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Numerical Library
What is it? For what?
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Numerical Library
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 Numerical Library is one of building blocks for 
ENSURING your advanced programming.

 It supports an API for very complex mathematical 
features, algorithm, schemes, also data handling…

 FFT, Eigenvalue calculation, SVD, etc…

• There are reference codes.

 They might be examples of good (bad) programming.

 It provides us with better performance and finer 
accuracy.

 Commercial library:  faster and more accurate but 
expensive

 Open Source library: fast and free (sometimes faster than 
commercial library)

 You must check them before you run your application codes.
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Example of Numerical Libraries
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 When you SPEED UP your code, use (probably being 
linked in most utility programs) the BLAS (Basic Linear 
Algebra Subprograms) library!

 Standard API for linear algebra kernels.

 GEMM : Matrix-matrix multiplication 
(                                  )

 AXPY: linear combination of 2 Vectors (                           )

 NRM2: Norm of a vector, etc. (                    )

Reference codes are available from netlib@UTK.

http://www.netlib.org/BLAS/

 Commercial: Intel MKL, AMD ACML (free)

 Open Source: ATLAS(@UTK), GotoBLAS(@TACC), 
OpenBLAS for general purposed microprocessors

 nVIDIA CUBLAS, AMD clMATH, MAGMABLAS(@UTK), 
KBLAS(@KAUST), ASPEN.K2(@RIKEN) : for GPGPU
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http://www.netlib.org/BLAS/


Example of Numerical Libraries
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If you want solve more complex problems, use followings;

 LAPACK (http://www.netlib.org/lapack/)

 ScaLAPACK (http://www.netlib.org/scalapack/)

 Elemental (http://libelemental.org/)

 EigenExa 
(http://www.aics.riken.jp/labs/lpnctrt/EigenExa_e.html)

 ELPA (http://elpa.rzg.mpg.de/)

 PETSc (http://www.mcs.anl.gov/petsc/)

 Trillions (https://trilinos.org/)

 ARPACK (http://www.caam.rice.edu/software/ARPACK/)

 FFTW (http://www.fftw.org/)

 FFTE (http://www.ffte.jp/)

 2decomp&FFT (http://www.2decomp.org/)

 MT, MTGP, dSFMT (http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/SFMT/index.html)

 GMP big number librart(https://gmplib.org/)

 QD pack, MPACK, and so on
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Review back on the CFD 
code



Core computational part in the CFD code

7

 Solving a Poisson equation

 Discretization:

 Finally, we have the Core iteration
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for(j=1; j<col_m_1; j++)
for(i=2; i<row_m_1 - 1; i++)
*(at(phiT,i,j)) = const1 * ( (L(phi,i+1,j  ) + L(phi,i-1,j  )) * const2 +

(L(phi,i ,j+1) + L(phi,i ,j-1)) * const3 - L(d,i,j));



Solving Poisson’ eq
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 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of 

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable 
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners
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 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of 

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable 
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners

• Jacobi iteration

Convergence condition is very strict 
and the Jacobi method sometimes 
(or often?) diverges or stagnates.
(diagonal dominant property is well 
known condition).

Similar algorithms:
Gauss-Seidel, SOR, SSOR, etc.
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Krylov Subspace method
GMRES, CG, GCR, etc..
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• GMRES

Based on Krylov subspace iteration 
and Arnoldi procedure, it finds a 
local solution vector by using the 
Least square approximation within 
a spanned subspace.

Generally, GMRES is known as best 
method for a non-symmetric case.

• Jacobi iteration

Convergence condition is very strict 
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(or often?) diverges or stagnates.
(diagonal dominant property is well 
known condition).

Similar algorithms:
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How does Numerical library 
achieve high Performance?

How can user utilize it with higher 
performance?
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Difficulties in multicore computing
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 Difficulties in handling multicore.
 They are hiding in the deep and complex hierarchy of cache 

and memory structures.

 To access the data with a tiny latency, the data must be 
prefetched on a cache memory, and dealt with carefully. In 
fact, we should have a view in a mind thoroughly to the 
cache conflict and memory traffic.

