

FUJITSU Software
Technical Computing Suite V4.0L20

Development Studio
Programmer's Guide for Usage of
Mathematical Libraries

J2UL-2571-01ENZ0(03)
September 2022

 2

Preface
This manual describes the use of Mathematical Libraries offered by the products. The features of
interest is as follows.

SSL II
SSL II Thread-Parallel Capabilities
C-SSL II
C-SSL II Thread-Parallel Capabilities
SSL II/MPI
BLAS
LAPACK
ScaLAPACK
Fast Basic Operations Library for Quadruple Precision (referred to as fast_dd, throughout this manual)

SSL II and C-SSL II are sequential version that are executed on one core. SSL II, SSL II Thread-Parallel
Capabilities, C-SSL II, C-SSL II Thread-Parallel Capabilities and SSL II/MPI are collectively referred
to as Mathematical Libraries.

Organization of This Manual

This manual is organized as follows:

1. SSL II Mathematical Libraries

1.1 Overview

This section describes overview of SSL II Mathematical Libraries components.

1.2 Documentation

This section describes manuals that describe the calling interfaces of subroutines.

1.3 Example program using SSL II

This section shows how to call subroutines from user's programs by taking important examples.

SSL II and C-SSL II are created as a thread-safe library. When called from an OpenMP Fortran

program, an SSL II or C-SSL II routine can be called from multiple threads concurrently with

different input data being given from each thread. This section explains the way of such concurrent

execution.

1.4 Compile, Link and Run

This section describes how to compile user's programs that contain calls to SSL II routines and

link-edit with SSL II Mathematical Libraries.

2. BLAS, LAPACK, ScaLAPACK

2.1 Overview

This section describes overview of BLAS, LAPACK and ScaLAPACK.

2.2 Compile, Link and Run

This section describes how to compile user's programs that contain calls to BLAS, LAPACK or

ScaLAPACK routines and link-edit with the libraries.

 3

2.3 Notes

Several notes are provided on usage of the products.

3. Fast Basic Operations Library for Quadruple Precision

3.1 Overview

This section describes overview of Fast Basic Operations Library for Quadruple Precision.

3.2 Documentation

This section describes manuals that describes the calling interfaces of subroutines.

3.3 Compile and Link and Run

This section describes how to compile user's programs that contain calls to Fast Basic Operations

Library for Quadruple Precision routines and link-edit with the libraries.

3.4 Notes

Several notes are provided on usage of the products.

Refer to the manuals or the documentations mentioned in 1.2, 2.1 and 3.2 for usage descriptions of the

individual routines. This manual describes the system-specific information.

In addition to this manual, the following manuals are references that apply to this manual:

Fortran User's Guide

C User's Guide

C++ User's Guide

MPI User's Guide

For a detailed specification of OpenMP, please refer the specification in http://www.openmp.org/.

Export Controls
 Exportation/release of this document may require necessary procedures in accordance with
 the regulations of your resident country and/or US export control laws.

Date of Publication and Version

Copyright

Copyright FUJITSU LIMITED 2020-2022

Version Manual code

September 2022, Version 1.3 J2UL-2571-01ENZ0(03)

March 2021, Version 1.2 J2UL-2571-01ENZ0(02)

June 2020, Version 1.1 J2UL-2571-01ENZ0(01)

February 2020, 1st Version J2UL-2571-01ENZ0(00)

 4

Update History

Changes Location Version
The library linked when -KNOSVE
option is specified has changed.

1.4.2.1, 1.4.3.1, 1.4.4.1, 1.4.4.2,
1.4.5.1, 1.4.5.2, 1.4.6.1, 1.4.6.2, 2.2.2,
2.2.3, 2.2.4, 2.2.6.1, 2.2.6.2, 2.2.6.3,
3.3.1.2, 3.3.1.3

Version 1.3

Added a note about calculation
results.

2.3.11 Version 1.3

Added a note about MRQ overflow. 1.4.6.4, 2.3.10 Version 1.2
Changed the look according to
product upgrades.

- Version 1.1

Correction of a wrong word. 1.3.2, 2.2.4, 2.2.7.6 Version 1.1
Added additional information about
Clang Mode.

1.4.4.1, 1.4.4.2, 1.4.5.1, 1.4.5.2,
1.4.6.2, 2.2.6.1, 2.2.6.2, 2.2.6.3,
3.3.1.3

Version 1.1

• All rights reserved.
• The information in this manual is subject to change without notice.

 5

Acknowledgement
BLAS, LAPACK and ScaLAPACK are collaborative effort involving several institution and it is
distributed on Netlib.

 6

Contents
Acknowledgement ... 5

Contents ... 6

List of Tables ... 8

1. SSL II Mathematical Libraries .. 1
1.1 Overview ... 1

1.1.1 SSL II ... 1
1.1.2 SSL II Thread-Parallel Capabilities ... 1
1.1.3 C-SSL II ... 1
1.1.4 C-SSL II Thread-Parallel Capabilities ... 1
1.1.5 SSL II/MPI ... 2

1.2 Documentation .. 2
1.3 Example program using SSL II ... 3

1.3.1 How to use SSL II .. 3
1.3.2 How to use C-SSL II .. 9

1.4 Compile, Link and Run ... 15
1.4.1 Setting-up ... 15
1.4.2 SSL II ... 15

1.4.2.1 Compile and Link-edit .. 15
1.4.2.2 Notes .. 16

1.4.3 SSL II Thread-Parallel Capabilities ... 16
1.4.3.1 Compile and Link-edit .. 16
1.4.3.2 Run .. 17
1.4.3.3 Note ... 18

1.4.4 C-SSL II ... 18
1.4.4.1 Using C-SSL II from C programs ... 18
1.4.4.2 Using C-SSL II from C++ programs .. 19
1.4.4.3 Note ... 20

1.4.5 C-SSL II Thread-Parallel Capabilities ... 21
1.4.5.1 Using C-SSL II from C programs ... 21
1.4.5.2 Using C-SSL II from C++ programs .. 22
1.4.5.3 Run .. 23
1.4.5.4 Note ... 23

1.4.6 SSL II/MPI ... 24
1.4.6.1 Compile and Link-edit .. 24
1.4.6.2 Using SSL II/MPI from C, C++ programs.. 25
1.4.6.3 Run .. 27
1.4.6.4 Note ... 28

2. BLAS, LAPACK, ScaLAPACK .. 29
2.1 Overview ... 29
2.2 Compile, Link and Run ... 29

2.2.1 Preparation ... 29
2.2.2 BLAS, LAPACK Sequential version ... 30
2.2.3 BLAS, LAPACK Thread-Parallel version ... 31
2.2.4 ScaLAPACK .. 32
2.2.5 Using BLACS with C Interface ... 33
2.2.6 Using BLAS, LAPACK and ScaLAPACK from C/C++ programs ... 33

2.2.6.1 BLAS, LAPACK sequential version ... 33
2.2.6.2 BLAS, LAPACK thread-parallel version ... 34
2.2.6.3 ScaLAPACK .. 35
2.2.6.4 Notes .. 36

 7

2.2.7 Using shared libraries .. 36
2.2.7.1 Using BLAS and LAPACK sequential version from Fortran program 37
2.2.7.2 Using BLAS and LAPACK thread-parallel version from Fortran program 38
2.2.7.3 Using ScaLAPACK from Fortran program .. 39
2.2.7.4 Using BLAS and LAPACK sequential version from C/C++ programs 39
2.2.7.5 Using BLAS and LAPACK thread parallel version from C/C++ programs 40
2.2.7.6 Using ScaLAPACK from C/C++ programs .. 41
2.2.7.7 Using BLAS, LAPACK or ScaLAPACK by dynamic loading .. 42

2.3 Notes ... 44
2.3.1 Maximum number of threads ... 44
2.3.2 Infinity and NaN .. 44
2.3.3 Routines in the archive file .. 44
2.3.4 Internal work area used for BLAS, LAPACK ... 44

2.3.4.1 Sequential version .. 44
2.3.4.2 Thread-parallel version .. 45

2.3.5 Size of local array used by ScaLAPACK routines ... 45
2.3.6 Notes on link-editing BLAS, LAPACK thread-parallel version with -Kparallel option 46
2.3.7 The matrix size ... 46
2.3.8 Module of PLASMA .. 46
2.3.9 About warning message of sector cache .. 46
2.3.10 MRQ Overflow .. 46
2.3.11 About Calculation Results ... 46

3. Fast Basic Operations Library for Quadruple Precision .. 47
3.1 Overview ... 47
3.2 Documentation .. 47
3.3 Compile, Link and Run ... 47

3.3.1 Compile user's programs and link-edit with fast_dd .. 47
3.3.1.1 Preparation ... 47
3.3.1.2 Fortran version ... 48
3.3.1.3 C++ version ... 48

3.4 Notes ... 49
3.4.1 Routines in the archive file .. 49
3.4.2 Fortran compiler option -AU ... 49
3.4.3 Using fast_dd with Coarray feature ... 49

 8

List of Tables
Table 1 Option to link BLAS and LAPACK sequential version (Fortran) ... 37
Table 2 Option to link BLAS and LAPACK thread-parallel version (Fortran) .. 38
Table 3 Option to link ScaLAPACK (Fortran) ... 39
Table 4 Option to link BLAS and LAPACK sequential version (C) .. 39
Table 5 Option to link BLAS and LAPACK thread-parallel version (C) ... 40
Table 6 Option to link ScaLAPACK (C) .. 42
Table 7 The file name of shared library .. 42
Table 8 The size of internal work area for sequential version .. 45
Table 9 The size of internal work area for thread-parallel version (1) .. 45
Table 10 The size of internal work area for thread-parallel version (2) .. 45

1. SSL II Mathematical Libraries

1.1 Overview
This section describes overview of SSL II Mathematical Libraries components.

1.1.1 SSL II
SSL II is tuned to a scalar processor. For A64FX processors respectively their special hardware
features are used to extract their performance.

The SSL II library is provided as thread-safe library. Namely, the routines can be called not only from
regular sequential Fortran programs but also from thread-parallel Fortran programs written with
OpenMP Fortran API. In the latter case, a routine can be called from multiple threads concurrently
with different input data being given from each thread.

1.1.2 SSL II Thread-Parallel Capabilities
The SSL II Thread-Parallel Capabilities is a collection of parallel algorithms for shared memory scalar
parallel computers. For A64FX processors respectively their special hardware features are used to
extract their performance. Each subroutine is written with the OpenMP Fortran API, and can be called
from not only OpenMP Fortran programs but also ones automatically parallelized , and conventional
sequential Fortran programs. These types of programs can be compiled by Fortran compiler with the
corresponding option respectively.

The subroutine names are different from those of conventional SSL II so that user's programs can use
the routines from the conventional SSL II and ones from this parallel libraries at the same time in an
application program. Besides, argument list of a subroutine is not always identical between the two
libraries.

SSL II Thread-Parallel Capabilities provide the routines with scalable performance over the fields like
matrix operation , linear equation solvers (direct methods) , linear equation solvers (iterative
solvers) , inverse of matrix , eigenvalue problems , Fourier transforms and random number generators
which are required for number crunching calculation.

1.1.3 C-SSL II
C-SSLII is tuned to a scalar processor. For A64FX processors respectively their special hardware
features are used to extract their performance.

The C-SSL II library is provided as thread-safe library. Namely, the routines can be called not only
from regular sequential C programs but also from thread-parallel C programs written with OpenMP C
API. In the latter case, a routine can be called from multiple threads concurrently with different input
data being given from each thread.

1.1.4 C-SSL II Thread-Parallel Capabilities
The C-SSL II Thread-Parallel Capabilities is a collection of parallel algorithms for shared memory
scalar parallel computers. Especially, the tuning in which it specializes hard is done for A64FX CPU.
Each subroutine is written with the OpenMP C API, and can be called from not only OpenMP C
programs but also ones automatically parallelized, and conventional sequential C programs. These
types of programs can be compiled by C/C++ compiler with the corresponding option respectively.

The subroutine names are different from those of conventional C-SSL II so that user's programs can
use the routines from the conventional C-SSL II and ones from this parallel libraries at the same time in

 2

an application program. Besides, argument list of a subroutine is not always identical between the two
libraries.

C-SSL II Thread-Parallel Capabilities provide the routines with scalable performance over the fields
like matrix operation , linear equation solvers (direct methods) , linear equation solvers (iterative
solvers) , eigenvalue problems , Fourier transforms and random number generators which are required
for number crunching calculation.

1.1.5 SSL II/MPI
SSL II/MPI provides the computational functionality to efficiently compute large-scale problems on a
parallel computer with distributed memory system. The algorithms for parallel processing have been
adopted. Especially, the A64FX binary version are the result of extensive source code tuning by taking
into account the CPU architecture.

Each capabilities in SSL II/MPI are available in a Fortran subroutine which can be referred in a CALL
statement.

Besides, the functional scope, the routine names and their argument sequence of SSL II/MPI are
different from those of SSL II, a mathematical software library, for a uni-processor and a parallel
computer in SMP architecture.

SSL II/MPI provides the capabilities of three dimensional Fourier transform.

1.2 Documentation
• SSL II

(1) SSL II User's Guide
(2) FUJITSU SSL II Extended Capabilities User's Guide
(3) FUJITSU SSL II Extended Capabilities User's Guide II

As you can see, the Online User's Guides are divided into three separate volumes, in consideration of
the total amount.
Documents (2) and (3) describes those subroutines which were intended to be used especially for
supercomputers and at the same time for large scale problems including FFT or sparse matrix
algebra. Furthermore, it is noted that some of subroutines in document (1) have almost equivalent
ones in functionality in document (2) or (3) with vector-oriented data layout or algorithms
implemented (one typical example is matrix multiply routine). The user is encouraged to try out the
equivalent ones from (2) and (3) first, when available.
Because of this structure of documents, we strongly recommend the user to go through the three
documents to find the most appropriate subroutines to meet the purposes.

• SSL II Thread-Parallel Capabilities

FUJITSU SSL II Thread-Parallel Capabilities User's Guide

This document contains a complete list of subroutines provided, general explanation on how to use
the subroutines in the user's source codes, example codes using the subroutines, and detailed
description on each subroutine.

