
Third day

Practice for numerical issues

RIKEN CCS HPC Summer School
Toshiyuki Imamura, RIKEN CCS
with assistant Dr. Shuhei Kudo

Numerical Library
What is it? For what?

2-4, July 2018 2

Numerical Library

3

 Numerical Library is one of building blocks for
ENSURING your advanced programming.

 It supports an API for very complex mathematical
features, algorithm, schemes, also data handling…

 FFT, Eigenvalue calculation, SVD, etc…

• There are reference codes.

 They might be examples of good (bad) programming.

 It provides us with better performance and finer
accuracy.

 Commercial library: faster and more accurate but
expensive

 Open Source library: fast and free (sometimes faster than
commercial library)

 You must check them before you run your application codes.

2-4, July 2018

Example of Numerical Libraries

4

 When you SPEED UP your code, use (probably being
linked in most utility programs) the BLAS (Basic Linear
Algebra Subprograms) library!

 Standard API for linear algebra kernels.

 GEMM : Matrix-matrix multiplication
()

 AXPY: linear combination of 2 Vectors ()

 NRM2: Norm of a vector, etc. ()

Reference codes are available from netlib@UTK.

http://www.netlib.org/BLAS/

 Commercial: Intel MKL, AMD ACML (free)

 Open Source: ATLAS(@UTK), GotoBLAS(@TACC),
OpenBLAS for general purposed microprocessors

 nVIDIA CUBLAS, AMD clMATH, MAGMABLAS(@UTK),
KBLAS(@KAUST), ASPEN.K2(@RIKEN) : for GPGPU

2-4, July 2018

http://www.netlib.org/BLAS/

Example of Numerical Libraries

5

If you want solve more complex problems, use followings;

 LAPACK (http://www.netlib.org/lapack/)

 ScaLAPACK (http://www.netlib.org/scalapack/)

 Elemental (http://libelemental.org/)

 EigenExa
(http://www.aics.riken.jp/labs/lpnctrt/EigenExa_e.html)

 ELPA (http://elpa.rzg.mpg.de/)

 PETSc (http://www.mcs.anl.gov/petsc/)

 Trillions (https://trilinos.org/)

 ARPACK (http://www.caam.rice.edu/software/ARPACK/)

 FFTW (http://www.fftw.org/)

 FFTE (http://www.ffte.jp/)

 2decomp&FFT (http://www.2decomp.org/)

 MT, MTGP, dSFMT (http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/SFMT/index.html)

 GMP big number librart(https://gmplib.org/)

 QD pack, MPACK, and so on

2-4, July 2018

Dense, General

Dense Eigenvalue

Sparse, General

Sparse, Eigenvalue

FFT

Random number

Multi-precision number

6

Review back on the CFD
code

Core computational part in the CFD code

7

 Solving a Poisson equation

 Discretization:

 Finally, we have the Core iteration

2-4, July 2018

for(j=1; j<col_m_1; j++)
for(i=2; i<row_m_1 - 1; i++)
*(at(phiT,i,j)) = const1 * ((L(phi,i+1,j) + L(phi,i-1,j)) * const2 +

(L(phi,i ,j+1) + L(phi,i ,j-1)) * const3 - L(d,i,j));

Solving Poisson’ eq

8

 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners

Solving Poisson’ eq

9

 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners

• Jacobi iteration

Convergence condition is very strict
and the Jacobi method sometimes
(or often?) diverges or stagnates.
(diagonal dominant property is well
known condition).

Similar algorithms:
Gauss-Seidel, SOR, SSOR, etc.

Solving Poisson’ eq

10

 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners

• GMRES

Based on Krylov subspace iteration
and Arnoldi procedure, it finds a
local solution vector by using the
Least square approximation within
a spanned subspace.

Generally, GMRES is known as best
method for a non-symmetric case.

• Jacobi iteration

Convergence condition is very strict
and the Jacobi method sometimes
(or often?) diverges or stagnates.
(diagonal dominant property is well
known condition).

Similar algorithms:
Gauss-Seidel, SOR, SSOR, etc.

Solving Poisson’ eq

11

 You can write a Jacobi iteration code easily. BUT,
 wasting your time (programming, execution time).
 Poisson’s eq has a mathematical difficulty of

convergence (sometimes diverge).
 Many algorithms are implemented as library codes.

You can choose
Faster and reliable
library routine to
Solve Poisson’eq.

