == j) {
  c[i][j].re = (double)(i+1);
           c[i][j].im = 0.0;
```

```
else {
    c[i][j].re = 0.0;
         c[i][j].im = 0.0;
     }
   }
    /* d x c -> b */
   for (im=0; im<N; im++) \{
     for (in=0; in<N; in++) {
       b[im][in].re = 0.0;
       b[im][in].im = 0.0;
     for (ik=0; ik<N; ik++) {
       for (in=0; in<N; in++)
         b[im][in].re = b[im][in].re + d[im][ik].re * c[ik][in].re
- d[im][ik].im * c[ik][in].im;
         b[im][in].im = b[im][in].im + d[im][ik].re * c[ik][in].im
+ c[ik][in].re * d[im][ik].im;
       }
     }
   }
   /* b x dh -> a */
   for (im=0; im<N; im++) {
     for (in=0; in<N; in++) {
       a[im][in].re = 0.0;
       a[im][in].im = 0.0;
     for (ik=0; ik<N; ik++) {
       for (in=0; in<N; in++)
         a[im][in].re = a[im][in].re + b[im][ik].re * dh[ik][in].re
- b[im][ik].im * dh[ik][in].im;
         a[im][in].im = a[im][in].im + b[im][ik].re * dh[ik][in].im
+ dh[ik][in].re * b[im][ik].im;
     }
   }
   c_dm_vhtrid((dcomplex*)a, K, N, dd, sld, tr, &icon);
   if (icon != 0) {
     printf(" icon of c_dm_vhtrid =%d\n", icon);
     exit(0);
   for (i=1; i<N; i++) {
     sud[i-1]=sld[i];
   sud[N-1]=0.0;
   nf=1;
   nl=N;
   ivec=0;
   eval_tol=1.0e-15;
   clus_tol=1.0e-10;
   for (i=0; i< NE; i=i+N/20) {
     printf("eigen value in eval(%d) = %f\n",i+1,eval[i]);
   return(0);
}
```

Consult the entry for DM VHTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vjdhecr

Eigenvalues and eigenvectors of an Hermitian sparse matrix(Jacobi-Davidson method, compressed row storage method)

```
ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n,
  itrgt, dtrgt, nsel, &nev, itmax,
  &iter, iflag, dprm, deval, zevec, kv, dhis,
  kh, &icon);
```

1. Function

This routine computes a few of selected eigenvalues and corresponding eigenvectors of an Hermitian sparse eigenvalue problem

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

using the Jacobi-Davidson method, where \mathbf{A} is an $n \times n$ Hermitian sparse matrix, the lower triangular part of which is stored using the compressed row storage method, and \mathbf{x} is an n-dimensional vector.

2. Arguments

The routine is called as follows:

where:			
zh	dcomplex	Input	The non-zero elements of the lower triangular part of the sparse matrix
	zh[nz]		A are stored.
			For the compressed row storage method, refer to Figure c_dm_vjdhecr-1.
nz	int	Input	The total number of the nonzero elements which belong to the lower
			triangular part of the matrix A .
ncol	<pre>int ncol[nz]</pre>	Input	The column indices used in the compressed row storage method, which
			indicate the column number of each nonzero element stored in the array
			zh.
nfrnz	<pre>int nfrnz[n+1]</pre>	Input	The position of the first nonzero element of each row stored in the array
			zh in the compressed row storage method which stores the lower part
			of the nonzero elements row by row. Specify $nfrnz[n] = nz + 1$.
n	int	Input	Order n of matrix \mathbf{A} .
itrgt	int	Input	Select a way of specifying the eigenvalues to be sought
			$(0 \le itrgt \le 4)$.
			Specify itrgt = 0 to compute eigenvalues closest to a target value
			dtrgt.
			Specify itrgt = 1 to compute eigenvalues with largest magnitude.
			Specify itrgt = 2 to compute eigenvalues with smallest magnitude.

	 τI)V> when dprm[2] = 1 which indicates that the harmonic algorithm is to be used. See Comments on use. When dprm[8] ≥ 1, the value τ is used as an approximated eigenvalue in the Jacobi-Davidson correction equation while the initial phase of the iteration is proceeding. See Comments on use. When dprm[14] ≥ 1, the value τ is used as a shift value of the preconditioner for the Jacobi-Davidson correction equation. See Comments on use. In other cases, dtrgt is not referred in this routine.
Input	The number of eigenvalues to be computed $(1 \le nsel \le n)$. See <i>Comments on use.</i>
Output	The number of eigenvalues converged.
-	Upper limit of iterative count for the Jacobi-Davidson method (≥ 0).
-	Actual iterative count for the Jacobi-Davidson method.
Input	Control information array specifying whether the auxiliary parameter is specified explicitly in dprm array. When $iflag[i] \neq 0$, the parameter specified in dprm[i] is to be
	used. When $iflag[i] = 0$, a default parameter is used and $dprm[i]$ is not referred. Set $iflag[15]$ to [31] to be all zero since these area are preserved for future enhanced functionality.
Input	Auxiliary parameters are specified as for the iflag[i] denotes that the user specified value is to be used. For definition of each parameter in the algorithm, see "Method" of DM_VJDHECR in the Fortran <i>SSL II Thread-Parallel Capabilities</i> User's Guide If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are not referred and default parameters are used. Changing the parameter is recommended when the iteration did not converge with default parameters. dprm[0]: The dimension m_{\min} of shrunk subspace when restarting $(1 \le m_{\min} < n).$ The default value is $m_{\max} = 50.$ dprm[1]: Upper limit of the dimension m_{\max} of subspace $(m_{\min} < m_{\max} \le n)$. The default value is $m_{\max} = m_{\min} + 30.$ See $Comments$ on Use . dprm[2]: The type of the algorithm, which is associated with setting of a test subspace. When dprm[2] = 0, the standard algorithm is
((() () () () () () () () ()	Output Output Output Input

extreme eigenvalues in the spectrum.

When dprm[2] = 1, the harmonic algorithm is adopted. The algorithm is appropriate for seeking the internal eigenvalues in the spectrum.

The default value is the harmonic algorithm for itrgt = 0 or 2, or the standard algorithm in other cases.

- dprm[3]: The criterion value for judgment of acceptable convergence. The default value is 10⁻⁶. See *Comments on use*.
- dprm[4]: The way how to calculate the residual norm with respect to the approximated eigenvalue θ and eigenvector \mathbf{u} .

When dprm[4] = 0, the residual norm relative to the absolute value of approximated eigenvalue $|\mathbf{A}\mathbf{u} - \theta\mathbf{u}|/|\theta|$ is adopted.

When dprm [4] = 1, the residual norm relative to the 1-norm of the matrix $|\mathbf{A}\mathbf{u} - \theta\mathbf{u}|/|\mathbf{A}|_1$ is adopted.

When dprm[4] = 2, the residual norm relative to the Frobenius norm of the matrix $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|/|\mathbf{A}|_F$ is adopted. When dprm[4] = 3, the residual norm relative to the infinity-norm of the matrix $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|/|\mathbf{A}|_{\infty}$ is adopted. When dprm[4] = 4, the absolute residual norm $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|$ is adopted.

The default is dprm[4] = 0. See *Comments on use*.

- dprm[5]: A criterion value for a delay-deflation scheme (≤ 1.0). The default value is dprm[5] = 0.9. See *Comments on use*.
- dprm[6]: Control information indicating whether the iteration is
 started from a vector specified in the array
 zevec[0][i-1], i = 1, ..., n.
 When dprm[6] = 0, the iteration is started from a
 random vector generated in this routine internally.
 When dprm[6] = 1, set an initial vector in the array
 zevec[0][i-1], i = 1, ..., n.
 The default setting is using a random vector.
- dprm[7]: A seed to generate a random vector (≥ 1.0). The default value is 1.
- dprm[8]: While the iteration count is less or equal to dprm[8], the process is regarded as an initial phase of the iteration. Then the fixed value of τ is used as an approximated eigenvalue instead of the value of θ in the Jacobi-Davidson correction equation.

 When dprm[2] = 0, the default value is dprm[8] =

When dprm[2] = 1, the default value is dprm[8] = m_{max} . See *Comments on use*.

dprm[9]: The method to solve the Jacobi-Davidson correction equation.

When dprm[9] = 0, t=r is set without using the correction equation.

When dprm[9] = 1, the GMRES method is adopted. When dprm[9] = 2, the BiCGstab(L) method is adopted.

When dprm[9] = 11, the MINRES method is adopted. The default is using the MINRES method. See *Comments on use*.

dprm[10]: A parameter for the solver of the correction equation.

When the BiCGstab(L) is used, specify the value of L (≤ 10). The default value is 4.

dprm[11]: Upper limit of the iteration count of the solver for the Jacobi-Davidson correction equation (≥ 1). The default value is 30.

dprm[12]: A parameter to determine the stopping criterion for the iterative solver of the correction equation (> 0.0).

The default value is 0.7. See *Comments on use*.

dprm[13]: A parameter to determine the stopping criterion for the iterative solver of the correction equation (0.0 < dprm[13] \leq 1.0). The stopping criterion is set to dprm[12] \times dprm[13]^l, where l is an iteration counter of the outer loop which is reset in each deflation.

The default value is 0.7. See Comments on use.

 $\mathtt{dprm}[14]$: The type of preconditioning of the correction equation (≤ 1).

When dprm[14] = 0, no preconditioning is used. When dprm[14] = 1, the diagonal left preconditioning is exploited. See *Comments on use*. The default is dprm[14] = 0.

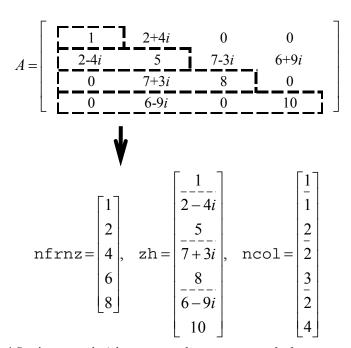
dprm[15] to [31]: Preserved area for future enhanced functionality.

deva	ıl double	Output	Detected eigenvalues are stored in deval[$i-1$], $i = 1,, nev$.	
	deval[nse]	l]		
zeve	ec dcomplex	Output	Detected eigenvectors are stored in zevec [i-1][j-1], i = 1,,	
	zevec[nse]	l][kv]	nev, $j = 1,, n$.	
		Input	Set the initial vector in zevec[$i-1$][$j-1$], $i = 1,, nev, j = 1$	
			1,, n when iflag[6] \neq 0 and dprm[6] = 1.0.	
kv	int	Input	C fixed dimension of array zevec $(\geq n)$.	
dhis	double	Output	The convergence history of the residuals of the eigenproblem are stored	
0.22	acabic	- · · I · · ·		
01111	dhis[2][kh	•	in dhis[0][i-1], i = 1,, $min(kh, iter)$. The final relative	
322		•	in dhis[0][i-1], $i = 1,, min(kh, iter)$. The final relative residual norm of the each correction equation are stored in	
		•		
kh		•	residual norm of the each correction equation are stored in	
	dhis[2][kh	n]	residual norm of the each correction equation are stored in dhis[1][$i-1$], $i = 1,, min(kh, iter)$.	
	dhis[2][kh	n]	residual norm of the each correction equation are stored in $\label{eq:correction} \begin{split} &\text{dhis[1][i-1], i=1,, } \textit{min}(\texttt{kh, iter}). \\ &\text{C fixed dimension of array dhis } (\geq 0). \\ &\text{Setting kh=itmax is enough.} \end{split}$	

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
1000	Breakdown occurred in the iterative linear	Processing is continued with the approximated
	equations solver.	solution until the point.
2000	A null vector is detected in a sort of process of the	Processing is continued with the subspace
	orthogonalization.	expanded by a random vector.
3000	A recovery procedure is activated in a sort of	Processing is continued.
	restorative process of the delay deflation.	
10000	The iteration count reached the maximum limit	The calculated eigenpairs up to nev are correct.
	before nsel-th eigenvalue is obtained.	

Code	Meaning	Processing
20000	The projected dense eigenproblem can not be	Processing is discontinued.
	solved.	The calculated eigenpairs up to nev are correct if
		nev>0.
21000	The iteration count reached the maximum limit	Processing is discontinued.
	without a single convergence.	The approximate values obtained up to this point
		are output in array deval[0] and
		zevec[0][0] to [0][n-1], but their
		precision cannot be guaranteed.
29000	An internal error occurred.	Processing is discontinued.
30000	One of the following has occurred:	
	• n<1	
	• itrgt < 0	
	• itrgt>4	
	• nsel < 1	
	• nsel>n	
	• itmax < 0	
	• kv <n< td=""><td></td></n<>	
	• $kh < 0$.	
30001 to	The value of iflag or dprm is not correct.	
30032		
31000	The value of nz, ncol or nfrnz is not correct.	



 $Figure\ c_dm_vjdhecr\text{-}1\ Storing\ a\ matrix\ A\ in\ compressed\ row\ storage\ method$

Robustness of the Jacobi-Davidson algorithm

The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified. This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters, refer to "Comments on use."

ITRGT and **DTRGT** parameter

The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by setting iflag[2] $\neq 0$ is prior to the default value of course. Which means that the standard algorithm can be used with itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its adaptivity.

Note that the dtrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude. Define the dtrgt to be 0.0 if other appropriate value is not known.

Calculating the residual norm

In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to absolute value of the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the matrix, however, it is difficult to satisfy the convergence condition $|\mathbf{A}\mathbf{u}-\partial\mathbf{u}|/|\theta| < \text{dprm}[3]$. In that case, adjust the convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by dprm[4] parameter.

Delay deflation procedure

This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the residual remains valid. This procedure is called *delay-deflation* here. The decrease ratio is regarded valid if the ratio of the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary convergence criterion.

Approximated eigenvalue in the correction equation

In the initial few steps of the process, the values of θ are usually poor approximations of the wanted eigenvalue. This routine takes the target value τ specified in the dtrgt as an approximated eigenvalue instead of θ in the initial phase, since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-Davidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less than or equal to dprm[8]. However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is adopted, because it is difficult to determine a value of τ in advance when the standard algorithm is specified.

Stopping criterion for inner iteration

The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed, and in the inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The criterion is set to be $dprm[12] \times dprm[13]^l$, where l is the outer iteration counter which is reset to zero at each deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

Precondition for the correction equation

It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The preconditioner to be applied is controlled by the parameter $\mathtt{dprm[14]}$ in this routine. Note that the value of DTRGT is used for constructing a matrix $M \cong (A - \tau I)$, which approximates a part of the coefficient matrix in some way. The preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner does not approximate the coefficient matrix of the correction equation properly or the parameter \mathtt{dtrgt} is far from the seeking eigenvalue, the convergence may deteriorate. Additionally, $\mathtt{dprm[9]}$ must specify a kind of the iterative method that is applicable to nonsymmetric linear systems, because the coefficient matrix becomes nonsymmetric with a left preconditioner adopted in this routine.

Memory usage

This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when the available area of the memory runs out. The necessary size for the outer iteration is at least $n \times (2 \times m_{\text{max}} + 2 \times \text{nsel}) \times 16$ bytes for the standard algorithm and $n \times (3 \times m_{\text{max}} + 2 \times \text{nsel}) \times 16$ bytes for the harmonic algorithm. And when the GMRES method is used as the solver of the correction equation, the additional necessary area is $n \times \text{dprm}[11] \times 16$ bytes for the inner iteration.

4. Example program

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ are sought, where \mathbf{A} is a 10000×10000 example Hermitian matrix of the random sparsity pattern with about 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "cssl.h"
#define
            NMAX 10000
#define
            NZC 20
#define
            NNZMAX NMAX*NZC
#define
            LDK 10
        mkspmat(int, int, dcomplex*, int*, int*);
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
dcomplex d_c_mult(dcomplex, double);
```

```
int MAIN__() {
  static dcomplex zh[NNZMAX], zevec[LDK][NMAX];
  dcomplex rvec[NMAX], zw[NMAX], zh_w;
  double dtrgt, deval[LDK], derr, dprm[32], dhis[2][NMAX];
  int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt;
  int iflag[32], nsel, nev, itmax, iter, ldx, ldh, icon;
int i, j, k, ncolj;
 n = NMAX;
 mkspmat(n, NZC, zh, ncol, nfrnz);
 nz = nfrnz[n] - 1;
  itmax = 500;
  nsel = 10;
  for (i = 0; i < 32; i++) {
   iflag[i] = 0;
  idx = NMAX;
  ldh = NMAX;
 dtrqt = 0.0;
 itrqt = 1;
 deval, (dcomplex *)zevec, ldx, (double *)dhis, ldh, &icon);
 printf(" C_DM_VJDHECR ICON= %d\n", icon);
 printf(" ITER= %d\n", iter);
  for (k = 0; k < nev; k++)
#pragma omp parallel private(i, j, ncolj, zw, zh_w)
    for (i = 0; i < n; i++) {
      zw[i].re = 0.0;
      zw[i].im = 0.0;
#pragma omp for
    for (i = 0; i < n; i++) {
      rvec[i].re = 0.0;
      rvec[i].im = 0.0;
      for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) {
  ncolj = ncol[j] - 1;</pre>
        rvec[i] = comp_add(rvec[i], comp_mult(zh[j], zevec[k][ncolj]));
        if (i != ncolj) {
          zh_w = zh[j];
          zh_w.im = -zh_w.im;
zw[ncolj] = comp_add(zw[ncolj], comp_mult(zh_w, zevec[k][i]));
        }
      }
    }
#pragma omp critical
   for (i = 0; i < n; i++) {
     rvec[i] = comp_add(rvec[i], zw[i]);
}
    derr = 0.0;
    for (i = 0; i < n; i++) {
     rvec[i] = comp_sub(rvec[i], d_c_mult(zevec[k][i], deval[k]));
derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
    derr = sqrt(derr);
   printf(" EIGEN VALUE %d =%18.14lf\n", k+1, deval[k]);
printf(" ERROR= %22.16le\n", derr/fabs(deval[k]));
 return(0);
int mkspmat(int n, int nzc, dcomplex *zh, int *ncol, int *nfrnz) {
#define LDW 1350
 int i, ic, ict, j, k, iseed, icon, nnz;
double *dwork, rndwork[LDW];
 dwork = (double *)malloc(nzc * sizeof(double));
 iseed = 1;
 nnz = 0;
  for (i = 1; i <= n; i++) {
   nfrnz[i-1] = nnz + 1;
label_10: c_dvrau4(&iseed, dwork, nzc, rndwork, LDW, &icon);
    ic = 0;
```

```
for (j = 1; j <= nzc; j++) {
  ict = n * fabs(dwork[j-1]) + 1;</pre>
       if (ict <= i) {
         for (k = 1; k <= ic; k++) {
  if (ict == ncol[nnz - k]) {
             nnz = nnz - ic;
             goto label_10;
           }
         ic++;
         ncol[nnz] = ict;
         nnz++;
    }
  nfrnz[n] = nnz + 1;
  iseed = 1;
  c_dvran4(0.0, 1.0, &iseed, (double *)zh, 2 * nnz, rndwork, LDW,
      &icon);
  for (i = 0; i < n; i++) {
  for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) {
    if (i == ncol[j]-1) {</pre>
         zh[j].re = zh[j].re + zh[j].im;
zh[j].im = 0.0;
       }
    }
  free(dwork);
  return(0);
dcomplex comp_add(dcomplex so1, dcomplex so2) {
  dcomplex obj;
  obj.re = sol.re + so2.re;
  obj.im = sol.im + so2.im;
  return obj;
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
  dcomplex obj;
  obj.re = sol.re - so2.re;
  obj.im = sol.im - so2.im;
  return obj;
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
  dcomplex obj;
  obj.re = sol.re * so2.re - sol.im * so2.im;
  obj.im = sol.re * so2.im + sol.im * so2.re;
  return obj;
dcomplex d_c_mult(dcomplex so1, double so2) {
  dcomplex obj;
  obj.re = sol.re * so2;
  obj.im = sol.im * so2;
  return obj;
```

Consult the entry for DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

c_dm_vjdnhcr

Eigenvalues and eigenvectors of a complex sparse matrix(Jacobi-Davidson method, compressed row storage method)

```
ierr = c_dm_vjdnhcr(za, nz, ncol, nfrnz, n,
  itrgt, ztrgt, nsel, &nev, itmax, &iter,
  iflag, dprm, zeval, zevec, kv, dhis, kh,
  &icon);
```

1. Function

This routine computes a few of selected eigenvalues and corresponding eigenvectors of a complex sparse eigenvalue problem

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

using the Jacobi-Davidson method, where **A** is an $n \times n$ complex sparse matrix stored using the compressed row storage method and x is an n-dimensional vector.

2. Arguments

The routine is called as follows:

	mi, arcon,		
where:			
za	dcomplex	Input	The non-zero elements of the sparse matrix ${\bf A}$ are stored.
	za[nz]		For the compressed row storage method, refer to Figure c_dm_vjdnhcr-1.
nz	int	Input	The total number of the nonzero elements of the matrix \mathbf{A} .
ncol	<pre>int ncol[nz]</pre>	Input	The column indices used in the compressed row storage method, which
			indicate the column number of each nonzero element stored in the array
			za.
nfrnz	<pre>int nfrnz[n+1]</pre>	Input	The position of the first nonzero element of each row stored in the array
			za in the compressed row storage method which stores the nonzero
			elements row by row. Specify $nfrnz[n] = nz + 1$.
n	int	Input	Order n of matrix \mathbf{A} .
itrgt	int	Input	Select a way of specifying the eigenvalues to be sought ($0 \le i trgt \le$
			6).
			Specify $itrgt = 0$ to compute eigenvalues closest to a target value
			ztrgt.
			Specify itrgt = 1 to compute eigenvalues with largest magnitude.
			Specify $itrgt = 2$ to compute eigenvalues with smallest magnitude.
			Specify itrgt = 3 to compute eigenvalues with largest real part.

Specify itrgt = 4 to compute eigenvalues with smallest real part.

ztrgt	dcomplex	Input	 Specify itrgt = 5 to compute eigenvalues with largest imaginary part. Specify itrgt = 6 to compute eigenvalues with smallest imaginary part. See Comments on use. The target value τ is specified as a complex variable when itrgt = 0. In the following cases, the convergence might be improved by specifying a value near the seeking eigenvalue even when itrgt ≠ 0. 1) The value τ is used as a shift of the test subspace <w> = <(A - τI)V> when dprm[2] = 1 which indicates that the harmonic algorithm is to be used. See Comments on use.</w> 2) When dprm[8] ≥ 1, the value τ is used as an approximated eigenvalue in the Jacobi-Davidson correction equation while the initial phase of the iteration is proceeding. See Comments on use. 3) When dprm[14] ≥ 1, the value τ is used as a shift value of the preconditioner for the Jacobi-Davidson correction equation. See Comments on use. In other cases, ztrgt is not referred in this routine.
nsel	int	Input	The number of eigenvalues to be computed ($1 \le nsel \le n$). See
	int	Output	Comments on use.
nev itmax	int	Output Input	The number of eigenvalues converged. Upper limit of iterative count for the Jacobi-Davidson method (≥ 0).
iter	int	Output	Actual iterative count for the Jacobi-Davidson method.
iflag	int iflag[32]	Input	Control information array specifying whether the auxiliary parameter is
			specified explicitly in dprm array. When iflag[i] \neq 0, the parameter specified in dprm[i] is to be used. When iflag[i] = 0, a default parameter is used and dprm[i] is not referred. Set iflag[15] to [31] to be all zero since these area are preserved for future enhanced functionality.
dprm	double dprm[32]	Input	Auxiliary parameters are specified as for the iflag [i] denotes that the user specified value is to be used. For definition of each parameter in the algorithm, see "Method" of DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities User's Guide If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are not referred and default parameters are used. Changing the parameter is recommended when the iteration did not converge with default parameters. dprm[0]: The dimension m_{\min} of shrunk subspace when restarting $(1 \le m_{\min} < n).$ The default value is $m_{\min} = 50$. dprm[1]: Upper limit of the dimension m_{\max} of subspace $(m_{\min} < m_{\max} \le n)$. The default value is $m_{\max} = m_{\min} + 30$.
			See Comments on use. dprm[2]: The type of the algorithm, which is associated with setting of a test subspace. When dprm[2] = 0, the standard algorithm is adopted. The algorithm is appropriate for seeking the

extreme eigenvalues in the spectrum.

When dprm[2] = 1, the harmonic algorithm is

adopted. The algorithm is appropriate for seeking the internal eigenvalues in the spectrum.

The default value is the harmonic algorithm for itrgt = 0 or 2, or the standard algorithm in other cases.

- dprm[3]: The criterion value for judgment of acceptable convergence. The default value is 10⁻⁶. See *Comments on use*.
- dprm[4]: The way how to calculate the residual norm with respect to the approximated eigenvalue θ and eigenvector u.

When dprm[4] = 0, the residual norm relative to the absolute value of approximated eigenvalue $|\mathbf{A}\mathbf{u} - \theta\mathbf{u}|/|\theta|$ is adopted.

When dprm[4] = 1, the residual norm relative to the 1-norm of the matrix $|\mathbf{A}\mathbf{u} - \theta\mathbf{u}|/|\mathbf{A}|_1$ is adopted.

When dprm[4] = 2, the residual norm relative to the Frobenius norm of the matrix $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|/|\mathbf{A}|_F$ is adopted. When dprm[4] = 3, the residual norm relative to the infinity-norm of the matrix $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|/|\mathbf{A}|_{\infty}$ is adopted. When dprm[4] = 4, the absolute residual norm $|\mathbf{A}\mathbf{u}-\theta\mathbf{u}|$ is adopted.

The default is dprm[4] = 0. See *Comments on use*.

- dprm[5]: A criterion value for a delay-deflation scheme (≤ 1.0). The default value is dprm[5] = 0.9. See Comments on use.
- dprm[6]: Control information indicating whether the iteration is
 started from a vector specified in the array
 zevec[0][i-1], i = 1, ..., n.
 When dprm[6] = 0, the iteration is started from a
 random vector generated in this routine internally.
 When dprm[6] = 1, set an initial vector in the array
 zevec[0][i-1], i = 1, ..., n.
 The default setting is using a random vector.
- dprm[7]: A seed to generate a random vector (≥ 1.0). The default value is 1.
- dprm[8]: While the iteration count is less or equal to dprm[8], the process is regarded as an initial phase of the iteration. Then the fixed value of τ is used as an approximated eigenvalue instead of the value of θ in the Jacobi-Davidson correction equation. When dprm[2] = 0, the default value is dprm[8] = 0. When dprm[2] = 1, the default value is dprm[8] =

When dprm[2] = 1, the default value is dprm[8] = m_{max} . See *Comments on use*.

dprm[9]: The method to solve the Jacobi-Davidson correction equation.

When dprm[9] = 0, t = r is set without using the correction equation.

When dprm[9] = 1, the GMRES method is adopted. When dprm[9] = 2, the BiCGstab(L) method is adopted.

The default is using the GMRES method. See *Comments on use*.

dprm[10]: A parameter for the solver of the correction equation. When the BiCGstab(L) is used, specify the value of L

 (≤ 10) . The default value is 4.

dprm[11]: Upper limit of the iteration count of the solver for the Jacobi-Davidson correction equation (≥ 1). The default value is 30.

dprm[12]: A parameter to determine the stopping criterion for the iterative solver of the correction equation (> 0.0).

The default value is 0.7. See *Comments on use*.

dprm[13]: A parameter to determine the stopping criterion for the iterative solver of the correction equation $(0.0 < dprm[13] \le 1.0)$. The stopping criterion is set to $dprm[12] \times dprm[13]^l$, where l is an iteration counter of the outer loop which is reset in each deflation.

The default value is 0.7. See Comments on use.

dprm[14]: The type of preconditioning of the correction equation (≤ 1) .

When dprm[14] = 0, no preconditioning is used. When dprm[14] = 1, the diagonal left preconditioning is exploited. See *Comments on use*. The default is dprm[14] = 0.

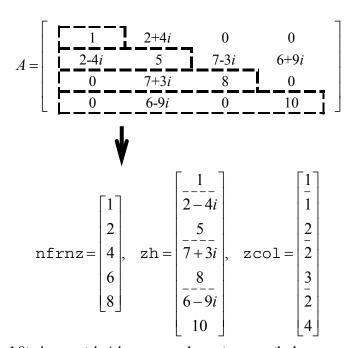
dprm[15] to [31]: Preserved area for future enhanced functionality.

zeval	dcomplex	Output	Detected eigenvalues are stored in zeval[$i-1$], $i = 1,$, nev.	
	zeval[nsel]			
zevec	dcomplex	Output	Detected eigenvectors are stored in zevec [i-1][j-1], i = 1,,	
	zevec[nsel][kv]		nev, j = 1,, n.	
		Input	Set the initial vector in zevec[0][$i-1$], $i = 1,, n$ when	
			iflag[6] $\neq 0$ and dprm[6] = 1.0.	
kv	int	Input	C fixed dimension of array zevec $(\ge n)$.	
dhis	double	Output The convergence history of the residuals of the eigenproblem are stored		
	dhis[2][kh]		in dhis[0][i-1], $i = 1,, min(kh, iter)$. The final relative	
			residual norm of the each correction equation are stored in	
			dhis[1][i-1], i = 1,, min(kh, iter).	
kh	int	Input	C fixed dimension of array dhis (≥ 0). Setting kh = itmax is enough.	
			If $kh = 0$ is set, the outputs to the array dhis are suppressed.	
icon	int	Output	Condition code. See below.	

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
1000	Breakdown occurred in the iterative linear	Processing is continued with the approximated
	equations solver.	solution until the point.
2000	A null vector is detected in a sort of process of the	Processing is continued with the subspace
	orthogonalization.	expanded by a random vector.
3000	A recovery procedure is activated in a sort of	Processing is continued.
	restorative process of the delay deflation.	
10000	The iteration count reached the maximum limit	The calculated eigenpairs up to nev are correct.
	before nsel-th eigenvalue is obtained.	

Code	Meaning	Processing
20000	The projected dense eigenproblem can not be	Processing is discontinued.
	solved.	The calculated eigenpairs up to nev are correct if
		nev >0.
21000	The iteration count reached the maximum limit	Processing is discontinued.
	without a single convergence.	The approximate values obtained up to this point
		are output in array zeval[0] and
		zevec[0][0] to [0][n-1], but their
		precision cannot be guaranteed.
29000	An internal error occurred.	Processing is discontinued.
30000	One of the following has occurred:	
	• n<1	
	• itrgt < 0	
	• itrgt>6	
	• nsel < 1	
	• nsel>n	
	• itmax < 0	
	• kv <n< td=""><td></td></n<>	
	• kh < 0.	
30001 to	The value of iflag or dprm is not correct.	
30032		
31000	The value of nz, ncol or nfrnz is not correct.	



 $Figure\ c_dm_vjdnhcr\text{-}1\ Storing\ a\ matrix\ A\ in\ compressed\ row\ storage\ method$

Robustness of the Jacobi-Davidson algorithm

The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified. This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters, refer to "Comments on use."

itrgt and ztrgt parameter

The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by setting iflag[2] $\neq 0$ is prior to the default value of course. Which means that the standard algorithm can be used with itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its adaptivity.

Note that the ztrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude. Define the ztrgt to be (0.0,0.0) if other appropriate value is not known.

Calculating the residual norm

In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to the absolute value of the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the matrix, however, it is difficult to satisfy the convergence condition $|\mathbf{A}\mathbf{u}-\mathbf{\partial}\mathbf{u}|/|\mathbf{\theta}| < \text{dprm[3]}$. In that case, adjust the convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by dprm[4] parameter.

Delay deflation procedure

This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the residual remains valid. This procedure is called *delay-deflation* here. The decrease ratio is regarded valid if the ratio of the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary convergence criterion.

Approximated eigenvalue in the correction equation

In the initial few steps of the process, the values of θ are usually poor approximations of the wanted eigenvalue. This routine takes the target value τ specified in the ztrgt as an approximated eigenvalue instead of θ in the initial phase, since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-Davidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less than or equal to dprm[8]. However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is adopted, because it is difficult to determine a value of τ in advance when the standard algorithm is specified.

Stopping criterion for inner iteration

The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed, and in the inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The criterion is set to be $dprm[12] \times dprm[13]^l$, where l is the outer iteration counter which is reset to zero at each deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

Precondition for the correction equation

It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The preconditioner to be applied is controlled by the parameter $\mathtt{dprm}[14]$ in this routine. Note that the value of \mathtt{ztrgt} is used for constructing a matrix $M \cong (A - \tau I)$, which approximates a part of the coefficient matrix in some way. The preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner does not approximate the coefficient matrix of the correction equation properly or the parameter \mathtt{ztrgt} is far from the seeking eigenvalue, the convergence may deteriorate.

Memory usage

This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when the available area of the memory runs out. The necessary size for the outer iteration is at least $n \times (3 \times m_{\text{max}} + 2 \times \text{nsel}) \times 16$ bytes for the standard algorithm and $n \times (4 \times m_{\text{max}} + 2 \times \text{nsel}) \times 16$ bytes for the harmonic algorithm. And when the GMRES method is used as the solver of the correction equation, the additional necessary area is $n \times \text{dprm}[11] \times 16$ bytes for the inner iteration.

4. Example program

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ are sought, where \mathbf{A} is a 10000 × 10000 example matrix of the random sparsity pattern with 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NMAX 10000
#define NZC 20
#define NNZMAX NMAX*NZC
#define LDK 10
        mkspmat(int, int, dcomplex*, int*, int*);
int
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
double
        cdabs(dcomplex);
int MAIN__() {
```

```
static dcomplex za[NNZMAX], ztrqt, zeval[LDK], zevec[LDK][NMAX];
  dcomplex rvec[NMAX];
  double derr, dprm[32], dhis[2][NMAX];
int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt, iflag[32];
  int nsel, nev, itmax, iter, i, j, k, icon, ldx, ldh;
  n = NMAX;
  mkspmat(n, NZC, za, ncol, nfrnz);
  nz = nfrnz[n] - 1;
  itmax = 500;
  nsel = 10;
  for (i=0; i<32; i++) {
   iflag[i] = 0;
  idx = NMAX;
  ldh = NMAX;
  ztrgt.re = 0.0;
  ztrgt.im = 0.0;
  itrgt = 1;
  (double*)dhis, ldh, &icon);
  printf(" C_DM_VJDNHCR ICON= %d\n", icon);
  printf(" ITER= %d\n", iter);
  for (k=0; k<nev; k++)
    for (i=0; i<n; i++) {
      rvec[i].re = 0.0;
      rvec[i].im = 0.0;
#pragma omp parallel for private(j)
    for (i=0; i<n; i++) {
  for (j=nfrnz[i]-1; j<nfrnz[i+1]-1; j++) {</pre>
       rvec[i] = comp_add(rvec[i], comp_mult(za[j], zevec[k][ncol[j]-1]));
      rvec[i] = comp_sub(rvec[i], comp_mult(zeval[k], zevec[k][i]));
    derr = 0.0;
    for (i=0; i<n; i++) {
     derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
    derr = sqrt(derr);
   printf(" EIGEN VALUE %d = (%.151f,%.151f)\n", k+1, zeval[k].re, zeval[k].im);
printf(" ERROR= %3.151e\n", derr/cdabs(zeval[k]));
  return(0);
int mkspmat(int n, int nzc, dcomplex *za, int *ncol, int *nfrnz) {
#define LDW 1350
 int i, ic, ict, j, k, iseed, icon;
double *dwork, rndwork[LDW];
  dwork = (double *)malloc(nzc * sizeof(double));
  iseed = 1;
  c_dvran4(0.0, 1.0, &iseed, (double*)za, (2*n*nzc), rndwork, LDW, &icon);
  iseed = 1;
  for (i=0; i< n; i++) {
   nfrnz[i] = i * nzc + 1;
for (j=0; j<nzc; j++) {
  ict = n * fabs(dwork[j]) + 1;
  for (k=0; (k<=j) && (j!=0); k++) {</pre>
       if (ict == ncol[ic-k]) goto LABEL_10;
      ic = ic + 1;
      ncol[ic-1] = ict;
   }
 nfrnz[n] = ic + 1;
  free(dwork);
 return 0;
dcomplex comp_add(dcomplex so1, dcomplex so2) {
  dcomplex obj;
```

```
obj.re = sol.re + so2.re;
obj.im = sol.im + so2.im;
return obj;
}

dcomplex comp_sub(dcomplex sol, dcomplex so2) {
   dcomplex obj;
   obj.re = sol.re - so2.re;
   obj.im = sol.im - so2.im;
   return obj;
}

dcomplex comp_mult(dcomplex sol, dcomplex so2) {
   dcomplex obj;
   obj.re = sol.re * so2.re - sol.im * so2.im;
   obj.im = sol.re * so2.im + sol.im * so2.re;
   return obj;
}

double cdabs(dcomplex so) {
   double obj;
   obj = sqrt(so.re * so.re + so.im * so.im);
   return obj;
}
```

Consult the entry for DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

c_dm_vlax

```
A system of linear equations with a real matrix (blocked LU decomposition method).

ierr = c_dm_vlax(a, k, n, b, epsz, isw, &is, ip, &icon);
```

1. Function

This function solves a system of real coefficient linear equations using the blocked LU-decomposition method of outer product type.

$$Ax = b$$

where, **A** is a non-singular real matrix of $n \times n$, **b** is an *n*-dimensional real constant vector, and x is an *n*-dimensional solution vector. ($n \ge 1$)

ierr = c_dm_vlax((double*)a, k, n, b, epsz, isw, &is, ip, &icon);

2. Arguments

The routine is called as follows:

The complete list of condition codes is given below.

```
where:
             double
                                    Input
                                               Matrix A.
а
             a[n][k]
                                    Output
                                               Matrices L and U.
k
             int
                                    Input
                                               C fixed dimension of array a (\ge n).
                                               Order n of matrix A.
             int
                                    Input
n
             double b[n]
                                    Input
                                               Constant vector b.
b
                                    Output
                                               Solution vector x.
                                               Tolerance for relative zero test of pivots in decomposition process of A
             double
                                    Input
epsz
                                               (\geq 0). When epsz is zero, a standard value is used. See Comments on
                                               use.
             int
                                    Input
                                               Control information.
isw
                                               When solving several sets of equations that have the same coefficient
                                               matrix, set isw=1 for the first set, and isw=2 for the second and
                                               subsequent sets. Only argument b is assigned a new constant vector b
                                               and the others are unchanged. See Comments on use.
                                    Output
                                               Information for obtaining the determinant of matrix A. When the n
is
             int
                                               elements of the calculated diagonal of array a are multiplied together,
                                               and the result is then multiplied by is, the determinant is obtained.
ip
             int ip[n]
                                    Work
                                               The transposition vector which indicates the history of row exchange by
                                               partial pivoting. A one-dimensional array of size n.
icon
                                               Condition code. See below.
             int
                                    Output
```

Code	Meaning	Processing
0	No error.	Completed.

Code	Meaning	Processing
20000	Either all of the elements of some row are zero or	Discontinued.
	the pivot became relatively zero. It is highly	
	probable that the coefficient matrix is singular.	
30000	One of the following has occurred:	Bypassed.
	• k <n< td=""><td></td></n<>	
	• n<1	
	• epsz<0	
	• isw ≠ 1 or 2	

epsz

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix $A = (a_{ij})$, that is:

$$\left|a_{kk}^{k}\right| \leq \max\left|a_{ij}\right| \text{ epsz}$$

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000. The standard value of epsz is 16μ , where μ is the unit round-off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

isw

When solving several sets of linear equations with same coefficient matrix, specify isw = 2 for any second and subsequent sets after successfully completing the first with isw = 1. This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. The value of is is identical for all sets and any valid isw.

4. Example program

A system of linear equations having on 1000 × 1000 coefficient matrix is solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX
                  (1000)
#define LDA
                  (NMAX+1)
MAIN__()
 int
        n, is, isw, i, j, icon, ierr;
        ip[NMAX];
 int
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;
      = NMAX
 epsz = 0.0;
 isw = 1;
#pragma omp parallel for shared(a,n) private(i,j)
  for(i=0; i<n; i++)
    for(j=0; j< n; j++) a[i][j] = min(i,j)+1;
#pragma omp parallel for shared(b,n) private(i)
```

```
for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);
if (icon != 0) {
    printf("ERROR: c_dm_vlax failed with icon = %d\n", icon);
    exit(1);
}
s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];

printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

det = is*s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}</pre>
```

Consult the entry for DM_VLAX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vlbx

```
A system of linear equations with banded real matrices (Gaussian elimination).

ierr = c_dm_vlbx(a, k, n, nh1, nh2, b, epsz, isw, &is, ip, &icon);
```

1. Function

This routine solves a system of linear equations with the banded real matrix using Gaussian elimination.

$$Ax = b$$

where, **A** is an $n \times n$ banded matrix, with the lower bandwidth h_1 , and upper bandwidth h_2 , **b** is an n-dimensional real constant vector, and **x** is an n-dimensional solution vector. $n > h_1 \ge 0$, $n > h_2 \ge 0$.

2. Arguments

The routine is called as follows:

ierr = c	_dm_vlbx((doubl	.e*)a, k	, n, nh1, nh2, b, epsz, isw, &is, ip, &icon);
where:			
a	double	Input	Store banded coefficient matrix A .
	a[n][k]		See Figure c_dm_vlbx-1.
		Output	LU-decomposed matrices L and U are stored.
			See Figure c_dm_vlbx-2.
			The value of a is not assured after operation.
k	int	Input	C fixed dimension of array a ($\geq 2 \times nh1 + nh2 + 1$).
n	int	Input	Order n of matrix \mathbf{A} .
nh1	int	Input	Lower bandwidth size h_1 .
nh2	int	Input	Upper bandwidth size h_2 .
b	double b[n]	Input	Constant vector b .
		Output	Solution vector x .
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0). When epsz is zero, the
			standard value is set. See Comments on use.
isw	int	Input	Control information.
			When solving k ($k \ge 1$) sets of equations having the same coefficient
			matrix, specify as follows.
			1 the first set of equations.
			2 the second and subsequent sets of equations.
			When specifying $isw = 2$, change only the value of b into a new
			constant vector ${\bf b}$ and do not change any other parameters.
is	int	Output	Indicates row vector exchange count. See Comments on use.
			1 exchange count is even.
			−1 exchange count is odd.
ip	<pre>int ip[n]</pre>	Output	The transposition vector to contain row exchange information is stored.
			See Comments on use.

icon int

Output Condition code. See below.

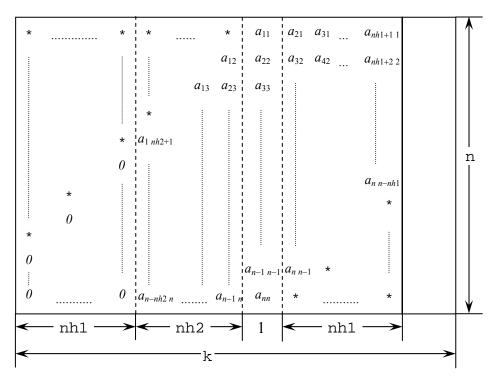


Figure c_dm_vlbx-1. Storing matrix A in array a

The column vector of matrix **A** is continuously stored in columns of array a in the same manner as diagonal elements of banded matrix **A** a_{ii} , i = 1, ..., n, are stored in a [i-1] [h_1 + h_2].

Upper banded matrix part:

$$a_{j-i,j}$$
, $i = 1, ..., h_2, j = 1, ..., n, j - i \ge 1$ is stored in a[i][j], i = 0, ..., $n-1$, j = h_1 , ..., h_1+h_2-1 .

Lower banded matrix part:

$$a_{j+i,j}, i=1,\ldots,h_1, j=1,\ldots,n, j+i\leq n$$
 is stored in a [i][j], i=0,..., $n-1$, j= h_1+h_2+1 ,..., $2\times h_1+h_2$.

For a [i][j], i = 0, ..., n-1, j = 0, ..., h_1-1 , set zero for the elements of matrix **A** outside the band.

^{*} indicates undefined values.

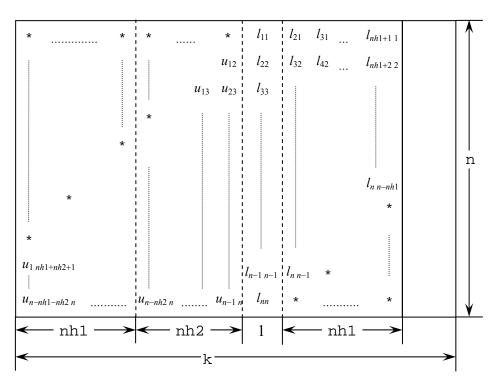


Figure c_dm_vlbx-2. Storing LU-decomposed matrix L and U in array a

LU-decomposed unit upper banded matrix except diagonal elements $u_{j-i+1,j}$, $i=1,\ldots,h_1+h_2, j=1,\ldots,n,j-i+1\geq 1$ is stored in a [i][j], i=0,..., n-1, j=0,..., h_1+h_2 .

Lower banded matrix part:

 $l_{j+i,j}, i=0, \dots, h_2, j=1, \dots, n, j+i \leq n \text{ is stored in a [i] [j]}, i=0, \dots, n-1, \ j=h_1+h_2, \dots, 2\times h_1+h_2.$

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	All elements in some row of array a were zero, or the pivot became relatively zero. Matrix A may be singular.	Discontinued.
30000	One of the following has occurred: • $n < 1$ • $nh1 \ge n$ • $nh1 < 0$ • $nh2 \ge n$ • $nh2 < 0$ • $k < 2 \times nh1 + nh2 + 1$ • $epsz < 0$	Bypassed.

^{*} indicates undefined values.

3. Comments on use

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$.

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

ip

In this routine, the row vector is exchanged using partial pivoting. That is, when the *I*-th row $(I \ge J)$ is selected as the pivot row in the *J*-th stage (J = 1, ..., n) of decomposition, the contents of the *I*-th row and *J*-th row are exchanged. To indicate this exchange, *I* is stored in ip[J-1].

is

The determinant can be obtained by multiplying is and a [i] [$h_1 + h_2$], where i = 0, ..., n-1.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, $nh_1 = 2000$, $nh_2 = 3000$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
                 ((a) > (b) ? (a) : (b))
#define max(a,b)
#define min(a,b) ((a) < (b) ? (a) : (b))
#define NH1
              2000
              3000
#define NH2
#define N
              10000
#define KA
              (2*NH1+NH2+1)
#define NWORK 4500
int MAIN__()
 double a[N][KA], b[N], dwork[NWORK];
 double tt1, tt2, tmp, epsz;
        ip[N], i, j, is, ix, isw, icon, nptr, nbase, nn;
  ix = 123;
 nn = NH1+NH2+1;
  for (i=0; i<N; i++)
   c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
 printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
  /* zero clear */
  for (j=0; j<N; j++) {
    for (i=0; i<NH1; i++) {
     a[j][i] = 0.0;
  /* left upper triangular part */
  for (j=0; j<NH2; j++) {
    for (i=0; i<NH2-j; i++) {
     a[j][i+NH1] = 0.0;
    }
 }
  /* right rower triangular part */
 nbase = 2*NH1+NH2+1;
```

```
for (j=0; j<NH1; j++) {
    for (i=0; i<j; i++) {
        a[N-NH1+j][nbase-i-1] = 0.0;
    }
}

/* set right hand constant vector */
for (i=0; i<N; i++) {
    b[i] = 0.0;
}

for (i=0; i<N; i++) {
    nptr = i;
    for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
        b[j] += a[i][j-i+NH1+NH2];
    }
}

epsz = 0.0;
isw = 1;
c_dm_vlbx((double*)a, KA, N, NH1, NH2, b, epsz, isw, &is, ip, &icon);

tmp = 0.0;
for (i=0; i<N; i++) {
    tmp = max(tmp,fabs(b[i]-1));
}

printf("maximum error = %e\n", tmp);
return(0);</pre>
```

5. Method

Consult the entry for DM VLBX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vlcspsxcr1

System of linear equations with non-Hermitian symmetric complex sparse matrices (Conjugate A-Orthogonal Conjugate Residual method with preconditioning by incomplete **LDL**^T decomposition, symmetric compressed row storage method)

1. Function

This routine solves, using Conjugate A-Orthogonal Conjugate Residual method, *COCR* method, a system of linear equations with non-Hermitian symmetric complex sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix **A** is stored using the symmetric compressed row storage method. Vectors **b** and **x** are n-dimensional vectors.

2. Arguments

The routine is called as follows:

dcomplex	Input	The nonzero elements of the coefficient matrix are stored.
zsa[nz]		Regarding the symmetric compressed row storage method, see Fig.
		c_dm_vlcspsxcr1-1.
int	Input	Total number of the nonzero elements belong to the coefficient matrix
		$\mathbf{A} (\geq 1).$
int ncol[nz]	Input	The column indices used in the compressed row storage method, which
		indicate the column number of each nonzero element stored in the array
		zsa.
<pre>int nfrnz[n+1]</pre>	Input	The position of the first nonzero element stored in array zsa by the
		symmetric compressed row storage methods which stores the nonzero
		elements row by row of upper triangular portion of matrix A.
		nfrnz[n] = nz + 1.
int	Input	Order <i>n</i> of the matrix $A (\ge 1)$.
dcomplex zb[n]	Input	The right-side constant vector of the system of linear equations is
		stored.
int	Input	Control information.
		When solving multiple sets of equations having the same coefficient
		matrix, specify as follows;
		Specify $isw = 1$ for the first set of equations.
		Specify isw = 3 for the second and subsequent sets with the same
	<pre>int int ncol[nz] int nfrnz[n+1] int dcomplex zb[n]</pre>	<pre>int Input int ncol[nz] Input int nfrnz[n+1] Input int dcomplex zb[n] Input</pre>

			coefficient matrix and different constant vector b .
			When specifying $isw = 3$, change only the value of zb and zx into a
			new constant vector \mathbf{b} and initial vector \mathbf{x} and do not change other parameters.
ZX	dcomplex zx[n]	Input	The initial value of solution can be specified.
		Output	The solution vector is stored.
ipar	int ipar[20]		Control parameters having integer values. Some parameters may be
			modified on output. When specify 0 for any parameter, it will be
			assumed to specify default value on it. If no convergence is met by
			using default parameters, it is recommended to try again by making
			parameters change.
		Input	ipar[0] to [4]: Reserved for future extensions. Specify 0 for each, just in case.
		Input	ipar[5]: Specify the upper limit of iteration counts for the COCR
			method (≥ 0). Default value is 2000.
		Output	ipar[6]: Actual iteration counts.
		Output	ipar[7]: Actual evaluation counts of matrix-vector multiplications
			Av
			where A is the coefficient matrix and ν is iterative vector in the <i>COCR</i> method.
		Input	ipar[8] to [9]: Reserved for future extensions. Specify 0 for each, just in case.
		Input	ipar[10]: Specify control parameter how to make compensation for
			dropped new nonzero elements which are filled in during incomplete LDL ^T decomposition. If specify as
			ipar[10] = 0, no compensation will be made. If
			specify as $ipar[10] = 1$, compensation will be made
			by
			reflecting dropped entries into diagonal elements. Default value is 0.
			For more detail, See <i>Comments on use</i> .
		Output	ipar[11]: Actual number of dropped new nonzero elements.
		Input	ipar[12] to [19]: Reserved for future extensions. Specify 0 for each, just in case.
rpar	double		Control parameters having real values. Some parameters may be
Ιραι	rpar[20]		modified on output. When specify 0.0 for any parameter, it will be
	rpar[20]		assumed to specify default value on it. If no convergence is met by
			using default parameters, it is recommended to try again by making
			parameters change.
		Input	rpar[0]: Reserved for future extensions. Specify 0.0 for each, just in
			case.
		Input	rpar[1]: Specify convergence criteria epst for iterative solution of
			given a system of linear equations by $COCR$ method (≥ 0.0).
		Output	rpar[2]: Relative residual norm for residual vector of the solution.
		Output	rpar[3]: Real part of the accumulated sum of dropped new nonzero

elements which are filled in during incomplete $\mathbf{L}\mathbf{D}\mathbf{L}^T$ decomposition.

For more detail, See Comments on use.

Output ${\tt rpar[4]: Imaginary \ part \ of \ the \ accumulated \ sum \ of \ dropped \ new}$

nonzero elements which are filled in during incomplete

LDL^T decomposition.

For more detail, See Comments on use.

Input rpar[5] to [19]: Reserved for future extensions. Specify 0.0 for

each, just in case.

zvw dcomplex Work

zvw[nz] area

icon int Output Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	The iteration counts reached the upper limit.	Processing is discontinued.
		The already calculated approximate value is
		output to array zx along with relative residual
		error.
29000	Matrix A is singular.	Processing is discontinued.
30000	Parameter error(s).	
	• n<1	
	• nz < 1	
	• nz≠nfrnz[n] - 1	
	• isw < 1	
	• isw = 2	
	• isw > 3	
	• ipar[5]<0	
	• ipar[10] < 0	
	• ipar[10] > 1	
ı	• rpar[1] < 0.0.	

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 5 & 0 & 6 \\ 3 & 0 & 8 & 9 \\ 0 & 6 & 9 & 11 \end{bmatrix}$$

$$\downarrow \bullet$$

$$nfrnz = \begin{bmatrix} 1 \\ 4 \\ 6 \\ 8 \\ 9 \end{bmatrix}, zsa = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 5 \\ 6 \\ 8 \\ 9 \\ 11 \end{bmatrix}, ncol = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 4 \\ 3 \\ 4 \\ 4 \end{bmatrix}$$

Figure c_dm_vlcspsxcr1-1 Storing matrix A in symmetric compressed row storage method

3. Comments on use

About drop of the new nonzero and its compensation

In this routine, the new nonzero elements which are filled in during incomplete LDL^T decomposition will be dropped in general. In order to ease up effect of such dropping, this routine attempts to compensate such dropping according to <code>ipar[10]</code>. If specify as <code>ipar[10] = 1</code>, it makes compensation for each diagonal elements by adding certain value which is accumulated sum of dropped new nonzero elements which are filled in on the row. By this compensation, it may affect to improve characteristic of the preconditioning matrix.

Further, this routine outputs the accumulated sum *zdrp* as an index regardless of ipar[10] specification. The real part and imaginary part of *zdrp* are stored in rpar[4] respectively.

4. Example program

Read a symmetric complex matrix, then solve a linear system of equations Ax = b by this routine.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.
   */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#define NZMAX 500000
#define NMAX 10000
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
void cmsvcrl(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, int);
void creadmat(char*, double*, int*, int*, int*, double*);
void cmatcopy(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, int*, int*, int*, dcomplex*, dcomplex*,
void cvecgen(dcomplex*, int, int*, int*, dcomplex*, dcomplex*);
double cnorm(dcomplex*, int);
int MAIN__() {
              zsa[NZMAX], zx[NMAX], zb[NMAX], zsat[NZMAX], zxt[NMAX],
  dcomplex
          zbt[NMAX], zvw[NZMAX];
nfrnz[NMAX+1], ncol[NZMAX], nfrnzt[NMAX+1], ncolt[NZMAX], ipar[20];
  int
  double rpar[20];
  char
          title[74];
  int     n, nz, isw, ii, ic, icmav, mdrp, nzdrp, icon;
double epst, relres, drpr, drpi,rel, relerr;
/* -----
       INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION
  creadmat(title, (double *)zsat, &n, nfrnzt, ncolt, (double *)zsa);
  cvecgen(zsat, n, nfrnzt, ncolt, zxt, zbt);
  cmatcopy(zsat, n, nfrnzt, ncolt, zxt, zbt, zsa, nfrnz, ncol, zx, zb);
  printf(
     "\n--
  printf("TEST MATRIX : \n%s\n", title);
   */
  isw = 1;
  for (ii = 0; ii < 20; ii++) {
   ipar[ii] = 0;
   rpar[ii] = 0.0;
  nz = nfrnz[n] - 1;
  c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n, zb,
                  isw, zx, ipar, rpar, zvw, &icon);
  ic = ipar[6];
  icmav = ipar[7];
  mdrp = ipar[10];
  nzdrp = ipar[11];
  epst = rpar[1];
  relres = rpar[2];
  drpr = rpar[3];
  drpi = rpar[4];
  rel = cnorm(zb, n);
  cmsvcrl(zsa, n, nfrnz, ncol, zx, zb, 0);
  relerr = cnorm(zb, n) / rel;
  printf(
    "\n-----\n");
  printf(" SOLUTION RESULTS BY \"C_DM_VLCSPSXCR1\"\n\n");
  printf(" N =%12d\n", n);
  printf(" NZ
                        =%12d\n", nfrnz[n]-1);
  printf(" MDRP
                       =%12d\n\n", mdrp);
  printf(" ICON
                       =%12d\n", icon);
  printf(" IC
                      =%12d\n", ic);
=%12d\n", icmav);
=%12d\n", nzdrp);
  printf(" ICMAV
  printf(" NZDRP
                       =%12.2le\n", drpr);
  printf(" DRPR
                       =%12.2le\n", drpi);
  printf(" DRPI
  printf(" EPST
                      =%12.2le\n", epst);
=%12.2le\n", relres);
=%12.2le\n", relerr);
  printf(" RELRES
  printf(" RELERR
  printf(
    "----\n");
  if ((relerr <= epst * 1.1) && (icon == 0)) {
  printf(" ********* OK **********\n");</pre>
  } else {
```

```
printf(" ******** NG *******\n");
 return(0);
}
dcomplex comp_add(dcomplex so1, dcomplex so2) {
  dcomplex obj;
  obj.re = sol.re + so2.re;
  obj.im = sol.im + so2.im;
 return obj;
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
  dcomplex obj;
 obj.re = sol.re * so2.re - sol.im * so2.im;
obj.im = sol.re * so2.im + sol.im * so2.re;
 return obj;
MATRIX VECTOR MULTIPLICATION.
       COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM.
  */
void cmsvcr1(dcomplex *zsa, int n, int *nfrnz, int *ncol, dcomplex *zx,
     dcomplex *zb, int isw) {
       i, j, k1, k2;
  dcomplex
             zsa_w;
  if (isw == 1) {     /* *** !
  for (i = 0; i < n; i++) {</pre>
                     /* *** MULTIPLICATION (AX=>B) */
     zb[i].re = 0.0;
      zb[i].im = 0.0;
    for (i = 0; i < n; i++) {
     k1 = nfrnz[i] - 1;
     k2 = nfrnz[i+ 1] - 1;
if (zx[i].re != 0.0 || zx[i].im != 0.0) {
        for (j = k1; j < k2; j++) {
    zb[ncol[j] - 1] = comp_add(comp_mult(zsa[j], zx[i]),
                              zb[ncol[j] - 1]);
          if (ncol[j] != i + 1)
            zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] -1]), zb[i]);
      } else {
        for (j = k1; j < k2; j++) {
         zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] - 1]), zb[i]);
     }
    }
  } else {
              /* *** RESIDUAL VECTOR (B-AX=>B) */
    for (i = 0; i < n; i++) {
     k1 = nfrnz[i] - 1;
k2 = nfrnz[i + 1] - 1;
     if (zx[i].re != 0.0 || zx[i].im != 0.0) {
  for (j = k1; j < k2; j++) {
          zsa_w = zsa[j];
          zsa_w.re = -zsa_w.re;
          zsa_w.im = -zsa_w.im;
          if (ncol[j] != i + 1) {
            zsa_w = zsa[j];
            zsa_w.re = -zsa_w.re;
            zsa_w.im = -zsa_w.im;
           zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
      } else {
       for (j = k1; j < k2; j++) {
         zsa_w = zsa[j];
          zsa_w.re = -zsa_w.re;
          zsa w.im = -zsa w.im;
          zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
 } }
```

```
return;
READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX.
  -----*,
void creadmat(char *title, double *a, int *ncol, int *is, int *js, double *w) {
   THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM.
   THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX
   MARKET;
 char key[11], mxtype[4], rhstyp[4],
      ptrfmt[17], indfmt[17], valfmt[21], rhsfmt[23];
      dummy[12];
 int toterd, ptrerd, inderd, valerd, rhserd,
     nrow, nnzero, neltvl,
     nrhs, nrhsix;
 int i;
   READ IN HEADER BLOCK
   */
 scanf("%72c%8c", title, key);
title[72] ='\0';
 scanf("%14d%14d%14d%14d%14d", &totcrd, &ptrcrd, &indcrd,
    &valcrd, &rhscrd);
 scanf("%3c%11c%14d%14d%14d%14d", mxtype, dummy, &nrow, ncol,
     &nnzero, &neltvl);
 scanf("%16c%16c%20c%20c", ptrfmt, indfmt, valfmt, rhsfmt);
 if (rhscrd > 0) {
   scanf("%3c%11c%14d%14d", rhstyp, dummy, &nrhs, &nrhsix);
    READ MATRIX STRUCTURE
 for (i = 0; i <= *ncol; i++) {
   scanf("%5d", &is[i]);
 for (i = 0; i < nnzero; i++) {
  scanf("%4d", &js[i]);</pre>
 if (valcrd > 0) {
   _____
   READ MATRIX VALUES
   _____ * /
   if (mxtype[0] == 'R') {
    for (i = 0; i < nnzero; i++) {
  scanf("%le", &a[i]);
}</pre>
   } else {
    for (i = 0; i < 2 * nnzero; i++) {
      scanf("%le", &a[i]);
   }
 }
 return;
COPY COMPLEX MATRIX AND VECTORS.
  */
void cmatcopy(dcomplex *zsat, int n, int *nfrnzt, int *ncolt,
     dcomplex *zxt, dcomplex *zbt, dcomplex *zsa, int *nfrnz, int *ncol,
     dcomplex *zx, dcomplex *zb) {
 int nz, i;
 nz = nfrnzt[n] - 1;
 for (i = 0; i \le n; i++) {
   nfrnz[i] = nfrnzt[i];
 for (i = 0; i < nz; i++) {
  zsa[i] = zsat[i];
   ncol[i] = ncolt[i];
 for (i = 0; i < n; i++) {
  zx[i] = zxt[i];
   zb[i] = zbt[i];
 return;
```

```
}
GENERATE COMPLEX B AND X VECTORS.
  */
void cvecgen(dcomplex *zsat, int n, int *nfrnzt, int *ncolt, dcomplex *zxt,
     dcomplex *zbt) {
 int ii;
/* COMPUTE RIGHT HAND SIDE VECTOR B. */
 for (ii = 1; ii <= n; ii++) {
   zxt[ii - 1].re = 1.0 + (double)ii / (double)n;
   zxt[ii - 1].im = 0.0;</pre>
 cmsvcrl(zsat, n, nfrnzt, ncolt, zxt, zbt, 1);
/* SET INITIAL VALUE */
 for (ii = 0; ii < n; ii++) {
   zxt[ii].re = 0.0;
   zxt[ii].im = 0.0;
 return;
/* -----
     L2 NORM OF A COMPLEX VECTOR.
  */
double cnorm(dcomplex *zx, int n) {
 int i;
 double cnorm_ret;
 cnorm_ret = 0.0;
 for (i = 0; i < n; i++) {
   cnorm_ret += (zx[i].re * zx[i].re + zx[i].im * zx[i].im);
 if (cnorm_ret != 0.0)
  cnorm_ret = sqrt(cnorm_ret);
 return(cnorm_ret);
```

5. Method

Consult the entry for DM_VLCSPSXCR1 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [62], [70].

c_dm_vlcx

```
A system of linear equations with complex matrices (blocked LU decomposition method)

ierr = c_dm_vlcx(za, k, n, zb, epsz, isw, &is, ip, &icon);
```

1. Function

This routine solves a system of complex coefficient linear equations using blocked LU-decomposition method of an outer product type.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

where, **A** is a non-singular $n \times n$ complex matrix, **b** is an n-dimensional complex constant vector, and **x** is an n-dimensional solution vector ($n \ge 1$).

ierr = c_dm_vlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, ip, &icon);

2. Arguments

The routine is called as follows:

where: Input Matrix A. dcomplex za za[n][k] Output Matrices L and U are stored in za. int Input C fixed dimension of array $za (\ge n)$. k Order n of matrix A. int Input n Input Constant vector b. zb dcomplex zb[n] Solution vector x. Output Input Judgment of relative zero of the pivot (≥ 0.0). epsz double When epsz is 0.0, the standard value is assumed. See Comments on use. Input Control information. isw int When solving $k (\geq 1)$ sets of equations having identical coefficient matrices, specify as follows. Specify isw = 1 for the first set of equations. Specify isw = 2 for the second and the subsequent sets of equations. When specifying isw = 2, change only the value of zb into a new constant vector. Do not change any other parameters. See Comments on use. is Output Information to obtain the determinant of matrix A. int The determinant is obtained by multiplying *n* diagonal elements of array za by the value of is after the operation. The transposition vector which indicates the history of the row exchange int ip[n] Output ip by partial pivoting. A one-dimensional array of size n.

Condition code. See below.

icon

int

Output

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	All the elements in some row of matrix A are zero, or the pivot becomes relatively zero. Matrix A may be singular.	Stopped.
30000	One of the following has occurred:	Bypassed.
	• k <n< td=""><td></td></n<>	
	• n<1	
	• epsz < 0.0	
	• isw≠1 or 2	

3. Comments on use

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz. In this case, processing is discontinued with icon = 20000. When unit round off is μ , the standard value of epsz is 16μ . When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

isw

When several sets of linear equations with an identical coefficient matrix are successively solved, the value of isw should be 2 from the second time on. This reduces the execution time because LU decomposition of coefficient matrix A is bypassed. The value of isw does not change from the time isw = 1.

4. Example program

A system of linear equations having an $n \times n$ complex coefficient matrix is solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)
 dcomplex za[N][K], zb[N];
 double epsz, c, t, s, error;
          ip[N];
          isw, is, icon, i, j;
 int
 c = sqrt(1.0/(double)(N+1));
 t = atan(1.0)*8.0/(N+1);
  for (j=0; j<N; j++) {
    for (i=0; i<N; i++) {
     za[j][i].re = c*cos(t*(i+1)*(j+1));
      za[j][i].im = c*sin(t*(i+1)*(j+1));
  for (i=0; i< N; i++) {
    for (j=0; j< N; j++) {
     s += cos(t*(i+1)*(j+1));
     zb[i].re = s*c;
```

```
zb[i].im = 0.0;
}

epsz = 0.0;
isw = 1;
c_dm_vlcx((dcomplex*)za, K, N, zb, epsz, isw, &is, ip, &icon);

printf("icon = %d\n", icon);

error = 0.0;

for (i=0; i<N; i++) {
    error = max(fabs(1.0-zb[i].re), error);
}

printf("error = %f\n", error);
printf("ORDER = %d\n", N);
printf("vb[0] = %e\n", zb[0].re);
printf("zb[n-1] = %e\n", zb[N-1].re);
return(0);
}</pre>
```

c_dm_vldlx

A system of linear equations with LDL ^T -decomposed symmetric			
positive definite matrices.			
<pre>ierr = c_dm_vldlx(b, fa, kfa, n, &icon);</pre>			

1. Function

This routine solves a system of linear equations with LDL^T - decomposed symmetric positive definite coefficient matrix.

$$\mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}\mathbf{x} = \mathbf{b}$$

Where, **L** and **D** are a unit lower triangular matrix and an $n \times n$ diagonal matrix respectively, **b** is an n-dimensional real constant vector, **x** is an n-dimensional solution vector, and $n \ge 1$.

This routine receives the LDL^T -decomposed matrix from routine c_dm_vsldl and calculates the solution of a system of linear equations.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vldlx(b, (double*)fa, kfa, n, &icon);
where:
                                                Constant vector b.
b
             double b[n]
                                    Input
                                    Output
                                                Solution vector x.
                                                The LDL<sup>T</sup>-decomposed matrices \mathbf{L}, \mathbf{D}^{-1}, and \mathbf{L}^{T} are stored.
fa
             double
                                    Input
                                                The upper triangular matrix L, D^{-1} and L^{T} is stored in the upper
             fa[n][n]
                                                triangular part \{fa[i-1][j-1], i \leq j\} of fa.
                                                See Figure c_dm_vldlx-1.
kfa
                                    Input
                                                A fixed dimension of array fa. (\geq n)
             int
                                                Order n of matrices L and D.
             int
                                    Input
n
                                    Output
                                                Condition code. See below.
icon
             int
```

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	Coefficient matrix is not positive definite.	Continued.
30000	n < 1, kfa < n	Bypassed.

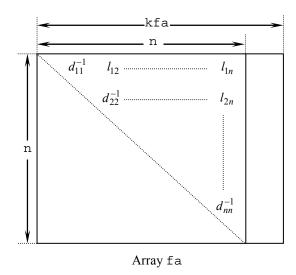


Figure c_dm_vldlx-1. Storing matrices L, **D**⁻¹ into array fa

After LDL^T decomposition, matrix \mathbf{D}^{-1} is stored in diagonal elements and \mathbf{L} (excluding the diagonal elements) are stored in the upper triangular part respectively.

3. Comments on use

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling function c_dm_vsldl. However, function c_dm_vlsx should be usually used to solve a system of linear equations in one step.