• C-SSL II

FUJITSU C-SSL II User's Guide

This document is the User's Guide where general rule on usage of C-SSL II and detailed description
of each routine are documented.

• C-SSL II Thread-Parallel Capabilities

FUJITSU C-SSL II Thread-Parallel Capabilities User's Guide

This document is the User's Guide where general rule on usage of C-SSL II Thread-Parallel
Capabilities and detailed description of each routine are documented.

 3

• SSL II/MPI

FUJITSU SSL II/MPI User's Guide

This document contains a complete list of subroutines provided, general explanation on how to use
the subroutines in the user's source codes, example codes using the subroutines, and detailed
description on each subroutine.

1.3 Example program using SSL II

1.3.1 How to use SSL II

SSL II can be called not only from the sequential Fortran programs but also from thread-parallelized
programs written in OpenMP Fortran. This document is intended to show several examples of using
thread-safe SSL II from Fujitsu Fortran, so that the user can understand general rules for using the
library. The reader is assumed to have an introductory knowledge of "thread" and the specification
of OpenMP Fortran standards.

What are needed to use the thread-safety of SSL II can be summarized as follows. Namely,

(1) SSL II is to be used in the environment of multiple cores or multiple processors,

(2) SSL II is to be called from programs written in OpenMP Fortran, and

(3) SSL II is to be link-edited with object programs generated by Fujitsu Fortran compiler.

The purpose of using thread-safety of SSL II is to have a SSL II subroutine concurrently solve
different problems that are independent from each other and so reduce the turnaround time necessary
to solve all the problems. For example, when the user has several independent but similar problems
and want to solve them, the user normally calls an appropriate subroutine with one problem at a time
and repeats the subroutine call with next problem (this is in sequential manner). With the thread-safe
library, however, the user can give several problems to a subroutine at a time using multiple threads,
where one thread takes care of one problem and all the threads run concurrently. This way, the user
can expect a parallel execution with the number of parallelism equal to the number of threads. Of
course, multiple CPUs or cores have to be available for reduction of elapsed time. The user will soon
see concrete examples below.

Note that SSL II is not a parallel library by which we mean a subroutine is designed to solve a single
problem using multiple threads. For example, when the user wants to compute a single matrix
multiplication of large size using multiple threads, the user would need a different subroutine that
does the operation in parallel on multiple threads. SSL II is not designed for that purpose.

*Note: There is another library "SSL II Thread-Parallel Capabilities" which adopts parallel
algorithms. Refer to the top page of the online manual for SSL II Thread-Parallel
Capabilities for details.

The examples given below handles simple problems so that the reader can understand the principle
of using the thread-safety. For the detailed functionality and meanings of arguments of individual
subroutines, please refer to an appropriate SSL II User's Guide.

Also the examples below do not assume the numbers of threads available. The number of threads is
to be specified at execution time via the environment variable OMP_NUM_THREADS. In the SSL
II, however, the maximum number of threads the user can specify is 128.

It is noted that the examples below could run on a single core even with multiple threads being
specified. In order to achieve real parallelism, the user needs as many CPUs or cores as threads.

As for the procedure of compile and link-edit the example programs, please refer to "1.4.2 SSL II".

 4

Example 1 : System of Linear Equations

Problem Description
Think of a system of linear equations of order n.

Ax = b (1.1)

Here, A is a real matrix of order n, b a right hand side vector of order n, and x the solution vector of
order n. Now, let assume we want to solve the equations for different right hand side vectors as
shown below.

Axi = bi i = 1, 2, ... , m (1.2)

Example programs
Let's solve (1.2) for different right hand side vectors by using subroutine DVLAX from SSL II. The
subroutine DVLAX is designed to factor the given matrix A into LU, and then solve the LU system
for x by backward and forward substitution. The factored LU is returned in the 2-D array "a" that
contained the original matrix A on entry, and the solution x is returned in the array "b" that contained
the right hand side vector b. For the solution for next right hand side vector b the user sets up the next
b in array "b" and calls the subroutine with array "a" unchanged. At the same time, the user is asked
to tell the subroutine if the call is the initial one or subsequent one through the "ISW".

Suppose we have a system of linear equations of order 100 with 50 right hand side vectors. In order
to understand thread-safety of SSL II intuitively, let's look at a sequential program at first. The reader
should notice how the subsequent solutions are computed.

Using from sequential program

 implicit real*8 (a-h,o-z)
 parameter (k=100,n=100,m=50)
 real*8 a(k,n),b(n),vw(n)
C
 epsz=0.0d0
C ==================
C Define the matrix
C ==================
 do 10 i=1,n
 do 10 j=i,n
 a(i,j)=.......
 10 continue
C ==================================
C Define the first right hand vector
C ==================================
 do 20 i=1,n
 b(i)=.......
 20 continue
 isw=1
 call dvlax(a,k,n,b,epsz,isw,is,vw,ip,icon)
 if(icon.ne. 0) then
 print *,'The given problem seems to be not normal'
 stop
 endif
C ===
C Here we have got the LU factors in array a and the
C solution in b(1:n) with respect to the first
C right hand vector.
C Now we continue to get solutions for the rest of
C right hand vectors.
C ===
 isw=2
 do 40 j=2,m

 5

C =================================
C Define the next right hand vector
C =================================
 do 30 i=1,n
 b(i) =
 30 continue
 call dvlax(a,k,n,b,epsz,isw,is,vw,ip,icon)

 40 continue

 end

Next, let's use thread-safe DVLAX. The procedure of obtaining LU factorization and the solution for
the first right hand side vector is the same as before. However, the solutions for subsequent right
hand side vectors can be computed concurrently using multiple threads. In order to do so, the set of
right hand side vectors need to be set up in prior. In the sample program below, the set of right hand
side vectors is put in a 2-D array "b." Furthermore, those arguments which are altered on output need
to be assigned memory space for each thread. The parameter "icon" is the case when called with
ISW=2. So, we should have an array for icon. Other arguments such as

a, k, n, epsz, isw, is, vw, ip

are not altered when ISW=2, and therefore can be shared among threads.

Note: Although subroutine DVLAX does not alter the contents of work arrays (vw, ip) when called
with ISW=2, there is need in general that a work array should have different memory space for each
thread because it is to be altered inside.

Below is an example OpenMP Fortran program using thread-safe DVLAX. Some explanations of
the code will be given after the listing.

Using from thread-parallelized program

 implicit real*8 (a-h,o-z)
 parameter (k=100,n=100,m=50)
 real*8 a(k,n),b(n,m),vw(n)
 integer ip(n),icon(m)
C
 epsz=0.0d0
C ==
C Define the matrix a and multiple right hand vectors
C ==
 do 10 i=1,n
 do 10 j=i,n
 a(i,j)=.......
 10 continue
 do 20 i=1,n
 do 20 j=1,m
 b(i,j)=.......
 20 continue
 isw=1
 call dvlax(a,k,n,b,epsz,isw,is,vw,ip,icon)
 if(icon(1).ne. 0) then
 print *,'The given problem seems to be not normal'
 stop
 endif
C ===
C Here we have got the LU factors in array a and the
C solution in b(1:n,1) with respect to the first

 6

C right hand vector.
C Now we continue to get solutions for the rest of
C right hand vectors b(1:n,2),b(1:n,3),...,b(1:n,m)
C Solutions will be calculated concurrently.
C ===
!$OMP PARALLEL
 isw=2
!$OMP DO SCHEDULE(STATIC)
 do 30 j=2,m
 call dvlax(a,k,n,b(1,j),epsz,isw,is,vw,ip,icon(j))
 30 continue
!$OMP END DO
!$OMP END PARALLEL
 do 40 i=1,m
 print *, icon(i)
 40 continue

 end

Explanations

(1) The block of code enclosed by the !$OMP PARALLEL and !$OMP END PARALLEL directive
pair is executed by multiple threads in parallel. The !$OMP PARALLEL specifies that a team of
threads be created at that point. All variables and arrays are shared among the threads in the team
in this example code. That means that there exists only one object for each variable and the
object can be altered or referenced by any thread.

The OpenMP Fortran allows the user to specify a clause on the PARALLEL directive that declares some
variables to get private copies. For more information on data scope attributes, see an appropriate
documentation on OpenMP (e.g. “OpenMP Application Program Interface, Version 2.5 May 2005”,
available from the Web).

(2) The !$OMP DO SCHEDULE(STATIC) directive specifies that execution of the iterations of the
immediately following DO loop can be executed in parallel and so can be distributed across the
threads of the team. The clause SCHEDULE(STATIC) specifies that iterations are divided into
pieces of a size (nearly) equal to the iteration count divided by the number of thread, and the
pieces are statistically assigned to threads in the team.

(3) What is one more important characteristic is that the above code can be compiled without
OpenMP features, link-edited with SSL II libraries. The resulting executable program still woks
and produces the same computational results on a processor while everything is serialized. This
is because the above code is nothing but a regular sequential program when !$OMP directives
are ignored. The !$OMP directives are treated as Fortran comment statements when compiled by
a Fortran compiler without -Kopenmp option. The subsequent examples appearing below have
the same nature and so can be regarded as both sequential code and parallel code depending on
whether the !$OMP directives are activated.

Example 2 : Quadrature

Problem description
Let's compute the following quadrature,

1

0
),(dxxpf , px

x
xpf

p
sin

1
),((2.1)

for different values of parameter p = i / 10, i = 1, 2, ... , 9.

 7

Example program
Subroutine DAQN9, one of quadrature routines from SSL II, can be used for (2.1). The FUNCTION
subprogram of the name FUN to evaluate the integrand must use values of p, while those values are
controlled in the main program. Because of this, parameter p is storage associated through a named
common block. It is essential that the variable for p must be made private to each thread, so that
evaluation of the definite integrals for different values of p can be done by multiple threads in
parallel. In other words, it is obvious that if the variable were just shared among the threads it should
be impossible for the threads to evaluate the integrals concurrently.

 implicit real*8 (a-h,o-z)
 parameter (ip=9)
 common /aqcom/p
!$OMP THREADPRIVATE(/aqcom/)
 real*8 s(ip),err(ip)
 integer n(ip),icon(ip)
 external fun
 a=0.0d0
 b=1.0d0
 eps=dmach(eps)
 epsa=dmax1(100.0*eps,1.0d-10)
 epsr=eps
 nmin=21
 nmax=2000
C ===
C Now calculate definite integrals for ip different
C functions concurrently.
C ===
!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)
 do 10 i=1,ip
 p=dfloat(i)/10.0d0
 call daqn9(a,b,fun,epsa,epsr,nmin,nmax,
 + s(i),err(i),n(i),icon(i))
 10 continue
!$OMP END DO
!$OMP END PARALLEL

C =================
C Print the results
C =================
 write(6,500) (i,icon(i),s(i),err(i),i=1,ip)
 500 format(3x,'No, icon, integral, estimated err'//
 + (3x,i2,3x,i5,3x,E25.15,3x,E10.3))
 end

 function fun(x)
 real*8 x,p,fun
 common /aqcom/p
!$OMP THREADPRIVATE(/aqcom/)
 fun=0.0d0
 if(x.gt.0.0d0) fun=x**(-p)+dsin(p*x)
 return
 end

Upon completion of the above code, it will be noticed that all the elements of icon(*) have value
11000. This is just because DAQN9 has ability of detecting algebraic singularities and has detected
successfully them for the given integrands but computed the correct results. (for detailed information
on the subroutine. See the User's Guide.)

 8

There is one precaution when writing subprograms that are to be called from inside SSL II. That is,
the subprograms need to be thread-safe, which means the subprograms can be executed by multiple
threads in parallel with different argument values like x of fun(x) in the above example, but
produces correct results. For comparison, let's think of the following subprogram.

 function fun(x)
 implicit real*8 (a-h,o-z)
 term = 1.0d0
 s = term
 do 10 i=1,5
 term = term*x/dfloat(i)
 s = s+ term
 10 continue
 fun = s
 return
 end

In order to assure this program is thread-safe, the local variables s, term need to get its own copy
for each thread. With Fujitsu Fortran compiler, the compile option -Kopenmp assures this. If the
option is specified the variables s, term are treated as automatic and allocated in the stack area. In
the presence of multiple threads running in the subprogram, each thread is given private stack area.
However, the following restriction applies.

Variables that have initial values or SAVE attribute or are equivalenced with others can not be
automatic. If the variables having initial data are not altered in the program, there should be no
problem. For the other cases, the user will have to consider appropriate modifications.

Example 3 : Special Functions

Problem description
As the final example, let's consider evaluating the first order Bessel function of the first kind J1(x) at
300 equally spaced points in the interval 0 x 10.

Example program
In the following code, subroutine DBJ1 from SSL II is used. The code looks straightforward and
needs no extra explanation.

 implicit real*8 (a-h,o-z)
 parameter (ip=301)
 real*8 x(ip),f(ip)
 integer icon(ip)
 delta=10.0d0/dfloat(ip-1)
!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)
 do 10 i=1,ip
 x(i)= delta*dfloat(i-1)
 call dbj1(x(i),f(i),icon(i))
 10 continue
!$OMP END DO
!$OMP END PARALLEL
 write(6,100) (x(i),icon(i),f(i),i=1,ip)
 100 format(3x,'x, icon, J1(x)'//
 + (3x,E25.15,3x,I5,3x,E25.15))
 end

 9

1.3.2 How to use C-SSL II

C-SSL II can be called not only from the sequential C and C++ programs but also from
thread-parallelized programs written in OpenMP C/C++. This document is intended to show several
examples of using thread-safe C-SSL II, so that the user can understand general rules for using the
library. The reader is assumed to have an introductory knowledge of "thread" and the specification
of OpenMP C/C++ standards.

What are needed to use the thread-safety of C-SSL II can be summarized as follows. Namely,

(1) C-SSL II is to be used in the environment of multiple cores or multiple processors,

(2) C-SSL II is to be called from programs written in OpenMP C/C++, and

(3) C-SSL II is to be link-edited with object programs generated by Fujitsu C/C++ compiler.