Today we try to use
PETSc libary

Krylov Subspace method
GMRES, CG, GCR, etc..
with Preconditioners

How does Numerical library
achieve high Performance?

How can user utilize it with higher
performance?

2-4, July 2018 12

Difficulties in multicore computing

13

 Difficulties in handling multicore.
 They are hiding in the deep and complex hierarchy of cache

and memory structures.

 To access the data with a tiny latency, the data must be
prefetched on a cache memory, and dealt with carefully. In
fact, we should have a view in a mind thoroughly to the
cache conflict and memory traffic.

 Memory bandwidth
 Improvement in the memory bandwidth is extremely

gradual.
 It is inevitable to change the software according to such an

evolution and complication of hardware.
2-4, July 2018

Balance of flops/memory access

14

 BLAS has three categories with respect to the ratio
of flops/memory access. Assumption: Data loaded
from main memory is stored in a buffer memory on
a processor chip and recycle until the procedure
completes.
 Level 1: vector-vector operations

 O(N) / O(N) ～O(1)

 Level 2: Matrix-vector multiplications
 O(N^2)/O(N^2) ～O(1)

 Level 3: Matrix-Matrix multiplication
 O(N^3)/O(N^2) ～O(N) >> O(1)

2-4, July 2018

O(N)

O(N^2)

The metric defined by ‘flops/Byte’ or ‘flops/words’ is called
‘operational intensity’. It is strongly related to the Roofline model.

CPU

Roofline model

152-4, July 2018

P
e

rf
o

rm
an

ce
 U

p
p

e
r

b
o

u
n

d
 [

FL
O

P
S]

Roof by Theoretical Peak Performance

[Flops/Word]

BLAS 1,2 BLAS 3

Your application

You can optimize your code more!

operational intensity(Log-Log scale)

Recent trends of Optimization

16

 Block algorithm
 Since block algorithm reduces memory traffic, it leads

to larger operational intensity.
 Re-write your code by using GEMM (or level3 BLAS)

calls.
 Tiling algorithm
 It is also one of the block algorithms, but the tiling

algorithm reformats the data layout.
 A(1:NX,1:NY)  A(1:BX,1:BY, 1:NX/BX, 1:NY/BY)

 Contiguous data/stream data can be store into L1/L2
cache.

 Reduce and avoid TLB-miss trouble

2-4, July 2018

Submatrix is contiguously stored in memory

How to use Numerical
Libraries

ScaLAPACK, EigenExa, SLEPC

2-4, July 2018 17

ScaLAPACK

For Dense linear algebra

2-4, July 2018 18

From the developer site

19

 http://www.netlib.org/scalapack/examples/

2-4, July 2018

Download “sample_pdsyev_call.f”.

How to use ScaLAPACK on K

20

 Link on the K computer or other Fujitsu environments

 Job script

2-4, July 2018

% mpifrtpx -o exe sample_pdsyev_call.f -SCALAPACK -SSL2BLAMP

#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=2x2"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin "rank=* ./exe %r:./"

. /work/system/Env_base

export OMP_NUM_THREADS=8

date
mpiexec ./exe
date

Let’s learn the sample code

21

 Matrix generator: PDLAMODHILB
 Eigensolver: PDSYEV
 Output routine: PDLAPRNT

Other routines are required, such as initializer
(BLACS_XXX), finalizer (BLACS_EXIT), and definer of
descriptors (DESCINIT), which represent matrix data
structures.

BLACS: runtime system that organizes communication on
ScaLAPACK.
PDSYEV: QR iteration algorithm

other algorithms are supported in PDSYEVX,
PDSYEVD, PDSYEVR.

Matrix format: the 2D block-cyclic
distribution and column major ordering

2-4, July 2018

Read the source code

22

 PDLAMODHILB
 Specialized parallelization or parallel calls are

encapsulated in PDELSET routine. The routine may
be called in duplicate manner, however, the owner
process only update its local memory stored in 2D
block-cyclic distribution.

