
RIKEN International Summer School 2021

– Toward Society 5.0 –

Basics of Parallel Programming and Execution

Miwako Tsuji

Programming Environment Research Team
RIKEN Center for computational Science

1

Agenda

1. Parallel computing and background

2. Parallel architectures

3. Some of important concepts to learn parallel programming

4. Setup your environment and login supercomputer Fugaku

5. Hands-on

 OpenMP

 MPI

Parallel Computing

 parallel computer is a computer system that uses multiple processing elements (PEs) simultaneously

 Apple A13 on IPhone 11 Pro/11 Pro Max

 2 Lighting cores, 4 Thunder cores

 K-computer

 8-cores in a node, 88128 nodes

 Supercomputer Fugaku

 48-cores in a node, 158,974 nodes

 parallel computation is a form of computation where many computations are carried out simultaneously

 Parallelism

 ⇒ Performance

 Faster time to solution

 larger computing problems

Motivation of parallel computing

 Motivation: accelerate computation

 Speedup based on frequency scaling ⇒ Limited due to the physical limits to transistor scaling

 Energy consumption

 approximately proportional

to the CPU frequency,

and to the square of the

CPU voltage

 ⇒ Parallel computing

 consumption is proposal to

the concurrency

 increase frequency

 surely increase performance ☺

 increase concurrency

 not always increase performance 

 energy efficient

⇒ need to understand parallel

computing https://en.wikipedia.org/wiki/File:Clock_CPU_Scaling.jpg

Flynn’s Taxonomy

 SISD Single Instruction stream, Single Data stream

 No parallelism, entirely serial program

 SIMD Single Instruction stream, Multiple Data stream

 the same operation over different data

 MISD Multiple Instruction stream, Single Data stream

 (rarely used)

 Multiple instructions operate on one data stream

 MIMD Multiple Instruction stream, Multiple Data stream

 Multiple independent processors simultaneously
executing different instructions on different data

 Modern HPC systems : hybrids of these categories

SISD MISD -SD

SIMD MIMD -MD

SI- MI-

D
ata stre

am

Instruction stream

Parallel architectures supporting parallelism

 instruction-level parallelism

 SIMD

 distributed parallel system

 shared memory parallel system

Types of parallelism: instruction-level parallelism

 performing a number of instructions during a single clock cycle

 a program is a stream of instructions

IF ID EX MEM WB IF ID EX MEM WB

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MEM: Memory access

WB: Register Write Back

IF ID EX MEM WB

time

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

time

in
stru

ctio
n
s

5-insts in a cycle

5-insts in a cycle

parallelization based on “pipelining”

Types of parallelism: instruction-level parallelism

 performing a number of instructions during a single clock cycle

 a program is a stream of instructions

 modern processors can issue more than one instruction at a cycle

 ex: K computer

 4 instructions per cycle / core

 out-of-order execution

 instruction level parallelism

IF ID EX MEM WB

time

in
stru

ctio
n
s

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Types of parallelism: SIMD instruction

 an instruction for multiple data (data array) at a single cycle

for(i=0; i<N; i++)

z[i] = x[i]+y[i]

 SPARC64 VIIIfx processor (K computer) : 128-bit SIMD (2 double precision can be
processed in parallel)

 SPARC64 XIfx processor (FX100 series) : 256-bit SIMD

 Intel-AVX512 series: 512-bit SIMD

X[3] X[2] X[1] X[0]

Y[3] Y[2] Y[1] Y[0]

Z[3] Z[2] Z[1] Z[0]

+ + + +

Distributed memory system

 each processor has its own local address space

 memory is logically or physically distributed

 systems, where compute nodes (w/ CPU and memory) are connected via network

 each program on each compute node exchanges data (messages) through network

 expandable

 Massively Parallel Processor

 Cluster

Network Interface ControllerNIC

M Memory

P Processor

NIC

P

M

NIC

P

M

NIC

P

M

NIC

P

M

Interconnection Network

Shared memory system

 all processors can access a single address space

 each program (thread) on each compute node reads/writes a memory to exchange data

 Modern CPUs include multi-processor cores and a shared memory

M Memory

P Processor

PP PP

M

Shared memory system: SMP Symmetric Multi-Processor

M Memory

P Processor

C Cache

 multi-processors are connected to a single, shared main memory

 multi processors access a (set of) shared memory module(s) via network switch or bus

 all processors are treated equally

 traditional: without cache

 modern: with coherent caches, which keep the data in the caches consistent

 limits on the scalability of SMP, cache coherence and shared objects

 Performance degradation when

traffic is concentrated

Fujitsu HPC2500 (2002)

Hitachi SR16000 (2011)

etc..