The purpose of using thread-safety of C-SSL II is to have a C-SSL II routine concurrently solve
different problems that are independent from each other and so reduce the turnaround time necessary
to solve all the problems. For example, when the user has several independent but similar problems
and want to solve them, the user normally calls an appropriate routine with one problem at a time and
repeats the routine call with next problem (this is in sequential manner). With the thread-safe library,
however, the user can give several problems to a routine at a time using multiple threads, where one
thread takes care of one problem and all the threads run concurrently. This way, the user can expect
a parallel execution with the number of parallelism equal to the number of threads. Of course,
multiple CPUs or cores have to be available for reduction of elapsed time. The user will soon see
concrete examples below.

Note that C-SSL II is not a parallel library by which we mean a routine is designed to solve a single
problem using multiple threads. For example, when the user wants to compute a single matrix
multiplication of large size using multiple threads, the user would need a different routine that does
the operation in parallel on multiple threads. C-SSL II is not designed for that purpose.

The examples given below handles simple problems so that the reader can understand the principle
of using the thread-safety. For the detailed functionality and meanings of arguments of individual
routines, please refer to "FUJITSU C-SSL II User's Guide."

Also the examples below do not assume the numbers of threads available. The number of threads is
to be specified at execution time via the environment variable OMP_NUM_THREADS. In the
C-SSL II, however, the maximum number of threads the user can specify is 128.

It is noted that the examples below could run on a single core even with multiple threads being
specified. In order to achieve real parallelism, the user needs as many CPUs or cores as threads.

As for the procedure of compile and link-edit the example programs, please refer to "1.4.4 C-SSL
II".

Example 1 : System of Linear Equations

Problem Description
Think of a system of linear equations of order n.

Ax = b (1.1)

Here, A is a real matrix of order n, b a right hand side vector of order n, and x the solution vector of
order n. Now, let assume we want to solve the equations for different right hand side vectors as
shown below.

Axi = bi i = 1, 2, ... , m (1.2)

 10

Example programs
Let's solve (1.2) for different right hand side vectors by using c_dvlax from C-SSL II. The routine
c_dvlax is designed to factor the given matrix A into LU, and then solve the LU system for x by
backward and forward substitution. The factored LU is returned in the 2-D array "a" that contained
the original matrix A on entry, and the solution x is returned in the array "b" that contained the right
hand side vector b. For the solution for next right hand side vector b the user sets up the next b in
array "b" and calls the routine with array "a" unchanged. At the same time, the user is asked to tell
the routine if the call is the initial one or subsequent one through the "isw".

Suppose we have a system of linear equations of order 100 with 50 right hand side vectors. In order
to understand thread-safety of C-SSL II intuitively, let's look at a sequential program at first. The
reader should notice how the subsequent solutions are computed.

Using from sequential program

#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define N 100
#define K 100
#define M 50

MAIN__()
{
 double a[N][K],b[N],vw[N];
 int ip[N];
 double epsz;
 int n,k,m,i,j,ie,isw,is,icon,n,k;

 n=N;
 k=K;
 m=M;
 epsz=0.0;
/* ================== */
/* Define the matrix */
/* ================== */
 for(i=0;i<n;i++)
 for(j=0;j<n;j++)
 a[i][j]=....;
/* ================================== */
/* Define the first right hand vector */
/* ================================== */
 for(i=0;i<n;i++)
 b[i]=.......;
 isw=1;
 ie=c_dvlax((double *)a,k,n,b,epsz,isw,&is,vw,ip,&icon);
 if(icon!=0) {
 printf("The given problem seems to be not normal¥n");
 exit(1);
 }
/* === */
/* Here we have got the LU factors in array a and the */
/* solution in b[1:n] with respect to the first */
/* right hand vector. */
/* Now we continue to get solutions for the rest of */
/* right hand vectors. */
/* === */
 isw=2;

 11

 for(j=1;j<m;j++) {
/* ================================= */
/* Define the next right hand vector */
/* ================================= */
 for(i=0;i<n;i++) {
 b[i] =;
 }
 ie=c_dvlax((double *)a,k,n,b,epsz,isw,&is,vw,ip,&icon);

 }

}

Next, let's use thread-safe c_dvlax. The procedure of obtaining LU factorization and the solution for
the first right hand side vector is the same as before. However, the solutions for subsequent right
hand side vectors can be computed concurrently using multiple threads. In order to do so, the set of
right hand side vectors need to be set up in prior. In the sample program below, the set of right hand
side vectors is put in a 2-D array "b." Furthermore, those arguments which are altered on output need
to be assigned memory space for each thread. The parameter "icon" is the case when called with
isw=2. So, we should have an array for icon. Other arguments such as

a, k, n, epsz, isw, is, vw, ip

are not altered when isw=2, and therefore can be shared among threads.

Note: Although routine c_dvlax does not alter the contents of work arrays (vw, ip) when called with
isw=2, there is need in general that a work array should have different memory space for each
thread because it is to be altered inside.

Below is an example OpenMP C program using thread-safe c_dvlax. Some explanations of the code
will be given after the listing.

Using from thread-parallelized program

#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define K 100
#define N 100
#define M 50

MAIN__()
{
 double a[N][K],b[M][N],vw[N];
 int ip[N];
 double epsz;
 int n,k,m,i,j,ie,isw,is,icon[M];

 n=N;
 k=K;
 m=M;
 epsz=0.0;
/* == */
/* Define the matrix a and multiple right hand vectors */
/* == */
 for(i=0;i<n;i++)
 for(j=0;j<n;j++)
 a[i][j]=....;

 12

 for(i=0;i<m;i++)
 for(j=0;j<n;j++)
 b[i][j]=.......;
 isw=1;
 ie=c_dvlax((double *)a,k,n,b[0],epsz,isw,&is,vw,ip,&icon[0]);
 if(icon[0]!=0) {
 printf("The given problem seems to be not normal¥n");
 exit(1);
 }
/* === */
/* Here we have got the LU factors in array a and the */
/* solution in b[1:n] with respect to the first */
/* right hand vector. */
/* Now we continue to get solutions for the rest of */
/* right hand vectors. */
/* === */
 isw=2;
#pragma omp parallel
#pragma omp for schedule(static)
 for(j=1;j<m;j++) {
 ie=c_dvlax((double *)a,k,n,b[j],epsz,isw,&is,vw,ip,&icon[j]);

 }
 for(j=1;j<m;j++) {
 printf("icon[%d]=%d¥n",j,icon[j]);
 }

}

Explanations

(1) The structured block after #pragma omp parallel is executed by multiple threads in
parallel. The #pragma omp parallel specifies that a team of threads be created at that point.
All variables and arrays are shared among the threads in the team in this example code. That
means that there exists only one object for each variable and the object can be altered or
referenced by any thread.

The OpenMP C allows the user to specify a clause on the "parallel" directive that declares some variables to
get private copies. For more information on data scope attributes, see an appropriate documentation on
OpenMP (e.g. “OpenMP Application Program Interface, Version 2.5 May 2005”, available from the Web).

(2) The #pragma omp for schedule(static) directive specifies that execution of the
iterations of the immediately following for loop can be executed in parallel and so can be
distributed across the threads of the team. The clause schedule(static) specifies that
iterations are divided into pieces of a size (nearly) equal to the iteration count divided by the
number of thread, and the pieces are statically assigned to threads in the team.

(3) What is interesting also is that the above code could be compiled without OpenMP features,
link-edited with C-SSL II library, then can work correctly producing the same results, while
execution takes longer. This is because the above code is nothing but a regular sequential
program when #pragma omp directives are ignored. The subsequent examples appearing
below have the same nature and so can be regarded as both sequential code and parallel code
depending on whether the #pragma omp directives are activated.

 13

Example 2 : Quadrature

problem description
Let's compute the following quadrature,

1

0
),(dxxpf , px

x
xpf

p
sin

1
),((2.1)

for different values of parameter p = i / 10, i = 1, 2, ... , 9.

Example program
Subroutine c_daqn9, one of quadrature routines from C-SSL II, can be used for (2.1). The function
of the name "fun" to evaluate the integrand must use values of p, while those values are controlled in
the main program. Because of this, parameter p is storage associated through a named common
block. It is essential that the variable for p must be made private to each thread, so that evaluation of
the definite integrals for different values of p can be done by multiple threads in parallel. In other
words, it is obvious that if the variable were just shared among the threads it should be impossible for
the threads to evaluate the integrals concurrently.

#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define IP 9

double p;
#pragma omp threadprivate(p)

MAIN__()
{
 double a,b,eps,epsa,epsr;
 double s[IP],err[IP];
 int n[IP],icon[IP];
 int nmin,nmax,i,j;
 double fun(double);

 a=0.0;
 b=1.0;
 eps=c_dmach();
 epsa=(100.0*eps>1.0e-10)?100.0*eps:1.0e-10;
 epsr=eps;
 nmin=21;
 nmax=2000;
 /*===*/
 /* Now calculate definite integrals for IP different */
 /* functions concurrently. */
 /*===*/
#pragma omp parallel
#pragma omp for schedule(static)
 for(i=0;i<IP;i++) {
 p=(double)(i+1)/10.0;
 c_daqn9(a,b,fun,epsa,epsr,nmin,nmax,
 &s[i],&err[i],&n[i],&icon[i]);
 }

 /*=====================*/
 /* Print the results */
 /*=====================*/
 printf (" No icon integral estimated err¥n");

 14

 for(i=0;i<IP;i++) {
 printf(" %2d %5d %25.15le %10.3le¥n",
 i, icon[i],s[i], err[i]);
 }
}

double fun(double x)
{
 double f;
 f=0.0;
 if(x>0.0) f=pow(x,-p)+sin(p*x);
 return f;
}

Upon completion of the above code, it will be noticed that all the elements of icon[*] have value
11000. This is just because c_daqn9 has ability of detecting algebraic singularities and has detected
successfully them for the given integrands but computed the correct results. (for detailed information
on the routine. See "FUJITSU C-SSL II User's Guide".)

Example 3 : Special Functions

Problem description
As the final example, let's consider evaluating the first order Bessel function of the first kind J1(x) at
300 equally spaced points in the interval 0 x 10.

Example program
In the following code, routine c_dbj1 from C-SSL II is used. The code looks straightforward and
needs no extra explanation.

#include <stdio.h>
#include "cssl.h"

#define IP 301

MAIN__()
{
 double x[IP],f[IP];
 double delta;
 int icon[IP];
 int i;
 delta=10.0/(double)(IP-1);
#pragma omp parallel
#pragma omp for schedule(static)
 for(i=0;i<IP;i++) {
 x[i]=delta*(double)i;
 c_dbj1(x[i],&f[i],&icon[i]);
 }
 printf(" x icon J1(x)¥n");
 for(i=0;i<IP;i++) {
 printf("%25.15le %5d %25.15le¥n",x[i],icon[i],f[i]);
 }
}

 15

1.4 Compile, Link and Run

1.4.1 Setting-up
The user is requested to set up environment variables as follows prior to using the library.

For "installation_path", contact the system administrator.

• To compile and link-edit using cross compiler on login node :

Add /installation_path/bin to the environment variable PATH.

• To compile and link-edit using native compiler :

Add /installation_path/bin to the environment variable PATH.

• To execute on calculation node :

Add /installation_path/lib64 to the environment variable LD_LIBRARY_PATH.

When using SSL II/MPI, the following additional set-up is required.

• To execute on calculation node :

Add /installation_path/bin to the environment variable PATH.

• To use manpages on login node :

The ssl2(3) and subroutine names(3F) can be used for explanation as manpages. To use these the
environment variable MANPATH into which the directory /installation_path/man must be
concatenated.

1.4.2 SSL II
SSL II can be used from user's programs written in Fortran.

This section describes the procedures from compiling the user's program that calls SSL II subroutines
to link-editing it with the library. Fujitsu Fortran compiler needs to be used in any case. For details
about compilation and link-edit, refer to "Fortran User's Guide".

1.4.2.1 Compile and Link-edit
Use frtpx command with -SSL2 options in order to compile user’s programs written in Fortran and
link-edit with SSL II.
Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is linked
if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the program
is executed on a compute node, both libraries will work, but the library using SVE is recommended to
get high performance of the CPU.

Example 1:
Compile a user's program a.f by cross compiler, and link-edit it with the library of SSL II
using SVE.

frtpx –KSVE a.f -SSL2

Example 2:

Compile a user's program a.f by cross compiler, and link-edit it with the library of SSL II of
general-purpose.

frtpx –KNOSVE a.f -SSL2

 16

When the user's program is written in OpenMP Fortran, specify the option -Kopenmp also.

Example 3:
Compile a user's program a.f written in OpenMP Fortran, and link-edit with the library of
SSL II using SVE.

frtpx –KSVE -Kopenmp a.f -SSL2

Use frt command in order to compile user programs and link-edit with the library of SSL II by using
native compiler.

Example 4:
Compile a user's program a.f by native compiler, and link-edit it with the library of SSL II
using SVE.

frt –KSVE a.f -SSL2

1.4.2.2 Notes

• Number of threads

When the user program is written in OpenMP Fortran using multiple threads, the number of threads
can be specified at execution time through the environment variable OMP_NUM_THREADS.

The maximum number of threads in SSL II is 128.

• Stack size

When compiled with -Kopenmp option, the users data such as arrays are allocated on stack area in
certain situations. In that case it might happen that the stack area runs out and the user needs to
expand the stack area at execution time. Use the command "ulimit", for example, to expand the
stack area.

• Routine names in archives

Routines of BLAS, LAPACK, C-SSL II and SSL II Thread-Parallel Capabilities are also included in
the archives. Besides that, the archives include slave routines having names beginning with SS_ or
#L_ (# means S,D,C,Z,I or X). The user is asked to be careful not to duplicate subroutine names with
them.

• About warning message of sector cache

The mathematical library uses the sector cache function of the A64FX CPU to speed up some
routines. The sector cache may not be available depending on the situation where the program is
executed, and the following warning message may be output. In this case, the sector cache is not
used and performance may be affected, but execution continues and the calculation is performed
correctly.

jwe1047i-w A sector cache couldn't be used.

1.4.3 SSL II Thread-Parallel Capabilities
SSL II Thread-Parallel Capabilities are provided as subroutines written in OpenMP Fortran.

This section describes the procedures for compiling the user's program that calls these subroutines,
link-editing it with the library which includes SSL II Thread-Parallel Capabilities and executing it as
an OpenMP Fortran load module. Fujitsu Fortran compiler needs to be used in any case. For details
about compilation and link-edit, refer to "Fortran User's Guide".