2-4, July 2018

SUBROUTINE PDLAMODHILB(N, A, IA, JA, DESCA, INFO)
DO 20 J = 1, N
DO 10 I = 1, N
IF(I.EQ.J) THEN

CALL PDELSET(A, I, J, DESCA, ¥
(DBLE(N-I+1)) / DBLE(N)+ONE / (DBLE(I+J)-ONE))

ELSE
CALL PDELSET(A, I, J, DESCA, ONE / (DBLE(I+J)-ONE))

ENDIF

END

EigenExa

One of the R-CCS software for solving a
dense eigenvalue problem

2-4, July 2018 23

How to use EigenExa on K

24

 Link on the K computer or other Fujitsu environments

 Job script

2-4, July 2018

% cp home/ra001016/a03572/SCHOOL/EigenExa/EigenExa-2.4p1-patched-all.tgz .
% tar -zxvf EigenExa-2.4p1-patched-all.tgz
% ./bootstrap; ./configure --host=K
% make
Then cd benchmark/

#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=2x2"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin
"rank=* ./eigenexa_benchmark %r:./“

#PJM --stgin "rank=* ./IN %r:./"

. /work/system/Env_base

export OMP_NUM_THREADS=8

date
mpiexec ./eigenexa_benchmark
date

Let’s learn the sample code

 Matrix generator: mat_set

 Eigensolver: eigen_sx

 As ScaLAPACK does, initializer (eigen_init) and finalizer (eigen_free) are
obligately called in appropriate timing.

 EigenExa takes advantage of also 2D cyclic-cyclic distribution (in detail,
fixed in NB as one both COL and ROW）. Compatible to ScaLAPACK and
other utility functions, reciprocally.

 Therefore, if descriptor defined with NB=1 and generated by
PDLMODHILB can be passed to EigenExa and diagonalized.

2-4, July 2018 25

Benchmark code

26

 On the benchmark directory,

 You can submit a job by `pjsub job-script.sh`.

2-4, July 2018

Env_base: K-1.2.0-24
Mon Jul 2 11:07:14 JST 2018
INPUT FILE='IN'
==
EigenExa version (2.4a) / (May 25, 2017) / (Hanachirusato)
Solver = eigen_sx / via penta-diagonal format
Block width = 48 / 128
NUM.OF.PROCESS= 4 (2 2)
NUM.OF.THREADS= 8
Matrix dimension = 1000
Matrix type = 2 (Random matrix)
Internally required memory = 8472688 [Byte]
The number of eigenvectors computed = 1000
mode 'A' :: all the eigenpairs
Elapsed time = 0.3770818118937314 [sec]
FLOP = 6826626901.333333
Performance = 18.10383499286145 [GFLOPS]
==

All eigenvalues
and corresponding
eigenvectors of a
randomized matrix
N=1000.

Edit an input file

27

 Look at ‘IN’ file, you can edit N and nvec fields.

!
! Input file format
!
! N bx by mode matrix solver
!
! N : matrix dimension
! nvec : the number of eigenvetors to be computed
! bx : block width for the forward transformation
! by : block width for the backward transformation
! mode : solver mode { 0 : only eigenvalues }
! { 1 : eigenvalues and corresponding eigenv
ectors}
! { 2 : mode 1 + accuracy improvement for ei
genvalues}
! matrix : test matrix { 11 types, 0 ... 10 }
! run with -L option shows the list of test matrices
! typical ones are as follows
! { 0 : Frank matrix}
! { 1 : Toeplitz matrix}
! { 2 : Random matrix}
! solver : { 0 : eigen_sx, new algorithm, faster on the K }
! { 1 : eigen_s, conventional algorithm }
! check_error : { 0 : off, 1 : on }

!
! if a line starts from '!', the line is treated as a commen
t
! N nvec bx by m t s e
1000 1000 48 128 1 2 0 0
1000 1000 48 128 1 2 0 0
1000 1000 48 128 1 2 0 0
1000 1000 48 128 1 2 0 0
1000 1000 48 128 1 2 0 0
-1

Matrix dimension

End mark

N. of eigenvectors to be computed

Block factors

Mode: solving eigenvalues
and vectors

Random matrix

Accuracy Check

PETSc(SLEPC)

Official site on PETSc and SLEPC

Hands-on exercises

2-4, July 2018 28

292-4, July 2018

https://www.mcs.anl.gov/petsc/petsc-3.8/src/ksp/ksp/examples/tutorials/

ex50.c

302-4, July 2018

http://www.grycap.upv.es/slepc/handson/handson1.html

ex1.c

Compile and link

312-4, July 2018

ARCH=
PETSC_DIR=/home/ra001016/a03572/petsc-real
PETSC2_DIR=/home/ra001016/a03572/petsc-complex
SLEPC_DIR=/home/ra001016/a03572/slepc