PP PP

Switch or System Bus

M

CC CC

coherency

Symmetric

Shared memory system: NUMA Non-Uniform Memory Access

 a memory module (local memory) dedicated to each CPU

 a CPU can access a memory dedicated to a different CPU via
shared bus or switch (remote memory)

 non-symmetric, where access to remote memories takes a
longer time than access to local memory

 AMD Opteron Barcelona (2007)

P

M

C

P

M

C

P

M

C

P

M

C

S
w

itch
 o

r S
ystem

 B
u
s

non uniform access
faste

r

Multi-core processors
 core is a processing unit

 two or more cores in a computer processor : multi-core processor

 ex. 8-cores in the SPARC64 VIIIfx processor (K-computer)

 cores are independent

 a processor can issue multiple (different/same) instructions from multiple cores

 inter-core communication:

 via message passing

 via shared-memory
can be both

Single core

CPU Die

CPU Core

Cache

BIU

Dual core

CPU Die

C

Cache

BIU

C

Quad core

CPU Die

Cache

BIU

C C C C

Many core

CPU Die

Cache
BIU

Multi-core processors: SMP (SMC?) / NUMA

M Memory

Co Core

L1 L1 Cache

L2 L1 Cache

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus

Hybrid of distributed parallel and shared memory systems

 several (80,000+ in case of K-computer) nodes of shared memory systems are connected as a
distributed parallel system

 because of the popularity of the shared memory architecture in a single processor, i.e. a multi-
core processor

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

An example of large-scale parallel systems:
Overview of supercomputer Fugaku
 A supercomputer installed at RIKEN Center for computational science

 Massively parallel system with 158,978 general purpose CPUs

 Ranked #1 in the 4 rankings announced in Nov. 2020

Ranking Performance 2nd System Performance

TOP500 442.01 PFLOPS 148.6 PFLOPS (3.0)

HPGC 16.00 PFLOPS 2.9 PFLOPS (5.5)

HPL-AI 2.00 EFLOPS 0.55 EFLOPS (3.6)

Graph500 102.05 TTEPS 23.75 TTEPS (4.3)

Specification of supercomputer Fugaku (& K)

Specification of supercomputer Fugaku

CPU Technology A64FX based on

Armv8.2-A SVE

of Cores in CPU 48+2/4 cores

CPU Clock 2.0 - 2.2 GHz

Theoretical Peak >3.0Tflops

Node Cache L1 64 KB / core

L2 32 MB / node (8MB/CMG)

Memory Technology HBM2

Memory Capacity 32 GB

Memory Bandwidth 1024 GB/s

Network TofuD, 28 Gbps x 2 lane

x 10 port

of nodes 158,978 nodes

Specification of K computer

CPU Technology SPARC64 VIIIfx

of Cores in CPU 8 cores

CPU Clock 2 GHz

Theoretical Peak 128Gflops

Node Cache L1 32 KB / core

L2 6 MB / node

Memory Technology DDR3

Memory Capacity 16 GB

Memory Bandwidth 64 GB/s

Network Tofu 6-dimentional torus,

5GB/s (bi-direction)

of nodes 82944 (88128, including

IO-nodes)