 Memory bandwidth
 Improvement in the memory bandwidth is extremely 

gradual.
 It is inevitable to change the software according to such an 

evolution and complication of hardware.
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Balance of flops/memory access
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 BLAS has three categories with respect to the ratio 
of flops/memory access. Assumption: Data loaded 
from main memory is stored in a buffer memory on 
a processor chip and recycle until the procedure 
completes.  
 Level 1: vector-vector operations

 O(N) / O(N) ～O(1)

 Level 2: Matrix-vector multiplications
 O(N^2)/O(N^2) ～O(1)

 Level 3: Matrix-Matrix multiplication
 O(N^3)/O(N^2) ～O(N) >> O(1)
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O(N)

O(N^2)

The metric defined by ‘flops/Byte’ or ‘flops/words’ is called
‘operational intensity’. It is strongly related to the Roofline model.

CPU



Roofline model
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Recent trends of Optimization

16

 Block algorithm
 Since block algorithm reduces memory traffic, it leads 

to larger operational intensity.
 Re-write your code by using GEMM (or level3 BLAS) 

calls.
 Tiling algorithm
 It is also one of the block algorithms, but the tiling 

algorithm reformats the data layout.
 A(1:NX,1:NY)  A(1:BX,1:BY, 1:NX/BX, 1:NY/BY)

 Contiguous data/stream data can be store into L1/L2 
cache.

 Reduce and avoid TLB-miss trouble
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Submatrix is contiguously stored in memory



How to use Numerical 
Libraries

ScaLAPACK, EigenExa, SLEPC
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ScaLAPACK

For Dense linear algebra
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From the developer site
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 http://www.netlib.org/scalapack/examples/
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Download “sample_pdsyev_call.f”.



How to use ScaLAPACK on K

20

 Link on the K computer or other Fujitsu environments

 Job script
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% mpifrtpx -o exe sample_pdsyev_call.f -SCALAPACK -SSL2BLAMP

#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=2x2"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin "rank=* ./exe %r:./"

. /work/system/Env_base

export OMP_NUM_THREADS=8

date
mpiexec ./exe
date



Let’s learn the sample code

21

 Matrix generator: PDLAMODHILB
 Eigensolver: PDSYEV
 Output routine: PDLAPRNT

Other routines are required, such as initializer 
(BLACS_XXX), finalizer (BLACS_EXIT), and definer of 
descriptors (DESCINIT), which represent matrix data 
structures.

BLACS: runtime system that organizes communication on 
ScaLAPACK. 
PDSYEV: QR iteration algorithm

other algorithms are supported in PDSYEVX, 
PDSYEVD, PDSYEVR.

Matrix format: the 2D block-cyclic 
distribution and column major ordering
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Read the source code

22

 PDLAMODHILB
 Specialized parallelization or parallel calls are 

encapsulated in PDELSET routine. The routine may 
be called in duplicate manner, however, the owner 
process only update its local memory stored in 2D 
block-cyclic distribution.
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SUBROUTINE PDLAMODHILB( N, A, IA, JA, DESCA, INFO )
DO 20 J = 1, N
DO 10 I = 1, N
IF( I.EQ.J ) THEN

CALL PDELSET( A, I, J, DESCA,  ¥
( DBLE( N-I+1 ) ) / DBLE( N )+ONE /  ( DBLE( I+J )-ONE ) )

ELSE
CALL PDELSET( A, I, J, DESCA, ONE / ( DBLE( I+J )-ONE ) ) 

ENDIF

END



EigenExa

One of the R-CCS software for solving a 
dense eigenvalue problem
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How to use EigenExa on K

24

 Link on the K computer or other Fujitsu environments

 Job script
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% cp home/ra001016/a03572/SCHOOL/EigenExa/EigenExa-2.4p1-patched-all.tgz .
% tar -zxvf EigenExa-2.4p1-patched-all.tgz
% ./bootstrap; ./configure --host=K
% make 
Then cd benchmark/

#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=2x2"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin
"rank=* ./eigenexa_benchmark %r:./“

#PJM --stgin "rank=* ./IN %r:./"

. /work/system/Env_base

export OMP_NUM_THREADS=8

date
mpiexec ./eigenexa_benchmark
date



Let’s learn the sample code

 Matrix generator: mat_set

 Eigensolver: eigen_sx

 As ScaLAPACK does, initializer (eigen_init) and finalizer (eigen_free) are 
obligately called in appropriate timing.