CC=mpifccpx
FC=mpifrtpx
BLAS=-SSL2BLAMP -SCALAPACK

CCFLAGS_PETSC=-Xg -Kfast,openmp -I$(PETSC_DIR)/include
LDFLAGS_PETSC=-L$(PETSC_DIR)/lib -lpetsc $(BLAS)
CCFLAGS_SLEPC=-Xg -Kfast,openmp -I$(PETSC2_DIR)/include -I$(SLEPC_DIR)/include
LDFLAGS_SLEPC=-L$(SLEPC_DIR)/lib -lslepc -L$(PETSC2_DIR)/lib -lpetsc $(BLAS)

all: ksp_exec eps_exec
ksp_exec: ex50.o

$(CC) $(CCFLAGS_PETSC) -o $@ $< $(LDFLAGS_PETSC)
ex50.o: ex50.c

$(CC) $(CCFLAGS_PETSC) -c $<

eps_exec: ex1.o
$(CC) $(CCFLAGS_SLEPC) -o $@ $< $(LDFLAGS_SLEPC)

ex1.o: ex1.c
$(CC) $(CCFLAGS_SLEPC) -c $<

clean:
¥rm *.o ksp_exec eps_exec

Makefile

Use make command



ksp_exec (ex50) and
eps_exec are (ex1)
generated.

Job submission

322-4, July 2018

#!/bin/bash
#PJM --rsc-list "rscgrp=small"
#PJM --rsc-list "node=4"
#PJM --rsc-list "elapse=00:10:00"
#PJM -S
#PJM --stg-transfiles all
#PJM --mpi "use-rankdir"
#PJM --mpi "proc=4"
#PJM --stgin "rank=* ./eps_exec %r:./“

. /work/system/Env_base
export OMP_NUM_THREADS=8

mpiexec ./eps_exec -n 540 -m 180 -eps_type gd -eps_nev 4 -eps_monitor -
eps_view

C version

1-D Laplacian Eigenproblem, n=100

Number of iterations of the method: 19
Solution method: krylovschur

Number of requested eigenvalues: 1
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 2

k ||Ax-kx||/||kx||
----------------- ------------------

3.999033 4.02784e-09
3.996131 4.31174e-09

F90 version

1-D Laplacian Eigenproblem, n =100 (Fortran)

Number of iterations of the method: 19
Solution method: krylovschur
Number of requested eigenvalues: 1
Stopping condition: tol=1.0000E-08, maxit= 100
Number of converged eigenpairs: 2

k ||Ax-kx||/||kx||
----------------- ------------------

3.9990E+00 4.0278E-09
3.9961E+00 4.3117E-09

C version

F90 version

2-4, July 2018 33

Play with PETSc/SLEPC

34

 From the tutorial page,

2-4, July 2018

$./eps_exec -n 100 -eps_nev 4 -eps_type lanczos

$./eps_exec -n 400 -eps_nev 3 -eps_ncv 24

$./eps_exec -n 400 -eps_nev 3 -eps_tol 1e-7

1-D Laplacian Eigenproblem, n=400

Number of iterations of the method: 100
Solution method: krylovschur

Number of requested eigenvalues: 3
Stopping condition: tol=1e-07, maxit=100
Number of converged eigenpairs: 1

k ||Ax-kx||/||kx||
----------------- ------------------

3.999939 9.48781e-08

1-D Laplacian Eigenproblem, n=400

Number of iterations of the method: 60
Solution method: krylovschur

Number of requested eigenvalues: 3
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 5

k ||Ax-kx||/||kx||
----------------- ------------------

3.999939 9.48494e-09
3.999754 7.19493e-09
3.999448 1.18552e-09
3.999018 6.43926e-10
3.998466 1.04213e-09

1-D Laplacian Eigenproblem, n=100

Number of iterations of the method: 62
Solution method: lanczos

Number of requested eigenvalues: 4
Stopping condition: tol=1e-08, maxit=100
Number of converged eigenpairs: 4

k ||Ax-kx||/||kx||
----------------- ------------------

3.999033 9.95783e-09
3.996131 1.97435e-09
3.991299 9.15231e-09
3.984540 3.55339e-09

Learn the sample code (Pseudo code)

352-4, July 2018

SlepcInitialize(PETSC_NULL_CHARACTER, ierr)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, …., n, n, ierr)
MatSetUp(A, ierr)

(…. Calculation of matrix elements and others …..)