4. Example program

A 1000×1000 coefficient matrix is decomposed into LDL^T-decomposed matrix, then the system of linear equations is solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b)
                  ((a) < (b) ? (a) : (b))
#define NMAX
                   (1000)
#define LDA
                   (NMAX+1)
MAIN__()
         n, i, j, icon, ierr;
  double a[NMAX][LDA], b[NMAX];
  double epsz, s, det;
       = NMAX;
  epsz = 0.0;
#pragma omp parallel for shared(a,n) private(i,j)
  for(i=0; i<n; i++)
    for(j=0; j< n; j++) a[i][j] = min(i,j)+1;
\verb| #pragma omp parallel for shared(b,n) private(i)|\\
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
  ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon);
    printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);
```

```
exit(1);
}
ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon);
if (icon != 0) {
    printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
    exit(1);
}

s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];

printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

det = 1.0/s;
    printf("\ndeterminant of the matrix = %e\n", det);
    return(0);
}</pre>
```

5. Method

Consult the entry for DM_VLDLX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

c_dm_vlspaxcr2

System of linear equations with unsymmetric real sparse matrices (Induced Dimension Reduction method with preconditioning by sparse approximate inverse, compressed row storage method)

1. Function

This routine solves, using IDR method with stabilization, *IDRstab(s,l)* method, a system of linear equations with unsymmetric real sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix **A** is stored using the compressed row storage method. Vectors **b** and x are n-dimensional vectors. The parameter s is the order of shadow residual and l is the order of acceleration polynomial.

2. Arguments

The routine is called as follows:

lmmax, lnmax, numt,		x, numt,	&icon);
where:			
a	double a[nz]	Input	The nonzero elements of the coefficient matrix are stored.
			The compressed row storage method is to store transposed matrix of the
			coefficient matrix A in the compressed column storage method.
			Regarding the compressed column storage method, see Fig.
			c_dm_vmvscc-1.
nz	int	Input	Total number of the nonzero elements belong to the coefficient matrix
			(≥1).
ncol	<pre>int ncol[nz]</pre>	Input	The column indices used in the compressed row storage method, which
			indicate the column number of each nonzero element stored in the array
			a.
nfrnz	int nfrnz[n+1]	Input	The position of the first nonzero element stored in array A by the
			compressed row storage methods which stores the nonzero elements
			row by row. $nfrnz[n] = nz + 1$.
n	int	Input	Order <i>n</i> of the matrix $\mathbf{A} (\geq 1)$.
b	double b[n]	Input	The right-side constant vector of the system of linear equations is
			stored.
isw	int	Input	Control information.
			When solving multiple sets of equations having the same sparse
			structure and /or the same coefficient matrix, specify as follows;

			Specify $isw = 1$ for the first set of equations.
			Specify $isw = 2$ for the second and subsequent sets with the same
			sparse structure and different coefficient matrix A and constant vector b .
			Specify isw = 3 for the second and subsequent sets with different
			constant vector b .
			When specifying $isw = 2$ or 3, change only the parameters necessary to
			be changed such as a , b and/or x and do not change other parameters.
x	double x[n]	Input	The initial value of solution can be specified.
		Output	The solution vector is stored.
am	double am[nwm]	Input	If any, the nonzero elements of the initial approximate inverse matrix
		Γ	$\mathbf{M_0}$ are stored in am[i-1], i = 1,, nzm using the compressed row
			storage method.
		Outrout	The compressed row storage method is the same with matrix A .
		Output	The approximate inverse matrix M .
nzm	int	Input	If any, total number of the nonzero elements belong to the initial approximate inverse matrix \mathbf{M}_0 (≥ 1).
			If not, specify as $nzm = 0$. In this case, this routine employs the unit
			matrix as the initial approximate inverse internally.
		Output	Total number of the nonzero elements of approximate inverse matrix
		Output	M.
ncolm	int ncolm[nwm]	Input	If any, the column indices used in the compressed row storage method,
11001111	THE HOOTHILHWIN	трис	which indicate the column number of each nonzero element stored in
			the array am.
		Output	The column indices of approximate inverse matrix M .
nfrnzm	int	Input	If any, the position of the first nonzero element stored in array am by the
	nfrnzm[n+1]	- F ***	compressed row storage method which stores the nonzero elements row
			by row. $nfrnzm[n] = nzm + 1$.
		Output	The position of the first nonzero element of each row of approximate
		•	inverse matrix M .
nwm	int	Input	Specify the maximum size of areas used for computation of
			approximate inverse matrix \mathbf{M} (≥ 1).
			Total number of the nonzero elements of approximate inverse matrix ${\bf M}$
			is calculated by the formula below where nz_k is number of nonzero
			elements in the k -th column of matrix \mathbf{A} .
			$nzm = \sum_{k=1}^{n} \max(1, nz_k \times ipar[1]/100)$
			Then nwm is specified as follows;
			$nwm = \max(nzm, nz).$
			For more detail, See <i>Comments on use</i> .
ipar	int ipar[20]		Control parameters having integer values. Some parameters may be
			modified on output. When specify 0 for any parameter, it will be
			assumed to specify default value on it. If no convergence is met by
			using default parameters, it is recommended to try again by making
		.	parameters change.
		Input	ipar[0]: Reserved for future extensions. Specify 0 for each, just in

case. Input ipar[1]: Input. Specify percentage(%) which is the ratio of nonzero elements of approximate inverse against that of the coefficient matrix $A (\ge 0)$. It is used as upper limit control for nonzero elements generations. For instance, if specify as ipar[1] = 50, approximate inverse matrix will be generated having total nonzero number which is about 50% of that of coefficient matrix as an upper limit. Default value is 100. For more detail, See Comments on use. ipar[2]: Specify incremental number which is number of adding Input new indices during computation of column vector of approximate inverse matrix $(n \ge ipar[2] \ge 0)$. For instance, if specify as ipar[2] = 2, the number of indices within each column of approximate inverse will be incremented by 2 indices which are the most effective indices in term of the norm minimization. Default value is 1. For more detail, See Comments on use. ipar[3]: Specify the order of shadow residual s of Induced Input Dimension Reduction method *IDRstab(s,l)* $(n \ge s \ge 0)$. Default value is 4. Input ipar[4]: Specify the order of acceleration polynomial l of Induced Dimension Reduction method *IDRstab(s,l)* ($n \ge l \ge 0$). Default value is 1. Input ipar[5]: Specify the upper limit of iteration counts for *IDRstab(s,l)* method (≥ 0). Default value is 2000. Output ipar[6]: Actual iteration counts. Output ipar[7]: Actual evaluation counts of matrix-vector multiplications Av where A is the coefficient matrix and v is iterative vector in *IDRstab(s,l)* method. ipar[8]: Estimated size nwm for am, ncolm etc. Output For more detail, See Comments on use. Input ipar[9] to [11]: Reserved for future extensions. Specify 0 for each, just in case. Output ipar[12]: Actual size 1mmax used for vw2 and ivw2. Output ipar[13]: Actual size lnmax used for vw2. ipar[14] to [19]: Reserved for future extensions. Specify 0 for Input each, just in case. Control parameters having real values. Some parameters may be modified on output. When specify 0.0 for any parameter, it will be assumed to specify default value on it. If no convergence is met by using default parameters, it is recommended to try again by making

double rpar rpar[20]

parameters change.

Input rpar[0]: Specify convergence criteria *eps* with iterative computation

			for each column of approximate inverse matrix (≥ 0.0). Default value is 0.3.
		Input	rpar[1]: Specify convergence criteria <i>epst</i> for iterative solution of given a system of linear equations by <i>COCR</i> method (≥ 0.0).
		Output	rpar[2]: Specify convergence criteria <i>epst</i> for iterative solution of given a system of linear equations by <i>IDRstab(s,l)</i> method (≥ 0.0). Default value is 10 ⁻⁸ .
		Input	rpar[3] to [19]: Reserved for future extensions. Specify 0.0 for each, just in case.
vw1	double	Work	, ,
	vw1[nwm]	area	
ivw1	<pre>int ivw1[nwm]</pre>	Work	
		area	
vw2	double	Work	
	<pre>vw2[numt][lnma x+3][lmmax]</pre>	area	
ivw2	int	Work	
IVWZ	ivw2[numt][3][
	lmmax]	area	
lmmax	int	Input	The third dimension of working array (≥ 1) .
			Immax is a certain value related to the number of nonzero elements of matrix A . Lets see certain column of matrix A , we defines the total number of nonzero elements in the column and another columns which are relatives of the nonzero elements of the column. Specify the maximum number of the total number between columns. In general, it is adequate to specify as Immax = 1000. If no solution is met, it is recommended to try again by making parameters change. For more detail, See <i>Comments on use</i> .
lnmax			
	int	Input	The second dimension of working array (≥ 1). lnmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix A . In general, specify the maximum number of nonzero elements for regular use with ipar[1] = 100. If no solution is met, it is recommended to try again by making parameters change. For more detail, See <i>Comments on use</i> .
numt	int	Input	lnmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix A . In general, specify the maximum number of nonzero elements for regular use with ipar[1] = 100. If no solution is met, it is recommended to try again by making parameters change. For more detail, See <i>Comments on use</i> . The first dimension of working array (≥ 1).
numt			Inmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix A . In general, specify the maximum number of nonzero elements for regular use with <code>ipar[1]</code> = 100. If no solution is met, it is recommended to try again by making parameters change. For more detail, See <i>Comments on use</i> .

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
11000	Matrix A may be near singular.	Processing is continued.

Code	Meaning	Processing
19000	Non diagonal element(s) is detected in matrix A .	_
20000	The iteration counts reached the upper limit.	Processing is discontinued.
		The already calculated approximate value is
		output to array x along with relative residual
		error.
25000	Array am and ncolm overflow due to too small	Processing is discontinued.
	value nwm.	Estimated minimum size is output to ipar[8].
26000	Work area vw2, ivw2 overflow due to too small	Processing is discontinued.
	value 1mmax.	
27000	Work area vw2 overflow due to too small value	
	lnmax.	
29000	Matrix A is singular.	
30000	Parameter error(s).	_
	• n<1	
	• nz < 1	
	• nz≠nfrfz[n] - 1	
	• isw<1	
	• isw>3	
	• nwm < n	
	• nzm<0	
	• ipar[1] < 0	
	• ipar[2]<0	
	• ipar[3] < 0	
	• n <ipar[3]< td=""><td></td></ipar[3]<>	
	• ipar[4]<0	
	• n <ipar[4]< td=""><td></td></ipar[4]<>	
	• ipar[5] < 0	
	• lmmax < 1	
	• lnmaz<1	
	• numt < 1	
	• rpar[0] < 0.0	
	• rpar[1] < 0.0.	
30011	Parameter error(s) related to matrix A .	
	Some parameter value show following relation.	
	nfrnz[k] > nfrnz[k+1], k = 0,, n-1.	
30012	Parameter error(s) related to matrix A .	
	Some parameter value show following relation.	
	ncol[<i>l</i>] > ncol[<i>l</i> +1],	
	l = nfrnz[k],, nfrnz[k+1], k = 0,, n-1.	
30021	Parameter error(s) related to matrix M ₀ .	
	Some parameter value show following relation.	
	nfrnz[k] > nfrnz[k+1], k = 0,, n-1.	

Code	Meaning	Processing
30022	Parameter error(s) related to matrix M ₀ .	
	Some parameter value show following relation.	
	ncol[<i>l</i>] > ncol[<i>l</i> +1],	
	l = nfrnz[k],, nfrnz[k+1], k = 0,, n-1.	

3. Comments on use

About the size of arrays for approximate inverse matrix

The size nzm of approximate inverse matrix **M** is calculated by the formula below where nz_k is number of nonzero elements in the k-th column of matrix **A**.

$$nzm = \sum_{k=1}^{n} \max(1, nz_k \times ipar[1]/100)$$

Then the size of array nwm is specified as follows;

$$nwm = \max(nzm, nz)$$

In general, if you use default value for ipar[1], that is ipar[1] = 0, which specifies upper limit of percentage of nonzero elements generations, it is adequate to specify as nwm = nz. When it is difficult to calculate nwm by above formula, it is recommended to specify enough big size such as $nwm = 2 \times nz$. As a result of operation of this routine, the suggested size is output on ipar[8]. This resultant value gives good suggestion for subsequent call to solve a system with a similar sparse matrix. If you solve another system having the same sparse structure and the equivalent nonzero percentage of approximate inverse, you can take ipar[8] as a suggestion. On the other hand, if you solve another system having much more nonzero elements than previous, or increasing percentage of nonzero elements in approximate inverse, you can take ipar[8] multiplied by each increasing ratio as a suggestion.

About the initial approximate inverse matrix

If you have a good approximate inverse matrix M_0 , you can specify it as an initial value on relevant parameters. You can specify total nonzero number of the matrix M_0 on nzm, and specify the initial approximate inverse matrix on am, ncolm and nfrnzm respectively.

Such usage is recommended for user who would process following type of problems in efficient manner.

#1 to solve multiple set of equations with the same sparse structure and different coefficient matrix \mathbf{A} and constant vector \mathbf{b} .

#2 to solve multiple set of equations with similar sparse structure.

Process is controlled along with parameter isw. In these cases, change only the value of a and/or related parameters and b, x, and do not change other parameters such as am and work areas in which previous results are stored.

In this case, it is possible to increase the upper limit by making parameter ipar[1] change.

About total nonzero number of approximate inverse matrix M

This routine solves a system of linear equations with preconditioning based on approximate inverse matrix,

$$AMy = b$$
, $x = My$.

Approximate inverse matrix M is computed so as to be satisfied AM = I. The total number of nonzero elements of M affects not only accuracy of inverse but also performance of matrix vector multiplication which is appeared frequently during iterations. In this routine, it is able to control the total number of nonzero elements of matrix M via parameter ipar[1]. In general, it is recommended the nonzero number take the same order with that of matrix A.

That is, ipar[1] = 100 is recommended.

This routine computes inverse matrix **M** column by column, m_k , k = 1, ..., n.

The iterate m_k of inverse matrix M is accepted as a minimum solution if

$$\|\mathbf{A}\mathbf{m}_k - \mathbf{e}_k\|_{2} \leq eps$$

is satisfied even if nonzero number in m_k does not reach upper limit

$$nz_k \times ipar[1]/100$$
.

Where nz_k is number of nonzero elements in k-th column of matrix A.

About incremental number during computation of column vector of inverse

This routine computes column vector \mathbf{m}_k of matrix \mathbf{M} by solving least squares problems as follows;

$$\min_{\boldsymbol{m}_k} \left\| \boldsymbol{A} \boldsymbol{m}_k - \boldsymbol{e}_k \right\|_2, k = 1, ..., n$$

Where e_k is unit vector. Residual vector based on the solution above may lead candidates of new nonzeros in next step m_k . This routine selects new indices automatically from candidates in terms of the most profitable one which minimizes coming residual vector. Key point of this algorithm lies in determining a good sparsity structure of the column of approximate inverse. In order to increase nonzero elements gradually, it is recommended to specify as ipar[2] = 1 which is number of adding new indices during computation of column vector.

About work area vw2, ivw2

Work area vw2 and ivw2 are three dimensional array respectively. These areas are used for solving least squares problems in order to compute column vector \mathbf{m}_k of approximate inverse matrix \mathbf{M} . In general, column vector \mathbf{m}_k is sparse vector and its density of nonzero elements is varied during computation. The least squares problems are defined corresponding to the formula of previous section 4).

The residual vector \mathbf{Am}_k - \mathbf{e}_k can be formulated only by nonzero elements of \mathbf{m}_k and certain columns of \mathbf{A} related with nonzero elements of \mathbf{m}_k . From such point of view, rectangular system which is constructed by nonzero elements is derived.

You can specify 1mmax and 1nmax as maximum number of rectangular matrix and allocate array vw2 and ivw2. Actual number of rectangular matrix desired in this routine depend on characteristics of matrix a and value of parameters such as ipar[1]. Therefore you can try to call this routine by using suggested manner below. If no solution is met, it is recommended to try again by making parameters change.

1 mmax is a certain value related to the number of nonzero elements of matrix **A**. Lets see *k*-th column of matrix **A**, we defines the total number of nonzero elements in *k*-th column and another columns which are relatives of the nonzero elements of *k*-th column. You can specify the maximum number of the total number between columns. In general, it is adequate to specify as 1 mmax = 1000.

In case that density of nonzero elements is rather high or relation between elements tend to be strong or certain columns have more nonzero elements than others, it is recommended to increase lmmax.

1 nmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix \mathbf{A} . The maximum number of nonzero is calculated by the formula below where nz_k is number of nonzero elements in the k-th column of matrix \mathbf{A} .

```
\max_{k} \left[ \max(1, nz_k \times ipar [1]/100) \right]
```

You can specify 1nmax as this maximum number multiplied by 1.2.

After computation, this routine output the actual size in ipar[12] and ipar[13] corresponding to lmmax and lnmax respectively.

4. Example program

The linear system of equations Ax = f is solved, where A results from the finite difference method applied to the elliptic equation

```
-\Delta u+a \nabla u+u=f
```

with zero boundary conditions on a cube and the coefficient $\mathbf{a} = (a_1, a_2, a_3)$ where a_1, a_2 and a_3 are some constants. The matrix \mathbf{A} in Diagonal format is generated by the routine init_mat_diag. Then it is converted into the storage scheme in compressed storage.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define
         NORD
                  60
                  NORD
#define
         NX
#define
         NY
                  NORD
#define
         NZ
                  NORD
                  (NX * NY * NZ)
#define
         N
#define
          Κ
                  (N + 1)
#define
         NDIAG
                  7
#define
          Τ.
#define
          LMMAX
                  1000
#define
          LNMAX
                  200
#define
          NUMT
double errnrm(double*, double*, int);
void init_mat_diag(double, double, double, double, double*, int*, int, int,
int, double, double, double, int, int, int);
void convgcr(double*, int, int*, int*, double*, int*, int*);
```

```
int MAIN__() {
 int nofst[NDIAG];
  int nrow[K * NDIAG], nfcnz[K], iw[K * NDIAG][2];
 int ivw[N];
       *ivw2;
 int
 int ipar[20];
 int nfrnz[K], nfrnzm[K];
 int j, l, nbase, length, numnz, ncoll, ntopcfg, nnz, icon, isw, nwm,
 nzm, itmax, icont; int i;
 double diag[NDIAG][K], diag2[NDIAG][K];
 double a[K * NDIAG], w[K * NDIAG];
double x[N], b[N], solex[N], y[N];
  double
         *vw2;
  double rpar[20];
 double val, va2, va3, vc, xl, yl, zl, errl, err2, err3, err4, eps;
 double *aa, *am, *vw1;
 int *ncol, *ncolm, *ivwl;
 vw2 = (double *)malloc(LMMAX * (LNMAX + 3) * NUMT * sizeof(double));
 ivw2 = (int *)malloc(LMMAX * 3 * NUMT * sizeof(int));
 if (vw2 == NULL || ivw2 == NULL)
   exit(-1);
 printf(" *** SPARSE LINEAR EQUATIONS BY IDR METHOD");
 printf(" WITH PRECONDITIONING\n");
printf(" *** COMPRESSED ROW STORAGE.\n");
 printf("\n");
 for (i = 0; i < N; i++)
   solex[i] = 1.0;
 printf("\n");
 va1 = 3.0;
 va2 = 1.0/3.0;
 va3 = 5.0;
 vc = 1.0;
 x1 = 1.0;
 y1 = 1.0;
 z1 = 1.0;
  init_mat_diag(val, va2, va3, vc, (double *)diag, nofst,
                NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
 for (i = 0; i < NDIAG; i++) \{
   if (nofst[i] < 0)
     nbase = -nofst[i];
      length = N - nbase;
     for (j = 0,1 = nbase; j < length; j++,1++)
       diag2[i][j] = diag[i][1];
    } else {
     nbase = nofst[i];
     length = N - nbase;
for (j = 0,1 = nbase; j < length; j++,1++)
       diag2[i][l] = diag[i][j];
    }
 numnz = 1;
  for (j = 0; j < N; j++) {
   ntopcfg = 1;
    for (i = NDIAG; i > 0; i--)
     if (diag2[i-1][j] != 0.0) {
       ncoll = (j+1) - nofst[i-1];
        a[numnz-1] = diag2[i-1][j];
        nrow[numnz-1] = ncoll;
       if (ntopcfg == 1) {
         nfcnz[j] = numnz;
ntopcfg = 0;
       numnz++;
     }
 }
```

```
nfcnz[N] = numnz;
  nnz = numnz - 1;
  c_dm_vmvscc(a, nnz, nrow, nfcnz, N, solex, b, w, (int *)iw, &icon);
  err1 = errnrm(solex, x, N);
  for (i = 0; i < N; i++)
x[i] = 0.0;</pre>
  \verb|c_dm_vmvscc|(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icon)|;
  err2 = errnrm(y, b, N);
       = (double *)malloc(sizeof(double) * nnz);
       = (double *)malloc(sizeof(double) * nnz);
       = (double *)malloc(sizeof(double) * nnz);
  ncol = (int *)malloc(sizeof(int) * nnz);
  ncolm = (int *)malloc(sizeof(int) * nnz);
  ivw1 = (int *)malloc(sizeof(int) * nnz);
  if (aa == NULL | am == NULL | vwl == NULL | ncol == NULL | ncol == NULL | ivwl == NULL)
   exit(-1);
  isw = 1;
  for (i = 0; i < 20; i++) {
   ipar[i] = 0;
   rpar[i] = 0.0;
  nwm = nnz;
  nzm = 0;
  convgcr(a, N, nfcnz, nrow, aa, nfrnz, ncol, ivw);
  c_dm_vlspaxcr2(aa, nnz, ncol, nfrnz, N, b, isw, x,
                  am, &nzm, ncolm, nfrnzm, nwm, ipar, rpar,
                  vw1, ivw1, vw2, ivw2, LMMAX, LNMAX, NUMT, &icon);
  eps = rpar[1];
  itmax = 2000;
  err3 = errnrm(solex, x, N);
  c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icont);
  err4 = errnrm(y, b, N);
  printf("
            *** COMPUTED SOLUTIONS\n");
 printf(" *** COMPUTED SOLUTIONS\n");
printf(" X(1) = %19.161f X(N) = %19.161f\n", x[0], x[N-1]);
  printf("\n");
  printf(" C_DM_VLSPAXCR2 ICON = %d\n", icon);
  printf("\n");
  printf(" N
                      = %d\n", N);
  printf("
                  NX = %d\n", NX);
  printf("
                         %d\n",NY);
                  NY =
  printf("
                  NZ = %d\n", NZ);
  printf(" ITER MAX = %d\n", itmax);
printf(" ITER = %d\n", ipar[6]);
printf(" ICMAV = %d\n", ipar[7]);
 printf(" ITER
printf(" ICMAV
  printf("\n");
  printf(" EPS
                      = %21.15le\n", rpar[1]);
  printf("\n");
 printf(" INITIAL ERROR = %18.131f\n", err1);
printf(" INITIAL RESIDUAL ERROR = %18.101f\n", err2);
  printf(" CRITERIA RESIDUAL ERROR = %20.15le\n", err2*eps);
  printf("\n");
  printf(" ERROR
printf(" RESIDUAL ERROR
                                     = %20.15le\n", err3);
= %20.15le\n", err4);
  printf("\n");
  printf("\n");
  } else {
   printf(" ******** NG *******\n");
  free(vw2);
  free(ivw2);
  free(aa);
  free(am);
  free(vw1);
  free(ncol);
  free(ncolm);
  free(ivw1);
 return(0);
ABSOLUTE ERROR : | X1 - X2 |
   */
double errnrm(double *x1, double *x2, int len) {
  int i;
```

```
double s, ss, errnrm_ret;
 for (i = 0; i < len; i++) {
   ss = x1[i] - x2[i];
   s = s + ss * ss;
 errnrm_ret = sqrt(s);
 return(errnrm_ret);
INITIALIZE COEFFICIENT MATRIX
   */
void init_mat_diag(double val, double va2, double va3, double vc,
                   double *d_1, int *offset, int nx, int ny, int nz,
                   double xl, double yl, double zl, int ndiag, int len,
                   int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
#pragma omp parallel default(shared)
 int j, l, ndiag_loc, nxy, js, i0, j0, k0; int i;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7)
  ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = z1 / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
    d_l[(j * ndivp) + i] = 0.0;
   }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
1 = 0;
 if (ndiag_loc >= 7) {
   offset[1] = -nxy;
   1++;
  if (ndiag_loc >= 5) {
   offset[1] = -nxi
   1++;
  if (ndiag_loc >= 3) {
   offset[1] = -1;
   1++;
 offset[1] = 0;
 1++;
  if (ndiag_loc >= 2) {
   offset[1] = 1;
   1++;
  if (ndiag_loc >= 4) {
   offset[1] = nx;
  if (ndiag_loc >= 6) {
   offset[1] = nxy;
/* MAIN LOOP */
#pragma omp for
 for (j = 1; j <= len; j++) \{
    js = j;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js - 1) / nxy + 1;
if (k0 > nz) {
```

```
printf("ERROR; K0.GH.NZ \n");
      continue;
    ,j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    1 = 0;
    if (ndiag_loc >= 7) {
      if (k0 > 1)

d_1[(1 * ndivp) + (j-1)] = -(1.0 / hz + 0.5 * va3) / hz;
      1++;
    if (ndiag_loc >= 5) {
      if (j0 > 1)
        d_1[(1 * ndivp) + (j-1)] = -(1.0 / hy + 0.5 * va2) / hy;
    if (ndiag_loc >= 3) {
      if (i0 > 1)
       d_1[(1 * ndivp) + (j-1)] = -(1.0 / hx + 0.5 * val) / hx;
    hx2 = hx * hx;
    hy2 = hy * hy;
hz2 = hz * hz;
    d_1[(1 * ndivp) + (j-1)] = 2.0 / hx2 + vc;
    if (ndiag_loc >= 5) {
      d_1[(1 * ndivp) + (j-1)] += 2.0 / hy2;
if (ndiag_loc >= 7) {
  d_1[(1 * ndivp) + (j-1)] += 2.0 / hz2;
    1++;
    if (ndiag_loc >= 2) {
      if (i0 < nx)
       d_1[(1 * ndivp) + (j-1)] = -(1.0 / hx -0.5 * val) / hx;
    if (ndiag_loc >= 4) {
      if (j0 < ny)
       d_1[(1 * ndivp) + (j-1)] = -(1.0 / hy - 0.5 * va2) / hy;
      1++;
    if (ndiag_loc >= 6) {
      if (k0 < nz)
        d_1[(1 * ndivp) + (j-1)] = -(1.0 / hz - 0.5 * va3) / hz;
  }
}
  return;
       MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW.
   */
int i;
  nz = ic[n] - 1;
  for (i = 0; i <= n; i++) {
  ir[i] = 0;
  for (j = 0; j < nz; j++) {
   ir[jc[j]] = ir[jc[j]]+1;
  ir[0] = 1;
  for (i = 1; i \le n; i++) {
   ir[i] = ir[i] + ir[i-1];
  for (i=0; i < n; i++) {
   iw[i] = ir[i];
  icol = 1;
  for (j = 0; j < nz; j++) {
   if (j == ic[icol]-1)
     icol++;
    jr[iw[jc[j]-1]-1] = icol;
    ar[iw[jc[j]-1]-1] = ac[j];
    iw[jc[j]-1] = iw[jc[j]-1] + 1;
```

```
return;
```

5. Method

Consult the entry for DM_VLSPAXCR2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [29], [31], [68].

c dm vlsx

A system of linear equations with symmetric positive definite matrices (blocked modified Cholesky decomposition method).

ierr = c_dm_vlsx(a, k, n, b, epsz, isw, &icon);

1. Function

This function solves a system of linear equations (1) with a real coefficient matrix by blocked modified Cholesky's method.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{1}$$

In (1), **A** is an $n \times n$ positive definite symmetric real matrix, **b** is a real constant vector, and **x** is the real solution vector. Both the real vectors are of size n ($n \ge 1$).

ierr = c_dm_vlsx((double*)a, k, n, b, epsz, isw, &icon);

2. Arguments

The routine is called as follows:

where: double Input The upper triangular part $\{a_{ij}, i \le j\}$ of **A** is stored in the upper triangular а part $\{a[i-1][j-1], i \le j\}$ of a for input. a[n][k] See Figure c_dm_vlsx-1. The contents of the array are altered on output. Output Decomposed matrix. After the first set of equations has been solved, the upper triangular part of a [i-1][j-1] (i \leq j) contains l_{ij} ($i\leq j$) of the upper triangular matrix L, D^{-1} and L^{T} . k Input C fixed dimension of array a. $(\geq n)$ int Input Order n of matrix A. int n double b[n] Input Constant vector b. b Output Solution vector x. Input Tolerance for relative zero test (≥ 0). double epsz When epsz is zero, a standard value is assigned. See Comments on use. Input Control information. isw int When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument b is assigned a new constant vector **b** and the others are unchanged. See Comments on use. icon Output Condition code. See below. int The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.

Code	Meaning	Processing
10000	Pivot became negative.	Processing continues.
	Coefficient matrix is not positive definite.	
20000	Pivot became smaller then relative zero value.	Discontinued.
	Coefficient matrix might be singular.	
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• epsz<0	
	• isw ≠ 1 or 2	
	• k < n	

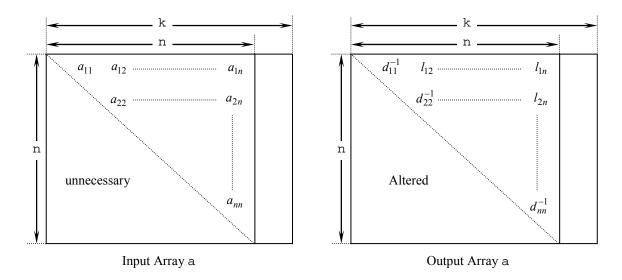


Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part (a_{ij}) of the LDL^T-decomposed positive definite matrix are stored in array a [i-1][j-1], i=1,...,n, j=i,...,n.

After LDL^T decomposition, matrix \mathbf{D}^{-1} is stored in diagonal elements and \mathbf{L} (excluding the diagonal elements) are stored in the upper triangular part respectively.

3. Comments on use

epsz

If the value 10^{-s} is given for epsz as the tolerance for relative zero test then it has the following meaning:

If the pivot value loses more than s significant digits during \mathbf{LDL}^T decomposition in the modified Cholesky's method, the value is assumed to be zero and decomposition is discontinued with icon=20000. The standard value of epsz is normally 16μ , where μ is the unit round-off.

Decomposition can be continued by assigning the smallest value (e.g. 10^{-70}) to epsz even when pivot values become smaller than the standard value, however the result obtained may not be of the desired accuracy.

isw

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the LDL^T decomposition section and

go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

Negative pivot during the solution

If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite. The calculation is to continued and icon = 10000 is returned on exit. Note, however, that the resulting calculation error may be significant, because no pivoting is performed.

Calculation of determinant

To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array a together (i.e., diagonal elements of \mathbf{D}^{-1}) after calculation is completed, and take the reciprocal of this result.

4. Example program

A system of linear equations with a 1000×1000 coefficient matrix is solved.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b)
                   ((a) < (b) ? (a) : (b))
#define NMAX
                     (1000)
#define LDA
                    (NMAX+1)
MAIN__()
  int    n, isw, i, j, icon, ierr;
double a[NMAX][LDA], b[NMAX];
  double epsz, s, det;
       = NMAX;
  epsz = 0.0;
  isw = 1;
#pragma omp parallel for shared(a,n) private(i,j)
  for(i=0; i<n; i++)
    for(j=0; j<n; j++)
a[i][j] = min(i,j)+1;
\#pragma \ omp \ parallel \ for \ shared(b,n) \ private(i)
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
  ierr = c_dm_vlsx((double*)a, LDA, n, b, epsz, isw, &icon);
  if (icon != 0)
    printf("ERROR: c_dm_vlsx failed with icon = %d\n", icon);
    exit(1);
  s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];</pre>
  printf("solution vector:\n");
  for(i=0; i<10; i++) printf("
                                      b[%d] = %e\n", i, b[i]);
  det = 1.0/s_i
  printf("\ndeterminant of the matrix = %e\n", det);
  return(0);
```

5. Method

Consult the entry for DM VLSX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52].

c dm vlux

A system of linear equations with LU-decomposed real matrices.					
<pre>ierr = c_dm_vlux(b,</pre>	fa,	kfa,	n,	ip,	&icon);

1. Function

This routine solves a system of linear equations having LU-decomposed real coefficient matrices.

$$LUx = Pb (1)$$

where, **L** and **U** are respectively a unit lower triangular matrix and a unit upper triangular $n \times n$ matrix, **P** is a permutation matrix (interchanging rows of the coefficient matrix for partial pivoting in LU-decomposition), **b** is an n-dimensional real constant vector, and **x** is an n-dimensional solution vector ($n \ge 1$).

2. Arguments

The routine is called as follows:

ierr = c_dm_vlux(b, (double*)fa, kfa, n, ip, &icon); where: Input Constant vector b. b double b[n] Output Solution vectors x. fa double Input Matrix L + (U - I). See Comments on use. fa[n][kfa] kfa int Input C fixed dimension of array fa $(\ge n)$. Input Order of matrices L and U. int n int ip[n] Input Transposition vector that provides the row exchanges that occurred ip during partial pivoting. See Comments on use. icon Output Condition code. See below. int The complete list of condition codes is:

Code	Meaning	Processing	
0	No error.	Completed.	
20000	Coefficient matrix was singular.	Discontinued.	
30000	One of the following occurred:	Bypassed.	
	• n<1		
	• kfa <n< td=""><td></td><td></td></n<>		
	 error found in ip 		

3. Comments on use

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dm_valu to LU-decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip of routine c_dm_valu. Alternatively, the system of linear equations can be solved by calling the single routine c_dm_vlax.

4. Example program

A system of linear equations is solved by LU-decomposing the coefficient 1000×1000 matrix.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b)
                  ((a) < (b) ? (a) : (b))
#define NMAX
                  (1000)
#define LDA
                  (NMAX+1)
MAIN__()
        n, is, isw, i, j, icon, ierr;
ip[NMAX];
  int.
  int
  double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;
      = NMAX;
  epsz = 0.0;
  isw = 1;
#pragma omp parallel for shared(a,n) private(i,j)
  for(i=0; i<n; i++)
    for(j=0; j< n; j++) a[i][j] = min(i,j)+1;
#pragma omp parallel for shared(b,n) private(i)
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
  ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
    exit(1);
  ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
    exit(1);
 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
  for(i=0; i<n; i++) s *= a[i][i];
  printf("solution vector:\n");
                                   b[%d] = %e\n", i, b[i]);
  for(i=0; i<10; i++) printf("
 det = is*s;
 printf("\ndeterminant of the matrix = %e\n", det);
  return(0);
```

5. Method

Consult the entry for DM VLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmggm

1. Function

This function obtains product C by multiplying a real matrix \mathbf{A} ($m \times n$) by a real matrix \mathbf{B} ($n \times l$).

$$C = AB$$

where **C** is a real matrix $(m \times l)$, where $m, n, l \ge 1$.

2. Arguments

The routine is called as follows:

337	1e	re	

WHELE.			
a	double	Input	Matrix A.
	a[m][ka]		
ka	int	Input	C fixed dimension of array a $(\ge n)$.
b	double	Input	Matrix B .
	b[n][kb]		
kb	int	Input	C fixed dimension of array b (≥ 1).
С	double	Output	Matrix C. See Comments on use.
	c[m][kc]		
kc	int	Input	C fixed dimension of array $c (\geq 1)$.
m	int	Input	The number of rows m in matrices A and C .
n	int	Input	The number of columns n in matrix \mathbf{A} and number of rows n in matrix \mathbf{B} .
1	int	Input	The number of columns l in matrices B and C .
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing	
0	No error.	Completed.	
30000	One of the following has occurred:	Bypassed.	
	• m < 1		
	• n < 1		
	• 1<1		
	• ka < n		
	• kb<1		
	• kc<1		

3. Comments on use

Storage space

Storing the solution matrix C in the same memory area used for matrix A or B is NOT permitted. C must be stored in a separate array otherwise the result will be incorrect.

4. Example program

This example program performs a matrix-matrix multiplication and checks the results.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX (100)
MAIN__()
 int ierr, icon;
 int n, i, j;
 double eps;
 double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];
  /* initialize matrices */
 n = NMAX;
 for (i=0; i<n; i++) {
   for (j=0; j<n; j++) {
    a[i][j] = j+1;
    b[j][i] = 1.0/(j+1);
 }
  /* matrix matrix multiply */
 /* check result */
  eps = 1e-5;
  for (i=0; i<n; i++) {
   for (j=0; j<n; j++) {
     if (fabs((c[i][j]-n)/n) > eps) {
       printf("WARNING: result inaccurate\n");
       exit(1);
     }
   }
 printf("Result OK\n");
 return(0);
```

5. Method

Consult the entry for DM_VMGGM in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

c_dm_vminv

Inverse of real matrix (blocked (Gauss	s-Jor	dan meth	od)
<pre>ierr = c_dm_vminv(a,</pre>	k,	n,	epsz,	&icon);

1. Function

This routine obtains the inverse A^{-1} of the $n \times n$ non-singular real matrix A using the Gauss-Jordan method.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vminv((double*)a, k, n, epsz, &icon);
where:
            double
                                 Input
                                            Matrix A.
а
            a[n][k]
                                 Output
                                            Matrix A^{-1}.
                                            C fixed dimension of array a (\ge n).
            int
                                 Input
k
            int
                                 Input
                                            Order of matrix A.
            double
                                 Input
                                            Judgment of relative zero of the pivot. (\geq 0.0)
epsz
                                            When epsz is 0.0, the standard value is assumed.
            int
                                 Output
                                            Condition code. See below.
```

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	All row elements in matrix A are zero or the pivot	Discontinued.
	becomes a relatively zero. Matrix A may be	
	singular.	
30000	One of the following occurred:	
	• n<1	
	• k <n< td=""><td></td></n<>	
1	• epsz<0.0	

3. Comments on use

epsz

When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16u. If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

4. Example program

The inverse of a matrix is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
```

```
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N 2000
#define K (N+1)
int MAIN__()
  double a[N][K], as[N][K];
 double c, t, error, epsz;
int    i, j, icon;
  c = sqrt(2.0/(N+1));
  t = atan(1.0)*4.0/(N+1);
  for (j=0; j<N; j++) \{
   for (i=0; i<N; i++) {
      as[j][i] = a[j][i] = c*sin(t*(i+1)*(j+1));
  epsz = 0.0;
  c_dm_vminv((double*)a, K, N, epsz, &icon);
  error = 0.0;
for (i=0; i<N; i++) {
    for (j=0; j<N; ++j)
      error = max(error,fabs(a[j][i]-as[j][i]));
 printf("order = %d, error = %e\n", N, error);
 return(0);
```

Consult the entry for DM_VMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmlbife

1. Function

This routine solves, using the iterative method, a system of linear equations with sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix is stored using the ELLPACK format storage method. Vectors **b** and **x** are n-dimensional vectors.

The solution method is ORTHOMIN if **A** is symmetric and GMRES if **A** is non-symmetric. The iteration (called outer iteration) is preconditioned by the multilevel incomplete block factorizations and stable. The iteration procedure is preconditioned by repeated elimination of certain sets of unknowns. The elimination procedure uses approximative inverses of the sub-matrices produced by the sets of eliminated unknowns. The elimination procedure is repeated until on the so-called coarsest level a smaller linear system is produced. For every step of the outer iteration this linear system is solved iteratively (called inner iteration).

2. Arguments

The routine is called as follows:

```
infoep, epsot, epsin, epsep, x, w, nw, iw, niw, &icon);
where:
            double
                                 Input
                                            The nonzero elements of a coefficient matrix A are stored in a.
а
            a[iwidt][k]
                                            C fixed dimension of array a (\ge n).
            int
                                 Input
k
iwidt
                                 Input
                                            Maximum number of row-vector-direction nonzero elements of
            int
                                            coefficient matrix A. Size of first-dimension of a and icol.
            int
                                 Input
                                            Order n of matrix A.
n
icol
            int icol
                                 Input
                                            Column index used in ELLPACK format. Used to indicate to which
                                            column vector the corresponding element of a belongs.
            [iwidt][k]
            double b[n]
                                 Input
                                            The right-side constant vectors of a system of linear equations are stored.
b
                                 Input
                                            Control information. See Comments on use.
isw
            int
```

Initial calling.

ierr = c_dm_vmlbife((double*)a, k, iwidt, n, (int*)icol, b, isw, iguss, info,

2 Second or subsequent calling.
The arrays, a, icol, iw and w, must NOT be changed if the routine is called again with isw = 2.

iguss int Input Control information specifying whether iterative computation is to be performed using the approximate values of the solution vectors specified in array x. iguss = 0the approximate values of the solution vectors are not specified and set to zero. $iguss \neq 0$ the iterative computation is performed using the approximate values of the solution vectors specified in array x. info int info[14] Input / The control information of the iteration. Output For example, for symmetric coefficient matrix **A**, info is set as follows; info[0] = 10;info[1] = NTHRD*100; info[2] = 0; info[5] = 2000;info[4] = 1;info[9] = 1;info[10]= 1000; For example, for unsymmetric coefficient matrix **A**, info is set as follows; info[0] = 10;info[1] = NTHRD*100; info[2] = 0;info[4] = 2;info[5] = 2000;info[6] = 5;info[7] = 20;info[9] = 2;info[10]= 1000; info[11]= 10; info[12]= 0; Where NTHRD is the number of threads which are executed in parallel. See Comments on use. info[0] Input MAXLVL. Maximal number of levels in the algebraic multilevel iteration method. MAXLVL < 0 The optimal level evaluated internally is used. MAXLVL = 0 The multi-level method is not MAXLVL > 0 The coarser level than the specified depth is not used. info[1] Input MINUK. Minimal number of unknowns for the smallest linear system in the deepest level in the inner iteration. It is recommendable to set MINUK very larger than the number of threads NTHRD and very smaller than n. For example, $100 \times NTHRD$. info[2] NORM. Input The type of normalization. NORM < 1 The matrix is normalized from the right and the left by the inverse of the square root of the main diagonal of A. This effects that the main diagonal of the normalized matrix A is equal to one and the matrix is symmetric if A is symmetric.

It is recommendable to use symmetrical

normalization. However, in some cases the non-symmetrical normalization can produce faster convergence. Criterion value for judgment of convergency. $NORM \ge 1$ The matrix is normalized from the left by the inverse of the main diagonal of A. This effects that the main diagonal is equal to one but the normalized matrix will be nonsymmetric even if the matrix **A** is symmetric. info[3] Number of levels. Output info[4] Input METHOT. The iterative method used in the outer iteration. METHOT = 1 Preconditioned ORTHOMIN is used. It should be used if the matrix A is symmetric and a symmetrical normalization is METHOT ≠ 1 Restarted and truncated GMRES is used. It should be used if the matrix **A** is non-symmetric or a non-symmetrical normalization is used. ITMXOT. info[5] Input The maximal number of iteration steps in the outer iteration, for example 2000. If the maximum iteration number of outer iteration is reached the processing is terminated and the returned solution does not fulfill the stopping criterion. info[6] Input NRESOT. The number of residuals in the orthogonalization procedure of the outer iteration, i.e. truncation after NRESOT residuals. For example, 5. Only used if GMRES is applied. info[7] Input NRSTOT. After NRSTOT iteration steps the outer iteration is restarted. For example, 20. If it is NRSTOT < 1 there is no restart. Only used if GMRES is applied. info[8] Output ITEROT. The number of iteration steps in the outer iteration procedure. METHIN. info[9] Input The iterative method used in the inner iteration. METHIN = 1 Preconditioned ORTHOMIN is used. It should be used if the matrix A is symmetric and a symmetrical normalization is

int infoep[3]

Input

infoep[1]

Input

MAXITV.

infoep

used. METHIN ≠ 1 Restarted and truncated GMRES is used. It should be used if the matrix **A** is non-symmetric or a non-symmetrical normalization is used. ITMXIN. Input info[10] The maximal number of iteration steps in the inner iteration, for example 1000. If ITMXIN is reached the processing is continued on the outer iteration. info[11] NRESIN. Input The number of residuals in the orthogonalization procedure of the inner iteration, ie. truncation after NRESIN residuals. For example, 10. Only used if GMRES is applied. info[12] Input NRSTIN. After NRSTIN iteration steps the inner iteration Only used if GMRES is applied. If it is NRSTIN < 1 there is no restart. info[13] Output The average number of the inner iteration. The control information for the block matrix of the removed unknowns and the reduced matrix. For example, infoep is set as follows to specify the method for approximating the inverse matrix of a matrix block, which is used for calculating the Schur complement in each level: In case of approximating the inverse matrix with a diagonal matrix. infoep[0] = 1;infoep[1] = 5;infoep[2] = 2*nrow; In case of seeking an approximative inverse matrix with an iterative method. infoep[0] = nrow; infoep[1] = 5;infoep[2] = 2*nrow; Where, nrow indicates the representative number of nonzero entries per row in the coefficient matrix A. infoep[0] Input MAXNCV. Maximal number of nonzero entries per row

in the approximative inverse of the eliminated matrix block. Typically it is set MAXNCV =1 or MAXNCV=MAXNC. Notice that MAXNCV=1 effects that the matrix block is

approximated by its main diagonal.

140

Maximal number of approximative inverse steps. MAXITV specifies the maximal number of iteration steps which are allowed to calculate the approximative inverse matrix with accuracy TAUV. If the number of iteration steps reaches MAXITV the procedure is terminated. Notice that in any case the approximation procedure will need

less than
$$\frac{log(TAUV)}{log(LAMBDA)}$$
 steps.

If MAXITV ≤ 1 the matrix block is approximated by its main diagonal.

infoep[2] Input MAXNC.

MAXNC limits the entries remaining in the reduced matrix as Schur complement in block decomposition. If MAXNC < 2 small entries of the reduces system less than TAU are dropped. If MAXNCV > 1 the number of non-zero entries per row is limited by MAXNCV. In this case only the MAXNCV largest entries in every row are kept. Other entries are dropped even if they are greater than TAU.

The desired accuracy for the solution. The outer iteration is stopped in the k-th iteration step if the normalized $\hat{\mathbf{r}}_k = \hat{\mathbf{A}}\mathbf{x}_k - \hat{\mathbf{b}}_k$ residual of the current approximation \mathbf{x}_k satisfies the condition $\|\hat{\mathbf{r}}_k\| \le \text{epsot} \|\hat{\mathbf{b}}\|$ where $\|\mathbf{y}\|^2 = \mathbf{y}^T\mathbf{y}$ denotes the Euclidean norm $\hat{\mathbf{A}}$ and $\hat{\mathbf{b}}$ are the coefficient matrix and the right hand side of the normalized linear system.

The tolerance for the inner iteration. Normally 10^{-3} is optimal. The control information for the approximation of the reduced system and the inverse of the eliminated matrix block.

For example, set as follows:

The dropping tolerance. In the reduced systems as Schur complement in block decomposition, entries less than TAU are dropped to keep the sparsity. As larger TAU as faster is the iterative solver on the lowest level. But on the other hand there is a larger loss of information, which deteriorates the quality of the preconditioner.

epsot double Input

epsin double Input
epsep double Input
epsep[4]

			It has to be $0 \le TAU \le 1$.
	epsep[1]	Input	TAUV.
			The tolerance of the approximative inverse. A
			small value for TAUV will increase the time for
			the elimination procedure but improve the
			quality of the preconditioner. Normally
			epsin = TAUV is optimal.
	epsep[2]	Input	LAMBDA.
			Diagonal threshold for the block matrix. The
			entries in the block matrix of the removed
			unknowns are selected such that the absolute
			sum per row is less than LAMBDA times the
			main diagonal entry. A larger value for
			LAMBDA will produce a smaller set of
			removed unknowns but will increase the costs
			for the calculation of the approximative inverse
			of the block. Recommendation:
			LAMBDA = 0.2. It should be TAUV \leq LAMBDA \leq 1 or LAMBDA = 0.
	ongon[2]	Innut	RHO.
	epsep[3]	Input	Unknowns with small entries in their main
			diagonal are not considered in the elimination
			procedure. A main diagonal entry is small if it
			is smaller than RHO times the absolute sum of
			the row entries.
			Recommendation: $RHO = 1.0e-3$. It has to be
			0 < RHO < 1.
Input	The approxima	ate values	s of solution vectors can be specified.
Output	Solution vector	rs are sto	red.
Work			
Input	Size of the wor	rk array v	J.
	$nw \le max(2 \times 1)$	MAXLV	$(L+2, 10) \times NBAND \times MAXT + (4 \times NC + 6) \times (n)$
	+ MAXT) + max	$x(2 \times NC)$	\times (n + MAXT), LR0(n)) + max(LR0(nf) + n +
	MAXT, $6 \times (n + 1)$		
		aximum	number of threads which are created in this
	routine.		
			dwidth of the matrix.
			the number of non-zero entries per row (typically
	NC = MAXNO	*	or main the Smallered (to misself or S = 2-MAYIVI
	nt the number	oi unkn	owns in the final level (typically nf = $2^{-MAXLVL} \times$
	1D + IVI / X'I'I		

(n + MAXT).

Moreover it is

$$\label{eq:lr0} \text{LR0(N)} = \begin{cases} 4 \times N & : ORTHOMIN \text{ method} \\ (2 \times NRES + 1) \times N & : GMRES \text{ method} \end{cases},$$

where NRES denotes the number of residuals used in GMRES. Normally the term LR0(nf) can be neglected.

х

nw

double x[n]

double w[nw]

int

 $\begin{tabular}{ll} iw & int iw[niw] & Work \\ niw & int & Input & Size of the work array iw. \\ & niw \le ((4\times MAXLVL+10)\times MAXT+12\times NBAND)+3400)\times MAXT \\ & + (6\times NC+11)\times (n+MAXT) \\ & MAXT is the maximum number of threads which are created in this routine. \\ & NBAND denotes the bandwidth of the matrix. \\ \end{tabular}$

NC an upper bound for the number of non-zero entries per row (typically

NC = MAXNC).

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10100	Inverse matrix could not be calculated with	Processing is continued.
	sufficient accuracy.	
10800	Curable break down in GMRES.	
20001	Stopping criterion could not be reached within the	Processing is discontinued.
	given number of iteration steps.	The approximate value obtained is output in array
		x, but the precision is not assured.
20003	Non-curable break down in GMRES.	Processing is discontinued.
20005	Non-curable break down in ORTHOMIN by	
	$\mathbf{p}^{\mathrm{T}} \mathbf{A} \mathbf{p} = 0 \text{ with } \mathbf{p} \neq 0.$	
20006	Non-curable break down in ORTHOMIN by	
	$\mathbf{p}^{\mathrm{T}}\mathbf{r}=0.$	
30000	One of the following has occurred:	
	• n < 1	
	• n>k	
	• iwidt < 1	
	• isw ≠ 1, 2	
30103	Incorrect entry in column list icol.	
30105	Main diagonal is missed.	
30210	Matrix condensation fails by non-positive value.	
30213	There is a row with only non-zero entries.	
30310	Too small integer work array.	
30320	Too small real work array.	

3. Comments on use

isw

When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw = 1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first call are reused.

nw, niw

Normally it is sufficient to set $NC = iwidt \times 1.5$ in the formulas for the length for the work arrays. In general, if the work arrays are too small it is recommendable to increase NC. If the given matrix has a very large bandwidth it is recommendable to increase NBAND first.

ORTHOMIN

It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical normalization first if there is a chance that the iteration matrix is symmetric.

GMRES

If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. Then it is necessary to increase NRES in the formula for the length workspace rw but, NRES can be set to a smaller value than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. But it requires longer computation time and larger amount of memory.

The elimination of unknowns

The elimination of unknowns is stopped if one of the following conditions is fulfilled:

- the number of level is greater or equal MAXLVL.
- the coefficient matrix of the final level is a diagonal matrix.
- the number of eliminated unknowns is less than 10% of the number of unknowns in the final level.

classical ILUM preconditioner

When setting TAU = 0, LAMBDA = 0, RHO = 0.99, MAXNC = iwidt the routine is (similar to) the classical ILUM preconditioner with wavefront ordering. For TAU > 0, LAMBDA = 0, RHO < 1, and MAXNC >> iwidt the routine is the ILUM preconditioner with threshold.

parameters

It is emphasized that not every setting of the parameters produces necessarily an efficient preconditioner. So it can be necessary to test some values for the parameters till an optimal selection has been found.

Preconditioning

The preconditioner bases on nested incomplete block factorizations using the Schur complement. The matrix A_n , n=1,..., MAXLVL-1 in each level can be blocked as follows choosing the appropriate sets of eliminated unknowns:

$$\mathbf{A}_n = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$

And define a matrix $\mathbf{S} = \mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$, which is called Schur complement. \mathbf{A}_n can be factorized as follows:

$$\mathbf{A}_n = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\ \mathbf{0} & \mathbf{S} \end{bmatrix}$$

The matrix A_{n+1} of next level n+1 can be regarded as a Schur complement matrix with approximating the A_{11}^{-1} . These incomplete factorization are used for preconditioning in this routine.

4. Example program

The partial differential equation

$$-\left(\frac{\partial^2}{\partial^2 x_1}u + \frac{\partial^2}{\partial^2 x_2}u + \frac{\partial^2}{\partial^2 x_3}u\right) + t\left((x_2 - x_3)\frac{\partial u}{\partial x_1} + (x_3 - x_1)\frac{\partial u}{\partial x_2} + (x_1 - x_2)\frac{\partial u}{\partial x_3}\right) = f$$

is solved on the domain $[0, 1]^2$. Dirichlet boundary condition u = 0 is imposed and the value of t is set to 1.0.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT
                39
#define N1
#define N2
                (N1)
#define N3
                (N1)
#define L1
                (N1)
#define L2
                (N2)
#define L3
                (N3)
#define KA
                (N1*N2*N3)
#define NA
#define NLBMAX (N1*N2)
#define MAXNC 11
#define NW
             ((KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT)
#define NIW
             ((KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200+61*51+13)*MAXT)
int MAIN__()
  double a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
  double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1];
  double x1[L1], x2[L2], x3[L3], c[L3][L2][L1], f[L3][L2][L1]; double w[NW], epsin, epsot, epsep[4], mat[NA][KA], rhs[KA], v[KA]; double v[NV], epsin, epsot, epsep[4];
  double sol[KA*3], rhsx[KA], rhsc[KA];
  double tmp, t, hr1, hr2, hr3, hr4, hr6, hr7, hr13, one=1.0;
         ndlt[NA], iw[NIW], info[14], infoep[3], icol[NA][KA];
  int
  int.
         isw, iguss, nband, ndiag, icon;
  int
         z, z1, z2, z3, n, i, nc;
  /* THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE
  /* VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER. */
  t = 1.0;
  /* CREATE NODE COORDINATES */
  for (z1=0; z1<N1; z1++) {
    x1[z1] = (double)z1/(double)(N1-1);
  for (z2=0; z2<N2; z2++) {
    x2[z2] = (double)z2/(double)(N2-1);
  for (z3=0; z3<N3; z3++) {
    x3[z3] = (double)z3/(double)(N3-1);
  /* -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F */
       REMARK: IF T IS TO LARGE THE PDE IS SINGULAR.
  for (z3=0; z3<N3; z3++)
    for (z2=0; z2<N2; z2++)
      for (z1=0; z1<N1; z1++)
        a1[z3][z2][z1] = 1.0;
        a2[z3][z2][z1] = 1.0;
        a3[z3][z2][z1] = 1.0;
        b1[z3][z2][z1] = t*(x2[z2]-x3[z3]);
        b2[z3][z2][z1] = t*(x3[z3]-x1[z1]);
        b3[z3][z2][z1] = t*(x1[z1]-x2[z2]);
        c[z3][z2][z1] = 0.0;
        hr1
                        = one-x2[z2];
                        = x2[z2]*hr1;
        hr2
                        = one-x3[z3];
        hr3
                        = x3[z3]*hr3;
        hr4
        hr6
                        = one-x1[z1];
        hr7
                        = x1[z1]*hr6;
```

```
= hr1*x3[z3]*hr3;
        f[z3][z2][z1] = 2*hr2*hr4+2*hr7*hr4+2*hr7*hr2+
                          t*((x2[z2]-x3[z3])*(hr6*x2[z2]*hr13-x1[z1]*x2[z2]*hr13)
                            +(x3[z3]-x1[z1])*(hr7*hr13-hr7*x2[z2]*x3[z3]*hr3)
                            +(x1[z1]-x2[z2])*(hr7*hr2*hr3-hr7*hr2*x3[z3]));
      }
   }
  /* DIRICHLET CONDITIONS: */
  for (z3=0; z3<N3; z3++) {
    for (z2=0; z2<N2; z2++) {
      c[z3][z2][0]
                       = 1.0;
      b1[z3][z2][0]
                        = 0.0;
      b2[z3][z2][0]
                       = 0.0;
      b3[z3][z2][0]
                       = 0.0;
      f[z3][z2][0]
                       = 0.0;
      c[z3][z2][N1-1] = 1.0;
      b1[z3][z2][N1-1] = 0.0;
      b2[z3][z2][N1-1] = 0.0;
      b3[z3][z2][N1-1] = 0.0;
      f[z3][z2][N1-1] = 0.0;
      if (z2 == 0) {
        for (z1=0; z1<N1; z1++) {
          c[z3][0][z1] = 1.0;
          b1[z3][0][z1] = 0.0;
          b2[z3][0][z1] = 0.0;
          b3[z3][0][z1] = 0.0;
          f[z3][0][z1] = 0.0;
      } else if (z2 == N2-1) {
        for (z1=0; z1<N1; z1++) {
          c[z3][N2-1][z1] = 1.0;
          b1[z3][N2-1][z1] = 0.0;
          b2[z3][N2-1][z1] = 0.0;
          b3[z3][N2-1][z1] = 0.0;
          f[z3][N2-1][z1] = 0.0;
        }
      }
      if (z3 == 0) {
  for (z1=0; z1<N1; z1++) {</pre>
          c[0][z2][z1] = 1.0;

b1[0][z2][z1] = 0.0;
          b2[0][z2][z1] = 0.0;
          b3[0][z2][z1] = 0.0;
          f[0][z2][z1] = 0.0;
      \} else if (z3 == N3-1) {
        for (z1=0; z1<N1; z1++) {
          c[N3-1][z2][z1] = 1.0;
          b1[N3-1][z2][z1] = 0.0;
          b2[N3-1][z2][z1] = 0.0;
          b3[N3-1][z2][z1] = 0.0;
          f[N3-1][z2][z1] = 0.0;
        }
      }
   }
  n = N1*N2*N3;
  c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3,
                (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f,
(double*)mat,
 KA, NA, n, &ndiag, ndlt, rhs, &icon);
printf("icon of c_dm_vpde3d = %d\n", icon);
  for (z = 0; z < n; z + +) {
   rhsx[z] = rhs[z];
  nband = 0;
  for (i=0; i<ndiag; i++) {
   nband=max(nband,fabs(ndlt[i]));
  /* CHANGE TO ELLPACK FORMAT: */
  nc = ndiag;
  for (i=0; i<nc; i++) {
    for (z=0; z<KA; z++) {
```

```
icol[i][z] = z+ndlt[i]+1;
  }
}
/* CALL THE ITERATIVE SOLVER: */
isw
          = 1;
          = 0;
iguss
epsot
          = 1.0e-6;
          = 1.0e-3;
epsin
info[0]
          = 10;
          = MAXT*100;
info[1]
info[2]
          = 1;
info[4]
          = 2;
info[5]
          = 5000i
info[6]
info[7]
          = 20;
info[9]
          = 2;
info[10] = 5000;
          = 20;
info[11]
info[12]
infoep[0] = 1;
infoep[1] = 5;
infoep[2] = 14;
epsep[0] = 1.0e-2;
epsep[1] = 1.0e-2;
epsep[2] = 0.2;
epsep[3] = 1.0e-3;
c_dm_vmlbife((double*)mat, KA, nc, n, (int*)icol, rhs, isw, iguss, info,
infoep, epsot, epsin, epsep, v, w, NW, iw, NIW, &icon);
printf("icon of c_dm_vmlbife = %d\n", icon);
for (i=0; i<nband; i++) {
  sol[i]
                 = 0.0;
  sol[nband+n+i] = 0.0;
for (z=0; z< n; z++) {
  sol[nband+z] = v[z];
\verb|c_dm_vmvsd|((double*)mat, KA, ndiag, n, ndlt, nband, sol, rhsc, &icon)|;
tmp = 0.0;
for (z=0; z<n; z++) {
 tmp = max(tmp,fabs((rhsx[z]-rhsc[z])/(rhsx[z]+1.0)));
printf("error = %e\n", tmp);
return(0);
```

Consult the entry for DM_VMLBIFE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvscc

1. Function

This routine obtains a product by multiplying an $n \times n$ sparse matrix by a vector.

$$y = Ax$$

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = 0 where:	c_dm_vmvscc(a, i	nz, nrow	, nfcnz, n, x, y, w, (int*)iw, &icon);
a	double a[nz]	Input	The non-zero elements of a coefficient matrix are stored. The non-zero elements of a sparse matrix are stored in a [i], i = 0,, nz-1. For the compressed column storage method, refer to Figure c_dm_vmvscc-1.
nz	int	Input	The total number of the nonzero elements belong to a coefficient matrix
			A.
nrow	<pre>int nrow[nz]</pre>	Input	The row indices used in the compressed column storage method, which
			indicate the row number of each nonzero element stored in an array a.
nfcnz	int	Input	The position of the first nonzero element stored in an array a by the
	nfcnz[n+1]		compressed column storage method which stores the nonzero elements
			column by column.
			nfcnz[n] = nz + 1.
n	int	Input	Order n of matrix \mathbf{A} .
х	double x[n]	Input	Vector x is stored in $x[i-1]$, $1 \le i \le n$.
У	double y[n]	Output	The product of a matrix and vector is stored in $y[i-1]$, $1 \le i \le n$.
W	double w[nz]	Work	
iw	<pre>int iw[nz][2]</pre>	Work	
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• nz < 0	
	• nfcnz[n]≠nz+1	

$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 0 & 6 \\ 0 & 7 & 8 & 9 \\ 0 & 0 & 10 & 11 \end{bmatrix}$$

$$\downarrow \bullet$$

$$nfcnz = \begin{bmatrix} 1 \\ 3 \\ 6 \\ 9 \\ 12 \end{bmatrix}, a = \begin{bmatrix} 1 \\ 4 \\ 2 \\ 5 \\ 7 \\ 3 \\ 8 \\ 10 \\ 6 \\ 9 \\ 11 \end{bmatrix}, nrow = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Figure c_dm_vmvscc-1 Storing a coefficient matrix A in compressed column storage method

The way how to store a coefficient matrix A in compressed column storage method is explained.

The nonzero elements of each column vector of a matrix **A** are stored in compressed mode into a one-dimensional array a column by column. The position in the array a where the first nonzero element in the i-th column vector is stored is set into nfcnz[i-1].

The value of nfcnz[n] is set to nz+1, where n is an order of the matrix **A** and nz is the total number of the nonzero elements in this matrix.

The row number of the nonzero element of the matrix **A** stored in the *i*-th array element a[i-1] is set into nrow[i-1].

3. Example program

A product is obtained by multiplying the sparse matrix by a vector.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
#define NORD
                 (60)
#define NX
                 (NORD)
#define NY
                 (NORD)
                 (NORD)
#define NZ
#define N
                 (NX*NY*NZ)
#define K
                 (N+1)
#define NDIAG
MAIN__()
```

```
int
           ierr, icon;
           i, ii, j;
    int
    int
           ne, ns, nnz;
           numnz, ntopcfg, ncol;
    int
           length, nbase;
    int.
           nofst[NDIAG];
    int
           nrow[K*NDIAG];
    int
           nfcnz[N+1];
    int
    int
           iw[K*NDIAG][2];
    double s;
    double diag[NDIAG][K];
    double a[K*NDIAG];
    double w[K*NDIAG];
    double x[N];
    double b[N];
    double y[N];
    for (i=1; i<=N; i++){
        x[i-1]=1.0;
   nofst[1]=-NX*NY;
nofst[2]=-NX;
   nofst[3]=-1;
   nofst[4]=0;
    nofst[5]=1;
   nofst[6]=NX;
   nofst[7]=NX*NY;
    for (i=1; i<=NDIAG; i++){
      if (nofst[i-1] < 0)
        nbase=-nofst[i-1];
        length=N-nbase;
        for (j=1; j<=length; j++){</pre>
          diag[i-1][j-1]=(double)(i-1);
      else{
        nbase=nofst[i-1];
        length=N-nbase;
        for (j=nbase+1; j<=N; j++){
  diag[i-1][j-1]=(double)(i-1);</pre>
     }
   }
    numnz = 1;
    for (j=1; j<=N; j++){}
      ntopcfg = 1;
      for (i=NDIAG; i>=1; i--){
if (diag[i-1][j-1] != 0)
          ncol = j-nofst[i-1];
          a[numnz-1] = diag[i-1][j-1];
          nrow[numnz-1] = ncol;
          if (ntopcfg == 1){
            nfcnz[j-1] = numnz;
            ntopcfg = 0;
          numnz = numnz+1;
        }
      }
    nfcnz[N] = numnz;
    nnz = numnz-1;
    ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int*)iw, &icon);
    for (i=1; i<=N; i++){}
     b[i-1]=0.0;
    for (i=1; i<=N; i++){
     ns = nfcnz[i-1];
      ne = nfcnz[i]-1;
      for (j=ns; j<=ne; j++){
  ii = nrow[j-1];</pre>
        b[ii-1] = b[ii-1]+a[j-1]*x[i-1];
      }
    }
    s = 0.0;
```

```
for (i=1; i<=N; i++){
    s=max(s,fabs(y[i-1]-b[i-1]));
}
printf("ERROR=%e\n", s);
}</pre>
```

Consult the entry for DM_VMVSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvsccc

Multiplication of a complex sparse matrix and a complex vector (compressed column storage method)

1. Function

This routine obtains a product by multiplying an $n \times n$ complex sparse matrix by a complex vector.

$$y = Ax$$

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr =	c_dm_vmvsccc(za	, nz, nr	row, nfcnz, n, zx, zy, zw, (int*)iw, &icon);
where:			
za	dcomplex	Input	The non-zero elements of a coefficient matrix are stored. The non-zero
	za[nz]		elements of a sparse matrix are stored in $za[i]$, $i=0,,nz-1$. For the
			compressed column storage method, refer to Figure c dm vmvscc-1.
			For a complex matrix, the real array a in this Figure is replaced with
			complex array.
nz	int	Input	The total number of the nonzero elements belong to a coefficient matrix
			A .
nrow	<pre>int nrow[nz]</pre>	Input	The row indices used in the compressed column storage method, which
			indicate the row number of each nonzero element stored in an array za.
nfcnz	int	Input	The position of the first nonzero element stored in an array za by the
	nfcnz[n+1]		compressed column storage method which stores the nonzero elements
			column by column.
			nfcnz[n] = nz + 1.
n	int	Input	Order n of matrix A .
ZX	dcomplex	Input	Vector x is stored in $zx[i-1]$, $1 \le i \le n$.
	zx[n]		
zy	dcomplex	Output	The product of a matrix and vector is stored in $zy[i-1]$, $1 \le i \le n$.
	zy[n]		
ZW	dcomplex	Work	
	zw[nz]		
iw	<pre>int iw[nz][2]</pre>	Work	
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• nz < 0	
	• nfcnz[n]≠nz+1	

3. Example program

A product is obtained by multiplying the complex sparse matrix by a complex vector.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#define NORD 60
#define NX NORD
#define NY NORD
#define NZ NORD
#define N NX * NY * NZ
\#define K (N + 1)
#define NDIAG 7
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
double cdabs(dcomplex);
int MAIN__() {
  int nofst[NDIAG];
  dcomplex zdiag[NDIAG][K], za[K * NDIAG], zw[K * NDIAG];
  int nrow[K * NDIAG], nfcnz[N + 1],
      iw[K * NDIAG][2];
  dcomplex zx[N], zb[N], zy[N];
  int i, ii, j, icon, nbase, length, ncol, numnz, ntopcfg, nnz, ns, ne;
  double s;
  for (i = 0; i < N; i++) \{
    zx[i].re = 1.0;
```

```
zx[i].im = 0.0;
}
nofst[0] = -NX * NY;
nofst[1] = -NX;
nofst[2] = -1;
nofst[3] = 0;
nofst[4] = 1;
nofst[5] = NX;
nofst[6] = NX * NY;
for (i = 0; i < NDIAG; i++) \{
  if (nofst[i] < 0) {
    nbase = -nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
     zdiag[i][j].re = (double)i;
      zdiag[i][j].im = 0.0;
    }
  } else {
    nbase = nofst[i];
    length = N - nbase;
    for (j = nbase; j < N; j++) \{
      zdiag[i][j].re = (double)i;
      zdiag[i][j].im = 0.0;
    }
  }
}
numnz = 1;
for (j = 0; j < N; j++) {
  ntopcfg = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (zdiag[i][j].re != 0.0 || zdiag[i][j].im != 0.0) {
      ncol = (j + 1) - nofst[i];
      za[numnz - 1] = zdiag[i][j];
      nrow[numnz - 1] = ncol;
      if (ntopcfg == 1) {}
       nfcnz[j] = numnz;
        ntopcfg = 0;
      }
      numnz++;
    }
  }
```

```
}
 nfcnz[N] = numnz;
 nnz = numnz - 1;
  c_dm_vmvsccc(za, nnz, nrow, nfcnz, N, zx,
              zy, zw, (int *)iw, &icon);
  for (i = 0; i < N; i++) \{
   zb[i].re = 0.0;
   zb[i].im = 0.0;
  for (i = 0; i < N; i++) \{
   ns = nfcnz[i];
   ne = nfcnz[i + 1] - 1;
   for (j = ns - 1; j < ne; j++) {
     ii = nrow[j];
     zb[ii - 1] = comp_add(zb[ii - 1], comp_mult(za [j], zx[i]));
   }
  }
 s = 0.0;
  for (i = 0; i < N; i++) \{
   s = fmax(s, cdabs(comp_sub(zy[i], zb[i])));
  }
 printf("ERROR=%18.15lf\n", s);
 return(0);
}
dcomplex comp_add(dcomplex so1, dcomplex so2) {
 dcomplex obj;
 obj.re = sol.re + so2.re;
 obj.im = sol.im + so2.im;
 return obj;
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
 dcomplex obj;
 obj.re = so1.re - so2.re;
```

```
obj.im = sol.im - so2.im;
return obj;
}

dcomplex comp_mult(dcomplex so1, dcomplex so2) {
   dcomplex obj;

   obj.re = sol.re * so2.re - sol.im * so2.im;
   obj.im = sol.re * so2.im + sol.im * so2.re;
   return obj;
}

double cdabs(dcomplex so) {
   double obj;

   obj = sqrt(so.re * so.re + so.im * so.im);
   return obj;
}
```

 $Consult the entry for DM_VMVSCCC in the Fortran \textit{SSL II Thread-Parallel Capabilities User's \textit{Guide}.}$

c_dm_vmvsd

```
Multiplication of a real sparse matrix and a real vector (diagonal format storage method).

ierr = c_dm_vmvsd(a, k, ndiag, n, nofst, nlb, x, y, &icon);
```

1. Function

This function obtains a product by multiplying an $n \times n$ sparse matrix by a vector.

$$y = Ax$$

The sparse matrix \mathbf{A} is stored by the diagonal format storage method. Vectors \mathbf{x} and \mathbf{y} are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = 0	c_dm_vmvsd((doul	ole*)a,	k, ndiag, n, nofst, nlb, x, y, &icon);
where:			
a	double	Input	Sparse matrix A stored in diagonal storage format. See Comments on
	a[ndiag][k]		use.
k	int	Input	C fixed dimension of array a $(\ge n)$.
ndiag	int	Input	The number of diagonal vectors in the coefficient matrix ${\bf A}$ having non-
			zero elements.
n	int	Input	Order n of matrix A .
nofst	int	Input	Distance from the main diagonal vector corresponding to diagonal
	nofst[ndiag]		vectors in array a. Super-diagonal vectors have positive values. Sub-
			diagonal vectors have negative values. See Comments on use.
nlb	int	Input	Lower bandwidth of matrix A.
х	double $x[Xlen]$	Input	Vector \mathbf{x} is stored in $\mathbf{x}[i]$, $nlb \le i \le nlb + n$.
			Xlen = n + nlb + nub. Where nlb is the lower band width and nub is
			the upper band width.
У	double y[n]	Output	Product vector y.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• k<1	
	• n < 1	
	• n>k	
	• ndiag<1	
	• $nlb \neq max(-nofst[i]); 0 \le i < ndiag$	
	• $abs(nofst[i]) > n-1; 0 \le i < ndiag$	

3. Comments on use

a and nofst

The coefficients of matrix **A** are stored in two arrays using the diagonal storage format. For full details, see the *Array storage formats* section of the *General Descriptions*.

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX
                 (100)
#define UBANDW
                (2)
#define LBANDW
                 (1)
                 (UBANDW + LBANDW + 1)
#define NDIAG
MAIN__()
{
  double one=1.0, eps=1.e-6;
       ierr, icon;
  int
       nlb, nub, n, i, j, k;
  int
       nofst[UBANDW + LBANDW + 1];
  int
  double a[NDIAG][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX];
  /* initialize matrix and vector */
  nlb = LBANDW;
  nub
        = UBANDW;
        = NMAX;
  k
        = NMAX;
  for (i=1; i<=nub; i++) {
    for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n ; j++) a[i][j] = 0.0;
    nofst[i] = i;
  for (i=1; i<=nlb; i++) {
   for (j=0; j<i; j++) a[nub+i][j] = 0.0; for (j=i; j<n; j++) a[nub+i][j] = -2.0;
    nofst[nub+i] = -i;
  for (i=0; i< n+nlb+nub; i++) x[i] = 0.0;
  nofst[0] = 0;
  for (j=0; j< n; j++) {
    a[0][j] = one;
    for (i=1; i<NDIAG; i++) a[0][j] -= a[i][j];
    x[nlb+j] = one;
  /* perform matrix-vector multiply */
  ierr = c_dm_vmvsd((double*)a, k, NDIAG, n, nofst, nlb, x, y, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_vmvsd failed with icon = %d\n", icon);
    exit(1);
  /* check vector */
  for (i=0;i< n;i++) {
    if (fabs(y[i]-one) > eps)
      printf("WARNING: result inaccurate\n");
      exit(1);
```

```
}
printf("Result OK\n");
return(0);
}
```

Consult the entry for DM_VMVSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvse

```
Multiplication of a real sparse matrix and a real vector (ELLPACK format storage method).

ierr = c_dm_vmvse(a, k, nw, n, icol, x, y, &icon);
```

1. Function

This function obtains a product by multiplying an $n \times n$ sparse matrix by a vector.

$$y = Ax$$

The coefficient matrix ($n \times n$) is stored by the ELLPACK format storage method using two arrays. Vectors \mathbf{x} and \mathbf{y} are n-dimensional vectors.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon);
where:
           double
                                Input
                                          Sparse matrix A stored in ELLPACK storage format. See Comments on
а
           a[nw][k]
           int
                                Input
                                          C fixed dimension of array a (\geq n).
k
                                Input
                                          The maximum number of non-zero elements in any row of matrix A
nw
           int
                                          (\geq 0).
                                Input
                                          Order n of matrix A.
n
           int
icol
                                Input
                                          Column indices used in the ELLPACK format, showing to which
           int
                                          column the elements corresponding to a belong. See Comments on use.
           icol[nw][k]
           double x[n]
                                Input
                                          Vector x.
х
           double y[n]
                                Output
                                          Solution vector y.
icon
                                Output
                                          Condition code. See below.
           int
```

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• k<1	
	• n≤0	
	• nw < 1	
	• n>k	

3. Comments on use

a and icol

The coefficients of matrix **A** are stored in two arrays using the ELLPACK storage format. For full details, see the *Array* storage formats section of the *General Descriptions*.