 EigenExa takes advantage of also 2D cyclic-cyclic distribution (in detail, 
fixed in NB as one both COL and ROW）. Compatible to ScaLAPACK and 
other utility functions, reciprocally.

 Therefore, if descriptor defined with NB=1 and generated by 
PDLMODHILB can be passed to EigenExa and diagonalized.
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Benchmark code

26

 On the benchmark directory,

 You can submit a job by `pjsub job-script.sh`.
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Env_base: K-1.2.0-24
Mon Jul  2 11:07:14 JST 2018
INPUT FILE='IN'
======================================================
## EigenExa version (2.4a) / (May 25, 2017) / (Hanachirusato)
Solver = eigen_sx / via penta-diagonal format
Block width =  48 / 128
NUM.OF.PROCESS= 4 ( 2 2 )
NUM.OF.THREADS= 8
Matrix dimension =  1000
Matrix type =  2  (Random matrix)
Internally required memory =  8472688  [Byte]
The number of eigenvectors computed =  1000
mode 'A' :: all the eigenpairs
Elapsed time =  0.3770818118937314  [sec]
FLOP         =  6826626901.333333
Performance  =  18.10383499286145  [GFLOPS]
======================================================

All eigenvalues 
and corresponding 
eigenvectors of a 
randomized matrix 
N=1000.



Edit an input file

27

 Look at ‘IN’ file, you can edit N and nvec fields.

!
! Input file format
!
! N bx by mode matrix solver
!
! N      : matrix dimension
! nvec : the number of eigenvetors to be computed
! bx     : block width for the forward transformation
! by     : block width for the backward transformation
! mode   : solver mode { 0 : only eigenvalues }
!                      { 1 : eigenvalues and corresponding eigenv
ectors}
!                      { 2 : mode 1 + accuracy improvement for ei
genvalues}
! matrix : test matrix { 11 types, 0 ... 10 }
!          run with -L option shows the list of test matrices
!          typical ones are as follows
!          { 0 : Frank matrix}
!          { 1 : Toeplitz matrix}
!          { 2 : Random matrix}
! solver : { 0 : eigen_sx, new algorithm, faster on the K }
!          { 1 : eigen_s,  conventional algorithm }
! check_error : { 0 : off, 1 : on }

!
! if a line starts from '!', the line is treated as a commen
t
!   N  nvec bx  by m t s e
1000  1000 48 128 1 2 0 0
1000  1000 48 128 1 2 0 0
1000  1000 48 128 1 2 0 0
1000  1000 48 128 1 2 0 0
1000  1000 48 128 1 2 0 0
-1

Matrix dimension

End mark

N. of eigenvectors to be computed

Block factors

Mode: solving eigenvalues
and vectors

Random matrix

Accuracy Check



PETSc(SLEPC)

Official site on PETSc and SLEPC

Hands-on exercises
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https://www.mcs.anl.gov/petsc/petsc-3.8/src/ksp/ksp/examples/tutorials/

ex50.c
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http://www.grycap.upv.es/slepc/handson/handson1.html

ex1.c



Compile and link
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ARCH=
PETSC_DIR=/home/ra001016/a03572/petsc-real
PETSC2_DIR=/home/ra001016/a03572/petsc-complex
SLEPC_DIR=/home/ra001016/a03572/slepc

