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4.2 Research Activities

The mission of the HPC Usability research team is to research and develop a framework and its theories/technologies
for liberating large-scale HPC (high-performance computing) to end-users and developers. In order to achieve
the goal, we conduct research in the following three fields: computing portal systems, virtualization, and pro-
gram analysis/verification.

4.2.1 Computing Portal

In a conventional HPC usage scenario, users live in a closed world. That is, users have to play roles of software
developers, service providers, data suppliers, and end users. Therefore, a very limited number of skilled HPC
elites can enjoy the power of HPC, while the general public sometimes gives a suspicious look to the benefit
of HPC. In order to address the problem, we are designing and implementing a computing portal framework
that lowers the threshold for using, providing, and aggregating computing/data services on HPC systems, and
liberates the power of HPC to the public.
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4.2.2 Virtualization

Virtualization is a technology for realizing virtual computers on real (physical) computers. One big problem of
the abovementioned computer portal that can be used by wide range of users simultaneously is how to ensure
safety, security, and fairness among multiple users and computing/data service providers. In order to solve
the problem, we plan to utilize the virtualization technology because virtual computers are isolated from each
other, thus it is easier to ensure safety and security. Moreover, resource allocation can be more flexible than
the conventional job scheduling because resource can be allocated in a find-grained and dynamic way. We also
study lightweight virtualization techniques for realizing virtual large-scale HPC for test, debug, and verification
of computing/data services.

4.2.3 Program Analysis/Verification

Program analysis/verification is a technology that tries to prove certain properties of programs by analyzing
them. By utilizing software verification techniques, we can prove that a program does not contain a certain
kind of bug. For example, the byte-code verification of Java VM ensures memory safety of programs. That is,
programs that pass the verification never perform illegal memory operations at runtime. Another big problem
of the abovementioned computing portal framework is that one computing service can be consists of multiple
computing services that are provided by different providers. Therefore, if a bug or malicious attack code is
contained in one of the computing services, it may affect the whole computing service (or the entire portal
system). In order to address the problem, we plan to research and develop software verification technologies
for large-scale parallel programs. In addition, we also plan to research and develop a performance analysis and
tuning technology based on source code modification history.

4.3 Research Results and Achievements (FY2012 ∼ FY2016)

In this section, we summarize all the research results and achievements from FY2012 to FY2016 because the
current research activities of the HPC Usability Research Team have come to an end in FY2016 and the new
activities start from FY2017.

4.3.1 Design and Implementation of a Computing Portal Framework for HPC

As a first step of designing and implementing a computing portal framework that can be used by wide range
of users, in FY2012, we designed an experimental API/protocol for computing services. More specifically, we
designed APIs/protocols that handle registration of services and their providers, registration and authentication
of users for each registered service, invocation of computing services, data sharing among multiple computing
services, and so on.

The APIs/protocols are designed in such a way to work with the current popular web-based application
frameworks (e.g., HTTP, JSON, etc.). Therefore, in theory, we can write programs that utilize multiple comput-
ing services in various programming languages (e.g., Ruby, Python, JavaScript, etc.). In addition, a computing
service can be registered and published by writing a simple XML file, provided that the application programs
of the computing service are installed on the backend system.

In FY2013, based on the prototype design and implementation of a computing portal framework of FY2012,
we actually developed a prototype user-interface for the computing portal framework. More specifically, we
implemented a web interface that runs on users web browsers and directly communicates with the backend
system of the computing portal under the protocol (also designed in FY2012). With the web interface, software
developers can easily publish their applications installed in HPC systems. For example, developers can specify
the paths to the executables of their applications, parameters of their applications, and so on, via the web
interface. In addition, developers can manage user accounts that are allowed to execute their applications.
With the same web interface, users are also able to launch jobs. For example, users can select an application
published in the computing portal, make an application to developers for using it, launch jobs by executing the
application with arbitrary parameters, and manage the launched/exited jobs.