1.4.3.1 Compile and Link-edit
SSL II Thread-Parallel Capabilities can be called from the following three types of user's programs.
After they are link-edited with the SSL II library, the programs can be executed as OpenMP Fortran
load modules.

 17

• OpenMP Fortran programs
• Fortran object programs generated with the automatic parallelization option of the Fortran compiler
• Fortran object programs generated without any parallelizing option, i.e. sequential object programs

The option -Kopenmp and -SSL2 must be specified in the frtpx command line for the linker to
generate OpenMP Fortran load modules.

-Kparallel option can be specified instead of -Kopenmp option.

When both –Nfjomplib option and –Kparallel option are specified and the environment
variable PARALLEL is set, the value of PARALLEL is used instead of the value of
OMP_NUM_THREADS as the number of threads.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is linked
if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the program
is executed on a compute node, both libraries will work, but the library using SVE is recommended to
get high performance of the CPU.

Example 1:

Compile a user's program written in OpenMP Fortran a.f by cross compiler and link-edit it
with the library of SSL II using SVE.

frtpx –KSVE -Kopenmp a.f -SSL2

Example 2:
Compile a user's program written in OpenMP Fortran a.f by cross compiler and link-edit it
with the library of SSL II of general-purpose.

frtpx –KNOSVE -Kopenmp a.f -SSL2

Example 3:
Compile a user's program written in OpenMP Fortran a.f by native compiler and link-edit it
with the library of SSL II using SVE.

frt –KSVE -Kopenmp a.f -SSL2

Example 4:
Compile a Fortran program with the automatic parallelization option specified and link-edit
it with the library of SSL II using SVE. to generate an OpenMP Fortran load module.

frtpx –Kparallel,SVE -c a.f
frtpx –KSVE -Kparallel,openmp a.o -SSL2

Example 5:
Compile a Fortran program without any parallelizing option specified and link-edit it with
the library of SSL II using SVE. to generate an OpenMP Fortran load module.

frtpx –KSVE -c a.f
frtpx –KSVE -Kopenmp a.o -SSL2

1.4.3.2 Run
The number of threads and the stack size per thread can be set at execution time as follows.

• The number of threads which execute in subroutines of SSL II Thread-Parallel Capabilities in

parallel can be assigned through the following environment variable.

Set the environment variable OMP_NUM_THREADS to the number of threads.

 18

• When user's programs calling the subroutines are compiled with the automatic parallelization option

specified, the number of threads which execute the automatically parallelized programs can be
assigned through the following environment variable.

When the compiler option –Nfjomplib is specified, set the environment variable
OMP_NUM_THREADS to the number of threads.

When the compiler option –Nfjomplib isn’t specified, set the environment variable PARALLEL
to the number of threads.

• Within a subroutine of SSL II Thread-Parallel Capabilities, a work area for each thread is allocated

as automatic allocatable arrays.

Suppose that the number of threads to be generated is NT and the total amount of the available
memory is M, it is recommended that the environment variable OMP_STACKSIZE indicating the
size of stack area for each thread should be set to about M/(5xNT). When compiler option
-Nfjomplib is specified, the environmental variable THREAD_STACK_SIZE can be set as the
stack size.

1.4.3.3 Note

• Number of threads

There is no restriction regarding the number of threads for the parallel execution of SSL II
Thread-Parallel subroutines.

• Routine names in archives

The subroutines in SSL II Thread-Parallel Capabilities use the internal subroutines, names of which
are prefixed by DM_U or DL_.

Routines of BLAS, LAPACK, and C-SSL II are also included in the archives. Besides that, the
archives include slave routines having names beginning with SS_ or #L_ (# means S,D,C,Z,I or X).
The user is asked to be careful not to duplicate subroutine names with them.

• About warning message of sector cache

The mathematical library uses the sector cache function of the A64FX CPU to speed up some
routines. The sector cache may not be available depending on the situation where the program is
executed, and the following warning message may be output. In this case, the sector cache is not
used and performance may be affected, but execution continues and the calculation is performed
correctly.

jwe1047i-w A sector cache couldn't be used.

1.4.4 C-SSL II
C-SSL II can be used from user's programs written in C and C++ language.

This section describes the procedures from compiling the user's program that calls C-SSL II routines to
link-editing it with the library. Fujitsu C/C++ compiler needs to be used in any case. For details about
compilation and link-edit, refer to "C User's Guide" or "C++ User's Guide".

1.4.4.1 Using C-SSL II from C programs
1) Standard header file

The C-SSL II is provided with a header file cssl.h which contains prototypes for all the
user-callable functions, and other information such as the dcomplex data type definition. Every
user program which calls the C-SSL II library must include this header file.

2) Name for the main program
The function name of the user main program is main or MAIN__ (two underscores after MAIN).

 19

3) Compilation and linkage
Use fccpx command with -SSL2 options in order to compile user’s programs written in C
language and link-edit with C-SSL II.
Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the
CPU on which the executable program will be executed. The library of general-purpose not
using SVE is linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is
specified. When the program is executed on a compute node, both libraries will work, but the
library using SVE is recommended to get high performance of the CPU.
When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling
+sve or +nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:
Compile a user's program a.c by cross compiler and link-edit it with the library of
C-SSL II using SVE.

fccpx –KSVE a.c -SSL2

Example 2:

Compile a user's program a.c by cross compiler and link-edit it with the library of
C-SSL II of general-purpose.

fccpx –KNOSVE a.c -SSL2

When the user's program is written in OpenMP C, specify the option -Kopenmp also.

Example 3:
Compile a user's program a.c written in OpenMP C and link-edit it with the library of
C-SSL II using SVE.

fccpx –Kopenmp,SVE a.c -SSL2

Use fcc command in order to compile user programs and link-edit with the library of C-SSL II by
using native compiler.

Example 4:
Compile a user's program a.c by native compiler, and link-edit it with the library of
C-SSL II using SVE.

fcc –KSVE a.c -SSL2

1.4.4.2 Using C-SSL II from C++ programs
1) Standard header file

Every C++ user program which calls the C-SSL II library must include this header file cssl.h as is
the cause with C programs (See previous section).

2) Name for the main program

The function name of the user main program is main or MAIN__ (two underscores after MAIN).

3) Compilation and linkage

Use FCCpx command with -SSL2 options in order to compile user’s programs written in C++
language and link-edit with C-SSL II.
Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU
on which the executable program will be executed. The library of general-purpose not using SVE
is linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When
the program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

 20

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling
+sve or +nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program a.cc by cross compiler, and link-edit it with the library of
C-SSL II using SVE.

FCCpx –KSVE a.cc -SSL2

Example 2:
Compile a user's program a.cc by cross compiler, and link-edit it with the library of
C-SSL II of general-purpose.

FCCpx –KNOSVE a.cc -SSL2

When the user's program is written in OpenMP C, specify the option -Kopenmp also.

Example 3:

Compile a user's program a.cc written in OpenMP C and link-edit it with the library of
C-SSL II using SVE.

FCCpx –Kopenmp,SVE a.cc -SSL2

Use FCC command in order to compile user programs and link-edit with the library of C-SSL II by
using native compiler.

Example 4:

Compile a user's program a.cc by native compiler, and link-edit it with the library of
C-SSL II using SVE.

FCC –KSVE a.cc -SSL2

1.4.4.3 Note

• Stack size

The users data such as arrays are allocated on stack area in certain situations. In that case it might
happen that the stack area runs out and the user needs to expand the stack area at execution time. Use
the command "ulimit", for example, to expand the stack area.

• Thread-safe

All the C-SSL II routines are thread-safe. Some routines of C-SSL II, however, use an OpenMP
C/C++ library routine to make them thread-safe. As a results, the user cannot use C-SSL II routines
from C programs parallelized directly using system threads library routine like pthread.

• Number of threads

When the user program is written in OpenMP C/C++ using multiple threads, the number of threads
can be specified at execution time through the environment variable OMP_NUM_THREADS.

The maximum number of threads in C-SSL II is 128.

• Routine names in archives

Routines of BLAS, LAPACK, SSL II and SSL II Thread-Parallel Capabilities are also included in
the archives. Besides that, the archives include slave routines having names beginning with SS_ or
#L_ (# means S,D,C,Z,I or X). The user is asked to be careful not to duplicate subroutine names with
them.

• About warning message of sector cache

 21

The mathematical library uses the sector cache function of the A64FX CPU to speed up some
routines. The sector cache may not be available depending on the situation where the program is
executed, and the following warning message may be output. In this case, the sector cache is not
used and performance may be affected, but execution continues and the calculation is performed
correctly.

jwe1047i-w A sector cache couldn't be used.

1.4.5 C-SSL II Thread-Parallel Capabilities
C-SSL II Thread-Parallel Capabilities are provided as subroutines written in OpenMP C.

This section describes the procedures for compiling the user's program that calls these routines,
link-editing it with the library which includes C-SSL II Thread-Parallel Capabilities and executing it as
an OpenMP C load module. Fujitsu C/C++ compiler needs to be used in any case. For details about
compilation and link-edit, refer to "C User's Guide" or "C++ User's Guide".

1.4.5.1 Using C-SSL II from C programs
1) Standard header file

The C-SSL II Thread-Parallel capabilities is provided with a header file cssl.h which contains
prototypes for all the user-callable routines, and other information such as the dcomplex data type
definition. Every user program which calls the C-SSL II Thread-Parallel capabilities library must
include this header file.

2) Name for the main program
The function name of the user main program is main or MAIN__ (two underscores after MAIN).

3) Compilation and linkage
C-SSL II Thread-Parallel Capabilities can be called from the following three types of user's
programs. After they are link-edited with the C-SSL II library, the programs can be executed as
OpenMP C load modules.

• OpenMP C programs

• C object programs generated with the automatic parallelization option of the C compiler

• C object programs generated without any parallelizing option, i.e. sequential object programs

When uniting to make the OpenMP C load modules, -Kopenmp and -SSL2 is specified for the
fccpx or fcc command line.

-Kparallel option can be specified instead of -Kopenmp option.

When both –Nfjomplib option and –Kparallel option are specified and the environment
variable PARALLEL is set, the value of PARALLEL is used instead of the value of
OMP_NUM_THREADS as the number of threads.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU
on which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When
the program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve
or +nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program written in OpenMP C a.c by cross compiler and link-edit it
with the library of C-SSL II using SVE.

fccpx –Kopenmp,SVE -SSL2 a.c

 22

Example 2:

Compile a user's program written in OpenMP C a.c by cross compiler and link-edit it
with the library of C-SSL II of general-purpose.

fccpx –Kopenmp,NOSVE -SSL2 a.c

Example 3:

Compile a user's program written in OpenMP C a.c by native compiler and link-edit it
with the library of C-SSL II using SVE.

fcc –Kopenmp,SVE -SSL2 a.c

Example 4:

Compile a C program with the automatic parallelization option specified and link-edit it
with the library of C-SSL II using SVE to generate an OpenMP C load module.

fccpx –Kparallel,SVE -c a.c
fccpx –Kparallel,openmp,SVE -SSL2 a.o

Example 5:

Compile a C program without any parallelizing option specified and link-edit it with the
library of C-SSL II using SVE to generate an OpenMP C load module.

fccpx –KSVE -c a.c
fccpx –Kopenmp,SVE -SSL2 a.o

1.4.5.2 Using C-SSL II from C++ programs
1) Standard header file

Every C++ user program which calls the C-SSL II Thread-Parallel library must include this header
file cssl.h as is the cause with C programs (See above).

2) Name for the main program
The function name of the user main program is main or MAIN__ (two underscores after MAIN).

3) Compilation and linkage
C-SSL II Thread-Parallel Capabilities can be called from the following three types of user's
programs. After they are link-edited with the C-SSL II library, the programs can be executed as
OpenMP C++ load modules.

• OpenMP C++ programs

• C++ object programs generated with the automatic parallelization option of the C++ compiler

• C++ object programs generated without any parallelizing option, i.e. sequential object
programs

When uniting to make the OpenMP C load modules, -Kopenmp and -SSL2 is specified for the
FCCpx or FCC command line.

-Kparallel option can be specified instead of -Kopenmp option.

When both –Nfjomplib option and –Kparallel option are specified and the environment variable
PARALLEL is set, the value of PARALLEL is used instead of the value of
OMP_NUM_THREADS as the number of threads.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU
on which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When

 23

the program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve
or +nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program written in OpenMP C++ a.cc by cross compiler and link-edit
it with the library of C-SSL II using SVE.

FCCpx –Kopenmp,SVE -SSL2 a.cc

Example 2:

Compile a user's program written in OpenMP C++ a.cc by cross compiler and link-edit
it with the library of C-SSL II of general-purpose.

FCCpx –Kopenmp,NOSVE -SSL2 a.cc

Example 3:

Compile a user's program written in OpenMP C++ a.cc by native compiler and link-edit
it with the library of C-SSL II using SVE.

FCC –Kopenmp,SVE -SSL2 a.cc

Example 4:

Compile a C++ program with the automatic parallelization option specified and
link-edit it with the library of C-SSL II using SVE to generate an OpenMP C++ load
module.

FCCpx –Kparallel,SVE -c a.cc
FCCpx –Kparallel,openmp,SVE -SSL2 a.o

Example 5:

Compile a C++ program without any parallelizing option specified and link-edit it with
the library of C-SSL II using SVE to generate an OpenMP C++ load module.

FCCpx –KSVE -c a.cc
FCCpx –Kopenmp,SVE -SSL2 a.o

1.4.5.3 Run
The number of threads and the stack size per thread can be set at execution time as follows.

• The number of threads which execute in subroutines of C-SSL II Thread-Parallel Capabilities in
parallel can be assigned through the following environment variable.

Set the environment variable OMP_NUM_THREADS to the number of threads.

• Within a subroutine of C-SSL II Thread-Parallel Capabilities , a work area for each thread is
allocated as automatic allocatable arrays.

Suppose that the number of threads to be generated is NT and the total amount of the available
memory is M, it is recommended that the environment variable OMP_STACKSIZE indicating the
size of stack area for each thread should be set to about M/(5xNT). When compiler option
-Nfjomplib is specified, the environmental variable THREAD_STACK_SIZE can be set as the
stack size.