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero and the row number, respectively.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX
                (1000)
#define UBANDW
               (2)
#define LBANDW
#define NW
                (UBANDW + LBANDW + 1)
 double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6;
       ierr, icon;
 int
       nlb, nub, n, i, j, k, ix;
 int
       icol[NW][NMAX];
 int
 double a[NW][NMAX], x[NMAX], y[NMAX];
  /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
     = NMAX;
     = NMAX;
  for (i=0; i< n; i++) x[i] = one;
  for (i=0; i<NW; i++) {
   for (j=0; j<n; j++) {
    a[i][j] = 0.0;
      icol[i][j] = j+1;
 }
  for (j=0; j<nlb; j++) {
    for (i=0; i< j; i++) a[i][j] = lcf;
    a[j][j] = one-(double)j*lcf-(double)nub*ucf;
    for (i=j+1; i< j+1+nub; i++) a[i][j] = ucf;
   for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
  for (j=nlb; j<n-nub; j++) \{
    for (i=0; i<nlb; i++) a[i][j] = lcf;
    a[nlb][j] = one-(double)nlb*lcf-(double)nub*ucf;
    for (i=nlb+1; i<NW; i++) a[i][j] = ucf;
    for (i=0; i<NW; i++) icol[i][j] = i+1+j-nlb;
  for (j=n-nub; j< n; j++)
   for (i=0; i<nlb; i++) a[i][j] = lcf;
    a[nlb][j] = one-(double)nlb*lcf-(double)(n-j-1)*ucf;
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
    ix = n-(j+nub-nlb-1);
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
  /* perform matrix-vector multiply */
  ierr = c_dm_vmvse((double*)a, k, NW, n, (int*)icol, x, y, &icon);
 if (icon != 0) {
```

```
printf("ERROR: c_dm_vmvse failed with icon = %d\n", icon);
    exit(1);
}

/* check vector */
for (i=0; i<n; i++) {
    if (fabs(y[i]-one) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
}
printf("Result OK\n");
return(0);
}
```

Consult the entry for DM_VMVSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vpde2d

Generation of System of linear equations with sparse matrices by the finite difference discretization of a two dimensional boundary value problem for second order partial differential equation.

1. Function

This routine assembles the system of linear equations by the finite difference discretization of the linear, two dimensional boundary value problem on the rectangular domain B:

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is satisfied.

$$-\left(\frac{\partial}{\partial x_1}a_1\frac{\partial u}{\partial x_1} + \frac{\partial}{\partial x_2}a_2\frac{\partial u}{\partial x_2}\right) + b_1\frac{\partial u}{\partial x_1} + b_2\frac{\partial u}{\partial x_2} + cu = f \tag{1}$$

$$\beta_1 \frac{\partial u}{\partial x_1} + \beta_2 \frac{\partial u}{\partial x_2} + \gamma u = \phi \tag{2}$$

 a_1 , a_2 , b_1 , b_2 , c and f are given functions on the domain and β_1 , β_2 , γ and ϕ are given functions on the boundary of the domain.

The n1 × n2 grid is defined by $x_{i,j} = (x1[i-1], x2[j-1])$

$$i = 1, ..., n1, j = 1, ..., n2$$
 with

$$B = [x1[0], x1[n1-1]] \times [x2[0], x2[n2-1]];$$

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the grid points. The returned coefficient matrix is stored by the diagonal format storage method.

2. Arguments

The routine is called as follows:

where:

a1	double	Input	The coefficients of $a_1(x_{ij})$ are stored in al $[i-1]$ $[i-1]$, $i=1,,n1,j$
	a1[n2][11]	•	= 1,, n2.
11	int	Input	Size of second-dimension of array a1, a2, b1, b2, c and f ($11 \ge n1$).
n1	int	Input	Number of grid points in the x_1 -direction (n1 > 2).
n2	int	Input	Number of grid points in the x_2 -direction (n2 > 2).

a2	double a2[n2][11]	Input	The coefficients of $a_2(x_{ij})$ are stored in a 2 $[j-1]$ $[i-1]$, $i=1,,n1,j$ = 1,, n2.		
x1	double x1[n1]	Input	The x_1 -coordinates of the grid points are stored in $\times 1$ [i], $i = 0,$,		
			n1-1. The coordinates of the grid points have to be increasing:		
			x1[i] < x1[i+1], i = 0,, n1-2.		
x2	double x2[n2]	Input	The x_2 -coordinates of the grid points are stored in $x2[i]$, $i = 0,$,		
			n2–1. The coordinates of the grid points have to be increasing:		
			x2[i] < x2[i+1], i = 0,, n2-2.		
b1	double	Input	The coefficients of $b_1(x_{i,j})$ and the boundary condition β_1 are stored in b1.		
	b1[n2][11]		$\beta_1(x_{1,j}) \qquad i=1$		
			$\beta_1(x_{n1,j}) \qquad i=n1$		
			$\texttt{bl[j-l][i-l]} = \begin{cases} \beta_1(x_{1,j}) & i = 1 \\ \beta_1(x_{n1,j}) & i = n1 \\ \beta_1(x_{i,1}) & j = 1 \\ \beta_1(x_{i,n2}) & j = n2 \\ b_1(x_{i,j}) & \text{else;} \end{cases}$		
			$\beta_1(x_{i,n2}) \qquad j=n2$		
			$b_1(x_{i,j})$ else;		
b2	double	Input	The coefficients of $b_2(x_{i,j})$ and the boundary condition β_2 are stored in b2.		
	b2[n2][11]		$\left(\beta_2(x_{1,j}) \qquad i=1\right)$		
			$\beta_2(x_{\mathtt{nl},j}) \qquad i = \mathtt{nl}$		
			$\texttt{b2[j-1][i-1]} = \begin{cases} \beta_2(x_{1,j}) & i = 1 \\ \beta_2(x_{n1,j}) & i = n1 \\ \beta_2(x_{i,1}) & j = 1 \\ \beta_2(x_{i,n2}) & j = n2 \\ b_2(x_{i,j}) & \text{else;} \end{cases}$		
			$\beta_2(x_{i,n2}) \qquad j=n2$		
			$b_2(x_{i,j})$ else;		
С	double	Input	The coefficients of $c(x_{i,j})$ and the boundary condition γ are stored in c .		
	c[n2][11]		$\gamma(x_{1,j})$ $i=1$		
			$\gamma(x_{n1,j}) \qquad i = n1$		
			c[j-1][i-1]= $\begin{cases} \gamma(x_{i,1}) & j=1 \end{cases}$		
			$\gamma(x_{i,n2}) \qquad j=n2$		
			$c[j-1][i-1] = \begin{cases} \gamma(x_{1,j}) & i = 1\\ \gamma(x_{n1,j}) & i = n1\\ \gamma(x_{i,1}) & j = 1\\ \gamma(x_{i,n2}) & j = n2\\ c(x_{i,j}) & \text{else;} \end{cases}$		
f	double	Input	The coefficients of $f(x_{i,j})$ and the boundary condition ϕ are stored in f .		
	f[n2][11]	•			
			$\begin{cases} \phi(x_{1,j}) & i = 1 \\ \phi(x_{n1,j}) & i = n1 \end{cases}$		
			$f[j-1][i-1] = \begin{cases} \phi(x_{i,1}) & j=1 \end{cases}$		
			$\phi(x_{i,n2}) \qquad j=n2$		
			$f[j-1][i-1] = \begin{cases} \phi(x_{i,1}) & j=1 \\ \phi(x_{i,n2}) & j=n2 \\ f(x_{i,j}) & \text{else;} \end{cases}$		
a	double	Output	The nonzero elements of a coefficient matrix are stored in a.		
-	a[na][k]	~P			
k	int	Input	Size of second-dimension of array a $(\ge n)$.		
na	int	Input	Size of first-dimension of array a (≥ ndiag).		
n	int	Input	Order <i>n</i> of matrix A ($n = n1 \times n2$).		
ndiag	int	Output	Number of columns in array a and size of array nofst (= 5).		
nofst	int	Output	Offsets of diagonals of A stored a. Main diagonal has offset 0,		
	nofst[ndiag]		subdiagonals have negative offsets, and superdiagonals have positive		
			offsets.		
r	double r[k]	Output	The right-side constant vectors of a system of linear equations are stored		
			in r.		
icon	•				
The complete list of condition codes is given below.					

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• 11 < n1	
	• n1 < 3	
	• n2 < 3	
	• na < 5	
	• k < n1 × n2	
30001	The coordinates of the grid points is not	
	increasing.	

3. Comments on use

The value of the solution at the grid points

The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue problem solver depends strictly on the number and the location of the grid points.

The grid points to their nearest neighbor

The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x_1 -direction the condition

$$0.5 \le \frac{x1[i-1]-x1[i-2]}{x1[i]-x1[i-1]} \le 2$$
, $i = 2,...,n1-1$

should be met (for the x_2 -direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of the coefficient matrix is not only determined by the grid but also by the coefficient functions.

4. Example program

The domain is the box $[-1,1]^2$. The partial differential equation is

$$-\left(\frac{\partial^2 u}{\partial^2 x_1} + \frac{\partial^2 u}{\partial^2 x_2}\right) + v_1 \frac{\partial u}{\partial x_1} + v_2 \frac{\partial u}{\partial x_2} = 0$$

modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field

$$v = (v_1, v_2) = v_0 \cdot \left(\frac{x_2}{\sqrt{x_1^2 + x_2^2}}, \frac{-x_1}{\sqrt{x_1^2 + x_2^2}} \right)$$

where v_0 is real constant (e.g. $v_0=1$). The boundary conditions are set as follows:

$$u = 0$$
 $x_2 = -1$
 $u = 1$ $x_2 = 1$
 $\frac{\partial u}{\partial n} = 0$ else

where *n* denotes the outer normal field at the boundary of the box.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 49
#define N2 (N1)
#define L1 (N1)
#define L2 (N2)
#define KA (N1*N2)
#define NA 5
int MAIN__()
  double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
 double c[L2][L1], f[L2][L1], a[NA][KA], r[KA], v0;
int nofst[NA], z1, z2, i, j, n, ndiag, icon;
 v0 = 1.0;
  /* create grid nodes nodes: */
for (z1=0; z1<N1; z1++) {
    x1[z1] = 2*(double)(z1)/(double)(N1-1)-1.0;
  x2[z2] = 2*(double)(z2)/(double)(N2-1)-1.0;
  /* coefficient functions: */
  for (z2=0; z2<N2; z2++) {
    for (z1=0; z1<N1; z1++) {
     a1[z2][z1] = 1.0;
      a2[z2][z1] = 1.0;
    for (z1=1; z1<N1-1; z1++) {
      b1[z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
b2[z2][z1] = -v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
      c[z2][z1] = 0.0;
f[z2][z1] = 0.0;
    /* boundary conditions at faces X1=-1 and X1=1: */
    b1[z2][0]
                 = -1.0;
    b2[z2][0]
                  = 0.0;
    c[z2][0]
                  = 0.0;
    f[z2][0]
                  = 0.0;
    b1[z2][N1-1] = 1.0;
    b2[z2][N1-1] = 0.0;
    c[z2][N1-1] = 0.0;
    f[z2][N1-1] = 0.0;
    /* boundary conditions at faces X2=-1 and X2=1: */
    if (z2 == 0) {
  for (z1=0; z1<N1; z1++) {
        b1[z1][0] = 0.0;
        b2[z1][0] = 0.0;
        c[z1][0] = 1.0;
f[z1][0] = 0.0;
    } else if (z2 == N2-1) {
      for (z1=0; z1<N1; z1++) {
        b1[z1][N2-1] = 0.0;
        b2[z1][N2-1] = 0.0;
        c[z1][N2-1] = 1.0;
        f[z1][N2-1] = 1.0;
      }
   }
  /* build the linear system: */
  n = N1*N2;
  printf("icon of c_dm_vpde2d = %d\n", icon);
  /* write the matrix to a file: */
  for (j=0; j<ndiag; j++) {</pre>
```

```
for (i=0; i<n; i+=100) {
    if(i%3 == 0) { printf("\n");};
    printf("%23.16e ", a[j][i]);
}

for (i=0; i<ndiag; i++) {
    if(i%3 == 0) { printf("\n");};
    printf("%10d ", nofst[i]);
}

for (i=0; i<n; i+=100) {
    if(i%3 == 0) { printf("\n");};
    printf("%23.16e ", r[i]);
}
return(0);
}</pre>
```

 $Consult the entry for DM_VPDE2D in the Fortran \textit{SSL II Thread-Parallel Capabilities User's \textit{Guide}.}$

c_dm_vpde3d

Generation of System of linear equations with sparse matrices by the finite difference discretization of a three dimensional boundary value problem for second order partial differential equation.

1. Function

This routine assembles the system of linear equations by the finite difference discretization of the linear, three dimensional boundary value problem on the rectangular domain B:

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is satisfied.

$$-\left(\frac{\partial}{\partial x_1}a_1\frac{\partial u}{\partial x_1} + \frac{\partial}{\partial x_2}a_2\frac{\partial u}{\partial x_2} + \frac{\partial}{\partial x_3}a_3\frac{\partial u}{\partial x_3}\right) + b_1\frac{\partial u}{\partial x_1} + b_2\frac{\partial u}{\partial x_2} + b_3\frac{\partial u}{\partial x_3} + cu = f \tag{1}$$

$$\beta_1 \frac{\partial u}{\partial x_1} + \beta_2 \frac{\partial u}{\partial x_2} + \beta_3 \frac{\partial u}{\partial x_3} + \gamma u = \phi$$
 (2)

 a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c and f are given functions on the domain and β_1 , β_2 , β_3 , γ and ϕ are given functions on the boundary of the domain.

The n1 × n2 × n3 grid is defined by $x_{i,j,k} = (x1[i-1], x2[j-1], x3[k-1])$

```
i = 1, ..., n1, j = 1, ..., n2, k = 1, ..., n3

B = [x1[0], x1[n1-1]] \times [x2[0], x2[n2-1]] \times [x3[0], x3[n3-1]];
```

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the grid points. The returned coefficient matrix is stored by the diagonal format storage method.

2. Arguments

The routine is called as follows:

12	int	Input	Size of second-dimension of at $(12 \ge n2)$.	rray a1, a2, a3,	b1, b2, b3, c and f
n1	int	Input	Number of grid points in the x	₁ -direction (n1 >	2).
n2	int	Input	Number of grid points in the x_2 -direction (n2 > 2).		
n3	int	Input	Number of grid points in the x	3-direction (n3 >	2).
a2	double	Input	The coefficients of $a_2(x_{i,j,k})$ are	e stored in a2[k	[j-1][j-1][i-1], i=
	a2[n3][12][11]		$1, \dots, n1, j = 1, \dots, n2, k = 1, \dots$, n3.	
a3	double	Input	The coefficients of $a_3(x_{i,j,k})$ are	e stored in a3[k	-1][j-1][i-1], i=
	a3[n3][12][11]		$1, \dots, n1, j = 1, \dots, n2, k = 1, \dots$, n3.	
x1	double x1[n1]	Input	The x_1 -coordinates of the grid	points are stored	$in \times 1[i], i = 0,,$
			n1–1. The coordinates of the g	grid points have t	to be increasing:
			x1[i] < x1[i+1], i = 0,	, n1–2.	
x2	double x2[n2]	Input	The x_2 -coordinates of the grid	points are stored	$\operatorname{in} x2[i], i=0,,$
			n2–1. The coordinates of the g	grid points have t	to be increasing:
			x2[i] < x2[i+1], i = 0,	, n2-2.	
x3	double x3[n3]	Input	The x_3 -coordinates of the grid	points are stored	$\operatorname{in} x3[i], i=0,,$
			n3–1. The coordinates of the g	grid points have t	to be increasing:
			x3[i] < x3[i+1], i = 0,		
b1	double	Input	The coefficients of $b_1(x_{i,j,k})$ and	d the boundary c	ondition β_1 are stored in
	b1[n3][12][11]		b1.		
				$\beta_1(x_{1,j,k})$	i = 1
				$\beta_1(x_{\mathtt{n1},j,k})$	i = n1
				$\beta_1(x_{i,1,k})$	j = 1
			b1[k-1][j-1][i-1]=	$\left\{ \beta_1(x_{i,\text{n2},k}) \right\}$	j = n2
				$\beta_1(x_{i,j,1})$	k = 1
				$\beta_1(x_{i,j,n3})$	k = n3
				$b_1(x_{i,j,k})$	else;
b2	double b2[n3][12][11]	Input	The coefficients of $b_2(x_{i,j,k})$ and b_2 .		
				$\beta_2(x_{1,j,k})$	i = 1
			b2[k-1][j-1][i-1]=	$\beta_2(x_{\mathtt{nl},j,k})$	i = n1
				$\beta_2(x_{i,1,k})$	j = 1
			b2[k-1][j-1][i-1]=	$\left\{\beta_2(x_{i,\text{n2},k})\right\}$	j = n2
				$\beta_2(x_{i,j,1})$	k = 1
				$\beta_2(x_{i,j,n3})$	k = n3
				$b_2(x_{i,j,k})$	else;
b3	double b3[n3][l2][l1]	Input	The coefficients of $b_3(x_{i,j,k})$ and b_3	d the boundary c	ondition β_3 are stored in
				$\left[\beta_3(x_{1.i.k})\right]$	i = 1
				$\beta_3(x_{n1.i.k})$	i = n1
				$\beta_3(x_{i,1,k})$	<i>j</i> = 1
			b3[k-1][j-1][i-1]=	$\left\{\beta_3(x_{i,\mathrm{n2},k})\right\}$	j = n2
				$\beta_3(x_{i,j,1})$	k = 1
			b3[k-1][j-1][i-1]=	$\beta_3(x_{i,j,n3})$	k = n3
				$b_3(x_{i,j,k})$	else;

С	double	Input	The coefficients of $c(x_{i,j,k})$ and the boundary condition γ are stored in c .		
	c[n3][12][11]		$\int \gamma(x_{1,j,k}) \qquad i=1$		
			$\gamma(x_{n1,j,k}) \qquad i=n1$		
			$\gamma(x_{i,1,k}) j=1$		
			$c[k-1][j-1][i-1] = \begin{cases} \gamma(x_{i,n2,k}) & j=n2 \end{cases}$		
			$\gamma(x_{i,j,1}) \qquad k=1$		
			$\gamma(x_{i,j,n3}) \qquad k=n3$		
			$ \begin{array}{lll} \gamma(x_{1,j,k}) & i = 1 \\ \gamma(x_{n1,j,k}) & i = n1 \\ \gamma(x_{i,1,k}) & j = 1 \end{array} $ $ \gamma(x_{i,1,k}) & j = 1 \\ \gamma(x_{i,n2,k}) & j = n2 \\ \gamma(x_{i,j,1}) & k = 1 \\ \gamma(x_{i,j,n3}) & k = n3 \\ \gamma(x_{i,j,k}) & \text{else}; $		
f	double	Input	The coefficients of $f(x_{i,j,k})$ and the boundary condition ϕ are stored in £	Ξ.	
	f[n3][12][11]		$ \oint \phi(x_{1,j,k}) \qquad i=1 $		
			$\phi(x_{\mathtt{nl},j,k}) \qquad i = \mathtt{nl}$		
			$\phi(x_{i,1,k}) \qquad j=1$		
			$f[k-1][j-1][i-1] = \begin{cases} \phi(x_{i,n2,k}) & j=n2 \end{cases}$		
			$\phi(x_{i,j,1}) \qquad k=1$		
			$\phi(x_{i,j,n3}) \qquad k=n3$		
a	double	Output	The nonzero elements of a coefficient matrix are stored in a.		
	a[na][k]				
k	int	Input	Size of second-dimension of array a $(\ge n)$.		
na	int	Input	Size of first-dimension of array a (≥ndiag).		
n	int	Input	Order <i>n</i> of matrix A ($n = n1 \times n2 \times n3$).		
ndiag	int	Output	Number of columns in array a and size of array nofst (= 7).		
nofst	int	Output	Offsets of diagonals of A stored a. Main diagonal has offset 0,		
	nofst[ndiag]		subdiagonals have negative offsets, and superdiagonals have positive offsets.		
r	double r[n]	Output	The right-side constant vectors of a system of linear equations are		
		•	stored in r.		
icon	int	Output	Condition code. See below.		

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• 11 < n1	
	• 12 < n2	
	• n1 < 3	
	• n2 < 3	
	• n3 < 3	
	• na < 7	
	• k < n1 × n2 × n3	
30001	The coordinates of the grid points is not	
	increasing.	

3. Comments on use

The value of the solution at the grid points

The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue problem solver depends strictly on the number and the location of the grid points.

The grid points to their nearest neighbor

The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x_1 -direction the condition

$$0.5 \le \frac{x1[i-1]-x1[i-2]}{x1[i]-x1[i-1]} \le 2 , i = 2,...,n1-1$$

should be met (for the x_2 -direction and x_3 -direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of the coefficient matrix is not only determined by the grid but also by the coefficient functions.

4. Example program

The domain is the channel $[-1, 1]^2 \times [0, 5]$. The partial differential equation is

$$-\left(\frac{\partial^2 u}{\partial^2 x_1} + \frac{\partial^2 u}{\partial^2 x_2} + \frac{\partial^2 u}{\partial^2 x_3}\right) + v_1 \frac{\partial u}{\partial x_1} + v_2 \frac{\partial u}{\partial x_2} = 0$$

modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field

$$v = (v_1, v_2, v_3) = v_0 \cdot \left(\frac{x_2}{\sqrt{x_1^2 + x_2^2}}, \frac{-x_1}{\sqrt{x_1^2 + x_2^2}}, 0\right)$$

where v_0 is real constant (e.g. $v_0=1$). The boundary conditions are set as follows:

$$u = 0$$
 $x_3 = 0$
 $u = 1$ $x_3 = 5$
 $\frac{\partial u}{\partial n} = 0$ else

where n denotes the outer normal field at the boundary of the channel.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N1 49
#define N2 49
#define N3 25
#define L1 (N1)
#define L2 (N2)
#define L3 (N3)
#define L4 (N1)
#define L5 (N3)
#define NA 7

int MAIN__()
{
    double x1[L1], x2[L2], x3[L3], a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
    double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1], c[L1][L2][L3];
```

```
double f[L3][L2][L1], a[NA][KA], r[KA], v0;
int nofst[NA], z1, z2, z3, i, j, n, ndiag, icon;
v0 = 1.0;
for (z1=0; z1<N1; z1++) {
  x1[z1] = 2*(double)z1/(double)(N1-1)-1.0;</pre>
for (z2=0; z2<N2; z2++) {
 x2[z2] = 2*(double)z2/(double)(N2-1)-1.0;
for (z3=0; z3<N3; z3++) {
 x3[z3] = (double)z3/(double)(N3-1);
/* coefficient functions: */
for (z3=0; z3<N3; z3++) {
  for (z2=0; z2<N2; z2++) {
    for (z1=0; z1<N1; z1++) {
      a1[z3][z2][z1] = 1.0;
      a2[z3][z2][z1] = 1.0;
      a3[z3][z2][z1] = 1.0;
    }
  for (z2=1; z2<N2-1; z2++) {
    for (z1=1; z1<N1-1; z1++) {
      b1[z3][z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
      b2[z3][z2][z1] = v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
      b3[z3][z2][z1] = 0.0;
      c[z3][z2][z1] = 0.0;
f[z3][z2][z1] = 0.0;
  }
  /* boundary conditions at faces X1=-1 and X1=1: */
  for (z2=0; z2<N2; z2++) {
    b1[z3][z2][0] = -1.0;
    b2[z3][z2][0] = 0.0;
    b3[z3][z2][0] = 0.0;
c[z3][z2][0] = 0.0;
    f[z3][z2][0] = 0.0;
    b1[z3][z2][N1-1] = 1.0;
    b2[z3][z2][N1-1] = 0.0;
    b3[z3][z2][N1-1] = 0.0;
    c[z3][z2][N1-1] = 0.0;

f[z3][z2][N1-1] = 0.0;
  /* boundary conditions at faces X2=-1 and X2=1: */
  for (z1=0; z1<N1; z1++) {
    b1[z3][0][z1] = 0.0;
    b2[z3][0][z1] = -1.0;
    b3[z3][0][z1] = 0.0;
c[z3][0][z1] = 0.0;
    f[z3][0][z1] = 0.0;
    b1[z3][N2-1][z1] = 0.0;
    b2[z3][N2-1][z1] = 1.0;
    b3[z3][N2-1][z1] = 0.0;
    c[z3][N2-1][z1] = 0.0;
    f[z3][N2-1][z1] = 0.0;
  /* boundary conditions at faces X3=0 and X3=5: */
  if (z3==0) {
    for (z1=0; z1<N1; z1++)
      for (z2=0; z2<N2; z2++)
        b1[0][z2][z1] = 0.0;
        b2[0][z2][z1] = 0.0;
        b3[0][z2][z1] = 0.0;
        c[0][z2][z1] = 1.0;
        f[0][z2][z1] = 0.0;
      }
  } else if (z3==N3-1) {
    for (z1=0; z1<N1; z1++) {
      for (z2=0; z2<N2; z2++) {
        b1[N3-1][z2][z1] = 0.0;
        b2[N3-1][z2][z1] = 0.0;
```

```
b3[N3-1][z2][z1] = 0.0;
        c[N3-1][z2][z1] = 1.0;

f[N3-1][z2][z1] = 1.0;
   }
 }
}
/* build the linear system: */
n = N1*N2*N3;
/* write the matrix to a file: */
for (j=0; j<ndiag; j++) {}
  for (i=0; i<n; i+=1000) {
   if(i%3 == 0) { printf("\n");};
   printf("%23.16e ", a[j][i]);
  }
}
for (i=0; i<ndiag; i++) {
   if(i%3 == 0) { printf("\n");};
   printf("%10d ", nofst[i]);</pre>
for (i=0; i<n; i+=1000) {
  if(i%3 == 0) { printf("\n");};</pre>
  printf("%23.16e ", r[i]);
return(0);
```

5. Method

Consult the entry for DM_VPDE3D in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vradau5

```
System of stiff ordinary differential equations or differential-algebraic equations (Implicit Runge-Kutta method)
```

1. Function

This routine solves a system of stiff ordinary differential equations or differential-algebraic equations of the following form:

$$\mathbf{M}\mathbf{y'} = f(x, \mathbf{y}) \qquad \mathbf{y}(x_0) = \mathbf{y}_0$$

, where **M** is a constant *n*-by-*n* matrix (called mass-matrix), **y** is the solution vector of size *n* (with components $y_1, y_2, ..., y_n$), f(x,y) is function vector of size *n* (with components $f_1, f_2, ..., f_n$) and y_0 is the initial value at $x = x_0$ (with components $y_{01}, y_{02}, ..., y_{0n}$).

When M is a non-singular matrix other than identity matrix, the system becomes an implicit system of ordinary differential equations. When M is a singular matrix, the system becomes a system of differential-algebraic equations.

This routine returns to the caller program when a numerical solution at $x_{end} \neq x_0$ is obtained. When integrating the system from x_0 toward x_{end} , a numerical solution after each successful step can be provided to a user's routine (its routine name is given as parameter solout).

This routine calls DM_VRADAU5 in Fortran SSL II which is based on RADAU5, a free software developed by E. Haier and G. Wanner (Universite de Geneve, as of March 2011). The license of RADAU5 is listed in Appendix 2 of "FUJITSU SSL II Thread-Parallel Capabilities User's Guide".

2. Arguments

The routine is called as follows:

```
n int Input Dimension of the system(n \ge 1).

fon int Input Name of user function computing the value of f(x,y). Its prototype is: void fcn(int n, double x, double y[], double f[], double *rpar, int *ipar);

n int Input Original number of an equation
```

			x	double	Input	Autonomous variable <i>x</i>
			У	double	Input	Solution vector y
			2	y[n]	r	,
			f	double	Output	f(x,y).
				f[n]	-	$f[0] = f_1$,
						$f[1] = f_2,$
						$f[n-1] = f_n$
			rpar, ipar (se	e below)		\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}
х	double	Input	Initial x-value x_0 .			
		Output			been comp	uted (after successful
		•	return $x = xend$).		1	`
y	double y[n]	Input	Initial values for	$y: y[0] = y_{01}, y$	$[1] = y_{02}$,.	, $y[n-1] = y_{0n}$.
-		Output		on at $x = x$		
xend	double	Input	Final <i>x</i> -value x_{end}	$(x_{end} - x_0 \text{ may b})$	e positive o	or negative)
h	double	Input	Initial step size g	uess;		
			For stiff equation	s with initial trans	sient, $h = 1$	0 / (norm of f'(x, y)),
			usually 10 ⁻³ or 10) ⁻⁵ , is good. This o	choice is no	t very important, the step
			size is quickly ad	lapted (if $h = 0.0$,	the code pu	its $h = 10^{-6}$).
		Output	-	ze of the last accep		
rtol	double	Input				an be both scalars (must
Atol					•	Atol (or Atol[i]) > 0
				col[i])>10u,v	where u is the	ne round off unit.
itol	int	Input	Switch for rtol			
						The code keeps, roughly,
				y[i] below rto	·-	
						s. The code keeps,
			roughly, the local Atol[i].	lerror of y[1] be	elow rtol	[i] * abs(y[i]) +
jac	int	Input		function which o	computes th	e partial derivatives of
J		r ···			•	alled if ijac ≠ 0; Supply
				in the case ijac	-	7 11 3
			Forijac ≠ 0,t	his function must	have the fo	orm
			Its prototype is:			
			void jac(in	t n, double	x, doub	le y[],
			doul	ole dfy[], i	nt ldfy	, double *rpar,
			int '	*ipar);		
			ldfy, the row-le	ength of the array	, is furnishe	d by the calling program.
			If $mljac = n the$	e Jacobian is supp	osed to be	full and the partial
			derivatives are st			
			dfy[(i-1)*l	$dfy+j-1] = \frac{\partial f}{\partial y}$	<u>i</u> j	
					ed and the p	partial derivatives are
			stored diagonal-v		•	
			dfy[(i-j+mu	jac)*ldfy+j-	$-1] = \frac{\partial f_i}{\partial y_j}$	

			Fig. c_dm_vradau5-1 shows how a banded Jacobian is stored in dfy in the case of $n = 6$, mljac = 3, and mujac = 1.
ijac	int	Input	Switch for the computation of the Jacobian:
_3			ijac = 0: Jacobian is computed internally by finite differences, user
			function " jac " is never called.
			ijac ≠ 0: Jacobian is supplied by user function jac.
mljac	int	Input	Switch for the banded structure of the Jacobian:
-		1	mljac = n: Jacobian is a full matrix. The linear algebra is done by
			full-matrix Gauss-elimination.
			$0 \le mljac \le n$: mljac is the lower bandwidth of Jacobian matrix
			(≥ number of non-zero diagonals below the main diagonal).
mujac	int	Input	Upper bandwidth of Jacobian matrix (≥ number of non-zero diagonals
		•	above the main diagonal). Need not be defined if mljac = n.
mas	int	Input	Name of user function computing the mass-matrix M .
		•	If imas = 0, the matrix is assumed to be the identity matrix and needs
			not to be defined; Supply a dummy routine in this case.
			If imas $\neq 0$, the routine mas is of the form.
			Its prototype is:
			<pre>void mas(int n, double am[], int lmas,</pre>
			<pre>double *rpar, int *ipar);</pre>
			If mlmas = n the mass-matrix is stored as full matrix like
			$am[(i-1)*lmas+j-1] = M_{ij}$
			else, the matrix is taken as banded and stored diagonal-wise as
			$am[(i-j+mumas)*lmas+j-1] = M_{ij}$
imas	int	Input	Information on the mass-matrix;
			imas = 0: M is supposed to be the identity matrix, mas is never called.
			imas ≠ 0: Mass-matrix is supplied.
mlmas	int	Input	Switch for the banded structure of the mass-matrix:
			mlmas = n: the full matrix case. The linear algebra is done by full-matrix Gauss-elimination.
			$0 \le mlmas \le n$: $mlmas$ is the lower bandwidth of the matrix
			(≥ number of non-zero diagonals below the main diagonals).
			mlmas ≤ mljac.
mumas	int	Input	Upper bandwidth of mass-matrix (≥ number of non-zero diagonals
			above the main diagonal). Need not be defined if $mlmas = n$. $mumas \le mujac$.
solout	int	Input	Name of user function providing the numerical solution during
		•	integration.
			If iout ≠ 0, it is called after every successful step. Supply a dummy
			function if $iout = 0$.
			It must have the form. Its prototype is:
			±
			<pre>void solout(int nr, double xold, double x,</pre>
			<pre>void solout(int nr, double xold, double x, double y[], double cont[], int lrc, int n,</pre>
			<pre>double y[], double cont[], int lrc, int n, double *rpar, int *ipar, int irtrn,</pre>
			<pre>double y[], double cont[], int lrc, int n,</pre>

the initial value is the first grid-point with nr = 1 and xend is the final grid-point). "xold" is the preceding grid-point. "irtan" serves to interrupt the integration. If irtan is set < 0, c_dm_vradau5 returns to the calling program. ---- CONTINUOUS OUTPUT: -----During calls to "solout", a continuous solution for the interval [xold,x] is available through the function of type double: c_dm_vcontr5(i, s, cont, lrc, work2, iwork2) which provides an approximation to the I-th component of the solution $(1 \le i \le n)$ at the point S. The value S should lie in the interval [xold,x]. Do not change the entries of cont[lrc], work2[*], and iwork2[*]. iout int Input Switch for calling the routine solout: iout = 0: Routine is never called iout \neq 0: Routine is available for output. work double Work work[0], work[1], ..., work[19] serve as parameters for the code. For standard use of the code work[0], ..., work[19] must be set to work[lwork] area zero before calling. See below for a more sophisticated use. work[20], ..., work[lwork-1] serve as working space for all vectors and matrices. "lwork" must be at least n*(1jac+1mas+3*1e*12) + 20where ljac = n if mljac = n (full Jacobian) ljac=mljac+mujac+1 ifmljac < n (banded jac.) and lmas = 0 if imas = 0lmas = n if $imas \neq 0$ and mlmas = n (full) lmas = mlmas + mumas + 1 if mlmas < n (banded mass-M.) le = n if mljac = n (full Jacobian) le = 2 * mljac + mujac + 1 if mljac < n (banded jac.)In the usual case where the Jacobian is full and the mass-matrix is the identity (imas =0), the minimum storage requirement is lwork = 4 * n * n + 12 * n + 20.If iwork[8] = M1 > 0 then "lwork" must be at least n*(1jac+12)+(n-M1)*(1mas+3*1e)+20where in the definitions of ljac, lmas and le the number n can be replaced by n - M1. lwork Input Declared length of array "work". int iwork Work iwork[0], iwork[1], ..., iwork[19] serve as parameters for the int code. For standard use, set iwork[0], ..., iwork[19] to zero before iwork[liwork] area calling. iwork[20], ..., iwork[liwork-1] serve as working space.

"liwork" must be at least 3 * n + 20.

Output iwork[13] through iwork[19] contain statistics at completion of integration up to yeard

integration up to xend.

iwork[13] NFCN Number of function evaluations(those for numerical evaluation of the Jacobian are not counted)

iwork[14] NJAC Number of Jacobian evaluations (either analytically or numerically)

iwork[15] NSTEP Number of computed steps

iwork[16] NACCPT Number of accepted steps

iwork[17] NREJCT Number of rejected steps(due to error test), (step rejections in the first step are not counted)

iwork[18] NDEC Number of LU-decompositions of both matrices

iwork[19] NSOL Number of forward-backward substitutions, of both systems; The NSTEP forward-backward

substitutions,

needed for step size selection, are not counted

liwork	int	Input	Declared length of array "iwork".
rpar	double*	paramet	which can be used for communication between your calling program
ipar	int*	ers	and functions fcn, jac, mas, and solout.
icon	int	Output	Condition code. See below.

*	a_{12}	a_{23}	a_{34}	$a_{_{45}}$	a_{56}
<i>a</i> ₁₁	a_{22}	<i>a</i> ₃₃	a ₄₄	<i>a</i> ₅₅	a ₆₆
<i>a</i> ₂₁	a_{32}	a_{43}	<i>a</i> ₅₄	<i>a</i> ₆₅	*
<i>a</i> ₃₁	a_{42}	<i>a</i> ₅₃	a ₆₄	*	*
<i>a</i> ₄₁	<i>a</i> ₅₂	<i>a</i> ₆₃	*	*	*

where $a_{ij} = \partial f_i / \partial y_j$ The elements marked *are not used.

Fig. c_dm_vradau5-1

Sophisticated Setting of Parameters:

Several parameters of the code are tuned to make it work well. They may be defined by setting work[0], ... as well as iwork[0], ... different from zero. For zero input, the code chooses default values:

iwork[0] Input If iwork[0] $\neq 0$, the code transforms the Jacobian matrix to Hessenberg form. This is particularly advantageous for large systems with full Jacobian. It does not work for banded Jacobian (mljac < n) and not for implicit systems (imas $\neq 0$).

iwork[1] Input This is the maximal number of allowed steps. The default value (for

		iwork[1] = 0) is 100000 .
iwork[2]	Input	The maximum number of Newton iterations for the solution of the implicit
		system in each step. The default value (for $iwork[2] = 0$) is 7.
iwork[3]	Input	If $iwork[3] = 0$ the extrapolated collocation solution is taken as starting
		value for Newton's method. If $iwork[3] \neq 0$ zero starting values are used.
		The latter is recommended if Newton's method has difficulties with
		convergence (This is the case when NSTEP is larger than NACCPT +
		NREJCT; See output parameters). Default is $iwork[3] = 0$.

The following 3 parameters are important for differential-algebraic systems of index > 1. The function-routine should be written such that the index 1, 2, 3 variables appear in this order. In estimating the error the index 2 variables are multiplied by h, the index 3 variables by h^2 . (In the cases where **M** is the identity matrix or non-singular, the system is just ordinary differential equations, so all variables are index 1 variables and it is sufficient to set 3 parameters to zero.)

If the user sets any of these 3 parameters different from 0, the sum of 3 parameters must be n.

iwork[4]	Input	Dimension of the index 1 variables.
iwork[5]	Input	Dimension of the index 2 variables. Default $iwork[5] = 0$.
iwork[6]	Input	Dimension of the index 3 variables. Default $iwork[6] = 0$.
iwork[7]	Input	Switch for step size strategy.
		If iwork[7] = 1 modified predictive controller (Gustafsson)
		If iwork[7] > 1 classical step size control
		The default value (for $iwork[7] = 0$) is $iwork[7] = 1$. The choice
		iwork[7] = 1 seems to produce safer results. For simple problems, the
		choice iwork[7] > 1 produces often slightly faster runs.

If the differential system has the special structure that

$$y(i)' = y [i+M2]$$
 for $i = 0, ..., M1$,

with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting the parameters iwork[8] and iwork[9]. For example, second order systems p'' = g(x, p, p') can be rewritten as

$$p' = v$$
 $v' = g(x, p, v)$

, where **p** and v are vectors of dimension n/2. In this case one has to put M1 = M2 = n/2. For M1 > 0 some of the input parameters have different meanings:

jac Input

Only the elements of the non-trivial part of the Jacobian have to be stored. For example, with the above first order system reduced from the second order system, routine jac has to store only

$$\left(\frac{\partial \mathbf{g}}{\partial \mathbf{p}} \quad \frac{\partial \mathbf{g}}{\partial \mathbf{v}}\right)$$

, which is $n/2 \times n$ non-trivial matrix.

Suppose y and f are solution vector and right hand side function vector, respectively, of resulting first order system.

If mljac = n - M1 the Jacobian is supposed to be full;

$$\texttt{dfy[(i-1)*ldfy+j-1]} = \frac{\partial f(i+M1)}{\partial y(j)} \ , \ i=1,...,n-M1, \ j=1,...,$$

n

If $0 \le mljac \le n - M1$ the Jacobian is banded (M1 = M2 * MM); $dfy[(i-j+mujac)*ldfy+(j+k\times M2-1)] = \frac{\partial F(I+M1)}{\partial Y(J+K\times M2)}$ i = 1, ..., n - M1, j = 1, ..., M2, k = 0,..., MMIn the banded case, n = M1 + M2 has to be met. Input mljac = n - M1: if the non-trivial part of the Jacobian is full. mljac $0 \le mljac \le n - M1$: if the (MM + 1) submatrices (M1 = M2 * MM), $\frac{\partial f(i+M1)}{\partial f(i+M1)}$, i=0,...,n-M1, j=1,...,M2, k=0,...,MMare all banded, and mljac is the maximal lower bandwidth of these MM + 1 submatrices. mujac Input Maximal upper bandwidth of these MM+1 submatrices. Need not be defined if mujac = n - M1. If imas = 0 this matrix is assumed to be the identity and need not be defined. Input mas Supply a dummy routine in this case. If $imas \neq 0$ it is assumed that only the elements of right lower block of dimension n - M1 differ from that of the identity matrix and only the elements of right lower block of dimension n - M1 must be given in routine mas. For example, consider the following system. Mp'' = g(x, p, p')This can be rewritten as p'=vMv'=g(x,p,v)and expressed in the following form. $\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{M} \end{pmatrix} \begin{pmatrix} \mathbf{p}' \\ \mathbf{v}' \end{pmatrix} = \begin{pmatrix} \mathbf{v} \\ \mathbf{g}(x, \mathbf{p}, \mathbf{v}) \end{pmatrix}$ In this case the coefficient matrix of the left hand side corresponds to M in (1.1). Denoting by M the coefficient matrix of the left hand side, if mlmas = n- M1 the right lower block is supposed to be full; the array am in the routine mas should be set as am[(i-1)*lmas+j-1] = M(j+M1,i+M1), i=1,...,n-M1, j=1,...,n - M1.If $mlmas \neq n - M1$ the right low block is supposed to be banded: am[(i-j+mumas+1)*lmas+j-1] = M(j+M1,i+M1)mlmas = n - M1: If the non-trivial part of **M** is full. mlmas Input $0 \le mlmas \le n-M1$: Lower bandwidth of the mass matrix. $mlmas \le mljac must be met.$ Upper bandwidth of the mass matrix. mumas ≤ mujac must be met. Need mumas Input not be defined if mlmas = n - M1. iwork[8] Input The value of M1 (≥ 0). Default M1 = 0. iwork[9] Input The value of M2 (≥ 0). Default M2 = M1. If iwork[8] > 0, $iwork[8] + iwork[9] \le n$ must be met. work[0] Input The round off unit u. $c_{dmach}() \le work[0] < 1.0$ must be met. Default $u = c_dmach()$. work[1] Input The safety factor in step size prediction. $0.001 \le work[1] \le 1.0$ must be met. Default 0.9.

work[2]	Input	Decides whether the Jacobian should be recomputed; increase work[2], to
WOZII[Z]	mpat	0.1 say, when Jacobian evaluations are costly. For small systems work[2]
		should be smaller (0.001, say). Negative work[2] forces the code to compute
		the Jacobian after every accepted step.
		Default 0.001 . work[2] < 1.0 must be met.
work[3]	Input	Stopping criterion for Newton's method, usually chosen < 1. Smaller values of
		work[3] make the code slower, but safer.
		DEFAULT MAX(10u/TOLST, MIN(0.03, \sqrt{TOLST})), where u is the round
		off unit, $TOLST = 0.1$ · rtol**(2/3), and rtol = rtol[0] when rtol is
		vector. work[3] $>$ u / TOLST must be met.
work[4],	Input	$If \verb work[4] \le HNEW/HOLD \le \verb work[5] , then the step size is not changed.$
work[5]		This saves, together with a large work[2], LU-decompositions and
		computing time for large systems. For smaller systems one may have
		work[4] = 1.0, $work[5] = 1.2$, for large full systems $work[4] = 0.99$,
		work[5] = 2.0 might be good.
		DEFAULTS work[4] = 1.0, work[5] = 1.2.
		$work[4] \le 1.0$ and $work[5] \ge 1.0$ must be met.
work[6]	Input	Maximal step size. Default $x_{end} - x_0$.
work[7],	Input	Parameters for step size selection.
work[8]		The new step size is chosen subject to the restriction
		$work[7] \le HNEW/HOLD \le work[8]$
		Default values: $work[7] = 0.20$, $work[8] = 8.0$.
		$work[7] \le 1.0$ and $work[8] \ge 1.0$ must be met.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
100	In routine solout, parameter irtrn was set to	Processing is discontinued. Solutions obtained so
	be negative.	far were correct.
10000	Number of steps exceeded the value specified in	Processing is discontinued. Integration did not
	iwork[1].	reach xend. The user can try a larger value for
		iwork[1].
21000	Step size became too small.	Processing is discontinued.
22000	Matrix was repeatedly singular.	
30000	There was an inconsistent input.	

3. Comments on use

Role of SOLOUT

During integration from x_0 to x_{end} this routine provides numerical solutions after every accepted step to the routine soluti when iout $\neq 0$.

Namely, when $x_0 < x_{\it end}$, every accepted step results in a sequence of grid-point such as

$$x_0 < x_1 < x_2 < \dots < x_{end}$$

and x_i and solutions at x_i are passed to solout (x_0 and x_{end} included). x_i is determined under step size control to meet required accuracies.

If the user requires solutions at intended grid-points, the function subprogram c_dm_vcontr5 can be used for dense output. For instance, if solutions are required at equally spaced grid-points one can refer to Example 1 below.

Note that repeated calls to c_dm_vradau5 by incrementing xend is inefficient way for that purpose.

Thread parallelization of user's routines

In any of user's routines fcn, jac, mas, and solout, the user can use OpenMP parallelization when necessary.

Index and initial values for differential-algebraic equations

In the model My' = f(x, y) if **M** is non-singular the system is just ordinary differential equations, and "index" of variables in y is 1. In this case iwork[4] to iwork[6] should be set to 0.

If **M** is singular, the system becomes a differential-algebraic equations, and iwork[4] to iwork[6] and initial values should be given carefully. Here is a brief guideline.

For singular M, we can decompose the matrix (e.g., by Gaussian elimination with total pivoting) as

$$M = S \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} T$$

where **S** and **T** are *n*-by-*n* non-singular matrices , and **I** is the identity matrix of smaller size. Inserting this into (1.1), multiplying by S^{-1} , and using the transformed variables

$$Ty = \begin{pmatrix} u \\ w \end{pmatrix}$$

gives

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u' \\ w' \end{pmatrix} = S^{-1} f(x, T^{-1}) \begin{pmatrix} u \\ w \end{pmatrix} = \begin{pmatrix} g(x, u, w) \\ h(x, u, w) \end{pmatrix}$$

or

$$u' = g(x, u, w)$$

$$0 = h(x, u, w)$$

These are called Hessenberg form of the differential-algebraic equations, where the system is split into a smaller ordinary differential equations and a smaller algebraic equations. The Hessenberg forms are often encountered in practice, and can be said as differential equations with algebraic constraints. Below, we give some typical Hessenberg forms which illustrate index 1,2 and 3 variables.

We omit, from now on, the independent variable in equations to simplify mathematical expressions.

a)System of index 1

Let us consider the following system

$$y' = f(y,z)$$
 (3.1a)
 $0 = g(y,z)$ (3.1b)

, where y and z are unknown function vectors, and sum of each size is n.

The mass-matrix M here is

$$\boldsymbol{M} = \begin{pmatrix} \boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix}$$

Differentiating (3.1b) and using (3.1a) we get

$$\mathbf{0} = \mathbf{g}_{y}(y,z)f(y,z) + \mathbf{g}_{z}(y,z)z'$$
 (3.1c)

, where $g_y(y,z)$ and $g_z(y,z)$ are $\partial g(y,z)/\partial y$ and $\partial g(y,z)/\partial z$ respectively. If $g_z(y,z)$, the coefficient of z', is non-singular in a neighborhood of the solution we get

$$z' = -g_z^{-1}(y,z)g_y(y,z)f(y,z)$$

In this case, y and z are index 1 variables. Initial values y_0 and z_0 should be given to satisfy (3.1b).

b) System of index 2

Next, we consider the following

$$\mathbf{y}' = f(\mathbf{y}, \mathbf{z}) \tag{3.2a}$$

$$\mathbf{0} = \mathbf{g}(\mathbf{y}) \tag{3.2b}$$

, where z is absent in the algebraic constraint and M is as follows.

$$M = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$

Differentiating (3.2b) gives

$$\mathbf{0} = \mathbf{g}_{y}(y)f(y,z) \tag{3.2c}$$

Differentiating (3.2c) gives the coefficient of z' as

$$g_{y}(y)f_{z}(y,z) \tag{3.2d}$$

If (3.2d) is non-singular in a neighborhood of the solution, y is index 1 variable and z is index 2 variable. Initial values y_0 and z_0 should be given to satisfy not only (3.2b) but (3.2c).

c) System of index 3

Finally, we consider the following system.

$$\mathbf{y}' = f(\mathbf{y}, \mathbf{z}) \tag{3.3a}$$

$$z' = k(y, z, u) \tag{3.3b}$$

$$\mathbf{0} = \mathbf{g}(\mathbf{y}) \tag{3.3c}$$

Here the sum of length of y, z, and u is n. M is written as

$$M = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Differentiating (3.3c) and using (3.3a) we get

$$\mathbf{0} = \mathbf{g}_{y} f \tag{3.3d}$$

Differentiating (3.3d) and using (3.3a,b) we get

$$0 = g_{yy}(f, f) + g_y f_y f + g_y f_z k$$
 (3.3e)

, where the first term of the right hand side means matrix vector multiplication with the matrix \mathbf{g}_{yy} obtained by differentiating matrix \mathbf{g}_{y} and the vector \mathbf{f} . Furthermore, differentiating (3.3e) brings about \mathbf{u}' . If its coefficient, written as

 $g_y f_z k_u$, is non-singular in a neighborhood of the solution, y is index 1 variable, z is index 2 variable, and u is index 3 variable in the original system (3.3a,b,c). Initial values y_0 , z_0 and u_0 should be given to satisfy the three constraints (3.3 c,d,e).

4. Example program

■ Example 1:Ordinary differential equations of the form y' = f(x, y)Let us consider a simple system:

$$y_1 = y_2$$

 $y_2 = \frac{((1 - y_1^2)y_2 - y_1)}{\varepsilon}$, $\varepsilon = 10^{-6}$
 $y_1(0) = 2, y_2(0) = 0$

Suppose we want to find solutions at x = 1, 2, ..., 11 and print them out. In this problem, the Jacobian matrix $\partial f/\partial y$ is as follows.

$$\begin{pmatrix}
\frac{\partial f_1}{\partial y_1} & \frac{\partial f_1}{\partial y_2} \\
\frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2} \\
\frac{\partial f_2}{\partial y_1} & \frac{\partial f_2}{\partial y_2}
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
(-2y_1y_2 - 1)/\varepsilon & (1 - y_1^2)/\varepsilon
\end{pmatrix}$$

We provide routine jupol as real argument of jac.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#define
            ND 2
            LWORK (4 * ND * ND + 12 * ND + 20) /* 60 */
#define
#define
            LIWORK (3 * ND + 20) /* 26 */
void jvpol(int, double, double*, double*, int, double*, int*);
void fvpol(int, double, double*, double*, double*, int*);
void dummy(int, double*, int, double*, int*);
int MAIN__() {
  double y[ND], work[LWORK];
  int iwork[LIWORK];
  double rpar[2];
  int i, n, ijac, mljac, imas, itol, mujac, iout, icon, mlmas, mumas; int ipar;
  double x, xend, rtol, Atol, h;
  rpar[0] = 1.0e-6;
  rpar[1] = 0.2;
  n = ND;
  ijac = 1;
  mljac = n;
  imas = 0;
  iout = 1;
  x = 0.0;
  y[0] = 2.0;
  y[1] = -0.66;
  xend = 11.0;
  rtol = 1.0e-4;
  Atol = 1.0 * rtol;
  itol = 0;
  h = 1.0e-6;
  for (i = 0; i < 20; i++) {
    iwork[i] = 0;
    work[i] = 0.0;
  c_dm_vradau5(n, fvpol, &x, y, xend, &h,
               rtol, Atol, itol,
               jvpol, ijac, mljac, mujac,
               dummy, imas, mlmas, mumas, solout, iout,
               work, LWORK, iwork, LIWORK,
               rpar, &ipar, &icon);
 return(0);
void solout(int nr, double xold, double x, double *y, double *cont,
            int lrc, int n, double *rpar, int *ipar, int *irtrn,
            double *work2, int *iwork2) {
  double
              prm1, prm2;
  if (nr == 1) {
```

```
printf(" X =%5.21f
                      Y =%18.10le%18.10le
                                             NSTEP =%4d\n",
          x, y[0], y[1], nr - 1);
 } else {
label_10:
   if (x \ge rpar[1]) {
  --- CONTINUOUS OUTPUT FOR RADAU5 */
     prm1 = c_dm_vcontr5(1, rpar[1], cont, lrc, work2, iwork2);
     NSTEP =%4d\n",
     rpar[1] = rpar[1] + 0.2;
     goto label_10;
 return;
void fvpol(int n, double x, double *y, double *f, double *rpar, int *ipar) {
 f[0] = y[1];
 f[1] = ((1 - (y[0] * y[0])) * y[1] - y[0]) / rpar[0];
 return;
void jvpol(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
          int *ipar) {
 dfy[0] = 0.0;
 dfy[1] = 1.0;
 dfy[1dfy] = (-2.0 * y[0] * y[1] - 1.0) / rpar[0];
 dfy[ldfy + 1] = (1.0 - (y[0] * y[0])) / rpar[0];
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
 return;
```

■ Example 2: y' = f(x, y) with banded Jacobian.

Consider the following partial differential equations. "t" means time and "x" is scalar space variable.

$$\frac{\partial u}{\partial t} = A + u^2 v - (B+1)u + \alpha \frac{\partial^2 u}{\partial x^2}$$

$$\frac{\partial v}{\partial t} = Bu - u^2 v + \alpha \frac{\partial^2 v}{\partial x^2}$$

$$0 \le x \le 1, A = 1, B = 3, \alpha = 1/50$$
Boundary conditions: $u(0,t) = u(1,t) = 1, v(0,t) = v(1,t) = 3$
Initial values: $u(x,0) = 1 + \frac{1}{2}\sin(2\pi x), v(x,0) = 3$
We replace the second spatial derivatives by finite differences on a grid of N points, $x_i = i/(N+1)$ ($1 \le i \le N$), $\Delta x = 1/(N+1)$ and then obtain a system of ordinary differential equations with independent variable "t" and 2N unknowns

$$u_{i} = u(t, x_{i}) \text{ and } v_{i} = v(t, x_{i}).$$

$$u_{i}^{'} = 1 + u_{i}^{2} v_{i} - 4u_{i} + \alpha / (\Delta x)^{2} (u_{i-1} - 2u_{i} + u_{i+1})$$

$$v_{i}^{'} = 3u_{i} - u_{i}^{2} v_{i} + \alpha / (\Delta x)^{2} (v_{i-1} - 2v_{i} + v_{i+1})$$

$$u_{0}(t) = u_{N+1}(t) = 1, v_{0}(t) = v_{N+1}(t) = 3$$

$$u_{i}(0) = 1 + \frac{1}{2} \sin(2\pi x_{i}), v_{i}(0) = 3, i = 1, 2, ..., N$$

When using this routine we define y as $y = (u_1, v_1, u_2, v_2, ..., u_N, v_N)^T$. Then the Jacobian becomes a banded matrix with the upper and lower bandwidth 2. In the following example, we set n = 500, x = 10, and y = 10 and

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#define ND 1000
#define NL 2
#define NU 2
#define LWORK ((7 * NL + 4 * NU + 16) * ND + 20) /* 38020 */
#define LIWORK (3 * ND + 20) /* 3020 */
void fbrus(int, double, double*, double*, double*, int*);
void jbrus(int, double, double*, double*, int, double*, int*);
     void dummy(int, double*, int, double*, int*);
int MAIN__() {
  double x, xend, y[ND], work[LWORK];
  int iwork[LIWORK];
  double rpar[2];
  int ipar;
  double pi, usdelq, gamma, gamma2, anp1, xi, rtol, Atol, h; int i, n, n2, ijac, mljac, mujac, mlmas, mumas, imas, iout, itol, icon;
  pi = 3.14159265358979324;
  n = 500;
  n2 = 2 * n;
  usdelq = ((double)(n + 1)) * ((double)(n + 1));
  gamma = 0.02 * usdelq;
gamma2 = 2.0 * gamma;
  rpar[0] = gamma;
  rpar[1] = gamma2;
  x = 0.0;
  xend = 10.0;
  anp1 = n + 1;
  for (i = 1; i <= n; i++) {
   xi = i / anp1;

y[(2 * i) - 1] = 3.0;
    y[(2 * i) - 2] = 1.0 + 0.5 * sin(2.0 * pi * xi);
  ijac = 1;
/* Jacobian is a banded matrix. */
 mljac = NL;
 mujac = NU;
  imas = 0;
/* Output Routine is not used. */
  iout = 0;
  rtol = 1.0e-6;
  Atol = rtol;
  itol = 0;
  h = 1.0e-6;
  for (i = 0; i < 20; i++) {
   work[i] = 0.0;
   iwork[i] = 0;
  mlmas = 0;
  mumas = 0;
  jbrus, ijac, mljac, mujac,
              dummy, imas, mlmas, mumas,
              solout, iout,
              work, LWORK, iwork, LIWORK,
              rpar, &ipar, &icon);
  printf(" ICON= %d\n", icon);
  printf(" %18.10e%18.10e%18.10e%18.10e\n", y[0], y[1], y[n2 - 2], y[n2 - 1]);
  return(0);
void solout(int nr, double xold, double x, double *y, double *cont,
```

```
int lrc, int n, double *rpar, int *ipar, int *irtrn,
double *work2, int *iwork2) {
  return;
}
void fbrus(int n2, double x, double *y, double *f, double *rpar, int *ipar) \{
  int i, n, iu, iv;
  double gamma, ui, vi, uim, vim, uip, vip, prod;
  n = n2 / 2;
  gamma = rpar[0];
  i = 1;
  iu = 2 * i - 1;
  iv = 2 * i;
  ui = y[iu -1];
  vi = y[iv - 1];
  uim = 1.0;
  vim = 3.0;
  uip = y[iu + 1];
  vip = y[iv + 1];
  prod = ui * ui * vi;
  f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);

f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);

for (i = 2; i <= n-1; i++) {

  iu = 2 * i - 1;
     iv = 2 * i;
    ui = y[iu - 1];
vi = y[iv - 1];
     uim = y[iu - 3];
vim = y[iv - 3];
     uip = y[iu + 1];
     vip = y[iv + 1];
prod = ui * ui * vi;
     f[iu - 1] = 1.0 + prod -4.0 * ui + gamma * (uim - 2.0 * ui + uip);
f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
  i = n;
  iu = 2 * i - 1;
  iv = 2 * i;
  ui = y[iu - 1];
vi = y[iv - 1];
  uim = y[iu - 3];
vim = y[iv - 3];
uip = 1.0;
  vip = 3.0;
  prod = ui * ui * vi;
  f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);
f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
}
void jbrus(int n2, double x, double *y, double *dfy, int ldfy, double *rpar,
             int *ipar) {
  int
             i, n, iu, iv;
  double gamma, gamma2, ui, ui2, vi, uivi;
  n = n2 / 2;
  gamma = rpar[0];
  gamma2 = rpar[1];
  for (i = 1; i <= n; i++) {
  iu = 2 * i - 1;
     iv = 2 * i;
     ui = y[iu - 1];
     vi = y[iv - 1];
     uivi = ui * vi;
ui2 = ui * ui;
     dfy[(2 * ldfy) + (iu - 1)] = 2.0 * uivi - 4.0 - gamma2;
     dfy[ldfy + (iv - 1)] = ui2;
dfy[(3 * ldfy) + (iu - 1)] = 3.0 - 2.0 * uivi;
     dfy[(2 * 1dfy) + (iv - 1)] = -ui2 - gamma2;
    dfy[ldfy + (iu - 1)] = 0.0;
dfy[(3 * ldfy) + (iv - 1)] = 0.0;
  for (i = 1; i \le n2 - 2; i++) {
     dfy[i + 1] = gamma;
     dfy[(4 * ldfy) + (i - 1)] = gamma;
  return;
```

```
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
  return;
}
```

■ Example 3:Second order system y'' = f(x, y, y')

Next, we consider a partial differential equations defined in rectangular plate $\Omega = \{(x, y); 0 \le x \le 2, 0 \le y \le 4/3\}$:

$$\frac{\partial^2 u}{\partial t^2} + \omega \frac{\partial u}{\partial t} + \sigma \Delta \Delta u = f(x, y, t), \text{ where } \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Boundary conditions: $u|_{\partial\Omega} = 0, \Delta u|_{\partial\Omega} = 0$

Initial conditions :
$$u(x, y, 0) = 0$$
, $\frac{\partial u}{\partial t}(x, y, 0) = 0$

The plate Ω is discretized on a grid 8 \times 5 interior points

$$x_i = ih, y_j = jh, i = 1, 2, ..., 8, j = 1, 2, ..., 5, h = 2/9.$$

We replace the special derivatives by finite differences, then setting $v_{ij} = u'_{ij}$ gives the following ordinary differential system.

$$\begin{split} u_{ij}^{'} &= v_{ij} \\ v_{ij}^{'} &= -\omega v_{ij} - \frac{\sigma}{h^4} (20u_{ij} - 8u_{i-1j} - 8u_{i+1j} + 2u_{i+1j+1} + 2u_{i+1j-1} \\ &+ 2u_{i-1j-1} + 2u_{i-1j+1} + u_{i-2j} + u_{i+2j} + u_{ij-2} + u_{ij+2}) + f(x_i, y_j, t) \end{split}$$

With mapping k = i + 8(j - 1) from (i,j), we set $y_k = u_{ij}$ and $y_{k+40} = v_{ij}$. Then we obtain system with $(y_1, y_2, ..., y_{40}, y_{41}, ..., y_{80})^T$ as unknown vector. In the following program we set iwork [8] = 40 and routine jplatsb computes only non-trivial part of the Jacobian.

 $\omega = 1000, \sigma = 100$

$$f(x, y, t) = \begin{cases} 2000(\mathbf{e}^{-5(t-x-2)^2} + \mathbf{e}^{-5(t-x-5)^2}) & \text{if } y = y_2 \text{ or } y_4 \\ 0 & \text{for all other } y \end{cases}$$

```
#include <stdlib.h>
#include <stdlio.h>
#include <math.h>
#include "cssl.h"

#define MX 8
#define MY 5
#define ND (2 * MX * MY) /* 80 */
#define LWORK (4 * ND * ND + 12 * ND + 20) /* 26580 */
#define LIWORK (3 * ND + 20) /* 260 */

void fplate(int, double, double*, double*, int*);
void jplatsb(int, double, double*, double*, int, double*, int*);
void solout(int, double, double, double*, int, int, double*, int*);
void dummy(int, double, int*, int*, double*, int*);
int MAIN__() {
    double y[ND], work[LWORK];
    int iwork[LIWORK];
```

```
double rpar[4];
 int ipar[9];
int ipar[9];
int i, k, n, nx, ny, nachs1, nachs2, nxm1, nym1, ndemi, imas, iout;
int itol, ijac, mljac, mujac, mlmas, mumas, icon;
double omega, stiffn, weight, denom, delx, ush4, fac, x, rtol, Atol;
double h, xend;
  nx = MX;
  ny = MY;
  nachs1 = 2;
  nachs2 = 4;
  nxm1 = nx - 1;
  nym1 = ny - 1;
  ndemi = nx * ny;
  omega = 1000.0;
  stiffn = 100.0;
  weight = 200.0;
  denom = nx + 1;
  delx = 2.0 / denom;
  ush4 = 1.0 / ((delx * delx) * (delx * delx));
  fac = stiffn * ush4;
 n = ND;
 imas = 0;
* --- OUTPUT ROUTINE IS USED DURING INTEGRATION */
 iout = 1;
/* --- INITIAL VALUES */
 x = 0.0;
  for (i = 0; i < n; i++) \{
y[i] = 0.0;
}
/* --- REQUIRED TOLERANCE */
  rtol = 1.0e-6;
  Atol = rtol * 1.0e-3;
  itol = 0;
/* --- INITIAL STEP SIZE */
 h = 1.0e-2;
/* --- SET DEFAULT VALUES */
 for (i = 0; i < 20; i++) {
  work[i] = 0.0;
    iwork[i] = 0;
}
/* --- SECOND ORDER OPTION AND BANDED */
 ijac = 1;
  iwork[8] = n / 2;
 mljac = 2 * MX;
 mujac = 2 * MX;
/* --- ENDPOINT OF INTEGRATION */
 xend = 7.0;
/* --- COMMUNICATION VALUES */
 ipar[0] = nx;
  ipar[1] = nxm1;
  ipar[2] = ny;
  ipar[3] = nym1;
  ipar[4] = ndemi;
  ipar[5] = nachs1;
  ipar[6] = nachs2;
  ipar[7] = mljac;
  ipar[8] = mujac;
  rpar[0] = omega;
  rpar[1] = delx;
  rpar[2] = fac;
  rpar[3] = weight;
/* --- CALL OF THE FUNCTION RADAU5 */
 jplatsb, ijac, mljac, mujac,
                dummy, imas, mlmas, mumas,
                solout, iout,
               work, LWORK, iwork, LIWORK,
               rpar, ipar, &icon);
  printf(" ICON= %d\n", icon);
  for (k = 0; k < n; k++) {
   printf(" %-22.15le\n", y[k]);
  return(0);
void solout(int nr, double xold, double x, double *y, double *cont,
             int lrc, int n, double *rpar, int *ipar, int *irtrn,
double *work2, int *iwork2) {
```

```
int nhalf;
  nhalf = n / 2;
  printf("X = \$9.5lf Y(1) and Y(\$3d) = \$18.10lf \$18.10lf NSTEP = \$4d \ ","
          x, nhalf, y[0], y[nhalf - 1], nr - 1;
  return;
void fplate(int n, double x, double *y, double *f, double *rpar, int *ipar) {
  int i, j, k, nx, nxml, ny, nyml, ndemi, nachs1, nachs2;
double omega, delx, fac, weight, uc, xi, force;
  nx = ipar[0];
  nxm1 = ipar[1];
  ny = ipar[2];
  nym1 = ipar[3];
  ndemi = ipar[4];
  nachs1 = ipar[5];
  nachs2 = ipar[6];
  omega = rpar[0];
  delx = rpar[1];
  fac = rpar[2];
  weight = rpar[3];
  for (i = 1; i <= nx; i++) {
    for (j = 1; j <= ny; j++) {
    k = i + nx * (j - 1);
    ----- SECOND DERIVATIVE ---- */
   f[k - 1] = y[(k - 1) + ndemi];
----- CENTRAL POINT--- */
       uc = 16.0 * y[k - 1];
       if (i > 1) {
         uc = uc + y[k - 1];

uc = uc - 8.0 * y[k - 2];
       if (i < nx) {
         uc = uc + y[k - 1];

uc = uc - 8.0 * y[k];
       if (j > 1) {
         uc = uc + y[k - 1];

uc = uc - 8.0 * y[(k - 1) - nx];
       if (j < ny) {
        uc = uc + y[k - 1];
         uc = uc - 8.0 * y[(k - 1) + nx];
       if (i > 1 && j > 1)

uc = uc + 2.0 * y[k - nx - 2];

if (i < nx && j > 1)
         uc = uc + 2.0 * y[k - nx];
       if (i > 1 \&\& j < ny)
         uc = uc + 2.0 * y[k + nx - 2];
       if (i < nx && j < ny)
         uc = uc + 2.0 * y[k + nx];
       if (i > 2)
        uc = uc + y[k - 3];
       if (i < nxm1)
        uc = uc + y[k + 1];
       if (j > 2)
         uc = uc + y[(k - 2 * nx) - 1];
       if (j < nym1)
         uc = uc + y[(k + 2 * nx) - 1];
       if (j == nachs1 || j == nachs2) {
        xi = i * delx;
         force = \exp(-5.0 * ((x - xi - 2.0) * (x - xi - 2.0))) + \exp(-5.0 * ((x - xi - 5.0) * (x - xi - 5.0)));
       } else {
         force = 0.0;
       f[k + ndemi - 1] = -omega * y[k + ndemi - 1] - fac * uc + force * weight;
    }
  }
  return;
void jplatsb(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
               int *ipar) {
  int i, j, k, nx, nxml, ny, nyml, ndemi, mu, mljac, mujac;
  double omega, fac, fac2, fac8, fac16;
```

```
nx = ipar[0];
  nxm1 = ipar[1];
  ny = ipar[2];
  nym1 = ipar[3];
  ndemi = ipar[4];
  mljac = ipar[7];
  mujac = ipar[8];
  omega = rpar[0];
  fac = rpar[2];
  for (i = 0; i < mljac + mujac + 1; i++) {
     for (j = 0; j < ldfy; j++) {
       dfy[(i * ldfy) + j] = 0.0;
  mu = 2 * nx + 1;
  fac2 = fac * 2.0;
fac8 = fac * 8.0;
  fac16 = fac * 16.0;
  for (i = 1; i <= nx; i++) {
     for (j = 1; j <= ny; j++) {
    k = i + nx * (j - 1);
    dfy[((mu - 1) * ldfy) + (k - 1)] = -facl6;
       if (i > 1) {
          dfy[((mu - 1) * ldfy) + (k - 1)] =
    dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
dfy[(mu * ldfy) + (k - 2)] = fac8;
       if (i < nx) {
   dfy[((mu - 1) * ldfy) + (k - 1)] =
      dfy[((mu - 1) * ldfy) + (k - 1)] - fac;</pre>
          dfy[((mu - 2) * ldfy) + k] = fac8;
        if (j > 1) {
          dfy[((mu - 1) * ldfy) + (k - 1)] =
          dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
dfy[((mu + nx - 1) * ldfy) + (k - nx - 1)] = fac8;
       if (j < ny) {
  dfy[((mu - 1) * ldfy) + (k - 1)] =
      dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
  dfy[((mu - nx - 1) * ldfy) + (k + nx - 1)] = fac8;</pre>
       if (i > 1 && j > 1)
  dfy[((mu + nx) * ldfy) + (k - nx - 2)] = -fac2;
        if (i < nx \&\& j > 1)
          dfy[((mu + nx - 2) * 1dfy) + (k - nx)] = -fac2;
        if (i > 1 && j < ny)
  dfy[((mu - nx) * ldfy) + (k + nx - 2)] = -fac2;</pre>
        if (i < nx \&\& j < ny)
          dfy[((mu - nx - 2) * ldfy) + (k + nx)] = -fac2;
          dfy[((mu + 1) * ldfy) + (k - 3)] = -fac;
        if (i < nxm1)
          dfy[((mu - 3) * ldfy) + (k + 1)] = -fac;
        if (j > 2)
          dfy[((mu + 2 * nx - 1) * ldfy) + (k - 2 * nx - 1)] = -fac;
       if (j < nym1)
          dfy[((mu - 2 * nx - 1) * 1dfy) + (k + 2 * nx - 1)] = -fac;
       dfy[((mu - 1) * ldfy) + (k + ndemi - 1)] = -omega;
     }
  return;
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
  return;
```

■ Example 4:Differential-algebraic system My' = f(x, y).

Finally, we consider the following system with independent variable t and 8 unknowns $y_1, y_2, ..., y_8$.

$$\begin{split} &C_5(y_2^{'}-y_1^{'})=y_1/R_9\\ &-C_5(y_2^{'}-y_1^{'})=\alpha f(y_4-y_3)-U_b/R_8+y_2/R_8\\ &-C_4y_3^{'}=y_3/R_7-f(y_4-y_3)\\ &C_3(y_5^{'}-y_4^{'})=-U_b/R_6+y_4(1/R_5+1/R_6)+(1-\alpha)f(y_4-y_3)\\ &-C_3(y_5^{'}-y_4^{'})=-U_b/R_4+y_5/R_4+\alpha f(y_7-y_6)\\ &-C_2y_6^{'}=y_6/R_3-f(y_7-y_6)\\ &C_1(y_8^{'}-y_7^{'})=-U_b/R_2+y_7(1/R_1+1/R_2)+(1-\alpha)f(y_7-y_6)\\ &C_1(y_7^{'}-y_8^{'})=y_8/R_0-U_e(t)/R_0 \end{split}$$

where

$$C_k = k \cdot 10^{-6}, k = 1, 2, ..., 5$$

$$R_0 = 1000, R_k = 9000, k = 1, 2, ..., 9$$

$$f(y_i - y_j) = \beta(\mathbf{e}^{(\mathbf{y}_i - y_j)/U_F} - 1)$$

$$U_F = 0.026, \alpha = 0.99, \beta = 10^{-6}, U_b = 6$$

$$U_e(t) = 0.1 \cdot \sin(200\pi t)$$

With $\mathbf{y} = (y_1, y_2, ..., y_8)^T$ the left hand side of the above 8 equations can be written as $\mathbf{M}\mathbf{y}$, where \mathbf{M} is a tridiagonal matrix.

$$\mathbf{M} = \begin{pmatrix} -C_5 & C_5 \\ C_5 & -C_5 \\ & & -C_4 \\ & & -C_3 & C_3 \\ & & & -C_2 \\ & & & & -C_1 & C_1 \\ & & & & & C_1 & -C_1 \end{pmatrix}$$

Obviously, **M** is singular and its rank is 5. Because of this, the system is a differential-algebraic system. According to a detailed analysis this system is index 1 problem.

We integrate from t = 0 through t = 0.2. Initial values y(0) must be chosen so that the vector with 8 components from the right hand side of the above equations lies in the range of the matrix \mathbf{M} . Such initial values are as follows.

$$\begin{aligned} y_1(0) &= 0, y_2(0) = U_b - y_1(0) \cdot R_8 / R_9, y_3(0) = y_4(0) = U_b / (R_6 / R_5 + 1) \\ y_5(0) &= U_b, y_6(0) = y_7(0) = U_b / (R_2 / R_1 + 1), y_8(0) = 0 \end{aligned}$$

The Jacobian matrix in this model becomes a banded matrix with upper bandwidth 2 and lower bandwidth 1. Additionally, all the unknown variables can be proved to be index 1.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
```

```
#include "cssl.h"
#define ND 8
#define LJAC 4
#define LMAS 3
#define LE 5
#define LWORK (ND * (LJAC + LMAS + 3 * LE + 12) + 20) /* 292 */
#define LIWORK (3 * ND + 20) /* 44 */
int MAIN__() {
  double y[ND], work[LWORK], rpar[16];
  int iwork[LIWORK];
  double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
  double x, xend, rtol, Atol, h;
  int i, n, ijac, mljac, mujac, imas, mlmas, mumas, iout, itol, ipar;
int icon;
  ue = 0.1;
  rpar[0] = ue;
  ub = 6.0;
  rpar[1] = ub;
  uf = 0.026;
  rpar[2] = uf;
  alpha = 0.99;
  rpar[3] = alpha;
  beta = 1.0e-6;
  rpar[4] = beta;
  r0 = 1000.0;
  rpar[5] = r0;
  r1 = 9000.0;
  rpar[6] = r1;
  r2 = 9000.0;
  rpar[7] = r2;
  r3 = 9000.0;
  rpar[8] = r3;
  r4 = 9000.0;
  rpar[9] = r4;
  r5 = 9000.0;
  rpar[10] = r5;
  r6 = 9000.0;
  rpar[11] = r6;
  r7 = 9000.0;
  rpar[12] = r7;
  r8 = 9000.0;
  rpar[13] = r8;
  r9 = 9000.0;
  rpar[14] = r9;
  rpar[15] = 0.0025;
  ipar = 0;
  n = 8;
  ijac = 1;
  mljac = 1;
  mujac = 2i
  imas = 1;
  mlmas = 1;
  mumas = 1;
  iout = 1;
  x = 0.0;
  y[0] = 0.0;
  y[1] = ub - y[0] * r8 / r9;
y[2] = ub / (r6 / r5 + 1.0);
y[3] = ub / (r6 / r5 + 1.0);
  y[4] = ub;
  y[5] = ub / (r2 / r1 + 1.0);
  y[6] = ub / (r2 / r1 + 1.0);
  y[7] = 0.0;
  xend = 0.2;
  rtol = 1.0e-5;
  Atol = 1.0e-6 * rtol;
  itol = 0;
  h = 1.0e-6;
  for (i = 0; i < 20; i++) \{
   iwork[i] = 0;
    work[i] = 0.0;
```

```
jbampl, ijac, mljac, mujac,
              bbampl, imas, mlmas, mumas,
 return(0);
void solout(int nr, double xold, double x, double *y, double *cont,
            int lrc, int n, double *rpar, int *ipar, int *irtrn,
            double *work2, int *iwork2) {
  double prm1, prm2;
  if (nr == 1) {
   printf(" X =%7.41f
                         Y =%18.10le%18.10le
                                                NSTEP =%4d\n",
           x, y[0], y[1], nr - 1);
  } else {
Label_10:
   if (x \ge rpar[15]) {
     rpar[15], prm1, prm2, nr - 1);
rpar[15] = rpar[15] + 0.0025;
      goto Label_10;
   }
 return;
void fampl(int n, double x, double *y, double *f, double *rpar, int *ipar) {
  double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
  double w, uet, fac1, fac2;
  ue = rpar[0];
 ub = rpar[1];
  uf = rpar[2];
  alpha = rpar[3];
  beta = rpar[4];
 r0 = rpar[5];
  r1 = rpar[6];
 r2 = rpar[7];
  r3 = rpar[8];
  r4 = rpar[9];
  r5 = rpar[10];
  r6 = rpar[11];
  r7 = rpar[12];
  r8 = rpar[13];
  r9 = rpar[14];
  w = 2.0 * 3.141592654 * 100.0;

uet = ue * sin(w * x);
  fac1 = beta * (\exp((y[3] - y[2]) / uf) - 1.0);
fac2 = beta * (\exp((y[6] - y[5]) / uf) - 1.0);
  f[0] = y[0] / r9;
f[1] = (y[1] - ub) / r8 + alpha * facl;
  f[2] = y[2] / r7 - fac1;
 f[3] = y[3] / r5 + (y[3] - ub) / r6 + (1.0 - alpha) * facl;

f[4] = (y[4] - ub) / r4 + alpha * fac2;

f[5] = y[5] / r3 - fac2;
  f[6] = y[6] / r1 + (y[6] - ub) / r2 + (1.0 - alpha) * fac2;

f[7] = (y[7] - uet) / r0;
 return;
void jbampl(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
            int *ipar) {
  double uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
  double fac14, fac27;
  int j;
  uf = rpar[2];
  alpha = rpar[3];
  beta = rpar[4];
 r0 = rpar[5];
  r1 = rpar[6];
 r2 = rpar[7];
  r3 = rpar[8];
  r4 = rpar[9];
```

```
r5 = rpar[10];
  r6 = rpar[11];
  r7 = rpar[12];
  r8 = rpar[13];
  r9 = rpar[14];
  fac14 = beta * exp((y[3] - y[2]) / uf) / uf;
fac27 = beta * exp((y[6] - y[5]) / uf) / uf;
  for (j = 0; j < 8; j++) {
     dfy[j] = 0.0;
     dfy[1dfy + j] = 0.0;
     dfy[3 * 1dfy + j] = 0.0;
  dfy[2 * 1dfy] = 1.0 / r9;
  dfy[2 * ldfy] = 1.0 / r9;
dfy[2 * ldfy + 1] = 1.0 / r8;
dfy[ldfy + 2] = -alpha * fac14;
dfy[3] = alpha * fac14;
dfy[2 * ldfy + 2] = 1.0 / r7 + fac14;
  dfy[1dfy + 3] = -fac14;
  dfy[2 * ldfy + 3] = 1.0 / r5 + 1.0 /r6 + (1.0 - alpha) * fac14;
dfy[3 * ldfy + 2] = -(1.0 - alpha) * fac14;
  dfy[2 * ldfy + 4] = 1.0 / r4;
dfy[ldfy + 5] = -alpha * fac27;
  dry(color) = -aipna * fac27;
dfy[6] = alpha * fac27;
dfy[2 * ldfy + 5] = 1.0 / r3 + fac27;
dfy[ldfy + 6] = -fac27;
dfy[2 * ldfy + 6]
  dfy[2 * 1dfy + 7] = 1.0 / r0;
  return;
void bbampl(int n, double *b, int lb, double *rpar, int *ipar) {
  double c1, c2, c3, c4, c5;
  for (i = 0; i < 8; i++) {
    b[i] = 0.0;
b[2 * lb + i] = 0.0;
  c1 = 1.0e-6;
  c2 = 2.0e-6;
  c3 = 3.0e-6;
  c4 = 4.0e-6;
  c5 = 5.0e-6;
  b[1b] = -c5;
  b[1] = c5;
b[2 * 1b] = c5;
  b[1b + 1] = -c5;
  b[1b + 2] = -c4;
  b[1b + 3] = -c3;
  b[4] = c3;

b[2 * 1b + 3] = c3;
  b[1b + 4] = -c3;
  b[1b + 5] = -c2;
  b[1b + 6] = -c1;
  b[7] = c1;
  b[2 * 1b + 6] = c1;
  b[1b + 7] = -c1;
  return;
```

5. Method

Consult the entry for DM_VRADAU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [34] and [69].

c dm vrann3

1. Function

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and standard deviation σ .