One feature of the implementation is that the communication protocol between the framework and its clients
is based on the popular web-based application frameworks (e.g., WebSockets, JSON, etc.). Therefore, developers
can develop their own custom interfaces for their applications if the web interface of our framework does not
satisfy their requirements. Another distinguishing feature of our framework is that users can use portable
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devices (e.g., smartphones, mobile tablets, and so on) because our web interface is carefully designed so that it
can be viewed and accessed with any screen size.

In FY2014, we enhanced the computing portal framework with container (virtual execution environment)
technologies. In the original computing portal framework, software developers are able to publish their applica-
tions installed in HPC systems, but the installation of the applications have to be performed in a conventional
manner. That is, the software developers have to copy and install their binary executables by themselves. In
addition, they may have to install additional software/libraries that are required by their own programs, but
it is sometimes difficult and/or even impossible because the administrators of the HPC systems usually do not
allow the software developers to install such the software/libraries arbitrary. Another approach of installing
software is to copy and build the binary executables from their source code, but it is sometimes troublesome
and messy.

To address the abovementioned problem of installing software in HPC systems, we utilize container (virtual
execution environment) technologies. A container is a kind of lightweight virtual execution environment that is
isolated from its host environment and other containers. In other words, in a container, users are able to freely
modify the environment of the container, that is, system administrators can let the users install any software
they need without compromising security/safety of their systems, in theory.

More specifically, we utilized and integrated Docker (http://docker.io), a container system built on the
Linux kernel, with our computing portal framework. In the computing portal framework extended with Docker,
software developers are able to download a Docker container image that contains a basic execution environment
of a HPC system, freely modify the image (i.e., install software/libraries) in order to prepare the execution
environment required to run their applications, install their applications, and upload back the image to the
computing portal framework. When publishing the applications, the software developers are able to specify
the uploaded container images to be instantiated when the applications are launched as jobs. Moreover, the
software developers are able to publish not only their applications, but also their container images so that other
software developers can use the images.

In FY2015, we further enhanced the computing portal framework so that the users of the K computer are
able to build and publish their own computing portal with their own authority and computing resources on the
K computer.

In FY 2016, we further improved the implementation. Especially, we improved its compatibility and inter-
operability with computing systems other than the K computer, and designed/implemented a point system that
is able to manage computing resources among users. In addition, we demonstrated the implementation at the
open house of AICS.

4.3.2 Virtualization Techniques

4.3.2.1 Lightweight Virtualization for Testing/Debugging Parallel Programs

In order to utilize the full power of todays HPC systems as the K computer, users have to write massively
parallel programs. However, writing parallel programs is difficult compared to conventional sequential program-
ming. This is because parallel programs have inherent non-determinacy (e.g., process/thread execution order),
that is, even if a parallel program contains a bug, it is not always easy to reproduce the bug. In addition,
performance bottlenecks of parallel programs are not apparent from their source code because network latency,
synchronization costs, scalability, etc. cannot be inferred directly from the source code. One possible solution
to the problems is to utilize static source code analysis and dynamic performance profiling, however, some kind
of bugs arise only when the number of processes/threads used by parallel programs is huge (e.g., several tens
of thousands or more).

In order to address the abovementioned problem, in FY 2012, we designed a lightweight network virtu-
alization technique that is useful for testing/debugging parallel programs. More specifically, we designed a
virtualization framework that is able to provide several tens to hundreds of virtual execution environments per
real (physical) execution environment. With the virtualization framework, users can test, debug, and/or profile
their parallel programs on a limited number of physical computing nodes as if the programs run on a huge
number of nodes.

The key of our virtualization framework is to virtualize network related operations at the level of shared
libraries. Current popular virtualization technologies adopt virtualization at the level of CPU (with hardware
assists) or OS (system calls), which is heavier than the level of shared libraries. This is because main purpose
of the popular virtualization technologies is to provide virtual execution environments that are hard to be
distinguished from real (physical) ones. Our virtualization framework, on the other hand, gives up to provide
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such a realistic virtual execution environment, but instead aims to provide as much as possible of virtual
execution environments per real (physical) one. By adopting virtualization at the level of shared libraries,
the performance overheads of hooking system calls and/or CPU events (e.g., interrupts and exceptions) can
be eliminated (while statically linked programs, that is, programs do not rely on shared libraries, will not be
virtualized correctly).