1.4.5.4 Note

• Number of threads

 24

There is no restriction regarding the number of threads for the parallel execution of C-SSL II
Thread-Parallel routines.

• Routine names in archives

Routines of BLAS, LAPACK, SSL II and SSL II Thread-Parallel Capabilities are also included in
the archives. Besides that, the archives include slave routines having names beginning with SS_ or
#L_ (# means S,D,C,Z,I or X). The user is asked to be careful not to duplicate subroutine names with
them.

• About warning message of sector cache

The mathematical library uses the sector cache function of the A64FX CPU to speed up some
routines. The sector cache may not be available depending on the situation where the program is
executed, and the following warning message may be output. In this case, the sector cache is not
used and performance may be affected, but execution continues and the calculation is performed
correctly.

jwe1047i-w A sector cache couldn't be used.

1.4.6 SSL II/MPI
SSL II/MPI provides hybrid parallel subroutines parallelized in use of not only MPI but also OpenMP
Fortran.

It is necessary to compile a user's program calling SSL II/MPI subroutines, link-edit with the internal
routines in SSL II Thread-parallel capabilities and execute as a Fortran load module using MPI. This
procedure is explained below.

Regarding the detail procedure for compilation to execution, also refer to "Fortran User's Guide" and
"MPI User's Guide".

1.4.6.1 Compile and Link-edit
Compilation should be done using Fujitsu Fortran compiler.

An mpifrtpx command is used in order to compile a user's program using SSL II/MPI and link-edit.

Options of -Kopenmp, -SSL2MPI and either -SSL2 or -SSL2BLAMP must be specified in an
mpifrt command line.

And -Kopenmp option is needed for link-editing because SSL II/MPI routines are hybrid-parallel
routines in use of MPI and OpenMP Fortran.

The internal routines in SSL II Thread-parallel capabilities used in SSL II/MPI can be link-edited
specifying either -SSL2 or -SSL2BLAMP. The option, either -SSL2 or -SSL2BLAMP should be
selected depending upon the choice of either sequential BLAS and LAPACK or parallelized BLAS and
LAPACK. Namely when a routine in BLAS and LAPACK in used together with that in SSL II/MPI in
a user's program, please select -SSL2 or -SSL2BLAMP to link-edit sequential or parallelized BLAS
and LAPACK.

-Kparallel option can be specified instead of -Kopenmp option.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is linked
if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the program
is executed on a compute node, both libraries will work, but the library using SVE is recommended to
get high performance of the CPU.

Example 1:

A user program using MPI is compiled and link-edited with the library of SSL II/MPI and
sequential version of BLAS and LAPACK using SVE.

mpifrtpx –Kopenmp,SVE -SSL2MPI -SSL2 a.f

 25

Example 2:

A user program using MPI is compiled and link-edited with the library of SSL II/MPI and
sequential version of BLAS and LAPACK of general-purpose.

mpifrtpx –Kopenmp,NOSVE -SSL2MPI -SSL2 a.f

Example 3:

A user program using MPI is compiled and link-edited with the library of SSL II/MPI and
thread-parallel version of BLAS and LAPACK using SVE.

mpifrtpx –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.f

Example 4:

After a user program using MPI is compiled to generate an object module, it is link-edited
with the library for SSL II/MPI using SVE. Also it is link-edited with thread-parallel
version of BLAS and LAPACK.

mpifrtpx –KSVE -c a.f
mpifrtpx –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.o

Use mpifrt command in order to compile user programs and link-edit with the library of SSL II/MPI by
using native compiler.

Example 5:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and sequential version of BLAS and LAPACK using SVE.

mpifrt –Kopenmp,SVE -SSL2MPI -SSL2 a.f

Example 6:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and thread-parallel version of BLAS and LAPACK using SVE.

mpifrt –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.f

Example 7:

After a user program using MPI is compiled to generate an object module, it is link-edited
with the library for SSL II/MPI. Also it is link-edited with thread-parallel version of BLAS
and LAPACK using SVE.

mpifrt –KSVE -c a.f
mpifrt –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.o

1.4.6.2 Using SSL II/MPI from C, C++ programs
SSL II/MPI can be used from user's program written in C/C++ language. Compilation should be done
using Fujitsu C/C++ compiler.

mpifccpx or mpiFCCpx command is used in order to compile a user's program using SSL II/MPI and
link-edit.

Options of -Kopenmp, -SSL2MPI and either -SSL2 or -SSL2BLAMP must be specified in an
mpifcc/mpiFCC command line.

And -Kopenmp option is needed for link-editing because SSL II/MPI routines are hybrid-parallel
routines in use of MPI and OpenMP Fortran.

The internal routines in SSL II Thread-parallel capabilities used in SSL II/MPI can be link-edited
specifying either -SSL2 or -SSL2BLAMP. The option, either -SSL2 or -SSL2BLAMP should be
selected depending upon the choice of either sequential BLAS and LAPACK or parallelized BLAS and

 26

LAPACK. Namely when a routine in BLAS and LAPACK in used together with that in SSL II/MPI in
a user's program, please select -SSL2 or -SSL2BLAMP to link-edit sequential or parallelized BLAS
and LAPACK.

-Kparallel option can be specified instead of -Kopenmp option.

When both –Nfjomplib option and –Kparallel option are specified and the environment
variable PARALLEL is set, the value of PARALLEL is used instead of the value of
OMP_NUM_THREADS as the number of threads.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is linked
if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the program
is executed on a compute node, both libraries will work, but the library using SVE is recommended to
get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve or
+nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and sequential version of BLAS and LAPACK using SVE.

mpifccpx –Kopenmp,SVE -SSL2MPI -SSL2 a.c

Example 2:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and sequential version of BLAS and LAPACK of general-purpose.

mpifccpx –Kopenmp,NOSVE -SSL2MPI -SSL2 a.c

Example 3:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and thread-parallel version of BLAS and LAPACK using SVE.

mpifccpx –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.c

Example 4:

After a user program using MPI is compiled to generate an object module, it is link-edited
with the library for SSL II/MPI using SVE. Also it is link-edited with thread-parallel version
of BLAS and LAPACK.

mpifccpx –KSVE -c a.c
mpifccpx –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.o

Example 5:

A user program written in C++ using MPI is compiled and link-edited with the library for
SSL II/MPI library and thread-parallel version of BLAS and LAPACK using SVE.

mpiFCCpx –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.cpp

Use mpifcc or mpiFCC command in order to compile user programs and link-edit with the library of
SSL II/MPI by using native compiler.

Example 6:

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and sequential version of BLAS and LAPACK using SVE.

mpifcc –Kopenmp,SVE -SSL2MPI -SSL2 a.c

Example 7:

 27

A user program using MPI is compiled and link-edited with the library for SSL II/MPI
library and thread-parallel version of BLAS and LAPACK using SVE.

mpifcc –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.c

Example 8:

After a user program using MPI is compiled to generate an object module, it is link-edited
with the library for SSL II/MPI using SVE. Also it is link-edited with thread-parallel version
of BLAS and LAPACK.

mpifcc –KSVE -c a.c
mpifcc –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.o

Example 9:
A user program written in C++ using MPI is compiled and link-edited with the library for
SSL II/MPI and thread-parallel version of BLAS and LAPACK using SVE.

mpiFCC –Kopenmp,SVE -SSL2MPI -SSL2BLAMP a.cpp

Note the points below. These are required so that a C program can be properly linked with Fortran
using current C and Fortran compilers.

See "C User's Guide" for detail.

• The function name of the user main program is main or MAIN__ (two underscores after MAIN).

• An underscore must be added to the end of the subroutine name of SSL II/MPI.

• Variable parameters except for arrays must begin with an ampersand.

• For arrays of multi dimensions, the storage sequence of each array element is different between
Fortran and C. For SSL II/MPI capabilities that handle array of multi dimensions, the arrays are
calculated using the storage sequence of Fortran.

1.4.6.3 Run

A user's program link-edited with SSL II/MPI is executed in use of an mpiexec command. The
number of threads for parallel execution is specified in an environment variable
OMP_NUM_THREADS. The number of cores needed is assumedly n*s when the number of processes
n and that of threads s are specified.

The number of threads must be set to one when the routine is executed in process parallel only.

Example:

An a.out is executed setting the number of processes to two and that of threads to four.

setenv OMP_NUM_THREADS 4
mpiexec -n 2 a.out

Within a subroutine of SSL II Thread-Parallel Capabilities, a work area for each thread is allocated as
automatic allocatable arrays.

Suppose that the number of threads to be generated is NT and the total amount of the available memory
is M, it is recommended that the environment variable OMP_STACKSIZE indicating the size of stack
area for each thread should be set to about M/(5*NT). When compiler option -Nfjomplib is specified,
the environmental variable THREAD_STACK_SIZE can be set as the stack size.

 28

1.4.6.4 Note

• Routine names in archives

The subroutines in SSL II/MPI use the internal subroutines, names of which are prefixed by DS_U
or SS_U.

Routines of BLAS, LAPACK, C-SSL II, and SSL II Thread-Parallel Capabilities are also included in
the archives. Besides that, the archives include slave routines having names beginning with SS_ or
#L_ (# means S,D,C,Z,I or X). The user is asked to be careful not to duplicate subroutine names with
them.

• MRQ Overflow

Set the MCA parameter common_tofu_num_mrq_entries of MPI to increase the number of entries in
the completion queue when an SSL II/MPI program that causes one process to communicate with a
large number of other processes produces an error message beginning with [mpi: common-tofu:
tofu-mrq-overflow]. See "MPI User’s Guide" for the error messages and the MCA parameter.

 29

2. BLAS, LAPACK, ScaLAPACK

2.1 Overview
BLAS, LAPACK and ScaLAPACK are the implementations of the public domain BLAS (Basic Linear
Algebra Subprograms), LAPACK (Linear Algebra PACKage) and ScaLAPACK (Scalable LAPACK) ,
which have been developed by groups of people such as Prof. Jack Dongarra, University of
Tennessee, USA and all published on the WWW (URL: http://www.netlib.org/).

The BLAS, LAPACK and ScaLAPACK library has the following features.

• The BLAS library has been improved in performance. Especially, the A64FX binary version are the
result of extensive source code tuning by taking into account the CPU architecture. The
performance-up of BLAS also has contributed to that of LAPACK and ScaLAPACK because they
call BLAS routines.

• The BLAS and LAPACK include both sequential version and thread-parallel version.

• The routines of BLAS and LAPACK sequential version are thread-safe , and can be called not only
from sequential Fortran programs but also from thread-parallel programs written with OpenMP
Fortran API. In the latter case, a routine can be called from multiple threads concurrently with
different input data being given from each thread.

• PLASMA, which is parallelized LAPACK by pthread, is provided. Some routines are faster than
LAPACK parallelized by OpenMP. Note that PLASMA is not thread-safe.

• The routines of BLAS and LAPACK thread-parallel version are parallelized with the OpenMP
Fortran. The parallel library is aimed at those subroutines which are likely to be used by large scale
scientific applications and can be speeded up by parallel algorithms. The routines are thread-safe
too.

• ScaLAPACK can be link-edited with BLAS and LAPACK thread-parallel version. When the
thread-parallel version is linked, ScaLAPACK routines are executed in parallel by multiple
processes of MPI in each of which BLAS and LAPACK routines that are called from ScaLAPACK
routines are executed in parallel by multiple threads.

2.2 Compile, Link and Run
BLAS and LAPACK are to be called from a Fortran/C/C++ program. Compilation should be done
using Fujitsu Fortran/C/C++ compiler. ScaLAPACK is to be used from a Fortran/C/C++ program with
MPI library calls. This section describes procedures of compilation through execution for these
parallel programs, while more details are available in manuals Fortran User's Guide or MPI User's
Guide.

For users calling ScaLAPACK, BLAS and LAPACK at the same time, follow information given in
“2.2.4 ScaLAPACK”, then BLAS or LAPACK routines link-edited with ScaLAPACK product can be
used.

2.2.1 Preparation
Prior to using BLAS, LAPACK and ScaLAPACK products, the following set-up is required.

For "installation_path", contact the system administrator.

• To compile and link-edit using cross compiler on login node :

 30

Add /installation_path/bin to the environment variable PATH.

• To compile and link-edit using native compiler :

Add /installation_path/bin to the environment variable PATH.

• To execute on calculation node :

Add /installation_path/lib64 to the environment variable LD_LIBRARY_PATH.

When using ScaLAPACK, the following additional set-up is required.

• To execute on calculation node :

Add /installation_path/bin to the environment variable PATH.

2.2.2 BLAS, LAPACK Sequential version
a) Link-editing of libraries

Use frtpx command with -SSL2 options in order to compile user programs written in Fortran and
link-edit with sequential version of BLAS and LAPACK.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

Example 1:

Compile a user's program a.f, and link-edit it with the archive of BLAS and LAPACK using
SVE.

frtpx –KSVE a.f –SSL2

Example 2:

Compile a user's program a.f, and link-edit it with the archive of BLAS and LAPACK of
general-purpose.

frtpx –KNOSVE a.f –SSL2

When the user's program is written in OpenMP Fortran, specify the option –Kopenmp also.

Example 3:

Compile a user's program a.f written in OpenMP Fortran and link-edit it with the archive of
BLAS and LAPACK using SVE.

frtpx –Kopenmp,SVE a.f –SSL2

Use frt command in order to compile user programs and link-edit with the archive of BLAS and
LAPACK by using native compiler.

Example 4:

Compile a user's program a.f and link-edit it with the archive of BLAS and LAPACK using
SVE by using native compiler.

frt –KSVE a.f -SSL2

b) Notes on stack size

When compiling with -Kopenmp option, local arrays other than the arrays of main program are
allocated in stack area, and also the stack area is used for the internal work array of BLAS or LAPACK
routine, so it might happen the stack area runs out of space. In that case, the user can expand the stack
area by the command ulimit. For details about the internal work area used by BLAS or LAPACK
routines, refer to “2.3.4 Internal work area used for BLAS, LAPACK.”

 31

c) Specifying the number of threads

When the user program is written to use multiple threads, the number of threads to be created can be
specified by the environment variable OMP_NUM_THREADS.