CC=mpifccpx
FC=mpifrtpx
BLAS=-SSL2BLAMP -SCALAPACK

CCFLAGS_PETSC=-Xg -Kfast,openmp -I$(PETSC_DIR)/include
LDFLAGS_PETSC=-L$(PETSC_DIR)/lib -lpetsc $(BLAS)
CCFLAGS_SLEPC=-Xg -Kfast,openmp -I$(PETSC2_DIR)/include -I$(SLEPC_DIR)/include
LDFLAGS_SLEPC=-L$(SLEPC_DIR)/lib -lslepc -L$(PETSC2_DIR)/lib -lpetsc $(BLAS)

all: ksp_exec eps_exec
ksp_exec: ex50.o

$(CC) $(CCFLAGS_PETSC) -o $@ $< $(LDFLAGS_PETSC)
ex50.o: ex50.c

$(CC) $(CCFLAGS_PETSC) -c $<

eps_exec: ex1.o
$(CC) $(CCFLAGS_SLEPC) -o $@ $< $(LDFLAGS_SLEPC)

ex1.o: ex1.c
$(CC) $(CCFLAGS_SLEPC) -c $<

clean:
¥rm *.o ksp_exec eps_exec

Makefile

Use make command



ksp_exec (ex50) and 
eps_exec are (ex1) 
generated.



Job submission
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#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=4"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin "rank=* ./eps_exec %r:./“

. /work/system/Env_base
export OMP_NUM_THREADS=8

mpiexec ./eps_exec -n 540 -m 180 -eps_type gd -eps_nev 4 -eps_monitor -
eps_view



C version

1-D Laplacian Eigenproblem, n=100

Number of iterations of the method: 19
Solution method: krylovschur

Number of requested eigenvalues: 1
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 2

k          ||Ax-kx||/||kx||
----------------- ------------------

3.999033        4.02784e-09
3.996131        4.31174e-09

F90 version

1-D Laplacian Eigenproblem, n =100 (Fortran)

Number of iterations of the method:  19
Solution method: krylovschur
Number of requested eigenvalues: 1
Stopping condition: tol=1.0000E-08, maxit= 100
Number of converged eigenpairs: 2

k          ||Ax-kx||/||kx||
----------------- ------------------

3.9990E+00         4.0278E-09
3.9961E+00         4.3117E-09

C version

F90 version
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Play with PETSc/SLEPC

34

 From the tutorial page,
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$ ./eps_exec -n 100 -eps_nev 4 -eps_type lanczos

$ ./eps_exec -n 400 -eps_nev 3 -eps_ncv 24 

$ ./eps_exec -n 400 -eps_nev 3 -eps_tol 1e-7 

1-D Laplacian Eigenproblem, n=400

Number of iterations of the method: 100
Solution method: krylovschur

Number of requested eigenvalues: 3
Stopping condition: tol=1e-07, maxit=100
Number of converged eigenpairs: 1

k          ||Ax-kx||/||kx||
----------------- ------------------

3.999939        9.48781e-08

1-D Laplacian Eigenproblem, n=400

Number of iterations of the method: 60
Solution method: krylovschur

Number of requested eigenvalues: 3
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 5

k          ||Ax-kx||/||kx||
----------------- ------------------

3.999939        9.48494e-09
3.999754        7.19493e-09
3.999448        1.18552e-09
3.999018        6.43926e-10
3.998466        1.04213e-09

1-D Laplacian Eigenproblem, n=100

Number of iterations of the method: 62
Solution method: lanczos

Number of requested eigenvalues: 4
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 4

k          ||Ax-kx||/||kx||
----------------- ------------------

3.999033        9.95783e-09
3.996131        1.97435e-09
3.991299        9.15231e-09
3.984540        3.55339e-09



Learn the sample code (Pseudo code)
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SlepcInitialize( PETSC_NULL_CHARACTER, ierr )

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, …., n, n, ierr )
MatSetUp( A, ierr )

(…. Calculation of matrix elements and others …..)