10 racks ≒ K computer

A64FX: Node Overview

 SVE 512-bit wide SIMD

 FP64/FP32/FP16

 12+1 cores in a CMG

 an assistant core in
each CMG

 4 CMG in a Node

 48 + 2/4 core

 HBM2 32GiB/Node

 8GiB/CMG

 1024 GB/s

 Ring Network, 128 GB/s x 2

 TofuD NIC, 6.8 GB/s x 6

 6 simultaneously
transmit directions

CMG

C

C

C

C

C

C

C

C

C

C

C

C

C

H
B

M
2

CMG

C

C

C

C

C

C

C

C

C

C

C

C

C

H
B

M
2

CMG

C

C

C

C

C

C

C

C

C

C

C

C

C

H
B

M
2

CMG

C

C

C

C

C

C

C

C

C

C

C

C

C

H
B

M
2

N
e
tw

o
rk

 O
n

 C
h

ip

PCIe

Controller

Tofu

Interface

C: Core

CMG: Core Memory Group

HBM: High Bandwidth Memory

A64FX: Core Memory Group (CMG)

 2x 512-bit wide SIMD, 4x ALUs,
Predicate Operation

 2x 512-bit wide SIMD load or 512-bit
wide SIMD store

 L1D cache (/core) : 64 KiB, 4 ways,
“Combined Gather” on L1

 L2D cache (/CMG): 8MiB

 X-bar connection in a CMG

 4 CMGs support cache coherency by
ccNUMA with on-chip directory (256
GB/s x 2 for inter-CMGs)

 Memory controller for HBM2

× 4

512-bit wide SIMD

2x FMAs

L1D 64KiB, 4way

256
GB/s

128
GB/s

Core Core Core

128
GB/s

64
GB/s

L2 Cache 8MiB, 16way

High Bandwidth Memory2 (HBM2), 8GiB

256
GB/s

(X-bar connection)

Core Memory Group (CMG)

※ L1/L2 cache bandwidths are for 2.0GHz

Tofu Interconnect D (TofuD)

 Tofu interconnect series

 High scalable and fault tolerant 6D mesh/torus
network for large scale systems

 Arbitrary 3-Dimentional torus topology can be
extracted from 48x36x48 (current maximum for
a user), whereas a general torus network will be
mesh if you extract a part of it

Tofu (豆腐) is Tofu even after cut as you like.

TofuD is torus even after cut ☺

Summary: parallelism in modern HPC systems

 Multi-nodes connected by network

 multi-processors (multi-sockets) in a single node

 multi-cores in a single processor

 SIMD instructions in a single core

 pipelined

 A programming model for a level of parallel architectural level

 Hybrid of parallel programming models for a whole system

 Discuss parallel programming model for these levels+

automatically parallelized by compilers

and hardware !

※ you can help compilers

to generate more efficient

program, even you can

parallelize your code on

these levels

Some important concepts about parallel programming

 Speedup

 Amdahl's law

 Weak scaling vs Strong scaling

Speedup

 the relative performance of two systems processing the same program

 typically, the relative performance of parallel and serial executions

 If we use 2 processors and the execution time becomes the half of the 1 processor case, then
the speedup is “2”

𝑇1
𝑇𝑝

execution time w/ 1 processor

execution time w/ p processors

the number of nodes

Speedup

1

1

Amdahl's law
 Total execution time: T1 on a single processor

 Total execution time: Tp on p processors

 𝛼 is the ratio of non-parallelizable part

 P processors take 𝑇1𝛼 (sec) for the part

 The rest can be parallelized:
𝑇1(1−𝛼)

𝑝

E
xe

cu
ti
o
n
 t
im

e

of processors

non-parallelizable parts

𝛼𝑇

(1
−
𝛼
)𝑇

1 p42

1
−
𝛼
𝑇

2

1

𝑝

1

2

1

4

𝑇𝑝 = 𝑇1𝛼 +
𝑇1(1 − 𝛼)

𝑝

Amdahl's law

 The speed-up from parallelization

× 2 processors ⇒ 2 times faster

𝑆 𝑠 =
1

1 − 𝛼
𝑃

+ 𝛼

𝛼 the fraction of running time a program spends on non-parallelizable parts

𝑃𝑝: concurrency (# of processors)

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1024 # of processors

S
p
e
e
d
-u

p

% of non-parallel portion

20 x faster even if 1000 times processors

5%

10%

50%

25%

Weak scaling vs Strong scaling

 We do not have to solve the program size of a small system for large systems

 Parallelism : Faster time to solution / larger computing problems(scalability)

 Strong scaling

 Fixed problem size while the number of processors are increased

 problem size for each processor becomes smaller

 Amount of communication between processors may be smaller or stay
constant or grow

 Limited scalability due to Amdahl’s low

 Weak scaling

 Fixed problem size for each processor

 (Total) problem size increases when the number of processors are increased

 Amount of communication between processors remains constant or grows

 Note: Communication overhead may grow even the amount remains
constant, because of synchronization overhead, etc..