2.2.3 BLAS, LAPACK Thread-Parallel version
a) Link-editing of libraries

Use frtpx or frt command with -Kopenmp, -SSL2BLAMP options in order to compile user
programs written in Fortran and link-edit with thread-parallel version of BLAS and LAPACK(include
PLASMA).

-Kparallel option can be specified instead of -Kopenmp option. See “2.3.6 Notes on link-editing
BLAS, LAPACK thread-parallel version with -Kparallel option”.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

Example 1:

Compile a user's program a.f written in OpenMP Fortran by cross compiler, and link-edit it
with the archive of BLAS and LAPACK using SVE.

frtpx –Kopenmp,SVE a.f -SSL2BLAMP

Example 2:

Compile a user's program a.f written in OpenMP Fortran by cross compiler, and link-edit it
with the archive of BLAS and LAPACK of general-purpose.

frtpx –Kopenmp,NOSVE a.f -SSL2BLAMP

Example 3:

Compile a user's program a.f written in OpenMP Fortran by native compiler, and link-edit it
with the archive of BLAS and LAPACK using SVE.

frt –Kopenmp,SVE a.f -SSL2BLAMP

Example 4:

Compile a user's program a.f written in Fortran as a sequential object module, and link-edit
it with the archive of BLAS and LAPACK using SVE.

frtpx –SVE -c a.f

frtpx –Kopenmp,SVE a.o –SSL2BLAMP

Example 5:

Compile a user's program a.f written in Fortran using the automatic parallelization facility,
and link-edit it with the archive of BLAS and LAPACK using SVE.

frtpx –KSVE -c -Kparallel a.f
frtpx –Kparallel,openmp,SVE a.o –SSL2BLAMP

b) Note on stack size

 When compiling with -Kopenmp option, local arrays other than the arrays of main program are
allocated in the stack area, and also the stack area is used for internal work arrays of BLAS or
LAPACK routine, so it might happen the stack area runs out of space. In that case, the user can expand
the stack area by the command ulimit. For details about the internal work area used by BLAS or
LAPACK, refer to “2.3.4 Internal work area used for BLAS, LAPACK.”

 32

c) Specifying the number of threads

The number of threads to be created by BLAS and LAPACK parallelized by OpenMP can be specified
by the environment variable OMP_NUM_THREADS.

The number of threads to be created by PLASMA can be specified by the argument of the routine
PLASMA_Init.

d) Environment variable to execute PLASMA

Set 1 to environment variable FLIB_PTHREAD in order to execute user program which calls
PLASMA routines and which is compiled with –Nfjomplib option.

The environment variable FLIB_SCCR_CNTL has to be set to FALSE to execute a user program
which calls PLASMA routines on the A64FX system. The BLAS routines for A64FX uses sector
cache and their behavior is indeterminate when they called from PLASMA routines which are
parallelized with pthread.

2.2.4 ScaLAPACK
a) Link-editing of libraries

ScaLAPACK can be used by linking it with user programs written in Fortran language. It is linked to
the user program when -SCALAPACK and either -SSL2 or -SSL2BLAMP are specified on the
mpifrtpx or mpifrt command line. When -SSL2BLAMP is specified, -Kopenmp option is also
needed.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

Example 1:

Compile a user's program a.f by cross compiler and link-edit it with archives using SVE.
The sequential version of BLAS and LAPACK are link-edited.

mpifrtpx –KSVE a.f -SCALAPACK -SSL2

Example 2:

Compile a user's program a.f by cross compiler and link-edit it with archives of
general-purpose. The sequential version of BLAS and LAPACK are link-edited.

mpifrtpx –KNOSVE a.f -SCALAPACK -SSL2

Example 3:

Compile a user's program a.f by native compiler and link-edit it with archives using SVE.
The sequential version of BLAS and LAPACK are link-edited.

mpifrt –KSVE a.f -SCALAPACK -SSL2

Example 4:

Compile a user's program a.f and link-edit it with archives using SVE. The thread-parallel
version of BLAS and LAPACK are link-edited.

mpifrtpx –KSVE -c a.f
mpifrtpx –KSVE –Kopenmp a.o –SCALAPACK -SSL2BLAMP

b) Executing a program

Applications, which call ScaLAPACK, are regarded as MPI-based message passing programs. The
way of executing such applications is documented in detail in the manual MPI User's Guide.

 33

When thread-parallel version of BLAS, LAPACK archive is linked, the number of threads is to be
specified at execution time via the environment variable OMP_NUM_THREADS. When the number
of processes is n and the number of threads is s, n s CPUs are needed.

Example 5:

Execute a program a.out on 4 processes.

mpiexec -n 4 a.out

Example 6:

Execute a program a.out. The number of processes is 2 and the number of threads is 4.

setenv OMP_NUM_THREADS 4

mpiexec -n 2 a.out

2.2.5 Using BLACS with C Interface
BLACS also includes C interface routines. C interface BLACS is linked to the user program when
-lCblacs is specified on the mpifccpx command line.

Example:

mpifccpx a.c –lCblacs

The program that unites with BLACS in C interface is executed by the mpiexec command as well as
the program that unites ScaLAPACK.

When BLACS in C interface is used, it is necessary to note the following.

• MPI_Init, which is an MPI initialize function, must be called in the user main program.

• C interface BLACS is used when all user programs are written in C. If some of user programs are
written in Fortran, the user is just asked to follow description in “2.2.4 ScaLAPACK”.

2.2.6 Using BLAS, LAPACK and ScaLAPACK from C/C++ programs
BLAS, LAPACK and ScaLAPACK can also be used by linking it with user programs written in
C/C++.

2.2.6.1 BLAS, LAPACK sequential version

Use fccpx, FCCpx, mpifccpx, mpiFCCpx, fcc, FCC, mpifcc or mpiFCC command with
-SSL2 option in order to compile user programs written in C/C++ and link-edit with sequential
version of BLAS and LAPACK.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve or
+nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program a.c by cross compiler and link-edit it with the archive of BLAS
and LAPACK using SVE.

fccpx –KSVE –SSL2 a.c

Example 2:

Compile a user's program a.c by cross compiler and link-edit it with the archive of BLAS
and LAPACK of general-purpose.

 34

fccpx –KNOSVE –SSL2 a.c

Example 3:

Compile a user's program a.c by native compiler and link-edit it with the archive of BLAS
and LAPACK using SVE.

fcc –KSVE –SSL2 a.c

Example 4:

Compile a user's program a.cpp written in C++ and link-edit it with the archive of BLAS
and LAPACK using SVE.

FCCpx –KSVE a.cpp –SSL2

2.2.6.2 BLAS, LAPACK thread-parallel version

Use fccpx, FCCpx, mpifccpx, mpiFCCpx, fcc, FCC, mpifcc or mpiFCC command with
-Kopenmp and -SSL2BLAMP options in order to compile user programs written in C/C++ and
link-edit with thread-parallel version of BLAS and LAPACK (include PLASMA).

The followings are examples of fccpx or fcc command. fccpx or fcc command can be replaced
with other command which user want to use.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve or
+nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program a.c written in OpenMP C by cross compiler, and link-edit it with
the archive of BLAS and LAPACK using SVE.

fccpx –Kopenmp,SVE a.c -SSL2BLAMP

Example 2:

Compile a user's program a.c written in OpenMP C by cross compiler, and link-edit it with
the archive of BLAS and LAPACK of general-purpose.

fccpx –Kopenmp,NOSVE a.c -SSL2BLAMP

Example 3:

Compile a user's program a.c written in OpenMP C by native compiler, and link-edit it with
the archive of BLAS and LAPACK using SVE.

fcc –Kopenmp,SVE a.c -SSL2BLAMP

Example 4:

Compile a user's program a.c written in C as a sequential object module, and link-edit it
with the archive of BLAS and LAPACK using SVE.

fccpx –KSVE -c a.c

fccpx –Kopenmp,SVE a.o -SSL2BLAMP

Example 5:

Compile a user's program a.c written in C using the automatic parallelization facility, and
link-edit it with the archive of BLAS and LAPACK using SVE.

 35

fccpx –KSVE -c -Kparallel a.c

fccpx -Kparallel,openmp,SVE a.o -SSL2BLAMP

Example 6:

Compile a user's program a.cpp written in C++ and link-edit it with the archive of BLAS
and LAPACK using SVE.

FCCpx –Kopenmp,SVE a.cpp -SSL2BLAMP

2.2.6.3 ScaLAPACK

ScaLAPACK can be used by linking it with user programs written in C/C++ language. It is linked to
the user program when -SCALAPACK and either -SSL2 or -SSL2BLAMP are specified on the
mpifccpx, mpiFCCpx, mpifcc or mpiFCC command line. When -SSL2BLAMP is specified,
-Kopenmp option is also needed.

The followings are examples of mpifccpx or mpifcc command. mpiFCCpx command can be
replaced with other command which user want to use.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve or
+nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1:

Compile a user's program a.c by cross compiler and link-edit it with ScaLAPACK and
sequential version of BLAS and LAPACK using SVE.

mpifccpx –KSVE a.c -SSL2 –SCALAPACK

Example 2:

Compile a user's program a.c by cross compiler and link-edit it with ScaLAPACK and
sequential version of BLAS and LAPACK of general-purpose.

mpifccpx –KNOSVE a.c -SSL2 –SCALAPACK

Example 3:

Compile a user's program a.c by native compiler and link-edit it with ScaLAPACK and
sequential version of BLAS and LAPACK using SVE.

mpifcc –KSVE a.c -SSL2 –SCALAPACK

Example 4:

Compile a user's program a.c and link-edit it with ScaLAPACK and thread-parallel version
of BLAS and LAPACK using SVE.

mpifccpx –KSVE -c a.c

mpifccpx –Kopenmp,SVE a.o -SSL2BLAMP –SCALAPACK

Example 5:

Compile a user's program a.cpp and link-edit it with ScaLAPACK and thread-parallel
version of BLAS and LAPACK using SVE.

mpiFCCpx –Kopenmp,SVE a.cpp -SSL2BLAMP –SCALAPACK

 36

2.2.6.4 Notes

Note the points below. These are required so that a C program can be properly linked with Fortran
using current C and Fortran compilers.

See “C User's Guide” for detail.

• The function name of the user main program is main or MAIN__ (two underscores after MAIN).

• An underscore must be added to the end of the subroutine name.

• Variable parameters except for arrays must begin with an ampersand.

• For arrays of two dimensions, the storage sequence of each array element is different between
FORTRAN and C. For BLAS and LAPACK capabilities that handle array of two dimensions, the
arrays are calculated using the storage sequence of FORTRAN.

A header file fj_lapack.h, which contains prototypes for the user-accessible routines, is provided.
The following notes are for using it.

• It contains prototypes for all the BLAS routines (for XBLAS only C interface prototypes are
included), all the driver and computational routines of LAPACK and some auxiliary routines of
LAPACK.

• fcomplex and dcomplex are defined as the types corresponding to complex and
double-precision complex.

 typedef struct {

 float re, im;

 } fcomplex;

 typedef struct {

 double re, im;

 } dcomplex;

• A two dimensional array must be recast as a pointer in calls to a library routines. For example,
(double *) is needed before the argument name of double precision two dimensional array.

• If the actual argument is of type character, the length is passed after the address of the arguments.

• The function result is set with Fortran and the function of the complex type is set to the function
value.

Example

 z=zdotu_(&n,x,&incx,y,&incy);

C interface routines to LAPACK are available. User program which calls C interface routines must
include a header file lapacke.h. The prototypes for interfaces, type definitions for complex data
types and array arguments specifying whether the arrays are stored in row-major or column-major
order are contained in it.

2.2.7 Using shared libraries
The libraries of BLAS, LAPACK and ScaLAPACK are statically linked in default.

Shared libraries are also provided. Statically linked libraries are useful for general purpose, but they
can't be used in some situation e.g. the user program loads the libraries dynamically using dlopen and
dlsym function. In such case, the shared libraries can be used. The library structure and the operation
for link-editing of shared libraries are different from those of static library to use them by dynamic
loading.

User can select the general-purpose libraries or SVE libraries. When the user’s program run on A64FX
compute node, both general-purpose libraries and SVE libraries are tuned by using SVE.

 37

ILP64 interface libraries which use the 64-bit integer type and 64-bit logical type as parameter of
routines as well as LP64 libraries are supported for BLAS and LAPACK.

2.2.7.1 Using BLAS and LAPACK sequential version from Fortran program

Use frtpx or frt command with options in Table 1 in order to compile user programs written in
Fortran and link-edit with sequential version of BLAS and LAPACK. Write the option after the
Fortran source and object names.

Table 1 Option to link BLAS and LAPACK sequential version (Fortran)

 option

LP64, general-purpose -lfjlapack

LP64, SVE -lfjlapacksve

ILP64, general-purpose -lfjlapack_ilp64

ILP64, SVE -lfjlapacksve_ilp64

Example 1:

Compile a user's program a.f and link-edit it with the library of BLAS and LAPACK
sequential version using SVE.

frtpx a.f -lfjlapacksve

Example 2:

Compile a user's program a.f and link-edit it with the library of BLAS and LAPACK
sequential version of general-purpose.

frtpx a.f -lfjlapack

Example 3:

Compile a user's program a.f and link-edit it with the ILP64 interface library of BLAS and
LAPACK sequential version using SVE. The default integer and the default logical in the
source program are interpreted to eight-byte integer and eight-byte logical by compiler
option.

frtpx -CcdII8 -CcdLL8 a.f –lfjlapacksve_ilp64

Example 4:

Compile a user's program a.f written in OpenMP Fortran and link-edit it with the archive of
BLAS and LAPACK using SVE.

frtpx -Kopenmp a.f -lfjlapacksve

Example 5:

Compile a user's program a.f and link-edit it with the archive of BLAS and LAPACK by
using native compiler using SVE.

frt a.f -lfjlapacksve

 38

2.2.7.2 Using BLAS and LAPACK thread-parallel version from Fortran program

Use frtpx or frt command with -Kopenmp and an option in Table 2 in order to compile user
programs written in Fortran and link-edit with thread-parallel version of BLAS and LAPACK(include
PLASMA). Write the option after the Fortran source and object names.

