
Challenges for Scaling:
Co-Design for Memory Bottleneck, Power and
Miniaturization

Group B

Members

1. Arata Amemiya (RIKEN_R-CCS)

2. Bibrak Qamar Chandio (Indiana U, PhD)

3. Marco Capuccini (Uppsala U, PhD)

4. Kundan Kumar (Indian Institute of Science, PhD)

5. Toshiya Shirakura (Tohoku U, PhD)

6. Saurabh Gupta (Indian Institute of Science, MA)

7. Hotaka Yagi (Tokyo U of Science, BA)

Synthesis

● Large amount of data, that is mostly irregular and at times
need to be processed at the edge, poses new challenges
for scaling:

● Need for programming, architecture and power
improvements.
○ Memory Bottlenecks
○ Portability (Miniaturization and Power efficiency)
○ Programmer productivity

Motivations

● Democratizing Compute: (Bioinformatics & Smart Medical Systems)
○ Dataflow in Scientific Workflows
○ Intelligent Medical Systems Real Time Processing

● Scientific Simulations: (Quantum physics & Weather Forecasting)
○ Multi Precision Arithmetics
○ Data Assimilation & Learning

● Memory Acceleration: (Graph Processing & Machine Intelligence)
○ Non-von Neumann Architectures

■ Continuum Computer Architecture
■ Neuromorphic

Problem Domain: Scientific Workflow with Containers

Decoupled storage
Used for input,
output and
intermediate results

Omics (genomics, metabolomics, proteomics), machine learning pipelines,
virtual drug screening

Scientific workflows Problem: network contention

Memory is used for intermediate results.
How move data to/from containers?
● UNIX pipes
● Memory-mapped files
● Tmpfs

High-level API hides parallel computing
challenges
● User productivity

Scales on cloud and commodity HW

https://github.com/mcapuccini/MaRe

Colocated or
decoupled

transformations

Solution: Dataflow programming model

https://github.com/mcapuccini/MaRe

Problem Domain: Biomedical Diagnosis

● Processing massive streams of data is an important problem in
Biomedical diagnosis systems.
○ Biomedical diagnosis involves real time signal processing
○ A large number of transducers used, which generate massive data
○ Signal processing algorithms require huge memory to store pre

computed coefficients
○ Accessing memory makes system performance slow : a bottleneck

in real-time diagnosis

Example -

3D Ultrasound imaging requires 50 GB LUT (Lookup tables) space

Solution: Biomedical Diagnosis

● Exploring sparsity of the data : compressive sensing
● Customized hardware : parallel computing
● On the fly computation : reduced memory access

Numerical calculation for quantum physics

①What is the presence problem about quantum physics ?

②Making program for numerical calculation

Considering computation time and capacity of files

Einstein equation

Problem Domain: Quantum Physics

Schrodinger equation

Data size issues in data assimilation
Observational data size issues:
Real-time finescale weather forecast requires much observational data input
 - conventional techniques (radar, satellites) with higher resolution
 - new data sources (vehicles, portable devices)
Fast computation and data transfer are both essential

Possible solutions:
- improved pre-processing schemes

Problem Domain: Weather Forecasting

Problem Domain: Linear Algebra

Double-Double and Quad-Double arithmetic uses the combinations of double
precision numbers. # of operations would become large.

In the conventional laptop computer,

● Without parallelization, a kernel (BLAS 1 2 3) is computation bottleneck.
● With parallelization(FMA, SIMD, OpenMP), some kernels are memory bottleneck.

Parallelization have memory performance constraint for some multi precision kernels.

Multi precision arithmetic

Memory Access - Bottleneck for DL applications.

1. DRAM access: Data movement DRAM to ALU is expensive.
2. Mapping data-flow over the architecture: Memory hierarchy to

computation units.
3. For DL application training and inferencing, loading huge data for training

affects the training time, which may be critical for many real-time
applications.

Comp.

ALU

Mem Read

DRAM

Off -chip

Mem Write

DRAM

Off -chip

Problem Domain: Machine Learning

Solution: Machine Learning

1. Data compression to reduce the storage and movement.
2. Network pruning e.g based on magnitude of weights.
3. Reduce precision for computation: (Floating point -> Fixed point): 8 bit int used in (Google TPU).

a. Binary weight, ternary weight..
b. Non linear quantization (Log-domain)

4. Improve the reuse of data and local (computational) accumulation.
5. Exploit sparsity in the computation map: skip memory access and compute for zero.
6. Reduce operation while mapping DNN to matrix multiplication, example using FFT.
7. On-chip memory partition, putting memory and processor on same silicon substrate, increase the

memory Bandwidth.
8. Moving from temporal architecture (SIMD) (MEM-> REG File -> ALU -> control) to

Spatial architecture (more advanced for memory accessing) (MEM -> ALU).
9. Advance memory techniques: Stacked DRAMs and non-volatile memories.

10. Explore possibility of neuromorphic computing with asynchronous operation.

Problem Domain: Graph Processing

● Graph processing generally involves:
○ Low FLOP to Byte ratio
○ Irregular data access pattern

● Bulk Synchronous Model (BSP) leads to under
exploitation of the large inherent parallelism that is
naturally available in graph structures.

● Think like a Vertex, asynchronously:
● Send an active message asynchronous

(fire-and-forget).
● No DAG. Because there could be cycles in the

graph.
● We implement Dijkstra–Scholten algorithm for

termination detection

Problem Domain: Graph Processing

Presents both behaviors of
Strong and Weak Scaling:
Transcendental Scaling

Strong Weak

Problem Domain: Graph Processing
● Continuum Compute Architecture is a new class of

non von Neumann architectures.
● Offers fine grain parallelism.
● Small compute cells organized such that it creates

an active memory.
● Low Power
● Less space footprint

Conclusion
● New Challenges posed by Big Data

○ Irregular memory access
○ Memory bottleneck
○ Latency sensitive
○ Low Power requirements

● Solutions:
○ 3D stacked Memory
○ Non-von Neumann architectures: send work/compute to memory and

process there
○ Custom hardware for inference (and other compute) → less power and less

areas footprint, critical for portability
○ Dataflow-oriented workflows

■ Programmer productivity
■ Auto optimizations (lazy evaluation, concurrency, locality optimization)