In addition, our virtualization framework tries to reduce (or eliminate) exchange of virtual network routing
information among real (physical) nodes. In order to correctly route packets from one virtual execution envi-
ronment to another, all the physical nodes have to share the routing information of the virtual networks because
the virtual execution environments may reside in different physical nodes. Therefore, if a single physical node
manages the routing information, the node will become a performance bottleneck because all the other physical
nodes have to synchronize with the node each time they need to route packets.

To address the problem, our virtualization framework tries to distribute the routing information statically
(that is, before executing programs in virtual execution environments) as much as possible. In addition, even
if dynamic updating of the routing information is inevitable, our virtualization framework tries to minimize
synchronization between multiple physical nodes by separating allocation pool of physical (real) network ports
statically.

In FY2013, we have implemented a prototype of our lightweight virtualization system based on the design
of FY2012. Although there still remained bugs, it successfully ran on conventional PC clusters and Fujitsus
FX10. More specifically, several MPI applications (including some of the NAS parallel benchmarks (NPB)) ran
on our prototype virtualization system. In addition, we also ran Scalasca (a network performance profiling tool)
on our system.

In FY2014 and FY2015, we improved the prototype of our lightweight virtualization system and it suc-
cessfully ran on the K computer. More specifically, it successfully ran 20000 virtual computing nodes on 1000
physical computing nodes. Because the operating system kernel of the computing nodes of the K computer has
a serious fault which is related to memory management, we could not increase the number of virtual computing
nodes at that time.

In FY2016, we further improved the implementation in order to work around the abovementioned bug, and
it successfully ran on 40000 virtual computing nodes on 2000 physical computing nodes of the K computer. In
theory, it must be able to run more virtual computing nodes on a single physical computing node and run on
more physical computing nodes, but this is not possible so far because the K computer restricts the number of
user processes on a physical computing node.

4.3.2.2 Container Technologies for HPC

Container technologies are a kind of lightweight virtualization technology. Although they tend to be less
efficient than the library-hooking approach described in the previous section, they provide more complete
image of virtual execution environments. For example, Docker (http://docker.io) provides multiple isolated
virtual Linux execution environments on a host Linux system. Because Docker is built and depends on several
functionalities provided by the Linux kernel, it is not able to host non-Linux virtual execution environments
unlike full-virtualization technologies (e.g., KVM, QEMU, and so on), but far more efficient than them.

One big problem of the current typical HPC systems compared to todays so-called cloud services from
viewpoint of software developers/publishers is that the HPC systems are less flexible and/or responsive. For
example, they are not allowed to install and/or modify system/middleware programs in the HPC systems, while
the cloud services provide fully-virtualized environments to them and they can freely modify the environments.
In addition, the typical HPC systems are operated with conventional batch schedulers and it sometimes takes
time to launch jobs, while the cloud services launch virtual execution environments instantly when requested
by them.

The reason why the conventional HPC systems are less flexible and/or responsive is that their primary
purpose is to compute scientific applications efficiently as much as possible, thus the overheads that may be
introduced by utilizing full virtualization technologies are unacceptable.

On the other hand, as described above, the recent advance in the container technologies achieves very small
overheads yet provides sufficiently flexible virtual execution environments, thus we predict that the container
technologies will play important role in forthcoming HPC usage.

Based on the abovementioned perspective, we are studying the possibilities of applying the container tech-
nologies (especially, Docker) to the HPC systems. More specifically, in FY2013 and FY2014, we developed
dockerIaaSTools (https://github.com/pyotr777/dockerIaaSTools), which enables us to easily setup isolated
multiple virtual execution environments to which users are able to login via SSH. In addition, as an application
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of dockerIaaSTools, we extended K-scope (http://www.aics.riken.jp/ungi/soft/kscope/), which is a For-
tran source code analysis tool developed by Software Development team of AICS, so that users are able to use
the backend of K-scope that is installed in the remote server seamlessly as if it is installed in their local com-
puters. Moreover, we also studied the internals of Docker and developed extensions that enable us to conserve
storage for storing images containers (e.g., https://github.com/pyotr777/docker-registry-driver-git).
Furthermore, as described above, we integrated Docker with our computing portal framework.