Serial P:

P0

P1

P2

P3

P0

P1

P2

P3

Data

Parallelization and parallel programming

 Shared memory programming

 Overview

 OpenMP

 Distributed parallel programming, Message Passing

 Overview

 MPI

 Hybrid programming

 OpenMP+MPI

Shared memory programming model

 Threads share a common address space

 on the shared memory architectures

 Easy to program (/extend) from a serial code

Co

L1

Co

L1

Co

L1

Co

L1

L2

M
A r r a y

processed

Thread
Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L2

M

Switch or System Bus

0101

1010

1011

※ Note:

Process: independent, separate memory space

Thread: subsets of a process, shared memory

space. Two or more threads can share a core

(Hyperthreading, simultaneous multithreading)

Shared memory programming model: OpenMP

 Most popular parallel programming language (and library) for the shared memory
programming

 “Fork-Join” execution model

 A parent thread calls “Fork” to create new threads

 The parent thread continues operation, the children threads also start
operation

 “Join” is called by both the parent and children threads

 Children exit

 Parent waits until all children join

 Parent continues operation (serial)

 Directive based

 insert directives into C/fortran

Fork

Join

Join

Fork

p
aralle

l re
g
io

n

serial region

PROGRAM TEST

print *,”Thanks”

!$OMP PARALLEL

print *,”Many Thanks”

!$OMP END PARALLEL

END PROGRAM TEST

Distributed parallel programming model, Message Passing

 In distributed parallel systems, each processor
can not access all data

 Processors must access non-local data by
communication

 Message passing Interface (MPI)

 Parallel Virtual Machine (PVM)

 etc..

 Applications must be parallelized explicitly

 work mapping

 data distribution

 Scalable from the viewpoint of construction

 Just increase the number of nodes

 Note: Distributed parallel programming model
is available on shared memory systems

NIC

P

M

NIC

P

M

NIC

P

M

NIC

P

M

Interconnection Network

send recv

MPI : Message Passing Interface

 de fact standard for parallel programming for distributed parallel systems

 SPMD programming model

 SIMD : Single Instruction Multiple Data

 MIMD : Multiple Instruction Multiple Data

 SPMD: Single Program Multiple Data

 a same binary runs on multiple nodes to process multiple data

 use if (rank=**) to assign a special work on a certain process

Node0 Node1 Node2 Node3 Node4
start exec.

a.out

rank=0

a.out

rank=1

a.out

rank=2

a.out

rank=3

a.out

rank=4

fin exec.

Note: MPI is not a programming language.

MPI is a message passing interface

specification.

MPI: communication types

 Cooperative operations

 cooperatively exchanged in message passing

 receiver explicitly allocate memory space to receive

 explicitly sent by a process and received by another

 communication and synchronization are combined

 One-sided operations

 remote memory reads/writes

 only one process needs to explicitly participate

 communication and synchronization are not combined

 faster

 Programmers must take care about local memory control

rank0 rank1

send(data)
recv(data)

rank0 rank1

Put(data)