Table 2 Option to link BLAS and LAPACK thread-parallel version (Fortran)

 option

LP64, general-purpose -lfjlapackex

LP64, SVE -lfjlapackexsve

ILP64, general-purpose -lfjlapackex_ilp64

ILP64, SVE -lfjlapackexsve_ilp64

Example 1:

Compile a user's program a.f written in OpenMP Fortran, and link-edit it with the BLAS
and LAPACK library using SVE.

frtpx -Kopenmp a.f -lfjlapackexsve

Example 2:

Compile a user's program a.f written in OpenMP Fortran, and link-edit it with the BLAS
and LAPACK library of general-purpose.

frtpx -Kopenmp a.f -lfjlapackex

Example 3:

Compile a user's program a.f written in OpenMP Fortran, and link-edit it with the BLAS
and LAPACK ILP64 library using SVE. The default integer and the default logical in the
source program are interpreted to eight-byte integer and eight-byte logical by compiler
option.

frtpx -CcdII8 -CcdLL8 -Kopenmp a.f –lfjlapackexsve_ilp64

Example 4:

Compile a user's program a.f written in OpenMP Fortran by native compiler, and link-edit it
with the BLAS and LAPACK library using SVE.

frt -Kopenmp a.f -lfjlapackexsve

Example 5:

Compile a user's program a.f written in Fortran as a sequential object module, and link-edit
it with the BLAS and LAPACK library using SVE.

frtpx -c a.f

frtpx -Kopenmp a.o -lfjlapackexsve

Example 6:

Compile a user's program a.f written in Fortran using the automatic parallelization facility,
and link-edit it with the BLAS and LAPACK library using SVE.

frtpx -c -Kparallel a.f

frtpx -Kparallel,openmp a.o –lfjlapackexsve

 39

2.2.7.3 Using ScaLAPACK from Fortran program

ScaLAPACK can be used by linking it with user programs written in Fortran language. It is linked to
the user program when an option in Table 3 and an option to link either BLAS and LAPACK
sequential version or BLAS and LAPACK thread parallel version are specified on the mpifrtpx or
mpifrt command line.

Write the option to link ScaLAPACK before the option to link BLAS and LAPACK after the Fortran
source and object names.

Table 3 Option to link ScaLAPACK (Fortran)

 option

LP64, general-purpose -lfjscalapack

LP64, SVE -lfjscalapacksve

ILP64, general-purpose -

ILP64, SVE -

ILP64 version of ScaLAPACK library is not supported.

When BLAS and LAPACK thread-parallel version is linked, -Kopenmp option is also needed.

Example 1:

Compile a user's program a.f and link-edit it with ScaLAPACK and sequential version of
BLAS and LAPACK. The archives using SVE are linked.

mpifrtpx a.f -lfjscalapacksve -lfjlapacksve

Example 2:

Compile a user's program a.f and link-edit it with ScaLAPACK and sequential version of
BLAS and LAPACK. The archives of general-purpose are linked.

mpifrtpx a.f -lfjscalapack -lfjlapack

Example 3:

Compile a user's program a.f and link-edit it with ScaLAPACK and thread parallel version
of BLAS and LAPACK. The archives using SVE are linked.

mpifrtpx -Kopenmp a.f -lfjscalapacksve -lfjlapackexsve

Example 4:

Compile a user's program a.f by native compiler and link-edit it with ScaLAPACK and
thread parallel version of BLAS and LAPACK. The archives using SVE are linked.

mpifrt -Kopenmp a.f -lfjscalapacksve -lfjlapackexsve

2.2.7.4 Using BLAS and LAPACK sequential version from C/C++ programs

Use fccpx, FCCpx fcc or FCC command with an option in Table 4 and either -SSL2 or
-SSL2BLAMP option in order to compile user programs written in C/C++ and link-edit with
sequential version of BLAS and LAPACK.

Write -lfjlapack option after the Fortran source and object names.

When using the ILP64 interface library, specify the option -I/installation_path/include/lapack_ilp64

to use the header file corresponding to ILP64.

Table 4 Option to link BLAS and LAPACK sequential version (C)

 option

 40

LP64, general-purpose -lfjlapack

LP64, SVE -lfjlapacksve

ILP64, general-purpose -lfjlapack_ilp64

ILP64, SVE -lfjlapacksve_ilp64

Example 1:

Compile a user's program a.c written in C and link-edit it with the library of BLAS and
LAPACK sequential version using SVE.

fccpx a.c -lfjlapacksve -SSL2

Example 2:

Compile a user's program a.c written in C and link-edit it with the library of BLAS and
LAPACK sequential version of general-purpose.

fccpx a.c -lfjlapack -SSL2

Example 3:

Compile a user's program a.c written in C and link-edit it with the ILP64 interface library of
BLAS and LAPACK sequential version using SVE. The default integer and the default
logical in the source program are interpreted to eight-byte integer and eight-byte logical by
compiler option.

fccpx -I/installation_path/include/lapack_ilp64 a.c
–lfjlapacksve_ilp64 -SSL2

Example 4:

Compile a user's program a.cpp written in C++ and link-edit it with the library of BLAS and
LAPACK sequential version.

FCCpx a.cpp -lfjlapacksve -SSL2

Example 5:

Compile a user's program a.c written in OpenMP C and link-edit it with the library of BLAS
and LAPACK sequential version using SVE.

fccpx -Kopenmp a.c -lfjlapacksve -SSL2

Example 6:

Compile a user's program a.c by native compiler and link-edit it with the library of BLAS
and LAPACK sequential version using SVE.

fcc -Kopenmp a.c -lfjlapacksve -SSL2

2.2.7.5 Using BLAS and LAPACK thread parallel version from C/C++ programs

Use fccpx, FCCpx fcc or FCC command with -Kopenmp, the option in Table 5 and either -SSL2
or -SSL2BLAMP option in order to compile user programs written in C/C++ and link-edit with thread
parallel version of BLAS and LAPACK(include PLASMA). Write the option after the Fortran source
and object names.

When using the ILP64 interface library, specify the option -I/installation_path/include/lapack_ilp64

to use the header file corresponding to ILP64.

Table 5 Option to link BLAS and LAPACK thread-parallel version (C)

 option

LP64, general-purpose -lfjlapackex

 41

LP64, SVE -lfjlapackexsve

ILP64, general-purpose -lfjlapackex_ilp64

ILP64, SVE -lfjlapackexsve_ilp64

Example 1:

Compile a user's program a.c written in C and link-edit it with the library of BLAS and
LAPACK thread parallel version using SVE.

fccpx -Kopenmp a.c -lfjlapackexsve -SSL2

Example 2:

Compile a user's program a.c written in C and link-edit it with the library of BLAS and
LAPACK thread parallel version of general-purpose.

fccpx -Kopenmp a.c -lfjlapackex -SSL2

Example 3:

Compile a user's program a.c written in C and link-edit it with the ILP64 interface library of
BLAS and LAPACK thread parallel version using SVE. The default integer and the default
logical in the source program are interpreted to eight-byte integer and eight-byte logical by
compiler option.

fccpx -Kopenmp -I/installation_path/include/lapack_ilp64 a.c
–lfjlapackexsve_ilp64 -SSL2

Example 4:

Compile a user's program a.cpp written in C++ and link-edit it with the library of BLAS and
LAPACK thread parallel version using SVE.

FCCpx -Kopenmp a.cpp -lfjlapackexsve -SSL2

Example 5:

Compile a user's program a.c written in C as a sequential object module, and link-edit it
with the library of BLAS and LAPACK thread parallel version using SVE.

fccpx -c a.c

fccpx -Kopenmp a.o -lfjlapackexsve -SSL2

Example 6:

Compile a user's program a.c written in C using the automatic parallelization facility, and
link-edit it with the library of BLAS and LAPACK thread parallel version using SVE.

fccpx -c -Kparallel a.c

fccpx -Kparallel,openmp a.o -lfjlapackexsve -SSL2

Example 7:

Compile a user's program a.c written in C and link-edit it with the library of BLAS and
LAPACK thread parallel version by native compiler.

fcc -Kopenmp a.c -lfjlapackex -SSL2

2.2.7.6 Using ScaLAPACK from C/C++ programs

ScaLAPACK can be used by linking it with user programs written in C/C++ language.

It is linked to the user program when an option in Table 6, an option to link BLAS and LAPACK
sequential of thread-parallel library, either -SSL2 or -SSL2BLAMP and -SCALAPACK are specified
on the mpifccpx, mpiFCCpx, mpifcc or mpiFCC command line. Write the option to link

 42

ScaLAPACK before the option to link BLAS and LAPACK after the Fortran source and object names.
When BLAS and LAPACK thread-parallel version is linked, -Kopenmp option is also needed.

Table 6 Option to link ScaLAPACK (C)

 option

LP64, general-purpose -lfjscalapack

LP64, SVE -lfjscalapacksve

ILP64, general-purpose -

ILP64, SVE -

Example 1:

Compile a user's program a.c and link-edit it with ScaLAPACK and sequential version of
BLAS and LAPACK. The archives using SVE are linked.

mpifccpx a.c -lfjscalapacksve -lfjlapacksve -SSL2 -SCALAPACK

Example 2:

Compile a user's program a.c and link-edit it with ScaLAPACK and sequential version of
BLAS and LAPACK. The archives of general-purpose are linked.

mpifccpx a.c -lfjscalapack -lfjlapack -SSL2 -SCALAPACK

Example 3:

Compile a user's program a.cpp written in C++ and link-edit it with ScaLAPACK and
thread-parallel version of BLAS and LAPACK. The archives using SVE are linked.

mpiFCCpx -Kopenmp a.cpp -lfjscalapacksve -lfjlapackexsve -SSL2
-SCALAPACK

Example 4:

Compile a user's program a.c by native compiler and link-edit it with ScaLAPACK and
thread parallel version of BLAS and LAPACK. The archives using SVE are linked.

mpifcc -Kopenmp a.c -lfjscalapacksve -lfjlapackexsve -SSL2
-SCALAPACK

2.2.7.7 Using BLAS, LAPACK or ScaLAPACK by dynamic loading

When the BLAS, LAPACK or ScaLAPACK library is called from user program as dynamic loading
using dlopen and dlsym functions, the file name of library is specified in parameter of dlopen function.
They are shown in Table 7.

Table 7 The file name of shared library

 BLAS, LAPACK
sequential version

BLAS, LAPACK
thread-parallel version

ScaLAPACK

LP64, general-purpose libfjlapack.so libfjlapackex.so libfjscalapack
.so

LP64, SVE libfjlapacksve.so libfjlapackexsve.s
o

libfjscalapack
sve.so

ILP64, general-purpose libfjlapack_ilp64.s
o

libfjlapackex_ilp6
4.so

-

ILP64, SVE libfjlapacksve_ilp6 libfjlapackexsve_i -

 43

4.so lp64.so

When the BLAS, LAPACK and ScaLAPACK libraries are used by dynamic loading, –l options
aren't needed.

When thread parallel version of BLAS, LAPACK is used, -Kopenmp option is needed.

-SSL2 or -SSL2BLAMP option is needed, when fccpx, FCCpx, mpifccpx or mpiFCCpx is used
to link-edit user program.

-SCALAPACK option is also needed, when ScaLAPACK library is link-edited with user program
using mpifccpx or mpiFCCpx.

Example 1:

Compile and link-edit a user program a.c which load the library of BLAS, LAPACK
sequential version dynamically using dlopen and dlsym function.

fccpx a.c -SSL2

Example 2:

Compile and link-edit a user program a.c which load the library of BLAS, LAPACK thread
parallel version dynamically using dlopen and dlsym function.

fccpx -Kopenmp a.c -SSL2

Example 3:

Compile and link-edit a user program a.c which load the ScaLAPACK library and the
library of BLAS, LAPACK sequential version dynamically using dlopen and dlsym
function.

mpifccpx a.c -SSL2 -SCALAPACK

Example 4:

Compile and link-edit a user program a.c which load the ScaLAPACK library and the
library of BLAS, LAPACK thread parallel version dynamically using dlopen and dlsym
function.

mpifccpx -Kopenmp a.c -SSL2 -SCALAPACK

Example 5:

Compile a.c which load the library of BLAS, LAPACK sequential version dynamically
using dlopen and dlsym function. Then compile and link-edit a Fortran program b.f which
call it.

fccpx -c a.c

frtpx b.f a.o

Example 6:

Compile a.c which load the ScaLAPACK library and the library of BLAS, LAPACK thread
parallel version dynamically using dlopen and dlsym function. Then compile and link-edit a
Fortran program b.f which call it.

fccpx -c a.c

frtpx -Kopenmp b.f a.o

Example 7:

Compile a.c which load the the ScaLAPACK library and the library of BLAS, LAPACK
sequential version dynamically using dlopen and dlsym function. Then compile and
link-edit a Fortran program b.f which call it.

mpifccpx -c a.c

mpifrtpx b.f a.o

 44

Example 8:

Compile a.c which load the ScaLAPACK library and the library of BLAS, LAPACK thread
parallel version dynamically using dlopen and dlsym function. Then compile and link-edit a
Fortran program b.f which call it.

mpifccpx -c a.c

mpifrtpx -Kopenmp b.f a.o

2.3 Notes

Following are notes the user should be aware of for producing right results from routines.

2.3.1 Maximum number of threads
When calling BLAS or LAPACK, the maximum number of threads that can enter a subroutine at a
time is 128.

2.3.2 Infinity and NaN
In the LAPACK since version 3.0 from netlib, a set of subroutines have been added that expect
infinities and NaN (not a number) defined in the IEEE standard, to be returned as results of zero-divide
or overflow and not to terminate the computation.

Fujitsu Fortran fully conforms to the standard of such numbers. However, when the user specifies the
option -NRtrap, error messages will come out. So, make sure to avoid using the option when compiling
programs that call LAPACK routines.

2.3.3 Routines in the archive file
Routines of C-SSL II and SSL II are also included in BLAS, LAPACK archives. And also the library
includes slave routines, the names of which starts SS_ or #L_(# means S, D, C, S, I or X). The user
needs to be careful not to duplicate subroutine names with them.

2.3.4 Internal work area used for BLAS, LAPACK
Some subroutines of BLAS and LAPACK take large work area internally. The work area is allocated
on “stack”, so the user needs to set an appropriate value to the stack size.