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-m)^2}{2\sigma^2}\right) \tag{1}$$

2. Arguments

The routine is called as follows:

ierr = c_dm_vrann3(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork, &icon); where: Mean *m* of normal distribution. dam double Input Standard deviation σ of normal distribution. (>0) dsd double Input ix int Input Starting point. On the first call, the value of ix must be positive. On the second and later calls, return value 0 must be used. When a different starting point is specified for the initial call, a different random number sequence is created. Output Return value is 0. Output n normal pseudorandom numbers generated by each thread. da double da[NUMT][k] Where, NUMT is the number of threads. n pseudo random numbers generated by thread number p (which is from 0 to NUMT-1) are stored in da[P][0], ..., da[P][n-1]. k int Input C fixed dimension of array da $(\ge n)$. Input Number of normally distributed pseudorandom numbers to be returned n int by each thread in da. Comments on use. double Work When this routine is called repeatedly, the contents and NUMT must not dwork dwork[NUMT] be changed. dwork contains all the current information required to [nwork] restart this routine from its current point. int Input Size of second-dimension of workspace. $nwork \ge 1156$. nwork icon Output Condition code. See below. int

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	k > n or $k < 1$	Bypassed.
30001	One of the following has occurred:	
	nwork is too small.	
	• ix<0	
	• dsd≤0	
30002	The internal check failed.	
30003 to 30008	dwork overwritten or $ix = 0$ on first call.	
30009	ix is too large.	

3. Comments on use

ix

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call to this function.

This function appends the thread number +1, omp_get_thread_num() +1, to the seed, as in seed = seed * omp_get_num_threads() + omp_get_thread_num() +1. Thus the seeds used on different threads are assured to be distinct, and hence subsequences of length less than 10^{18} will not overlap.

n

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If $n \le 0$, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than the maximum value of n.

dwork

When this routine is to be called two or more times, dwork is used as the work area for storing the information for the next call. While this routine is called, the contents of dwork must not be changed by the called program.

nwork

dwork[i][0], ..., dwork[i][nwork-1] (i = 0, ..., NUMT-1) are used by this routine. The value of nwork must not be changed at any call of this routine. For efficient processing, nwork must be set to 1,156 or higher. When this routine is to be used on a vector processor, the value of nwork must be 100,000 or higher.

Regeneration of the same random numbers

When dwork[i][0], ..., dwork[i][nwork-1] (i = 0, ..., NUMT-1) are saved, the same random number sequence as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0.

NUMT

The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads().

4. Example program

10,000,000 × 4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
#define NUMT
             10000000
#define NRAN
#define SEED
             12345
#define NWMAX 100000
#define NBUF 120000
#define K
              (NBUF)
int MAIN ()
 double da[NUMT][K], dwork[NUMT][NWMAX];
 double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
        ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;
  /* Initialize ix,n and nwork */
 ix = SEED;
       = NBUF;
 nwork = NWMAX;
 dam = 0.0;
 dsd = 1.0;
 dsum = 0.0;
 dssum = 0.0;
                             = %d\n", ix);
 printf("Seed
 printf("Mean
                             = %e\n", dam);
 printf("Standard deviation = %e\n", dsd);
  /* ngen counts down to 0 */
 ngen = NRAN;
 ntot = NRAN*NUMT;
  /* Generate ngen numbers with maximum NBUF at a time. */
 krpt = (NRAN+NBUF-1)/NBUF;
 printf("Generating %d numbers with %d calls to c_{m_v} on %d threads.\n",
          ntot, krpt, NUMT);
 omp_set_num_threads(NUMT);
  for (iz=0; iz<krpt; iz++) {
   n = min(NBUF, ngen);
   c_dm_vrann3(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon);
    if(icon != 0) printf("c_dm_vrann3 : icon = %d\n", icon);
    /* Accumulate sum of numbers */
   dsum2 = 0.0;
    for (j=0; j<NUMT; j++) {}
      for (i=0; i<n; i++)
       dsum2 += da[j][i];
    /* Accumulate sum of numbers globally. */
    dssum2 = 0.0;
   for (j=0; j<NUMT; j++) {
```

```
for (i=0; i<n; i++) {
    dssum2 += da[j][i]*da[j][i];
}

dsum += dsum2;
dssum += dssum2;

/* Count down numbers still to generate on each processor */
ngen -= n;
}

/* Compute overall mean. */
dmean = dsum / (double)ntot;
printf("Sample mean %e\n", dmean);

/* Compute overall sample standard deviation. */
dsig = dssum / (double)ntot;
printf("Sample standard deviation %e\n", dsig);
return(0);</pre>
```

5. Method

Consult the entry for DM_VRANN3 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vrann4

Generation of normal random numbers (Wallace's method)

ierr = c_dm_vrann4(dam, dsd, &ix, da, k, n,

dwork, nwork, &icon);

1. Function

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and standard deviation σ .

ierr = c_dm_vrann4(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x-m)^2}{2\sigma^2}\right) \tag{1}$$

2. Arguments

The routine is called as follows:

&icon); where: Mean *m* of normal distribution. dam double Input Standard deviation σ of normal distribution. (>0) dsd double Input ix int Input Starting point. On the first call, the value of ix must be positive. On the second and later calls, return value 0 must be used. When a different starting point is specified for the initial call, a different random number sequence is created. Output Return value is 0. Output n normal pseudorandom numbers generated by each thread. da double da[NUMT][k] Where, NUMT is the number of threads. n pseudo random numbers generated by thread number p (which is from 0 to NUMT-1) are stored in da[P][0], ..., da[P][n-1]. k int Input C fixed dimension of array da $(\ge n)$. Input Number of normally distributed pseudorandom numbers to be returned n int by each thread in da. Comments on use. double Work When this routine is called repeatedly, the contents and NUMT must not dwork dwork[NUMT] be changed. dwork contains all the current information required to [nwork] restart this routine from its current point. int Input Size of second-dimension of workspace. $nwork \ge 1350$. nwork icon Output Condition code. See below. int

Code	Meaning	Processing
0	No error.	Completed.
30000	k > n or $k < 1$	Bypassed.
30001	One of the following has occurred:	
	nwork is too small.	
	• ix<0	
	• dsd≤0	
30002	The internal check failed.	
30003 to 30008	dwork overwritten or $ix = 0$ on first call.	
30009	ix is too large.	
40000 to 40002	dwork overwritten or $ix = 0$ on first call.	

3. Comments on use

ix

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call to this function.

n

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If $n \le 0$, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than the maximum value of n.

dwork

When this routine is to be called two or more times, dwork is used as the work area for storing the information for the next call. While this routine is called, the contents of dwork must not be changed by the called program.

nwork

dwork[i][0], ..., dwork[i][nwork-1] (i = 0, ..., NUMT-1) are used by this routine. The value of nwork must not be changed at any call of this routine. For efficient processing, nwork must be set to 1,350 or higher. When this routine is to be used on a vector processor, the value of nwork must be 500,000 or higher.

Regeneration of the same random numbers

When dwork[i][0], ..., dwork[i][nwork-1] (i = 0, ..., NUMT-1) are saved, the same random number sequence as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0.

NUMT

The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads().

Wallece's method

The implementation of Wallece's method in this routine is about three times faster than the implementation of the Polar method in c_dm_vrann3.

4. Example program

10,000,000 × 4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
#define NUMT 4
#define NRAN 1000000
#define SEED
              12345
#define NWMAX 100000
#define NBUF 120000
#define K
int MAIN__()
 double da[NUMT][K], dwork[NUMT][NWMAX];
 double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
        ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;
  /* Initialize ix,n and nwork */
 ix
       = SEED;
       = NBUF;
 n
 nwork = NWMAX
       = 0.0;
 dam
 dsd
       = 1.0;
 dsum = 0.0;
 dssum = 0.0;
 printf("Seed
                             = %d\n", ix);
 printf("Mean
                             = e\n", dam);
 printf("Standard deviation = %e\n", dsd);
  /* ngen counts down to 0 */
 ngen = NRAN;
 ntot = NRAN*NUMT;
  /* Generate ngen numbers with maximum NBUF at a time. */
 krpt = (NRAN+NBUF-1)/NBUF;
 printf("Generating %d numbers with %d calls to c_{m_v} on %d threads.\n",
         ntot, krpt, NUMT);
  omp_set_num_threads(NUMT);
  for (iz=0; iz<krpt; iz++) {
   n = min(NBUF, ngen);
    c_dm_vrann4(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon);
    if(icon != 0) printf("c_dm_vrann4 : icon = %d\n", icon);
    /* Accumulate sum of numbers */
   dsum2 = 0.0;
    for (j=0; j<NUMT; j++)</pre>
     for (i=0; i<n; i++) {
       dsum2 += da[j][i];
      }
    }
    /* Accumulate sum of numbers globally. */
    dssum2 = 0.0;
    for (j=0; j<NUMT; j++) \{
      for (i=0; i<n; i++) {
       dssum2 += da[j][i]*da[j][i];
```

```
dsum += dsum2;
dssum += dssum2;

/* Count down numbers still to generate on each processor */
ngen -= n;
}

/* Compute overall mean. */
dmean = dsum / (double)ntot;
printf("Sample mean %e\n", dmean);

/* Compute overall sample standard deviation. */
dsig = dssum / (double)ntot;
printf("Sample standard deviation %e\n", dsig);
return(0);
```

5. Method

Consult the entry for DM_VRANN4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vranu4

Generation of uniform random numbers [0,1).				
<pre>ierr = c_dm_vranu4(&ix, da, k, n, dwork,</pre>				
nwork, &icon);				

1. Function

This function generates different sequences of pseudo random numbers from a uniform distribution on [0,1) on each thread.

2. Arguments

The routine is called as follows:

<pre>ierr = c_dm_vranu4(&ix, (double*)da, k, n, (double*)dwork, nwork, &icon);</pre>				
where:				
ix	int	Input	Starting point.	
			On the first call, ix should be positive. ix is returned as zero and	
			should remain zero for subsequent calls. ix < 8000000. See Comments	
			on use.	
		Output	Return value is 0.	
da	double	Output	n uniform pseudo random numbers on [0,1) generated by each thread.	
	da[NUMT][k]		Where, NUMT is the number of threads. n pseudo random numbers	
			generated by thread number P (which is from 0 to NUMT-1) are stored in	
			da[P][0],, da[P][n-1].	
k	int	Input	C fixed dimension of array da ($\geq n$).	
n	int	Input	The number of uniformly distributed pseudo random numbers on each	
			processor to be returned in da. Comments on use.	
dwork	double	Work	When this function is called repeatedly, the contents and NUMT must not	
	dwork[NUMT]		be changed. dwork contains all the current information required to	
	[nwork]		restart this function from its current point.	
nwork	int	Input	Size of second-dimension of workspace. nwork \geq 388.	
icon	int	Output	Condition code. See below.	

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	k > n or k < 1	Bypassed.
30001	nwork is too small.	
30002	The internal check failed.	
30003 to 30008	dwork overwritten or $ix = 0$ on first call.	
30009	ix is too large.	

3. Comments on use

ix

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call to this function.

This function appends the thread number +1, omp_get_thread_num() +1, to the seed, as in seed = seed * omp_get_num_threads() + omp_get_thread_num() +1. Thus the seeds used on different threads are assured to be distinct, and hence subsequences of length less than 10^{18} will not overlap.

n

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If $n \le 0$, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than the maximum value of n.

dwork

dwork is used as a work area to store state information between calls to this function. The calling program must not change the contents of the array dwork between calls.

nwork

dwork[i][0], ..., dwork[i][nwork-1] (i = 0, ..., NUMT-1) are used by this function. nwork should be the same on each call to this function. nwork should be at least 388.

Checkpointing

If dwork[i][0], ..., dwork[i][nwork-1] (i=0,...,NUMT-1) are saved, the same sequence of random numbers can be generated again (from the point where dwork was saved) by restoring dwork and calling this routine with argument ix=0.

NUMT

The number of the threads or NUMT, used with this function can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads().

4. Example program

1,000,000 × 4 uniform pseudo random numbers are generated and their mean value is calculated.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b) ((a) < (b) ? (a) : (b))</pre>
```

```
#define NT
                     (4)
                     (1000000)
#define RAN
#define NWMAX
                     (5000)
#define BUF
                     (25000)
MAIN__()
  double da[NT][BUF], dwork[NT][NWMAX];
  double sum, sum2, mean, sig;
  unsigned int gen, tot, rpt, i, j;
  int
          tno, ix, n, nwork, icon, ierr;
  /* Initialize ix, n and nwork */
  ix = 123;
  printf("Seed = %d\n", ix);
   n
           = BUF; */
 nwork = NWMAX;
  sum = 0.0;
  /* gen counts down to 0 */
  gen = RAN;
  tot = RAN*NT;
  /st Generate ngen numbers on each thread with maximum BUF at a time st/
  rpt = (RAN+BUF-1)/BUF;
  printf("Generating %d numbers with %d calls to c_{dm_vranu4} on %d threads.\n",
          tot, rpt, NT);
  for(j=0; j<rpt; j++)</pre>
         = min(BUF,gen);
    sum2 = 0.0;
    omp_set_num_threads(NT);
    ierr = c_dm_vranu4(&ix, (double*)da, BUF, n, (double*)dwork, nwork, &icon);
    if (icon != 0) {
      printf("ERROR: c_dm_vranu4 failed with icon = %d\n", icon);
      exit(1);
     /* Accumulate sum of numbers locally */
    for(tno=0; tno<NT; tno++)
      for(i=0; i<n; i++) sum2 += da[tno][i];</pre>
    /* Accumulate sum of numbers globally */
    sum += sum2;
     /* Count down numbers still to generate on each processor */
  /* Compute overall mean */
  mean = sum/tot;
 printf("mean = %e\n", mean);
  /* Compute deviation from 0.5 normalized by expected value 1/\sqrt{2}ntot). *//* This should be (approximately) normally distributed with mean 0, variance 1. */
  sig = (mean-0.50)*sqrt(12.0*tot);
  printf("Normalized deviation = \ensuremath{\texttt{\%e}}\ensuremath{\texttt{n}}", \ensuremath{\texttt{sig}});
  return(0);
```

5. Method

Consult the entry for DM_VRANU4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [4], [9], [10], [24], [40] and [51].

c_dm_vranu5

1. Function

This routine generates sequence of pseudo random numbers from a uniform distribution on [0,1) by Multiple Recursive Generator with 8th-order full primitive polynomials (MRG8).

This function generates same sequence of random number in any thread numbers. When the reproducibility is needed, use this function instead of c_dm_vranu4. The interface of this function is different from the interface of c_dm_vranu4.

This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers. This is useful to generate distinct sub sequence in parallel execution.

The performance of c_dm_vranu4 is better than this function.

Both this function and c_dm_vranu4 passed the bigCrush test of TESTU01 which is the statistical testing program of uniform random number generators.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vranu5(&ix, da, n, j, dwork, &icon);
where:
ix
            int
                                  Input
                                              Starting point.
                                              On the first call, ix should be positive. ix is returned as zero and
                                              should remain zero for subsequent calls. See Comments on use.
                                  Output
                                              Return value is 0.
da
            double da[n]
                                  Output
                                              n uniform pseudo random numbers on [0,1).
            int
                                  Input
                                              The number of uniformly distributed pseudo random numbers to be
n
                                              returned in da.
j
            long
                                  Input
                                              Number of jumping steps in the sequence of pseudo random numbers.
                                              0 is to be set to generate pseudo random numbers just after the sequence.
                                              See Comments on use.
            double
                                  Work
                                              When this function is called repeatedly, the contents must not be
dwork
            dwork[8]
                                              changed. dwork contains all the current information required to restart
                                              this function from its current point. See Comments on use.
icon
                                  Output
                                              Condition code. See below.
            int
The complete list of condition codes is given below.
```

Code	Meaning	Processing
0	No error.	Completed.
30000	ix < 0, n < 1 or j < 0	Bypassed.

3. Comments on use

ix

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call to this function.

j

This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers by setting $j \ge 0$.

This function generates distinct sub sequence of pseudo random numbers in each process by setting same ix and different j in parallel execution.

dwork

dwork is used as a work area to store state information between calls to this function. The calling program must not change the contents of the array dwork between calls.

Checkpointing

If dwork are saved, the same sequence of random numbers can be generated again (from the point where dwork was saved) by restoring dwork and calling this function with argument ix = 0.

4. Example program

Example 1.

1,000,000 uniform pseudo random numbers are generated and their mean value is calculated. The starting point is 123. The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE 1** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#define NRAN 10000000
#define NSEED 123
#define NBUF 25000
\#define min(x,y) ((x)>(y)?(y):(x))
int MAIN__() {
  double da[NBUF];
  double dwork[8];
  double dsum, dsum2;
  double dmean;
  int ix, n, icon; int i, j;
/* Generate NRAN numbers with maximum NBUF at a time */
  ix = NSEED;
  printf(" Seed %d\n", ix);
printf(" Generating %d numbers\n", NRAN);
```

```
dsum = 0.0;
for (j = 1; j <= NRAN; j += NBUF) {
    n = min(NBUF, NRAN - j + 1);
    c_dm_vranu5(&ix, da, n, (long)0, dwork, &icon);
    if (icon != 0) {
        printf(" Error return ICON %d\n", icon);
    }
    dsum2 = 0.0;
    for (i = 0; i < n; i++) {
        dsum2 += da[i];
    }
    dsum += dsum2;
}
/* Compute mean */
    dmean = dsum / (double)NRAN;
    printf(" Mean %20.16lf\n", dmean);
    return(0);
}</pre>
```

Example 2.

Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes and their mean value is calculated. The starting point is 123.

In this program, j is set to 2^{31} -1. As far as the length of each sub sequences is smaller than 2^{31} -1 they are not overlapping.

```
/* **EXAMPLE 2** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>
#include "cssl.h"
#define N 10000
int MAIN__(int argc, char *argv[]) {
  const long jump = (long)2147483647; /* =2**31-1 */
  double x[N]; double dnall;
  int irank, np;
int ix, icon;
  int i;
 long j;
double work[8];
double dsum, dsumall, dmean;
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &irank);
  MPI_Comm_size(MPI_COMM_WORLD, &np);
  ix = 123;
  j = irank * jump;
  c_dm_vranu5(&ix, x, N, j, work, &icon);
if (icon != 0) {
    printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);
  dsum = 0.0;
  for (i = 0; i < N; i++) {
    dsum += x[i];
  .
MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
              MPI_COMM_WORLD);
/* Compute overall mean */
  dnall = (double)N * (double)np;
  if (irank == 0) {
    dmean = dsumall / dnall;
    printf(" Mean %19.16lf\n", dmean);
  MPI_Finalize();
  return(0);
```

Example 3.

Two uniform pseudo random number sequences x and y are generated by four MPI process and their mean values are calculated. The total number of each vector is 1,000,000 and the starting point is 123.

In this program, 1,000,000 pseudo random numbers are split into NP blocks, where NP is the number of processes, and each of the sequences is generated by each of the processes. Even if NP is changed, the whole sequence of pseudo random numbers is the same.

```
/* **EXAMPLE 3** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#include <mpi.h>
#define NX 100000
#define NY 100000
#define NP 4 /* NUMBER OF PROCESS */
\#define min(x,y) ((x)>(y)?(y):(x))
int MAIN__(int argc, char *argv[]) {
  double x[(NX + NP - 1) / NP], y[(NY + NP - 1) / NP];
  int irank, nsize;
  int
       ix, nl, icon, jump;
  long j0, j;
double work[8];
  double dsum, dsumall, dmean;
  MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &irank);
  MPI_Comm_size(MPI_COMM_WORLD, &nsize);
  if (NP != nsize) {
   MPI Finalize();
    return(-1);
  ix = 123;
  jump = (NX + NP - 1) / NP;
  j = min(irank * jump, NX);
  nl = min(jump, NX - j);
  if (nl >= 1) {
    c_dm_vranu5(&ix, x, nl, j, work, &icon);
    if (icon != 0)
      printf("DM_VRANU5 ERROR ICON= %d\n", icon);
    j0 = NX - (j + nl);
  } else {
    j0 = NX;
  dsum = 0.0;
  for (i = 0; i < nl; i++) {
    dsum += x[i];
  MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
             MPI_COMM_WORLD);
/* Compute overall mean of X */
 if (irank == 0) {
      dmean = dsumall / (double)NX;
      printf(" Mean of X %19.16lf\n", dmean);
  jump = (NY + NP - 1) / NP;
  j = min(irank * jump, NY);
  nl = min(jump, NY - j);
  i += i0;
  if (nl >= 1) {
    c_dm_vranu5(&ix, y, nl, j, work, &icon);
    if (icon != 0)
      printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);
```

5. Method

Consult the entry for DM_VRANU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [78], [79], and [80].

c_dm_vschol

LDL ^T decomposition of a symmetric positive definite sparse matrix				
(Left-looking Cholesky decomposition method)				
<pre>ierr = c_dm_vschol(a, nz, nrow, nfcnz, n,</pre>				
iordering, nperm, isw, &epsz,				
nassign, &nsupnum, nfcnzfactor,				
panelfactor, &nsizefactor,				
nfcnzindex, npanelindex,				
&nsizeindex, ndim, nposto, w, iw1,				
iw2, iw3, &icon);				

1. Function

This routine executes LDL^T decomposition for an $n \times n$ symmetric positive definite sparse matrix using modified Cholesky decomposition method, so that

$$\mathbf{Q}\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}}\mathbf{Q}^{\mathrm{T}} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}},$$

where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a diagonal matrix.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vschol(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz,
                nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor,
                nfcnzindex, npanelindex, &nsizeindex,(int*)ndim, nposto, w, iwl,
                iw2, iw3, &icon);
where:
                  double a[nz]
                                         Input
                                                      The non-zero elements of the lower triangular part \{a_{ij} \mid i\}
а
                                                      \geq j} of a symmetric sparse matrix A are stored in a[i],
                                                      i=0,...,nz-1.
                                                      For the compressed column storage method, refer to
                                                      Figure c dm vmvscc-1 in the description for
                                                      c dm vmvscc routine (multiplication of a real sparse
                                                      matrix and a real vector).
                  int
                                                      The total number of the nonzero elements belong to the
                                         Input
nz
                                                      lower triangular part of a symmetric sparse matrix A.
                  int nrow[nz]
                                                      The row indices used in the compressed column storage
nrow
                                         Input
                                                      method, which indicate the row number of each nonzero
                                                      element stored in an array a.
                                                      The position of the first nonzero element of each
nfcnz
                  int
                                         Input
                                                      column stored in an array a in the compressed
                  nfcnz[n+1]
                                                      column storage method which stores the nonzero
                                                      elements column by column.
                                                      nfcnz[n] = nz + 1.
n
                  int
                                         Input
                                                      Order n of matrix A.
```

iordering int Input Control information whether to decompose the reordered matrix $\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}}$ permuted by the matrix \mathbf{P} of ordering or to decompose the matrix A. Specify iordering=1 for the decomposition of the matrix $\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}}$. Specify the other value for the decomposition of the matrix A as it is. int nperm[n] Input The permutation matrix **P** is stored as a vector. nperm See Comments on use. isw int Input Control information. 1 Initial calling. 2 Subsequent call if the previous call has failed with icon=31000, that means the size of panelfactor or npanelindex were not enough. In this case, the panelfactor or npanelindex must be reallocated with the necessary sizes which are returned in the nsizefactor or nsizeindex at the precedent call. Besides, the values of a, nz, nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfcnzfactor, nfcnzindex, npanelindex, nposto, ndim, w, iw1, iw2, and iw3 must be unchanged after the first call. 3 Second and subsequent calls when solving another system of equations which have the same non-zero pattern of the matrix A but the values of its elements are different. In this case, the information obtained in symbolic decomposition and the array panelfactor and npanelindex of the same size required in previous call can be reused. Then numerical LDL^T decomposition will proceed with that information and the new linear equations can be solved efficiently. Store the values of the matrix elements in the array a, or store in another array b and let it be as the parameter a. Besides, the values of nz, nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfcnzfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, w, iw1, iw2, and iw3 must be unchanged as the previous call. Judgment of relative zero of the pivot (≥ 0.0). epsz double Input

Output

When epsz is 0.0, the standard value is assumed.

			See Comments on use.
nassign	int nassign[n]	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When $j = nassign[i-1]$, the <i>i</i> -th supernode is allocated at <i>j</i> -th position.
		Input	The values of the first call are reused when $isw \neq 1$ specified.
			For the storage method of the decomposed results, refer to Figure c_dm_vschol-1.
			See Comments on use.
nsupnum	int	Output	The total number of supernodes.
		Input	The values of the first call are reused when $isw \ne 1$ specified. $(\le n)$
nfcnzfactor	long long int	Output	Each supernode consists of multiple column vectors, and
	nfcnzfactor		the factorized matrix of supernodes are stored in two-
	[n+1]		dimensional panel by compressing rows containing
			nonzero elements with a common row indices vector.
			The elements of this array indicate the position of the
			first element panel $[0][0]$ of the i -th panel, where
			this panel is allocated as a part of the one-dimensional
		Input	array panelfactor. The values set by the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vschol-1.
panelfactor	double panelfactor [nsizefactor]	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These panels are stored in this matrix.
			The positions of the panel corresponding to the i -th supernode are indicated as $j = nassign[i-1]$. The first position is stored in $nfcnzfactor[j-1]$. The decomposed result is stored in each panel.
			The size of the <i>i</i> -th panel can be considered to be two-dimensional array of $ndim[i-1][1] \times ndim[i-1][0]$. The corresponding part where the lower triangular unit matrix except the diagonal part is transposed and is stored in $panel[t-1][s-1]$, $s>t$, $s=1,,ndim[i-1][0]$, $t=1,,ndim[i-1][1]$ of the <i>i</i> -th panel. The corresponding part of the diagonal matrix D is stored in $panel[t-1][t-1]$.
			For the storage method of the decomposed results, refer to Figure c_dm_vschol-1.

nsizefactor	long long int	Input Output	See <i>Comments on use</i> . The size of the array panelfactor. The necessary size for the array panelfactor is returned.
nfcnzindex	long long int nfcnzindex [n+1]	Output	See <i>Comments on use</i> . Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element of the <i>i</i> -th row indices vector, where this panel is allocated as a part of the one-dimensional array npanelindex.
		Input	The values set by the first call are reused when isw ≠ 1 specified.
			For the storage method of the decomposed results, refer to Figure c_dm_vschol-1.
npanelindex	<pre>int npanelindex [nsizeindex]</pre>	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These row indices vectors are stored in this matrix. The positions of the row pointer vector corresponding to the i -th supernode are indicated as $j = nassign[i-1]$. The first position is stored in $nfcnzindex[j-1]$. The row indices vector is stored by each panel. This row indices are the row indices of the matrix QAQ^T to which the matrix A is permuted by post ordering. For the storage method of the decomposed results, refer to Figure c_dm_vschol-1. See <i>Comments on use</i> .
nsizeindex	long long int	Input Output	The size of the array npanelindex. The necessary size is returned.
ndim	int ndim[n][2]	Output	See <i>Comments on use</i> . The size of first and second dimension of the <i>i</i> -th panel are stored in $ndim[i-1][0]$ and $ndim[i-1][1]$ respectively.
		Input	The values set by the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer
nposto	int nposto[n]	Output	to Figure c_dm_vschol-1. The one dimensional vector is stored which indicates what column index of A the <i>i</i> -th node in post ordering corresponds to.
		Input	The values set by the first call are reused when isw ≠ 1 specified. See Comments on use.

w	double w[Iwlen1]	Work area Output/Input	When this routine is called repeatedly with isw = 1,2,3, This work area is used for preserving information among calls. The contents must not be changed. When iordering = 1, Iwlen1 = nz. When iordering ≠ 1, Iwlen1 = 1.
iw1	<pre>int iw1[Iwlen2]</pre>	Work area	When this routine is called repeatedly with $isw = 1,2,3$,
		Output/Input	This work area is used for preserving information among
			calls. The contents must not be changed.
			When iordering = 1, $Iwlen2 = nz+n+1$.
			When iordering $\neq 1$, $Iwlen2 = 1$.
iw2	<pre>int iw2[nz+n+1]</pre>	Work area	When this routine is called repeatedly with $isw = 1,2,3$,
		Output/Input	This work area is used for preserving information among
			calls. The contents must not be changed.
iw3	int	Work area	When this routine is called repeatedly with $isw = 1,2,3$,
	iw3[n*35+35]	Output/Input	This work area is used for preserving information among
			calls. The contents must not be changed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The coefficient matrix is not positive definite.	Processing is continued.
20000	The pivot became relatively zero. The coefficient matrix A may be singular.	Processing is discontinued.
30000	One of the following has occurred: • n < 1 • nz < 0 • nfcnz[n]≠nz+1 • nsizefactor<1 • nsizeindex<1 • epsz<0.0 • isw<0 • isw>3	
30100	The permutation matrix specified in nprem is not correct.	
30200	The row pointer k stored in $nrow[j-1]$ is k $< i$ or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column is nfcnz[i]-nfcnz[i-1]>n-i+1.	
30400	There is a column without a diagonal element.	
31000	The value of nsizefactor is not enough as the size of panelfactor, or the value of nsizeindex is not enough as the size of npanelindex.	Reallocate the panelfactor or npanelindex with the necessary size which are returned in the nsizefactor or nsizeindex, and call this routine again with isw=2.

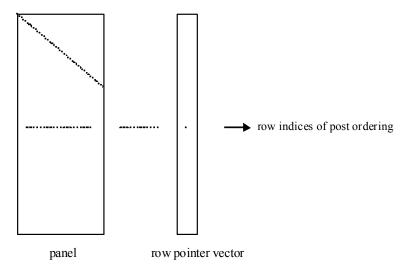


Figure c_dm_vschol-1 concept of storing the data for decomposed result

A panel is regarded as an array of the size $ndim[j-1][1] \times ndim[j-1][0]$.

```
The lower triangular unit matrix L except the diagonal part is transposed and is stored in panel[t-1][s-1], s > t, s=1, ..., ndim[j-1][0], t=1, ..., ndim[j-1][1]
```

The corresponding part of the diagonal matrix \mathbf{D} is stored in panel [t-1][t-1].

The row pointers indicate the column indices of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the node of the matrix \mathbf{A} is permuted by post ordering.

3. Comments on use

nperm

When the element $p_{ij}=1$ of the permutation matrix **P**, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:

```
for(i=1; i<=n; i++){
  j=nperm[i-1];
  perminv[j-1]=i;
}</pre>
```

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDL^T decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16 $\times u$. When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case, processing is continued as icon=10000, but the numerical error may be large because of no pivoting.

c dm vscholx

The linear equations $LDL^TPQx = PQb$ which is a derived form from Ax = b can be solved by calling routine c_{dm} -vscholx following this routine with the decomposed result data such as nassign, nsupnum, nfcnzfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, iw3 unchanged.

nsizefactor and nsizeindex

The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon = 31000, and the necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

nposto

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for(i=1; i<=n; i++){
  j=nposto[i-1];
  npostoinv[j-1]=i;
}</pre>
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x}=\mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$ where a_1, a_2, a_3 and c are zero constants, that means the operator is Laplacian. The matrix **A** in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
```

```
#include "cssl.h" /* standard C-SSL header file */
#define NORD
               (39)
#define NX
               (NORD)
#define NY
               (NORD)
#define NZ
               (NORD)
#define N
               (NX*NY*NZ)
#define K
               (N+1)
#define NDIAG (7)
#define NDIAGH (4)
MAIN__()
{
        ierr, icon, iguss, iter, itmax;
nord, n, l, i, j, k;
  int.
  int
  int
         nx, ny, nz, nnz, nnzc;
  int
         length, nbase, ndiag, ntopcfgc;
  int
         numnz, numnzc, nsupnum, ntopcfg, ncol;
         iordering, isw;
  int
  int
         *npanelindex;
        ndummyi;
  int
        nofst[NDIAG];
  int
         nrow[NDIAG*K];
  int.
         nrowc[NDIAG*K];
  int.
        nfcnz[N+1];
  int
        nfcnzc[N+1];
  int
  int
         nperm[N];
  int
         nassign[N];
  int
         nposto[N];
  int
         ndim[N][2];
  int
         iw1[N*NDIAGH+N+1];
  int
         iw2[N*NDIAGH+N+1];
         iw3[N*35+35];
  int
        iwc[NDIAG*K][2];
  double err, epsz;
  double t0, t1, t2;
  double val, va2, va3, vc;
  double xl, yl, zl;
  double dummyf;
  double *panelfactor;
  double diag[NDIAG][K];
  double diag2[NDIAG][K];
  double a[N*NDIAGH];
  double b[N];
  double c[NDIAG*K];
  double w[N*NDIAGH];
  double wc[NDIAG*K];
  double x[N];
  double solex[N];
  long long int nsizefactor;
  long long int nsizeindex;
  long long int nfcnzfactor[N+1];
  long long int nfcnzindex[N+1];
 double errnrm(double *x1, double *x2, int len);
  nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
  printf("
               LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
  printf("
               FOR SPARSE POSITIVE DEFINITE MATRICES\n");
  printf("
              IN COMPRESSED COLUMN STORAGE\n");
  printf("\n");
  for (i=1; i<=n; i++){
   solex[i-1]=1.0;
  printf("
               EXPECTED SOLUTIONS\n");
              X(1) = %.15lf X(N) = %.15lf n", solex[0], solex[n-1]);
  printf("
  printf("\n");
  val = 0.0;
  va2 = 0.0;
  va3 = 0.0;
  vc = 0.0;
  x1 = 1.0;
```

```
y1 = 1.0;
        z1 = 1.0;
        for (i=1; i<=ndiag; i++){
  if (nofst[i-1] < 0){</pre>
            nbase=-nofst[i-1];
            length=n-nbase;
            for (j=1; j<=length; j++){}
              diag2[i-1][j-1]=diag[i-1][nbase+j-1];
          else{
            nbase=nofst[i-1];
            length=n-nbase;
            for (j=nbase+1; j<=n; j++){
              diag2[i-1][j-1]=diag[i-1][j-nbase-1];
          }
        }
        numnzc=1;
        numnz=1;
        for (j=1; j<=n; j++){}
          ntopcfgc = 1;
          ntopcfg = 1;
          for (i=ndiag; i>=1; i--){
            if (diag2[i-1][j-1]!=0.0){
              ncol=j-nofst[i-1];
              c[numnzc-1]=diag2[i-1][j-1];
              nrowc[numnzc-1]=ncol;
              if (ncol>=j){
                a[numnz-1]=diag2[i-1][j-1];
                nrow[numnz-1]=ncol;
              if (ntopcfgc==1){
                nfcnzc[j-1]=numnzc;
                ntopcfgc=0;
              if (ntopcfg==1){
                nfcnz[j-1]=numnz;
                ntopcfg=0;
              if (ncol>=j){
                numnz=numnz+1;
              numnzc=numnzc+1;
        }
        nfcnzc[n]=numnzc;
        nnzc=numnzc-1;
        nfcnz[n]=numnz;
        nnz=numnz-1;
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);
        for(i=1; i<=n; i++){
           x[i-1]=b[i-1];
        iordering=0;
        isw=1;
        epsz=0;
        nsizefactor=1;
        nsizeindex=1;
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex, (int*)ndim, nposto, w, iwl, iw2, iw3, &icon);
       printf("\n");
printf("
                     ICON = %d NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon,
nsizefactor, nsizeindex);
        printf("\n");
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
        isw=2;
```

```
ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);
        nsizeindex, (int*)ndim, nposto, iw3, &icon);
        err = errnrm(solex,x,n);
        printf("
                    COMPUTED VALUES\n");
        printf("
                    X(1) = %.15lf X(N) = %.15lf\n", x[0], x[n-1]);
        printf("\n");
        printf("
                    ICON = %d\n", icon);
        printf("\n");
        printf("
                    N = d :: NX = d NY = d NZ = dn', n, nx, ny, nz);
        printf("\n");
        printf("
                    ERROR = %.15e\n",err);
       printf("\n");
        printf("\n");
        if (err<(1.0e-8) && icon==0){
                       ******** OK *******\n");
         printf("
        élse{
                      ******* NG *******\n");
         printf("
          free(panelfactor);
          free(npanelindex);
          return 0;
      }
      void init_mat_diag(double va1, double va2, double va3, double vc,
               double d_l[], int offset[], int nx, int ny, int nz,
               double xl, double yl, double zl, int ndiag, int len, int ndivp)
        int i, 1, j;
       int length, numnz, js; int i0, j0, k0;
        int ndiag_loc;
        int nxy;
        double hx, hy, hz;
        double x1, x2;
        double base;
        double ret, remark;
        if (ndiag<1){
         printf("FUNCTION INIT_MAT_DIAG:\n");
          printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
        ndiag_loc = ndiag;
        if (ndiag>7){
         ndiag_loc=7;
       hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
        for (i=1; i<=ndivp; i++){
          for (j=1; j<=ndiag; j++){
           d_1[i-1+(j-1)*ndivp] = 0.;
        nxy = nx * ny;
        1 = 1;
        if (ndiag_loc >= 7) {
         offset[1-1] = -nxy;
        if (ndiag_loc >= 5) {
  offset[1-1] = -nx;
          ++1;
        if (ndiag_loc >= 3) {
          offset[1-1] = -1;
          ++1;
```

```
offset[1-1] = 0;
  ++1;
  if (ndiag_loc >= 2) {
    offset[l-1] = 1;
    ++1;
  if (ndiag_loc >= 4) {
    offset[1-1] = nx;
    ++1;
  if (ndiag_loc >= 6) {
    offset[1-1] = nxy;
  for (j = 1; j \le len; ++j) {
    js=j;
    k0 = (js - 1) / nxy + 1;
    if (k0 > nz) {
      printf("ERROR; K0.GH.NZ\n");
      return;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    1 = 1;
    if (ndiag_loc >= 7) {
      if (k0 > 1) {
        d_1[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
      ++1;
    if (ndiag_loc >= 5) {
      if (j0 > 1) {
       d_1[j-1+(1-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
      ++1;
    }
    if (ndiag_loc >= 3) {
  if (i0 > 1) {
       d_1[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
      ++1;
    }
    d_1[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
    if (ndiag_loc >= 5) {
      d_1[j-1+(1-1)*ndivp] += 2.0/(hy*hy);
      if (ndiag_loc >= 7) {
        d_1[j-1+(1-1)*ndivp] += 2.0/(hz*hz);
    }
    ++1;
    if (ndiag_loc >= 2) {
      if (i0 < nx) {
        d_1[j-1+(1-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
      ++1;
    }
    if (ndiag_loc >= 4) {
      if (j0 < ny) {
        d_1[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
      ++1;
    }
    if (ndiag_loc >= 6) {
      if (k0 < nz) {
       d_1[j-1+(1-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
   }
 return;
double errnrm(double *x1, double *x2, int len)
  double ret_val;
```

```
int i;
double s, ss;

s = 0.;
for (i = 1; i <= len; ++i) {
   ss = x1[i-1] - x2[i-1];
   s += ss * ss;
}
ret_val = sqrt(s);
return ret_val;
}</pre>
```

5. Method

Consult the entry for DM_VSCHOL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19].

c_dm_vscholx

A system of linear equations with LDL ^T -decomposed symmetric positive definite sparse matrices		
<pre>ierr = c_dm_vscholx(n, iordering, nperm, b,</pre>		
nassign, nsupnum, nfcnzfactor,		
panelfactor, nsizefactor,		
nfcnzindex, npanelindex,		
nsizeindex,ndim, nposto, iw3,		
&icon);		

1. Function

This routine solves a system of equations with a LDL^T-decomposed symmetric positive definite sparse coefficient $n \times n$ matrix.

$$LDL^{T}QPx = QPb$$
,

where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, D is a diagonal matrix, D is a constant vector, and x is a solution vector.

2. Arguments

The routine is called as follows:

where	

wnere:			
n	int	Input	Order <i>n</i> of matrix.
iordering	int	Input	Control information whether the coefficient matrix was permuted into PAP ^T by the permutation matrix P before decomposition.
			Specify iordering=1 for the LDL^T decomposed from $\mathbf{P}\mathbf{A}\mathbf{P}^T$.
			Specify the other value for the LDL^T decomposed matrix from \mathbf{A} as it is.
nperm	<pre>int nperm[n]</pre>	Input	The permutation matrix \mathbf{P} is specified as a vector when iordering=1.
			See Comments on use.
b	double b[n]	Input	The right-hand side constant vector \mathbf{b} of a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.
		Output	Solution vector x .
nassign	<pre>int nassign[n]</pre>	Input	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where

this panel is allocated as a part of the onedimensional array panelfactor. When j = nassign[i-1], the *i*-th supernode is allocated at *j*-th position.

For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

The total number of supernodes.

Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the *i*-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor.

For the storage method of the decomposed results, refer to Figure c dm vscholx-1.

See Comments on use.

Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These panels are stored in this matrix.

The positions of the panel corresponding to the *i*-th supernode are indicated as j = nassign[i-1]. The first position is stored in nfcnzfactor[j-1]. The decomposed result is stored in each panel.

The size of the *i*-th panel can be considered to be two-dimensional array of ndim[i-1][1]×ndim [i-1][0]. The corresponding part where the lower triangular unit matrix except the diagonal part is transposed and is stored in panel[t-1][s-1], s>t, s=1, ..., ndim[i-1][0], t=1, ..., ndim[i-1][1] of the *i*-th panel. The corresponding part of the diagonal matrix **D** is stored in panel[t-1][t-1].

For the storage method of the decomposed results, refer to Figure c dm vscholx-1.

The size of the array panelfactor.

Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element of the i-th row indices vector, where this panel is allocated as a part of the onedimensional array npanelindex.

For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

nsupnum int Input nfcnzfactor long long int Input nfcnzfactor

[n+1]

double Input panelfactor

panelfactor

[nsizefactor]

nsizefactor long long int Input nfcnzindex long long int Input nfcnzindex [n+1]

npanelindex	<pre>int npanelindex [nsizeindex]</pre>	Input	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These row pointer vectors are stored in this matrix. The positions of the row pointer vector corresponding to the <i>i</i> -th supernode are indicated as $j = nassign[i-1]$. The first position is stored in $nfcnzindex[j-1]$. The row indices vector is stored by each panel. This row indices are the row indices of the matrix QAQ^T to which the matrix A is permuted by post ordering.
		_	refer to Figure c_dm_vscholx-1.
nsizeindex	long long int	Input	The size of the array panelindex.
ndim	<pre>int ndim[n][2]</pre>	Input	The size of first and second dimension of the i -th panel are stored in $ndim[i-1][0]$ and $ndim[i-1][1]$ respectively.
nposto	<pre>int nposto[n]</pre>	Input	The one dimensional vector is stored which indicates what column index of A the <i>i</i> -th node in post ordering corresponds to.
			See Comments on use.
iw3	int iw3[n*35+35]	Input	Specify the iw3 which is used by c_dm_vschol before calling this routine. The contents must not be changed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Processing is discontinued.
	• n<1	
	• nsizefactor < 1	
	• nsizeindex<1	
	• nsupnum < 1	
30100	The permutation matrix specified in nprem is not	
	correct.	

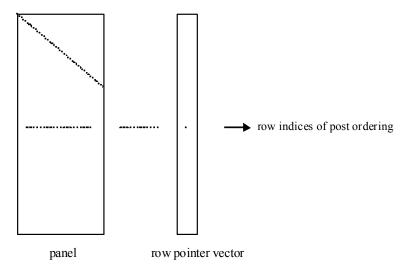


Figure c_dm_vscholx-1 concept of storing the data for decomposed result

A panel is regarded as an array of the size $ndim[j-1][1] \times ndim[j-1][0]$.

```
The lower triangular unit matrix L except the diagonal part is transposed and is stored in panel[t-1][s-1], s > t, s = 1, ..., ndim[j-1][0], t = 1, ..., ndim[j-1][1]
```

The corresponding part of the diagonal matrix \mathbf{D} is stored in panel [t-1][t-1].

The row pointers indicate the column indices of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the node of the matrix \mathbf{A} is permuted by post ordering.

3. Comments on use

nperm

When the element $p_{ij}=1$ of the permutation matrix **P**, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:

```
for(i=1; i<=n; i++){
  j=nperm[i-1];
  nperminv[j-1]=i;
}</pre>
```

nposto

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j=nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for(i=1; i<=n; i++){
  j=nposto[i-1];
  npostoinv[j-1]=i;
}</pre>
```

The linear system of equations

The linear system of equations can be solved by calling this routine with specifying the LDL^{T} -decomposed results which are calculated by c_dm_vschol routine.

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$ where a_1, a_2, a_3 and c are zero constants, that means the operator is Laplacian. The matrix **A** in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "cssl.h" /* standard C-SSL header file */
#define NORD
                (39)
#define NX
                (NORD)
#define NY
                (NORD)
#define NZ
                (NORD)
#define N
                (NX*NY*NZ)
                (N+1)
#define K
#define NDIAG
#define NDIAGH (4)
MAIN__()
  int
         ierr, icon, iguss, iter, itmax;
         nord, n, l, i, j, k;
 int
  int.
         nx, ny, nz, nnz, nnzc;
         length, nbase, ndiag, ntopcfgc;
  int
  int
         numnz, numnzc, nsupnum, ntopcfg, ncol;
  int
         iordering, isw;
  int
         *npanelindex;
  int
         ndummyi;
  int
         nofst[NDIAG];
         nrow[NDIAG*K];
  int
         nrowc[NDIAG*K];
         nfcnz[N+1];
         nfcnzc[N+1];
  int
         nperm[N];
  int
         nassign[N];
  int
         nposto[N];
         ndim[N][2];
  int
  int
         iw1[N*NDIAGH+N+1];
```

```
iw2[N*NDIAGH+N+1];
int
       iw3[N*35+35];
int
int
       iwc[NDIAG*K][2];
double err, epsz;
double t0, t1, t2;
double va1, va2, va3, vc;
double x1, y1, z1;
double dummyf;
double *panelfactor;
double diag[NDIAG][K];
double diag2[NDIAG][K];
double a[N*NDIAGH];
double b[N];
double c[NDIAG*K];
double w[N*NDIAGH];
double wc[NDIAG*K];
double x[N];
double solex[N];
long long int nsizefactor;
long long int nsizeindex;
long long int nfcnzfactor[N+1];
long long int nfcnzindex[N+1];
void init_mat_diag(double va1, double va2, double va3, double vc,
             \label{eq:double_d_l[], int offset[], int nx, int ny, int nz,}
             double xl, double yl, double zl, int ndiag, int len, int ndivp);
double errnrm(double *x1, double *x2, int len);
nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
printf("
              LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
printf("
              FOR SPARSE POSITIVE DEFINITE MATRICES\n");
printf("
             IN COMPRESSED COLUMN STORAGE\n");
printf("\n");
for (i=1; i<=n; i++){
  solex[i-1]=1.0;
printf("
              EXPECTED SOLUTIONS\n");
printf("
             X(1) = %.151f X(N) = %.151f\n", solex[0], solex[n-1]);
printf("\n");
va1 = 0.0;
va2 = 0.0;
va3 = 0.0;
vc = 0.0;
x1 = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(val, va2, va3, vc, (double*)diag, (int*)nofst,
                     nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
  if (nofst[i-1] < 0){
    nbase=-nofst[i-1];
    length=n-nbase;
    for (j=1; j<=length; j++){}
      diag2[i-1][j-1]=diag[i-1][nbase+j-1];
  else{
    nbase=nofst[i-1];
    length=n-nbase;
    for (j=nbase+1; j<=n; j++){</pre>
      diag2[i-1][j-1]=diag[i-1][j-nbase-1];
  }
}
numnzc=1;
numnz=1;
for (j=1; j<=n; j++){}
  ntopcfgc = 1;
ntopcfg = 1;
  for (i=ndiag; i>=1; i--){
  if (diag2[i-1][j-1]!=0.0){
      ncol=j-nofst[i-1];
      c[numnzc-1]=diag2[i-1][j-1];
```

```
nrowc[numnzc-1]=ncol;
               if (ncol>=j){
                 a[numnz-1]=diag2[i-1][j-1];
                nrow[numnz-1]=ncol;
               if (ntopcfgc==1){
                nfcnzc[j-1]=numnzc;
                ntopcfgc=0;
               if (ntopcfg==1){
                nfcnz[j-1]=numnz;
                ntopcfg=0;
               if (ncol>=j){
                numnz=numnz+1;
              numnzc=numnzc+1;
          }
        }
        nfcnzc[n]=numnzc;
        nnzc=numnzc-1;
        nfcnz[n]=numnz;
        nnz=numnz-1;
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);
        for(i=1; i<=n; i++){
           x[i-1]=b[i-1];
        iordering=0;
        isw=1;
        epsz=0;
        nsizefactor=1;
        nsizeindex=1;
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex, (int*)ndim, nposto, w, iw1, iw2, iw3, &icon);
        printf("\n");
printf("
                      ICON = %d NSIZEFACTOR = %11d NSIZEINDEX = %11d\n", icon,
nsizefactor, nsizeindex);
        printf("\n");
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
        isw=2;
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);
        ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum,
nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, (int*)ndim, nposto, iw3, &icon);
        err = errnrm(solex,x,n);
                      COMPUTED VALUES\n");
        printf("
        printf("
                     X(1) = %.15lf X(N) = %.15lf\n", x[0], x[n-1]);
        printf("\n");
        printf("
                      ICON = %d\n", icon);
        printf("\n");
printf("
                     N = d :: NX = MNY = MNY = MNZ = Mn', n, nx, ny, nz);
        printf("\n");
        printf("
                     ERROR = %.15e\n",err);
        printf("\n");
        printf("\n");
        if (err<(1.0e-8) && icon==0){
          printf("
                        ******** OK *******\n");
        else{
          printf("
                        ******* NG *******\n");
          free(panelfactor);
          free(npanelindex);
          return 0;
      }
```

```
void init_mat_diag(double va1, double va2, double va3, double vc,
          double d_1[], int offset[], int nx, int ny, int nz,
          double xl, double yl, double zl, int ndiag, int len, int ndivp)
  int i, 1, j;
int length, numnz, js;
  int i0, j0, k0;
  int ndiag_loc;
  int nxy;
  double hx, hy, hz;
  double x1, x2;
  double base;
  double ret, remark;
  if (ndiag<1){
   printf("FUNCTION INIT_MAT_DIAG:\n");
    printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
    return;
  ndiag_loc = ndiag;
  if (ndiag>7){
    ndiag_loc=7;
  hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
  for (i=1; i<=ndivp; i++){</pre>
    for (j=1; j<=ndiag; j++){
   d_1[i-1+(j-1)*ndivp]= 0.;</pre>
  }
  nxy = nx * ny;
  1 = 1;
  if (ndiag_loc >= 7) {
    offset[l-1] = -nxy;
    ++1;
  if (ndiag_loc >= 5) {
    offset[1-1] = -nx;
    ++1;
  if (ndiag_loc >= 3) {
    offset[1-1] = -1;
    ++1;
  offset[1-1] = 0;
  if (ndiag_loc >= 2) {
    offset[1-1] = 1;
    ++1;
  if (ndiag_loc >= 4) {
    offset[l-1] = nx;
    ++1;
  if (ndiag_loc >= 6) {
  offset[1-1] = nxy;
  for (j = 1; j \le len; ++j) {
    k0 = (js - 1) / nxy + 1;
if (k0 > nz) {
      printf("ERROR; K0.GH.NZ\n");
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    1 = 1;
    if (ndiag_loc >= 7) {
      if (k0 > 1) {
         d_1[j-1+(1-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
       ++1;
```

```
if (ndiag_loc >= 5) {
       if (j0 > 1) {
         d_1[j-1+(1-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
       ++1;
     }
     if (ndiag_loc >= 3) {
       if (i0 > 1) {
 d_1[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
       ++1;
     }
     d_1[j-1+(1-1)*ndivp] = 2.0/(hx*hx)+vc;
     if (ndiag_loc >= 5) {
       d_1[j-1+(1-1)*ndivp] += 2.0/(hy*hy);
       if (ndiag_loc >= 7) {
    d_1[j-1+(1-1)*ndivp] += 2.0/(hz*hz);
       }
     }
     ++1;
     if (ndiag_loc >= 2) {
       if (i0 < nx) {
d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
       ++1;
     }
     if (ndiag_loc >= 4) {
      if (j0 < ny) {
  d_1[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;</pre>
    if (ndiag_loc >= 6) {
  if (k0 < nz) {
    d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;</pre>
    }
  }
  return;
double errnrm(double *x1, double *x2, int len)
  double ret_val;
  int i;
  double s, ss;
  for (i = 1; i <= len; ++i) {
    ss = x1[i-1] - x2[i-1];
     s += ss * ss;
  ret_val = sqrt(s);
  return ret_val;
```

c dm vsclu

```
LU decomposition of an unsymmetric complex sparse matrix.
ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n,
            ipledsm, mz, isclitermax,
            &iordering, nperm, isw,
            nrowsym, nfcnzsym,
            nassign, &nsupnum,
            nfcnzfactorl, zpanelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl,
            &nsizeindexl, ndim,
            nfcnzfactoru, zpanelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            &nsizeindexu, nposto,
            sclrow, sclcol,
            &epsz, &thepsz, ipivot, istatic,
            &spepsz, nfcnzpivot,
            npivotp, npivotq, zw, w, iw1, iw2,
            &icon);
```

1. Function

The large entries of an $n \times n$ unsymmetric complex sparse matrix **A** are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.

The unsymmetric complex sparse matrix is transformed as below.

$$A_1 = D_r A P_c D_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{O} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{O}^{\mathrm{T}}$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $\mathbf{SYM} = \mathbf{A_1} + \mathbf{A_1}^T$ and **Q** is a permutation matrix of postorder for \mathbf{SYM} . **P** and **Q** are orthogonal matrices. **L** is a lower triangular matrix and **U** is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

2. Arguments

The routine is called as follows:

ierr = c_dm_	_vsclu(za, nz, nrow,	nfcnz,	n, ipledsm, mz, isclitermax,	
	&iordering, nperm,	isw, nro	wsym, nfcnzsym, nassign, &nsupnum,	
nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,				
	npanelindexl, &nsize	eindexl,	(int *)ndim, nfcnzfactoru,	
	zpanelfactoru, &nsi:	zefactor	u, nfcnzindexu, npanelindexu,	
	_		w, sclcol, &epsz, &thepsz, ipivot,	
			t, npivotp, npivotq, zw, w, iw1, iw2,	
	&icon);	LOHEPIVO	e, mprocep, mproceq, zw, w, rwr, rwz,	
where:	arcon, r			
	daamalaa[n-1	Innut	The negrous elements of an unarmometric energy matrix A	
za	dcomplex za[nz]	Input	The nonzero elements of an unsymmetric sparse matrix A are stored.	
			For the compressed column storage method, refer to	
			Figure c_dm_vmvscc-1 in the description for	
			c_dm_vmvscc routine (multiplication of a real sparse	
			matrix and a real vector). For a complex matrix, a real	
			array a in this Figure is replaced with a complex array.	
nz	int	Input	The total number of the nonzero elements belong to an	
		_	unsymmetric complex sparse matrix A .	
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage	
		1	method, which indicate the row number of each nonzero	
			element stored in an array za.	
nfcnz	int nfcnz[n+1]	Input	The position of the first nonzero element of each column	
111 0112	1110 1110112[11.1]	при	stored in an array za in the compressed column storage	
			method which stores the nonzero elements column by	
			column.	
			nfcnz[n] = nz + 1.	
70	int	Innut	Order n of matrix \mathbf{A} .	
n dan la dann	int	Input		
ipledsm	int	Input	Control information whether to permute the large entries	
			to the diagonal of a matrix A .	
			When ipledsm = 1 is specified, a matrix A is	
			transformed internally permuting large entries to the	
			diagonal.	
			Otherwise no permutation is performed.	
mz	int mz[n]	Output	When ipledsm = 1 is specified, it indicates a	
			permutation of columns. $mz[i-1] = j$ indicates that the	
			<i>j</i> -th column which the element of a_{ij} belongs to is	
			permutated to <i>i</i> -th column. The element of a_{ij} is the large	
			entry to be permuted to the diagonal.	
isclitermax	int	Input	The upper limit for the number of iteration to seek scaling	
			matrices of D_r and D_c to equilibrate both rows and	

columns of matrix **A**. When isclitermax ≤ 0 is specified no scaling is done. In this case D_r and D_c are assumed as unit matrices. When $isclitermax \ge 10$ is specified, the upper limit for the number of iteration is considered as 10. Control information whether to decompose the reordered iordering Input int matrix PA_1P^T permuted by the matrix P of ordering or to decompose the matrix A. When iordering = 10 is specified, calling this routine with isw = 1 produces the informations which is needed to generate an ordering regarding A_1 and they are set in nrowsym and nfcnzsym. When iordering 11 is specified, it is indicated that after an ordering is set in nperm, the computation is resumed. Using the informations obtained in nrowsym and nfcnzsym after calling this routines with isw = 1 and iordering = 10, an ordering is determined. After specifying this ordering in nperm, this routine is called again with isw = land iordering = 11 and the computation is resumed. LU decomposition of the matrix PA_1P^T is continued. Otherwise. Without any ordering, the matrix A_1 is decomposed into LU. Output iordering is set to 11 after this routine is called with iordering = 10 and isw = 1. Therefore after an ordering is set in nperm the computation is resumed in the subsequent call without iordering = 11 being specified explicitly. See Comments on use. The permutation matrix **P** is stored as a vector. See nperm int nperm[n] Input Comments on use. int Input Control information. isw When isw = 1 is specified. After symmetrization of a matrix and symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. Call with iordering = 10 produces the informations needed for seeking an ordering in nrowsym and nfcnzsym. Using these informations an ordering for SYM is determined. After an ordering is set in nperm, calling this routine with iordering = 11 and also isw = 1again resumes the computation. When iordering is neither 10 nor 11, no ordering is specified.

			2) When isw = 2 specified. After the previous call ends with icon = 31000, that means that the sizes of zpanelfactorl or zpanelfactoru or npanelindexl or npanelindexu were not enough, the suspended computation is resumed. Before calling again with isw = 2, the zpanelfactorl or zpanelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindexl or nsizeindezu at the precedent call and specified in corresponding arguments. Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls.
nrowsym	int nrowsym[nz+n]	Output	When it is called with iordering = 10, the row indices of nonzero pattern of the lower triangular part of $\mathbf{SYM} = \mathbf{A_1} + \mathbf{A_1}^T$ in the compressed column storage method are generated.
nfcnzsym	int nfcnzsym[n+1]	Output	When it is called with iordering = 10, the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. nfcnzsym[n] = nsymz + 1 where nsymz is the total nonzero elements in the lower triangular part.
nassign	<pre>int nassign[n]</pre>	Output	L and U belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in zpanelfactorl and zpanelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the <i>i</i> -th supernode is stored into the <i>j</i> -th block of a subarray, where j = nassign[i-1].
		Input	When isw \neq 1, the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to Figure c_dm_vsclu-1.
nsupnum	int	Output Input	The total number of supernodes. The values in the first call are reused when $isw \neq 1$ specified. ($\leq n$)
nfcnzfactorl	long	Output	The decomposed matrices L and U of an unsymmetric

	nfcnzfactorl[n+1]		complex sparse matrix are computed for each supernode respectively. The columns of L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into <code>zpanelfactorl</code> consecutively or the location of <code>panel[0][0]</code> is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclu-1.
		Input	The values set by the first call are reused when $isw \neq 1$ specified.
zpanelfactor	dcomplex	Output	The columns of the decomposed matrix L belonging to
1	zpanelfactorl [nsizefactorl]		each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The block number of the section where the panel corresponding to the <i>i</i> -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $nfcnzfactorl[j-1]$. The size of the panel in the <i>i</i> -th block can be considered to be two dimensional array of $ndim[i-1][0] \times ndim[i-1][1]$. The corresponding parts of the lower triangular matrix L are store in this panel $[t-1][s-1], s \ge t, s = 1,,ndim[i-1][0], t = 1,,ndim[i-1][1]$. The corresponding block diagonal portion of the unit upper triangular matrix U except its diagonals is stored in the panel $[t-1][s-1], s < t, t = 1,,ndim[i-1][1]$. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclu-1. See <i>Comments on use</i> .
nsizefactorl	long	Input	The size of the array zpanelfactorl.
		Output	The necessary size for the array zpanelfactorl is
nfcnzindexl	long	Output	returned. See <i>Comments on use</i> . The columns of the decomposed matrix L belonging to
	nfcnzindexl[n+1]	- urput	each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th row indices vector is mapped into npanelindexl consecutively is stored. Regarding the storage method of the decomposed results,

			refer to Figure c_dm_vsclu-1.
		Input	When $isw \neq 1$, the values set by the first call are reused.
npanelindexl	int npanelindexl	Output	The columns of the decomposed matrix L belonging to
	[nsizeindexl]	1	each supernode are compressed to have the common row
			indices vector and stored into a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. This column indices vector
			is mapped into npanelindex1 consecutively. The
			block number of the section where the row indices vector
			corresponding to the i -th supernode is assigned is known
			from $j = nassign[i-1]$. The location of its top of
			subarray is stored in nfcnzindex1[j-1]. This row
			indices are the row numbers of the matrix into which
			SYM is permuted in its post order.
			Regarding the storage method of the decomposed results,
	-	Ŧ.,	refer to Figure c_dm_vsclu-1. See Comments on use.
nsizeindexl	long	Input	The size of the array npanelindex1.
		Output	The necessary size is returned. See <i>Comments on use</i> .
ndim	<pre>int ndim[n][3]</pre>	Output	ndim[i-1][0] and ndim[i-1][1] indicate the
			sizes of the first dimension and second dimension of the
			panel to store a matrix L respectively, which is
			allocated in the <i>i</i> -th location.
			ndim[i-1][2] indicates the total amount of the size of
			the first dimension of the panel where a matrix U is
			transposed and stored and the size of its block diagonal
			portion.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclu-1.
		Input	When $isw \neq 1$, the values set by the first call are reused.
nfcnzfactoru	long	Output	Regarding a matrix U derived from LU decomposition of
	nfcnzfactoru[n+1]		an unsymmetric complex sparse matrix, the rows of \boldsymbol{U}
			except the of block diagonal portion belonging to each
			supernode are compressed to have the common column
			indices vector and stored into a two dimensional panel.
			The index number of the top array element of the one
			dimensional subarray where the <i>i</i> -th panel is mapped
			into zpanelfactoru consecutively or the location of
			panel[0][0] is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclu-1.
		Input	When $isw \ne 1$, the values set by the first call are reused.
zpanelfactor	dcomplex	Output	The rows of the decomposed matrix U belonging to each
u	zpanelfactoru	r	supernode are compressed to have the common column
	[nsizefactoru]		indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The block
			number of the section where the panel corresponding to
			It is all the position of

transposed and stored in this panel[t-1][s-1], s l,, ndim[i-1][2] - ndim[i-1][1], t = 1 ,, ndim[i-1][1]. Regarding the storage method of the decomposed resurrefer to Figure c_dm_vsclu-1. See Comments on use. nsizefactoru long Input The size of the array zpanelfactoru.	
Output The necessary size for the array zpanelfactoru is returned. See <i>Comments on use</i> .	S
Output The rows of the decomposed matrix U belonging to ear nfcnzindexu[n+1] supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the i-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results refer to Figure c_dm_vsclu-1. Input When isw ≠ 1, the values set by the first call are reused.	ional nal ng ults,
Insizeindexu [Insizeindexu] Insizeindexu] Insizeindexu [Insizeindexu] Insizeindexu] Insizeindexu [Insizeindexu] Insizeindexu [Insizeindexu] Insizeindexu] Insizeindexu [Insizeindexu] Insizeindexu [Insizeindexu]	two on. ock e the mode e
nsizeindexu long Input The size of the array npanelindexu. Output The necessary size is returned. See <i>Comments on use</i> .	•
nposto int nposto[n] Output The information about what column number of $\bf A$ the node in post order corresponds to is stored. Input When $isw \ne 1$, the values set by the first call are reuse.	

			See Comments on use.
sclrow	double sclrow[n]	Output	The diagonal elements of $\ensuremath{D_{r}}$ or a diagonal matrix for
			scaling rows are stored in one dimensional array.
		Input	When $isw \neq 1$, the values set by the first call are reused.
sclcol	double sclcol[n]	Output	The diagonal elements of \mathbf{D}_{c} or a diagonal matrix for
			scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \neq 1$ specified.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0).
		Output	When $epsz \le 0.0$, it is set to the standard value. See <i>Comments on use</i> .
thepsz	double	Input	Threshold used in judgement for a pivot. Immediately
			after a candidate in pivot search is considered to have the
			value greater than or equal to the threshold specified, it is
			accepted as a pivot and the search of a pivot is broken off.
			For example, 10 ⁻² .
		Output	When thepsz ≤ 0.0 , 10^{-2} is set.
			When $epsz \ge thepsz > 0.0$, it is set to the value of
inimat	int	Innut	epsz. Control information on pivoting which indicates whether
ipivot	int	Input	a pivot is searched and what kind of pivoting is chosen if
			any.
			For example, 40 for complete pivoting.
			ipivot < 10 or ipivot ≥ 50, no pivoting.
			10 ≤ ipivot < 20, partial pivoting
			20 \leq ipivot < 30, diagonal pivoting
			21: When within a supernode diagonal pivoting fails, it is
			changed to Rook pivoting.
			22: When within a supernode diagonal pivoting fails, it is
			changed to Rook pivoting. If Rook pivoting fails, it is
			changed to complete pivoting.
			$30 \le ipivot < 40$, Rook pivoting
			32 : When within a supernode Rook pivoting fails, it is
			changed to complete pivoting.
			$40 \le ipivot < 50$, complete pivoting
istatic	int	Input	Control information indicating whether Static pivoting is taken.
			1) When istatic = 1 is specified.
			When the pivot searched within a supernode is not
			greater than spepsz, it is replaced with its
			approximate value of a complex number with the absolute value of spepsz.
			If its value is 0.0, spepsz is used as an
			approximation value.
			The following conditions must be satisfied. a) epsz must be less than or equal to the standard
			value of epsz.
			b) Scaling must be performed with isclitermax

			=10. c) thepsz ≥ spepsz must hold.
			2) When istatic ≠ 1 is specified.
		Ŧ.,	No static pivot is performed.
spepsz	double	Input	The approximate value used in Static pivoting when
			istatic = 1 is specified.
			The following conditions must hold.
		_	thepsz≥spepsz≥epsz
		Output	When spepsz < epsz, it is set to 10 ⁻¹⁰ .
nfcnzpivot	int nfcnzpivot	Output	The location for the storage where the history of relative
	[nsupnum+1]		row and column exchanges for pivoting within each
			supernode is stored.
			The block number of the section where the information
			on the <i>i</i> -th supernode is assigned is known by $j =$
			nassign[i-1]. The position of the first element of
			that section is stored in nfcnzpivot[j-1]. The
			information of exchange rows and columns within the <i>i</i> -th
			supernode is stored in the elements of is =
			nfcnzpivot[j-1],, ie=nfcnzpivot[j-1]+
			ndim[j-1][1] - 1 in npivotp and npivotq
			respectively.
npivotp	<pre>int npivotp[n]</pre>	Output	The information on exchanges of rows within each
			supernode is stored.
npivotq	<pre>int npivotq[n]</pre>	Output	The information on exchanges of columns within each
			supernode is stored.
ZW	dcomplex zw[2*nz]	Work	When this routine is called repeatedly with $isw = 1, 2$
		area	this work area is used for preserving information among
			calls. The contents must not be changed.
W	double	Work	When this routine is called repeatedly with $isw = 1, 2$
	w[4*nz+6*n]	area	this work area is used for preserving information among
			calls. The contents must not be changed.
iw1	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw1[2*nz+2*	area	this work area is used for preserving information among
	(n+1)+16*n		calls. The contents must not be changed.
iw2	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw2[47*n+47+nz+4*	area	this work area is used for preserving information among
	(n+1)+2*(nz+n)]		calls. The contents must not be changed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	When istatic = 1 is specified, Static pivot	Continued.
	which replaces the pivot candidate with too small	
	value with spepsz is made.	

 c_dm_vsclu

Code	Meaning	Processing
20000	The pivot became relatively zero. The coefficient	Processing is discontinued.
	matrix A may be singular.	
20100	When ipledsm is specified, maximum	
	matching with the length n is sought in order to	
	permute large entries to the diagonal but can not	
	be found. The coefficient matrix A may be	
	singular.	
20200	When seeking diagonal matrices for equilibrating	Processing is discontinued.
	both rows and columns, there is a zero vector in	-
	either rows or columns of the matrix A. The	
	coefficient matrix A may be singular.	
30000	One of the following has occurred:	
	• n < 1	
	• nz < 0	
	• nfcnz[n] ≠ nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindexl<1	
	• nsizeindexu<1	
	• isw<1	
	• isw>2	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow[j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is $nfcnz[i]-nfcnz[i-1] > n$.	
30500	When istatic = 1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than $16u$ of the standard value	
	orisclitermax < 10	
	or spepsz > thepsz	
31000	The value of nsizefactorl is not enough as	Reallocate the zpanelfactorl or
	the size of zpanelfactorl,	npanelindexl or
	or the value of nsizeindexl is not enough as	zpanelfactoru or npanelindexu
	the size of npanelindexl,	with the necessary size which are returned in the
	or the value of nsizefactoru is not enough as	nsizefactorlornsizeindexlor
	the size of zpanelfactoru,	nsizefactoru or nsizeindexu
	or the value of nsizeindexu is not enough as	respectively
	the size of npanelindexu.	and call this routine again with isw =2 specified.

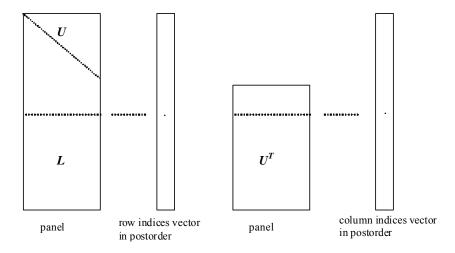


Figure c_dm_vsclu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

 $p = nfcnzfactor1[j-1] \rightarrow The j-th panel occupies the area with a length <math>ndim[j-1][0] \times ndim[j-1][1]$ from the p-th element of zpanelfactor1.

 $q = nfcnzindexl[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindexl.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1,..., ndim[j-1][0], t = 1,..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the *u*-th element of zpanelfactoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix U^T except its block diagonal portion of decomposed results is stored in

panel[y-1][x-1], x=1,...,ndim[j-1][2]-ndim[j-1][1], y=1,...,ndim[j-1][1].

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

When the element $p_{ij} = 1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
```

```
j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for pivot.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

c)

The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1. This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

A system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling $\mathbf{c}_{\mathbf{d}}\mathbf{m}_{\mathbf{v}}$ subsequently in use of the results of LU decomposition obtained by this routine.

The following arguments used in this routine are specified.