ESPCreate( PETSC_COMM_WORLD, eps, ierr )
ESPSetOperators( eps, A, PETSC_NULL_OBJECT, ierr )
EPSSetProblemType( eps, EPS_HEP, ierr )

EPSSolve( eps, ierr )

EPSGetEigenPair( eps, …… )

EPSDestroy( eps, ierr )
SlepcFinalize( ierr )



How to setup a matrix? (in fortran90)

36

 PETSc handles internal data format and interface data flexibly. 
Because of PETSc management mechanism, user does not to 
see actual state on memory . Matrix A is dealt with a handler 
variable, and matrix elements are accessed via a query API.
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! Simple matrix format
Mat           A
EPS            eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr )

MatGetOwnershipRange(A, Istart, Iend, ierr )
MatSetValues(  A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin( A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd( A, MAT_FINAL_ASSEMBLY, ierr)



How to setup a matrix? (in fortran90)

37

 PETSc handles internal data format and interface data flexibly. 
Because of PETSc management mechanism, user does not to 
see actual state on memory . Matrix A is dealt with a handler 
variable, and matrix elements are accessed via a query API.
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! Simple matrix format
Mat           A
EPS            eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr )

MatGetOwnershipRange(A, Istart, Iend, ierr )
MatSetValues(  A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin( A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd( A, MAT_FINAL_ASSEMBLY, ierr)

Create a matrix handler



How to setup a matrix? (in fortran90)

38

 PETSc handles internal data format and interface data flexibly. 
Because of PETSc management mechanism, user does not to 
see actual state on memory . Matrix A is dealt with a handler 
variable, and matrix elements are accessed via a query API.
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! Simple matrix format
Mat           A
EPS            eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr )

MatGetOwnershipRange(A, Istart, Iend, ierr )
MatSetValues(  A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin( A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd( A, MAT_FINAL_ASSEMBLY, ierr)

Matrix size MxN



How to setup a matrix? (in fortran90)
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 PETSc handles internal data format and interface data flexibly. 
Because of PETSc management mechanism, user does not to 
see actual state on memory . Matrix A is dealt with a handler 
variable, and matrix elements are accessed via a query API.
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! Simple matrix format
Mat           A
EPS            eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr )

MatGetOwnershipRange(A, Istart, Iend, ierr )
MatSetValues(  A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin( A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd( A, MAT_FINAL_ASSEMBLY, ierr)

For a mxn block matrix, 
array values are set.



How to setup a matrix? (in fortran90)

40

 PETSc handles internal data format and interface data flexibly. 
Because of PETSc management mechanism, user does not to 
see actual state on memory . Matrix A is dealt with a handler 
variable, and matrix elements are accessed via a query API.
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! Simple matrix format
Mat           A
EPS            eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate( PETSC_COMM_WORLD, A, ierr )
MatSetSizes( A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr )

MatGetOwnershipRange(A, Istart, Iend, ierr )
MatSetValues(  A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin( A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd( A, MAT_FINAL_ASSEMBLY, ierr)

Assemble the matrix 
data set on a 

distributed manner
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Play back the CFD code 
and link it with PETSc



Core computational part in the CFD code

42

 Solving a Poisson equation

 Discretization:

 Finally, Core iteration: well-know iteration
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for(j=1; j<col_m_1; j++)
for(i=2; i<row_m_1 - 1; i++)
*(at(phiT,i,j)) = const1 * ( (L(phi,i+1,j  ) + L(phi,i-1,j  )) * const2 +

(L(phi,i ,j+1) + L(phi,i ,j-1)) * const3 - L(d,i,j));



Use a PETSc KSP solver

43

 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment 

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism 
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.



Use a PETSc KSP solver
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 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment 

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism 
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.



Use a PETSc KSP solver
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 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment 

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism 
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.



Use a PETSc KSP solver
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1. ComputeStencil
 Jacobi iteration is written in a 5-point Stencil fashion. 

Any stencil codes are

 Translate above relation into a Matrix-vector product.

2. ComputeRHS
 Update the vector which appears in Right hand side

3. SetInitialGuess
 Set up an initial guess for Krylov iterative solver

4. GetComputedResult.
 Retrieve the result computed by using PETS.



Let’s Run the CFD code on K computer
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% cp /home/ra001016/a03572/SCHOOL/CFD/mpi-
petsc_merged_v4.tgz .
% tar zxvf mpi-petsc_merged_v4.tgz
% cd mpi-petsc_merged_v4
% make

Examples of job scripts are stored in scripts/.
If you want to run larger jobs,  modify NX and NY larger 
(aspect must be 3:1), and smaller DT defined in cfd.h. Do, 
make clean, then again, make.
NOTE: We are sharing a CPU group account. So, please specify 
the CPU time limit less than 30min so as not to waste CPU time!