ESPCreate(PETSC_COMM_WORLD, eps, ierr)
ESPSetOperators(eps, A, PETSC_NULL_OBJECT, ierr)
EPSSetProblemType(eps, EPS_HEP, ierr)

EPSSolve(eps, ierr)

EPSGetEigenPair(eps, ……)

EPSDestroy(eps, ierr)
SlepcFinalize(ierr)

How to setup a matrix? (in fortran90)

36

 PETSc handles internal data format and interface data flexibly.
Because of PETSc management mechanism, user does not to
see actual state on memory . Matrix A is dealt with a handler
variable, and matrix elements are accessed via a query API.

2-4, July 2018

! Simple matrix format
Mat A
EPS eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr)

MatGetOwnershipRange(A, Istart, Iend, ierr)
MatSetValues(A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr)

How to setup a matrix? (in fortran90)

37

 PETSc handles internal data format and interface data flexibly.
Because of PETSc management mechanism, user does not to
see actual state on memory . Matrix A is dealt with a handler
variable, and matrix elements are accessed via a query API.

2-4, July 2018

! Simple matrix format
Mat A
EPS eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr)

MatGetOwnershipRange(A, Istart, Iend, ierr)
MatSetValues(A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr)

Create a matrix handler

How to setup a matrix? (in fortran90)

38

 PETSc handles internal data format and interface data flexibly.
Because of PETSc management mechanism, user does not to
see actual state on memory . Matrix A is dealt with a handler
variable, and matrix elements are accessed via a query API.

2-4, July 2018

! Simple matrix format
Mat A
EPS eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr)

MatGetOwnershipRange(A, Istart, Iend, ierr)
MatSetValues(A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr)

Matrix size MxN

How to setup a matrix? (in fortran90)

39

 PETSc handles internal data format and interface data flexibly.
Because of PETSc management mechanism, user does not to
see actual state on memory . Matrix A is dealt with a handler
variable, and matrix elements are accessed via a query API.

2-4, July 2018

! Simple matrix format
Mat A
EPS eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr)

MatGetOwnershipRange(A, Istart, Iend, ierr)
MatSetValues(A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr)

For a mxn block matrix,
array values are set.

How to setup a matrix? (in fortran90)

40

 PETSc handles internal data format and interface data flexibly.
Because of PETSc management mechanism, user does not to
see actual state on memory . Matrix A is dealt with a handler
variable, and matrix elements are accessed via a query API.

2-4, July 2018

! Simple matrix format
Mat A
EPS eps
EPSType tname
PetscReal tol, error, values(:)

MatCreate(PETSC_COMM_WORLD, A, ierr)
MatSetSizes(A, PETSC_DECIDE, PETSC_DECIDE, M, N, ierr)

MatGetOwnershipRange(A, Istart, Iend, ierr)
MatSetValues(A, m, idxm, n, idxn, values, INSERT_VALUES|ADD_VALUES, ierr)

MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY, ierr)
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY, ierr)

Assemble the matrix
data set on a

distributed manner

41

Play back the CFD code
and link it with PETSc

Core computational part in the CFD code

42

 Solving a Poisson equation

 Discretization:

 Finally, Core iteration: well-know iteration

2-4, July 2018

for(j=1; j<col_m_1; j++)
for(i=2; i<row_m_1 - 1; i++)
*(at(phiT,i,j)) = const1 * ((L(phi,i+1,j) + L(phi,i-1,j)) * const2 +

(L(phi,i ,j+1) + L(phi,i ,j-1)) * const3 - L(d,i,j));

Use a PETSc KSP solver

43

 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.

Use a PETSc KSP solver

44

 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.

Use a PETSc KSP solver

45

 What I did were,
 Download a sample source code
 Modify main.cpp and cfd.cpp
 Key points are i) initialization of PETSc environment

and matrix generation, ii) calling a solver routine.

PETSc supports DMDA (distributed multi-dimentional
array format) for vector data and a stencil mechanism
for matrix representation.

 Prepare 3 call-back and 1 utility functions;
 ComputeRHS,
 ComputeStencil,
 SetInitialGuess, and
 GetComputedResult.

 Then, associate them with a DM handler.
 KSPSolve() organizes RHS and MatVec, etc.

Use a PETSc KSP solver

46

1. ComputeStencil
 Jacobi iteration is written in a 5-point Stencil fashion.

Any stencil codes are

 Translate above relation into a Matrix-vector product.