In FY2015, we also utilized Docker to improve the usability of K-scope. More specifically, we created a
Docker container image in which K-scope is installed so that users are able to use K-scope without manually
installing it. In addition, we also extended K-scope so that users are able to analyze their programs seamlessly
on the remote server without modifying their source code and/or build scripts.

4.3.3 Program Verification and Analysis

4.3.3.1 Software Model Checking for Partitioned Global Address Space Language

Partitioned Global Address Space Languages (or, PGAS languages) are programming languages for distributed
computing systems where the systems consist of large number of computing nodes and their memories are
distributed among the nodes. In the PGAS languages, all the processes and/or threads in a program can share
a single address space even though the memories are distributed, as in traditional distributed shared memory
(DSM) systems. One of the distinguishing features of the PGAS languages is that the shared address space
can be partitioned into sub-spaces and they can be bound to a specific process and/or thread explicitly. Thus,
programmers can write a locality-aware program that is essential to achieve high performance on massively-
parallel distributed memory systems of today (and future).

Despite the abovementioned advantage, one big problem with PGAS languages is that programmers can
easily introduce concurrency bugs. For example, if multiple threads access a portion of a single address space
simultaneously without proper synchronizations, race condition bugs can be easily introduced even if the accessed
portion is bound to a specific process and/or thread. To make things worse, introducing synchronizations is
not as easy as it sounds because excessive use of synchronizations severely degrades performance, while lack of
them introduces hard-to-debug and non-reproducible concurrency bugs.

To address the problem, in FY 2012, we proposed and implemented a software model checking framework for
PGAS languages. Software model checking is a program verification approach which tries to prove that a given
program satisfies a certain property by exploring all the program states that can be reached during program
execution. One problem of model checking PGAS programs is that it tends to suffer from the state explosion
problem because these programs allow concurrent and/or parallel execution and memory sharing. To avoid this
problem, it is essential to perform proper abstractions based on the properties to be verified because they can
dramatically reduce the number of states to be explored. However, it is not always easy to automatically infer
proper abstractions because programs and properties to be verified vary.

To address the state explosion problem, we proposed a model checking framework that includes user-definable
abstractions. The key idea of the framework is that it exposes the intermediate representation of the program’s
abstract syntax tree, enabling users to define their own abstractions flexibly and concisely by creating a translator
to translate the trees. We also implemented CAF-SPIN, our proof-of-concept prototype of a model checking tool
for Coarray Fortran. The experimental results with CAF-SPIN showed that abstractions can be defined easily
and concisely by users, and the number of states to be explored for model checking is dramatically reduced with
the abstractions.

Moreover, we also implemented XMP-SPIN, our software model checking tool for XcalableMP
(http://www.xcalablemp.org/), and conducted several experiments with XMP-SPIN. More specifically, we
conducted model checking of a number of parallel stencil computations written in XcalableMP (from small
test programs to large application programs). Although stencil computations offer a simple and powerful
programming style in parallel programming, they are sometimes error prone when considering optimization and
parallelization because optimization of stencil computation may involve complex loop transformations and/or
array reindexing, and parallelization requires explicit communication (data synchronizations) among multiple
processes. In the experiments with XMP-SPIN, we checked whether there are no missing or redundant data
synchronizations in the target programs, and successfully found four bugs in a reasonable time with a reasonable
amount of memory.
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4.3.3.2 Memory Consistency Model-Aware Program Verification

A memory consistency model is a formal model that specifies the behavior of the shared memory that is
simultaneously accessed by multiple threads and/or processes. The recent multicore CPU architectures and
shared memory multithread/distributed programming languages (e.g., Java, C++, UPC, Coarray Fortran, and
so on) adopt relaxed memory consistency models. Under the relaxed memory consistency models, the shared
memory sometimes behaves very differently from non-relaxed, sequential memory consistency models. For
example, under some relaxed memory consistency models, the effects of the memory operations (e.g., A → B)
performed sequentially by one thread may be observed in a different order (e.g., B → A) by the other threads.
In addition, the threads may not agree on the observation orders of the effects of the memory operations (e.g.,
one thread observes A → B, while the other observes B → A, and so on). The reason why the recent CPUs and
shared memory languages adopt relaxed memory consistency models is that a large number of threads and/or
nodes share a single address memory space, thus enforcing non-relaxed, sequential memory consistency incurs
huge synchronization overheads among the threads/nodes.