M

MPI: Communication types, from a different perspective

 Pairwise (point-to-point) communication

 communication between 2 processes

 Send/Recv

 Collective communication

 communication between multiple processes

 a group of all processes

 a group of some processes

 ex: send a data from rank-0 to all processes

 rank-0 receives data from all other processes

MPI : point-to-point communication

 rank=0 sends a number to rank=1

 rank=1 receives a number from rank=0, and print the number

MPI_Send(&number, const void* initial address of send buffer

1, int the number of elements

MPI_DOUBLE, MPI_Datatype datatype of each element

1, int rank of destination

0, int message tag, will be used to differentiate messages

MPI_COMM_WORLD); MPI_Comm communicator, which describes a group of processors

MPI_COMM_WORLD is the group of all processors in your job

MPI_Recv(&number, const void* initial address of recieve buffer

1, int the number of elements

MPI_DOUBLE, MPI_Datatype datatype of each element

0, int rank of source

0, int message tag

MPI_COMM_WORLD, MPI_Comm communicator

MPI_STATUS_IGNORE); MPI_Status a structure including a status of a reception

MPI : point-to-point communication

MPI: collective communication

 rank=0 sends “number” to all other processes

MPI: collective communication

MPI_Bcast(&number, const void* initial address of send buffer

1, int the number of elements

MPI_DOUBLE, MPI_Datatype datatype of each element

1, int rank of root (any process can be a root)

MPI_COMM_WORLD); MPI_Comm communicator

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI (Today’s focus)

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI (Today’s focus)

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Distributed parallel, communication via network

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Shared memory

communication via

memory

Hybrid of shared memory and distributed parallel

 For NUMA (ex. 2-CPUs in a node), shared memory programming model has “non-local data
access” problem

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus
0101

1010

1011

0101

1010

1011

Hybrid of shared memory and distributed parallel

 For NUMA, shared memory programming model has “non-local data access” problem

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus

Distributed parallel programming model between sets of shared memory cores

Shared memory programming model inside a set of shared cores

Hybrid of OpenMP+MPI

 MPI describes parallelism between processes

 OpenMP provides a shared memory model within a process

Fork

Join

Fork

Join

MPI communication

Hybrid of OpenMP+MPI

 MPI describes parallelism between processes

 OpenMP provides a shared memory model within a process

 After the MPI_Init_thread, you can fork threads wherever you need

MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &prov);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel default(shared) private(iam, np)

{

np = omp_get_num_threads();

iam = omp_get_thread_num();

printf("Hybrid: Hello from thread %d out of %d from process %d out of %d¥n",

iam, np, rank, numprocs);

}

Fork

Join

Join

Fork

p
aralle

l re
g
io

n

serial region

Hybrid of OpenMP+MPI

 MPI specification defines four levels of hybrid parallelism to be used with OpenMP-programming

 MPI implementation do NOT always support all of them 

 MPI_THREAD_SINGLE

 Only one thread will call communication interface at once

 MPI_THREAD_FUNNELED

 The process may be multi-threaded, but only the main thread will make MPI calls (all MPI
calls are funneled to the main thread).

 MPI_THREAD_SERIALIZED

 The process may be multi-threaded, and multiple threads may make MPI calls, but only one
at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are
serialized).

 MPI_THREAD_MULTIPLE

 Multiple threads may call MPI, with no restrictions.

https://www.mpich.org/static/docs/latest/www3/MPI_Init_thread.html

Fork

Join

Hybrid of OpenMP+MPI: Overlapping communication and computation

 The hybrid of OpenMP+MPI allows us to overlap communication and computation

 The threads which do not call MPI functions can continue to other works (not communication)

Fork

Join

Fork

Join

MPI communication

Fork

Join

MPI communication

pragma omp parallel

{

// computation

…..

#pragma omp single

MPI_function();

….

}

Hands-on Practice

OpenMP: Hello world

 The directive to fork threads is #pragma omp parallel

 The threads join at the end of the region

Fork

Join

parallel region

serial region

Exercise: Hello world (OpenMP)

 write the hello world code, compile and run with 12 threads

 compile:

$ fccpx -Kfast,openmp <your-source-code.c>

 execution: see next page

 To set the number of threads, set the environmental variable OMP_NUM_THREADS

 for example, export OMP_NUM_THREADS=12

 Edit your job-script and insert the command to set the environmental variable

 Check the result

 may be, you can find “Hello world”

repeated 12 times

Exercise: Hello world (OpenMP)

 write a job script

 submit your job

$ pjsub <your-job-script-file.sh>

#!/bin/bash
#PJM -L "node=1"
#PJM -L "rscunit=rscunit_ft01"
#PJM -L "rscgrp=small"
#PJM -L "elapse=0:10:00"
#PJM -S

#------- Program execution -------#
export OMP_NUM_THREADS=<your number of threads>
./<your binary>