```
za, nz, nrow, nfcnz, n,
ipledsm, mz, iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, zpanelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
```

```
nsizeindexl, ndim,
nfcnzfactoru, zpanelfactoru, nsizefactoru,
nfcnzindexu, npanelindexu, nsizeindexu, nposto,
sclrow,sclcol,
nfcnzpivot,
npivotp, npivotq, iw2
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a=(a_1,a_2,a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is stored into a complex sparse array and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 40
#define KX NORD
#define KY NORD
#define KZ NORD
#define N KX * KY * KZ
#define NBORDER
                (N + 1)
#define NOFFDIAG 6
\#define K (N + 1)
#define NDIAG 7
#define NALL NDIAG * N
#define ZWL 2 * NALL
\#define WL 4 * NALL + 6 * N
\#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
\#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)
```

```
void init_mat_diag(double, double, double, double*, int*, int, int, int,
                  double, double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
 int nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 dcomplex za[K * NDIAG], zwc[K * NDIAG],
           zw[ZWL], zone;
  int nrow[K * NDIAG], nfcnz[N + 1],
      nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
      iwc[K * NDIAG][2];
  int nperm[N],
      nposto[N], ndim[N][3],
      nassign[N],
      mz[N],
       iw1[IW1L], iw2[IW2L];
 double w[WL];
 dcomplex *zpanelfactor1, *zpanelfactoru;
 int *npanelindexl, *npanelindexu;
 dcomplex zdummyfl, zdummyfu;
  int ndummyil,
      ndummyiu;
  long nsizefactorl,
       nsizeindexl,
       nsizeindexu,
       nsizefactoru,
       nfcnzfactorl[N + 1],
       nfcnzfactoru[N + 1],
       nfcnzindexl[N + 1],
       nfcnzindexu[N + 1];
 dcomplex zb[N], zsolex[N];
  double epsz, thepsz, spepsz,
          sclrow[N], sclcol[N];
  int ipivot, istatic, nfcnzpivot[N + 1],
       npivotp[N], npivotq[N],
       irefine, itermax, iter, ipledsm;
  double err, val, va2, va3, vc, xl, yl, zl, epsr;
  int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
       isclitermax, isw, nsupnum;
  zone.re = 1.0;
  zone.im = 0.0;
```

```
LU DECOMPOSITION METHOD\n");
printf("
printf("
          FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
printf("
          IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) \{
 zsolex[i] = zone;
printf("
           EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf, %lf) X(N) = (%lf, %lf) \n',
       zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(val, va2, va3, vc, (double *)diag, nofst,
             KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
 if (nofst[i] < 0) {
    nbase = -nofst[i];
    length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][j] = diag[i][nbase + j];
    }
  } else {
   nbase = nofst[i];
    length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][nbase + j] = diag[i][j];
    }
  }
}
```

```
numnz = 1;
  for (j = 0; j < N; j++) \{
   ntopcfg = 1;
    for (i = NDIAG - 1; i >= 0; i--) {
     if (ntopcfg == 1) {
       nfcnz[j] = numnz;
       ntopcfg = 0;
      }
      if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
        continue;
      } else {
        if (diag2[i][j] != 0.0) {
         ncol = (j + 1) - nofst[i];
          za[numnz - 1].re = diag2[i][j];
          za[numnz - 1].im = 0.0;
         nrow[numnz - 1] = ncol;
         numnz++;
        }
      }
    }
 nfcnz[N] = numnz;
 nz = numnz - 1;
 c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,
               zb, zwc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
 iordering = 0;
  ipledsm = 1;
  isclitermax = 10;
 isw = 1;
 nsizefactorl = 1;
 nsizefactoru = 1;
 nsizeindexl = 1;
 nsizeindexu = 1;
```

```
epsz = 1.0e-16;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
          ipledsm, mz, isclitermax, &iordering,
          nperm, isw,
          nrowsym, nfcnzsym,
          nassign,
          &nsupnum,
          nfcnzfactorl, &zdummyfl,
          &nsizefactorl,
          nfcnzindexl,
          &ndummyil, &nsizeindexl,
          (int *)ndim,
          nfcnzfactoru, &zdummyfu,
          &nsizefactoru,
          nfcnzindexu,
          &ndummyiu, &nsizeindexu,
          nposto,
          sclrow, sclcol,
          &epsz, &thepsz,
          ipivot, istatic, &spepsz, nfcnzpivot,
          npivotp, npivotq,
          zw, w, iw1, iw2, &icon);
printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
       icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);
zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
          ipledsm, mz, isclitermax, &iordering,
          nperm, isw,
          nrowsym, nfcnzsym,
```

```
nassign,
            &nsupnum,
           nfcnzfactorl, zpanelfactorl,
            &nsizefactorl,
            nfcnzindexl,
            npanelindexl, &nsizeindexl,
            (int *)ndim,
           nfcnzfactoru, zpanelfactoru,
            &nsizefactoru,
           nfcnzindexu,
           npanelindexu, &nsizeindexu,
           nposto,
           sclrow, sclcol,
            &epsz, &thepsz,
            ipivot, istatic, &spepsz, nfcnzpivot,
           npivotp, npivotq,
            zw, w, iw1, iw2, &icon);
c_dm_vsclux(N,
              iordering,
              nperm,
              zb,
              nassign,
              nsupnum,
              nfcnzfactorl, zpanelfactorl,
              nsizefactorl,
              nfcnzindexl,
              npanelindexl, nsizeindexl,
              (int *)ndim,
              nfcnzfactoru, zpanelfactoru,
              nsizefactoru,
              nfcnzindexu,
              npanelindexu, nsizeindexu,
              nposto,
              ipledsm, mz,
              sclrow, sclcol,
              nfcnzpivot,
              npivotp, npivotq,
              irefine, epsr, itermax, &iter,
              za, nz, nrow, nfcnz,
              iw2, &icon);
err = errnrm(zsolex, zb, N);
printf("
              COMPUTED VALUES\n");
printf("
              \label{eq:continuous} \texttt{X(1)} \; = \; (\$\texttt{lf},\$\texttt{lf}) \; \texttt{X(N)} \; = \; (\$\texttt{lf},\$\texttt{lf}) \\ \texttt{n"}, \; \texttt{zb[0]}, \; \texttt{zb[N-1]});
```

```
printf("
            ICON = %d\n\n", icon);
 printf("
            N = %d\n\n", N);
 printf("
            ERROR = %lf\n", err);
 printf("
            ITER=%d\n\n\n", iter);
 if (err < 1.0e-8 && icon == 0) {
   printf("******** OK *******\n");
 } else {
   printf("******* NG *******\n");
 free(zpanelfactorl);
 free(zpanelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
}
INITIALIZE COEFFICIENT MATRIX
 */
void init_mat_diag(double va1, double va2, double va3, double vc,
                 double *d_l, int *offset,
                 int nx, int ny, int nz, double xl, double yl, double zl,
                 int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7)
   ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
```

```
hz = z1 / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
  }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
  }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
```

```
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js -1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
      if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
     1++;
   }
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_l[(1 * ndivp) + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   }
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
label_100: ;
```

```
}
 return;
* SOLUTE ERROR
 * | Z1 - Z2 |
  */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
 double rtc, s;
 dcomplex ss;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
   ss = comp_sub(z1[i], z2[i]);
   s += ss.re * ss.re + ss.im * ss.im;
 rtc = sqrt(s);
 return(rtc);
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
 dcomplex obj;
 obj.re = sol.re - so2.re;
 obj.im = sol.im - so2.im;
 return obj;
}
```

5. Method

Consult the entry for DM_VSCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as[2], [13], [17], [19], [22], [23], [46], [53], [59], [64] and [65].

c dm vsclux

```
A system of linear equations with LU-decomposed unsymmetric complex sparse matrices

ierr = c_dm_vsclux(n, iordering, nperm
```

1. Function

An $n \times n$ unsymmetric complex sparse matrix **A** of which LU decomposition is made as below is given. In this decomposition the large entries of an $n \times n$ unsymmetric complex sparse matrix **A** are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.

$$Ax = b$$

A matrix A is decomposed into as below.

$$P_{rs}QPD_rAP_cD_cP^TQ^TP_{cs} = LU$$

The unsymmetric complex sparse matrix **A** is transformed as below.

$$A_1 = D_r A P_c D_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{Q} \mathbf{P} \mathbf{A}_1 \mathbf{P}^T \mathbf{Q}^T$$

A₂ is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $SYM = A_1 + A_1^T$ and **Q** is a permutation matrix of postorder for SYM. **P** and **Q** are orthogonal matrices. **L** is a lower triangular matrix and **U** is a unit upper triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

<pre>ierr = c_dm_vsclux(n, iordering, nperm, zb, nassign, nsupnum, nfcnzfactorl,</pre>				
zpanelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,				
	<pre>nsizeindexl, (int *)ndim, nfcnzfactoru, zpanelfactoru,</pre>			
	nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,			
	ipledsm, mz, sclrow,	sclcol	, nfcnzpivot, npivotp, npivotq,	
	irefine, epsr, iterm	nax, &ite	er, za, nz, nrow, nfcnz, iw2, &icon);	
where:				
n	int	Input	Order n of matrix A.	
iordering	int	Input	When iordering 11 is specified, it is indicated that LU	
			decomposition is performed with an ordering	
			specified in nperm.	
			The matrix $\mathbf{P}\mathbf{A}_1\mathbf{P}^T$ is decomposed into LU decomposition.	
			Otherwise. No ordering is specified.	
			See Comments on use.	
nperm	<pre>int nperm[n]</pre>	Input	When iordering = 11 is specified, a vector presenting	
			the permutation matrix P used is stored.	
			See Comments on use.	
zb	dcomplex zb[n]	Input	The right-hand side constant vector b of a system of	
			linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.	
		Output	Solution vector x .	
nassign	<pre>int nassign[n]</pre>	Input	L and U belonging to each supernode are compressed and	
			stored in two dimensional panels respectively. These	
			panels are stored in zpanelfactor1 and	
			zpanelfactoru as one dimensional subarray	
			consecutively and its block number is stored. The	
			corresponding indices vectors are similarly stored	
			npanelindexl and npanelindexu respectively.	
			Data of the <i>i</i> -th supernode is stored into the <i>j</i> -th block of a	
			subarray, where $j = nassign[i-1]$.	
			Regarding the storage methods of decomposed matrices,	
			refer to Figure c_dm_vsclux-1.	
nsupnum	int	Input	The total number of supernodes.($\leq n$)	
nfcnzfactorl	long	Input	The decomposed matrices \boldsymbol{L} and \boldsymbol{U} of an unsymmetric	

zpanelfactor	dcomplex zpanelfactorl [nsizefactorl]	Input	complex sparse matrix are computed for each supernode respectively. The columns of \mathbf{L} belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \mathbf{U} in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the i -th panel is mapped into $\mathtt{zpanelfactorl}$ consecutively or the location of $\mathtt{panel[0][0]}$ is stored. Regarding the storage method of the decomposed results, refer to Figure $\mathtt{c_dm_vsclux-l}$. The columns of the decomposed matrix \mathbf{L} belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional \mathtt{panel} with the corresponding parts of the decomposed matrix \mathbf{U} in its block diagonal portion. The block number of the section where the \mathtt{panel} corresponding to the i -th supernode is assigned is known from $\mathtt{j=nassign}$ [$\mathtt{i-1}$]. The location of its top of subarray including the portion of decomposed matrices is stored in $\mathtt{nfcnzfactorl[j-1]}$. The size of the \mathtt{panel} in the i -th block can be considered to be two dimensional array of $\mathtt{ndim[j-1][0]} \times \mathtt{ndim[j-1][1]}$. The corresponding parts of the lower triangular matrix \mathbf{L} are store in this \mathtt{panel} [$\mathtt{t-1}$][$\mathtt{s-1}$], $\mathtt{s} \ge \mathtt{t}$, $\mathtt{s=1}$,, $\mathtt{ndim[i-1][0]}$, $\mathtt{t=1}$,, $\mathtt{ndim[i-1][1]}$. The corresponding block diagonal portion of the unit upper triangular matrix \mathbf{U} except its diagonals is stored in the \mathtt{panel} [$\mathtt{t-1}$][$\mathtt{s-1}$], $\mathtt{s} < \mathtt{t}$, $\mathtt{t=1}$,, $\mathtt{ndim[i-1][1]}$.
nsizefactorl	long	Input	refer to Figure c_dm_vsclux-1. The size of the array zpanelfactor1.
nfcnzindexl	<pre>long nfcnzindexl[n+1]</pre>	Input	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th row indices vector is mapped into npanelindexl consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
npanelindexl	<pre>int npanelindexl [nsizeindexl]</pre>	Input	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel

			in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
nsizeindexl ndim	<pre>long int ndim[n][3]</pre>	Input Input	The size of the array npanelindex1. ndim[i-1][0] and ndim[i-1][1] indicate the
IIII	THE HATHITITIST	три	sizes of the first dimension and second dimension of the
			panel to store a matrix L respectively, which is
			allocated in the <i>i</i> -th location.
			ndim[i-1][2] indicates the total amount of the size of
			the first dimension of the panel where a matrix U is
			transposed and stored and the size of its block diagonal portion.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclux-1.
nfcnzfactoru	long	Input	Regarding a matrix U derived from LU decomposition of
	nfcnzfactoru[n+1]		an unsymmetric complex sparse matrix, the rows of U
			except the of block diagonal portion belonging to each supernode are compressed to have the common column
			indices vector and stored into a two dimensional panel.
			The index number of the top array element of the one
			dimensional subarray where the <i>i</i> -th panel is mapped
			into zpanelfactoru consecutively or the location of
			panel[0][0] is stored.
			Regarding the storage method of the decomposed results,
zpanelfactor	dcomplex	Input	refer to Figure c_dm_vsclux-1. The rows of the decomposed matrix U belonging to each
u	zpanelfactoru	трис	supernode are compressed to have the common column
	[nsizefactoru]		indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The block
			number of the section where the panel corresponding to
			the <i>i</i> -th supernode is assigned is known from $j =$
			nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in
			nfcnzfactoru[j-1]. The size of the panel in the <i>i</i> -th
			block can be considered to be two dimensional array of
			$\{ \texttt{ndim[i-1][2]} - \texttt{ndim[i-1][1]} \} \times \texttt{ndim}$
			[i-1][1]. The rows of the unit upper triangular matrix
			U except the block diagonal portion are compressed,

with the corresponding parts of the decomposed matrix \boldsymbol{U}

			transposed and stored in this panel[t-1][s-1], $s =$
			1,,ndim[i-1][2]-ndim[i-1][1],t=1,
			, ndim[i-1][1].
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclux-1.
nsizefactoru	long	Input	The size of the array zpanelfactoru.
			See Comments on use.
nfcnzindexu	long	Input	The rows of the decomposed matrix U belonging to each
	nfcnzindexu[n+1]	•	supernode are compressed to have the common column
			indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The index
			number of the top array element of the one dimensional
			subarray where the <i>i</i> -th column indices vector including
			indices of the block diagonal portion is mapped into
			npanelindexu consecutively is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclux-1.
npanelindexu	int npanelindexu	Input	The rows of the decomposed matrix U belonging to each
	[nsizeindexu]		supernode are compressed, transposed and stored in a two
			dimensional panel without its block diagonal portion.
			The column indices vector including indices of the block
			diagonal portion is mapped into npanelindexu
			consecutively. The block number of the section where the
			column indices vector corresponding to the <i>i</i> -th supernode
			is assigned is known from $j = nassign[i-1]$. The
			location of its top of subarray is stored in
			nfcnzindexu[j-1]. These column indices are the
			column numbers of the matrix into which SYM is
			permuted in its post order.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vsclux-1.
nsizeindexu	long	Input	The size of the array npanelindexu.
nposto	int nposto[n]	Input	The information about what column number of A the <i>i</i> -th
			node in post order corresponds to is stored.
			See Comments on use.
ipledsm	int	Input	Information indicating whether for LU decomposition it
		•	is specified to permute the large entries to the diagonal of
			a matrix A .
			When $ipledsm = 1$ is specified, a matrix A is
			transformed internally permuting large entries to the
			diagonal.
			Otherwise no permutation is performed.
mz	int mz[n]	Input	When ipledsm = 1 is specified, it indicates a
		p-	permutation of columns. $mz[i-1] = j$ indicates that the
			j -th column which the element of a_{ij} belongs to is
			permutated to <i>i</i> -th column. The element of a_{ij} is the large
			permutated to r-an condition. The element of all is the large

			entry to be permuted to the diagonal.
sclrow	double sclrow[n]	Input	The diagonal elements of $\ensuremath{D_{r}}$ or a diagonal matrix for
			scaling rows are stored in one dimensional array.
sclcol	<pre>double sclcol[n]</pre>	Input	The diagonal elements of \mathbf{D}_{c} or a diagonal matrix for
		_	scaling columns are stored in one dimensional array.
nfcnzpivot	int nfcnzpivot	Input	The location for the storage where the history of relative
	[nsupnum+1]		row and column exchanges for pivoting within each
			supernode is stored.
			The block number of the section where the information
			on the <i>i</i> -th supernode is assigned is known by $j = nassign[i-1]$. The position of the first element of
			that section is stored in nfcnzpivot[j-1]. The
			information of exchange rows and columns within the <i>i</i> -th
			supernode is stored in the elements of is =
			nfcnzpivot[j-1],,ie=nfcnzpivot[j-1]+
			ndim[j-1][1] - 1 in npivotp and npivotq
			respectively
npivotp	<pre>int npivotp[n]</pre>	Input	The information on exchanges of rows within each
			supernode is stored.
npivotq	<pre>int npivotq[n]</pre>	Input	The information on exchanges of columns within each
			supernode is stored.
irefine	int	Input	Control information indicating whether iterative
			refinement is performed when the solution is computed in
			use of results of LU decomposition. A residual vector is
			computed in quadruple precision.
			When irefine = 1 is specified.
			The iterative refinement is performed. It is iterated until in
			the sequences of the solutions obtained in refinement the
			difference of the absolute values of their corresponding
			residual vectors become larger than a fourth of that of immediately previous ones.
			When irefine \neq 1 is specified.
			No iterative refinement is performed.
epsr	double	Input	Criterion value to judge if the absolute value of the
CPDI	double	трас	residual vector
			b-Ax is sufficiently smaller compared with the absolute
			value of \boldsymbol{b} .
			When $epsr \le 0.0$, it is set to 10^{-6} .
itermax	int	Input	Upper limit of iterative count for refinement (≥ 1).
iter	int	Output	Actual iterative count for refinement.
za	<pre>dcomplex za[nz]</pre>	Input	The nonzero elements of an unsymmetric complex sparse
			matrix A are stored.
			For the compressed column storage method, refer to
			Figure c_dm_vmvsccc-1 in the description for
			c_dm_vmvscc routine (multiplication of a real sparse
			matrix and a real vector). For a complex matrix, a real

			array a in this Figure is replaced with a complex array.
nz	int	Input	The total number of the nonzero elements belong to an
			unsymmetric complex sparse matrix A.
nrow	<pre>int nrow[nz]</pre>	Input	The row indices used in the compressed column storage
			method, which indicate the row number of each nonzero
			element stored in an array za.
nfcnz	<pre>int nfcnz[n+1]</pre>	Input	The position of the first nonzero element of each column
			stored in an array za in the compressed column storage
			method which stores the nonzero elements column by
			column.
			nfcnz[n] = nz + 1.
iw2	int	Work	The data derived from calling c_dm_vsclu of LU
	iw2[47*n+47+nz+4*	area	decomposition of an unsymmetric complex sparse matrix
	(n+1)+2*(nz+n)]		is transferred in this work area. The contents must not be
			changed among calls.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20400	There is a zero element in diagonal of resultant	Processing is discontinued.
	matrices of LU decomposition.	
20500	The norm of residual vector for the solution	
	vector is greater than that of b multiplied by	
	epsr, which is the right term constant vector in	
	$\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix \mathbf{A} may be close to	
	a singular matrix.	
30000	One of the following has occurred:	
	• n < 1	
	• nz < 0	
	• nfcnz[n] \neq nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindexl < 1	
	• nsizeindexu<1	
	• itermax < 1 when irefine = 1.	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is $nfcnz[i] - nfcnz[i-1] > n$.	

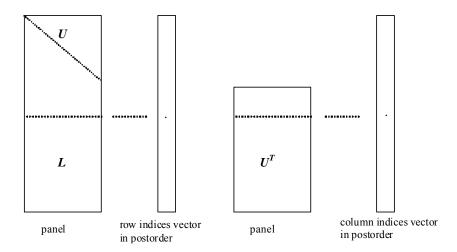


Figure c_dm_vsclux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

 $p = nfcnzfactorl[j-1] \rightarrow The j-th panel occupies the area with a length <math>ndim[j-1][0] \times ndim[j-1][1]$ from the p-th element of zpanelfactorl.

 $q = nfcnzindexl[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindexl.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the *u*-th element of zpanelfactoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix U^T except its block diagonal portion of decomposed results is stored in panel[y-1][x-1], x = 1,..., ndim[j-1][2] - ndim[j-1][1], y = 1,..., ndim[j-1][1].

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c_dm_vsclu is used.

See note c), "Comments on use." of c dm vsclu and Example program of c dm vsclux.

b)

When the element $p_{ij}=1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nperm[i-1];
  nperminv[j-1] = i;
}</pre>
```

c)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1,a_2,a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdlib.h>
#include <math.h>
#include <math.h>
#include <omp.h>
#include "cssl.h"

#define NORD 40
#define KX NORD
#define KY NORD
#define KZ NORD
```

```
#define N KX * KY * KZ
#define NBORDER (N + 1)
#define NOFFDIAG 6
\#define K (N + 1)
#define NDIAG 7
#define NALL NDIAG * N
#define ZWL 2 * NALL
\#define WL 4 * NALL + 6 * N
#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
\#define \ \ IW2L \ \ 47 \ * \ N \ + \ 47 \ + \ 4 \ * \ (N \ + \ 1) \ + \ NALL \ + \ 2 \ * \ (NALL \ + \ N)
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
                   double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
  int nofst[NDIAG];
  double diag[NDIAG][K], diag2[NDIAG][K];
 dcomplex za[K * NDIAG], zwc[K * NDIAG],
            zw[ZWL], zone;
  int nrow[K * NDIAG], nfcnz[N + 1],
       nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
       iwc[K * NDIAG][2];
  int nperm[N],
      nposto[N], ndim[N][3],
      nassign[N],
       mz[N],
       iw1[IW1L], iw2[IW2L];
  double w[WL];
  dcomplex *zpanelfactorl, *zpanelfactoru;
  int *npanelindexl, *npanelindexu;
  dcomplex zdummyfl, zdummyfu;
  int ndummyil,
      ndummyiu;
  long nsizefactorl,
        nsizeindexl,
        nsizeindexu,
       nsizefactoru,
        nfcnzfactorl[N + 1],
        nfcnzfactoru[N + 1],
        nfcnzindexl[N + 1],
        nfcnzindexu[N + 1];
  dcomplex zb[N], zsolex[N];
```

```
double epsz, thepsz, spepsz,
        sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1],
    npivotp[N], npivotq[N],
     irefine, itermax, iter, ipledsm;
double err, val, va2, va3, vc, xl, yl, zl, epsr;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
     isclitermax, isw, nsupnum;
zone.re = 1.0;
zone.im = 0.0;
printf("
          LU DECOMPOSITION METHOD\n");
printf("
          FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
          IN COMPRESSED COLUMN STORAGE\n\n");
printf("
for (i = 0; i < N; i++) {
 zsolex[i] = zone;
}
printf("
           EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf, %lf) X(N) = (%lf, %lf) \n",
       zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
x1 = 1.0;
y1 = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
              KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {</pre>
    nbase = -nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
```

```
diag2[i][j] = diag[i][nbase + j];
  } else {
    nbase = nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][nbase + j] = diag[i][j];
    }
  }
}
numnz = 1;
for (j = 0; j < N; j++) {
  ntopcfg = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (ntopcfg == 1) {
     nfcnz[j] = numnz;
     ntopcfg = 0;
    }
    if (j + 1 < NBORDER && i + 1 > NOFFDIAG) \{
      continue;
    } else {
      if (diag2[i][j] != 0.0) {
        ncol = (j + 1) - nofst[i];
        za[numnz - 1].re = diag2[i][j];
        za[numnz - 1].im = 0.0;
        nrow[numnz - 1] = ncol;
       numnz++;
      }
    }
  }
}
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,
```

```
zb, zwc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
 iordering = 0;
  ipledsm = 1;
 isclitermax = 10;
  isw = 1;
 nsizefactorl = 1;
 nsizefactoru = 1;
 nsizeindexl = 1;
 nsizeindexu = 1;
 epsz = 1.0e-16;
 thepsz = 1.0e-2;
 spepsz = 0.0;
 ipivot = 40;
 istatic = 0;
  irefine = 1;
 epsr = 0.0;
 itermax = 10;
 c_dm_vsclu(za, nz, nrow, nfcnz, N,
            ipledsm, mz, isclitermax, &iordering,
           nperm, isw,
           nrowsym, nfcnzsym,
           nassign,
           &nsupnum,
           nfcnzfactorl, &zdummyfl,
            &nsizefactorl,
           nfcnzindexl,
            &ndummyil, &nsizeindexl,
            (int *)ndim,
            nfcnzfactoru, &zdummyfu,
            &nsizefactoru,
            nfcnzindexu,
            &ndummyiu, &nsizeindexu,
           nposto,
            sclrow, sclcol,
            &epsz, &thepsz,
            ipivot, istatic, &spepsz, nfcnzpivot,
            npivotp, npivotq,
            zw, w, iw1, iw2, &icon);
 printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
         icon, nsizefactorl, nsizefactoru, nsizeindexl);
 printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);
```

```
zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
          ipledsm, mz, isclitermax, &iordering,
          nperm, isw,
          nrowsym, nfcnzsym,
          nassign,
          &nsupnum,
          nfcnzfactorl, zpanelfactorl,
          &nsizefactorl,
          nfcnzindexl,
          npanelindexl, &nsizeindexl,
          (int *)ndim,
          nfcnzfactoru, zpanelfactoru,
          &nsizefactoru,
          nfcnzindexu,
          npanelindexu, &nsizeindexu,
          nposto,
          sclrow, sclcol,
          &epsz, &thepsz,
          ipivot, istatic, &spepsz, nfcnzpivot,
          npivotp, npivotq,
          zw, w, iw1, iw2, &icon);
c_dm_vsclux(N,
            iordering,
            nperm,
            zb,
            nassign,
            nsupnum,
            nfcnzfactorl, zpanelfactorl,
            nsizefactorl,
            nfcnzindexl,
            npanelindexl, nsizeindexl,
            (int *)ndim,
            nfcnzfactoru, zpanelfactoru,
            nsizefactoru,
            nfcnzindexu,
            npanelindexu, nsizeindexu,
            nposto,
```

```
ipledsm, mz,
            sclrow, sclcol,
            nfcnzpivot,
            npivotp, npivotq,
            irefine, epsr, itermax, &iter,
            za, nz, nrow, nfcnz,
            iw2, &icon);
 err = errnrm(zsolex, zb, N);
 printf("
            COMPUTED VALUES\n");
 printf("
            X(1) = (%lf, %lf) X(N) = (%lf, %lf) \n', zb[0], zb[N - 1]);
 printf("
            ICON = %d\n\n", icon);
            N = dnn', N;
 printf("
 printf("
            ERROR = %lf\n", err);
 printf("
            ITER=%d\n\n\n", iter);
 if (err < 1.0e-8 && icon == 0) {
   printf("******* OK *******\n");
 } else {
   printf("******* NG *******\n");
 free(zpanelfactorl);
 free(zpanelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
}
INITIALIZE COEFFICIENT MATRIX
 void init_mat_diag(double va1, double va2, double va3, double vc,
                 double *d_l, int *offset,
                 int nx, int ny, int nz, double xl, double yl, double zl,
                 int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
```

```
{
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7)
   ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
   }
  }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   }
   if (ndiag_loc >= 4) {
```

```
offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js -1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
     1++;
   }
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_l[(1 * ndivp) + j] += 2.0 / hz2;
     }
   }
   1++;
```

```
if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
label_100: ;
 }
 return;
* SOLUTE ERROR
 * | Z1 - Z2 |
  */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
 double rtc, s;
 dcomplex ss;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
  ss = comp\_sub(z1[i], z2[i]);
   s += ss.re * ss.re + ss.im * ss.im;
 }
 rtc = sqrt(s);
 return(rtc);
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
 dcomplex obj;
 obj.re = so1.re - so2.re;
 obj.im = sol.im - so2.im;
 return obj;
}
```

c dm_vscs

A system of linear equations with unsymmetric complex sparse matrices (LU decomposition method)

```
ierr = c_dm_vscs(za, nz, nrow, nfcnz, n,
            ipledsm, mz, isclitermax,
            &iordering, nperm, isw,
            nrowsym, nfcnzsym, zb,
            nassign, &nsupnum,
            nfcnzfactorl, zpanelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl,
            &nsizeindexl, ndim,
            nfcnzfactoru, zpanelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            &nsizeindexu, nposto,
            sclrow, sclcol,
            &epsz, &thepsz, ipivot, istatic,
            &spepsz, nfcnzpivot,
            npivotp, npivotq, irefine, epsr,
            itermax, &iter,
            zw, w, iw1, iw2, &icon);
```

1. Function

The large entries of an $n \times n$ unsymmetric complex sparse matrix \mathbf{A} are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.

$$Ax = b$$

The unsymmetric complex sparse matrix is transformed as below.

$$A_1 = D_r A P_c D_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{O} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{O}^{\mathrm{T}}$$

A₂ is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $SYM = A_1 +$

 A_1^T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c dm	vscs(za, nz, nrow, n	fcnz, n	, ipledsm, mz, isclitermax,			
&iordering, nperm, isw, nrowsym, nfcnzsym, zb, nassign, &nsupr						
	nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,					
	npanelindex1, &nsizeindex1, (int *)ndim, nfcnzfactoru,					
	zpanelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,					
		w, sclcol, &epsz, &thepsz, ipivot,				
			t, npivotp, npivotq, irefine, epsr,			
	itermax, &iter, zw,					
where:	itermax, witer, Zw,	w, <u>_</u> w_,	IWZ, &ICOII)/			
	dramus] ass == [10=]	Innut	The newscare elements of an uncommetric complex energy			
za	dcomplex za[nz]	Input	The nonzero elements of an unsymmetric complex sparse matrix A are stored.			
			For the compressed column storage method, refer to			
			Figure c_dm_vmvscc-1 in the description for			
			c_dm_vmvscc routine (multiplication of a real sparse			
			matrix and a real vector). For a complex matrix, a real			
			array a in this Figure is replaced with a complex array.			
nz	int	Input	The total number of the nonzero elements belong to an			
			unsymmetric complex sparse matrix A.			
nrow	<pre>int nrow[nz]</pre>	Input	The row indices used in the compressed column storage			
			method, which indicate the row number of each nonzero			
			element stored in an array za.			
nfcnz	<pre>int nfcnz[n+1]</pre>	Input	The position of the first nonzero element of each column			
			stored in an array za in the compressed column storage			
			method which stores the nonzero elements column by			
			column.			
			nfcnz[n] = nz + 1.			
n	int	Input	Order n of matrix \mathbf{A} .			
ipledsm	int	Input	Control information whether to permute the large entries			
_		•	to the diagonal of a matrix A .			
			When ipledsm = 1 is specified, a matrix A is			
			transformed internally permuting large entries to the			
			diagonal.			
			2.10°			

mz	int mz[n]	Output	Otherwise no permutation is performed. When $ipledsm = 1$ is specified, it indicates a permutation of columns. $mz[i-1] = j$ indicates that the j -th column which the element of a_{ij} belongs to is permutated to i -th column. The element of a_{ij} is the large
isclitermax	int	Input	entry to be permuted to the diagonal. The upper limit for the number of iteration to seek scaling matrices of $\mathbf{D_r}$ and $\mathbf{D_c}$ to equilibrate both rows and columns of matrix \mathbf{A} . When isclitermax ≤ 0 is specified no scaling is done. In this case $\mathbf{D_r}$ and $\mathbf{D_c}$ are assumed as unit matrices.
iordering	int	Input	When isclitermax ≥ 10 is specified, the upper limit for the number of iteration is considered as 10. Control information whether to decompose the reordered matrix PA_1P^T permuted by the matrix P of ordering or to decompose the matrix A . When iordering = 10 is specified, calling this routine with isw = 1 produces the informations which is needed to generate an ordering regarding A_1 and they are set in nrowsym and nfcnzsym. When iordering 11 is specified, it is indicated that after an ordering is set in nperm, the computation is resumed. Using the informations obtained in nrowsym and nfcnzsym after calling this routines with isw = 1 and iordering = 10, an ordering is determined. After specifying this ordering in nperm, this routine is called
			again with isw = land iordering = 11 and the computation is resumed. LU decomposition of the matrix PA₁P ^T is continued. Otherwise. Without any ordering, the matrix A₁ is decomposed into LU.
		Output	iordering is set to 11 after this routine is called with iordering = 10 and isw = 1. Therefore after an ordering is set in nperm the computation is resumed in the subsequent call without iordering = 11 being specified explicitly. See <i>Comments on use</i> .
nperm	<pre>int nperm[n]</pre>	Input	The permutation matrix P is stored as a vector. See <i>Comments on use.</i>
isw	int	Input	Control information. 1) When isw = 1 is specified. After symmetrization of a matrix and symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. Call with iordering = 10 produces the

informations needed for seeking an ordering in nrowsym and nfcnzsym. Using these informations an ordering for SYM is determined. After an ordering is set in nperm, calling this routine with iordering =11 and also isw = 1 again resumes the computation. When iordering is neither 10 nor 11, no ordering

is specified.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that means that the sizes of zpanelfactorl or zpanelfactoru or npanelindexl or npanelindexu were not enough, the suspended computation is resumed.

Before calling again with isw = 2, the zpanelfactorl or zpanelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindexl or nsizeindezu at the precedent call and specified in corresponding arguments.

Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls.

3) When isw = 3 specified.

The subsequent call with isw = 3 solves another system of equations of which the coefficient matrix is as same as previous call but the right-hand side vector \boldsymbol{b} is changed. In this case, the information obtained by the previous LU decomposition can be reused.

Besides, except isw as control information and zb for storing the new right-hand side b, the values in the other arguments must not be changed between the previous and following calls.

nrowsym int nrowsym[nz+n] Output

When it is called with iordering = 10, the row indices of nonzero pattern of the lower triangular part of SYM = $A_1 + A_1^T$ in the compressed column storage method are generated.

nfcnzsym int nfcnzsym[n+1] Output

When it is called with iordering = 10, the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column.

			nfcnzsym[n] = nsymz + 1 where $nsymz$ is the total
			nonzero elements in the lower triangular part.
zb	dcomplex zb[n]	Input	The right-hand side constant vector b of a system of
			linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.
		Output	Solution vector x.
nassign	<pre>int nassign[n]</pre>	Output	L and U belonging to each supernode are compressed and
			stored in two dimensional panels respectively. These
			panels are stored in zpanelfactor1 and
			zpanelfactoru as one dimensional subarray
			consecutively and its block number is stored. The
			corresponding indices vectors are similarly stored
			npanelindexl and npanelindexu respectively.
			Data of the <i>i</i> -th supernode is stored into the <i>j</i> -th block of a
			subarray, where j = nassign [i-1].
		Input	When $isw \neq 1$, the values stored in the first call are
			reused. Regarding
			the storage methods of decomposed matrices, refer to
			Figure c_dm_vscs-1.
nsupnum	int	Output	The total number of supernodes.
		Input	The values in the first call are reused when $isw \neq 1$
			specified. $(\leq n)$
nfcnzfactorl	long	Output	The decomposed matrices ${\bf L}$ and ${\bf U}$ of an unsymmetric
	nfcnzfactorl[n+1]		complex sparse matrix are computed for each supernode
			respectively. The columns of L belonging to each
			supernode are compressed to have the common row
			indices vector and stored into a two dimensional panel
			with the corresponding parts of \mathbf{U} in its block diagonal
			portion. The index number of the top array element of the
			one dimensional subarray where the <i>i</i> -th panel is
			mapped into zpanelfactorl consecutively or the
			location of panel[0][0] is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vscs-1.
		Input	The values set by the first call are reused when $isw \neq 1$
			specified.
zpanelfactor	dcomplex	Output	The columns of the decomposed matrix ${\bf L}$ belonging to
1	zpanelfactorl		each supernode are compressed to have the common row
	[nsizefactorl]		indices vector and stored in a two dimensional panel with
			the corresponding parts of the decomposed matrix \boldsymbol{U} in its
			block diagonal portion. The block number of the section
			where the panel corresponding to the <i>i</i> -th supernode is
			assigned is known from $j = nassign[i-1]$. The
			location of its top of subarray including the portion of
			decomposed matrices is stored in nfcnzfactor1
			[j-1].
			The size of the panel in the <i>i</i> -th block can be considered

			to be two dimensional array of $ndim[i-1][0] \times ndim[i-1][1]$. The corresponding parts of the lower triangular matrix L are store in this panel $[t-1][s-1]$, $s \ge t$, $s = 1$,, $ndim[i-1][0]$,
			t = 1,, ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix U
			except its diagonals is stored in the panel
			[t-1][s-1], s < t, t = 1,, ndim[i-1][1].
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vscs-1. See Comments on use.
nsizefactorl	long	Input	The size of the array panelfactor1.
		Output	The necessary size for the array panelfactorl is
			returned. See Comments on use.
nfcnzindexl	long	Output	The columns of the decomposed matrix L belonging to
	nfcnzindexl[n+1]		each supernode are compressed to have the common row
			indices vector and stored in a two dimensional panel with
			the corresponding parts of the decomposed matrix U in its
			block diagonal portion. The index number of the top array
			element of the one dimensional subarray where the <i>i</i> -th
			row indices vector is mapped into npanelindex1
			consecutively is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vscs-1.
		Input	When $isw \neq 1$, the values set by the first call are reused.
npanelindexl	int npanelindexl	Output	The columns of the decomposed matrix L belonging to
	[nsizeindexl]		each supernode are compressed to have the common row
			indices vector and stored into a two dimensional panel
			with the corresponding parts of the decomposed matrix ${f U}$
			in its block diagonal portion. This column indices vector
			is mapped into npanelindex1 consecutively. The
			block number of the section where the row indices vector
			corresponding to the <i>i</i> -th supernode is assigned is known
			from j = nassign[i-1]. The location of its top of
			subarray is stored in nfcnzindex1[j-1]. This row
			indices are the row numbers of the matrix into which
			SYM is permuted in its post order.
			Regarding the storage method of the decomposed results,
	-	T .	refer to Figure c_dm_vscs-1. See Comments on use.
nsizeindexl	long	Input	The size of the array npanelindex1.
ndim	int nd:-[-][2]	Output	The necessary size is returned. See <i>Comments on use</i> .
ndim	<pre>int ndim[n][3]</pre>	Output	ndim[i-1][0] and ndim[i-1][1] indicate the
			sizes of the first dimension and second dimension of the
			panel to store a matrix L respectively, which is
			allocated in the i-th location
			allocated in the <i>i</i> -th location. and $i = 1, 1, 1, 2, 1$ indicates the total amount of the size of
			allocated in the i -th location. ndim[i-1][2] indicates the total amount of the size of the first dimension of the panel where a matrix U is

nfcnzfactoru	long nfcnzfactoru[n+1]	Input Output	transposed and stored and the size of its block diagonal portion. Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. When isw \neq 1, the values set by the first call are reused. Regarding a matrix U derived from LU decomposition of an unsymmetric complex sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the i-th panel is mapped into zpanelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1.
		Input	When $isw \ne 1$, the values set by the first call are reused.
zpanelfactor	dcomplex	Output	The rows of the decomposed matrix \boldsymbol{U} belonging to each
u	zpanelfactoru		supernode are compressed to have the common column
	[nsizefactoru]		indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The block number of the section where the panel corresponding to
			the i -th supernode is assigned is known from $j =$
			nassign[i-1]. The location of its top of subarray
			including the portion of decomposed matrices is stored in
			nfcnzfactoru[j-1]. The size of the panel in the
			<i>i</i> -th block can be considered to be two dimensional array
			of ${ndim[i-1][2]-ndim[i-1][1]} \times ndim$
			[i-1][1]. The rows of the unit upper triangular matrix
			U except the block diagonal portion are compressed,
			transposed and stored in this panel $[t-1][s-1]$, $s = 1$
			1,,ndim[i-1][2]-ndim[i-1][1],t=1, ,ndim[i-1][1].
			Regarding the storage method of the decomposed results,
	-	Ŧ.,	refer to Figure c_dm_vscs-1. See Comments on use.
nsizefactoru	long	Input	The size of the array zpanelfactoru.
		Output	The necessary size for the array zpanelfactoru is returned. See <i>Comments on use</i> .
nfcnzindexu	long	Output	The rows of the decomposed matrix U belonging to each
112 0112 1110 0110	nfcnzindexu[n+1]	o anp an	supernode are compressed to have the common column
			indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The index
			number of the top array element of the one dimensional
			subarray where the <i>i</i> -th column indices vector including
			indices of the block diagonal portion is mapped into
			npanelindexu consecutively is stored.

			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vscs-1.
		Input	When $isw \neq 1$, the values set by the first call are reused.
npanelindexu	int npanelindexu	Output	The rows of the decomposed matrix U belonging to each
	[nsizeindexu]		supernode are compressed, transposed and stored in a two
			dimensional panel without its block diagonal portion.
			The column indices vector including indices of the block
			diagonal portion is mapped into npanelindexu
			consecutively. The block number of the section where the
			column indices vector corresponding to the <i>i</i> -th supernode
			is assigned is known from j = nassign[i-1]. The
			location of its top of subarray is stored in
			nfcnzindexu[j-1]. These column indices are the
			column numbers of the matrix into which SYM is
			permuted in its post order.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vscs-1. See Comments on use.
nsizeindexu	long	Input	The size of the array npanelindexu.
	5	Output	The necessary size is returned. See <i>Comments on use</i> .
nposto	int nposto[n]	Output	The information about what column number of \mathbf{A} the i -th
		_F	node in post order corresponds to is stored.
		Input	When isw $\neq 1$, the values set by the first call are reused.
		1	See Comments on use.
sclrow	double sclrow[n]	Output	The diagonal elements of $\mathbf{D}_{\mathbf{r}}$ or a diagonal matrix for
		•	scaling rows are stored in one dimensional array.
		Input	When $i \le w \ne 1$, the values set by the first call are reused.
sclcol	double sclcol[n]	Output	The diagonal elements of $\mathbf{D}_{\mathbf{c}}$ or a diagonal matrix for
			scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \neq 1$
			specified.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0).
		Output	When $epsz \le 0.0$, it is set to the standard value.
			See Comments on use.
thepsz	double	Input	Threshold used in judgement for a pivot. Immediately
			after a candidate in pivot search is considered to have the
			value greater than or equal to the threshold specified, it is
			accepted as a pivot and the search of a pivot is broken off.
			For example, 10 ⁻² .
		Output	When thepsz ≤ 0.0 , 10^{-2} is set.
			When $epsz \ge thepsz > 0.0$, it is set to the value of
			epsz.
ipivot	int	Input	Control information on pivoting which indicates whether
			a pivot is searched and what kind of pivoting is chosen if
			any.
			For example, 40 for complete pivoting.
			ipivot ≤ 10 or ipivot ≥ 50 , no pivoting.

istatic	int	Input	10 ≤ ipivot < 20, partial pivoting 20 ≤ ipivot < 30, diagonal pivoting 21: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. 22: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. 30 ≤ ipivot < 40, Rook pivoting 32: When within a supernode Rook pivoting fails, it is changed to complete pivoting. 40 ≤ ipivot < 50, complete pivoting Control information indicating whether Static pivoting is taken. 1) When istatic = 1 is specified.
			When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of a complex number with the absolute value of spepsz. If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied. a) epsz must be less than or equal to the standard value of epsz. b) Scaling must be performed with isclitermax =10. c) thepsz \geq spepsz must hold. d) irefine = 1 must be specified for the iterative refinement of the solution.
			2) When $istatic \neq 1$ is specified.
			No static pivot is performed.
spepsz	double	Input	The approximate value used in Static pivoting when $istatic = 1$ is specified. The following conditions must hold. $10^{-8} \ge spepsz \ge epsz$
		Output	When speps $z \le \text{eps} z$. When speps $z \le \text{eps} z$, it is set to 10^{-10} .
nfcnzpivot	int nfcnzpivot [nsupnum+1]	Output	The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the i -th supernode is assigned is known by $j = nassign[i-1]$. The position of the first element of that section is stored in $nfcnzpivot[j-1]$. The information of exchange rows and columns within the i -th supernode is stored in the elements of $is = nfcnzpivot[j-1]$,, $ie = nfcnzpivot[j-1] + ndim[j-1][1] - 1$ in $npivotp$ and $npivotq$ respectively.
npivotp	<pre>int npivotp[n]</pre>	Output	The information on exchanges of rows within each supernode is stored.

npivotq	int npivotq[n]	Output	The information on exchanges of columns within each
			supernode is stored.
irefine	int	Input	Control information indicating whether iterative
			refinement is performed when the solution is computed in
			use of results of LU decomposition. A residual vector is
			computed in quadruple precision.
			When irefine = 1 is specified.
			The iterative refinement is performed. It is iterated until in
			the sequences of the solutions obtained in refinement the
			difference of the absolute values of their corresponding
			residual vectors become larger than a fourth of that of
			immediately previous ones.
			When $irefine \neq 1$ is specified.
			No iterative refinement is performed.
			When istatic = 1 is specified, irefine = 1 must be
			specified.
epsr	double	Input	Criterion value to judge if the absolute value of the
			residual vector b - Ax is sufficiently smaller compared
			with the absolute value of b .
			When epsr ≤ 0.0 , it is set to 10^{-6} .
itermax	int	Input	Upper limit of iterative count for refinement (≥ 1).
iter	int	Output	Actual iterative count for refinement.
ZW	dcomplex zw[2*nz]	Work	When this routine is called repeatedly with isw=1, 2 this
		area	work area is used for preserving information among calls.
			The contents must not be changed.
W	double	Work	When this routine is called repeatedly with $isw = 1, 2$
	w[4*nz+6*n]	area	this work area is used for preserving information among
			calls. The contents must not be changed.
iw1	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw1[2*nz+2*	area	this work area is used for preserving information among
	(n+1)+16*n		calls. The contents must not be changed.
iw2	int	Work	When this routine is called repeatedly with $isw = 1, 2, 3$
	iw2[47*n+47+nz+4*	area	this work area is used for preserving information among
	(n+1)+2*(nz+n)]		calls. The contents must not be changed.
icon	int	Output	Condition code. See below.
TEL 1 . 1' . C	11.1		

Code	Meaning	Processing
0	No error.	Completed.
20000	The pivot became relatively zero. The coefficient	Processing is discontinued.
	matrix A may be singular.	
20100	When ipledsm is specified, maximum	
	matching with the length n is sought in order to	
	permute large entries to the diagonal but can not	
	be found. The coefficient matrix A may be	
	singular.	

Code	Meaning	Processing
20200	When seeking diagonal matrices for equilibrating	
	both rows and columns, there is a zero vector in	
	either rows or columns of the matrix A . The	
	coefficient matrix A may be singular.	
20400	There is a zero element in diagonal of resultant	
	matrices of LU decomposition.	
20500	The norm of residual vector for the solution	
	vector is greater than that of b multiplied by	
	epsr, which is the right term constant vector in	
	$\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix \mathbf{A} may be close to	
	a singular matrix.	
30000	One of the following has occurred:	Processing is discontinued.
	• n<1	
	• nz<0	
	• nfcnz[n] ≠ nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindexl<1	
	• nsizeindexu<1	
	• isw<1	
	• isw > 3	
	• itermax < 1 when irefine = 1.	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is nfcnz[i]-nfcnz[i-1]>n.	
30500	When istatic = 1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than $16u$ of the standard value	
	orisclitermax < 10	
	or irefine $\neq 1$	
	or spepsz > thepsz	
	or spepsz $> 10^{-8}$	
31000	The value of nsizefactorl is not enough as	Reallocate the zpanelfactorl or
	the size of zpanelfactorl,	npanelindexl or
	or the value of nsizeindexl is not enough as	zpanelfactoru ornpanelindexu
	the size of npanelindexl,	with the necessary size which are returned in the
	or the value of nsizefactoru is not enough as	nsizefactorlornsizeindexlor
	the size of zpanelfactoru,	nsizefactoru ornsizeindexu
	or the value of nsizeindexu is not enough as	respectively
	the size of npanelindexu.	and call this routine again with isw = 2 specified.

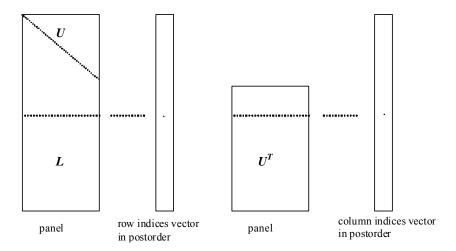


Figure c_dm_vscs-1. Conceptual scheme for storing decomposed results

```
j = nassign[i-1] \rightarrow The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1] \rightarrow The j-th panel occupies the area with a length ndim[j-1][0] \times ndim[j-1][1] from the p-th element of zpanelfactorl.
```

 $q = nfcnzindex1[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *q*-th element of npanelindex1.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix \mathbf{U} of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the u-th element of zpanelfactoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix $\mathbf{U}^{\mathbf{T}}$ except its block diagonal portion of decomposed results is stored in

```
panel[y-1][x-1], x = 1,...,ndim[j-1][2]-ndim[j-1][1], y = 1,...,ndim[j-1][1].
```

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

```
When the element p_{ij} = 1 of the permutation matrix P, set perm[i-1] = j.
```

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
```

```
j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for pivot. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)

The necessary sizes for the array <code>zpanelfactorl</code>, <code>npanelindexl</code>, <code>zpanelfactoru</code> and <code>npanelindexu</code> that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size <code>specifying</code> in <code>nsizefactorl</code>, <code>nsizeindexl</code>, <code>nsizefactoru</code> and <code>nsizeindexu</code> with <code>isw = 1</code>. This routine ends with <code>icon = 31000</code>, and the necessary sizes for <code>nsizefactorl</code>, <code>nsizeindexl</code>, <code>nsizeindexl</code>, <code>nsizefactoru</code> and <code>nsizeindexu</code> are returned. Then the suspended process can be resumed by calling it with <code>isw = 2</code> after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

Instead of this routine, a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling both $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ -vsclu to perform LU decomposition of an unsymmetric complex sparse matrix \mathbf{A} and $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ -vsclux to solve the linear equation in use of decomposed results.

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 40
#define KX NORD
#define KY NORD
#define KZ NORD
#define N KX * KY * KZ
#define NBORDER (N + 1)
#define NOFFDIAG 6
\#define K (N + 1)
#define NDIAG 7
#define NALL NDIAG * N
#define ZWL 2 * NALL
#define WL 4 * NALL + 6 * N
\#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)
void init_mat_diag(double, double, double, double*, int*, int, int, int,
                  double, double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
 int nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 dcomplex za[K * NDIAG], zwc[K * NDIAG],
           zw[ZWL], zone;
 int nrow[K * NDIAG], nfcnz[N + 1],
      nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
```

```
iwc[K * NDIAG][2];
int nperm[N],
    nposto[N], ndim[N][3],
    nassign[N],
     mz[N],
     iw1[IW1L], iw2[IW2L];
double w[WL];
dcomplex *zpanelfactorl, *zpanelfactoru;
int *npanelindexl, *npanelindexu;
dcomplex zdummyfl, zdummyfu;
int ndummyil,
    ndummyiu;
long nsizefactorl,
     nsizeindexl,
     nsizeindexu,
     nsizefactoru,
     nfcnzfactorl[N + 1],
     nfcnzfactoru[N + 1],
     nfcnzindexl[N + 1],
      nfcnzindexu[N + 1];
dcomplex zb[N], zsolex[N];
double epsz, thepsz, spepsz,
        sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1],
    npivotp[N], npivotq[N],
     irefine, itermax, iter, ipledsm;
double err, val, va2, va3, vc, xl, yl, zl, epsr;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
     isclitermax, isw, nsupnum;
zone.re = 1.0;
zone.im = 0.0;
printf("
           LU DECOMPOSITION METHOD\n");
           FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
printf("
printf("
           IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
  zsolex[i] = zone;
}
printf("
          EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf, %lf) X(N) = (%lf, %lf) \n\n",
       zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;
```

```
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
              KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
  for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
  }
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {
    nbase = -nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][j] = diag[i][nbase + j];
    }
  } else {
    nbase = nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
     diag2[i][nbase + j] = diag[i][j];
    }
  }
}
numnz = 1;
for (j = 0; j < N; j++) {
  ntopcfg = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (ntopcfg == 1) {
     nfcnz[j] = numnz;
     ntopcfg = 0;
    }
    if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
      continue;
    } else {
```

```
if (diag2[i][j] != 0.0) {
         ncol = (j + 1) - nofst[i];
          za[numnz - 1].re = diag2[i][j];
          za[numnz - 1].im = 0.0;
         nrow[numnz - 1] = ncol;
         numnz++;
       }
      }
 nfcnz[N] = numnz;
 nz = numnz - 1;
 c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,
              zb, zwc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
 iordering = 0;
 ipledsm = 1;
 isclitermax = 10;
 isw = 1;
 epsz = 1.0e-16;
 nsizefactorl = 1;
 nsizefactoru = 1;
 nsizeindexl = 1;
 nsizeindexu = 1;
 thepsz = 1.0e-2i
 spepsz = 0.0;
 ipivot = 40;
  istatic = 0;
 irefine = 1;
 epsr = 0.0;
  itermax = 10;
 c_dm_vscs(za, nz, nrow, nfcnz, N,
            ipledsm, mz, isclitermax, &iordering,
           nperm, isw,
           nrowsym, nfcnzsym,
            zb,
           nassign,
            &nsupnum,
```

```
nfcnzfactorl, &zdummyfl,
          &nsizefactorl,
          nfcnzindexl,
          &ndummyil, &nsizeindexl,
          (int *)ndim,
          nfcnzfactoru, &zdummyfu,
          &nsizefactoru,
          nfcnzindexu,
          &ndummyiu, &nsizeindexu,
          nposto,
          sclrow, sclcol,
          &epsz, &thepsz,
          ipivot, istatic, &spepsz, nfcnzpivot,
          npivotp, npivotq,
          irefine, epsr, itermax, &iter,
          zw, w, iw1, iw2, &icon);
printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
       icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);
zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vscs(za, nz, nrow, nfcnz, N,
          ipledsm, mz, isclitermax, &iordering,
          nperm, isw,
          nrowsym, nfcnzsym,
          zb,
          nassign,
          &nsupnum,
          nfcnzfactorl, zpanelfactorl,
          &nsizefactorl,
          nfcnzindexl,
          npanelindexl, &nsizeindexl,
          (int *)ndim,
          nfcnzfactoru, zpanelfactoru,
          &nsizefactoru,
          nfcnzindexu,
          npanelindexu, &nsizeindexu,
          nposto,
          sclrow, sclcol,
```

```
&epsz, &thepsz,
           ipivot, istatic, &spepsz, nfcnzpivot,
          npivotp, npivotq,
          irefine, epsr, itermax, &iter,
           zw, w, iw1, iw2, &icon);
 err = errnrm(zsolex, zb, N);
 printf("
            COMPUTED VALUES\n");
 printf("
            X(1) = (\$lf, \$lf) X(N) = (\$lf, \$lf) \n\n", zb[0], zb[N - 1]);
 printf("
            ICON = %d\n\n", icon);
 printf("
            N = dnn', N;
 printf("
          ERROR = %lf\n", err);
 printf("
            ITER=d\n\n', iter);
 if (err < 1.0e-8 && icon == 0) {
   printf("******** OK *******\n");
 } else {
   printf("******* NG *******\n");
 free(zpanelfactorl);
 free(zpanelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
}
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc,
                 double *d_l, int *offset,
                 int nx, int ny, int nz, double xl, double yl, double zl,
                 int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
```

```
ndiag_loc = ndiag;
 if (ndiag > 7)
   ndiag_loc = 7;
/* INITIAL SETTING */
 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = z1 / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
   }
  }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) \{
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
```

```
}
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js -1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   }
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
     1++;
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_1[(1 * ndivp) + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   }
   if (ndiag_loc >= 4) \{
```

```
if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
label_100: ;
 }
}
 return;
* SOLUTE ERROR
 * | Z1 - Z2 |
  */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
 double rtc, s;
 dcomplex ss;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
  ss = comp_sub(z1[i], z2[i]);
   s += ss.re * ss.re + ss.im * ss.im;
 }
 rtc = sqrt(s);
 return(rtc);
}
{\tt dcomplex\ comp\_sub(dcomplex\ sol,\ dcomplex\ so2)\ \{}
 dcomplex obj;
 obj.re = so1.re - so2.re;
 obj.im = sol.im - so2.im;
 return obj;
}
```

5. Method

Consult the entry for DM_VSCS in the Fortran $SSL\ II\ Thread-Parallel\ Capabilities\ User's\ Guide$ as well as [2], [13], [17], [19], [22], [23], [46], [53], [59], [64] and [65].

c_dm_vsevph

Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization, multisection method, and inverse iteration)

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of n-dimensional real symmetric matrix \mathbf{A} .

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \tag{1}$$

where, **A** is an $n \times n$ real symmetric matrix.

2. Arguments

The routine is called as follows:

<pre>ierr = c_dm_vsevph((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e,</pre>					
	<pre>maxne, (int*)m, (double*)ev, &icon);</pre>				
where:					
a	<pre>double a[n][k]</pre>	Input	The upper triangular part $\{a_{ij} i \le j\}$ of real symmetric matrix A is		
			stored in the upper triangular part $\{a[i-1][j-1], i \le j\}$ of a.		
			The value of a is not assured after operation.		
k	int	Input	C fix dimension of matrix A . $(k \ge n)$		
n	int	Input	Order n of matrix A .		
nf	int	Input	Number assigned to the first eigenvalue to be acquired by numbering		
			eigenvalues in ascending order. (Multiple eigenvalues are numbered so		
			that one number is assigned to one eigenvalue.)		
nl	int	Input	Number assigned to the last eigenvalue to be acquired by numbering		
			eigenvalues in ascending order. (Multiple eigenvalues are numbered so		
			that one number is assigned to one eigenvalue.)		
ivec	int	Input	Control information.		
			ivec = 1 if both the eigenvalues and eigenvectors are sought.		
			$ivec \neq 1$ if only the eigenvalues are sought.		
etol	double	Input	Criterion value for checking whether the eigenvalues are numerically		
			different from each other or are multiple.		
		Output	When eto1 is less than 3.0×10^{-16} this value is used as the standard		
			value. See Comments on use.		
ctol	double	Input	Criterion value for checking whether the adjacent eigenvalues can be		
			considered to be approximately equal to each other. This value is used		
			to assure the linear independence of the eigenvector corresponding to		
			the eigenvalue belonging to approximately multiple eigenvalues		
			(clusters).		

			The value of ctol should be generally 5.0×10^{-12} . For a very large
			cluster, a large ctol value is required.
		Output	$10^{-6} \ge \text{ctol} \ge \text{etol}$. When condition ctol > 10^{-6} occurs, ctol is set to 10^{-6} .
		Output	When condition $ctol < etol$ occurs, $ctol = 10 \times etol$ is set as the
			standard value. See <i>Comments on use</i> .
nev	int nev[5]	Output	Number of eigenvalues calculated.
110 V	1116 116 ([3]	output	Details are given below.
			nev[0] indicates the number of different eigenvalues calculated.
			nev[1] indicates the number of approximately multiple different
			eigenvalues (different clusters) calculated.
			nev[2] indicates the total number of eigenvalues (including multiple
			eigenvalues) calculated.
			nev[3] indicates the number representing the first of the eigenvalues
			calculated.
			nev[4] indicates the number representing the last of the eigenvalues
			calculated.
е	double	Output	Eigenvalues. Stored in $e[i-1]$, $i = 1,, nev[2]$.
	e[maxne]		
maxne	int	Input	Maximum number of eigenvalues that can be computed.
			When it can be considered that there are two or more eigenvalues with
			multiplicity m , maxne must be set to a larger value than $nl - nf + l + l$
			$2 \times m$ that is bounded by n . When condition nev[2] > maxne occurs,
	int	Output	the eigenvectors cannot be calculated. See <i>Comments on use</i> . Information about multiplicity of eigenvalues calculated.
m	-	Output	
	III[Z][IIIAXIIE]		
ev	double	Output	
	ev[maxne][k]	1	stored in ev.
			The eigenvectors are stored in $ev[i-1][j-1], i = 1,, nev[2], j$
			= 1,, n.
icon	int	Output	Condition code. See below.
ev		Output	m[0][i-1] indicates the multiplicity of the <i>i</i> -th eigenvalue λ_i . m[1][i-1] indicates the multiplicity of the <i>i</i> -th cluster when the adjacent eigenvalues are regarded as clusters. See <i>Comments on use</i> . When ivec = 1, the eigenvectors corresponding to the eigenvalues are stored in ev. The eigenvectors are stored in ev[i-1][j-1], i = 1,, nev[2], j = 1,, n.

Code	Meaning	Processing
0	No error.	Completed.
20000	During calculation of clustered eigenvalues, the	Discontinued. The eigenvectors cannot be
	total number of eigenvalues exceeded the value of	calculated, but the different eigenvalues
	maxne.	themselves are already calculated.
		A suitable value for maxne to allow calculation
		to proceed is returned in nev[2].
		See Comments on use.

Code	Meaning	Processing	
30000	One of the following has occurred:	Bypassed.	
	• n < 1		
	• k < n		
	• nf < 1		
	• nl>n		
	• nl < nf		
	• maxne < nl - nf + 1		

3. Comments on use

etol and ctol

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).

When ε = eto1, the following condition is satisfied for consecutive eigenvalues λ_j ($j = s - 1, s, ..., s + k, (k \ge 0)$):

$$\frac{|\lambda_{i} - \lambda_{i-1}|}{1 + \max(|\lambda_{i-1}|, |\lambda_{i}|)} \le \varepsilon,$$
(2)

If formula (2) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues λ_i (j = s - 1, s, ..., s + k) are numerically multiple.

The standard value of etol is 3.0×10^{-16} (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (2) is not satisfied when $\varepsilon = \text{etol}$, it can be considered that λ_{i-1} and λ_i are distinct eigenvalues.

When $\varepsilon = \mathtt{etol}$, assume that consecutive eigenvalues λ_m (m = t - 1, t, ..., t + k ($k \ge 0$)) are different eigenvalues. Also, when $\varepsilon = \mathtt{ctol}$, assume that formula (2) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t + k + 1. In this case, it is assumed that the distinct eigenvalues λ_m (m = t - 1, t, ..., t + k) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to λ_m (m = t - 1, t, ..., t + k) are reorthogonalized.

maxne

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i-1], i=1, ..., nev[0]. The multiplicity of the corresponding eigenvalues is stored in m[0][i-1], i=1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be nt(nt = nl - nf + 1) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is m, the maxne value must be at least $nt + 2 \times m$.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define N
                                                                                                                                    500
#define K
                                                                                                                                             Ν
#define NF
#define NL
                                                                                                                                   100
#define MAXNE
                                                                                                           NL-NF+1
MAIN__()
          double a[N][K], ab[N][K];
          double e[MAXNE], ev[MAXNE][K];
          double vv[N][K];
          double etol, ctol,
                                                                                                                    pi;
                                              nev[5], m[2][MAXNE];
          int
          int
                                                   ierr, icon;
                                                  i, j, k, n, nf, nl, maxne, ivec;
          int
          n
                                            = N;
          k
                                            = K;
          nf
                                            = NF;
          nl
                                             = NL;
           ivec
                                          = 1;
           maxne = MAXNE;
          etol = 3.0e-16;
ctol = 5.0e-12;
            /* Generate real symmetric matrix with known eigenvalues */
            /* Initialization
          pi = 4.0 * atan(1.0);
           for(i=0; i<n; i++) {
                       for(i=0; i<n; i++) {
                                  vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi*
                                                                                                                               (double)(j+1)/(double)(n+1));
                                  a[i][j] = 0.0;
           for(i=0; i<n; i++) {
                     a[i][i] = (double)(-n/2+(i+1));
          printf(" Input matrix size is %d\n", n);
          printf(" Matrix calculations use k = %d\n", k);
          printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl);
          printf(" That is, request %d eigenvalues.\n", maxne);
          printf(" True eigenvalues are as follows\n");
           for(i=nf-1; i<nl; i++)
                   printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]);
          \texttt{ierr} = \texttt{c\_dm\_vmggm} \ ((\texttt{double*})\texttt{a}, \ \texttt{k}, \ (\texttt{double*})\texttt{vv}, \ \texttt{k}, \ (\texttt{double*})\texttt{ab}, \ \texttt{k}, \ \texttt{n}, \ \texttt{n}, \ \texttt{n}, \ \texttt{k}, \ (\texttt{double*})\texttt{vv}, \ \texttt{k}, \ (\texttt{double*})\texttt{vv}, \ \texttt{k}, \ (\texttt{double*})\texttt{vv}, \ \texttt{k}, \ (\texttt{double*})\texttt{vv}, \ \texttt{k}, \ \texttt{n}, \
          \texttt{ierr} = \texttt{c\_dm\_vmggm} \ ((\texttt{double*})\texttt{vv}, \ \texttt{k}, \ (\texttt{double*})\texttt{ab}, \ \texttt{k}, \ (\texttt{double*})\texttt{a}, \ \texttt{k}, \ \texttt{n}, \ \texttt{n}, \ \texttt{n}, \ \texttt{n}, \ \texttt{n}, \ \texttt{k}, \ \texttt{n}, \ \texttt{n
            /* Calculate the eigendecomposition of A */
          ierr = c_dm_vsevph ((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,
                                                                                                                         (int*)m, (double*)ev, &icon);
           if (icon > 0) {
                     printf("ERROR: c_dvsevp failed with icon = %d\n", icon);
                     exit(1);
          printf("icon = %i\n", icon);
            /* print eigenvalues */
```

```
printf(" Number of eigenvalues %d\n", nev[2]);
printf(" Number of distinct eigenvalues %d\n", nev[0]);
printf(" Solution to eigenvalues\n");
for(i=0; i<nev[2]; i++) {
   printf(" e[%d] = %12.4e\n", i, e[i]);
}
return(0);</pre>
```

5. Method

Consult the entry for DM_VSEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [57].

c_dm_vsldl

LDL ^T decomposition of symmetric positive definite matrices (blocked				
modified Cholesky decomposition method).				
<pre>ierr = c_dm_vsldl(a, k, n, epsz, &icon);</pre>				

1. Function

This function executes LDL^T decomposition for an $n \times n$ positive definite matrix **A** using the blocked modified Cholesky decomposition method of outer product type, so that

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$$

where, ${\bf L}$ is a unit lower triangular matrix and ${\bf D}$ is a diagonal matrix.

2. Arguments

The routine is called as follows:

		•	
ierr where:	= c_dm_vsldl((d	louble*)a,	k, n, epsz, &icon);
a	double a[n][k]	Input Output	The upper triangular part $\{a_{ij}, i \le j\}$ of \mathbf{A} is stored in the upper triangular part $\{a[i-1][j-1], i \le j\}$ of a for input. See Figure c_dm_vsldl-1. The contents of the array are altered on output. Decomposed matrix. After the first set of equations has been solved, the upper triangular part of $a[i-1][j-1]$ ($i \le j$) contains l_{ij} ($i \le j$) of the upper triangular matrix \mathbf{L} , \mathbf{D}^{-1} and \mathbf{L}^{T} .
k	int	Input	C fixed dimension of array a. $(\ge n)$
n	int	Input	Order n of matrix \mathbf{A} .
epsz	double	Input	Tolerance for relative zero test (≥ 0). When epsz is zero, a standard value is assigned. See <i>Comments on use</i> .
icon	int	Output	Condition code. See below.
	1 . 1 . 0 . 1		

Code	Meaning	Processing
0	No error.	Completed.
10000	A pivot was negative. Matrix A is not positive definite.	Continued.
20000	A pivot is relatively zero. It is probable that matrix A is singular.	Discontinued.
30000	One of the following has occurred: • $n < 1$ • $k < n$ • epsz < 0	Bypassed.

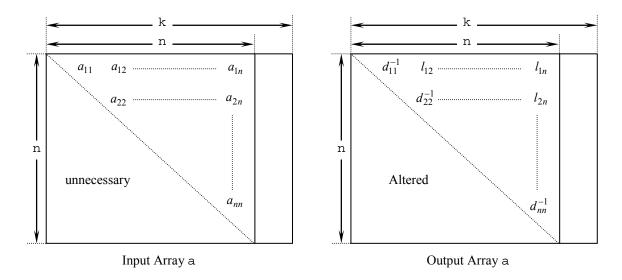


Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part (a_{ij}) of the LDL^T-decomposed positive definite matrix are stored in array a[i-1][j-1], i=1,...,n, j=i,...,n.

After LDL^T decomposition, matrix \mathbf{D}^{-1} is stored in diagonal elements and \mathbf{L} (excluding the diagonal elements) are stored in the upper triangular part respectively.

3. Comments on use

epsz

The standard value of epsz is 16μ , where μ is the unit round-off. If, during the decomposition process, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

icon

If a pivot is negative during decomposition, the matrix \mathbf{A} is not positive definite and $\mathtt{icon} = 10000$ is set. Processing is continued, however no further pivoting is performed and the resulting calculation error may be significant.

Calculation of determinant

The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of the elements of output array a corresponding to the diagonal elements of D^{-1} , and then taking the reciprocal of the result.

4. Example program

LDL^T decomposition is executed for a 1000×1000 matrix.

```
#include <stdlib.h>
#include <stdlio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)</pre>
MAIN__()
{
  int  n, i, j, icon, ierr;
```

```
double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;
      = NMAX;
 epsz = 0.0;
#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
   for(j=0; j< n; j++) a[i][j] = min(i,j)+1;
#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
 ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon);
 if (icon != 0) {
   printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);
   exit(1);
 ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon);
 if (icon != 0) {
  printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
    exit(1);
 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];
 printf("solution vector:\n");
 for(i=0; i<10; i++) printf("
                                  b[%d] = %e\n", i, b[i]);
 det = 1.0/s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
```

5. Method

Consult the entry for DM_VSLDL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52].

c dm vsrlu

```
LU decomposition of an unsymmetric real sparse matrix.
ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n,
            ipledsm, mz, isclitermax,
            &iordering, nperm, isw,
            nrowsym, nfcnzsym,
            nassign, &nsupnum,
            nfcnzfactorl, panelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl,
            &nsizeindexl, ndim,
            nfcnzfactoru, panelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            &nsizeindexu, nposto,
            sclrow, sclcol,
            &epsz, &thepsz, ipivot, istatic,
            &spepsz, nfcnzpivot,
            npivotp, npivotq, w, iw1, iw2,
            &icon);
```

1. Function

The large entries of an $n \times n$ unsymmetric real sparse matrix **A** are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

The unsymmetric real sparse matrix is transformed as below.

$$A_1 = D_r A P_c D_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{Q} \mathbf{P} \mathbf{A}_1 \mathbf{P}^T \mathbf{Q}^T$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $\mathbf{SYM} = \mathbf{A_1} + \mathbf{A_1}^T$ and **Q** is a permutation matrix of postorder for \mathbf{SYM} . **P** and **Q** are orthogonal matrices. **L** is a lower triangular matrix and **U** is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

2. Arguments

The routine is called as follows:

ine routine is can							
ierr = c_dm_	<pre>ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,</pre>						
&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum,							
nfcnzfactorl, panelfactorl, &nsizefactorl, nfcnzindexl,							
<pre>npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,</pre>							
	panelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,						
			ow, sclcol, &epsz, &thepsz, ipivot,				
			, npivotp, npivotq, w, iw1, iw2,				
	&icon);	CIIZPIVOC	, inpivocp, inpivocq, w, iwi, iwi,				
where:	&ICOII) /						
	1 1 7 7 1	T4	The man and the second				
a	double a[nz]	Input	The nonzero elements of an unsymmetric real sparse				
			matrix A are stored.				
			For the compressed column storage method, refer to				
			Figure c_dm_vmvscc-1 in the description for				
			c_dm_vmvscc routine (multiplication of a real sparse				
			matrix and a real vector).				
nz	int	Input	The total number of the nonzero elements belong to an				
			unsymmetric real sparse matrix A.				
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage				
		1	method, which indicate the row number of each nonzero				
			element stored in an array A.				
nfcnz	int nfcnz[n+1]	Input	The position of the first nonzero element of each column				
III CIIZ	IIIC IIICIIZ[II·I]	три	stored in an array A in the compressed column storage				
			method which stores the nonzero elements column by				
			column.				
		_	nfcnz[n] = nz + 1.				
n	int	Input	Order n of matrix \mathbf{A} .				
ipledsm	int	Input	Control information whether to permute the large entries				
			to the diagonal of a matrix A .				
			When $ipledsm = 1$ is specified, a matrix A is				
			transformed internally permuting large entries to the				
			diagonal.				
			Otherwise no permutation is performed.				
mz	int mz[n]	Output	When ipledsm = 1 is specified, it indicates a				
			permutation of columns. $mz[i-1] = j$ indicates that the				
			j -th column which the element of a_{ij} belongs to is				
			permutated to <i>i</i> -th column. The element of a_{ij} is the large				
			entry to be permuted to the diagonal.				
isclitermax	int	Input	The upper limit for the number of iteration to seek scaling				
ISCIICEIMAX	IIIC	при					
			matrices of \mathbf{D}_{r} and \mathbf{D}_{c} to equilibrate both rows and				
			columns of matrix A .				
			When isclitermax ≤ 0 is specified no scaling is				
			done. In this case $\mathbf{D_r}$ and $\mathbf{D_c}$ are assumed as unit matrices.				
			When $isclitermax \ge 10$ is specified, the upper limit				

for the number of iteration is considered as 10. iordering Input Control information whether to decompose the reordered int matrix PA_1P^T permuted by the matrix P of ordering or to decompose the matrix A. When iordering = 10 is specified, calling this routine with isw = 1 produces the informations which is needed to generate an ordering regarding A_1 and they are set in nrowsym and nfcnzsym. When iordering 11 is specified, it is indicated that after an ordering is set in nperm, the computation is resumed. Using the informations obtained in nrowsym and nfcnzsym after calling this routines with isw = 1 and iordering = 10, an ordering is determined. After specifying this ordering in nperm, this routine is called again with isw = land iordering = 11 and the computation is resumed. LU decomposition of the matrix PA_1P^T is continued. Otherwise. Without any ordering, the matrix A_1 is decomposed into LU. Output iordering is set to 11 after this routine is called with iordering = 10 and isw = 1. Therefore after an ordering is set in nperm the computation is resumed in the subsequent call without iordering = 11 being specified explicitly. See Comments on use. The permutation matrix **P** is stored as a vector. See int nperm[n] Input nperm Comments on use. isw int Input Control information. 1) When isw = 1 is specified. After symmetrization of a matrix and symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. Call with iordering = 10 produces the informations needed for seeking an ordering in nrowsym and nfcnzsym. Using these informations an ordering for SYM is determined. After an ordering is set in nperm, calling this routine with iordering = 11 and also isw = 1 again resumes the computation. When iordering is neither 10 nor 11, no ordering is specified. 2) When isw = 2 specified. After the previous call ends with icon = 31000, that

means that the sizes of panelfactorl or panelfactoru or npanelindexl or

			npanelindexu were not enough, the suspended computation is resumed. Before calling again with isw = 2, the panelfactorl or panelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindexl or nsizeindezu at the precedent call and specified in corresponding arguments. Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls.
nrowsym	int nrowsym[nz+n]	Output	When it is called with iordering = 10, the row indices of nonzero pattern of the lower triangular part of $\mathbf{SYM} = \mathbf{A_1} + \mathbf{A_1}^T$ in the compressed column storage method are generated.
nfcnzsym	int nfcnzsym[n+1]	Output	When it is called with iordering = 10, the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. nfcnzsym[n] = nsymz + 1 where nsymz is the total nonzero elements in the lower triangular part.
nassign	int nassign[n]	Output	L and U belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the <i>i</i> -th supernode is stored into the <i>j</i> -th block of a subarray, where j = nassign[i-1].
		Input	When $isw \neq 1$, the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to Figure c_dm_vsrlu-1.
nsupnum	int	Output Input	The total number of supernodes. The values in the first call are reused when $isw \neq 1$ specified. ($\leq n$)
nfcnzfactorl	<pre>long nfcnzfactorl[n+1]</pre>	Output	The decomposed matrices L and U of an unsymmetric real sparse matrix are computed for each supernode respectively. The columns of L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel

panelfactorl	double panelfactorl [nsizefactorl]	Input Output	with the corresponding parts of U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into panelfactorl consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1. The values set by the first call are reused when isw ≠ 1 specified. The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The block number of the section where the panel corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactorl[j-1]. The size of the panel in the <i>i</i> -th block can be considered to be two dimensional array of ndim[i-1][0] × ndim[i-1][1] The corresponding parts of the lower triangular matrix L are store in this panel [t-1][s-1], s≥t, s=1,, ndim[i-1][0], t=1,, ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix U except its diagonals is stored in the panel[t-1][s-1], s <t, decomposed="" method="" ndim[i-1][1].="" of="" regarding="" results,<="" storage="" t="1,," th="" the=""></t,>
nsizefactorl	long	Input Output	refer to Figure c_dm_vsrlu-1. See <i>Comments on use</i> . The size of the array panelfactorl. The necessary size for the array panelfactorl is
6 1 3 5	-	0	returned. See Comments on use.
nfcnzindexl	<pre>long nfcnzindexl[n+1]</pre>	Output	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the i -th row indices vector is mapped into npanelindexl consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_{dm_v} -vsrlu-1. When $i \le w \ne 1$, the values set by the first call are reused.
npanelindexl	<pre>int npanelindexl [nsizeindexl]</pre>	Output	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row

			indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the <i>i</i> -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1. See <i>Comments on use</i> .
nsizeindexl	long	Input Output	The size of the array npanelindex1. The necessary size is returned. See <i>Comments on use</i> .
ndim	<pre>int ndim[n][3]</pre>	Output	ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the <i>i</i> -th location. ndim[i-1][2] indicates the total amount of the size of the first dimension of the panel where a matrix U is transposed and stored and the size of its block diagonal portion. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1.
nfcnzfactoru	long nfcnzfactoru[n+1]	Input Output Input	When $isw \ne 1$, the values set by the first call are reused. Regarding a matrix U derived from LU decomposition of an unsymmetric real sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the i -th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_{dm_v} -srlu-1. When $isw \ne 1$, the values set by the first call are reused.
panelfactoru	double panelfactoru [nsizefactoru]	Output	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the i -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $nfcnzfactoru[j-1]$. The size of the panel in the

			<i>i</i> -th block can be considered to be two dimensional array of $\{ ndim[i-1][2] - ndim[i-1][1] \} \times ndim [i-1][1].$ The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], s = 1,, ndim[i-1][2] - ndim[i-1][1], t = 1,, ndim[i-1][1]. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1. See <i>Comments on use</i> .
nsizefactoru	long	Input Output	The size of the array panelfactoru. The necessary size for the array panelfactoru is returned. See <i>Comments on use</i> .
nfcnzindexu	<pre>long nfcnzindexu[n+1]</pre>	Output	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1.
npanelindexu	<pre>int npanelindexu [nsizeindexu]</pre>	Input Output	When $isw \neq 1$, the values set by the first call are reused. The rows of the decomposed matrix U belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the <i>i</i> -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray is stored in $nfcnzindexu[j-1]$. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1. See Comments on use.
nsizeindexu	long	Input Output	The size of the array npanelindexu. The necessary size is returned. See <i>Comments on use</i> .
nposto	<pre>int nposto[n]</pre>	Output Input	The information about what column number of A the <i>i</i> -th node in post order corresponds to is stored. When $isw \ne 1$, the values set by the first call are reused.
sclrow	double sclrow[n]	Output Input	See Comments on use. The diagonal elements of $\mathbf{D_r}$ or a diagonal matrix for scaling rows are stored in one dimensional array. When $\mathtt{isw} \neq 1$, the values set by the first call are reused.

sclcol	double sclcol[n]	Output	The diagonal elements of \mathbf{D}_{c} or a diagonal matrix for scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \ne 1$ specified.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0).
		Output	When $epsz \le 0.0$, it is set to the standard value.
			See Comments on use.
thepsz	double	Input	Threshold used in judgement for a pivot. Immediately
			after a candidate in pivot search is considered to have the
			value greater than or equal to the threshold specified, it is
			accepted as a pivot and the search of a pivot is broken off.
			For example, 10^{-2} .
		Output	When thepsz ≤ 0.0 , 10^{-2} is set.
			When $epsz \ge thepsz > 0.0$, it is set to the value of
		Ŧ.,	epsz.
ipivot	int	Input	Control information on pivoting which indicates whether
			a pivot is searched and what kind of pivoting is chosen if
			any. For example, 40 for complete pivoting.
			ipivot < 10 or ipivot ≥ 50 , no pivoting.
			$10 \le \text{ipivot} < 20$, partial pivoting
			20 ≤ ipivot < 30, diagonal pivoting
			21: When within a supernode diagonal pivoting fails, it is
			changed to Rook pivoting.
			22: When within a supernode diagonal pivoting fails, it is
			changed to Rook pivoting. If Rook pivoting fails, it is
			changed to complete pivoting.
			$30 \le ipivot < 40$, Rook pivoting
			32: When within a supernode Rook pivoting fails, it is
			changed to complete pivoting.
			$40 \le ipivot < 50$, complete pivoting
istatic	int	Input	Control information indicating whether Static pivoting is
			taken.
			1) When istatic = 1 is specified.
			When the pivot searched within a supernode is not greater than spepsz, it is replaced with its
			approximate value of copysign(spepsz, pivot).
			If its value is 0.0, spepsz is used as an
			approximation value. The following conditions must be satisfied.
			a) epsz must be less than or equal to the standard
			value of epsz.
			b) Scaling must be performed with isclitermax = 10.
			c) thepsz \geq spepsz must hold.
			2) When istatic ≠ 1 is specified.
			No static pivot is performed.
spepsz	double	Input	The approximate value used in Static pivoting when

		Output	istatic = 1 is specified. The following conditions must hold. thepsz \geq spepsz \geq epsz When spepsz $<$ epsz, it is set to 10^{-10} .
nfcnzpivot	int nfcnzpivot	Output	The location for the storage where the history of relative
	[nsupnum+1]		row and column exchanges for pivoting within each
			supernode is stored. The block number of the section where the information
			on the <i>i</i> -th supernode is assigned is known by $j =$
			nassign[i-1]. The position of the first element of
			that section is stored in nfcnzpivot[j-1]. The
			information of exchange rows and columns within the <i>i</i> -th
			supernode is stored in the elements of is=
			<pre>nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] +</pre>
			$ \operatorname{ndim}[j-1][2] - 1 \text{ in npivotp and npivotq} $
			respectively.
npivotp	<pre>int npivotp[n]</pre>	Output	The information on exchanges of rows within each
			supernode is stored.
npivotq	int npivotq[n]	Output	The information on exchanges of columns within each
	1 1 1	W1-	supernode is stored.
W	double	Work	When this routine is called repeatedly with isw = 1, 2
	w[4*nz+6*n]	area	this work area is used for preserving information among calls. The contents must not be changed.
iw1	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw1[2*nz+2*	area	this work area is used for preserving information among
	(n+1)+16*n]		calls. The contents must not be changed.
iw2	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw2[47*n+47+nz+4*	area	this work area is used for preserving information among
	(n+1)+2*(nz+n)]		calls. The contents must not be changed.
icon	int	Output	Condition code. See below.

Code	Meaning	Processing
0	No error.	Completed.
10000	When istatic = 1 is specified, Static pivot	Continued.
	which replaces the pivot candidate with too small	
	value with spepsz is made.	
20000	The pivot became relatively zero. The coefficient	Processing is discontinued.
	matrix A may be singular.	
20100	When ipledsm is specified, maximum	
	matching with the length n is sought in order to	
	permute large entries to the diagonal but can not	
	be found. The coefficient matrix A may be	
	singular.	

Code	Meaning	Processing
20200	When seeking diagonal matrices for equilibrating	Processing is discontinued.
	both rows and columns, there is a zero vector in	
	either rows or columns of the matrix A. The	
	coefficient matrix A may be singular.	
30000	One of the following has occurred:	
	• n<1	
	• nz < 0	
	• $nfcnz[n] \neq nz + 1$	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindexl < 1	
	• nsizeindexu<1	
	• isw<1	
	• isw>2	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow[j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is $nfcnz[i] - nfcnz[i-1] > n$.	
30500	When istatic = 1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than 16 <i>u</i> of the standard value	
	orisclitermax < 10	
	or spepsz > thepsz	
31000	The value of nsizefactorl is not enough as	Reallocate the panelfactorl or
	the size of panel factor 1,	npanelindexl or
	or the value of nsizeindexl is not enough as	panelfactoru or npanelindexu
	the size of npanelindexl,	with the necessary size which are returned in the
	or the value of nsizefactoru is not enough as	nsizefactorlornsizeindexlor
	the size of panel factoru,	nsizefactoru or nsizeindexu
	or the value of nsizeindexu is not enough as	respectively
	the size of npanelindexu.	and call this routine again with isw =2 specified.

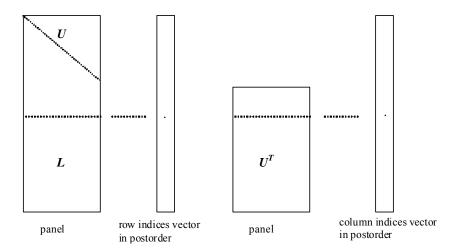


Figure c_dm_vsrlu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

 $p = nfcnzfactorl[j-1] \rightarrow The j-th panel occupies the area with a length <math>ndim[j-1][0] \times ndim[j-1][1]$ from the p-th element of panel factorl.

 $q = nfcnzindexl[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindexl.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the u-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix U^T except its block diagonal portion of decomposed results is stored in panel[y-1][x-1], x = 1, ..., ndim[j-1][2] - ndim[j-1][1], y = 1, ..., ndim[j-1][1].

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

When the element $p_{ij} = 1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
```

```
j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

c)

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor1, nsizeindex1, nsizefactoru and nsizeindexu with isw = 1. This routine ends with icon = 31000, and the necessary sizes for nsizefactor1, nsizeindex1, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

A system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling \mathbf{c}_{dm} -vsrlux subsequently in use of the results of LU decomposition obtained by this routine.

The following arguments used in this routine are specified.