From the viewpoint of program verification, there are two problems in handling relaxed memory consistency
models. First problem is that the conventional program verification approaches do not consider relaxed memory
consistency models. Thus, they cannot be applied to relaxed memory consistency models because they may
yield false results. Second problem is that there exist various kinds of relaxed memory consistency models
and each CPU architecture/each programming language adopts different memory consistency models from each
other. Therefore, it is tedious to define and implement a program verification approach for each CPU and
programming languages of relaxed memory consistency models.

To address the problem, in FY2013, we studied three approaches. First approach is to define a new formal
system that is able to represent various relaxed memory consistency models. More specifically, we define a very
relaxed memory consistency model as a base model. On top of the base model, we defined various memory
consistency models as additional axioms. With our formal system, we are able to define a broad range of memory
consistency models from CPUs to shared-memory programming languages (e.g, Intel64, Itanium, UPC, Coarray
Fortran, and so on), in the single formal system. With our formal system, we were able to proof the correctness
of Dekkers mutual exclusion algorithm under the memory consistency model of Itanium.

Second approach is to design and implement a model checker that supports various relaxed memory consis-
tency models based on the formal model of the first approach. More specifically, we define a non-deterministic
state transition system with execution traces where each execution trace represents a possible permutation of
instruction executions. Roughly speaking, given a target program, our model checker explores all the reachable
states in the non-deterministic transition system of the target problem for all the possible execution traces (that
is, permutations of instructions). In our model checker, memory consistency models can be defined as constraint
rules on execution traces. For example, the sequential consistency model can be defined as a constraint that
allows no permutation on the execution traces. With our model checker, we were able to verify the small exam-
ples programs of the specification manuals of the memory consistency models of Itanium and UPC. In addition,
we were also able to formally discuss comparison of the two memory consistency models (Itanium and UPC).

Third approach is to define a new Hoare-style logic for a shared-memory parallel process calculus under
a relaxed memory consistency model. More specifically, we define an operational semantics for the process
calculus. Then define a sound (and relatively-complete) logic to the semantics. There are two key ideas in our
Hoare-style logic. First idea is that a program is translated into a dependence graph among instructions in
the program, and the operational semantics and the logic are defined in terms of the dependence graph. One
advantage of handling dependence graphs is that while loops, branch statements, and parallel composition of
processes can be handled in a uniform way. In addition, another advantage is that multiple memory consistency
models can be handled by adopting different translation approaches for each memory consistency model. Second
idea is that we introduce auxiliary variables in the operational semantics that temporarily buffer the effects of
memory operations. Based on our Hoare-style logic, we also implemented a prototype semi-automatic theorem
prover.

In FY2014, we optimized the implementation of our model checker (McSPIN) so that it can be applied to
larger programs than the original implementation. More specifically, we introduced 4 optimization approaches:
enhancing guard conditions, disabling speculation when unnecessary, prefetching instructions if possible, and
removing the global time counter. In addition, in FY2014, we also enhanced our Hoare-style logic with a
conventional rely-guarantee style rule in order to make the logic more compositional. More specifically, we
added a new rely-guarantee style parallel composition rule because the original parallel composition rule is not
compositional, that is, it requires us to infer all possible interleavings of parallel processes.

In FY2015, we further improved the implementation of McSPIN and studied the memory consistency model
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of the programing language Chapel by request from a research developer of Chapel. Moreover, we also studied
several memory management algorithms on various memory consistency models with external researchers.