OpenMP: private data and shared data

 The basic idea of the shared programming model is that variables are shared by default, i.e.
thread can read/write arbitrary variables

 sometimes, threads need their own “private” workspace

 By using private clause, you can make a separate copy for each thread

Fork

Join

myid

myid

=0

myid

=1

myid

=2

myid

=3

Fork

Join

valdefault: all threads access

all variables

private directive enable us to

make the copies of the variables

OpenMP: private data and shared data (FYI)

 private: each thread has its own instance of a variable

 firstprivate: each thread has its own instance of a variable. The variable must be initialized
before the parallel region. At the beginning of the parallel region, the variables in all threads
have a same initial value.

 lastprivate: : each thread has its own instance of a variable. The final value can be transmitted
to the shared variable outside the parallel region.

 shared(default) : variable(s) can be shared among all threads. If you don’t specify any data type,
then the variables should be shared in the parallel region.

Exercise: Hello world from who?

 write, compile and run the following code w/ 12 threads

Note

 omp_get_thread_num() is a function to
obtain its thread-id.

 Another important function is
omp_get_num_threads(), which gives
the number of threads in the region.

OpenMP: set the number of threads

 You’ve already learned the way to specify the number of threads by using the environmental
variable OMP_NUM_THREADS, omp_set_num_threads(num) also allow us to set the number
of threads.

Exercise: the number of threads

 write, compile and run the code at the previous slide by specifying OMP_NUM_THREADS=12
at the job-script

 check the results

 how many threads can you find?

OpenMP: synchronization

 The synchronization directives allow us to control the order of execution of threads

 #pragma omp barrier: synchronizes all threads in the parallel region; all threads pause at the
barrier, until all threads execute the barrier

 #pragma omp critical: specifies mutual exclusion. Only one thread at a time can enter a critical
region

 #pragma omp atomic: Only one thread at a time can update the specified variable

Fork

Join

one thread at a time

Exercise: synchronization

 write, compile and run the following two codes w/ 28 threads, and compare the results

OpenMP: loop

 loop work-sharing is a typical
way to share workloads by
threads to speed-up!

 scheduling and work-
assignment can be specified by
clauses such as schedule

Note: these are

equivalent

loop index “i” is

private by default

in parallel for

OpenMP: reduction

 Standard reduction expressions such as +,
max, min, can be defined in the reduction
clause. reduction(op: list)

 If the reduction is declared, local copies of
“list” are made in all threads, local results
are stored in the local copies, and the local
copies are reduced into a single shared
value.

these are

equivalent

Exercise: parallelize the pi code by using OpenMP
and check execution time by changing the number of threads, 1, 2, 14, 28

#include<stdio.h>
#include<stdlib.h>
#include<omp.h>

#define N 100000000
double mytime();

int main(int argc, char **argv)
{

int i, n, seed;
double x, y;
double t0, t1;
struct drand48_data drand_buf;

t0 = mytime();

seed = 0;
srand48_r (seed, &drand_buf);

n = 0;
for(i=0; i<N; i++){

drand48_r (&drand_buf, &x);
drand48_r (&drand_buf, &y);

if(x*x + y*y < 1.0){
n++;

}
}

t1 = mytime();
printf("pi = %f time=%f¥n",4.0*(double)n/(double)N,

t1-t0);

}

double mytime()
{

struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec*1e-6;

}

Exercise: parallelize the pi code (FYI)

 Compute pi using Monte Carlo method

 generate N sets of two random numbers of [0, 1] : (x,y)

 if (x, y) is in the inside of quadrant of radius 1, then n++

 the ratio of n/N approximates the area of the quadrant

 n/N = (1*1*pi)/4

 pi = 4*n/N

x

y

x

y

x

yN=1 N=10 N=many

Exercise: parallelize the pi code

 Hints:

 drand_buf, seed, must be “private”

MPI (review) : Message Passing Interface

 MPI is not a programming language.

 MPI is a message passing interface specification.

 Programmers call MPI functions to communicate

 MPI_Init function initializes the MPI execution environment. All other MPI functions must be
called after the MPI_Init

 MPI_Finalize function finalizes the MPI

execution environment. All processes

must call this before exiting.