```
a, nz, nrow, nfcnz, n,
ipledsm, mz, iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindexl, ndim,
nfcnzfactoru, panelfactoru, nsizefactoru,
```

```
nfcnzindexu, npanelindexu, nsizeindexu, nposto, sclrow, sclcol, nfcnzpivot, npivotq, iw2
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD
                40
#define KX
               NORD
#define KY
               NORD
#define KZ
               NORD
#define N
                (KX * KY * KZ)
#define NBORDER (N + 1)
#define NOFFDIAG
                    6
#define K
                (N + 1)
#define NDIAG
               7
#define NALL
                (NDIAG*N)
               (4 * NALL + 6 * N)
#define WL
#define IW1L
                (2 * NALL + 2 * (N + 1) + 16 * N)
#define IW2L
                (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
                   double, double, int, int, int);
double errnrm(double*, double*, int);
```

```
int MAIN__() {
  int
          nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 double a[K * NDIAG], wc[K * NDIAG];
          \label{eq:nrow_energy} \texttt{nrow}[\texttt{K * NDIAG}], \ \texttt{nfcnz}[\texttt{N + 1}], \ \texttt{nrowsym}[\texttt{K * NDIAG + N}], \ \texttt{nfcnzsym}[\texttt{N + 1}],
  int
          iwc[K * NDIAG][2];
          nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
  int
          iw2[IW2L];
 double w[WL];
 double *panelfactor1, *panelfactoru;
          *npanelindex1, *npanelindexu;
  int
 double dummyfl, dummyfu;
  int
          ndummyil, ndummyiu;
  long
          nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
          nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
          nfcnzindexu[N + 1];
  double b[N], solex[N];
 double thepsz, epsz, spepsz, sclrow[N], sclcol[N];
  int
          ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
          itermax, iter, ipledsm;
  int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
      isclitermax, isw, nsupnum;
  double va1, va2, va3, vc, xl, yl, zl, err, epsr;
 printf("
              LU DECOMPOSITION METHOD\n");
 printf("
               FOR SPARSE UNSYMMETRIC REAL MATRICES\n");
 printf("
               IN COMPRESSED COLUMN STORAGE\n \n");
 for (i = 0; i < N; i++) \{
    solex[i] = 1.0;
 printf("
               EXPECTED SOLUTIONS\n");
 printf("
                X(1) = 18.151f X(N) = 18.151f n n', solex[0], solex[N-1]);
 va1 = 1.0;
 va2 = 2.0;
 va3 = 3.0;
 vc = 4.0;
 x1 = 1.0;
 y1 = 1.0;
  z1 = 1.0;
 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
                 xl, yl, zl, NDIAG, N, K);
```

```
for (i = 0; i < NDIAG; i++) {
  for (j = 0; j < K; j++) {
    diag2[i][j] = 0;
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {
    nbase = -nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][j] = diag[i][nbase + j];
    }
  } else {
    nbase = nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][nbase + j] = diag[i][j];
    }
  }
}
numnz = 1;
for (j = 0; j < N; j++) {
  ntopcfg = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (ntopcfg == 1) {
     nfcnz[j] = numnz;
     ntopcfg = 0;
    }
    if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
      continue;
    } else {
      if (diag2[i][j] != 0.0) {
        ncol = (j + 1) - nofst[i];
        a[numnz - 1] = diag2[i][j];
        nrow[numnz - 1] = ncol;
        numnz++;
      }
    }
  }
```

```
}
 nfcnz[N] = numnz;
 nz = numnz - 1;
 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
  iordering = 0;
  ipledsm = 1;
  isclitermax = 10;
  isw = 1;
 nsizefactorl = 1;
 nsizefactoru = 1;
 nsizeindexl = 1;
 nsizeindexu = 1;
  epsz = 1.0e-16;
 thepsz = 1.0e-2i
 spepsz = 0.0;
  ipivot = 40;
  istatic = 0;
  irefine = 1;
  epsr = 0.0;
  itermax = 10;
 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,
             nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,
             &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,
             (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu,
             &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,
             ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,
             iw2, &icon);
 printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",
         icon, nsizefactorl, nsizefactoru, nsizeindexl);
 printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);
 panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));
 panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
  isw = 2;
 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm,
```

```
isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,
            panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,
            &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
            &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,
            sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,
            nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon);
 c_{m_v} c_n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
             panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
             nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
             nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
             ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
             irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);
 err = errnrm(solex, b, N);
 printf("
            COMPUTED VALUES\n");
 printf("
             X(1) = 18.15lf X(N) = 18.15lf n n', b[0], b[N-1]);
 printf("
             ICON = %d\n \n", icon);
 printf("
            N = %6d\n \n", N);
 printf("
             ERROR = 18.15lf\n'', err);
 printf("
             ITER= %d\n \n \n", iter);
 if (err < 1.0e-8 && icon == 0) {
   printf(" ******** OK ********\n");
 } else {
   printf(" ******** NG ********\n");
 }
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) \{
   printf("FUNCTION INIT_MAT_DIAG:\n");
```

}

```
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
  }
#pragma omp parallel default(shared)
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
   }
  }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
```

```
1++;
   }
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
   k0 = (js - 1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   }
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
     1++;
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_1[(1 * ndivp) + j] += 2.0 / hz2;
     }
```

```
}
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
label_100: ;
 }
}
 return;
}
* SOLUTE ERROR
 * | X1 - X2 |
  */
double errnrm(double *x1, double *x2, int len) {
 double rtc, s, ss;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
   ss = x1[i] - x2[i];
   s = s + ss * ss;
 }
 rtc = sqrt(s);
 return(rtc);
}
```

5. Method

Consult the entry for DM_VSRLU in the Fortran $SSL\ II\ Thread-Parallel\ Capabilities\ User's\ Guide$ as well as [2], [13], [17], [19], [22], [23], [46], [53], [59], [64] and [65].

c dm vsrlux

```
A system of linear equations with LU-decomposed unsymmetric real
sparse matrices
ierr = c_dm_vsrlux(n, iordering, nperm
            b, nassign, nsupnum,
             nfcnzfactorl, panelfactorl,
             nsizefactorl, nfcnzindexl,
             npanelindexl,
             nsizeindexl, ndim,
             nfcnzfactoru, panelfactoru,
             nsizefactoru,
             nfcnzindexu, npanelindexu,
             nsizeindexu, nposto,
             ipledsm, mz,
             sclrow, sclcol, nfcnzpivot,
             npivotp, npivotq, irefine, epsr,
             itermax, &iter,
             a, nz, nrow, nfcnz,
             iw2, &icon);
```

1. Function

An $n \times n$ unsymmetric real sparse matrix **A** of which LU decomposition is made as below is given. In this decomposition the large entries of an $n \times n$ unsymmetric real sparse matrix **A** are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.

$$Ax = b$$

A matrix **A** is decomposed into as below.

$$P_{rs}QPD_rAP_cD_cP^TQ^TP_{cs} = LU$$

The unsymmetric real sparse matrix A is transformed as below.

$$\mathbf{A}_1 = \mathbf{D}_r \mathbf{A} \mathbf{P}_c \mathbf{D}_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{Q} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}}$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

 P_{rs} and P_{cs} represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $SYM = A_1 + A_1^T$ and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

<pre>ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,</pre>			
	panelfactorl, nsizef	actorl,	nfcnzindexl, npanelindexl,
	nsizeindexl, (int *)	ndim, n	fcnzfactoru, panelfactoru,
	nsizefactoru, nfcnzi	ndexu,	npanelindexu, nsizeindexu, nposto,
	ipledsm, mz, sclrow,	sclcol	, nfcnzpivot, npivotp, npivotq,
	irefine, &epsr, item	rmax, &i	ter, a, nz, nrow, nfcnz, iw2, &icon);
where:			
n	int	Input	Order n of matrix A.
iordering	int	Input	When iordering 11 is specified, it is indicated that LU
			decomposition is performed with an ordering
			specified in nperm.
			The matrix $\mathbf{P}\mathbf{A}_1\mathbf{P}^T$ is decomposed into LU decomposition.
			Otherwise. No ordering is specified.
			See Comments on use.
nperm	<pre>int nperm[n]</pre>	Input	When iordering = 11 is specified, a vector presenting
			the permutation matrix P used is stored.
			See Comments on use.
b	double b[n]	Input	The right-hand side constant vector b of a system of
			linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.
		Output	Solution vector x .
nassign	<pre>int nassign[n]</pre>	Input	L and U belonging to each supernode are compressed and
			stored in two dimensional panels respectively. These
			panels are stored in panelfactor1 and
			panelfactoru as one dimensional subarray
			consecutively and its block number is stored. The
			corresponding indices vectors are similarly stored
			npanelindex1 and npanelindexu respectively.
			Data of the <i>i</i> -th supernode is stored into the <i>j</i> -th block of a
			subarray, where $j = nassign[i-1]$.
			Regarding the storage methods of decomposed matrices,
			refer to Figure c_dm_vsrlux-1.
nsupnum	int	Input	The total number of supernodes.($\leq n$)
nfcnzfactorl	long	Input	The decomposed matrices \boldsymbol{L} and \boldsymbol{U} of an unsymmetric
	nfcnzfactorl[n+1]		real sparse matrix are computed for each supernode
			respectively. The columns of L belonging to each
			supernode are compressed to have the common row

one dimensional subarray where the *i*-th panel is mapped into panelfactor1 consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. panelfactorl double Input The columns of the decomposed matrix L belonging to panelfactorl each supernode are compressed to have the common row [nsizefactorl] indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The block number of the section where the panel corresponding to the *i*-th supernode is assigned is known from j = nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactorl[j-1]. The size of the panel in the *i*-th block can be considered to be two dimensional array of $ndim[j-1][0] \times$ ndim[j-1][1]. The corresponding parts of the lower triangular matrix L are store in this panel $[t-1][s-1], s \ge t, s = 1,..., ndim[i-1][0], t = 1,$..., ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix U except its diagonals is stored in the panel [t-1][s-1], s < t, t = 1, ..., ndim[i-1][1].Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. nsizefactorl The size of the array panelfactor1. long Input nfcnzindexl The columns of the decomposed matrix L belonging to long Input nfcnzindexl[n+1] each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the *i*-th row indices vector is mapped into npanelindex1 consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. npanelindexl int npanelindexl Input The columns of the decomposed matrix L belonging to [nsizeindexl] each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. This column indices vector

indices vector and stored into a two dimensional panel with the corresponding parts of **U** in its block diagonal portion. The index number of the top array element of the

is mapped into npanelindex1 consecutively. The

block number of the section where the row indices vector

corresponding to the *i*-th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindex1[j-1]. This row indices are the row numbers of the matrix into which **SYM** is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. nsizeindexl long Input The size of the array npanelindex1. int ndim[n][3] ndim[i-1][0] and ndim[i-1][1] indicate the ndim Input sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the *i*-th location. ndim[i-1][2] indicates the total amount of the size of the first dimension of the panel where a matrix **U** is transposed and stored and the size of its block diagonal portion. Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. nfcnzfactoru Input Regarding a matrix U derived from LU decomposition of long an unsymmetric real sparse matrix, the rows of U except nfcnzfactoru[n+1] the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the *i*-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c dm vsrlux-1. panelfactoru double The rows of the decomposed matrix U belonging to each Input supernode are compressed to have the common column panelfactoru [nsizefactoru] indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the *i*-th supernode is assigned is known from j =nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the *i*-th block can be considered to be two dimensional array of $\{ndim[i-1][2] - ndim[i-1][1]\} \times ndim$ [i-1][1]. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this panel [t-1][s-1], s =1,...,ndim[i-1][2]-ndim[i-1][1], t=1,

..., ndim[i-1][1].

			Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
nsizefactoru	long	Input	The size of the array panelfactoru. See Comments on use.
nfcnzindexu	long nfcnzindexu[n+1]	Input	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
npanelindexu	<pre>int npanelindexu [nsizeindexu]</pre>	Input	The rows of the decomposed matrix U belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the i -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray is stored in $nfcnzindexu[j-1]$. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure $c_dm_vsrlux-1$.
nsizeindexu nposto	<pre>long int nposto[n]</pre>	Input Input	The size of the array npanelindexu. The information about what column number of A the <i>i</i> -th node in post order corresponds to is stored. See <i>Comments on use</i> .
ipledsm	int	Input	Information indicating whether for LU decomposition it is specified to permute the large entries to the diagonal of a matrix A . When ipledsm = 1 is specified, a matrix A is transformed internally permuting large entries to the diagonal. Otherwise no permutation is performed.
mz	int mz[n]	Input	When $ipledsm = 1$ is specified, it indicates a permutation of columns. $mz[i-1] = j$ indicates that the j -th column which the element of a_{ij} belongs to is permutated to i -th column. The element of a_{ij} is the large entry to be permuted to the diagonal.
sclrow	double sclrow[n]	Input	The diagonal elements of $\mathbf{D}_{\mathbf{r}}$ or a diagonal matrix for scaling rows are stored in one dimensional array.

sclcol	double sclcol[n]	Input	The diagonal elements of D_c or a diagonal matrix for
			scaling columns are stored in one dimensional array.
nfcnzpivot	int nfcnzpivot [nsupnum+1]	Input	The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored.
			The block number of the section where the information on the <i>i</i> -th supernode is assigned is known by $j =$
			nassign[i-1]. The position of the first element of
			that section is stored in nfcnzpivot[j-1]. The
			information of exchange rows and columns within the i-th
			supernode is stored in the elements of is =
			<pre>nfcnzpivot[j-1],,ie=nfcnzpivot[j-1]+</pre>
			ndim[j-1][2] - 1 in npivotp and npivotq
			respectively
npivotp	<pre>int npivotp[n]</pre>	Input	The information on exchanges of rows within each
			supernode is stored.
npivotq	int npivotq[n]	Input	The information on exchanges of columns within each
			supernode is stored.
irefine	int	Input	Control information indicating whether iterative
			refinement is performed when the solution is computed in
			use of results of LU decomposition. A residual vector is
			computed in quadruple precision.
			When irefine = 1 is specified.
			The iterative refinement is performed. It is iterated until in
			the sequences of the solutions obtained in refinement the
			difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of
			immediately previous ones.
			When irefine \neq 1 is specified.
			No iterative refinement is performed.
epsr	double	Input	Criterion value to judge if the absolute value of the
GF 52	000000	puv	residual vector
			b-Ax is sufficiently smaller compared with the absolute
			value of b .
			When $epsr \le 0.0$, it is set to 10^{-6} .
itermax	int	Input	Upper limit of iterative count for refinement (≥ 1).
iter	int	Output	Actual iterative count for refinement.
a	double a[nz]	Input	The nonzero elements of an unsymmetric real sparse
			matrix A are stored in a [0] to [nz-1]
			For the compressed column storage method, refer to
			Figure c_dm_vmvscc-1 in the description for
			c_dm_vmvscc routine (multiplication of a real sparse
			matrix and a real vector).
nz	int	Input	The total number of the nonzero elements belong to an
			unsymmetric real sparse matrix A.
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage

			method, which indicate the row number of each nonzero
			element stored in an array a.
nfcnz	<pre>int nfcnz[n+1]</pre>	Input	The position of the first nonzero element of each column
			stored in an array a in the compressed column storage
			method which stores the nonzero elements column by
			column.
			nfcnz[n] = nz + 1.
iw2	int	Work	The data derived from calling c_dm_vsrlu of LU
	iw2[47*n+47+nz+4*	area	decomposition of an unsymmetric real sparse matrix is
	(n+1)+2*(nz+n)]		transferred in this work area. The contents must not be
			changed among calls.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20400	There is a zero element in diagonal of resultant matrices of LU decomposition.	Processing is discontinued.
20500	The norm of residual vector for the solution vector is greater than that of b multiplied by epsr, which is the right term constant vector in $\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix A may be close to a singular matrix.	
30000	One of the following has occurred: • n < 1 • nz < 0 • nfcnz[n] ≠ nz + 1 • nsizefactorl < 1 • nsizefactoru < 1 • nsizeindexl < 1 • nsizeindexu < 1 • itermax < 1 when irefine = 1.	
30100	The permutation matrix specified in nperm is not correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$ or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column is $nfcnz[i] - nfcnz[i-1] > n$.	

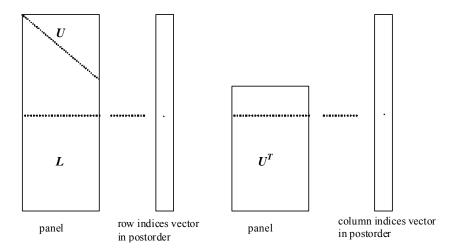


Figure c_dm_vsrlux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

p=nfcnzfactor1[j-1] \rightarrow The *j*-th panel occupies the area with a length ndim[j-1][0] \times ndim [j-1][1] from the *p*-th element of panelfactor1.

 $q = nfcnzindexl[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindexl.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the u-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix U^T except its block diagonal portion of decomposed results is stored in panel[y-1][x-1], x = 1, ..., ndim[j-1][2] - ndim[j-1][1], y = 1, ..., ndim[j-1][1].

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c dm vsrlu is used.

See note c), "Comments on use." of c dm vsrlu and Example program of c dm vsrlux.

b)

When the element $p_{ij} = 1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nperm[i-1];
  nperminv[j-1] = i;
}</pre>
```

c)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1,a_2,a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdlib.h>
#include <math.h>
#include <math.h>
#include <omp.h>
#include "cssl.h"

#define NORD 40
#define KX NORD
#define KY NORD
```

```
#define N
              (KX * KY * KZ)
#define NBORDER (N + 1)
#define NOFFDIAG
                   6
#define K
               (N + 1)
               7
#define NDIAG
#define NALL
               (NDIAG*N)
#define WL
               (4 * NALL + 6 * N)
#define IW1L
             (2 * NALL + 2 * (N + 1) + 16 * N)
               (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
#define IW2L
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
                  double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
 int
         nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 double a[K * NDIAG], wc[K * NDIAG];
 int
         nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
         iwc[K * NDIAG][2];
 int
         nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
         iw2[IW2L];
 double w[WL];
 double *panelfactor1, *panelfactoru;
 int
         *npanelindex1, *npanelindexu;
 double dummyfl, dummyfu;
 int
         ndummyil, ndummyiu;
 long
         nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
         nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
         nfcnzindexu[N + 1];
 double b[N], solex[N];
 double thepsz, epsz, spepsz, sclrow[N], sclcol[N];
 int.
         ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
         itermax, iter, ipledsm;
 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
     isclitermax, isw, nsupnum;
 double va1, va2, va3, vc, xl, yl, zl, err, epsr;
 printf("
             LU DECOMPOSITION METHOD\n");
 printf("
             FOR SPARSE UNSYMMETRIC REAL MATRICES\n");
 printf("
             IN COMPRESSED COLUMN STORAGE\n \n");
 for (i = 0; i < N; i++) {
   solex[i] = 1.0;
 }
```

```
EXPECTED SOLUTIONS\n");
printf("
printf("
            X(1) = 18.151f X(N) = 18.151f n n", solex[0], solex[N-1]);
val = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
x1 = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
             xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
 if (nofst[i] < 0) {</pre>
   nbase = -nofst[i];
   length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][j] = diag[i][nbase + j];
   }
  } else {
   nbase = nofst[i];
   length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][nbase + j] = diag[i][j];
  }
}
numnz = 1;
for (j = 0; j < N; j++) {
 ntopcfg = 1;
  for (i = NDIAG - 1; i >= 0; i--) \{
   if (ntopcfg == 1) {
     nfcnz[j] = numnz;
      ntopcfg = 0;
```

```
}
      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) \{
       continue;
      } else {
       if (diag2[i][j] != 0.0) {
         ncol = (j + 1) - nofst[i];
         a[numnz - 1] = diag2[i][j];
         nrow[numnz - 1] = ncol;
         numnz++;
        }
      }
 nfcnz[N] = numnz;
 nz = numnz - 1;
 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
  iordering = 0;
 ipledsm = 1;
  isclitermax = 10;
  isw = 1;
 nsizefactorl = 1;
 nsizefactoru = 1;
 nsizeindexl = 1;
 nsizeindexu = 1;
  epsz = 1.0e-16;
  thepsz = 1.0e-2i
 spepsz = 0.0;
  ipivot = 40;
  istatic = 0;
  irefine = 1;
  epsr = 0.0;
  itermax = 10;
 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,
             nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,
             &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,
             (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu,
             &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,
             ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,
```

```
iw2, &icon);
printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",
       icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);
panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));
panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm,
           isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,
           panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,
           &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
           &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,
           sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,
           nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon);
c_{m_v} c_n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
            panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
            nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
            nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
            ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
            irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);
err = errnrm(solex, b, N);
printf("
            COMPUTED VALUES\n");
printf("
            X(1) = 18.151f X(N) = 18.151f n n', b[0], b[N-1]);
printf("
            ICON = %d\n \n", icon);
printf("
            N = %6d\n \n", N);
printf("
            ERROR = 18.15lf\n'', err);
printf("
            ITER= %d\n \n \n", iter);
if (err < 1.0e-8 && icon == 0) {
 printf(" ******** OK *******\n");
} else {
 printf(" ******** NG ********\n");
}
free(panelfactorl);
free(panelfactoru);
free(npanelindexl);
```

```
free(npanelindexu);
 return(0);
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
{
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
   }
 }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
```

```
1++;
   }
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) \{
     offset[1] = nx;
     1++;
   }
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
   k0 = (js - 1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
```

```
}
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
      d_1[(1 * ndivp) + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   }
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
label_100: ;
 }
}
 return;
* SOLUTE ERROR
 * | X1 - X2 |
  */
double errnrm(double *x1, double *x2, int len) {
 double rtc, s, ss;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
```

```
ss = x1[i] - x2[i];
s = s + ss * ss;
}

rtc = sqrt(s);
return(rtc);
}
```

c dm vsrs

A system of linear equations with unsymmetric real sparse matrices (LU decomposition method)

```
ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n,
            ipledsm, mz, isclitermax,
            &iordering, nperm, isw,
            nrowsym, nfcnzsym, b,
            nassign, &nsupnum,
            nfcnzfactorl, panelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl,
            &nsizeindexl, ndim,
            nfcnzfactoru, panelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            &nsizeindexu, nposto,
            sclrow, sclcol,
            &epsz, &thepsz, ipivot, istatic,
            &spepsz, nfcnzpivot,
            npivotp, npivotq, irefine, epsr,
            itermax, &iter,
            w, iw1, iw2, &icon);
```

1. Function

The large entries of an $n \times n$ unsymmetric real sparse matrix **A** are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

$$Ax = b$$

The unsymmetric real sparse matrix is transformed as below.

$$A_1 = D_r A P_c D_c$$

where P_c is an orthogonal matrix for column permutation, D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{Q} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}}$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $SYM = A_1 + A_1^T$ and **Q** is a permutation matrix of postorder for SYM. **P** and **Q** are orthogonal matrices. **L** is a lower triangular matrix and **U** is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_	vsrs(a, nz, nrow, nf	cnz, n,	ipledsm, mz, isclitermax,
	&iordering, nperm, i	sw, nrow	wsym, nfcnzsym, b, nassign, &nsupnum,
	nfcnzfactorl, panelf	actorl,	&nsizefactorl, nfcnzindexl,
	npanelindexl, &nsize	indexl,	<pre>(int *)ndim, nfcnzfactoru,</pre>
	panelfactoru, &nsize	factoru	, nfcnzindexu, npanelindexu,
	&nsizeindexu, nposto	, sclrov	v, sclcol, &epsz, &thepsz, ipivot,
	istatic, &spepsz, nf	cnzpivot	t, npivotp, npivotq, irefine, epsr,
	itermax, iter, w, iw	1, iw2,	&icon);
where:			
a	<pre>double a[nz]</pre>	Input	The nonzero elements of an unsymmetric real sparse
			matrix A are stored.
			For the compressed column storage method, refer to
			Figure c_dm_vmvscc-1 in the description for
			c_dm_vmvscc routine (multiplication of a real sparse
			matrix and a real vector).
nz	int	Input	The total number of the nonzero elements belong to an
			unsymmetric real sparse matrix A .
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage
			method, which indicate the row number of each nonzero
			element stored in an array A.
nfcnz	int nfcnz[n+1]	Input	The position of the first nonzero element of each column
			stored in an array A in the compressed column storage
			method which stores the nonzero elements column by
			column.
			nfcnz[n] = nz + 1.
n	int	Input	Order n of matrix A .
ipledsm	int	Input	Control information whether to permute the large entries
			to the diagonal of a matrix A .
			When ipledsm = 1 is specified, a matrix A is
			transformed internally permuting large entries to the
			diagonal.
		Ontro	Otherwise no permutation is performed.
mz	int mz[n]	Output	When ipledsm = 1 is specified, it indicates a
			permutation of columns. $mz[i-1] = j$ indicates that the
			<i>j</i> -th column which the element of a_{ij} belongs to is

			permutated to i -th column. The element of a_{ij} is the large
			entry to be permuted to the diagonal.
isclitermax	int	Input	The upper limit for the number of iteration to seek scaling
			matrices of D_r and D_c to equilibrate both rows and
			columns of matrix A .
			When isclitermax ≤ 0 is specified no scaling is
			done. In this case $\mathbf{D_r}$ and $\mathbf{D_c}$ are assumed as unit matrices.
			When isclitermax ≥ 10 is specified, the upper limit
			for the number of iteration is considered as 10.
		Innut	
iordering	int	Input	Control information whether to decompose the reordered
			matrix $\mathbf{P}\mathbf{A}_1\mathbf{P}^T$ permuted by the matrix \mathbf{P} of ordering or to
			decompose the matrix A .
			When iordering = 10 is specified, calling this routine
			with isw = 1 produces the informations which is needed
			to generate an ordering regarding A_1 and they are set in
			nrowsym and nfcnzsym.
			When iordering 11 is specified, it is indicated that
			after an ordering is set in nperm, the computation is
			resumed.
			Using the informations obtained in nrowsym and
			nfcnzsym after calling this routines with $isw = 1$ and
			iordering = 10, an ordering is determined. After
			specifying this ordering in nperm, this routine is called
			again with isw = land iordering = 11 and the
			computation is resumed.
			LU decomposition of the matrix PA_1P^T is continued.
			Otherwise. Without any ordering, the matrix A_1 is
			decomposed into LU.
		Output	iordering is set to 11 after this routine is called with
		•	iordering = 10 and isw = 1. Therefore after an
			ordering is set in nperm the computation is resumed in
			the subsequent call without iordering = 11 being
			specified explicitly. See Comments on use.
nperm	int nperm[n]	Input	The permutation matrix P is stored as a vector. See
IIPCI III	ine inperment	прис	Comments on use.
isw	int	Input	Control information.
ISW	1110	при	1) When isw = 1 is specified.
			After symmetrization of a matrix and symbolic
			decomposition, checking whether the sufficient
			amount of memory for storing data are allocated the
			computation is performed.
			Call with iordering = 10 produces the
			informations needed for seeking an ordering in
			nrowsym and nfcnzsym. Using these
			informations an ordering for SYM is determined.
			After an ordering is set in nperm, calling this

routine with iordering =11 and also isw = 1 again resumes the computation.

When iordering is neither 10 nor 11, no ordering is specified.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that means that the sizes of panelfactor1 or panelfactoru or npanelindex1 or npanelindexu were not enough, the suspended computation is resumed.

Before calling again with isw = 2, the panelfactorl or panelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindexl or nsizeindezu at the precedent call and specified in corresponding arguments.

Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls

3) When isw = 3 specified.

The subsequent call with isw = 3 solves another system of equations of which the coefficient matrix is as same as previous call but the right-hand side vector \boldsymbol{b} is changed. In this case, the information obtained by the previous LU decomposition can be reused.

Besides, except isw as control information and b for storing the new right-hand side b, the values in the other arguments must not be changed between the previous and following calls.

nrowsym	<pre>int nrowsym[nz+n]</pre>	Output	When it is called with iordering = 10, the row indices of nonzero pattern of the lower triangular part of $\mathbf{SYM} = \mathbf{A_1} + \mathbf{A_1}^T$ in the compressed column storage method are generated.
nfcnzsym	<pre>int nfcnzsym[n+1]</pre>	Output	When it is called with iordering = 10, the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. nfcnzsym[n] = nsymz + 1 where nsymz is the total nonzero elements in the lower triangular part.
b	double b[n]	Input	The right-hand side constant vector \mathbf{b} of a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$.

nassign	int nassign[n]	Output Output Input	Solution vector x . L and U belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the i -th supernode is stored into the j -th block of a subarray, where $j = nassign[i-1]$. When $isw \neq 1$, the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to Figure c_dm_vsrs-1.
nsupnum	int	Output Input	The total number of supernodes. The values in the first call are reused when $i \le w \ne 1$ specified. ($\le n$)
nfcnzfactorl	<pre>long nfcnzfactorl[n+1]</pre>	Output	The decomposed matrices L and U of an unsymmetric real sparse matrix are computed for each supernode respectively. The columns of L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into panelfactorl consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. The values set by the first call are reused when isw \neq 1 specified.
panelfactorl	double panelfactorl [nsizefactorl]	Output	The columns of the decomposed matrix \mathbf{L} belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \mathbf{U} in its block diagonal portion. The block number of the section where the panel corresponding to the i -th supernode is assigned is known from $j = \text{nassign}[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $\text{nfcnzfactorl}[j-1]$. The size of the panel in the i -th block can be considered to be two dimensional array of $\text{ndim}[i-1][0] \times \text{ndim}[i-1][1]$. The corresponding parts of the lower triangular matrix \mathbf{L} are store in this panel $[t-1][s-1]$, $s \ge t$, $s = 1$,, $\text{ndim}[i-1][0]$,

			$t=1,,$ ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix U except its diagonals is stored in the panel [t-1][s-1], $s < t, t = 1,,$ ndim[i-1][1]. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. See <i>Comments on use</i> .
nsizefactorl	long	Input Output	The size of the array panelfactorl. The necessary size for the array panelfactorl is returned. See <i>Comments on use</i> .
nfcnzindexl	<pre>long nfcnzindexl[n+1]</pre>	Output	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th row indices vector is mapped into npanelindexl consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1.
npanelindexl	<pre>int npanelindexl [nsizeindexl]</pre>	Input Output	When $i \le w \ne 1$, the values set by the first call are reused. The columns of the decomposed matrix $\mathbf L$ belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix $\mathbf U$ in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the i -th supernode is assigned is known from $j = \texttt{nassign[i-1]}$. The location of its top of subarray is stored in $\texttt{nfcnzindexl[j-1]}$. This row indices are the row numbers of the matrix into which \mathbf{SYM} is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure $\mathbf c_{dm_vsrs-1}$. See Comments on use.
nsizeindexl	long	Input Output	The size of the array npanelindex1. The necessary size is returned. See <i>Comments on use</i> .
ndim	<pre>int ndim[n][3]</pre>	Output	ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the <i>i</i> -th location. ndim[i-1][2] indicates the total amount of the size of the first dimension of the panel where a matrix U is transposed and stored and the size of its block diagonal portion. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1.

nfcnzfactoru	long nfcnzfactoru[n+1]	Input Output	When $i \le w \ne 1$, the values set by the first call are reused. Regarding a matrix U derived from LU decomposition of an unsymmetric real sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one
panelfactoru	double panelfactoru [nsizefactoru]	Input Output	dimensional subarray where the <i>i</i> -th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. When isw \neq 1, the values set by the first call are reused. The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the <i>i</i> -th supernode is assigned is known from j =
			nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the i -th block can be considered to be two dimensional array of $\{ndim[i-1][2] - ndim[i-1][1]\} \times ndim$ [i-1][1]. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], $s = 1,, ndim[i-1][2] - ndim[i-1][1], t = 1,, ndim[i-1][1].$ Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. See <i>Comments on use</i> .
nsizefactoru	long	Input Output	The size of the array panelfactoru. The necessary size for the array panelfactoru is returned. See <i>Comments on use</i> .
nfcnzindexu	long nfcnzindexu[n+1]	Output	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1.
npanelindexu	int npanelindexu	Input Output	When $i \le w \ne 1$, the values set by the first call are reused. The rows of the decomposed matrix U belonging to each

	[nsizeindexu]		supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. See Comments on use.
nsizeindexu	long	Input Output	The size of the array npanelindexu. The necessary size is returned. See <i>Comments on use</i> .
nposto	<pre>int nposto[n]</pre>	Output	The information about what column number of A the <i>i</i> -th node in post order corresponds to is stored.
		Input	When $isw \neq 1$, the values set by the first call are reused. See <i>Comments on use</i> .
sclrow	double sclrow[n]	Output	The diagonal elements of $\mathbf{D_r}$ or a diagonal matrix for scaling rows are stored in one dimensional array.
sclcol	double sclcol[n]	Input Output	When $isw \neq 1$, the values set by the first call are reused. The diagonal elements of $\mathbf{D_c}$ or a diagonal matrix for scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \neq 1$ specified.
epsz	double	Input Output	Judgment of relative zero of the pivot (≥ 0.0). When $epsz \leq 0.0$, it is set to the standard value. See <i>Comments on use</i> .
thepsz	double	Input	Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, 10-2.
		Output	When thepsz ≤ 0.0 , 10^{-2} is set. When epsz \geq thepsz > 0.0 , it is set to the value of epsz.
ipivot	int	Input	Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. For example, 40 for complete pivoting. $\mathtt{ipivot} < 10 \text{ or } \mathtt{ipivot} \geq 50 \text{, no pivoting.}$ $10 \leq \mathtt{ipivot} < 20 \text{, partial pivoting}$ $20 \leq \mathtt{ipivot} < 30 \text{, diagonal pivoting}$ $21 : \text{When within a supernode diagonal pivoting fails, it is changed to Rook pivoting.}$

int Input Control information indicating whether Static pivoting is taken. Note the pivot searched within a supermode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied. a) epsz must be less than or equal to the standard value of epsz. b) Scaling must be performed with isclitermax = 10. c) thepsz ≥ spepsz must hold. d)irefine = 1 must be specified for the iterative refinement of the solution. 2) When istatic≠1 is specified. No static pivot is performed. Spepsz double Input The approximate value used in Static pivoting when istatic=1 is specified. The following conditions must hold. 10-10 ≥ spepsz ≥ epsz Output When spepsz < epsz, it is set to 10-10. The location for the storage where the history of relative row and column exchanges for pivoting within each supermode is stored. The block number of the section where the information on the /th supermode is stored in the elements of is = nfcnzpivot[j-1]. The information of exchange rows and columns within the /th supermode is stored in the elements of is = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supermode is stored. The information on exchanges of columns within each supermode is stored. The information on exchanges of columns within each supermode is stored. The information on exchanges of columns within each supermode is stored. The information on exchanges of columns within each supermode is stored. The information on exchanges of columns within each supermode is stored. The information on exchanges of columns within each supermode is stored.				22: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. 30 ≤ ipivot < 40, Rook pivoting 32: When within a supernode Rook pivoting fails, it is changed to complete pivoting. 40 ≤ ipivot < 50, complete pivoting
1) When istatic = 1 is specified. When the pivot searched within a supermode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied.	istatic	int	Input	Control information indicating whether Static pivoting is
When the pivot searched within a supermode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied.				***************************************
No static pivot is performed. Input The approximate value used in Static pivoting when istatic = 1 is specified. The following conditions must hold. 10⁻¹⁰ ≥ spepsz ≥ epsz Output When spepsz < epsz, it is set to 10⁻¹⁰. Insupnum+1] The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the i-th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supernode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. Inpivotq int npivotq[n] Output The information on exchanges of rows within each supernode is stored. Inpivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. Inpivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. Inpivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored.				When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied. a) epsz must be less than or equal to the standard value of epsz. b) Scaling must be performed with isclitermax = 10. c) thepsz ≥ spepsz must hold. d)irefine = 1 must be specified for the iterative
Spepsz double Input The approximate value used in Static pivoting when istatic = 1 is specified. The following conditions must hold. 10 ⁻¹⁰ ≥ spepsz ≥ epsz				2) When istatic $\neq 1$ is specified.
istatic = 1 is specified. The following conditions must hold. 10⁻¹¹² ≥ spepsz ≥ epsz Output When spepsz < epsz, it is set to 10⁻¹⁰. Proward column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the i-th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supernode is stored in the elements of is = nfcnzpivot[j-1]+ndim[j-1][2]-1 in npivotp and npivotq respectively. Privotq int npivotq[n] Output The information on exchanges of rows within each supernode is stored. Input Control information on exchanges of columns within each supernode is stored.				No static pivot is performed.
The following conditions must hold. 10 ⁻¹⁰ ≥ spepsz ≥ epsz Output When spepsz < epsz, it is set to 10 ⁻¹⁰ . The location for the storage where the history of relative row and column exchanges for pivoting within each supermode is stored. The block number of the section where the information on the i-th supermode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supermode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp npivotp int npivotp[n] Output The information on exchanges of rows within each supermode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supermode is stored. Input Control information indicating whether iterative	spepsz	double	Input	The approximate value used in Static pivoting when
Output When spepsz ≥ epsz Output When spepsz < epsz, it is set to 10 ⁻¹⁰ . The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the i-th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supernode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. Npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. Npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. Input Control information whether iterative				istatic = 1 is specified.
Output When spepsz < epsz, it is set to 10 ⁻¹⁰ . The location for the storage where the history of relative row and column exchanges for pivoting within each supermode is stored. The block number of the section where the information on the i-th supermode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supermode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. Npivotp int npivotp[n] Output The information on exchanges of rows within each supermode is stored. Npivotq int npivotq[n] Output The information on exchanges of columns within each supermode is stored. Input Control information whether iterative				The following conditions must hold.
Output When spepsz < epsz, it is set to 10 ⁻¹⁰ . The location for the storage where the history of relative row and column exchanges for pivoting within each supermode is stored. The block number of the section where the information on the i-th supermode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supermode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. Npivotp int npivotp[n] Output The information on exchanges of rows within each supermode is stored. Npivotq int npivotq[n] Output The information on exchanges of columns within each supermode is stored. Input Control information whether iterative				10 ⁻¹⁰ ≥ spepsz ≥ epsz
nfcnzpivotint nfcnzpivot [nsupnum+1]Output row and column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the i-th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the i-th supernode is stored in the elements of is = nfcnzpivot[j-1], , ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively.npivotpint npivotq[n]OutputThe information on exchanges of rows within each supernode is stored.npivotqint npivotq[n]OutputThe information on exchanges of columns within each supernode is stored.irefineintInputControl information indicating whether iterative			Output	
row and column exchanges for pivoting within each supernode is stored. The block number of the section where the information on the <i>i</i> -th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the <i>i</i> -th supernode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. Input Control information indicating whether iterative	nfcnzpivot	int nfcnzpivot	_	
on the <i>i</i> -th supernode is assigned is known by j = nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The information of exchange rows and columns within the <i>i</i> -th supernode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. Input Control information indicating whether iterative		_	o arp an	row and column exchanges for pivoting within each supernode is stored.
supernode is stored in the elements of is = nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. irefine int Input Control information indicating whether iterative				on the i -th supernode is assigned is known by $j =$ nassign[i-1]. The position of the first element of that section is stored in nfcnzpivot[j-1]. The
nfcnzpivot[j-1],, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. irefine int Input Control information indicating whether iterative				_
, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 in npivotp and npivotq respectively. npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. irefine int Input Control information indicating whether iterative				_
npivotp int npivotp[n] Output The information on exchanges of rows within each supernode is stored. npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. irefine int Input Control information indicating whether iterative				, ie=nfcnzpivot[j-1]+ndim[j-1][2]-1
npivotq int npivotq[n] Output The information on exchanges of columns within each supernode is stored. irefine int Input Control information indicating whether iterative	npivotp	<pre>int npivotp[n]</pre>	Output	The information on exchanges of rows within each
irefine int Input Control information indicating whether iterative	npivotq	<pre>int npivotq[n]</pre>	Output	The information on exchanges of columns within each
	irefine	int	Input	Control information indicating whether iterative

use of results of LU decomposition. A residual vector is computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones.

When irefine $\neq 1$ is specified.

No iterative refinement is performed.

When istatic = 1 is specified, irefine = 1 must be specified.

epsr double Input Criterion value to judge if the absolute value of the residual vector

b - Ax is sufficiently smaller compared with the absolute value of the residual vector

b - **Ax** is sufficiently smaller compared with the absolute value of **b**

When epsr ≤ 0.0 , it is set to 10^{-6} .

Upper limit of iterative count for refinement (≥ 1). itermax int Input iter int Output Actual iterative count for refinement. double Work When this routine is called repeatedly with isw = 1, 2W w[4*nz+6*n] this work area is used for preserving information among area calls. The contents must not be changed. iw1 int Work When this routine is called repeatedly with isw = 1, 2iw1[2*nz+2* this work area is used for preserving information among area (n+1)+16*ncalls. The contents must not be changed. iw2 int Work When this routine is called repeatedly with isw = 1, 2, 3iw2[47*n+47+nz+4* this work area is used for preserving information among area (n+1)+2*(nz+n)] calls. The contents must not be changed. icon int Condition code. See below. Output

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	The pivot became relatively zero. The coefficient matrix A may be singular.	Processing is discontinued.
20100	When ipledsm is specified, maximum matching with the length n is sought in order to permute large entries to the diagonal but can not be found. The coefficient matrix A may be singular.	
20200	When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix A . The coefficient matrix A may be singular.	
20400	There is a zero element in diagonal of resultant matrices of LU decomposition.	

Code	Meaning	Processing
20500	The norm of residual vector for the solution	
	vector is greater than that of b multiplied by	
	epsr, which is the right term constant vector in	
	$\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix \mathbf{A} may be close to	
	a singular matrix.	
30000	One of the following has occurred:	Processing is discontinued.
	• n<1	
	• nz < 0	
	• nfcnz[n] ≠ nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindexl<1	
	• nsizeindexu<1	
	• isw<1	
	• isw>3	
	• itermax < 1 when irefine = 1.	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is nfcnz[i] - nfcnz[i-1] > n.	
30500	When istatic =1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than 16 <i>u</i> of the standard value	
	orisclitermax < 10	
	orirefine≠1	
	or spepsz > thepsz	
	or spepsz $> 10^{-10}$	
31000	The value of nsizefactorl is not enough as	Reallocate the panelfactorl or
	the size of panelfactorl,	npanelindexlor
	or the value of nsizeindexl is not enough as	panelfactoru or npanelindexu
	the size of npanelindexl,	with the necessary size which are returned in the
	or the value of nsizefactoru is not enough as	nsizefactorlornsizeindexlor
	the size of panelfactoru,	nsizefactoru ornsizeindexu
	or the value of nsizeindexu is not enough as	respectively
	the size of npanelindexu.	and call this routine again with isw = 2 specified.

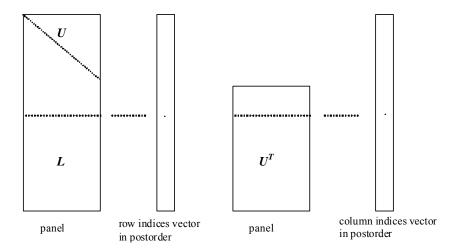


Figure c_dm_vsrs-1. Conceptual scheme for storing decomposed results

```
j = nassign[i-1] \rightarrow The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1] \rightarrow The j-th panel occupies the area with a length ndim[j-1][0] \times ndim[j-1][1] from the p-th element of panelfactorl.
```

 $q = nfcnzindex1[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *q*-th element of npanelindex1.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix \mathbf{U} of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$ from the u-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][2] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][2] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix $\mathbf{U}^{\mathbf{T}}$ except its block diagonal portion of decomposed results is stored in

```
panel[y-1][x-1], x = 1,..., ndim[j-1][2] - ndim[j-1][1], y = 1,..., ndim[j-1][1].
```

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

```
When the element p_{ij} = 1 of the permutation matrix P, set perm[i-1] = j.
```

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
```

```
j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor1, nsizeindex1, nsizefactoru and nsizeindexu with isw = 1. This routine ends with icon = 31000, and the necessary sizes for nsizefactor1, nsizeindex1, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

Instead of this routine, a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling both $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ vsrlu to perform LU decomposition of an unsymmetric real sparse matrix \mathbf{A} and $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ vsrlux to solve the linear equation in use of decomposed results.

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD
                40
#define KX
                NORD
#define KY
                NORD
#define KZ
                NORD
#define N
                (KX * KY * KZ)
#define NBORDER (N + 1)
#define NOFFDIAG
#define K
                (N + 1)
#define NDIAG
               7
#define NALL
                (NDIAG * N)
#define WL
                (4 * NALL + 6 * N)
#define IW1L
                (2 * NALL + 2 * (N + 1) + 16 * N)
#define IW2L
                (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
                   double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
         nofst[NDIAG];
  int.
  double diag[NDIAG][K], diag2[NDIAG][K];
  double a[K * NDIAG], wc[K * NDIAG];
          nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG+N], nfcnzsym[N + 1],
  int
          iwc[K * NDIAG][2];
  int.
          nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
          iw2[IW2L];
  double w[WL];
  double *panelfactor1, *panelfactoru;
```

```
int
        *npanelindexl, *npanelindexu;
double dummyfl, dummyfu;
int
        ndummyil, ndummyiu;
        nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
long
        nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
        nfcnzindexu[N + 1];
double b[N], solex[N];
double epsz, thepsz, spepsz, sclrow[N], sclcol[N];
int
        ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
        itermax, iter, ipledsm;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
    isclitermax, isw, nsupnum;
double val, va2, va3, vc, xl, yl, zl, err, epsr;
printf("
            LU DECOMPOSITION METHOD\n");
printf("
            FOR SPARSE UNSYMMETRIC REAL MATRICES\n");
            IN COMPRESSED COLUMN STORAGE\n \n");
printf("
for (i = 0; i < N; i++) {
 solex[i] = 1.0;
printf("
            EXPECTED SOLUTIONS\n");
printf("
            X(1) = 18.151f X(N) = 18.151f n n', solex[0], solex[N - 1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
x1 = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
              xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
  for (j = 0; j < K; j++) {
    diag2[i][j] = 0;
  }
}
for (i = 0; i < NDIAG; i++) {
 if (nofst[i] < 0) {
    nbase = -nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][j] = diag[i][nbase + j];
```

```
}
    } else {
     nbase = nofst[i];
     length = N - nbase;
     for (j = 0; j < length; j++) {
       diag2[i][nbase + j] = diag[i][j];
   }
 numnz = 1;
 for (j = 0; j < N; j++) \{
   ntopcfg = 1;
   for (i = NDIAG - 1; i >= 0; i--) {
     if (ntopcfg == 1) {
       nfcnz[j] = numnz;
       ntopcfg = 0;
      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {
       continue;
      } else {
       if (diag2[i][j] != 0.0) {
         ncol = (j + 1) - nofst[i];
         a[numnz - 1] = diag2[i][j];
         nrow[numnz - 1] = ncol;
         numnz++;
       }
      }
   }
  }
 nfcnz[N] = numnz;
 nz = numnz - 1;
 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);
/* INITIAL CALL WITH IORDER=1 */
 iordering = 0;
 ipledsm = 1;
 isclitermax = 10;
 isw = 1;
 epsz = 1.0e-16;
 nsizefactorl = 1;
 nsizefactoru = 1;
```

```
nsizeindexl = 1;
nsizeindexu = 1;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsrs(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,
          nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl,
          &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,
          (\verb"int *) \verb"ndim", \verb"nfcnzfactoru", \& dummyfu", \& nsize factoru", \verb"nfcnzindexu",
          &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,
          ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine,
          epsr, itermax, &iter, w, iw1, iw2, &icon);
printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",
       icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);
panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));
panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsrs(a, nz,nrow, nfcnz, N,ipledsm, mz, isclitermax, &iordering,
          nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl,
          panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,
          &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
          &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,
          sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,
          nfcnzpivot, npivotp, npivotq, irefine, epsr, itermax, &iter, w,
          iw1, iw2, &icon);
err = errnrm(solex, b, N);
printf("
             COMPUTED VALUES\n");
printf("
             X(1) = 18.15lf X(N) = 18.15lf n n', b[0], b[N - 1]);
printf("
             ICON = %d\n \n", icon);
printf("
             N = %6d\n \n", N);
printf("
             ERROR = %18.15lf\n", err);
             ITER= %d\n \n \n", iter);
printf("
```

```
if (err < 1.0e-8 && icon == 0) {
   printf(" ******** OK *******\n");
   printf(" ******** NG *******\n");
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
}
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
   for (j = 0; j < ndiag; j++) {
     d_1[(j * ndivp) + i] = 0.0;
```

```
}
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
  }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
   k0 = (js -1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   }
```

```
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[(1 * ndivp) + j] = -(1.0 / hx + 0.5 * val) / hx;
     1++;
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[(1 * ndivp) + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[(1 * ndivp) + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_1[(1 * ndivp) + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[(1 * ndivp) + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[(1 * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[(1 * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
label_100: ;
 }
 return;
```

}

}

5. Method

Consult the entry for DM_VSRS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2], [13], [17], [19], [22], [23], [46], [53], [59], [64] and [65].

c_dm_vssps

A system of linear equations with symmetric positive definite sparse matrices (Left-looking LDL ^T decomposition method)				
<pre>ierr = c_dm_vssps(a, nz, nrow, nfcnz, n,</pre>				
iordering, nperm, isw, &epsz,				
b,nassign, &nsupnum, nfcnzfactor,				
panelfactor, &nsizefactor,				
nfcnzindex, npanelindex,				
&nsizeindex, ndim, nposto, w, iw1,				
iw2, iw3, &icon);				

1. Function

This routine solves a system of equations $\mathbf{A}\mathbf{x}=\mathbf{b}$ using modified Cholesky LDL^T decomposition, where \mathbf{A} is a symmetric positive definite sparse matrix $(n \times n)$.

The positive definite sparse matrix is decomposed as

$$\mathbf{QPAP^{T}Q^{T}} = \mathbf{LDL^{T}},$$

where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a diagonal matrix.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vssps(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, b,
               nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor,
               nfcnzindex, npanelindex, &nsizeindex, (int *)ndim, nposto, w, iwl,
                iw2, iw3, &icon);
where:
                  double a[nz]
                                        Input
                                                     The non-zero elements of the lower triangular part
                                                      \{a_{ii} \mid i \geq j\} of a symmetric sparse matrix A are stored
                                                     in a[i], i=0, ..., nz-1.
                                                     For the compressed column storage method, refer to
                                                     Figure c dm vmvscc-1 in the description for
                                                     c dm vmvscc routine (multiplication of a real sparse
                                                     matrix and a real vector).
nz
                  int
                                        Input
                                                     The total number of the nonzero elements belong to
                                                     the lower triangular part of a symmetric sparse
                                                     matrix A.
                  int nrow[nz]
                                        Input
                                                     The row indices used in the compressed column
nrow
                                                     storage method, which indicate the row number of
                                                     each nonzero element stored in an array a.
nfcnz
                  int
                                        Input
                                                     The position of the first nonzero element of each
                                                     column stored in an array a in the compressed
                  nfcnz[n+1]
```

column storage method which stores the nonzero elements column by column.

nfcnz[n] = nz+1.

n int Input Order n of matrix A.

Input

iordering

nperm

int

Control information whether to decompose the reordered matrix $\mathbf{P}\mathbf{A}\mathbf{P}^{T}$ permuted by the matrix \mathbf{P} of ordering or to decompose the matrix \mathbf{A} .

Specify iordering=1 for the decomposition of the matrix PAP^{T} .

Specify the other value for the decomposition of the matrix **A** as it is.

int nperm[n] Input The permutation matrix **P** is stored as a vector.

See Comments on use.

isw int Input Control information.

1 Initial calling.

Subsequent call if the previous call has failed with icon=31000, that means the size of panelfactor or npanelindex were not enough. In this case, the panelfactor or npanelindex must be reallocated with the necessary sizes which are returned in the nsizefactor or nsizeindex at the precedent call.

Besides, the values of a, nz, nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfcnzfactor, nfcnzindex, npanelindex, nposto, ndim, w, iw1, iw2, and iw3 must be unchanged after the first call.

3 Second and subsequent calls when solving another system of equations which have the same non-zero pattern of the matrix A but the values of its elements are different. In this case, the information obtained in symbolic decomposition and the array panelfactor and npanelindex of the same size required in previous call can be reused. Then numerical LDL^T decomposition will proceed with that information and the new linear equations can be solved efficiently. Store the values of the matrix elements in the array a, or store in another array c and let it be as the parameter a. The value of nrow must be unchanged in both cases.

Besides, the values of nz, nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfcnzfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex,

Second and subsequent calls when solving another system of equations of which the coefficient matrix is as same as previous call but the right-hand side vector b is changed. In this case, the information obtained by the previous LDI-I decomposition can be reused. Besides the values of n, lordering, nperm, nassign, nsupnum, nfcnzfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, and iw3 must be unchanged as the previous call. Post					nposto, ndim, w, iw1, iw2, and iw3 must be unchanged also as the previous call.
nperm, nassign, nsupnum, nfcnzfactor, nsizefactor, nfcnzindex, npanelindex, nsizefactor, nfcnzfactor Input Dutput Dutput Sudgment of relative zero of the pivot (≥ 0.0). When epsz is 0.0, the standard value is assumed. See Comments on use. Bo double b[n] Input Solution vector x. Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the output specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) Infcnzfactor [n+1] The values in the first call are reused when isw ≠ 1 specified. (≤ n) For the storage method of the decomposed results, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel [0][0] of the i-ih panel, where this panel is allocated as a part of the one-dimensional array panel factor. For the storage method of the decomposed results.				4	solving another system of equations of which the coefficient matrix is as same as previous call but the right-hand side vector b is changed. In this case, the information obtained by the previous
nfcnzfactor, nsizefactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, and iw3 must be unchanged as the previous call. Pout When epsz is 0.0, the standard value is assumed. See Comments on use. Down					Besides the values of n, iordering,
nfcnzindex, npanelindex, nsizeindex, nposto, ndim, and iw3 must be unchanged as the previous call. epsz double Input Judgment of relative zero of the pivot (≥ 0.0). When epsz is 0.0, the standard value is assumed. See Comments on use. Doutput Solution vector x. Nassign int nassign[n] Output Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Input The total number of supernodes. Infenzfactor [n+1] The values in the first call are reused when isw ≠ 1 specified. (≤ n) Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use.					nperm, nassign, nsupnum,
epsz double Input Judgment of relative zero of the pivot (≥ 0.0). Output When epsz is 0.0, the standard value is assumed. See Comments on use. b double b[n] Input The right-hand side constant vector b of a system of linear equations Ax = b. Output Solution vector x. nassign int nassign[n] Output Elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. Input The total number of supernodes. Input The values in the first call are reused when isw≠1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Dutput The total number of supernodes. Input The values in the first call are reused when isw≠1 specified. (≤ n) The values in the first call are reused when isw≠1 specified. (≤ n) The values in the first call are reused when isw≠1 specified. (≤ n) Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated as a part of the one-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0][0][0][0][0][0][0][0][0][0][0][0][nfcnzfactor, nsizefactor,
must be unchanged as the previous call. epsz double Input Output When epsz is 0.0, the standard value is assumed. See Comments on use. b double b[n] Input The right-hand side constant vector b of a system of linear equations Ax = b. Output Solution vector x. nassign int nassign[n] Output Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure e_dm_vssps-1. See Comments on use. nsupnum int Output The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) For the storage method of the decomposed results, refer to Figure e_dm_vssps-1. See Comments on use. nsupnum int Output The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) For the values in the first call are reused when isw ≠ 1 specified. (≤ n) For the values in the first call are reused when isw ≠ 1 specified. (≤ n) For the values in the first call are reused when isw ≠ 1 specified. (≤ n) For the values in the first call are reused when isw ≠ 1 specified. (≤ n) For the values in the first call are reused when isw ≠ 1 specified. (≤ n)					nfcnzindex, npanelindex,
epsz double Input Judgment of relative zero of the pivot (≥ 0.0). Output When epsz is 0.0, the standard value is assumed. See Comments on use. b double b[n] Input The right-hand side constant vector b of a system of linear equations Ax = b. Output Solution vector x. nassign int nassign[n] Output Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure e_dm_vssps-1. See Comments on use. nsupnum int Output The total number of supernodes. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. (≤ n) The values in the first call are reused when isw ≠ 1 specified. The values in the first call					nsizeindex, nposto, ndim, and iw3
Output When epsz is 0.0, the standard value is assumed. See Comments on use. See Comments on use. D double b[n] Input The right-hand side constant vector b of a system of linear equations Ax = b. Output Solution vector x. nassign int nassign[n] Output Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. nsupnum int Output The total number of supernodes. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) nfcnzfactor long long int nfcnzfactor [n+1] Output Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel [0] [0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor.					must be unchanged as the previous call.
See Comments on use. Description See Comments on use.	epsz	double	Input	Judgment	of relative zero of the pivot (≥ 0.0).
Double b[n] Input The right-hand side constant vector b of a system of linear equations Ax = b.			Output	When eps	sz is 0.0, the standard value is assumed.
Innear equations Ax = b. Output Solution vector x. Dutput Solution vector x. Dutput Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input				See Commo	ents on use.
Dutput Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input The values in the first call are reused when isw≠1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Noutput The total number of supernodes.	b	double b[n]	Input	_	•
and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When j=nassign[i-1], the i-th supernode is allocated at j-th position. Input The values in the first call are reused when isw ≠ 1 specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. Input The total number of supernodes. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) Infcnzfactor long long int nfcnzfactor [n+1] Output Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,			Output	Solution v	ector x.
specified. For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. See Comments on use. The total number of supernodes. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) Infcnzfactor Infcnzfactor In+1] Output Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,	nassign	int nassign[n]	Output	and the sup panel by co- elements we elements of this panel dimensions j=nassi	pernodes are stored in two-dimensional ompressing rows containing nonzero with a common row indices vector. The of this array indicate the position, where 1 is allocated as a part of the oneal array panelfactor. When gn[i-1], the i-th supernode is allocated
refer to Figure c_dm_vssps-1. See Comments on use. Input The total number of supernodes. Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) Infcnzfactor Iong long int nfcnzfactor [n+1] The values in the first call are reused when isw ≠ 1 specified. (≤ n) Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,			Input		s in the first call are reused when $isw \neq 1$
nsupnum int Output The total number of supernodes. Input The values in the first call are reused when isw≠1 specified. (≤n) nfcnzfactor long long int nfcnzfactor [n+1] Output Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,					
Input The values in the first call are reused when isw ≠ 1 specified. (≤ n) Part of the first call are reused when isw ≠ 1 specified. (≤ n) Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,				See Comm	ients on use.
specified. (≤ n) nfcnzfactor long long int nfcnzfactor [n+1] nfcnzfactor [n+1] Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,	nsupnum	int	Output	The total n	number of supernodes.
and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. For the storage method of the decomposed results,			Input		
	nfcnzfactor	nfcnzfactor	Output	and the factwo-dimen containing indices vec the position the <i>i</i> -th part of the For the sto	ctorized matrix of supernodes are stored in asional panel by compressing rows a nonzero elements with a common row ctor. The elements of this array indicate on of the first element panel[0][0] of anel, where this panel is allocated as a one-dimensional array panelfactor.

		Input	The values set by the first call are reused when $isw \ne 1$ specified.
panelfactor	double panelfactor [nsizefactor]	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These panels are stored in this matrix.
			The positions of the panel corresponding to the <i>i</i> -th supernode are indicated as <code>j=nassign[i-1]</code> . The first position is stored in <code>nfcnzfactor[j-1]</code> . The decomposed result is stored in each panel.
			The size of the <i>i</i> -th panel can be considered to be two-dimensional array of $ndim[i-1][1] \times ndim[i-1][0]$. The corresponding part where the lower triangular unit matrix except the diagonal part is transposed and is stored in $panel[t-1][s-1]$, $s>t$, $s=1,$, $ndim[i-1][0]$, $t=1,$, $ndim[i-1][1]$ of the <i>i</i> -th panel. The corresponding part of the diagonal matrix \mathbf{D} is stored in $panel[t-1][t-1]$.
			For the storage method of the decomposed results, refer to Figure c_dm_vssps-1.
			See Comments on use.
nsizefactor	long long int	Input	The size of the array panelfactor.
		Output	The necessary size for the array panelfactor is returned.
			See Comments on use.
nfcnzindex	long long int nfcnzindex [n+1]	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element of the <i>i</i> -th row indices vector, where this panel is allocated as a part of the one-dimensional array npanelindex.
		Input	The values set by the first call are reused when isw ≠ 1 specified.
			For the storage method of the decomposed results, refer to Figure c_dm_vssps-1.
npanelindex	<pre>int npanelindex [nsizeindex]</pre>	Output	Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These row indices vectors are stored in this matrix. The positions of the row pointer vector corresponding to the <i>i</i> -th supernode are indicated as j=nassign[i-1]. The first position is stored in nfcnzindex[j-1]. The row indices vector is stored by each panel. This row indices are the row indices of the matrix QAQ ^T to which the matrix A is permuted by post ordering.

			For the storage method of the decomposed results, refer to Figure c_dm_vssps-1.
			See Comments on use.
nsizeindex	long long int	Input	The size of the array panelindex.
		Output	The necessary size is returned.
			See Comments on use.
ndim	<pre>int ndim[n][2]</pre>	Output	The size of first and second dimension of the i -th panel are stored in $ndim[i-1][0]$ and $ndim[i-1][1]$ respectively.
		Input	The values set by the first call are reused when isw ≠ 1 specified.
			For the storage method of the decomposed results, refer to Figure c_dm_vssps-1.
nposto	int nposto[n]	Output	The one dimensional vector is stored which indicates what column index of A the i -th node in post ordering corresponds to.
		Input	The values set by the first call are reused when isw ≠ 1 specified.
			See Comments on use.
W	double w[Iwlen1]	Work area Output/Input	When this routine is called repeatedly with isw = 1,2,3, This work area is used for preserving information among calls. The contents must not be changed. When iordering=1, Iwlen1 = nz. When iordering≠1, Iwlen1 = 1.
iw1	int iw1[<i>Iwlen2</i>]	Work area Output/Input	When this routine is called repeatedly with isw = 1,2,3, This work area is used for preserving information among calls. The contents must not be changed. When iordering=1, Iwlen2 = nz+n+1. When iordering≠1, Iwlen2 = 1.
iw2	int iw2[nz+n+1]	Work area Output/Input	When this routine is called repeatedly with isw = 1,2,3, This work area is used for preserving information among calls. The contents must not be changed.
iw3	int iw3[n*35+35]	Work area Output/Input	When this routine is called repeatedly with isw = 1,2,3,4, This work area is used for preserving information among calls. The contents must not be changed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The coefficient matrix is not positive definite.	Processing is continued.
20000	The pivot became relatively zero. The coefficient matrix A may be singular.	Processing is discontinued.
30000	One of the following has occurred: • n < 1 • nz < 0 • nfcnz[n] ≠ nz+1 • nsizefactor < 1 • nsizeindex < 1 • epsz < 0 • isw < 0 • isw > 4	
30100	The permutation matrix specified in nprem is not correct.	
30200	The row pointer k stored in nrow[j-1] is k < i or k > n.	
30300	The number of row indices belong to <i>i</i> -th column is $nfcnz[i]-nfcnz[i-1] > n - i + 1$.	
30400	There is a column without a diagonal element.	
31000	The value of nsizefactor is not enough as the size of panelfactor, or the value of nsizeindex is not enough as the size of npanelindex.	Reallocate the panelfactor or npanelindex with the necessary size which are returned in the nsizefactor or nsizeindex, and call this routine again.

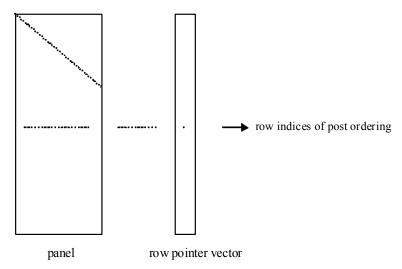


Figure c_dm_vssps-1 concept of storing the data for decomposed result

A panel is regarded as an array of the size $ndim[j-1][1] \times ndim[j-1][0]$.

The lower triangular unit matrix L except the diagonal part is transposed and is stored in

```
\begin{aligned} \text{panel[t-1][s-1],} \quad & \text{s>t, s=1,...,ndim[j-1][0],} \\ & \text{t=1,...,ndim[j-1][1].} \end{aligned}
```

The corresponding part of the diagonal matrix \mathbf{D} is stored in panel [t-1][t-1].

The row pointers indicate the column indices of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the node of the matrix \mathbf{A} is permuted by post ordering.

3. Comments on use

nperm

When the element $p_{ij}=1$ of the permutation matrix **P**, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:

```
for(i=1; i<=n; i++){
  j=nperm[i-1];
  perminv[j-1]=i;
}</pre>
```

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDL^T decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case, processing is continued as icon=10000, but the numerical error may be large because of no pivoting.

nsizefactor and nsizeindex

The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon=31000, and the necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by calling it with isw=2 after reallocating the arrays with the necessary size.

nposto

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for(i=1; i<=n; i++){
   j=nposto[i-1];
   npostoinv[j-1]=i;
}</pre>
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$ where a_1, a_2, a_3 and c are zero constants, that means the operator is Laplacian. The matrix **A** in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "cssl.h" /* standard C-SSL header file */
#define NORD
               (39)
#define NX
#define NY
               (NORD)
#define NZ
               (NORD)
#define N
               (NX*NY*NZ)
#define K
               (N+1)
#define NDIAG
               (7)
```

```
#define NDIAGH (4)
MAIN__()
  int.
         ierr, icon, iguss, iter, itmax;
         nord, n, l, i, j, k; nx, ny, nz, nnz, nnzc;
  int
  int
         length, nbase, ndiag, ntopcfgc;
  int.
  int
         numnz, numnzc, nsupnum, ntopcfg, ncol;
  int
         iordering, isw;
  int
         *npanelindex;
  int
         ndummyi;
  int
         nofst[NDIAG];
         nrow[NDIAG*K];
  int
         nrowc[NDIAG*K];
  int
  int
         nfcnz[N+1];
  int
         nfcnzc[N+1];
  int
         nperm[N];
         nassign[N];
  int
  int
         nposto[N];
         ndim[N][2];
  int
         iw1[N*NDIAGH+N+1];
  int
         iw2[N*NDIAGH+N+1];
  int.
         iw3[N*35+35];
  int.
         iwc[NDIAG*K][2];
  int
  double err, epsz;
  double t0, t1, t2;
  double val, va2, va3, vc;
  double x1, y1, z1;
  double dummyf;
  double *panelfactor;
  double diag[NDIAG][K];
  double diag2[NDIAG][K];
  double a[N*NDIAGH];
  double b[N];
  double c[NDIAG*K];
  double w[N*NDIAGH];
  double wc[NDIAG*K];
  double x[N];
  double solex[N];
  long long int nsizefactor;
  long long int nsizeindex;
  long long int nfcnzfactor[N+1];
  long long int nfcnzindex[N+1];
  void init_mat_diag(double va1, double va2, double va3, double vc,
              double d_l[], int offset[], int nx, int ny, int nz,
double xl, double yl,double zl, int ndiag, int len, int ndivp);
  double errnrm(double *x1, double *x2, int len);
  nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
  printf("
               LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
  printf("
               FOR SPARSE POSITIVE DEFINITE MATRICES\n");
  printf("
               IN COMPRESSED COLUMN STORAGE\n");
  printf("\n");
  for (i=1; i<=n; i++){
    solex[i-1]=1.0;
  printf("
               EXPECTED SOLUTIONS\n");
  printf("
               X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
  printf("\n");
  va1 = 0.0;
  va2 = 0.0;
  va3 = 0.0;
  vc = 0.0;
  x1 = 1.0;
  y1 = 1.0;
  z1 = 1.0;
 for (i=1; i<=ndiag; i++){
    if (nofst[i-1] < 0)
      nbase=-nofst[i-1];
      length=n-nbase;
```

```
for (j=1; j<=length; j++){</pre>
               diag2[i-1][j-1]=diag[i-1][nbase+j-1];
           else{
             nbase=nofst[i-1];
             length=n-nbase;
             for (j=nbase+1; j<=n; j++){
  diag2[i-1][j-1]=diag[i-1][j-nbase-1];</pre>
          }
        }
        numnzc=1;
         for (j=1; j<=n; j++){}
          ntopcfgc = 1;
           ntopcfg = 1;
           for (i=ndiag; i>=1; i--){
   if (diag2[i-1][j-1]!=0.0){
               ncol=j-nofst[i-1];
               c[numnzc-1]=diag2[i-1][j-1];
               nrowc[numnzc-1]=ncol;
if (ncol>=j){
                 a[numnz-1]=diag2[i-1][j-1];
                 nrow[numnz-1]=ncol;
               if (ntopcfgc==1){
                 nfcnzc[j-1]=numnzc;
                 ntopcfgc=0;
               if (ntopcfg==1){
                 nfcnz[j-1]=numnz;
                 ntopcfg=0;
               if (ncol>=j){
                 numnz=numnz+1;
               numnzc=numnzc+1;
             }
          }
        }
        nfcnzc[n]=numnzc;
        nnzc=numnzc-1;
        nfcnz[n]=numnz;
        nnz=numnz-1;
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);
         for(i=1; i<=n; i++){
           x[i-1]=b[i-1];
         iordering=0;
         isw=1;
        epsz=0;
        nsizefactor=1;
        nsizeindex=1;
        ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);
         printf("\n");
        printf("
                      ICON = %d NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon,
nsizefactor, nsizeindex);
        printf("\n");
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
         isw=2;
        ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex, (int*)ndim, nposto, w, iwl, iw2, iw3, &icon);
         err = errnrm(solex,x,n);
                       COMPUTED VALUES\n");
        printf("
        printf("
                       X(1) = %.15lf X(N) = %.15f\n", x[0], x[n-1]);
```

```
printf("\n");
  printf("
                ICON = %d\n", icon);
  printf("\n");
  printf("
                N = d :: NX = d NY = d NZ = dn', n, nx, ny, nz);
  printf("\n");
  printf("
                ERROR = %.15e\n",err);
  printf("\n");
  printf("\n");
  if (err<(1.0e-8) && icon==0){
  printf(" ******** OK ********\n");</pre>
    printf("
  else{
                   ******* NG *******\n");
    printf("
    free(panelfactor);
    free(npanelindex);
    return 0;
}
void init_mat_diag(double va1, double va2, double va3, double vc,
          double d_l[], int offset[], int nx, int ny, int nz,
double xl, double yl, double zl, int ndiag, int len, int ndivp)
 int i, 1, j;
int length, numnz, js;
int i0, j0, k0;
  int ndiag_loc;
  int nxy;
  double hx, hy, hz;
  double x1, x2;
  double base;
  double ret, remark;
  if (ndiag<1){
    printf("FUNCTION INIT_MAT_DIAG:\n");
    printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
    return;
  ndiag_loc = ndiag;
  if (ndiag>7){
    ndiag_loc=7;
  hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
  for (i=1; i<=ndivp; i++){</pre>
    for (j=1; j<=ndiag; j++){
      d_1[i-1+(j-1)*ndivp] = 0.;
  nxy = nx * ny;
  1 = 1;
  if (ndiag_loc >= 7) {
    offset[1-1] = -nxy;
    ++1;
  if (ndiag_loc >= 5) {
  offset[1-1] = -nx;
    ++1;
  if (ndiag_loc >= 3) {
    offset[1-1] = -1;
    ++1;
  offset[1-1] = 0;
  if (ndiag_loc >= 2) {
    offset[1-1] = 1;
    ++1;
  if (ndiag_loc >= 4) {
  offset[1-1] = nx;
    ++1;
  if (ndiag_loc >= 6) {
    offset[1-1] = nxy;
```

```
for (j = 1; j \le len; ++j) {
    js=j;
    k0 = (js - 1) / nxy + 1;
    if (k0 > nz) {
      printf("ERROR; KO.GH.NZ\n");
      return;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    1 = 1;
    if (ndiag_loc \geq= 7) {
      if (k0 > 1) {
        d_1[j-1+(1-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
      ++1;
    if (ndiag_loc >= 5) {
  if (j0 > 1) {
    d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
}
      ++1;
    }
    if (ndiag_loc >= 3) {
      if (i0 > 1) {
        d_1[j-1+(1-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
      ++1;
    }
    d_1[j-1+(1-1)*ndivp] = 2.0/(hx*hx)+vc;
    if (ndiag_loc >= 5) {
      d_1[j-1+(1-1)*ndivp] += 2.0/(hy*hy);
      if (ndiag_loc >= 7) {
        d_1[j-1+(1-1)*ndivp] += 2.0/(hz*hz);
    }
++1;
    if (ndiag_loc >= 2) {
      if (i0 < nx) {
        d_1[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
      ++1;
    }
    if (ndiag_loc >= 4) {
      if (j0 < ny) {
        d_1[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
      ++1;
    }
    if (ndiag_loc >= 6) {
      if (k0 < nz) {
    d_1[j-1+(1-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
    }
 return;
double errnrm(double *x1, double *x2, int len)
  double ret_val;
  int i;
 double s, ss;
 s = 0.;
 for (i = 1; i <= len; ++i) {
    ss = x1[i-1] - x2[i-1];
    s += ss * ss;
 ret_val = sqrt(s);
 return ret_val;
```

}

{

5. Method

Consult the entry for DM_VSSPS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19]

c_dm_vssslu

```
LU decomposition of a structurally symmetric real sparse matrix
ierr = c_dm_vssslu(a, nz, nrow, nfcnz, n,
             isclitermax,
             iordering, nperm, isw,
             nassign, &nsupnum,
             nfcnzfactorl, panelfactorl,
             &nsizefactorl, nfcnzindexl,
             npanelindexl,
             &nsizeindex, ndim,
             nfcnzfactoru, panelfactoru,
             &nsizefactoru,
             nfcnzindexu, npanelindexu,
             nposto,
             sclrow, sclcol,
             &epsz, &thepsz, ipivot, istatic,
             &spepsz, w, iw, &icon);
```

1. Function

An $n \times n$ structurally symmetric real sparse matrix **A** is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero elements in its symmetric position. But the values of elements in a symmetric position are not necessarily same.)