In FY2016, we studied a unified and versatile theory for program analysis/verification under various relaxed
memory consistency models, and enhanced/improved the implementation of McSPIN further. Especially, we
used McSPIN for analyzing/verifying various concurrent copying garbage collection algorithms and various
relaxed memory consistency models.

4.3.3.3 Evidence-Based Performance Tuning

In order to fully utilize the power of HPC systems, it is necessary to optimize and tune the performance of appli-
cations. However, performance tuning is a troublesome task because, even if performance bottlenecks/hotspots
can be detected by performance profiling, it is not apparent how to rewrite programs to remove the bottle-
necks/hotspots. In addition, generally speaking, modifying correctly working programs is reluctant from the
viewpoint of developers. Thus, performance tuning requires experienced craftsmanship, and relies on intuition
and experience.

In order to address the problem, we are working on an idea of evidence-based performance tuning. More
specifically, we store the results of performance profiling in a database where the results are associated with
source code modification history. With the database, developers are able to know, for example, what kinds
of optimization were applied in the past, what kinds of optimization are effective for improving a certain
performance profiling parameter, and so on. In FY2013, we conducted a preliminary experiment to implement
the database and obtained promising results.

In FY2014, we developed a code mining mechanism that finds optimization patterns from source code
modification history. More specifically, it calculates differences before and after modification at the level of
abstract syntax trees and stores them to database. Then, we are able to search optimization patterns by
searching database by queries that represent the patterns. More concretely, we defined about 40 queries that
include loop unrolling, loop fusion, loop fission, loop interchange, array merging, array dimension interchange,
code hoisting, and so on. In addition, we also created a so-called tuning catalog, which itemizes very small
example programs that represents various optimization patterns for reference data. With the tuning catalog and
several real tuning histories, we conducted a supervised learning (which is one of machine learning approaches)
in order to suggest appropriate optimization approaches for a given source code and performance profiling
data. More specifically, we solved a multi-label classification problem by translating it to multiple single-label
classification problems with the binary relevance method and solving them with the k-NN algorithm. As
feature vectors, we used the values of performance profiling data (e.g., cache-miss rate) and source code metrics
(e.g., max loop depth). With an experiment with 469 tuning cases, we obtained satisfactory results, but the
experiment was still too small to determine effectiveness of our approach.

In FY2015, we tried to increase the number of tuning cases in order to conduct detailed evaluation and
improve accuracy of the analysis, but it turned out that it is hard to collect data directly because we could not
find any researcher/developers who have such the data in and out of AICS. To work around the problem, we
studied an approach of predicting performance of programs only from their source code modification history.

In FY2016, we further pursued the abovementioned approach of FY2015. More specifically, we designed and
implemented an approach which is able to associate source code modification history with estimated performance
data obtained by utilizing a B/F prediction approach without performing actual performance profiling. In fact,
we analyzed several thousands of Fortran projects registered in GitHub (https://github.com), and were able
to know their estimated performance characteristics.

4.3.3.4 Python-Based Aggregation of Multiple Software for HPC

In the world of HPC, programs are usually written in somewhat old-fashioned programing languages such as
Fortran/C/C++ for historical reasons, thus writing programs for HPC is painful because we cannot use useful
features of modern sophisticated programming languages. On the other hand, it is not realistic so far to write
a whole program in modern programing languages because of performance problems.

In order to address the problem and achieve both productivity of program development and performance of
program execution, we studied an approach of using Python for writing HPC applications. More specifically,
we write non-performance critical large part of a program in Python, and performance critical small part in
Fortran/C/C++. The reason why we choose Python is that Python provides a rich set of foreign language
interfaces. For example, Fortran programs can be interfaced with f2py (NumPy: http://www.numpy.org/), C
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programs can be interfaced with ctypes and Cython, and C++ programs can be interfaced with Boost.Python
and Cython.

In FY2013, we modified EigenExa (a high-performance Eigen-solver developed by the Large-scale Parallel
Numerical Computing Technology research team of AICS) so that it can be used as a shared library and a
Python module (these modifications were feedbacked to the upstream). In addition, integration of Lotus (a
quantum chemistry library developed by Dr. Tomomi Shimazaki, the Computational Molecular Science research
team of AICS) and EigenExa were ongoing mainly by Tomomi Shimazaki.