MPI: Hello world

 MPI programs must be launched by a
command for execution such as mpirun,
mpiexe:

$ mpiexec.hydra –n num your_binary

 This runs num copies of your_binary

includes MPI definitions

and types

Node0 Node1

start exec.
a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

fin exec.

MPI: Hello world from who?

 MPI library provides functions
to give

 ID number (rank) of a
specific process

 the number of processes in
a program

 MPI_Comm_rank gives the
rank of the calling process in
the communicator
(MPI_COMM_WORLD)

 MPI_Comm_size gives the
number of processes in the
communicator.

Note: Communicator contains a
list of processes attending a
program. MPI_COMM_WORLD is
the default communicator

Exercise: Hello world from who (MPI)

 write the hello world from who code in the previous page, compile and run with 4
processes

Here is an example of a jobscript

#!/bin/bash
#PJM -L "node=1"
#PJM -L "rscunit=rscunit_ft01"
#PJM -L "rscgrp=small"
#PJM -L "elapse=0:10:00“
#PJM --mpi "max-proc-per-node=4"

#PJM -S

#------- Program execution -------#
mpiexec -n 4 ./<your binary>

MPI: Synchronization

 MPI also provides a function to synchronize all processes in a communicator, MPI_Barrier

MPI: Pairwise communication

 MPI_Send sends the buffer to the specified rank (dest)

 MPI_Recv receives the buffer from the specified rank (source)

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

 buf: the pointer to buffer to be sent/received

 count: the number of elements in the buffer

 datatype: MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, …

 dest/source: rank of destination/source

 tag: message tag

 comm: communicator

Remarks: If there is no corresponding MPI_Recv function call in dest processes, MPI_Send can never be success, and
never finish. vice, sersa

MPI: Pairwise communication

rank=0 rank=1 rank=2 rank=…

Send Recv

buf

printf

Exercise: Pairwise communication

 write, compile and run the code in the previous page with 2 processes

 modify the code in the previous page to perform the following communication:

rank-0 sends an integer to rank-1

rank-2 sends an integer to rank-3

…

rank-n sends an integer to rank-(n+1)

and run the program with 10, 11, and 24 processes

MPI: Collective communication bcast

 Collective communication involves all processes in a communicator

 we’ve already learned MPI_Barrier (MPI_COMM_WORLD), which is a kind of collective
communication to make all processes synchronize

 MPI_Bcast broadcasts a buffer from a process to all processes

int MPI_Bcast(const void *buf, int count, MPI_Datatype datatype,

int root, MPI_COMM comm);

 root is the rank of broadcast root. All processes can be root

rank=0 rank=1 rank=2 rank=…

buf

buf
buf

MPI: Collective communication reduction

 MPI_Reduce reduces the values on all processes to a single value

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_COMM comm);

 sendbuf, recvbuf: address of send/recv buffer

 op: reduce operation (MPI_SUM, MPI_MAX, MPI_MIN, etc)

 root: rank of root process

 MPI_Allreduce reduce the values on all processors to a single value, and share the value
among all processors

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_COMM comm);

1

P0

2

P1

3

P2

4

P3

10recvbuf

sendbuf

MPI_Reduce

1

P0

2

P1

3

P2

4

P3

10recvbuf

sendbuf

MPI_Allreduce

10 10 10

 Write, compile and run the code->

 Replace MPI_Reduce with
MPI_Allreduce, and compare the
results

Exercise: Collective communication

Exercise:

 prepare an integer array of size 3

 substitute your favorite numbers to the array at rank-0

 share the favorite numbers to all processes

1) by using MPI_Send/Recv

2) by using MPI_Bcast

3) by using MPI_Allreduce

 run the three program (all with 28 processors) and check if the numbers can be shared
successfully

References:

 https://ja.wikipedia.org/wiki/フリンの分類

 High Performance Scientific Computing, Marsha J. Berger and Andreas Kloecker

 “Structured Parallel Programming: Patterns for Efficient Computation,” Michael McCool, Arch
Robinson, James Reinders

 MPI and Hybrid Programming Models William Gropp

 https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