The structurally symmetric real sparse matrix is transformed as below.

$$A_1 = D_r A D_c$$

where \mathbf{D}_r is a diagonal matrix for scaling rows and \mathbf{D}_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{O} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{O}^{\mathrm{T}}$$

A₂ is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term **P** is a permutation matrix of ordering which is sought for a pattern of elements for **A** and **Q** is a permutation matrix of postorder. **P** and **Q** are orthogonal matrices.

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

2. Arguments

The routine is called as follows:

<pre>ierr = c_dm_</pre> where: a	nperm, isw, nassig panelfactorl, &nsi &nsizeindex, (int &nsizefactoru, nfo	n, &nsupn zefactorl *)ndim, n nzindexu,	um, nfcnzfactorl, , nfcnzindexl, npanelindexl, fcnzfactoru, panelfactoru, npanelindexu, nposto, psz, ipivot, istatic, spepsz, The nonzero elements of a structurally symmetric real sparse matrix A are stored. For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse
			matrix and a real vector).
nz	int	Input	The total number of the nonzero elements belong to a structurally symmetric real sparse matrix A .
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array A.
nfcnz	int nfcnz[n+1]	Input	The position of the first nonzero element of each column stored in an array A in the compressed column storage method which stores the nonzero elements column by column. $nfcnz[n] = nz + 1$.
n	int	Input	Order n of matrix \mathbf{A} .
isclitermax	int	Input	The upper limit for the number of iteration to seek scaling matrices of \mathbf{D}_r and \mathbf{D}_c to equilibrate both rows and columns of matrix \mathbf{A} . When isclitermax ≤ 0 is specified no scaling is done. In this case \mathbf{D}_r and \mathbf{D}_c are assumed as unit matrices. When isclitermax ≥ 10 is specified, the upper limit for the number of iteration is considered as 10 .
iordering	int	Input	Control information whether to decompose the reordered matrix $\mathbf{P}\mathbf{A}_1\mathbf{P}^T$ permuted by the matrix \mathbf{P} of ordering or to decompose the matrix \mathbf{A} . When iordering = 1 is specified, the matrix $\mathbf{P}\mathbf{A}_1\mathbf{P}^T$ is decomposed into LU. Otherwise. Without any ordering, the matrix \mathbf{A}_1 is decomposed into LU. See <i>Comments on use</i> .
nperm	<pre>int nperm[n]</pre>	Input	The permutation matrix P is stored as a vector. See <i>Comments on use</i> .
isw	int	Input	Control information. 1) When isw = 1 is specified.

A first call. After symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that means that the sizes of panelfactorl or panelfactoru or npanelindexl or npanelindexu were not enough, the suspended computation is resumed.

Before calling again with isw = 2, the panelfactorl or panelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactor1 nsizefactoru or nsizeindex at the precedent call and specified in corresponding arguments.

Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls.

int nassign[n] Output nassign

L and U belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactor1 and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindex1 and npanelindexu respectively. Data of the *i*-th supernode is stored into the *j*-th block of a subarray, where j = nassign[i-1].

Input

When $isw \neq 1$, the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to

Figure c dm vssslu-1.

Output nsupnum int

The total number of supernodes.

Input

The values in the first call are reused when $isw \neq 1$ specified. $(\leq n)$

nfcnzfactorl Output

nfcnzfactorl[n+1]

The decomposed matrices L and U of a structurally symmetric real sparse matrix are computed for each supernode respectively. The columns of L belonging to

each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the *i*-th panel is mapped into panelfactor1 consecutively or the

location of panel[0][0] is stored.

			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslu-1.
		Input	The values set by the first call are reused when $isw \neq 1$ specified.
panelfactorl	double	Output	The columns of the decomposed matrix ${f L}$ belonging to
	panelfactorl		each supernode are compressed to have the common row
	[nsizefactorl]		indices vector and stored in a two dimensional panel
			with the corresponding parts of the decomposed matrix ${\bf U}$
			in its block diagonal portion. The block number of the
			section where the panel corresponding to the <i>i</i> -th
			supernode is assigned is known from $j = nassign$
			[i-1]. The location of its top of subarray including the
			portion of decomposed matrices is stored in
			nfcnzfactorl[j-1].
			The size of the panel in the <i>i</i> -th block can be considered
			to be two dimensional array of $ndim[i-1][0] \times$
			ndim[i-1][1] The corresponding parts of the lower
			triangular matrix L are store in this panel
			$[t-1][s-1], s \ge t, s = 1,,ndim[i-1][0], t = 1$
			,, ndim[i-1][1]. The corresponding block diagonal
			portion of the unit upper triangular matrix U except its
			diagonals is stored in the panel $[t-1][s-1]$, $s < t$, t
			= 1,, ndim[i-1][1]. Pagarding the storage method of the decomposed results.
			Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. See <i>Comments on use</i> .
nsizefactorl	long	Input	The size of the array panelfactor1.
		Output	The necessary size for the array panelfactorl is
			returned. See Comments on use.
nfcnzindexl	long	Output	The columns of the decomposed matrix L belonging to
	nfcnzindexl[n+1]		each supernode are compressed to have the common row
			indices vector and stored in a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. The index number of the top
			array element of the one dimensional subarray where the
			<i>i</i> -th row indices vector is mapped into npanelindexl consecutively is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslu-1.
		Input	When $isw \ne 1$, the values set by the first call are reused.
npanelindexl	int npanelindexl	Output	The columns of the decomposed matrix L belonging to
	[nsizeindex]	Japan	each supernode are compressed to have the common row
			indices vector and stored into a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. This column indices vector
			is mapped into npanelindexl consecutively. The

nsizeindex	long	Input	corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. See <i>Comments on use</i> . The size of the arrays npanelindexl and npanelindexu.
ndim	<pre>int ndim[n][2]</pre>	Output Output	The necessary size is returned. See <i>Comments on use</i> . $ndim[i-1][0]$ and $ndim[i-1][1]$ indicate the sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the <i>i</i> -th location. $ndim[i-1][0] - ndim[i-1][1]$ and $ndim[i-1][1]$ indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix U is transposed and stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. When $isw \neq 1$, the values set by the first call are reused.
nfcnzfactoru	<pre>long nfcnzfactoru[n+1]</pre>	Output	Regarding a matrix U derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. When isw \neq 1, the values set by the first call are reused.
panelfactoru	double panelfactoru [nsizefactoru]	Output	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the <i>i</i> -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $nfcnzfactoru[j-1]$. The size of the panel in the <i>i</i> -th block can be considered to be two dimensional array of $ndim[i-1][0] - ndim[i-1][1] \times ndim [i-1][1]$. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed,

			transposed and stored in this panel[t-1][s-1], $s =$
			1,, ndim[i-1][0]-ndim[i-1][1], t=1
			,, ndim[i-1][1].
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslu-1. See Comments on use.
nsizefactoru	long	Input	The size of the array panelfactoru.
IIBIZCIACCOLA	10119	Output	The necessary size for the array panelfactoru is
		Output	returned. See <i>Comments on use</i> .
nfcnzindexu	long	Output	The rows of the decomposed matrix U belonging to each
IIICIIZIIIGEXU	nfcnzindexu[n+1]	Output	supernode are compressed to have the common column
	III CIIZIII QEXU[II+I]		
			indices vector, transposed and stored in a two dimensional
			panel without its block diagonal portion. The index
			number of the top array element of the one dimensional
			subarray where the <i>i</i> -th column indices vector including
			indices of the block diagonal portion is mapped into
			npanelindexu consecutively is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslu-1.
		Input	When $isw \neq 1$, the values set by the first call are reused.
npanelindexu	int npanelindexu	Output	The rows of the decomposed matrix U belonging to each
	[nsizeindex]		supernode are compressed, transposed and stored in a two
			dimensional panel without its block diagonal portion.
			The column indices vector including indices of the block
			diagonal portion is mapped into npanelindexu
			consecutively. The block number of the section where the
			column indices vector corresponding to the <i>i</i> -th supernode
			is assigned is known from j = nassign[i-1]. The
			location of its top of subarray is stored in
			nfcnzindexu[j-1]. These column indices are the
			column numbers of the matrix permuted in its post order.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslu-1. See <i>Comments on use</i> .
nposto	int nposto[n]	Output	The information about what column number of A the i -th
		T ,	node in post order corresponds to is stored.
		Input	When $isw \ne 1$, the values set by the first call are reused.
-		0-44	See Comments on use.
sclrow	double sclrow[n]	Output	The diagonal elements of $\mathbf{D_r}$ or a diagonal matrix for scaling rows are stored in one dimensional array.
		Tunus	
	1 1 1 1 1 1 1	Input	When $isw \ne 1$, the values set by the first call are reused.
sclcol	double sclcol[n]	Output	The diagonal elements of $\mathbf{D}_{\mathbf{c}}$ or a diagonal matrix for
		T ,	scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \neq 1$
	1 11	T 4	specified.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0).
		Output	When $epsz \le 0.0$, it is set to the standard value.
			See Comments on use.

thepsz	double	Input	Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, 10 ⁻² .
		Output	When thepsz ≤ 0.0 , 10^{-2} is set. When epsz \geq thepsz > 0.0 , it is set to the value of epsz.
ipivot	int	Input	Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. For example, 40 for complete pivoting. ipivot < 10 or ipivot ≥ 50, no pivoting. 10 ≤ ipivot < 20, partial pivoting 20 ≤ ipivot < 30, diagonal pivoting 21: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. 22: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. 30 ≤ ipivot < 40, Rook pivoting 32: When within a supernode Rook pivoting fails, it is changed to complete pivoting. 40 ≤ ipivot < 50, complete pivoting.
istatic	int	Input	Control information indicating whether Static pivoting is taken. 1) When istatic = 1 is specified. When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied. a) epsz must be less than or equal to the standard value of epsz. b) Scaling must be performed with isclitermax = 10. c) thepsz \geq spepsz must hold. 2) When istatic \neq 1 is specified. No static pivot is performed.
spepsz	double	Input	The approximate value used in Static pivoting when istatic = 1 is specified. The following conditions must hold. thepsz \ge spepsz \ge epsz
w	double w[nz+n]	Output Work area	When $spepsz < epsz$, it is set to 10^{-10} . When this routine is called repeatedly with $isw = 1, 2$ this work area is used for preserving information among calls. The contents must not be changed.

iw	int	Work	When this routine is called repeatedly with $isw = 1, 2$
	iw[36*n+36+2*nz+	area	this work area is used for preserving information among
	3*(n+1)]		calls. The contents must not be changed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	When istatic = 1 is specified, Static pivot	Continued.
	which replaces the pivot candidate with too small	
	value with spepsz is made.	
20000	The pivot became relatively zero. The coefficient	Processing is discontinued.
	matrix A may be singular.	
20200	When seeking diagonal matrices for equilibrating	
	both rows and columns, there is a zero vector in	
either rows or columns of the matrix A . The		
	coefficient matrix A may be singular.	
30000	One of the following has occurred:	
	• n<1	
	• nz < 0	
	 nfcnz[n] ≠ nz + 1 	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindex<1	
	• isw < 1	
	• isw > 2	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is $nfcnz[i] - nfcnz[i-1] > n$.	
30500	When istatic = 1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than $16u$ of the standard value	
	orisclitermax < 10	
	or spepsz > thepsz	
30700	The matrix A is not structurally symmetric.	
31000	The value of nsizefactorl is not enough as	Reallocate the panelfactor1 or
	the size of panelfactorl,	npanelindexl and npanelindexu or
	or the value of nsizeindex is not enough as	panelfactoru or with the necessary size
	the size of npanelindexl and	which are returned in the nsizefactorl or
	npanelindexu,	nsizeindex or
	or the value of nsizefactoru is not enough as	nsizefactoru respectively
	the size of panelfactoru.	and call this routine again with isw =2 specified.

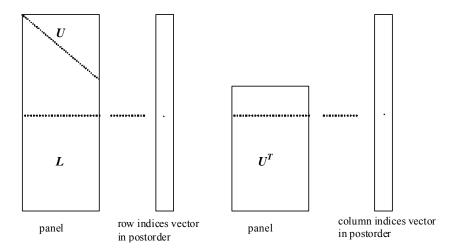


Figure c_dm_vssslu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

p=nfcnzfactor1[j-1] \rightarrow The *j*-th panel occupies the area with a length ndim[j-1][0] \times ndim [j-1][1] from the *p*-th element of panelfactor1.

 $q = nfcnzindexl[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindexl.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$ from the u-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix $\mathbf{U}^{\mathbf{T}}$ except its block diagonal portion of decomposed results is stored in

```
panel[y-1][x-1] \ , \ x=1,\ldots,ndim[j-1][0]-ndim[j-1][1], y=1,\ldots,ndim[j-1][1].
```

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

When the element $p_{ij} = 1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
```

```
j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

c)

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor1, nsizeindex and nsizefactoru with isw = 1. This routine ends with icon = 31000, and the necessary sizes for nsizefactor1, nsizeindex and nsizefactoru are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{O}\mathbf{A}\mathbf{O}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

A system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling c_dm_vssslux subsequently in use of the results of LU decomposition obtained by this routine.

The following arguments used in this routine are specified.

```
a, nz, nrow, nfcnz, n,
iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindex, ndim,
nfcnzfactoru, panelfactoru, nsizefactoru,
nfcnzindexu, npanelindexu, nposto,
```

```
sclrow,sclcol,
iw
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 39
#define NX
              NORD
#define NY
              NORD
#define NZ
              NORD
#define N
              (NX * NY * NZ)
#define NXY
              (NX * NY)
#define K
              (N + 1)
#define NDIAG 7
#define NALL (NDIAG * N)
              (36 * N + 36 + 2 * NALL + 3 * (N + 1))
#define IWL
#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
                   int, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
 int nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
```

```
double c[K * NDIAG], wc[K * NDIAG];
int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
double w[NDIAG * N + N];
int nperm[N],
     nposto[N], ndim[N][2],
     nassign[N],
     iw[IWL];
double *panelfactor1, *panelfactoru;
int *npanelindexl,
     *npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindex,
     nsizefactoru,
     nfcnzfactorl[N + 1],
     nfcnzfactoru[N + 1],
     nfcnzindexl[N + 1],
      nfcnzindexu[N + 1];
double x[N], b[N], solex[N];
int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
double val, va2, va3, vc, xl, yl, zl;
double thepsz,
        epsr,
        sepsz,
        sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic,
     isclitermax,
     irefine, itermax, iter, icon;
int iordering, isw, nsupnum;
           DIRECT METHOD\n");
printf("
printf("
           FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf("
            IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
  solex[i] = 1.0;
printf("
           EXPECTED SOLUTIONS\n");
printf("
           X(1) = \$19.161f X(N) = \$19.161f \n\n", solex[0], solex[N - 1]);
va1 = 1.0;
```

```
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
              NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
    diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {</pre>
    nbase = - nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
     diag2[i][j] = diag[i][nbase + j];
    }
  } else {
    nbase = nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][nbase + j] = diag[i][j];
    }
  }
numnzc = 0;
for (j = 0; j < N; j++) {
  ntopcfgc = 1;
  for (i = NDIAG - 1; i >= 0; i--) \{
    if (diag2[i][j] != 0.0) {
      ncol = (j + 1) - nofst[i];
      c[numnzc] = diag2[i][j];
      nrowc[numnzc] = ncol;
```

```
if (ntopcfgc == 1) {
        nfcnzc[j] = numnzc + 1;
        ntopcfgc = 0;
      numnzc++;
  }
}
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,
            b, wc, (int *)iwc, &icon);
for (i = 0; i < N; i++) {
  x[i] = b[i];
iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2i
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
            isclitermax, iordering,
            nperm, isw,
            nassign,
            &nsupnum,
            nfcnzfactorl, &dummyfl,
            &nsizefactorl, nfcnzindexl,
            &ndummyil, &nsizeindex, (int *)ndim,
            nfcnzfactoru, &dummyfu,
            &nsizefactoru,
```

```
nfcnzindexu, &ndummyiu,
            nposto,
            sclrow, sclcol,
            &epsz,
            &thepsz,
            ipivot, istatic, &sepsz,
            w, iw, &icon);
            ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",
printf("
       icon, nsizefactorl, nsizefactoru, nsizeindex);
printf("
            NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
            isclitermax, iordering,
            nperm, isw,
            nassign,
            &nsupnum,
            nfcnzfactorl, panelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl, &nsizeindex, (int *)ndim,
            nfcnzfactoru, panelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            nposto,
            sclrow, sclcol,
            &epsz,
            &thepsz,
            ipivot, istatic, &sepsz,
            w, iw, &icon);
c_dm_vssslux(N,
             iordering,
             nperm,
             х,
             nassign,
             nsupnum,
             nfcnzfactorl, panelfactorl,
             nsizefactorl, nfcnzindexl,
             npanelindexl, nsizeindex, (int *)ndim,
             nfcnzfactoru, panelfactoru,
             nsizefactoru,
```

```
nfcnzindexu, npanelindexu,
             nposto,
             sclrow, sclcol,
             irefine, epsr, itermax, &iter,
             c, nnzc, nrowc, nfcnzc,
             iw,
             &icon);
 err = errnrm(solex, x, N);
 printf("
            COMPUTED VALUES\n");
 printf("
           X(1) = 19.161f X(N) = 19.161f n, x[0], x[N - 1]);
           ICON = %6d\n\n", icon);
 printf("
 printf("
            N = d :: NX = d NY = dNZ = dnn', N, NX, NY, NZ);
            ERROR = %10.3le\n", err);
 printf("
 printf("
            ITER=%d\n\n\n", iter);
 if (err < 1.0e-8 && icon == 0) {
              ******* OK *******\n");
   printf("
 } else {
              ******* NG *******\n");
   printf("
 }
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
}
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("SUB FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
```

```
{
 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = z1 / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp * ndiag; i++) {
   d_1[i] = 0.0;
  }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
    if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
    offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
    if (ndiag_loc >= 4) \{
     offset[1] = nx;
     1++;
    }
```

```
if (ndiag_loc >= 6) {
      offset[1] = nxy;
    }
  }
/* MAIN LOOP */
#pragma omp for
  for (j = 0; j < len; j++) {
    js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
    k0 = (js - 1) / nxy + 1;
    if (k0 > nz) {
      printf("ERROR; K0.GH.NZ \n");
      continue;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    1 = 0;
    if (ndiag_loc >= 7) {
      if (k0 > 1) d_{I}[I * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;
      1++;
    if (ndiag_loc >= 5) \{
      if (j0 > 1) d_{I[I * ndivp + j]} = -(1.0 / hy + 0.5 * va2) / hy;
      1++;
    if (ndiag_loc >= 3) {
      if (i0 > 1) d_{I}[I * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;
      1++;
    }
    hx2 = hx * hx;
    hy2 = hy * hy;
    hz2 = hz * hz;
    d_1[1 * ndivp + j] = 2.0 / hx2 + vc;
    if (ndiag_loc >= 5) {
      d_{I[I * ndivp + j]} += 2.0 / hy2;
      if (ndiag_loc >= 7) {
        d_1[1 * ndivp + j] += 2.0 / hz2;
      }
    }
    1++;
    if (ndiag_loc >= 2) {
      if (i0 < nx) d_{I}[I * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;
      1++;
```

```
}
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[1 * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_{I}[I * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;
 }
}
 return;
}
* SOLUTE ERROR
 * | X1 - X2 |
  double errnrm(double *x1, double *x2, int len) {
 double s, ss, rtc;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
   ss = x1[i] - x2[i];
   s += SS * SS;
 }
 rtc = sqrt(s);
 return(rtc);
}
```

5. Method

Consult the entry for DM_VSSSLU in the Fortran *SSL II Thread-Parallel Capabilities User's Guide* as well as [2], [19], [22], [46], [59], [64] and [65].

c_dm_vssslux

```
A system of linear equations with LU-decomposed structurally
symmetric real sparse matrices
ierr = c_dm_vssslux(n, iordering, nperm
             b, nassign, nsupnum,
             nfcnzfactorl, panelfactorl,
             nsizefactorl, nfcnzindexl,
             npanelindexl,
             nsizeindex, ndim,
             nfcnzfactoru, panelfactoru,
             nsizefactoru,
             nfcnzindexu, npanelindexu,
             nposto,
             sclrow, sclcol, irefine, epsr,
             itermax, &iter,
             a, nz, nrow, nfcnz,
             iw, &icon);
```

1. Function

An $n \times n$ structurally symmetric real sparse matrix **A** of which LU decomposition is made as below is given. In this decomposition an $n \times n$ structurally symmetric real sparse matrix **A** is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.

$$Ax = b$$

A matrix A is decomposed into as below.

$$P_{rs}QPD_rAD_cP^TQ^TP_{cs} = LU$$

The structurally symmetric real sparse matrix **A** is transformed as below.

$$A_1 = D_r A D_c$$

Where $\mathbf{D_r}$ is a diagonal matrix for scaling rows and $\mathbf{D_c}$ is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{O} \mathbf{P} \mathbf{A}_1 \mathbf{P}^{\mathrm{T}} \mathbf{O}^{\mathrm{T}}$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for A and Q is a permutation matrix of postorder. P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper

triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

```
ierr = c dm vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
                panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
                nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,
                nsizefactoru, nfcnzindexu, npanelindexu, nposto,
                sclrow, sclcol, irefine, &epsr, itermax,
                &iter, a, nz, nrow, nfcnz, iw2, &icon);
where:
                                                        Order n of matrix A.
                   int
                                             Input
n
                   int
                                                        When iordering 1 is specified, it is indicated that LU
iordering
                                             Input
                                                        decomposition is performed with an ordering
                                                        specified in nperm.
                                                        The matrix \mathbf{P}\mathbf{A}_1\mathbf{P}^T is decomposed into LU decomposition.
                                                       Otherwise. No ordering is specified.
                                                        See Comments on use.
                                                        When iordering = 1 is specified, a vector presenting
                                             Input
nperm
                   int nperm[n]
                                                        the permutation matrix P used is stored.
                                                        See Comments on use.
b
                   double b[n]
                                             Input
                                                       The right-hand side constant vector b of a system of
                                                       linear equations Ax = b.
                                                       Solution vector x.
                                             Output
                                             Input
                                                       L and U belonging to each supernode are compressed and
nassign
                   int nassign[n]
                                                       stored in two dimensional panels respectively. These
                                                       panels are stored in panelfactor1 and
                                                       panelfactoru as one dimensional subarray
                                                       consecutively and its block number is stored. The
                                                       corresponding indices vectors are similarly stored
                                                       npanelindex1 and npanelindexu respectively.
                                                       Data of the i-th supernode is stored into the j-th block of a
                                                       subarray, where j = nassign[i-1].
                                                       Regarding the storage methods of decomposed matrices,
                                                       refer to Figure c_dm_vssslux-1.
                   int
                                             Input
                                                       The total number of supernodes. (\leq n)
nsupnum
                                                       The decomposed matrices L and U of a structurally
nfcnzfactorl
                   long
                                             Input
                   nfcnzfactorl[n+1]
                                                       symmetric real sparse matrix are computed for each
                                                       supernode respectively. The columns of L belonging to
                                                        each supernode are compressed to have the common row
                                                       indices vector and stored into a two dimensional panel
                                                       with the corresponding parts of U in its block diagonal
                                                        portion. The index number of the top array element of the
```

			one differsional subarray where the t-th parter is
			mapped into panelfactor1 consecutively or the
			location of panel[0][0] is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslux-1.
panelfactorl	double	Input	The columns of the decomposed matrix L belonging to
panerraceorr		трис	
	panelfactorl		each supernode are compressed to have the common row
	[nsizefactorl]		indices vector and stored in a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. The block number of the
			section where the panel corresponding to the i-th
			supernode is assigned is known from j = nassign
			[i-1]. The location of its top of subarray including the
			portion of decomposed matrices is stored in
			nfcnzfactorl[j-1].
			The size of the panel in the <i>i</i> -th block can be considered
			to be two dimensional array of $ndim[j-1][0] \times$
			ndim[j-1][1]. The corresponding parts of the lower
			triangular matrix L are store in this panel
			$[t-1][s-1], s \ge t, s = 1,, ndim[i-1][0], t =$
			1,, ndim[i-1][1]. The corresponding block
			diagonal portion of the unit upper triangular matrix U
			except its diagonals is stored in the panel[t-1][s-
			1], s < t, t = 1,, ndim[i-1][1].
			Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssslux-1.
nsizefactorl	long	Input	The size of the array panelfactor1.
nfcnzindexl	long	Input	The columns of the decomposed matrix L belonging to
	nfcnzindexl[n+1]	•	each supernode are compressed to have the common row
	112011211100112[11:1]		indices vector and stored in a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. The index number of the top
			array element of the one dimensional subarray where the
			i-th row indices vector is mapped into npanelindex1
			consecutively is stored.
			Regarding the storage method of the decomposed results,
			refer to Figure c dm vssslux-1.
npanelindexl	int npanelindexl	Input	The columns of the decomposed matrix L belonging to
iipaiie i iiaeii	[nsizeindex]	трис	each supernode are compressed to have the common row
	[HSIZEIHGEX]		•
			indices vector and stored into a two dimensional panel
			with the corresponding parts of the decomposed matrix U
			in its block diagonal portion. This column indices vector
			is mapped into npanelindex1 consecutively. The
			block number of the section where the row indices vector
			corresponding to the <i>i</i> -th supernode is assigned is known
			from $j = nassign[i-1]$. The location of its top of
			10.1. J 11000 1511[1 1]. The focution of its top of

one dimensional subarray where the i-th panel is

nsizeindex	long	Input	subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1. The size of the arrays npanelindexl and
		put	npanelindexu.
ndim	<pre>int ndim[n][2]</pre>	Input	ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the <i>i</i> -th location. ndim[i-1][0] - ndim[i-1][1] and ndim[i-1][1] indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix U is transposed and stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
nfcnzfactoru	<pre>long nfcnzfactoru[n+1]</pre>	Input	Regarding a matrix U derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
panelfactoru	double panelfactoru [nsizefactoru]	Input	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the i -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $nfcnzfactoru[j-1]$. The size of the panel in the i -th block can be considered to be two dimensional array of $ndim[i-1][0] - ndim[i-1][1] \times ndim$ $[i-1][1]$. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this $panel[t-1][s-1]$, $s = 1,,ndim[i-1][0] - ndim[i-1][1]$, $t = 1,,ndim[i-1][1]$. Regarding the storage method of the decomposed results, refer to Figure $c_dm_vssslux-1$.

nsizefactoru	long	Input	The size of the array panelfactoru. See Comments on use.
nfcnzindexu	long nfcnzindexu[n+1]	Input	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
npanelindexu	<pre>int npanelindexu [nsizeindex]</pre>	Input	The rows of the decomposed matrix U belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
nposto	<pre>int nposto[n]</pre>	Input	The information about what column number of A the <i>i</i> -th node in post order corresponds to is stored. See <i>Comments on use</i> .
sclrow	double sclrow[n]	Input	The diagonal elements of $\mathbf{D_r}$ or a diagonal matrix for scaling rows are stored in one dimensional array.
sclcol	double sclcol[n]	Input	The diagonal elements of $\mathbf{D}_{\mathbf{c}}$ or a diagonal matrix for scaling columns are stored in one dimensional array.
irefine	int	Input	Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. When irefine = 1 is specified. The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. When irefine \neq 1 is specified. No iterative refinement is performed.
epsr	double	Input	Criterion value to judge if the absolute value of the residual vector

			b-Ax is sufficiently smaller compared with the absolute value of \boldsymbol{b} .
			When epsr ≤ 0.0 , it is set to 10^6 .
itermax	int	Input	Upper limit of iterative count for refinement (≥ 1).
iter	int	Output	Actual iterative count for refinement.
a	double a[nz]	Input	The nonzero elements of a structurally symmetric real
a	double a[iiz]	прис	sparse matrix A are stored in a [0] to [nz-1]
			For the compressed column storage method, refer to
			1
			Figure c_dm_vmvscc-1 in the description for
			c_dm_vmvscc routine (multiplication of a real sparse
			matrix and a real vector).
nz	int	Input	The total number of the nonzero elements to belong to a
			structurally symmetric real sparse matrix A .
nrow	<pre>int nrow[nz]</pre>	Input	The row indices used in the compressed column storage
			method, which indicate the row number of each nonzero
			element to stored in an array a.
nfcnz	<pre>int nfcnz[n+1]</pre>	Input	The position of the first nonzero element of each column
			stored in an array a in the compressed column storage
			method which stores the nonzero elements column by
			column.
			nfcnz[n] = nz + 1.
iw	int	Work	The data derived from calling c dm vssslu of LU
	iw[36*n+36+2*nz+	area	decomposition of a structurally symmetric real sparse
	3*(n+1)]		matrix is transferred in this work area. The contents must
	. , -		not be changed among calls.
icon	int	Output	Condition code. See below.
		Juput	Condition code. Dec ocion.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20400	There is a zero element in diagonal of resultant	Processing is discontinued.
	matrices of LU decomposition.	
20500	The norm of residual vector for the solution	
	vector is greater than that of b multiplied by	
	epsr, which is the right term constant vector in	
	$\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix \mathbf{A} may be close to	
	a singular matrix.	
30000	One of the following has occurred:	
	• n < 1	
	• nz < 0	
	• nfcnz[n] \neq nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindex < 1	
	• itermax < 1 when irefine = 1.	

Code	Meaning	Processing
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is $nfcnz[i] - nfcnz[i-1] > n$.	

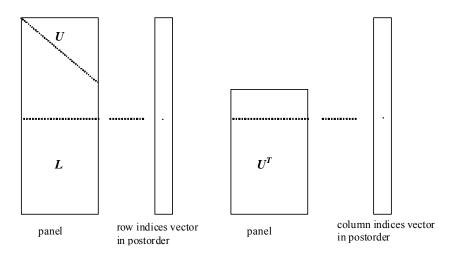


Figure c_dm_vssslux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

 $p = nfcnzfactor1[j-1] \rightarrow The j-th panel occupies the area with a length <math>ndim[j-1][0] \times ndim[j-1][1]$ from the p-th element of panel factor 1.

 $q = nfcnzindex1[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length ndim <math>[j-1][0] from the *q*-th element of npanelindex1.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
\begin{split} \text{panel[t-1][s-1], } & s \geq t, \, s = 1, ..., \text{ndim[j-1][0],} \\ & t = 1, ..., \text{ndim[j-1][1].} \end{split}
```

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$ from the *u*-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix \mathbf{U}^{T} except its block diagonal portion of decomposed results is stored in

```
panel[y-1][x-1], x=1,..., ndim[j-1][0]-ndim[j-1][1], y=1,..., ndim[j-1][1].
```

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c dm vssslu is used.

See note c), "Comments on use." of c_dm_vssslu and Example program of c_dm_vssslux.

b)

When the element $p_{ij}=1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nperm[i-1];
  nperminv[j-1] = i;
}</pre>
```

c)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
```

```
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 39
#define NX
             NORD
#define NY NORD
#define NZ
              NORD
#define N
             (NX * NY * NZ)
#define NXY (NX * NY)
#define K
              (N + 1)
#define NDIAG 7
#define NALL (NDIAG * N)
             (36 * N + 36 + 2 * NALL + 3 * (N + 1))
#define IWL
#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
                   int, double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
  int nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 double c[K * NDIAG], wc[K * NDIAG];
  int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
 double w[NDIAG * N + N];
  int nperm[N],
      nposto[N], ndim[N][2],
      nassign[N],
      iw[IWL];
 double *panelfactor1, *panelfactoru;
  int *npanelindexl,
      *npanelindexu;
 double dummyfl, dummyfu;
  int ndummyil, ndummyiu;
  long nsizefactorl, nsizeindex,
       nsizefactoru,
       nfcnzfactorl[N + 1],
       nfcnzfactoru[N + 1],
       nfcnzindexl[N + 1],
       nfcnzindexu[N + 1];
  double x[N], b[N], solex[N];
  int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
 double val, va2, va3, vc, xl, yl, zl;
```

```
double thepsz,
        epsr,
        sepsz,
        sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic,
     isclitermax,
     irefine, itermax, iter, icon;
int iordering, isw, nsupnum;
printf("
           DIRECT METHOD\n");
printf("
          FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
           IN COMPRESSED COLUMN STORAGE\n\n");
printf("
for (i = 0; i < N; i++) {
 solex[i] = 1.0;
printf("
           EXPECTED SOLUTIONS\n");
          X(1) = %19.16lf X(N) = %19.16lf \n\n", solex[0], solex[N - 1]);
printf("
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
x1 = 1.0;
y1 = 1.0;
z1 = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
             NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {
    nbase = - nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
```

```
diag2[i][j] = diag[i][nbase + j];
  } else {
   nbase = nofst[i];
    length = N - nbase;
    for (j = 0; j < length; j++) {
      diag2[i][nbase + j] = diag[i][j];
  }
}
numnzc = 0;
for (j = 0; j < N; j++) {
 ntopcfgc = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (diag2[i][j] != 0.0) {
     ncol = (j + 1) - nofst[i];
      c[numnzc] = diag2[i][j];
      nrowc[numnzc] = ncol;
      if (ntopcfgc == 1) {
       nfcnzc[j] = numnzc + 1;
       ntopcfgc = 0;
      }
     numnzc++;
  }
}
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,
            b, wc, (int *)iwc, &icon);
for (i = 0; i < N; i++) {
 x[i] = b[i];
}
```

```
iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2i
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
            isclitermax, iordering,
            nperm, isw,
            nassign,
            &nsupnum,
            nfcnzfactorl, &dummyfl,
            &nsizefactorl, nfcnzindexl,
            &ndummyil, &nsizeindex, (int *)ndim,
            nfcnzfactoru, &dummyfu,
            &nsizefactoru,
            nfcnzindexu, &ndummyiu,
            nposto,
            sclrow, sclcol,
            &epsz,
            &thepsz,
            ipivot, istatic, &sepsz,
            w, iw, &icon);
printf("
            ICON=%6d NSIZEFACTORL=%91d NSIZEFACTORU=%91d NSIZEINDEX=%91d\n",
       icon, nsizefactorl, nsizefactoru, nsizeindex);
printf("
            NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
            isclitermax, iordering,
            nperm, isw,
            nassign,
```

```
&nsupnum,
            nfcnzfactorl, panelfactorl,
            &nsizefactorl, nfcnzindexl,
            npanelindexl, &nsizeindex, (int *)ndim,
            nfcnzfactoru, panelfactoru,
            &nsizefactoru,
            nfcnzindexu, npanelindexu,
            nposto,
            sclrow, sclcol,
            &epsz,
            &thepsz,
            ipivot, istatic, &sepsz,
            w, iw, &icon);
c_dm_vssslux(N,
             iordering,
             nperm,
             nassign,
             nsupnum,
             nfcnzfactorl, panelfactorl,
             nsizefactorl, nfcnzindexl,
             npanelindexl, nsizeindex, (int *)ndim,
             nfcnzfactoru, panelfactoru,
             nsizefactoru,
             nfcnzindexu, npanelindexu,
             nposto,
             sclrow, sclcol,
             irefine, epsr, itermax, &iter,
             c, nnzc, nrowc, nfcnzc,
             iw,
             &icon);
err = errnrm(solex, x, N);
printf("
            COMPUTED VALUES\n");
printf("
            X(1) = 19.161f X(N) = 19.161f n\n", x[0], x[N - 1]);
printf("
            ICON = %6d\n\n", icon);
            N = d :: NX = d NY = d NZ = d\n\n', N, NX, NY, NZ);
printf("
printf("
            ERROR = %10.3le\n", err);
            ITER=%d\n\n\n", iter);
printf("
if (err < 1.0e-8 && icon == 0) \{
              ******* OK *******\n");
 printf("
} else {
```

```
******* NG *******\n");
   printf("
 }
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("SUB FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
{
 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp * ndiag; i++) {
   d_1[i] = 0.0;
 }
 nxy = nx * ny;
/* OFFSET SETTING */
```

```
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
  }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
    js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js - 1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     continue;
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
   1 = 0;
   if (ndiag_loc >= 7) {
```

```
if (k0 > 1) d_1[1 * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[1 * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[1 * ndivp + j] = -(1.0 / hx + 0.5 * val) / hx;
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[1 * ndivp + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_1[1 * ndivp + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
      d_1[1 * ndivp + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[1 * ndivp + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   }
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[1 * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[1 * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
 }
}
 return;
}
* SOLUTE ERROR
 * | X1 - X2 |
  */
double errnrm(double *x1, double *x2, int len) {
```

```
double s, ss, rtc;
int i;

s = 0.0;
for (i = 0; i < len; i++) {
    ss = x1[i] - x2[i];
    s += ss * ss;
}

rtc = sqrt(s);
return(rtc);
}</pre>
```

c dm vssss

```
A system of linear equations with structurally symmetric real sparse
matrices (LU decomposition method)
ierr = c_dm_vssss(a, nz, nrow, nfcnz, n,
             isclitermax,
             iordering, nperm, isw, b,
             nassign, &nsupnum,
             nfcnzfactorl, panelfactorl,
             &nsizefactorl, nfcnzindexl,
             npanelindexl,
             &nsizeindex, ndim,
             nfcnzfactoru, panelfactoru,
             &nsizefactoru, nfcnzindexu,
             npanelindexu, nposto,
             sclrow, sclcol,
             &epsz, &thepsz, ipivot, istatic,
             &spepsz, irefine, epsr,
             itermax, &iter,
             w, iw, &icon);
```

1. Function

An $n \times n$ structurally symmetric real sparse matrix **A** is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero element in its symmetric position. But the values of elements in a symmetric position are not necessarily same.)

$$Ax = b$$

The structurally symmetric real sparse matrix is transformed as below.

$$A_1 = D_r A D_c$$

where D_r is a diagonal matrix for scaling rows and D_c is also a diagonal matrix for scaling columns.

$$\mathbf{A}_2 = \mathbf{Q} \mathbf{P} \mathbf{A}_1 \mathbf{P}^T \mathbf{Q}^T$$

 A_2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of elements for A and Q is a permutation matrix of postorder. P and Q are orthogonal matrices.

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a

supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

```
ierr = c dm vsrs(a, nz, nrow, nfcnz, n, isclitermax, iordering,
                nperm, isw, b, nassign, &nsupnum, nfcnzfactorl,
                panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,
                &nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,
                &nsizefactoru, nfcnzindexu, npanelindexu, nposto,
                sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,
                irefine, epsr, itermax, &iter, w, iw, &icon);
where:
                   double a[nz]
                                             Input
                                                        The nonzero elements of a structurally symmetric real
а
                                                        sparse matrix A are stored.
                                                        For the compressed column storage method, refer to
                                                        Figure c dm vmvscc-1 in the description for
                                                        c dm vmvscc routine (multiplication of a real sparse
                                                        matrix and a real vector).
                                                        The total number of the nonzero elements belong to a
nz
                   int
                                             Input
                                                        structurally symmetric real sparse matrix A.
                   int nrow[nz]
                                                        The row indices used in the compressed column storage
                                             Input
nrow
                                                        method, which indicate the row number of each nonzero
                                                        element stored in an array A.
                                                        The position of the first nonzero element of each column
                   int nfcnz[n+1]
nfcnz
                                             Input
                                                        stored in an array A in the compressed column storage
                                                        method which stores the nonzero elements column by
                                                        column.
                                                        nfcnz[n] = nz + 1.
                                                        Order n of matrix A.
                   int
                                             Input
isclitermax
                                             Input
                                                        The upper limit for the number of iteration to seek scaling
                   int
                                                        matrices of D_r and D_c to equilibrate both rows and
                                                        columns of matrix A.
                                                        When isclitermax \leq 0 is specified no scaling is
                                                        done. In this case \mathbf{D}_r and \mathbf{D}_c are assumed as unit matrices.
                                                        When isclitermax ≥ 10 is specified, the upper limit
                                                        for the number of iteration is considered as 10.
                                                        Control information whether to decompose the reordered
iordering
                   int
                                             Input
                                                        matrix PA_1P^T permuted by the matrix P of ordering or to
                                                        decompose the matrix A.
                                                        When iordering = 1 is specified, the matrix PA_1P^T is
```

			decomposed into LU. Otherwise. Without any ordering, the matrix A ₁ is decomposed into LU. See <i>Comments on use</i> .
nperm	<pre>int nperm[n]</pre>	Input	The permutation matrix P is stored as a vector. See <i>Comments on use.</i>
isw	int	Input	Control information. 1) When isw = 1 is specified. A first call. Symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. 2) When isw = 2 specified. After the previous call ends with icon = 31000, that means that the sizes of panelfactorl or panelfactoru or npanelindexl or npanelindexu were not enough, the suspended computation is resumed. Before calling again with isw = 2, the panelfactorl or panelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindex at the precedent call and specified in corresponding arguments. Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls. 3) When isw = 3 specified. The subsequent call with isw = 3 solves another system of equations of which the coefficient matrix is as same as previous call but the right-hand side vector b is changed. In this case, the information obtained by the previous LU decomposition can be reused. Besides, except isw as control information and b for storing the new right-hand side b, the values in the
			other arguments must not be changed between the previous and following calls.
b	double b[n]	Input	The right-hand side constant vector b of a system of linear equations $\mathbf{A}\mathbf{x} = \mathbf{b}$. Solution vector \mathbf{x} .
nassign	int nassign[n]	Output Output	L and U belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactor1 and panelfactoru as one dimensional subarray consecutively and its block number is stored. The

		Input	corresponding indices vectors are similarly stored npanelindex1 and npanelindexu respectively. Data of the i -th supernode is stored into the j -th block of a subarray, where $j = nassign [i-1]$. When $isw \neq 1$, the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to Figure c dm vssss-1.
nsupnum	int	Output	The total number of supernodes.
		Input	The values in the first call are reused when $isw \neq 1$ specified. ($\leq n$)
nfcnzfactorl	<pre>long nfcnzfactorl[n+1]</pre>	Output	The decomposed matrices L and U of a structurally symmetric real sparse matrix are computed for each supernode respectively. The columns of L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th panel is mapped into panelfactorl consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
		Input	The values set by the first call are reused when $isw \neq 1$ specified.
panelfactorl	double panelfactorl [nsizefactorl]	Output	The columns of the decomposed matrix \mathbf{L} belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \mathbf{U} in its block diagonal portion. The block number of the section where the panel corresponding to the i -th supernode is assigned is known from $\mathbf{j} = \mathtt{nassign[i-1]}$. The location of its top of subarray including the portion of decomposed matrices is stored in $\mathtt{nfcnzfactorl[j-1]}$. The size of the panel in the i -th block can be considered to be two dimensional array of $\mathtt{ndim[i-1][0]} \times \mathtt{ndim[i-1][1]}$. The corresponding parts of the lower triangular matrix \mathbf{L} are store in this panel $[t-1][s-1]$, $s \ge t$, $s = 1$,, $\mathtt{ndim[i-1][0]}$, $t = 1$,, $\mathtt{ndim[i-1][1]}$. The corresponding block diagonal portion of the unit upper triangular matrix \mathbf{U} except its diagonals is stored in the panel $[t-1][s-1]$, $s < t$, $t = 1$,, $\mathtt{ndim[i-1][1]}$. Regarding the storage method of the decomposed results, refer to Figure \mathbf{c} dm_vssss-1. See Comments on use.

nsizefactorl	long	Input Output	The size of the array panelfactorl. The necessary size for the array panelfactorl is
nfcnzindexl	<pre>long nfcnzindexl[n+1]</pre>	Output	returned. See Comments on use. The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the i -th row indices vector is mapped into npanelindexl consecutively is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. When $i sw \neq 1$, the values set by the first call are reused.
npanelindexl	<pre>int npanelindexl [nsizeindex]</pre>	Output	The columns of the decomposed matrix L belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix U in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c dm_vssss-1. See <i>Comments on use</i> .
nsizeindex	long	Input	The size of the arrays npanelindex1 and npanelindexu.
ndim	<pre>int ndim[n][2]</pre>	Output Output	The necessary size is returned. See <i>Comments on use</i> . $ndim[i-1][0]$ and $ndim[i-1][1]$ indicate the sizes of the first dimension and second dimension of the panel to store a matrix L respectively, which is allocated in the <i>i</i> -th location. $ndim[i-1][0] - ndim[i-1][1]$ and $ndim[i-1][1]$ indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix U is transposed and stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. When $isw \neq 1$, the values set by the first call are reused.
nfcnzfactoru	<pre>long nfcnzfactoru[n+1]</pre>	Output	Regarding a matrix U derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of U except the of block diagonal portion belonging to each supernode are compressed to have the common column

panelfactoru	double panelfactoru [nsizefactoru]	Input Output	indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the i -th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. When $i \le w \ne 1$, the values set by the first call are reused. The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the i -th supernode is assigned is known from $j = nassign[i-1]$. The location of its top of subarray including the portion of decomposed matrices is stored in $nfcnzfactoru[j-1]$. The size of the panel in the i -th block can be considered to be two dimensional array of $ndim[i-1][0] - ndim[i-1][1] \times ndim$
			<pre>[i-1][1]. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], s = 1,,ndim[i-1][0] - ndim[i-1][1], t = 1,, ndim[i-1][1].</pre> Regarding the storage method of the decomposed results,
			refer to Figure c_dm_vssss-1. See Comments on use.
nsizefactoru	long	Input Output	The size of the array panelfactoru. The necessary size for the array panelfactoru is returned. See <i>Comments on use</i> .
nfcnzindexu	long nfcnzindexu[n+1]	Output	The rows of the decomposed matrix U belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the <i>i</i> -th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. Regarding the storage method of the decomposed results,
npanelindexu	int npanelindexu [nsizeindex]	Input Output	refer to Figure c_dm_vssss-1. When $i \le w \ne 1$, the values set by the first call are reused. The rows of the decomposed matrix U belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the

			column indices vector corresponding to the <i>i</i> -th supernode is assigned is known from j = nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. See <i>Comments on use</i> .
nposto	<pre>int nposto[n]</pre>	Output	The information about what column number of A the <i>i</i> -th node in post order corresponds to is stored.
		Input	When $isw \neq 1$, the values set by the first call are reused. See <i>Comments on use</i> .
sclrow	double sclrow[n]	Output	The diagonal elements of \mathbf{D}_r or a diagonal matrix for scaling rows are stored in one dimensional array.
sclcol	double sclcol[n]	Input Output	When $isw \neq 1$, the values set by the first call are reused. The diagonal elements of $\mathbf{D_c}$ or a diagonal matrix for scaling columns are stored in one dimensional array.
		Input	The values set by the first call are reused when $isw \ne 1$ specified.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0).
		Output	When $epsz \le 0.0$, it is set to the standard value. See <i>Comments on use</i> .
thepsz	double	Input	Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, 10 ⁻² .
		Output	When thepsz ≤ 0.0 , 10^{-2} is set. When epsz \geq thepsz > 0.0 , it is set to the value of epsz.
ipivot	int	Input	Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. For example, 40 for complete pivoting. ipivot < 10 or ipivot ≥ 50, no pivoting. 10 ≤ ipivot < 20, partial pivoting 20 ≤ ipivot < 30, diagonal pivoting 21: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. 22: When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. 30 ≤ ipivot < 40, Rook pivoting 32: When within a supernode Rook pivoting fails, it is changed to complete pivoting. 40 ≤ ipivot < 50, complete pivoting.
istatic	int	Input	Control information indicating whether Static pivoting is

			taken.
			 1) When istatic = 1 is specified. When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0, spepsz is used as an approximation value. The following conditions must be satisfied. a) epsz must be less than or equal to the standard value of epsz. b) Scaling must be performed with isclitermax = 10. c) thepsz ≥ spepsz must hold. d) irefine = 1 must be specified for the iterative refinement of the solution.
			2) When istatic ≠ 1 is specified.
			No static pivot is performed.
spepsz	double	Input	The approximate value used in Static pivoting when istatic = 1 is specified. The following conditions must hold. $10^{-10} \ge \text{speps} z \ge \text{eps} z$
		Output	When $spepsz < epsz$, it is set to 10^{-10} .
irefine	int	Input	Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. When $irefine=1$ is specified. The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. When $irefine \neq 1$ is specified. No iterative refinement is performed. When $istatic=1$ is specified, $irefine=1$ must be specified.
epsr	double	Input	Criterion value to judge if the absolute value of the residual vector ${\bf b}$ - ${\bf A}{\bf x}$ is sufficiently smaller compared with the absolute value of ${\bf b}$. When epsr ≤ 0.0 , it is set to 10^{-6} .
itermax	int	Input	Upper limit of iterative count for refinement (≥ 1).
iter	int	Output	Actual iterative count for refinement.
W	double w[nz+n]	Work area	When this routine is called repeatedly with isw = 1, 2 this work area is used for preserving information among calls. The contents must not be changed.
iw	int iw[36*n+36+2*nz+	Work area	When this routine is called repeatedly with $isw = 1, 2, 3$ this work area is used for preserving information among

 $3*(n+1)] \\ icon \\ int \\ Output \\ Condition code. See below.$

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	The pivot became relatively zero. The coefficient	Processing is discontinued.
	matrix A may be singular.	
20200	When seeking diagonal matrices for equilibrating	
	both rows and columns, there is a zero vector in	
	either rows or columns of the matrix A . The	
	coefficient matrix A may be singular.	
20400	There is a zero element in diagonal of resultant	
	matrices of LU decomposition.	
20500	The norm of residual vector for the solution	
	vector is greater than that of b multiplied by	
	epsr, which is the right term constant vector in	
	$\mathbf{A}\mathbf{x} = \mathbf{b}$. The coefficient matrix A may be close to	
	a singular matrix.	
30000	One of the following has occurred:	Processing is discontinued.
	• n<1	
	• nz<0	
	• nfcnz[n] ≠ nz + 1	
	• nsizefactorl < 1	
	• nsizefactoru<1	
	• nsizeindex<1	
	• isw<1	
	• isw>3	
	• itermax < 1 when irefine = 1.	
30100	The permutation matrix specified in nperm is not	
	correct.	
30200	The row index k stored in nrow [j-1] is $k < 1$	
	or $k > n$.	
30300	The number of row indices belong to <i>i</i> -th column	
	is nfcnz[i] - nfcnz[i-1] > n.	
30500	When istatic =1 is specified, the required	
	conditions are not satisfied.	
	epsz is greater than 16 <i>u</i> of the standard value	
	orisclitermax < 10	
	orirefine≠1	
	or spepsz > thepsz	
	or spepsz $> 10^{-10}$	
30700	The matrix A is not structurally symmetric.	

Code	Meaning	Processing
31000	The value of nsizefactorl is not enough as	Reallocate the panelfactorl or
	the size of panelfactorl,	npanelindexl and npanelindexu or
	or the value of nsizeindex is not enough as	panelfactoru or npanelindexu
	the size of npanelindexl and	with the necessary size which are returned in the
	npanelindexu,	nsizefactorl or nsizeindex or
	or the value of nsizefactoru is not enough as	nsizefactorurespectively
	the size of panelfactoru.	and call this routine again with isw = 2 specified.

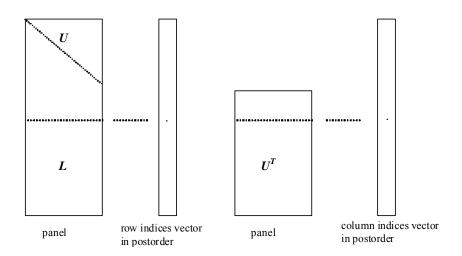


Figure c dm vssss-1. Conceptual scheme for storing decomposed results

j = nassign[i-1] \rightarrow The *i*-th supernode is stored at the *j*-th section.

 $p = nfcnzfactor1[j-1] \rightarrow The j-th panel occupies the area with a length <math>ndim[j-1][0] \times ndim[j-1][1]$ from the p-th element of panel factor 1.

 $q = nfcnzindex1[j-1] \rightarrow The row indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *q*-th element of npanelindex1.

A panel is regarded as an array of the size $ndim[j-1][0] \times ndim[j-1][1]$.

The lower triangular matrix L of decomposed results is stored in

```
panel[t-1][s-1], s \ge t, s = 1, ..., ndim[j-1][0],

t = 1, ..., ndim[j-1][1].
```

The block diagonal portion except diagonals of the unit upper triangular matrix \mathbf{U} of decomposed results is stored in

```
panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

t = 1, ..., ndim[j-1][1].
```

 $u = nfcnzfactoru[j-1] \rightarrow The j-th panel occupies the area with a length <math>(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$ from the *u*-th element of panel factoru.

 $v = nfcnzindexu[j-1] \rightarrow The column indices vector of the$ *j*-th panel occupies the area with a length <math>ndim[j-1][0] from the *v*-th element of npanelindexu.

A panel is regarded as an array of the size $(ndim[j-1][0] - ndim[j-1][1]) \times ndim[j-1][1]$.

The transposed unit upper triangular matrix \mathbf{U}^T except its block diagonal portion of decomposed results is stored in

$$\texttt{panel[y-1][x-1]} \ , \ x = 1 \, , \dots , \\ \texttt{ndim[j-1][0]} - \texttt{ndim[j-1][1]}, \ y = 1 \, , \dots , \\ \texttt{ndim[j-1][1]}.$$

The indices indicate the column numbers of the matrix $\mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

When the element $p_{ij} = 1$ of the permutation matrix **P**, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nperm[i-1];
  nperminv[j-1] = i;
}</pre>
```

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is $16 \times u$. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor1, nsizeindex, and nsizefactoru with isw = 1. This routine ends with icon = 31000, and the necessary sizes for nsizefactor1, nsizeindex and nsizefactoru are returned. Then the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when j = nposto[i-1].

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q}\mathbf{A}\mathbf{Q}^T$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
  j = nposto[i-1];
  npostoinv[j-1] = i;
}</pre>
```

e)

Instead of this routine, a system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ can be solved by calling both $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ -vssslu to perform LU decomposition of a structurally symmetric real sparse matrix \mathbf{A} and $\mathbf{c}_{\underline{\mathbf{d}}\mathbf{m}}$ -vssslux to solve the linear equation in use of decomposed results.

4. Example program

The linear system of equations $\mathbf{A}\mathbf{x} = \mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

```
-\Delta u + a\nabla u + cu = f
```

with zero boundary conditions on a cube and the coefficient $a = (a_1, a_2, a_3)$.

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix **A** built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 39
#define NX
              NORD
#define NY
              NORD
#define NZ
              NORD
#define N
              NX * NY * NZ
#define NXY
              NX * NY
#define
        K
               (N + 1)
#define NDIAG 7
#define NALL NDIAG * N
#define
        IWL
              36 * N + 36 + 2 * NALL + 3 * (N + 1)
#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
                    int, double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
 int nofst[NDIAG];
 double diag[NDIAG][K], diag2[NDIAG][K];
 double c[K * NDIAG], wc[K * NDIAG];
 int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
 double w[NDIAG * N + N];
 int nperm[N],
```

```
nposto[N], ndim[N][2],
     nassign[N],
     iw[IWL];
double *panelfactor1, *panelfactoru;
int *npanelindexl,
     *npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindex,
     nsizefactoru,
     nfcnzfactorl[N + 1],
     nfcnzfactoru[N + 1],
     nfcnzindexl[N + 1],
     nfcnzindexu[N + 1];
double x[N], b[N], solex[N];
int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
double val, va2, va3, vc, xl, yl, zl;
double thepsz,
        epsr,
        sepsz,
       sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic,
    isclitermax,
     irefine, itermax, iter, icon;
int iordering, isw, nsupnum;
printf("
          DIRECT METHOD\n");
           FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf("
           IN COMPRESSED COLUMN STORAGE\n\n");
printf("
for (i = 0; i < N; i++) {
 solex[i] = 1.0;
}
printf("
           EXPECTED SOLUTIONS\n");
printf("
           X(1) = 19.161f X(N) = 19.161f n, solex[0], solex[N - 1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
x1 = 1.0;
```

```
y1 = 1.0;
z1 = 1.0;
init_mat_diag(val, va2, va3, vc, (double *)diag, nofst,
             NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
 for (j = 0; j < K; j++) {
   diag2[i][j] = 0;
 }
}
for (i = 0; i < NDIAG; i++) {
  if (nofst[i] < 0) {
   nbase = -nofst[i];
   length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][j] = diag[i][nbase + j];
    }
  } else {
    nbase = nofst[i];
   length = N - nbase;
   for (j = 0; j < length; j++) {
     diag2[i][nbase + j] = diag[i][j];
    }
  }
}
numnzc = 0;
for (j = 0; j < N; j++) {
 ntopcfgc = 1;
  for (i = NDIAG - 1; i >= 0; i--) {
    if (diag2[i][j] != 0.0) {
      ncol = (j + 1) - nofst[i];
      c[numnzc] = diag2[i][j];
      nrowc[numnzc] = ncol;
      if (ntopcfgc == 1) {
       nfcnzc[j] = numnzc + 1;
       ntopcfgc = 0;
      }
```

```
numnzc++;
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
\verb|c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex, |
            b, wc, (int *)iwc, &icon);
for (i = 0; i < N; i++) {
  x[i] = b[i];
iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2i
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,
           isclitermax, iordering,
           nperm, isw,
           x,
           nassign,
           &nsupnum,
           nfcnzfactorl, &dummyfl,
           &nsizefactorl, nfcnzindexl,
           &ndummyil, &nsizeindex, (int *)ndim,
           nfcnzfactoru, &dummyfu,
           &nsizefactoru,
           nfcnzindexu, &ndummyiu,
           nposto,
           sclrow, sclcol,
```

```
&epsz,
           &thepsz,
           ipivot, istatic, &sepsz,
           irefine, epsr, itermax, &iter,
           w, iw, &icon);
printf("
            ICON=%6d NSIZEFACTORL=%91d NSIZEFACTORU=%91d NSIZEINDEX=%91d\n",
       icon, nsizefactorl, nsizefactoru, nsizeindex);
printf("
            NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,
           isclitermax, iordering,
           nperm, isw,
           x,
           nassign,
           &nsupnum,
           nfcnzfactorl, panelfactorl,
           &nsizefactorl, nfcnzindexl,
           npanelindex1, &nsizeindex, (int *)ndim,
           nfcnzfactoru, panelfactoru,
           &nsizefactoru,
           nfcnzindexu, npanelindexu,
           nposto,
           sclrow, sclcol,
           &epsz,
           &thepsz,
           ipivot, istatic, &sepsz,
           irefine, epsr, itermax, &iter,
           w, iw, &icon);
err = errnrm(solex, x, N);
printf("
            COMPUTED VALUES\n");
printf("
            X(1) = 19.161f X(N) = 19.161f n\n'', x[0], x[N - 1]);
printf("
            ICON = %6d\n\n", icon);
printf("
            N = d :: NX = d NY = dNZ = dnn', N, NX, NY, NZ);
printf("
            ERROR = %19.16lf\n", err);
printf("
           ITER=%d\n\n\n", iter);
```

```
if (err < 1.0e-8 && icon == 0) {
              ******* OK ******* \n");
   printf("
 } else {
              ******* NG ****** \n");
   printf("
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
INITIALIZE COEFFICIENT MATRIX
  */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_1,
                 int *offset, int nx, int ny, int nz, double xl, double yl,
                 double zl, int ndiag, int len, int ndivp) {
 if (ndiag < 1) {
   printf("SUB FUNCTION INIT_MAT_DIAG:\n");
   printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
   return;
 }
#pragma omp parallel default(shared)
 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = x1 / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp * ndiag; i++) {
   d_1[i] = 0.0;
 }
```

```
nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
   1 = 0;
   if (ndiag_loc >= 7) {
     offset[1] = -nxy;
     1++;
   if (ndiag_loc >= 5) {
     offset[1] = -nx;
     1++;
   if (ndiag_loc >= 3) {
     offset[1] = -1;
     1++;
   offset[1] = 0;
   1++;
   if (ndiag_loc >= 2) {
     offset[1] = 1;
     1++;
   if (ndiag_loc >= 4) {
     offset[1] = nx;
     1++;
   if (ndiag_loc >= 6) {
     offset[1] = nxy;
   }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
   js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
   k0 = (js - 1) / nxy + 1;
   if (k0 > nz) {
     printf("ERROR; K0.GH.NZ \n");
     goto label_100;
   j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
   i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
```

```
1 = 0;
   if (ndiag_loc >= 7) {
     if (k0 > 1) d_1[1 * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;
     1++;
   if (ndiag_loc >= 5) {
     if (j0 > 1) d_1[1 * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 3) {
     if (i0 > 1) d_1[1 * ndivp + j] = -(1.0 / hx + 0.5 * val) / hx;
   }
   hx2 = hx * hx;
   hy2 = hy * hy;
   hz2 = hz * hz;
   d_1[1 * ndivp + j] = 2.0 / hx2 + vc;
   if (ndiag_loc >= 5) {
     d_l[1 * ndivp + j] += 2.0 / hy2;
     if (ndiag_loc >= 7) {
       d_1[1 * ndivp + j] += 2.0 / hz2;
     }
   }
   1++;
   if (ndiag_loc >= 2) {
     if (i0 < nx) d_1[1 * ndivp + j] = -(1.0 / hx - 0.5 * val) / hx;
     1++;
   if (ndiag_loc >= 4) {
     if (j0 < ny) d_1[1 * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
     1++;
   if (ndiag_loc >= 6) {
     if (k0 < nz) d_1[1 * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;
   }
label_100: ;
 }
}
 return;
* SOLUTE ERROR
```

Consult the entry for DM_VSSSS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2], [19], [22], [46], [59], [64] and [65].

c_dm_vtdevc

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of a real tridiagonal matrix.

$$Tx = \lambda x$$

where, T is an *n*-dimensional real tridiagonal matrix. Tridiagonal matrix T must satisfy the following condition:

$$l_i u_{i-1} > 0$$
, where, $i = 2, ..., n$

When the element of tridiagonal matrix **T** is t_{ij} , d_i indicates a tridiagonal element, and $l_i = t_{i,i-1}$ and $u_i = t_{i,i+1}$ indicate subdiagonal elements, where, $l_1 = u_n = 0$.

$$(\mathbf{T}\mathbf{v})_i = l_i \ v_{i-1} + d_i \ v_i + u_i \ v_{i+1}, \quad i = 1, 2, ..., n$$

ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,

2. Arguments

The routine is called as follows:

```
(double*)ev, k, (int*)m, &icon);
where:
d
            double d[n]
                                     Input
                                                Diagonal of matrix T.
                                                Lower diagonal of matrix T, with sl[i-1] = l_i, i = 1, ..., n.
sl
            double sl[n]
                                     Input
                                                Upper diagonal of matrix T, with su[i-1] = u_i.
            double su[n]
su
                                     Input
                                                Order n of matrix T.
n
             int
                                     Input
                                                Number assigned to the first eigenvalue to be acquired by numbering
nf
            int
                                     Input
                                                eigenvalues in ascending order. (Multiple eigenvalues are numbered so
                                                that one number is assigned to one eigenvalue.)
nl
            int
                                     Input
                                                Number assigned to the last eigenvalue to be acquired by numbering
                                                eigenvalues in ascending order. (Multiple eigenvalues are numbered so
                                                that one number is assigned to one eigenvalue.)
ivec
            int
                                     Input
                                                Control information.
                                                ivec = 1 if both the eigenvalues and eigenvectors are sought.
                                                ivec \neq 1 if only the eigenvalues are sought.
            double
                                     Input
                                                Criterion value for checking whether the eigenvalues are numerically
etol
                                                different from each other or are multiple.
                                                When etol is less than 3.0 \times 10^{-16} this value is used as the standard
                                     Output
                                                value. See Comments on use.
                                                Criterion value for checking whether the adjacent eigenvalues can be
ctol
            double
                                     Input
                                                considered to be approximately equal to each other. This value is used
                                                to assure the linear independence of the eigenvector corresponding to
```

			the eigenvalue belonging to approximately multiple eigenvalues
			(clusters).
			The value of cto1 should be generally 5.0×10^{-12} . For a very large
			cluster, a large ctol value is required.
			$10^{-6} \ge \text{ctol} \ge \text{etol}$.
		Output	When condition $ctol > 10^{-6}$ occurs, $ctol$ is set to 10^{-6} .
			When condition $ctol < etol$ occurs, $ctol = 10 \times etol$ is set as the
			standard value. See Comments on use.
nev	int nev[5]	Output	Number of eigenvalues calculated.
			Details are given below.
			nev[0] indicates the number of different eigenvalues calculated.
			nev[1] indicates the number of approximately multiple different
			eigenvalues (different clusters) calculated.
			nev[2] indicates the total number of eigenvalues (including multiple
			eigenvalues) calculated.
			nev[3] indicates the number representing the first of the eigenvalues
			calculated.
			nev[4] indicates the number representing the last of the eigenvalues
			calculated.
е	double	Output	Eigenvalues. Stored in $e[i-1]$, $i = 1,, nev[2]$.
	e[maxne]		
maxne	int	Input	Maximum number of eigenvalues that can be computed.
			When it can be considered that there are two or more eigenvalues with
			multiplicity m , maxne must be set to a larger value than $nl - nf + 1 + 1$
			$2 \times m$ that is bounded by n . When condition nev[2] > maxne occurs,
			the eigenvectors cannot be calculated. See Comments on use.
ev	double	Output	When ivec = 1, the eigenvectors corresponding to the eigenvalues are
	ev[maxne][k]		stored in ev.
			The eigenvectors are stored in $ev[i-1][j-1]$, $i = 1,, nev[2]$, j
			= 1,,n.
k	int	Input	C fixed dimension of array ev. $(k \ge n)$
m	int	Output	Information about multiplicity of eigenvalues calculated.
	m[2][maxne]		$m[0][i-1]$ indicates the multiplicity of the <i>i</i> -th eigenvalue λ_i .
			m[1][i-1] indicates the multiplicity of the <i>i</i> -th cluster when the
			adjacent eigenvalues are regarded as clusters. See Comments on use.
icon	int	Output	Condition code. See below.
The seminal	4 - 1: -4 - 6 1:4: 1	·	

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	During calculation of clustered eigenvalues, the	Discontinued. The eigenvectors cannot be
	total number of eigenvalues exceeded the value of	calculated, but the different eigenvalues
	maxne.	themselves are already calculated.
		A suitable value for maxne to allow calculation
		to proceed is returned in nev[2].
		See Comments on use.

Code	Meaning	Processing
30000	One of the following has occurred:	Bypassed.
	• n < 1	
	• k<1	
	• k < n	
	• nf < 1	
	• nl > n	
	• nl < nf	
	• maxne < nl - nf + 1	
30100	$sl[i] \times su[i-1] \leq 0$	Bypassed.
	The matrix could not be converted into a	
	symmetrical form.	

3. Comments on use

Problems that can be solved using this function

This routine requires only that $l_iu_{i-1} > 0$, i = 2, ..., n. Thus it will also solve the generalized eigenvalue problem.

$$Tx = \lambda Dx$$

where $\mathbf{D} > 0$ (every diagonal element is positive) is diagonal by setting

 $T \leftarrow D^{-1}T$. Also, the eigenvalue problem for T can be reduced to a symmetric generalized problem

$$\mathbf{DTv} = \lambda \mathbf{Dv}$$

where $d_1 = 1$, $d_i = u_{i-1}d_{i-1}/l_i$, i = 2, ..., n. If d_i can cause scaling problems then it is preferable to consider the symmetric problem.

$$\mathbf{D}^{1/2} \; \mathbf{T} \mathbf{D}^{-1/2} \; \mathbf{w} = \lambda \mathbf{w}$$

where $\mathbf{w} = \mathbf{D}^{1/2}\mathbf{v}$.

etol and ctol

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).

When $\varepsilon = \text{etol}$, the following condition is satisfied for consecutive eigenvalues λ_j ($j = s - 1, s, ..., s + k, (k \ge 0)$):

$$\frac{|\lambda_i - \lambda_{i-1}|}{1 + \max(|\lambda_{i-1}|, |\lambda_i|)} \le \varepsilon, \tag{1}$$

If formula (1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues λ_j (j = s - 1, s, ..., s + k) are numerically multiple.

The standard value of etol is 3.0×10^{-16} (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (1) is not satisfied when $\varepsilon = \text{etol}$, it can be considered that λ_{i-1} and λ_i are distinct eigenvalues.

When $\varepsilon = \text{etol}$, assume that consecutive eigenvalues λ_m (m = t - 1, t, ..., t + k ($k \ge 0$)) are different eigenvalues. Also, when $\varepsilon = \text{ctol}$, assume that formula (2) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t

+k+1. In this case, it is assumed that the distinct eigenvalues λ_m (m=t-1, t, ..., t+k) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to λ_m (m=t-1, t, ..., t+k) are reorthogonalized.

maxne

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i-1], i = 1, ..., nev[0]. The multiplicity of the corresponding eigenvalues is stored in m[0][i-1], i = 1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be nt(nt = nl - nf + 1) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is m, the maxne value must be at least $nt + 2 \times m$.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define P1
                  (70)
#define Q1
                  (100)
#define N
                  (P1*Q1)
#define K
                  (N+1)
#define N0
                  (6001)
#define N1
                  (7000)
#define NE
                  (N1-N0+1)
#define MAX_CLUS
                  (2*01)
#define MAXNE
                  (NE+MAX CLUS)
                  (2*N+2)
#define NW
MAIN__()
 double d[N], sl[N], su[N], e[MAXNE], ev[MAXNE][K], w[NW];
 double tmp, error, etol, ctol;
        m[2][MAXNE], nev[5], nf, nl, ivec, icon;
  int
         i, j, l, ii;
  etol=3e-16;
  ctol=5e-12;
  j = (P1+1)/2;
  d[j-1] = 0.0;
  for (i=1; i<=j-1; i++) {
   sl[i+1-1]
               = 1.0;
    su[i-1]
                = 1.0;
    sl[j+i-1]
                = 1.0;
    su[i+i-2]
                = 1.0;
```

```
d[i-1] = (double)(j-i);
d[j*2-i-1] = d[i-1];
s1[0]
           = 0.0;
su[P1-1] = 0.0;
for (1=2; 1<=Q1; 1++) {
  ii = (1-1)*P1;
   for (i=1; i<=P1; i++) {
     sl[ii+i-1] = sl[i-1];
     su[ii+i-1] = su[i-1];
     d[ii+i-1] = d[i-1];
s1[0] = 0.0;

su[N-1] = 0.0;
          = N0;
         = N1;
nl
         = 1;
ivec
c_dm_vtdevc(d, sl, su, N, nf, nl, ivec, &etol, &ctol, nev, e, MAXNE, (double*)ev, K,
               (int*)m, &icon);
printf("icon = %d\n", icon);
printf("nev[0] = %d\n", nev[0]);
printf("nev[1] = %d\n", nev[1]);
printf("nev[2] = %d\n", nev[2]);
printf("nev[3] = %d\n", nev[3]);
printf("nev[4] = %d\n", nev[4]);
printf("nev[4] = %d\n", nev[4]);
error = tmp = 0.0;
for (i=0; i<nev[2]; i++) {
  for (j=0; j<N; j++) {
     w[j+1] = ev[i][j];
  w[0] = 0.0;
  w[N+1] = 0.0;
   for (j=0; j<N; j++) {
     tmp = sl[j]*w[j]+d[j]*w[j+1]+su[j]*w[j+2]-e[i]*w[j+1];
     error = max(fabs(tmp/(fabs(e[i])+1)), error);
}
printf("maximum element error in ||T*x-eig*x|| = enror, tmp);
return(0);
```

Consult the entry for DM_VTDEVC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [20], [57], [66] and [76].

c_dm_vtfqd

1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$Ax = b$$

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors **b** and **x** are *n*-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 *Iterative linear equation solvers and Convergence*, in Part I, *Outline*, in the *SSL II Extended Capability User's Guide II*.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vtfqd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, x,
                 &iter, &icon);
where:
                                            The nonzero elements of a coefficient matrix are stored in a.
            double
                                  Input
а
            a[ndiag][k]
                                             C fixed dimension of array a (\ge n).
k
            int
                                  Input
                                  Input
                                             The number of diagonal vectors in the coefficient matrix A having non-
ndiag
            int
                                             zero elements.
                                             Order n of matrix A.
n
            int
                                  Input
nofst
                                  Input
                                             Distance from the main diagonal vector corresponding to diagonal
            int
                                             vectors in array a. Super-diagonal vector rows have positive values.
            nofst[ndiag]
                                             Sub-diagonal vector rows have negative values. See Comments on use.
            double b[n]
                                  Input
                                             Constant vector b.
b
                                  Input
                                             Upper limit of iterative count for TFQMR method. The value of itmax
itmax
            int
                                             should usually be set to about 2000.
                                  Input
                                            Tolerance for convergence test.
            double
eps
                                             When eps is zero or less, eps is set to 10<sup>-6</sup>. See Comments on use.
```

iguss	int	Input	Control information about whether to start the iterative computation
			from the approximate value of the solution vector specified in array \mathbf{x} .
			iguss = 0 : Approximate value of the solution vector is not specified.
			$iguss \neq 0$: The iterative computation starts from the approximate value
			of the solution vector specified in array x.
X	double x[n]	Input	The starting values for the computation. This is optional and relates to
			argument iguss.
		Output	Solution vector x .
iter	int	Output	Actual iterative count for TFQMR method.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.
		The approximate solution obtained up to this
		stage is returned, but its precision is not
		guaranteed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• n>k	
	• ndiag<1	
	• itmax≤0	
32001	nofst[i] >n-1	

3. Comments on use

eps

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix **A** condition number and the value of eps.