In FY2014, in collaboration with Dr. Tomomi Shimazaki, a non-performance critical large part of Lo-
tus was refactored and written in Python. We were able to utilize various existing libraries (e.g., EigenExa:
http://www.aics.riken.jp/labs/lpnctrt/EigenExa_e.html, SMASH: http://smash-qc.sourceforge.net/,
ASE: https://wiki.fysik.dtu.dk/ase/, etc.) in Lotus with the refactoring, and demonstrated that the fea-
tures of Lotus can be easily extended. More specifically, we extended Lotus by request of Yukio Kawashima of
the Computational Chemistry research unit of AICS with only several tens of lines of code addition.

In FY2015 and FY2016, we further refactored Lotus by using Cython, and our Python approach has been
practiced by Dr. Kazuo Kitaura for realizing his new quantum chemistry calculation theory, with the help
of Dr. Tomomi Shimazaki. In addition, we examined an approach of constructing a database that stores
the results of ab initio calculations for molecules of PubChem (a famous chemical database of molecules),
and applying machine learning and data mining approaches on the database. More specifically, we conducted
several preliminary experiments utilizing machine learning approaches and performance evaluation of elemental
technologies for constructing the database.

4.3.3.5 Porting Performance Analysis Tools to the K computer

Because massively parallel supercomputers, such as the K computer, are very different from single computer
systems or small size cluster systems, simply porting existing applications to the K computer typically does not
work due to performance problems (many existing conventional applications do not consider massively-parallel
systems). Therefore, performance profiling is necessary to understand the behaviors of applications on massively
parallel systems and tune the applications.

To address the problem, we are porting/deploying existing performance analysis tools to the K computer, in
cooperation with external research institutes. More specifically, in FY2014, we ported two performance analysis
tools to the K computer: Scalasca (http://www.scalasca.org/) and Extrae
(https://www.bsc.es/computer-sciences/extrae). Scalasca was ported in cooperation with a research
team of Juelich Supercomputing Centre, and Extrae was ported in cooperation with a research team of
Barcelona Supercomputing Center. Using the ported tools, we actually analyzed the behavior of ABySS
(http://www.bcgsc.ca/platform/bioinfo/software/abyss), a parallel genome sequence assembler. We also
analyzed the behavior of SIONlib, a parallel I/O library, in cooperation with J端 lich Supercomputing Centre,
and deployed it on the K computer.

In FY2015, we continued to port/deploy existing performance analysis tools to the K computer. Es-
pecially, we ported Eclipse PTP (https://eclipse.org/ptp/), which is an extension framework of Eclipse
(https://eclipse.org/) for parallel program development/execution, to the K computer, in cooperation with
a research team of University of Oregon. In addition, we modified and integrated Extrae and SIONlib so that
Extrae is able to use SIONlib for its I/O processing (this should be useful for handling very large trace data).

In FY2016, we further improved the ported implementation of Extrae for the K computer in cooperation
with a research tea of Barcelona Supercomputing Center, and published it on the K computer. In addition,
we conducted performance analysis of several applications on the K computer. For example, we analyzed the
performance of the brain simulator NEST, and published the results of the analysis as a reviewed journal article.
We also ported and analyzed libraries for machine learning (deep-learning, especially) on the K computer.

4.4 Schedule and Future Plan (FY2017 ∼)

From FY2017, the HPC Usability Research Team aims to increase the number of applications of the K computer.
It especially focuses on applications that make use of both simulation and data analysis. We expect that the
combination of simulation and data analysis will increase the value of both components because data can
improve simulation accuracy and simulations can generate valuable data. However, developing such combined
applications is difficult because developers must have expertise in computer systems, as well as simulation and
data analysis algorithms, to connect the different types of programs. Our team studies tools and frameworks
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that simplify the process of developing and executing such combined applications so that more people, especially
those in industry, can use the supercomputer for their innovative products and services.

More specifically, we will study software for creating data analysis workflow and framework for combining
data analysis and numerical calculation.
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