Example of Problem Settings (cfd.h)
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 For a large test
#define NX (360)
#define NY (120)
#define DT  (5e-5)
#define NU  (0.01)
#define END_TIMESTEP         (10000)
#define SAVE_INTERVAL        (200)

 For a huge case
#define NX (540)
#define NY (180)
#define DT  (2.5e-5)
#define NU  (0.01)
#define END_TIMESTEP         (20000)
#define SAVE_INTERVAL        (400)

 For a Challenging case

#define NX (2700)
#define NY (900)
#define DT  (1e-6)
#define NU  (0.01)
#define END_TIMESTEP         
(10000*3)
#define SAVE_INTERVAL        
(10000)



Large test
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1. Edit cfd.h (make available LARGE and disable others)

#define TEST_CASE _LARGE_

2. Compile by ‘make’.
3. Prepare files required to a job (in case of 48 nodes)

 Make a work directory and change directory to it.
 Copy ../script/run_batch_48mpi.sh and the 

executable ../solver_fractional on the directory.

4. Submit a job script

% pjsub run_batch_48mpi.sh 

5. Find and visualize a result on the directory.
 Data files are packed into a tar file.

% tar -zxvf AVEse_data_48.tgz

 You may also find run_batch_48mpi.sh.oXXXXX.



Visualize a result
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 Use a python script

Now you are on the work directory.

% tar -zxvf AVEse_data_48.tgz
% python2.7 view.py Huge case computed with 48 nodes
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Hands-on time

Please access /home/ra001016/a03572/SCHOOL

ScaLAPACK/ a sample code, a jobscript and Makefile

EigenExa/  a sample code, a jobscript and Makefile

PETSc/  PETSc sample codes, a jobscript and Makefile

CFD/  Karman Vortex CFD codes



Basic hand-on works
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BASE:
1. Run a sample code provided by the official developer 

site of ScaLAPACK.
2. Run a PETSc/SLEPc sample codes.
3. Confirm the CFD code with ‘large’ or ‘huge’ cases.

PRACTICAL:
For ScaLAPACK practices,
1. Modify PDLAMODHILB, then solve a real symmetric 

eigenvalue problem as you define or choose freely.
2. Also, vary the matrix dimension N, which is fixed in a 

source code, and the number of processes （NPROW, 
NPCOL）, then confirm parallel efficiency!

3. If you want to move advanced problem, try another 
routine pdsyevd!

2-4, July 2018
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MORE ADVANCED:
For CFD practices,
1. Try the challenging parameter case of the CFD code! 

Please do not forget the CPU time limitation specified in the 
job script. Since to visualize Karman vortices takes a lot of 
iteration (delta T is too small), just stop the run at a couple 
of hundred iterations. 

2. Compare the two cases if PETSc uses or not. You can 
switch them by activating the next macro in cfd.c (1: PETSC, 
0: non-PETSC). Also, be aware of the CPU time, because the 
Jacobi iterative algorithm often fails in case of a challenging 
problem.

#defined USE_PETSC 1

MORE^2 ADVANCED:
(See next pages) Compute 9 eigenmodes of a Elastic plate 
analysis whose eigenvalues are from the largest by using 
SLEPSc/PETSc, and visualize the corresponding eigenvectors as 
a set of m x m  images.2-4, July 2018



Advanced Lesson
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 Governing equation of vibration of an Elastic 
rectangular plate:
 Bi-harmonic equation

 (E: Young ratio, h: width, ρ: density,  μ: Poisson 
ratio)

 By using the variable separation method, we obtain

2-4, July 2018

: eigenvalue problem



Try then!
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 Boundary (Dirichlet)+Clamped Edge(Neumann) 
Discretization

 Using Kronecker tensor product notation, we 
present

2-4, July 2018



Try then!
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 For the simplicity, the domain to be computed is 
fixed as a square shape and other parameters are 
supposed to be Nx=Ny=m, hx=hy=1.

2-4, July 2018