2. ComputeRHS
 Update the vector which appears in Right hand side

3. SetInitialGuess
 Set up an initial guess for Krylov iterative solver

4. GetComputedResult.
 Retrieve the result computed by using PETS.

Let’s Run the CFD code on K computer

47

% cp /home/ra001016/a03572/SCHOOL/CFD/mpi-
petsc_merged_v4.tgz .
% tar zxvf mpi-petsc_merged_v4.tgz
% cd mpi-petsc_merged_v4
% make

Examples of job scripts are stored in scripts/.
If you want to run larger jobs, modify NX and NY larger
(aspect must be 3:1), and smaller DT defined in cfd.h. Do,
make clean, then again, make.
NOTE: We are sharing a CPU group account. So, please specify
the CPU time limit less than 30min so as not to waste CPU time!

Example of Problem Settings (cfd.h)

48

 For a large test
#define NX (360)
#define NY (120)
#define DT (5e-5)
#define NU (0.01)
#define END_TIMESTEP (10000)
#define SAVE_INTERVAL (200)

 For a huge case
#define NX (540)
#define NY (180)
#define DT (2.5e-5)
#define NU (0.01)
#define END_TIMESTEP (20000)
#define SAVE_INTERVAL (400)

 For a Challenging case

#define NX (2700)
#define NY (900)
#define DT (1e-6)
#define NU (0.01)
#define END_TIMESTEP
(10000*3)
#define SAVE_INTERVAL
(10000)

Large test

49

1. Edit cfd.h (make available LARGE and disable others)

#define TEST_CASE _LARGE_

2. Compile by ‘make’.
3. Prepare files required to a job (in case of 48 nodes)

 Make a work directory and change directory to it.
 Copy ../script/run_batch_48mpi.sh and the

executable ../solver_fractional on the directory.

4. Submit a job script

% pjsub run_batch_48mpi.sh

5. Find and visualize a result on the directory.
 Data files are packed into a tar file.

% tar -zxvf AVEse_data_48.tgz

 You may also find run_batch_48mpi.sh.oXXXXX.

Visualize a result

50

 Use a python script

Now you are on the work directory.

% tar -zxvf AVEse_data_48.tgz
% python2.7 view.py Huge case computed with 48 nodes

51

Hands-on time

Please access /home/ra001016/a03572/SCHOOL

ScaLAPACK/ a sample code, a jobscript and Makefile

EigenExa/  a sample code, a jobscript and Makefile

PETSc/  PETSc sample codes, a jobscript and Makefile

CFD/  Karman Vortex CFD codes

Basic hand-on works

52

BASE:
1. Run a sample code provided by the official developer

site of ScaLAPACK.
2. Run a PETSc/SLEPc sample codes.
3. Confirm the CFD code with ‘large’ or ‘huge’ cases.

PRACTICAL:
For ScaLAPACK practices,
1. Modify PDLAMODHILB, then solve a real symmetric

eigenvalue problem as you define or choose freely.
2. Also, vary the matrix dimension N, which is fixed in a

source code, and the number of processes （NPROW,
NPCOL）, then confirm parallel efficiency!

3. If you want to move advanced problem, try another
routine pdsyevd!

2-4, July 2018

Additional hands-on works

53

MORE ADVANCED:
For CFD practices,
1. Try the challenging parameter case of the CFD code!

Please do not forget the CPU time limitation specified in the
job script. Since to visualize Karman vortices takes a lot of
iteration (delta T is too small), just stop the run at a couple
of hundred iterations.

2. Compare the two cases if PETSc uses or not. You can
switch them by activating the next macro in cfd.c (1: PETSC,
0: non-PETSC). Also, be aware of the CPU time, because the
Jacobi iterative algorithm often fails in case of a challenging
problem.

#defined USE_PETSC 1

MORE^2 ADVANCED:
(See next pages) Compute 9 eigenmodes of a Elastic plate
analysis whose eigenvalues are from the largest by using
SLEPSc/PETSc, and visualize the corresponding eigenvectors as
a set of m x m images.2-4, July 2018

Advanced Lesson

54

 Governing equation of vibration of an Elastic
rectangular plate:
 Bi-harmonic equation

 (E: Young ratio, h: width, ρ: density, μ: Poisson
ratio)

 By using the variable separation method, we obtain

2-4, July 2018

: eigenvalue problem

Try then!

55

 Boundary (Dirichlet)+Clamped Edge(Neumann) 
Discretization

 Using Kronecker tensor product notation, we
present

2-4, July 2018

Try then!

56

 For the simplicity, the domain to be computed is
fixed as a square shape and other parameters are
supposed to be Nx=Ny=m, hx=hy=1.

2-4, July 2018