Notes on using the diagonal format

A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
                1000
#define NMAX
#define UBANDW
#define LBANDW
MAIN__()
  double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
  double one=1.0, bcoef=10.0, eps=1.e-6;
         ierr, icon, ndiag, nub, nlb, n, i, j, k;
          itmax, iguss, iter;
         nofst[UBANDW + LBANDW + 1];
  /* initialize nonsymmetric matrix and vector */
  nub = UBANDW;
        = LBANDW;
  nlb
  ndiag = nub + nlb + 1;
        = NMAX;
  n
        = NMAX;
  for (i=1; i<=nub; i++) {
  for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
  for (j=n-i; j<n ; j++) a[i][j] = 0.0;
    nofst[i] = i;
  for (i=1; i<=nlb; i++) {
    for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
    nofst[nub + i] = -(i + 1);
  nofst[0] = 0;
  for (j=0; j< n; j++) {
    a[0][j] = bcoef;
    for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
    b[j] = bcoef;
  /\,{}^\star solve the system of linear equations ^\star/
  itmax = n;
  iguss = 0;
  ierr = c_dm_vtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
                    iguss, x, &iter, &icon);
  if (icon != 0) {
    printf("ERROR: c_dvtfqd failed with icon = %d\n", icon);
    exit(1);
  /* check vector */
  for (i=0;i<n;i++)
    if (fabs(x[i]-one) > eps) {
      printf("WARNING: result inaccurate\n");
      exit(1);
    }
  printf("Result OK\n");
  return(0);
```

Consult the entry for DM VTFQD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vtfqe

1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$Ax = 1$$

The $n \times n$ coefficient matrix is stored using the ELLPACK format storage method. Vectors **b** and **x** are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 *Iterative linear equation* solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vtfqe((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,
                 x, &iter, &icon);
where:
            double
                                  Input
                                             Sparse matrix A stored in ELLPACK storage format.
а
            a[iwidt][k]
                                             C fixed dimension of array a and icol(\ge n).
k
            int
                                  Input
iwidt
                                  Input
                                             The maximum number of non-zero elements in any row vectors of A
            int
                                             (\ge 0).
                                             Order n of matrix A.
n
            int
                                  Input
icol
                                  Input
                                             Column indices used in the ELLPACK format, showing to which
            int
                                             column the elements corresponding to a belong.
            icol[iwidt][k]
            double b[n]
                                             Constant vector b.
b
                                  Input
                                             Upper limit of iterative count for TFQMR method. The value of itmax
itmax
            int
                                  Input
                                             should usually be set to about 2000.
                                             Tolerance for convergence test.
            double
                                  Input
eps
                                             When eps is zero or less, eps is set to 10^{-6}. See Comments on use.
                                             Control information about whether to start the iterative computation
iguss
                                  Input
            int
                                             from the approximate value of the solution vector specified in array x.
                                             iguss = 0: Approximate value of the solution vector is not set.
                                             iguss \neq 0: The iterative computation starts from the approximate
                                                         value of the solution vector specified in array x.
                                             The starting values for the computation. This is optional and relates to
            double x[n]
                                  Input
x
```

icon

argument iguss.

Condition code. See below.

Solution vector x. Output

Iterative count for TFQMR method. iter Output int Output

The complete list of condition codes is given below.

int

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.
		The approximate solution obtained up to this
		stage is returned, but its precision is not
		guaranteed.
30000	One of the following has occurred:	Bypassed.
	• n<1	
	• n>k	
	• iwidt < 1	
	• itmax ≤ 0	
30001	The band width is zero.	

3. Comments on use

eps

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix A condition number and the eps.

4. Example program

This program solves a system of linear equations and checks the result.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
                  1000
#define NMAX
#define UBANDW
#define LBANDW
MAIN__()
  double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix;
  int
          icol[UBANDW + LBANDW + 1][NMAX];
  /* initialize matrix and vector */
  nub
        = UBANDW;
        = LBANDW;
  iwidt = UBANDW + LBANDW + 1;
        = NMAX;
        = NMAX;
  for (i=0; i<n; i++) b[i] = bcoef;
  for (i=0; i<iwidt; i++)
    for (j=0; j< n; j++) {
```

```
a[i][j] = 0.0;
     icol[i][j] = j+1;
for (j=0; j<nlb; j++) {
  for (i=0; i<j; i++) a[i][j] = lcf;
  a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
  for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
  for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
}</pre>
for (j=nlb; j<n-nub; j++) {</pre>
  for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;</pre>
   for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;</pre>
  for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
for (j=n-nub; j<n; j++){
  for (i=0; i<nlb; i++) a[i][j] = lcf;</pre>
   a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
  for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
  ix = n - (j+nub-nlb-1);
for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
/* solve the system of linear equations */
itmax = n;
iguss = 0;
ierr = c_dm_vtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
                         eps, iguss, x, &iter, &icon);
if (icon != 0) {
  printf("ERROR: c_dvtfqe failed with icon = %d\n", icon);
   exit(1);
/* check vector */
for (i=0; i<n; i++)
  if (fabs(x[i]-one) > eps) {
     printf("WARNING: result inaccurate\n");
     exit(1);
   }
printf("Result OK\n");
return(0);
```

Consult the entry for DM VTFQE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vtrid

Tridiagonalization of real symmetric matrices.				
ierr = c_dm_vtrid (a	a, k, n, d,	sl, &icon);		

1. Function

This routine reduces the real symmetric matrix A to tridiagonal form using the Housholder reductions.

$$\mathbf{T} = \mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}$$

where **A** is an $n \times n$ real symmetric matrix, **Q** is an $n \times n$ orthogonal matrix and **T** is a real tridiagonal matrix.

2. Arguments

The routine is called as follows:

where:

a	<pre>double a[n][k]</pre>	Input	The upper triangular part $\{a_{ij} \mid i \le j\}$ of real symmetric matrix A is stored in the upper triangular part $\{a[i-1][j-1], i \le j\}$ of a.
		Output	The information on Householder transforms used for tridiagonalization
			is stored in the upper triangular part $\{a[i-1][j-1], i \le j\}$ of a. The
			values in the lower triangular part of a is not assured after operation.
			See Comments on use.
k	int	Input	C fixed dimension of matrix a. $(k \ge n)$
n	int	Input	Order n of real symmetric matrix \mathbf{A} .
d	double d[n]	Input	The diagonal elements of the reduced tridiagonal matrix are stored.
sl	double sl[n]	Input	The subdiagonal elements of reduced tridiagonal matrix are stored in
			sl[i-1], i = 2,, n. sl[0] = 0.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	n<2, k <n.< td=""><td>Processing is discontinued.</td></n.<>	Processing is discontinued.

3. Comments on use

a

Tridiagonalization is performed by the repeated transforms varying k = 1, ..., n-2.

$$\mathbf{A}^k = \mathbf{Q}_k^{\mathrm{T}} \mathbf{A}^{k-1} \mathbf{Q}_k \ , \quad \mathbf{A}^0 = \mathbf{A}$$

Put
$$\mathbf{b}^{T} = (0, ..., 0, \mathbf{A}^{k-1}(k+1, k), ..., \mathbf{A}^{k-1}(n, k)) \cdot (\mathbf{A}^{k-1}(i, j))$$
 means i, j element of \mathbf{A}^{k-1}

$$\mathbf{b}^{\mathrm{T}} = (0, \dots, 0, b_{k+1}, \dots, b_n)$$

$$\mathbf{b}^{\mathrm{T}} \cdot \mathbf{b} = \mathrm{S}^2$$
 and put $\mathbf{w}^{\mathrm{T}} = (0, \dots, 0, b_{k+1} + \mathrm{S}, b_{k+2}, \dots, b_n)$.

The sign of S is chosen same as that of \mathbf{b}_{k+1} .

Then the transform matrix is represented as follow.

$$\mathbf{Q}_k = \mathbf{I} - \alpha \mathbf{w} \cdot \mathbf{w}^{\mathrm{T}}, \ \alpha = \frac{1}{\mathbf{S}^2 + |b_{k+i}\mathbf{S}|}$$

 $\mathbf{w}(i-1)$ (i=k+1, ..., n) and α are stored in a[k-1][i-1] and a[k-1][k-1] respectively.

4. Example program

This example calculates the tridiagonalization of a real symmetric matrix whose eigenvalues are known.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
                         2000
#define N
#define K
                         M
#define NE
                        Ν
#define MAX_NEV
                         NE
    double a[N][K], b[N][K], c[N][K], d[N][K], ac[N][K];
    double dd[N], sld[N], sud[N];
    double eval[MAX_NEV], evec[MAX_NEV][K];
   double pai, coef, eval_tol, clus_tol;
int nev[5], mult[2][MAX_NEV];
    int
           i, j, nf, nl, ivec, icon;
    pai = 4.0 * atan(1.0);
    coef = sqrt(2.0/(N+1));
    for (j=0; j<N; j++) {
      for (i=0; i< N; i++) {
        d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
    for (j=0; j< N; j++) {
      \verb|c_dm_vmggm| ((double*)d, K, (double*)c, K, (double*)b, K, N, N, &icon); \\
    c_dm_vmggm ((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon);
    for (i=0; i<N; i++) { for (j=i; j<N; j++)
        ac[i][j] = a[i][j];
    c_dm_vtrid ((double*)ac, K, N, dd, sld, &icon);
    if (icon != 0) {
     printf(" icon of c_dm_vtrid =%d\n", icon);
      exit(0);
    for (i=1; i<N; i++) {
     sud[i-1]=sld[i];
    sud[N-1]=0.0;
   nf = 1;
```

Consult the entry for DM_VTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

c_dm_v1dcft

One-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7)

ierr = c_dm_vldcft(x, kx, y, ky, n1, n2, isn, &icon);

1. Function

The function c_dm_v1dcft performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed $n(= n_1 \times n_2)$ is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform

When $\{x_i\}$ is input, the transform defined by (1) below is calculated to obtain $\{n\alpha_k\}$

$$n\alpha_k = \sum_{j=0}^{n-1} x_j \omega_n^{-jk}$$
 , $k = 0,1,...,n-1$
, $\omega_n = \exp(2\pi i/n)$ (1)

The one-dimensional Fourier inverse transform

When $\{\alpha_k\}$ is input, the transform defined by (2) below is calculated to obtain $\{x_i\}$.

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk} , j = 0,1,...,n-1$$

, $\omega_{n} = \exp(2\pi i / n)$ (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_vldcft((dcomplex*)x, kx, (dcomplex*)y, ky, n1, n2, isn, &icon);
where:

x	dcomplex	Input	The complex data.
	x[n2][kx]		See Comments on use.
kx	int	Input	C fixed dimension of array x.
У	dcomplex	Output	The complex transformed data.
	y[n1][ky]		See Comments on use.
ky	int	Input	C fixed dimension of array y.
n1	int	Input	Assuming that the length of the data transformed $(n = n1 \times n2)$ is two-
			dimensional data, the size of first dimension n1 must be a product of
			the powers of 2, 3, 5 and 7.
n2	int	Input	Assuming that the length of the data transformed $(n = n1 \times n2)$ is two-
			dimensional data, the size of the second dimension, n2 must be a
			product of the powers of 2, 3, 5 and 7.
isn	int	Input	Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = -1 for the inverse transform.

icon int

Output

Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The C fixed dimensions are less than the actual	
	dimensions.	
30008	The order of transform is not radix 2/3/5/7.	
30016	The invalid value for the parameter isn.	

3. Comments on use

x and y

If the one-dimensional data of $n = n_1 \times n_2$ is numbered k = 0, ..., n - 1,

$$k = k_1 + k_2 \times n_1$$
 , $k_1 = 0, \dots, n_1 - 1$
, $k_2 = 0, \dots, n_2 - 1$
 $i = i_1 + i_2 \times n_2$, $i_1 = 0, \dots, n_2 - 1$
, $i_2 = 0, \dots, n_1 - 1$

The input and output data are regarded as two-dimensional arrays with subscripts of $[k_2][k_1]$ and $[i_2][i_1]$, respectively. See Figure c_dm_v1dcft-1.

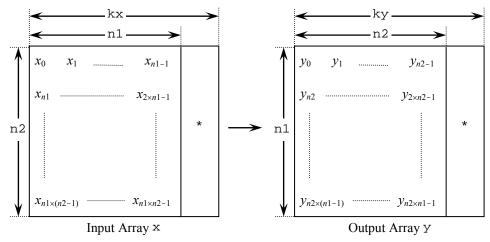


Figure c_dm_v1dcft-1. The input/Output data storage method

General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$\alpha_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \omega_n^{-jk}, k = 0, 1, ..., n-1$$
 (3)

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk}, j = 0, 1, ..., n-1$$
(4)

where, $\omega_n = \exp(2\pi i/n)$.

This function calculates $\{n\alpha_k\}$ or $\{x_j\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A one-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2
           3000
#define KX
           (N1+1)
#define KY (N2+1)
MAIN__()
         isn, i, j, icon, ierr;
 double
          error;
 dcomplex x[N2][KX], y[N1][KY];
  /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
  for(i=0; i< N2; i++) {
    for(j=0; j<N1; j++) {
     x[i][j].re = N1*i+j+1;
      x[i][j].im = 0.0;
    }
 }
  /* Do the forward transform */
 ierr = c_dm_vldcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);
  if (icon != 0) {
   printf("ERROR: c_dm_vldcft failed with icon = %d\n", icon);
    exit(1);
  /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_vldcft((dcomplex*)y, KY, (dcomplex*)x, KX, N2, N1, isn, &icon);
  if (icon != 0) {
   printf("ERROR: c\_dm\_vldcft \ failed \ with \ icon = \ \cd\n", \ icon);
    exit(1);
  /* Find the error after the forward and inverse transform. */
  error = 0.0;
  for(i=0; i<N2; i++) {
   for(j=0; j<N1; j++) {
     error = \max(fabs(x[i][j].re)/N2/N1-(N1*i+j+1), error);
     error = max(fabs(x[i][j].im)/N2/N1, error);
    }
 }
```

```
printf("error = %e\n", error);
  return(0);
}
```

Consult the entry for DM_V1DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1dcft2

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

ierr = c_dm_vldcft2(x, n, y, isn, &icon);

1. Function

This routine performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform

When $\{x_i\}$ is input, the transform defined by (1) below is calculated to obtain $\{n\alpha_k\}$

$$n\alpha_k = \sum_{j=0}^{n-1} x_j \omega_n^{-jk}$$
 , $k = 0,1,...,n-1$
, $\omega_n = \exp(2\pi i / n)$ (1)

The one-dimensional Fourier inverse transform

When $\{\alpha_k\}$ is input, the transform defined by (2) below is calculated to obtain $\{x_i\}$.

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk} , j = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$
(2)

2. Arguments

The routine is called as follows:

ierr = c_dm_vldcft2(x, n, y, isn, &icon); where: dcomplex x[n] Input Complex data. х The length of the data transformed. n must be a product of the powers int Input n of 2, 3, 5 and 7. dcomplex y[n] Input Transformed complex data. У isn int Input Either the transform or the inverse transform is indicated. isn = 1 for the transform. isn = -1 for the inverse transform. icon Output Condition code. See below. int

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30008	The order of transform is not radix 2/3/5/7.	Bypassed.
30016	The invalid notation parameter isn.	

3. Comments on use

General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$\alpha_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \omega_n^{-jk}, k = 0, 1, ..., n-1$$
 (3)

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk}, j = 0, 1, ..., n-1$$
(4)

where, $\omega_n = \exp(2\pi i/n)$.

This function calculates $\{n\alpha_k\}$ or $\{x_j\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A one-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)
MAIN__()
  dcomplex x[N], y[N], xx[N];
  double tmp;
            isn, icon, i;
  for (i=0; i<N; i++) {
    xx[i].re = x[i].re = (double)(i);
    xx[i].im = x[i].im = 0.0;
  isn = 1;
  c_dm_vldcft2(x, N, y, isn, &icon);
printf("icon = %d\n", icon);
  isn = -1;
  c_dm_vldcft2(y, N, x, isn, &icon);
printf("icon = %d\n", icon);
  tmp = 0.0;
  for (i=0; i<N; i++) {
    tmp = max((fabs(x[i].re/(double)N-xx[i].re))
                +(fabs(x[i].im/(double)N-xx[i].im)),tmp);
  printf("error = %e\n", tmp);
  return(0);
```

5. Method

Consult the entry for DM_V1DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1dmcft

One-dimensional multiple discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).

ierr = c_dm_vldmcft(x, kx, n, m, isn, &icon);

1. Function

The function c_dm_v1dmcft performs multiple one-dimensional complex Fourier transforms or its inverse transforms using a mixed radix FFT.

The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform

When $\{x_i\}$ is input, the transform defined by (1) below is calculated to obtain $\{n\alpha_k\}$

$$n\alpha_k = \sum_{j=0}^{n-1} x_j \omega_n^{-jk}$$
 , $k = 0, 1, ..., n-1$
 $, \omega_n = \exp(2\pi i / n)$ (1)

The one-dimensional Fourier inverse transform

When $\{\alpha_k\}$ is input, the transform defined by (2) below is calculated to obtain $\{x_i\}$.

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk} , j = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$
(2)

2. Arguments

The routine is called as follows:

ierr = c_dm_vldmcft((dcomplex*)x, kx, n, m, isn, &icon);
where:

x	dcomplex	Input	The complex data. Store the data in $x[i][j]$, $i = 0,, m - 1$, $j =$
	x[m][kx]		$0, \dots, n-1$.
		Output	The complex transformed data. The data is stored $x[i][j], i = 0,$
			m-1, j=0,, n-1.
kx	int	Input	C fixed dimension of array x.
n	int	Input	The length of the data transformed must be a product of the powers of
			2, 3, 5 and 7.
m	int	Input	The multiplicity of the data transformed.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual	
	dimensions.	
30008	The order of transform is not radix 2/3/5/7.	
30016	The invalid value for the parameter isn.	

3. Comments on use

General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$\alpha_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \omega_n^{-jk}, k = 0, 1, ..., n-1$$
 (3)

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk}, j = 0, 1, ..., n-1$$
(4)

where, $\omega_n = \exp(2\pi i/n)$.

This function calculates $\{n\alpha_k\}$ or $\{x_j\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

Multiple one-dimensional FFTs are computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
                  ((a) > (b) ? (a) : (b))
#define max(a,b)
#define N 2048
#define M
            256
#define KX (N+1)
MAIN__()
 int.
           isn, i, j, icon, ierr;
 double error;
 dcomplex x[N][KX];
  /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
  for(i=0; i<M; i++) {
   for(j=0; j<N; j++) {
    x[i][j].re = N*i+j+1;
      x[i][j].im = 0.0;
  /* Do the forward transform */
 ierr = c_dm_vldmcft((dcomplex*)x, KX, N, M, isn, &icon);
 if (icon != 0) {
```

```
printf("ERROR: c_dm_vldmcft failed with icon = %d\n", icon);
    exit(1);
}

/* Do the reverse transform */
    isn = -1;
    ierr = c_dm_vldmcft((dcomplex*)x, KX, N, M, isn, &icon);

if (icon != 0) {
        printf("ERROR: c_dm_vldmcft failed with icon = %d\n", icon);
        exit(1);
}

/* Find the error after the forward and inverse transform. */
    error = 0.0;

for(i=0; i<M; i++) {
        for(j=0; j<N; j++) {
            error = max(fabs(x[i][j].re)/N-(N*i+j+1), error);
            error = max(fabs(x[i][j].im)/N, error);
        }
}

printf("error = %e\n", error);
    return(0);</pre>
```

Consult the entry for DM_V1DMCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1drcf

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

ierr = c_dm_vldrcf(x, kx, y, ky, n1, n2, isin, isn, &icon);

1. Function

The routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count $n = n_1 \times n_2$ is a product of the powers of 2, 3, 5 and 7.

One-dimensional Fourier transform

When $\{x_i\}$ is input, the transform defined by (1) below is calculated to obtain $\{n\alpha_k\}$.

$$n\alpha_{k} = \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-jkr} , k = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$

$$, r = 1 \text{ or } r = -1$$
(1)

One-dimensional Fourier inverse transform

When $\{\alpha_k\}$ is input, the transform defined by (2) below is calculated to obtain $\{x_i\}$.

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jkr} , j = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$

$$, r = 1 \text{ or } r = -1$$
(2)

2. Arguments

The routine is called as follows:

&icon); where: Real data. х double Input Store the dara in x[i][j], i=0, ..., n2-1, j=0, ..., n1-1. x[n2][kx]For the real to complex transform (isn = 1), data is input; for the complex to real transform (isn = -1), data is output. For isn = 1, the input data is not saved. Input C fixed dimension of array x. kx int Transformed complex data. У dcomplex Input y[n1][ky] The data is stored in y[i][j], i=0, ..., n1-1, j=0, ..., n2/2.

ierr = c_dm_vldrcf((double*)x, kx, (dcomplex*)y, ky, n1, n2, isin, isn,

For the real to complex transform (isn = 1), data is output; for the complex to real transform (isn = -1), data is input.

The input data is not guaranteed when isn = -1.

			The complex data obtained from real data by Fourier transformation has
			the conjugate complex relation. About half data is stored.
ky	int	Input	C fixed dimension of array y. $(ky \ge n2/2 + 1)$
n1	int	Input	The size of the first dimension assuming that the real data to be
			transformed $(n = n1 \times n2)$ is two-dimensional data.
			n1 must be a product of the powers of 2, 3, 5 and 7.
			n1×n2 must be the length of the data sequence to be transformed.
n2	int	Input	The size of the second dimension assuming that the real data to be
			transformed $(n = n1 \times n2)$ is two-dimensional data.
			n2 must be a product of the powers of 2, 3, 5 and 7.
			$n1 \times n2$ must be the length of the data sequence to be transformed.
isin	int	Input	The direction of transformation.
			isin = 1 for $r = 1$.
			isin = -1 for $r = -1$.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.
7P1 1	. 1:		

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• kx < n1	
	• $ky \le n2/2 + 1$	
	• n1 < 1	
	• n2 < 1	
	• isin ≠ 1, -1	
	• isn ≠ 1, -1	
30008	The order of transform is not radix 2/3/5/7.	

3. Comments on use

Input/Output array

If one-dimensional data of $n = n_1 \times n_2$ is numbered k = 0, ..., n - 1,

$$k = k_1 + k_2 \times n_1$$
 , $k_1 = 0, \dots, n_1 - 1$
, $k_2 = 0, \dots, n_2 - 1$
 $i = i_1 + i_2 \times n_2$, $i_1 = 0, \dots, n_2 - 1$
, $i_2 = 0, \dots, n_1 - 1$

Real data and complex data are regarded as two-dimensional data with subscripts of $[k_2][k_1]$ and $[i_2][i_1]$, respectively. However, $i_1 = 0$, ..., $n_2/2$ are stored in y. (See Figure c_dm_v1drcf-1.)

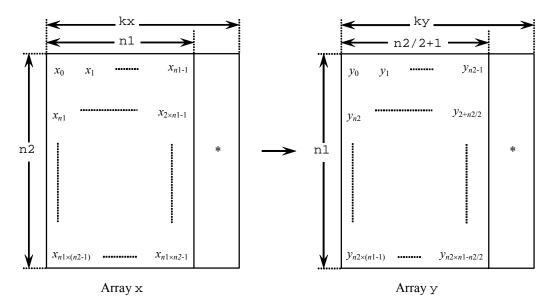


Figure c_dm_v1drcf-1. Input/Output data storage method

General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$\alpha_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \omega_n^{-jk}, k = 0, 1, ..., n-1$$
 (3)

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk}, j = 0, 1, ..., n-1$$
(4)

where, $\omega_n = \exp(2\pi i/n)$.

This routine calculates $\{n\alpha_k\}$ or $\{x_j\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

complex conjugate relation

The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by -).

$$\alpha_k = \overline{\alpha_{n-k}}$$
, $k = 1, ..., n-1$
 $n = n_1 \times n_2$
 $i_1 = 0, 1, ..., n_2 - 1$
 $i_2 = 0, 1, ..., n_1 - 1$
If $k = i_1 + i_2 \times n_2$ is assumed,
 $n - k = n_2 - i_1 + (n_1 - 1 - i_2) \times n_2$

The rest of data can be obtained from data numbered $i_1 = 1, ..., n_2/2$ (the first part excluding zeros).

performance

The performance of this routine will be the best when the n can be factorized into adequately large n_1 and n_2 which are about the same size.

4. Example program

A one-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define KX (N1+1)
#define KY (N2/2+2)
MAIN__()
  dcomplex y[N1][KY];
 double x[N2][KX], xx[N2][KX], tmp; int isw, isin, icon, i, j;
  for (i=0; i< N2; i++) {
   for (j=0; j<N1; j++) {
    xx[i][j] = x[i][j] = N1*i+j+1;
  isin = 1;
  isw = 1;
  c_dm_vldrcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
  printf("icon = %d\n", icon);
  isw = -1;
  c_dm_vldrcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
  printf("icon = %d\n", icon);
  tmp = 0.0;
for (i=0; i<N2; i++) \{
    for (j=0; j<N1; j++) {
      tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
  printf("error = %e\n", tmp);
 return(0);
```

5. Method

Consult the entry for DM V1DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1drcf2

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

ierr = c_dm_vldrcf2(x, n, y, isin, isn, &icon);

1. Function

This routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count *n* is a product of the powers of 2, 3, 5 and 7.

One-dimensional Fourier transform

When $\{x_i\}$ is input, the transform defined by (1) below is calculated to obtain $\{n\alpha_k\}$.

$$n\alpha_{k} = \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-jkr} , k = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$

$$, r = 1 \text{ or } r = -1$$
(1)

One-dimensional Fourier inverse transform

When $\{\alpha_k\}$ is input, the transform defined by (2) below is calculated to obtain $\{x_i\}$.

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jkr} , j = 0,1,...,n-1$$

$$, \omega_{n} = \exp(2\pi i / n)$$

$$, r = 1 \text{ or } r = -1$$
(2)

2. Arguments

The routine is called as follows:

ierr = c_dm_vldrcf2(x, n, y, isin, isn, &icon); where: double x[n] Input Real data. Store the dara in x[i], i=0, ..., n-1. x /Output For the real to complex transform (isn = 1), data is input; for the complex to real transform (isn = -1), data is output. int Input The size of the data to be transformed. n n must be an even number and a product of the powers of 2, 3, 5 and 7. dcomplex Output Transformed complex data. About a half of the complex is stored in У y[n/2+1]/Input y[i], i=0, ..., n2/2.For the real to complex transform (isn = 1), data is output; for the complex to real transform (isn = -1), data is input. isin Input The direction of transformation. int isin = 1 for r = 1. isin = -1 for r = -1.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = -1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• n is not a multiple of 2	
	• n is not a product of the powers of 2, 3, 5	
	and 7.	
	• isin ≠ 1, -1	
	• isn ≠ 1, -1	

3. Comments on use

complex conjugate relation

The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ⁻).

$$\alpha_k = \overline{\alpha_{n-k}}$$
, $k = 1, ..., n-1$ (excluding 0)

General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$\alpha_k = \frac{1}{n} \sum_{j=0}^{n-1} x_j \omega_n^{-jk}, k = 0, 1, ..., n-1$$
 (3)

$$x_{j} = \sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{jk}, j = 0, 1, ..., n-1$$
 (4)

where, $\omega_n = \exp(2\pi i/n)$.

This routine calculates $\{n\alpha_k\}$ or $\{x_j\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A one-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)

MAIN__()
{
    dcomplex y[N/2+1];
    double x[N], xx[N], tmp;
```

```
int         isin, isn, icon, i;

for (i=0; i<N; i++) {
        xx[i] = x[i] = (double)(i+1);
}

isin = 1;
    isn = 1;
    c_dm_vldrcf2(x, N, y, isin, isn, &icon);
    printf("icon = %d\n", icon);

isn = -1;
    c_dm_vldrcf2(x, N, y, isin, isn, &icon);
    printf("icon = %d\n", icon);

tmp = 0.0;
    for (i=0; i<N; i++) {
        tmp = max(fabs(x[i]/(double)N-xx[i]),tmp);
    }

printf("error = %e\n", tmp);

return(0);
}</pre>
```

5. Method

Consult the entry for DM_V1DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c dm v2dcft

Two-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).

ierr = c_dm_v2dcft(x, kx, n1, n2, isn, &icon);

1. Function

The function c_dm_v2cdft performs a two-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of two-dimensional data (n_1, n_2) is a product of the powers of 2, 3, 5 and 7.

The two-dimensional Fourier transform

When $\{x_{j1j2}\}$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2\alpha_{k1k2}\}$.

$$n_{1}n_{2}\alpha_{k1k2} = \sum_{j=0}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} x_{j1j2}\omega_{n1}^{-j1k1}\omega_{n2}^{-j2k2}$$

$$,k_{1} = 0,1,...,n_{1}-1$$

$$,k_{2} = 0,1,...,n_{2}-1$$

$$,\omega_{n1} = \exp(2\pi i/n_{1})$$

$$,\omega_{n2} = \exp(2\pi i/n_{2})$$

$$(1)$$

The two-dimensional Fourier inverse transform

When $\{\alpha_{k1k2}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1j2}\}$.

$$x_{j1j2} = \sum_{k=0}^{n_1-1} \sum_{k=0}^{n_2-1} \alpha_{k1k2} \omega_{n1}^{j1k1} \omega_{n2}^{j2k2}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, \omega_{n1} = \exp(2\pi i / n_1)$$

$$, \omega_{n2} = \exp(2\pi i / n_2)$$
(2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v2dcft((dcomplex*)x, kx, n1, n2, isn, &icon); where: The complex data. The data is stored in x[i][j], i = 0, ..., n2 - 1, x dcomplex Input j = 0, ..., n1 - 1.x[n2][kx]The complex transformed data. The results are stored in x[i][j], i Output = 0, ..., n2 - 1, j = 0, ..., n1 - 1.int Input C fixed dimension of array x. kx The size n1 of data in the first dimension of the two-dimensional array n1 int Input to be transformed. n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n2	int	Input	The size n2 of data in the second dimension of the two-dimensional
			array to be transformed.
			n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.
The complete list of condition and acid			

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual	
	dimensions.	
30008	The order of transform is not radix $2/3/5/7$.	
30016	The invalid value for the parameter isn.	

3. Comments on use

General definition of Fourier transform

The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2} = \frac{1}{n_1 n_2} \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} x_{j_1 j_2} \omega_{n_1}^{-j_1 k_1} \omega_{n_2}^{-j_2 k_2}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$
(3)

$$x_{j1j2} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \alpha_{k_1k_2} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$
(4)

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$.

This function calculates $\{n_1n_2\alpha_{k1k2}\}\$ or $\{x_{j1j2}\}\$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A two-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2 3000
#define KX (N1+400)
```

```
MAIN__()
           isn, i, j, icon, ierr;
  int
  double error;
  dcomplex x[N2][KX];
  /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
for(i=0; i<N2; i++) {</pre>
    for(j=0; j<N1; j++) {
   x[i][j].re = N1*i+j+1;</pre>
      x[i][j].im = 0.0;
  }
  /* Do the forward transform */
  ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
    exit(1);
  /\,{}^{\star} Do the reverse transform {}^{\star}/\,
  isn = -1;
  ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
    exit(1);
  /* Find the error after the forward and inverse transform. */
  error = 0.0;
  for(i=0; i<N2; i++) {
    for(j=0; j<N1; j++) {
  error = max(fabs(x[i][j].re)/(N2*N1)-(N1*i+j+1), error);</pre>
      error = max(fabs(x[i][j].im)/(N2*N1), error);
    }
  }
  printf("error = %e\n", error);
  return(0);
```

5. Method

Consult the entry for DM_V2DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c dm v2drcf

Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7) ierr = c_dm_v2drcf(x, k, n1, n2, isin, isn, &icon);

1. Function

The routine performs a two-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the two-dimensional data (n_1, n_2) can be a product of the powers of 2, 3, 5 and 7.

The two-dimensional Fourier transform

When $\{x_{j1j2}\}$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2\alpha_{k1k2}\}$.

$$n_{1}n_{2}\alpha_{k1k2} = \sum_{j=0}^{n_{1}-1} \sum_{j=0}^{n_{2}-1} x_{j1j2}\omega_{n1}^{-j1k1r}\omega_{n2}^{-j2k2r}$$

$$,k_{1} = 0,1,...,n_{1}-1$$

$$,k_{2} = 0,1,...,n_{2}-1$$

$$,\omega_{n1} = \exp(2\pi i/n_{1})$$

$$,\omega_{n2} = \exp(2\pi i/n_{2})$$

$$,r = 1 \text{ or } r = -1$$

$$(1)$$

The two-dimensional Fourier inverse transform

When $\{\alpha_{k1k2}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1j2}\}$.

$$x_{j1j2} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \alpha_{k_1k_2} \omega_{n_1}^{j_1k_1r} \omega_{n_2}^{j_2k_2r}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, \omega_{n_1} = \exp(2\pi i / n_1)$$

$$, \omega_{n_2} = \exp(2\pi i / n_2)$$

$$.r = 1 \text{ or } r = -1$$

$$(2)$$

2. Arguments

The routine is called as follows:

ierr = c_dm_v2drcf((double*)x, k, n1, n2, isin, isn, &icon); where: Two-dimensional real data is stored in x[i][j], i=0, ..., n2-1, double Input x[n2][k]/Output j=0, ..., n1-1.For the real to complex transform (isn = 1), data is input; for the complex to real transform (isn = -1), data is output. The real and imaginary parts of the transformed complex data are stored Output /Input as follows:

			The real and imaginary parts are stored in $x[i][j][0]$, $i=0,$, $n2-1$, $j=0,$, $n1/2$ and $x[i][j][1]$, $i=0,$, $n2-1$, $j=0,$, $n1/2$ respectively assuming that the array x was a three-dimensional array $x[n2][k/2][2]$. For the real to complex transform ($isn=1$), data is output; for the complex to real transform ($isn=-1$), data is input. The complex data transformed Fourier has the complex conjugate relation. And about half data is stored.
k	int	Input	C fixed dimension of array x. $(\ge 2 \times (n1/2 + 1))$ k must be an even number.
n1	int	Input	The length n_1 of data in the first dimension of the two-dimensional array to be transformed.
n2	int	Input	n_1 must be a value that can be a product of powers of 2, 3, 5 and 7. The length n_2 of data in the second dimension of the two-dimensional
			array to be transformed. n_2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isin	int	Input	The direction of transformation. $isin = 1$ for $r = 1$.
isn	int	Input	isin = -1 for $r = -1$. Either the transform or the inverse transform is indicated.
			isn = 1 for the transform. isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• $k \le 2 \times (n1/2 + 1)$	
	• k is not an even number.	
	• n1 < 1	
	• n2<1	
	• isin≠1,-1	
	• isn ≠ 1, -1	
30008	The order of transform is not radix 2/3/5/7.	

3. Comments on use

General definition of Fourier transform

The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2} = \frac{1}{n_1 n_2} \sum_{j1=0}^{n_1-1} \sum_{j2=0}^{n_2-1} x_{j1j2} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$
(3)

$$x_{j1j2} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \alpha_{k_1k_2} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$
(4)

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$.

This routine calculates $\{n_1n_2\alpha_{k1k2}\}\$ or $\{x_{j1j2}\}\$ corresponding to the left term of (3) or (4), respectively. Normalization of the results is required, if necessary.

complex conjugate relation

The results of the two-dimensional real Fourier transform that has the following complex conjugate relation (indicated by –).

```
\alpha_{k1k2} = \overline{\alpha_{n1-k1\,n2-k2}}
```

The remainder of the data is obtained from the data in $k_1 = 0, ..., n_1/2$ and $k_2 = 0, ..., n_{2-1}$.

4. Example program

A two-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (2048)
#define N2 (N1)
#define K ((N1/2+1)*2)
MAIN___()
 double x[N2][K], xx[N2][K], tmp;
        isin, isn, icon, i, j;
 isin = 1;
  c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);
  isn = -1;
 c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);
  tmp = 0.0;
  for (i=0; i<N2; i++) {
   for (j=0; j<N1; j++)
     tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
 }
```

```
printf("error = %e\n", tmp);
  return(0);
}
```

5. Method

Consult the entry for DM_V2DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c dm v3dcft

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).

1. Function

The function c_dm_v3dcft performs a three-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of three-dimensional arrays (n_1, n_2, n_3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform

When $\{x_{i1i2i3}\}\$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2n_3\alpha_{k1k2k3}\}\$.

$$n_{1}n_{2}n_{3}\alpha_{k1k2k3} = \sum_{j=0}^{n_{1}-1} \sum_{j2=0}^{n_{2}-1} \sum_{j3=0}^{n_{3}-1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_{1} = 0, 1, ..., n_{1} - 1$$

$$, k_{2} = 0, 1, ..., n_{2} - 1$$

$$, k_{3} = 0, 1, ..., n_{3} - 1$$

$$, \omega_{n1} = \exp(2\pi i / n_{1})$$

$$, \omega_{n2} = \exp(2\pi i / n_{2})$$

$$, \omega_{n3} = \exp(2\pi i / n_{3})$$

$$(1)$$

The three-dimensional Fourier inverse transform

When $\{\alpha_{k1k2k3}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1,j2j3}\}\$.

$$x_{j1}x_{j2}x_{j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0,1,...,n_1 - 1$$

$$, j_2 = 0,1,...,n_2 - 1$$

$$, j_3 = 0,1,...,n_3 - 1$$

$$, \omega_{n_1} = \exp(2\pi i/n_1)$$

$$, \omega_{n_2} = \exp(2\pi i/n_2)$$

$$, \omega_{n_3} = \exp(2\pi i/n_3)$$

$$(2)$$

2. Arguments

The routine is called as follows:

```
ierr = c_dm_v3dcft((dcomplex*)x, kx, n1, n2, n3, isn, &icon);
where:
```

 $\begin{array}{lll} \texttt{x} & \texttt{dcomplex} & \texttt{Input} & \texttt{The complex data. Data is stored in } \texttt{x[i][j][k], i = 0, ..., n3-1,} \\ & \texttt{x[n3][n2][kx]} & \texttt{j=0, ..., n2-1, k=0, ..., n1-1.} \end{array}$

Output The complex transformed data. The results are stored in x[i][j][k],

			i = 0,, n3 - 1, j = 0,, n2 - 1, k = 0,, n1 - 1.
kx	int	Input	C fixed dimension of array x.
n1	int	Input	The length n1 of data in the first dimension of the three-dimensional
			array to be transformed.
			n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n2	int	Input	The length n2 of data in the second dimension of the three-
			dimensional array to be transformed.
			n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n3	int	Input	The length n3 of data in the third dimension of the three-dimensional
			array to be transformed.
			n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.
cred .			

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual	
	dimensions.	
30008	The order of transform is not radix 2/3/5/7.	
30016	The invalid value for the parameter isn.	

3. Comments on use

General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2k3} = \frac{1}{n_1 n_2 n_3} \sum_{j=0}^{n_1 - 1} \sum_{j=0}^{n_2 - 1} \sum_{j=0}^{n_3 - 1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$

$$, k_3 = 0, 1, ..., n_3 - 1$$
(3)

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$(4)$$

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$, $\omega_{n3} = \exp(2\pi i/n_3)$.

This function calculates $\{n_1n_2n_3\alpha_{k1k2k3}\}$ or $\{x_{j1j2j3}\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 400
#define N2 100
#define N3 200
#define KX (N1+40)
MAIN__()
  int
           isn, i, j, k, icon, ierr;
  double
          error;
  dcomplex x[N3][N2][KX];
  /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
  for(k=0; k<N3; k++) {
    for(i=0; i<N2; i++)
     for(j=0; j<N1; j++) {
        x[k][i][j].re = N1*i+j+1;
        x[k][i][j].im = 0.0;
      }
    }
  /* Do the forward transform */
  isn = 1;
  ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);
  if (icon != 0) {
    printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
    exit(1);
  /* Do the reverse transform */
  ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);
  if (icon != 0) {
   printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
    exit(1);
  /\,^\star Find the error after the forward and inverse transform. ^\star/
  error = 0.0;
  for(k=0; k< N3; k++) {
    for(i=0; i<N2; i++) {
      for(j=0; j<N1; j++) {
        error = \max(fabs(x[k][i][j].re)/(N3*N2*N1)-(N1*i+j+1), error);
        error = \max(fabs(x[k][i][j].im)/(N3*N2*N1), error);
    }
 printf("error = %e\n", error);
 return(0);
```

5. Method

Consult the entry for DM V3DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c dm v3dcft2

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).

1. Function

The function c_dm_v3dcft2 performs a three-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of three-dimensional arrays (n_1, n_2, n_3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform

When $\{x_{i1i2i3}\}\$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2n_3\alpha_{k1k2k3}\}\$.

$$n_{1}n_{2}n_{3}\alpha_{k1k2k3} = \sum_{j=0}^{n_{1}-1} \sum_{j2=0}^{n_{2}-1} \sum_{j3=0}^{n_{3}-1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_{1} = 0, 1, ..., n_{1} - 1$$

$$, k_{2} = 0, 1, ..., n_{2} - 1$$

$$, k_{3} = 0, 1, ..., n_{3} - 1$$

$$, \omega_{n1} = \exp(2\pi i / n_{1})$$

$$, \omega_{n2} = \exp(2\pi i / n_{2})$$

$$, \omega_{n3} = \exp(2\pi i / n_{3})$$

$$(1)$$

The three-dimensional Fourier inverse transform

When $\{\alpha_{k1k2k3}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1,j2j3}\}\$.

$$x_{j1}x_{j2}x_{j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0,1,...,n_1 - 1$$

$$, j_2 = 0,1,...,n_2 - 1$$

$$, j_3 = 0,1,...,n_3 - 1$$

$$, \omega_{n_1} = \exp(2\pi i/n_1)$$

$$, \omega_{n_2} = \exp(2\pi i/n_2)$$

$$, \omega_{n_3} = \exp(2\pi i/n_3)$$

$$(2)$$

2. Arguments

The routine is called as follows:

```
ierr = c_dm_v3dcft2((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon);
where:
```

$$\begin{array}{lll} \texttt{x} & \texttt{dcomplex} & \texttt{Input} & \texttt{The complex data. Data is stored in } \texttt{x[i][j][k], i = 0, ..., n3-1,} \\ & \texttt{x[n3][k2][k1]} & \texttt{j=0, ..., n2-1, k=0, ..., n1-1.} \end{array}$$

Output The complex transformed data. The results are stored in x[i][j][k],

			i = 0,, n3 - 1, j = 0,, n2 - 1, k = 0,, n1 - 1.
k1	int	Input	The size of the third dimension of input data arrays x . ($\geq n1$)
k2	int	Input	The size of the second dimension of input data arrays x . ($\geq n2$)
n1	int	Input	The length n1 of data in the first dimension of the three-dimensional
			array to be transformed.
			n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n2	int	Input	The length n2 of data in the second dimension of the three-
			dimensional array to be transformed.
			n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n3	int	Input	The length n3 of data in the third dimension of the three- dimensional
			array to be transformed.
			n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• n_1 , n_2 or n_3 less than or equal to 0.	
	• k1 < n1	
	• k2 < n2	
	• invalid value for the parameter isn.	
30008	The order of transform is not radix 2/3/5/7.	

3. Comments on use

General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2k3} = \frac{1}{n_1 n_2 n_3} \sum_{j=0}^{n_1 - 1} \sum_{j=0}^{n_2 - 1} \sum_{j=0}^{n_3 - 1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$

$$, k_3 = 0, 1, ..., n_3 - 1$$
(3)

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$(4)$$

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$, $\omega_{n3} = \exp(2\pi i/n_3)$.

This function calculates $\{n_1n_2n_3\alpha_{k1k2k3}\}$ or $\{x_{j1j2j3}\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 128
#define N2 128
#define N3 128
#define K1 (N1+1)
#define K2 N2
int MAIN__()
 dcomplex x[N3][K2][K1];
 double error;
          i, j, k, isn, icon;
#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
   for (j=0; j<N2; j++) {
     for (i=0; i<N1; i++) {
       x[k][j][i].re = N1*j+i+1;
       x[k][j][i].im = 0.0;
      }
   }
 }
 isn = 1;
  c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
 c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
  if (icon != 0) printf("error occurred : %d \n",icon);
  /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
    for(j=0; j<N2; j++) {
     for(i=0; i<N1; i++) {
        \verb|error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), | error);|\\
        error = \max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
      }
    }
 printf("error = %e\n", error);
 return(0);
```

5. Method

Consult the entry for DM_V3DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v3dcpf

Three-dimensional prime factor discrete complex Fourier transforms.

ierr = c_dm_v3dcpf(x, k1, k2, n1, n2, n3, isn, &icon);

1. Function

The function c dm v3dcpf performs a three-dimensional complex Fourier transform or its inverse Fourier transform.

The size of each dimension of three-dimensional data (n_1, n_2, n_3) must satisfy the following condition.

• The size must be expressed by a product of a mutual prime factor p, selected from the following numbers:

factor $p (p \in \{2, 3, 4, 5, 7, 8, 9, 16, 25\})$

The three-dimensional Fourier transform

When $\{x_{j1j2j3}\}\$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2n_3\alpha_{k1k2k3}\}\$.

$$n_{1}n_{2}n_{3}\alpha_{k1k2k3} = \sum_{j=0}^{n_{1}-1} \sum_{j2=0}^{n_{2}-1} \sum_{j3=0}^{n_{3}-1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_{1} = 0, 1, ..., n_{1} - 1$$

$$, k_{2} = 0, 1, ..., n_{2} - 1$$

$$, k_{3} = 0, 1, ..., n_{3} - 1$$

$$, \omega_{n1} = \exp(2\pi i/n_{1})$$

$$, \omega_{n2} = \exp(2\pi i/n_{2})$$

$$, \omega_{n3} = \exp(2\pi i/n_{3})$$

$$(1)$$

The three-dimensional Fourier inverse transform

When $\{\alpha_{k1k2k3}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{i1i2i3}\}\$.

$$x_{j1}x_{j2}x_{j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0,1,...,n_1 - 1$$

$$, j_2 = 0,1,...,n_2 - 1$$

$$, j_3 = 0,1,...,n_3 - 1$$

$$, \omega_{n_1} = \exp(2\pi i/n_1)$$

$$, \omega_{n_2} = \exp(2\pi i/n_2)$$

$$, \omega_{n_3} = \exp(2\pi i/n_3)$$

$$(2)$$

2. Arguments

The routine is called as follows:

```
ierr = c_dm_v3dcpf((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon);
where:
```

x	dcomplex	Input	The complex data. Data is stored in $x[i][j][k]$, $i = 0,, n3 - 1$,
	x[n3][k2][k1]		j = 0,, n2 - 1, k = 0,, n1 - 1.
		Output	The complex transformed data. The results are stored in $x[i][j][k]$,
			i = 0,, n3 - 1, j = 0,, n2 - 1, k = 0,, n1 - 1.
k1	int	Input	The size of the third dimension of input data arrays x . ($\geq n1$)
k2	int	Input	The size of the second dimension of input data arrays x . ($\geq n2$)
n1	int	Input	The length n1 of data in the first dimension of the three-dimensional
			array to be transformed.
n2	int	Input	The length n2 of data in the second dimension of the three-
			dimensional array to be transformed.
n3	int	Input	The length n3 of data in the third dimension of the three-dimensional
			array to be transformed.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.

Code	Meaning	Processing
0	No error.	Completed.
20000	n_1 , n_2 or n_3 can not be factored into the product of	Bypassed.
	the factors in 2, 3, 4, 5, 7, 8, 9, 16 and 25.	
30000	One of the following has occurred:	
	• n_1 , n_2 or n_3 less than or equal to 0.	
	• k1 < n1	
	• k2 < n2	
	• invalid value for the parameter isn.	

3. Comments on use

General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2k3} = \frac{1}{n_1 n_2 n_3} \sum_{j=0}^{n_1 - 1} \sum_{j=0}^{n_2 - 1} \sum_{j=0}^{n_3 - 1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$

$$, k_3 = 0, 1, ..., n_3 - 1$$
(3)

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$(4)$$

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$, $\omega_{n3} = \exp(2\pi i/n_3)$.

This function calculates $\{n_1n_2n_3\alpha_{k1k2k3}\}$ or $\{x_{j1j2j3}\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 40
#define N2 240
#define N3 90
#define K1 N1
#define K2 N2
int MAIN__()
 dcomplex x[N3][K2][K1];
 double error;
          i, j, k, isn, icon;
#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
   for (j=0; j<N2; j++) {
     for (i=0; i<N1; i++) {
        x[k][j][i].re = N1*j+i+1;
        x[k][j][i].im = 0.0;
      }
    }
 }
 isn = 1;
  \verb|c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon)|;|
 if (icon != 0) printf("error occurred : %d \n",icon);
 c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
  /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
    for(j=0; j<N2; j++) {
      for(i=0; i<N1; i++) {
        \verb|error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), | error);|\\
        error = \max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
      }
    }
 printf("error = %e\n", error);
 return(0);
```

5. Method

Consult the entry for DM_V3DCPF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v3drcf

```
Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

ierr = c_dm_v3drcf(x, k, n1, n2, n3, isin, isn, &icon);
```

1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array (n_1, n_2, n_3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform

When $\{x_{j1/2j3}\}\$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2n_3\alpha_{k1k2k3}\}\$.

$$n_{1}n_{2}n_{3}\alpha_{k1k2k3} = \sum_{j=0}^{n_{1}-1} \sum_{j2=0}^{n_{2}-1} \sum_{j3=0}^{n_{3}-1} x_{j1j2j3} \omega_{n1}^{-j1k1r} \omega_{n2}^{-j2k2r} \omega_{n3}^{-j3k3r}$$

$$,k_{1} = 0,1,...,n_{1}-1$$

$$,k_{2} = 0,1,...,n_{2}-1$$

$$,k_{3} = 0,1,...,n_{3}-1$$

$$,\omega_{n1} = \exp(2\pi i/n_{1})$$

$$,\omega_{n2} = \exp(2\pi i/n_{2})$$

$$,\omega_{n3} = \exp(2\pi i/n_{3})$$

$$,r = 1 \text{ or } r = -1$$

$$(1)$$

The three-dimensional Fourier inverse transform

When $\{\alpha_{k1k2k3}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1j2j3}\}\$.

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1r} \omega_{n_2}^{j_2k_2r} \omega_{n_3}^{j_3k_3r}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$, \omega_{n_1} = \exp(2\pi i / n_1)$$

$$, \omega_{n_2} = \exp(2\pi i / n_2)$$

$$, \omega_{n_3} = \exp(2\pi i / n_3)$$

$$, r = 1 \text{ or } r = -1$$

$$(2)$$

2. Arguments

The routine is called as follows:

			For the real to complex transform ($isn = 1$), data is input; for the complex to real transform ($isn = -1$), data is output.
		0-44	•
		Output	The real and imaginary parts of the transformed complex data are stored
		/Input	as follows:
			The real and imaginary parts are stored in $x[i][j][k][0], i=0,$,
			n3-1, j=0,, n2-1, k=0,, n1/2 and $x[i][j][k][1],$
			i=0,, n3-1, j=0,, n2-1, k=0,, n1/2 respectively
			assuming that the array x was a four-dimensional array
			x[n3][n2][k/2][2].
			For the real to complex transform ($isn = 1$), data is output; for the
			complex to real transform ($isn = -1$), data is input.
			The complex data obtained from real data by Fourier transformation has
			the complex conjugate relation. And about half data is stored.
k	int	Input	C fixed dimension of array x. $(\ge 2 \times (n1/2 + 1))$
			k must be an even number.
n1	int	Input	The length n_1 of real data in the first dimension to be transformed.
			n_1 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n2	int	Input	The length n_2 of real data in the second dimension to be transformed.
			n_2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n3	int	Input	The length n_3 of real data in the third dimension to be transformed.
			n_3 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isin	int	Input	The direction of transformation.
			isin = 1 for $r = 1$.
			isin = -1 for $r = -1$.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.
	1 . 11 . 0 . 11 . 1		

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• $k \le 2 \times (n1/2 + 1)$	
	• k is not an even number.	
	• n1 < 1	
	• n2 < 1	
	• n3<1	
	• isin ≠ 1, -1	
	• isn≠1,-1	
30008	The order of transform is not radix $2/3/5/7$.	

3. Comments on use

General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2k3} = \frac{1}{n_1 n_2 n_3} \sum_{j=0}^{n_1 - 1} \sum_{j=0}^{n_2 - 1} \sum_{j=0}^{n_3 - 1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$

$$, k_3 = 0, 1, ..., n_3 - 1$$
(3)

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$(4)$$

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$, $\omega_{n3} = \exp(2\pi i/n_3)$.

This routine calculates $\{n_1n_2n_3\alpha_{k1k2k3}\}$ or $\{x_{j1j2j3}\}$ corresponding to the left term of (3) or (4), respectively. The normalization of the results may be required.

complex conjugate relation

The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by -).

$$\alpha_{k1k2k3} = \overline{\alpha_{n1-k1\,n2-k2\,n3-k3}}$$

The remainder of the data is obtained from data in $k_1 = 0, ..., n_1/2, k_1 = 0, ..., n_2 - 1$, and $k_3 = 0, ..., n_3 - 1$.

4. Example program

A three-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (128)
#define N2
           (N1)
#define N3 (N1)
           ((N1/2+1)*2)
#define K
MAIN__()
  double x[N3][N2][K], xx[N3][N2][K], tmp;
      isin, isn, icon, i, j, k;
  for (i=0; i< N3; i++) {
    for (j=0; j<N2; j++) {
      for (k=0; k<N1; k++) {
        xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
    }
  }
  isin = 1;
  c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
  c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
  tmp = 0.0;
```

```
for (i=0; i<N3; i++) {
   for (j=0; j<N2; j++) {
     for (k=0; k<N1; k++) {
        tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp);
     }
   }
}
printf("error = %e\n", tmp);
return(0);
}</pre>
```

5. Method

Consult the entry for DM_V3DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c dm v3drcf2

```
Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

ierr = c_dm_v3drcf2(x, k1, k2, n1, n2, n3, isin, isn, &icon);
```

1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array (n_1, n_2, n_3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform

When $\{x_{j1j2j3}\}\$ is input, the transform defined by (1) below is calculated to obtain $\{n_1n_2n_3\alpha_{k1k2k3}\}\$.

$$n_{1}n_{2}n_{3}\alpha_{k1k2k3} = \sum_{j=0}^{n_{1}-1} \sum_{j2=0}^{n_{2}-1} \sum_{j3=0}^{n_{3}-1} x_{j1j2j3} \omega_{n1}^{-j1k1r} \omega_{n2}^{-j2k2r} \omega_{n3}^{-j3k3r}$$

$$, k_{1} = 0,1,..., n_{1} - 1$$

$$, k_{2} = 0,1,..., n_{2} - 1$$

$$, k_{3} = 0,1,..., n_{3} - 1$$

$$, \omega_{n1} = \exp(2\pi i/n_{1})$$

$$, \omega_{n2} = \exp(2\pi i/n_{2})$$

$$, \omega_{n3} = \exp(2\pi i/n_{3})$$

$$, r = 1 \text{ or } r = -1$$

$$(1)$$

The three-dimensional Fourier inverse transform

When $\{\alpha_{k1k2k3}\}\$ is input, the transform defined by (2) below is calculated to obtain $\{x_{j1j2j3}\}\$.

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1r} \omega_{n_2}^{j_2k_2r} \omega_{n_3}^{j_3k_3r}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$, \omega_{n_1} = \exp(2\pi i / n_1)$$

$$, \omega_{n_2} = \exp(2\pi i / n_2)$$

$$, \omega_{n_3} = \exp(2\pi i / n_3)$$

$$, r = 1 \text{ or } r = -1$$

$$(2)$$

2. Arguments

The routine is called as follows:

```
\label{eq:c_dm_v3drcf2((double*)x, k1, k2, n1, n2, n3, isin, isn, &icon);} where: $$ x & double & Input & Three-dimensional real data is stored in $x[i][j][k], i=0, \dots, n3-x[n3][k2][k1] & /Output & 1, j=0, \dots, n2-1, k=0, \dots, n1-1. $$
```

			For the real to complex transform ($isn = 1$), data is input; for the
			complex to real transform ($isn = -1$), data is output.
		Output	The real and imaginary parts of the transformed complex data are stored
		/Input	as follows:
			The real and imaginary parts are stored in $x[i][j][k][0], i=0,$,
			n3-1, $j=0$,, $n2-1$, $k=0$,, $n1/2$ and $x[i][j][k][1]$,
			i=0,, n3-1, j=0,, n2-1, k=0,, n1/2 respectively
			assuming that the array x was a four-dimensional array
			x[n3][k2][k1/2][2].
			For the real to complex transform (isn = 1), data is output; for the
			complex to real transform ($isn = -1$), data is input.
			The complex data obtained from real data by Fourier transformation has
			the complex conjugate relation. And about half data is stored.
k1	int	Input	The size of the third dimension of input data arrays x.($\geq 2 \times (n1/2 +$
			1))
			k1 must be an even number.
k2	int	Input	The size of the second dimension of input data arrays x . ($\geq n2$)
n1	int	Input	The length n_1 of real data in the first dimension to be transformed.
			n_1 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n2	int	Input	The length n_2 of real data in the second dimension to be transformed.
			n_2 must be a value that can be a product of the powers of 2, 3, 5 and 7.
n3	int	Input	The length n_3 of real data in the third dimension to be transformed.
			n_3 must be a value that can be a product of the powers of 2, 3, 5 and 7.
isin	int	Input	The direction of transformation.
			isin = 1 for $r = 1$.
			isin = -1 for $r = -1$.
isn	int	Input	Either the transform or the inverse transform is indicated.
			isn = 1 for the transform.
			isn = -1 for the inverse transform.
icon	int	Output	Condition code. See below.
The comple	ete list of condition codes	is:	

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	• $k1 < 2 \times (n1/2 + 1)$	
	k1 is not an even number.	
	• k2 < n2	
	• n1 < 1	
	• n2 < 1	
	• n3 < 1	
	• isin ≠ 1, -1	
	• isn ≠ 1, -1	
30008	The order of transform is not radix $2/3/5/7$.	

3. Comments on use

General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$\alpha_{k1k2k3} = \frac{1}{n_1 n_2 n_3} \sum_{j=0}^{n_1 - 1} \sum_{j=0}^{n_2 - 1} \sum_{j=0}^{n_3 - 1} x_{j1j2j3} \omega_{n1}^{-j1k1} \omega_{n2}^{-j2k2} \omega_{n3}^{-j3k3}$$

$$, k_1 = 0, 1, ..., n_1 - 1$$

$$, k_2 = 0, 1, ..., n_2 - 1$$

$$, k_3 = 0, 1, ..., n_3 - 1$$
(3)

$$x_{j1j2j3} = \sum_{k_1=0}^{n_1-1} \sum_{k_2=0}^{n_2-1} \sum_{k_3=0}^{n_3-1} \alpha_{k_1k_2k_3} \omega_{n_1}^{j_1k_1} \omega_{n_2}^{j_2k_2} \omega_{n_3}^{j_3k_3}$$

$$, j_1 = 0, 1, ..., n_1 - 1$$

$$, j_2 = 0, 1, ..., n_2 - 1$$

$$, j_3 = 0, 1, ..., n_3 - 1$$

$$(4)$$

where, $\omega_{n1} = \exp(2\pi i/n_1)$, $\omega_{n2} = \exp(2\pi i/n_2)$, $\omega_{n3} = \exp(2\pi i/n_3)$.

This routine calculates $\{n_1n_2n_3\alpha_{k1k2k3}\}$ or $\{x_{j1j2j3}\}$ corresponding to the left term of (3) or (4), respectively. The normalization of the results may be required.

complex conjugate relation

The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by -).

$$\alpha_{k1k2k3} = \overline{\alpha_{n1-k1\,n2-k2\,n3-k3}}$$

The remainder of the data is obtained from data in $k_1 = 0, ..., n_1/2, k_1 = 0, ..., n_2 - 1$, and $k_3 = 0, ..., n_3 - 1$.

4. Example program

A three-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
\#define \max(a,b) ((a) > (b) ? (a) : (b))
           (128)
#define N1
#define N2
            (N1)
#define N3
            (N1)
#define K1
            ((N1/2+1)*2)
#define K2 (N2+1)
MAIN__()
  double x[N3][K2][K1], xx[N3][K2][K1], tmp;
         isin, isn, icon, i, j, k;
  for (i=0; i<N3; i++) {
    for (j=0; j<N2; j++) {
  for (k=0; k<N1; k++)
        xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
    }
  }
```

```
isin = 1;
isn = 1;
c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
printf("icon = %d\n", icon);

isn = -1;
c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
printf("icon = %d\n", icon);

tmp = 0.0;
for (i=0; i<N3; i++) {
   for (j=0; j<N2; j++) {
     for (k=0; k<N1; k++) {
        tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp);
     }
   }
}
printf("error = %e\n", tmp);
return(0);
}</pre>
```

5. Method

Consult the entry for DM_V3DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

Bibliography

[1] P.AMESTOY, M.DAYDE and I.DUFF

Use of computational kernels in the solution of full and sparse linear equations, M.COSNARD, Y.ROBERT, Q.QUINTON and M.RAYNAL, PARALLEL & DISTRIBUTED ALGORITHMS, North-Holland, 1989, pp.13-19.

[2] P.R.AMESTOY and C.PUGLISH

AN UNSYMMETRIZED MULTIFRONTAL LU FACTORIZATION, SIAM J. MATRIX ANAL. APPL. Vol. 24, No. 2, pp. 553-569, 2002

[3] A.A.Anda and H.Park

Fast Plane Rotations with Dynamic Scaling, to appear in SIAM J. Matrix Analysis and Applications, 1994.

[4] S.L.Anderson

Random number generators on vector supercomputers and other advanced architectures, SIAM Rev. 32 (1990), 221-251.

[5] C.Ashcraft

The distributed solution of linear systems using the torus wrap data mapping, Tech. Report ECA-TR-147, Boeing Computer Services, October 1990.

[6] O.Axelsson and M.Neytcheva

Algebraic multilevel iteration method for Stieltjes matrices. Num. Lin. Alg. Appl., 1:213-236, 1994.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.

Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

[8] Å.Björck

Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7:1-21,1967.

[9] R.P.Brent

Uniform random number generators for supercomputers, Proc. Fifth Australian Supercomputer Conference, Melbourne, Dec. 1992, 95-104.

[10] R.P.Brent

Uniform random number generators for vector and parallel computers, Report TR-CS-92-02, Computer Sciences Laboratory, Australian National University, Canberra, March 1992

[11] R.P.Brent

Fast normal random number generators on vector processors, Technical Report TR-CS-93-04, Computer Sciences Laboratory, Australian National University, Canberra, March 1993.

[12] R.P.Brent

A Fast Vectorised Implementation of Wallace's Normal Random Number Generator, Technical Report, Computer Sciences Laboratory, Australian National University, to appear.

[13] R.Burkard, M.Dell'Amico and S.Martello

Assignment Problems, SIAM Philadelphia, 2009

[14] J.Choi, J.Dongarra, R.Pozo, and D.Walker

ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers., Technical Report 53, LAPACK Working Note, 1993.

[15] A.Cleary

A comparison of algorithms for Cholesky factorization on a massively parallel MIMD computer, Parallel Processing for Scientific Computing, 1991.

[16] A.Cleary

A Scalable Algorithm for Triangular System Solution Using the Torus Wrap Mapping, ANU-CMA Tech Report, series 1994.

[17] T.H.CORMEN, C.E.LEISERSON, R.L.RIVEST and C.STEIN INTRODUCTION TO ALGORITHMS, SECOND EDITION, The MIT Press, 2001

[18] J.K.Cullum and R.A.Willoughby

"Lanczos algorithm for large symmetric eigenvalue computations", Birkhauser, 1985.

[19] T.Davis

Direct Methods for Sparse Linear Systems, SIAM 2006.

[20] J.Demmel and W.Kahan

Accurate singular values of bidiagonal matrices, SISSC 11, 873-912, 1990.

[21] J.J.Dongarra and R.A.Van de Geijn

Reduction to condensed form for the eigenvalue problem on distributed memory architectures, Parallel Computing, 18, pp.973-982, 1992.

[22] I.S.DUFF, A.M.ERISMAN and J.K.REID

Direct Methods for Sparse Matrices, OXFORD SCIENCE PUBLICATIONS, 1986

[23] I.S.DUFF and J.KOSTER

ON ALGORITHMS FOR PERMUTING LARGE ENTRIES TO THE DIAGONAL OF A SPARSE MATRIX, SIAM J. MATRIX ANAL. APPL. Vol. 22, No. 4, pp. 973-996, 2001

[24] A.M.Ferrenberg, D.P.Landau and Y.J.Wong

Monte Carlo simulations: Hidden errors from "good" random number generators, Phys. Rev. Lett. 69 (1992), 3382-3384.

[25] G.Fox

Square matrix decomposition - Symmetric, local, scattered, CalTech Publication Hm-97, California Institute of Technology, Pasadena, CA, 1985.

[26] R.Freund

"A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems", SIAM J.Sci.Comput. 14, 1993, pp.470-482.

[27] R.Freund and N.Nachtigal

"QMR: a quasi minimal resudual method for non-Hermitian linear systems", Numer. Math. 60, 1991, pp.315-339.

[28] K.A.Gallivan, R.J.Plemmons, and A.H.Sameh

Parallel Algorithms for Dense Linear Algebra Computations, SIAM Review, 1990.

[29] Martin B. van Gijzen and Peter Sonneveld

"An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties",

Delft university of technology, Report 08-21, 2008.

[30] G.H.Golub, C.F.van Loan

Matrix Computations Second Edition, The Johns Hopkins University Press, 1989.

[31] Marcus J. Grote and Thomas Huckle

"Parallel preconditioning with sparse approximate inverse",

SIAM J. Sci. Comput., Vol.18, No.3, pp838-853, May 1997.

[32] M.H.Gutknecht

Variants of BiCGStab for matrices with complex spectrum, IPS Research report No. 91-14, 1991.

[33] E. Hairer, S.P.Norsett, and G. Wanner

"Solving Ordinary Differential Equations I: Nonstiff Problems." Second Revised Edition, Springer, 2000.

[34] E. Hairer, and G. Wanner

"Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems." Second Revised Edition, Springer, 2002

[35] Markus Hegland

An implementation of multiple and multi-variate Fourier transforms on vector processors, submitted to SIAM J.Sci. Comput.,1992.

[36] Markus Hegland

Block Algorithms for FFTs on Vector and Parallel Computers. PARCO 93, Grenoble, 1993.

[37] Markus Hegland

On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization, Numer. Math. 59, 453-472, 1991.

[38] B.Hendrickson and D.Womble

The torus-wrap mapping for dense matrix calculations on massively parallel computers, SAND Report SAND 92-0792, Sandia National Laboratories, Albuquerque, NM, 1992.

[39] J.R.Heringa, H.W.J.Blöte and A.Compagner

New primitive trinomials of Mersenne-exponent degrees for random-number generation, International J. of Modern Physics C 3 (1992), 561-564.

[40] F. J ames

A review of pseudorandom number generators, Computer Physics Communications 60 (1990), 329-344.

[41] G.KARYPIS AND V.KUMAR

A fast and high quality multilevel scheme for partitioning irregurar graphs, SIAM J. Sci. Comput., 20 pp.359-392, 1998

[42] GKARYPIS AND V.KUMAR

METIS

A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices

Version 4.0

University of Minnesota, Department of Computer Science / Army HPC Research Center

Minneapolis, MN 55455

Septenmber 20, 1998

[43] D.Kincaid, T.Oppe

ITPACK on supercomputers, Numerical methods, Lecture Notes in Mathematics 1005 (1982).

[44] D.E.Knuth

The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition). Addison-Wesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.

[45] Z.Leyk

Modified generalized conjugate residuals for nonsymmetric systems of linear equations, in Proceedings of the 6th Biennial Conference on Computational Techniques and Applications: CTAC93, D.Stewart, H.Gardner and D.Singleton, eds., World Scientific, 1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93, Australian National University, 1993.

[46] X.S.Li AND J.W.DEMMEL

A scalable sparse direct solver using static pivoting, in Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, Texas, 1999, CD-ROM, SIAM, Philadelphia, PA, 1999

[47] Charles Van Loan

Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.

[48] F.T.Luk

Computing the Singular-Value Decomposition on the ILIAC IV, ACM Trans. Math. Softw., 6, 1980, pp.259-273.

[49] F.T.Luk and H.Park

On Parallel Jacobi Orderings, SIAM J.Sci. Comput., 10, 1989, pp.18-26.

[50] N.K.Madsen, Gh.Rodrigue, and J.I.Karush

"Matrix multiplication by diagonals on a vector/parallel processor", Information Processing Letters, vol.5, 1976, pp.41-45.

[51] G.Marsaglia

A current view of random number genetators, Computer Science and Statistics: The Interface (edited by L.Billard), Elsevier Science Publishers B.V. (North-Holland), 1985, 3-10.

[52] M.Nakanishi, H.Ina, K.Miura

A high performance linear equation solver on the VPP500 parallel supercomputer, Proceedings of Supercomputing' 94, Washington D.C., Nov. 1994.

[53] M.OLSCHOWKA and A.NEUMAIER

A new pivoting strategy for Gaussian elimination, Linear Algebra Appl., 240(1996), pp.131-151

[54] T.Oppe, W.Joubert and D.Kincaid

An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package, Computer Physics communications 53 p283 (1989).

[55] T.C.Oppe and D.R.Kincaid

"Are there iterative BLAS?", Int. J. Sci. Comput. Modeling (to appear or has appeared).

[56] M.R.Osborne

Solving least squares problems on parallel vector processors, Area 4 working notes no. 17, 1994.

[57] M.R.Osborne

Computing the eigenvalues of tridiagonal matrices on parallel vector processors, Mathematics Research Report No. MRR 044-94, Australian National University, 1994.

[58] J.R.Rice and R.F.Boisvert

Solving Elliptic Problems Using Ellpack, Springer-Verlang, New York, 1985.

[59] D. Ruiz

A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. rep. RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, U.K., 2001

[60] Y.Saad

ILUT: A dual threshold incomplete LU factorization. Research Report UMSI 92/38, University of Minnesota, Supercomputer Institute, 1200 Washington Avenue South, Minneapolis, Minnesota 55415, USA, 1992.

[61] Y.Saad

ILUM: A multi-elimination ILU preconditioner for general sparse 591 matrices. SIAM J. Sci. Comput., 17:830-847, 1996.

[62] Y.Saad

"Iterative methods for sparse linear systems, second edition",

Univ.Minnesota, SIAM, 2003

[63] Y.Saad and M.H.Schultz

"GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat. Comput. 7, 1986, p.856-869.

[64] O.Schenk, K.Gärtner

Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems 20(2004)475-487

[65] J.A.SCOTT

Scaling and Pivoting in an Out-of-Core Sparse Direct Solver

ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 19, April 2010

[66] H.D.Simon

Bisection is not optimal on vector processors, SISSC 10, 205-209, 1989.

[67] G. Sleijpen, D. Fokkema

BCG for linear equations involving unsymmetric matrices with complex spectrum, Electronic Transactions on Numerical Analysis, 1 p11 1993

[68] Gerard L.G. Sleijpen and Martin B. van Gijzen

"Exploiting BICGSTAB(1) Strategies to Induce Dimension Reduction",

Delft university of technology, Report 09-02, 2009.

[69] Gerard L.G. Sleijpen and Martin B. van Gijzen

"Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems." Second Revised Edition, Springer, 2002

[70] Tomohiro Sogabe, Shao-Liang Zhang

"A COCR method for solving complex symmetric linear systems",

Journal of Computational and SIAM Applied Mathematics, 199(2007)297-303.

[71] J.C. Strikwerda

Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole, Pacific Grove, 1989.

[72] Paul N.Swarztrauber

Multiprocessor FFTs. Parallel Comput. 5, 197-210, 1987.

[73] H.A. Van Der Vorst

"BCG: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems", SIAM J. Sci. Statist. Comput., 13 p631 1992

[74] C.S. Wallace

"Fast Pseudo-Random Generators for Normal and Exponential Variates", ACM Trans. on Mathematical Software 22 (1996), 119-127.

[75] R. Weiss

Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag, Berlin, 1996.

[76] J.H. Wilkinson

The Algebraic Eigenvalue Problem, O.U.P., 1965.

[77] B.B.Zhou and R.P.Brent

A Parallel Ordering Algorithm for Efficient One-Sided Jacobi SVD Computations, to appear in Proc. Sixty IASTED-ISMM International Conference on Parallel and Distributed Computing Systems, 1994.

[78] K. Miura

Full Polynomial Multiple Recursive Generator(MRG) Revisited, MCQMC 2006, Ulm, Germany

[79] Kenta Hongo, Ryo Maezono, and Kenichi Miura

Random Number Generators Tested on Quantum Monte Carlo Simulations, Journal of Computational Chemistry, 31, 2186-2194, 2010

[80] P. L'Ecuyer and R. Simard

TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Transactions on Mathematical Software, Vol. 33, article 22, 2007.