There are two kind of stack area, “stack area of a process” and “stack area of each thread”. Both or one
of them needs to be expanded in some cases.

The stack size for a process can be set by the command ulimit. For the stack area of each thread, the
same size as that of a process is allocated by default. If the user wants to acquire a different size from
that of process, the user can use the environment variable OMP_STACKSIZE. When compiler option
-Nfjomplib is specified, the environmental variable THREAD_STACK_SIZE can be set as the
stack size. More details are available in Fortran User's Guide.

2.3.4.1 Sequential version

Table 8 shows the stack size for BLAS and LAPACK sequential version. When the routines are called
from sequential Fortran program, the stack size for a process needs to be greater than the value.

When the routines are called from inside parallelized potions of OpenMP Fortran program, the user
needs to add the value to both of the stack size for a process and for each thread. When the user
program uses work area on the stack, set to sum of the size in Table 8 and the size for user program.
When the user program calls different precision routines , the largest value should be used.

 45

Table 8 The size of internal work area for sequential version

Precision Size of workspace

REAL(4) 2Mbyte

REAL(8) 4Mbyte

COMPLEX(4) 2Mbyte

COMPLEX(8) 4Mbyte

2.3.4.2 Thread-parallel version

a) Calls from a sequential program or from sequential potions of OpenMP Fortran program

The user need to add the value in Table 9 to stack size for a process and for each thread respectively.

Table 9 The size of internal work area for thread-parallel version (1)

Precision
Size of workspace

for process for each thread

REAL(4) 11Mbyte 2Mbyte

REAL(8) 21Mbyte 4Mbyte

COMPLEX(4) 19Mbyte 2Mbyte

COMPLEX(8) 38Mbyte 4Mbyte

b) Calls from inside parallelized potions of OpenMP Fortran program

The user need to add the value in Table 10 to both the stack size for a process and for each thread.

Table 10 The size of internal work area for thread-parallel version (2)

Precision Size of workspace

REAL(4) 11Mbyte

REAL(8) 21Mbyte

COMPLEX(4) 19Mbyte

COMPLEX(8) 38Mbyte

2.3.5 Size of local array used by ScaLAPACK routines
The number of elements of local array used by ScaLAPACK routines must not exceed 21474836478.
Because some routines refer the array as one dimensional array and the index is four byte integer.

Example :

REAL(8)::A(100000,100000)

This array A can't be used as parameter of ScaLAPACK routines because the size of A is
100000×100000=10000000000 and greater than 2147483647.

 46

2.3.6 Notes on link-editing BLAS, LAPACK thread-parallel version with
-Kparallel option

There are some notes to link-edit BLAS, LAPACK thread-parallel version with -Kparallel option
instead of -Kopenmp option.

1) When both –Nfjomplib option and –Kparallel option are specified and the environment
variable PARALLEL is set, the value of PARALLEL is used instead of the value of
OMP_NUM_THREADS as the number of threads.

2.3.7 The matrix size
There are formulas like M*N*k where M and N are matrix sizes and k is constant in some of the Netlib
original source codes of BLAS, LAPACK and ScaLAPACK. They are calculated in use of four bytes
integer. When M or N is too huge, the value of the expression may be incorrect through overflow and
consequently the algorithm may not work well. It becomes the implicit limit of the matrix size of
BLAS, LAPACK and ScaLAPACK routines. Most of the routines accept huge matrix size but some
routines may not work correctly when the matrix size are huge such that M*N*k >= 2147483647. The
user needs to be careful of the matrix size.

2.3.8 Module of PLASMA
Some modules are provided to use PLASMA in Fortran90 program. The module names are
plasma.mod, plasma_#.mod (# is s, d, c, z, ds or zc). The user needs to be careful not to duplicate
module names with them.

If compiler option -AU is specified when a user program written in Fortran is compiled, the module
names and each routine name must be in lowercase characters.

2.3.9 About warning message of sector cache
The mathematical library uses the sector cache function of the A64FX CPU to speed up some routines.
The sector cache may not be available depending on the situation where the program is executed, and
the following warning message may be output. In this case, the sector cache is not used and
performance may be affected, but execution continues and the calculation is performed correctly.

jwe1047i-w A sector cache couldn't be used.

2.3.10 MRQ Overflow
Set the MCA parameter common_tofu_num_mrq_entries of MPI to increase the number of entries in
the completion queue when a ScaLAPACK program that causes one process to communicate with a
large number of other processes produces an error message beginning with [mpi: common-tofu:
tofu-mrq-overflow]. See "MPI User’s Guide" for the error messages and the MCA parameter.

2.3.11 About Calculation Results
BLAS, LAPACK and ScaLAPACK in this product are developed based on the source published in
Netlib. They are applied side effect optimizations for performance, e.g., changing evaluation order,
using FMA instructions and using reciprocal approximation instructions for division or SQRT
function. In many cases, the problem can be calculated successfully, but for some calculations, the
results may be different than if the Netlib sources were compiled with no side-effects options.

For example, the difference in values due to rounding errors may be increased by cancellation and may
greatly affect the final calculation result in the ill-conditioned problem. Also, if a special value such as
a denormalized number appears during the calculation, the accuracy of the result may change, or a
NaN may be reported.

 47

3. Fast Basic Operations Library for
Quadruple Precision

3.1 Overview
The fast_dd is a library in which a quadruple precision number is expressed in double-double format
and arithmetic operations are performed on such formatted numbers. In the format, a quadruple
precision number is stored in two double precision variables. Arithmetic operations on such quadruple
precision numbers can be processed by using double precision hardware instructions provided on the
processor. So, in most cases, it is significantly faster than the intrinsic quadruple precision in the
compilers.

The fast_dd is tuned to a scalar processor. For A64FX processors respectively their special hardware
features are used to extract their performance.

3.2 Documentation
The fast_dd library can be used in both Fortran and C++ programs. Check "Fast Basic Operations
Library for Quadruple Precision User’s Guide" for a description of each function.

3.3 Compile, Link and Run

3.3.1 Compile user's programs and link-edit with fast_dd
fast_dd is to be called from a Fortran or C++ program. Compilation and link-editing should be done
using Fujitsu Fortran or C++ compiler

3.3.1.1 Preparation

The user is requested to set up environment variables as follows prior to using the library.

For "installation_path", contact the system administrator.

• To compile and link-edit using cross compiler on login node :

Add /installation_path/bin to the environment variable PATH.

• To compile and link-edit using native compiler:

Add /installation_path/bin to the environment variable PATH.

• To execute on calculation node :

Add /installation_path/lib64 to the environment variable LD_LIBRARY_PATH.

 48

3.3.1.2 Fortran version

Use frtpx or frt command with -SSL2 option in order to compile user programs written in Fortran
and link-edit with fast_dd. When a routine in BLAS and LAPACK thread parallel version is used in a
user's program, please use -SSL2BLAMP option instead of -SSL2 option.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

Example 1: Compile a user's program a.f90, and link-edit it with the archive of fast_dd using SVE
by using cross compiler.

frtpx –KSVE a.f90 -SSL2

Example 2: Compile a user's program a.f90, and link-edit it with the archive of fast_dd of
general-purpose by using cross compiler.

frtpx –KNOSVE a.f90 -SSL2

When the user's program uses thread parallel routines of fast_dd, specify the option –Kopenmp or
–Kparallel also.

Example 3: Compile a user’s program b.f90 which calls thread parallel routine, and link-edit it with
the archive of fast_dd using SVE.

frtpx –KSVE b.f90 -SSL2 –Kopenmp

Use frt command in order to compile user programs and link-edit with the archive of fast_dd by using
native compiler.

Example 4: Compile a user's program a.f90, and link-edit it with the archive of fast_dd using SVE
by using native compiler.

frt –KSVE a.f90 -SSL2

Use mpifrtpx, mpifrt command instead of frtpx, frt, when user’s program uses MPI routine.

3.3.1.3 C++ version

Use FCCpx or FCC command with -SSL2 option in order to compile user programs written in C++
and link-edit with fast_dd. When a routine in BLAS and LAPACK thread parallel version is used in a
user's program, please use -SSL2BLAMP option instead of -SSL2 option. -Kopenmp,
-Kparallel or -mt option is also needed, because the objects of fast_dd are thread-safe.

Note that the archives of the version are provided depending on the CPU. In order to link with an
appropriate archive automatically, specify the option -KSVE or -KNOSVE according to the CPU on
which the executable program will be executed. The library of general-purpose not using SVE is
linked if –KNOSVE is specified and the library using SVE is linked if –KSVE is specified. When the
program is executed on a compute node, both libraries will work, but the library using SVE is
recommended to get high performance of the CPU.

When compiling in Clang Mode (-Nclang option is set), libraries are selected by enabling +sve or
+nosve with the -march option instead of -KSVE or -KNOSVE.

Example 1: Compile a user's program a.cpp, and link-edit it with the archive of fast_dd using SVE
by using cross compiler.

FCCpx –Kopenmp,SVE a.cpp -SSL2

Example 2: Compile a user's program a.cpp, and link-edit it with the archive of fast_dd of
general-purpose by using cross compiler.

FCCpx –Kopenmp,NOSVE a.cpp -SSL2

 49

Use FCC command in order to compile user programs and link-edit with the archive of fast_dd by
using native compiler.

Example 3: Compile a user's program a.cpp, and link-edit it with the archive of fast_dd using SVE
by using native compiler.

FCC –Kopenmp,SVE a.cpp -SSL2

Use mpiFCCpx or mpiFCC command instead of FCCpx or FCC, when user’s program uses MPI
routine.

3.4 Notes

3.4.1 Routines in the archive file
Routines of BLAS, LAPACK, C-SSL II and SSL II are also included in fast_dd archives. And also the
library includes slave routines, the names of which starts SS_ or #L_(# means S, D, C, S, I or X). The
user needs to be careful not to duplicate subroutine names with them.

3.4.2 Fortran compiler option -AU
If compiler option -AU is specified when a user program written in Fortran is compiled, the module
name "fast_dd" and each routine name must be in lowercase characters.

3.4.3 Using fast_dd with Coarray feature
When dd_rean type and dd_complex type of fast_dd is used with Coarray feature of Fortran, they must
satisfy following conditions.

- It must not be pointer.

- It must not be structure component.

- It must have ALLOCATABLE or SAVE attribute. It must not have AUTOMATIC attribute.

	Development Studio Programmer's Guide for Usage of Mathematical Libraries
	Preface
	Acknowledgement
	Contents
	List of Tables
	1. SSL II Mathematical Libraries
	1.1 Overview
	1.1.1 SSL II
	1.1.2 SSL II Thread-Parallel Capabilities
	1.1.3 C-SSL II
	1.1.4 C-SSL II Thread-Parallel Capabilities
	1.1.5 SSL II/MPI

	1.2 Documentation
	1.3 Example program using SSL II
	1.3.1 How to use SSL II
	1.3.2 How to use C-SSL II

	1.4 Compile, Link and Run
	1.4.1 Setting-up
	1.4.2 SSL II
	1.4.2.1 Compile and Link-edit
	1.4.2.2 Notes

	1.4.3 SSL II Thread-Parallel Capabilities
	1.4.3.1 Compile and Link-edit
	1.4.3.2 Run
	1.4.3.3 Note

	1.4.4 C-SSL II
	1.4.4.1 Using C-SSL II from C programs
	1.4.4.2 Using C-SSL II from C++ programs
	1.4.4.3 Note

	1.4.5 C-SSL II Thread-Parallel Capabilities
	1.4.5.1 Using C-SSL II from C programs
	1.4.5.2 Using C-SSL II from C++ programs
	1.4.5.3 Run
	1.4.5.4 Note

	1.4.6 SSL II/MPI
	1.4.6.1 Compile and Link-edit
	1.4.6.2 Using SSL II/MPI from C, C++ programs
	1.4.6.3 Run
	1.4.6.4 Note

	2. BLAS, LAPACK, ScaLAPACK
	2.1 Overview
	2.2 Compile, Link and Run
	2.2.1 Preparation
	2.2.2 BLAS, LAPACK Sequential version
	2.2.3 BLAS, LAPACK Thread-Parallel version
	2.2.4 ScaLAPACK
	2.2.5 Using BLACS with C Interface
	2.2.6 Using BLAS, LAPACK and ScaLAPACK from C/C++ programs
	2.2.6.1 BLAS, LAPACK sequential version
	2.2.6.2 BLAS, LAPACK thread-parallel version
	2.2.6.3 ScaLAPACK
	2.2.6.4 Notes

	2.2.7 Using shared libraries
	2.2.7.1 Using BLAS and LAPACK sequential version from Fortran program
	2.2.7.2 Using BLAS and LAPACK thread-parallel version from Fortran program
	2.2.7.3 Using ScaLAPACK from Fortran program
	2.2.7.4 Using BLAS and LAPACK sequential version from C/C++ programs
	2.2.7.5 Using BLAS and LAPACK thread parallel version from C/C++ programs
	2.2.7.6 Using ScaLAPACK from C/C++ programs
	2.2.7.7 Using BLAS, LAPACK or ScaLAPACK by dynamic loading

	2.3 Notes
	2.3.1 Maximum number of threads
	2.3.2 Infinity and NaN
	2.3.3 Routines in the archive file
	2.3.4 Internal work area used for BLAS, LAPACK
	2.3.4.1 Sequential version
	2.3.4.2 Thread-parallel version

	2.3.5 Size of local array used by ScaLAPACK routines
	2.3.6 Notes on link-editing BLAS, LAPACK thread-parallel version with-Kparallel option
	2.3.7 The matrix size
	2.3.8 Module of PLASMA
	2.3.9 About warning message of sector cache
	2.3.10 MRQ Overflow
	2.3.11 About Calculation Results

	3. Fast Basic Operations Library for Quadruple Precision
	3.1 Overview
	3.2 Documentation
	3.3 Compile, Link and Run
	3.3.1 Compile user's programs and link-edit with fast_dd
	3.3.1.1 Preparation
	3.3.1.2 Fortran version
	3.3.1.3 C++ version

	3.4 Notes
	3.4.1 Routines in the archive file
	3.4.2 Fortran compiler option -AU
	3.4.3 Using fast_dd with Coarray feature

