
RIKEN International Summer School 2020

– Toward Society 5.0 –

Basics of Parallel Programming and Execution

Miwako Tsuji

Architecture Development Team
Flagship 2020 Project
RIKEN Center for computational Science

1

Agenda

1. Parallel computing and background

2. Parallel architectures

3. Some of important concepts to learn parallel programming

4. Parallel programming for the parallel architectures learned in (2)

 Shared memory programming model

 Distribute parallel programming model

Application (2D CFD) (By Dr. Kentaro Sano)

How to use parallel environment (By Prof. Kengo Nakajima)

1. Hands-on

 OpenMP

 MPI (on the 2nd day)

Parallel Computing

 parallel computer is a computer system that uses multiple processing elements (PEs) simultaneously

 Apple A13 on IPhone 11 Pro/11 Pro Max

 2 Lighting cores, 4 Thunder cores

 K-computer

 8-cores in a node, 88128 nodes

 Supercomputer Fugaku

 48-cores in a node, 158,974 nodes

 parallel computation is a form of computation where many computations are carried out simultaneously

 Parallelism

 ⇒ Performance

 Faster time to solution

 larger computing problems

Motivation of parallel computing

 Motivation: accelerate computation

 Speedup based on frequency scaling ⇒ Limited due to the physical limits to transistor scaling

 Energy consumption

 approximately proportional

to the CPU frequency,

and to the square of the

CPU voltage

 ⇒ Parallel computing

 consumption is proposal to

the concurrency

 increase frequency

 surely increase performance ☺

 increase concurrency

 not always increase performance

 energy efficient

⇒ need to understand parallel

computing https://en.wikipedia.org/wiki/File:Clock_CPU_Scaling.jpg

Flynn’s Taxonomy

 SISD Single Instruction stream, Single Data stream

 No parallelism, entirely serial program

 SIMD Single Instruction stream, Multiple Data stream

 the same operation over different data

 MISD Multiple Instruction stream, Single Data stream

 (rarely used)

 Multiple instructions operate on one data stream

 MIMD Multiple Instruction stream, Multiple Data stream

 Multiple independent processors simultaneously
executing different instructions on different data

 Modern HPC systems : hybrids of these categories

SISD MISD -SD

SIMD MIMD -MD

SI- MI-

D
ata stre

am

Instruction stream

Parallel architectures supporting parallelism

 instruction-level parallelism

 SIMD

 distributed parallel system

 shared memory parallel system

Types of parallelism: instruction-level parallelism

 performing a number of instructions during a single clock cycle

 a program is a stream of instructions

IF ID EX MEM WB IF ID EX MEM WB

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MEM: Memory access

WB: Register Write Back

IF ID EX MEM WB

time

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

time

in
stru

ctio
n
s

5-insts in a cycle

5-insts in a cycle

parallelization based on “pipelining”

Types of parallelism: instruction-level parallelism

 performing a number of instructions during a single clock cycle

 a program is a stream of instructions

 modern processors can issue more than one instruction at a cycle

 ex: K computer

 4 instructions per cycle / core

 out-of-order execution

 instruction level parallelism

IF ID EX MEM WB

time

in
stru

ctio
n
s

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Types of parallelism: SIMD instruction

 an instruction for multiple data (data array) at a single cycle

for(i=0; i<N; i++)

z[i] = x[i]+y[i]

 SPARC64 VIIIfx processor (K computer) : 128-bit SIMD (2 double precision can be
processed in parallel)

 SPARC64 XIfx processor (FX100 series) : 256-bit SIMD

 Intel-AVX512 series: 512-bit SIMD

X[3] X[2] X[1] X[0]

Y[3] Y[2] Y[1] Y[0]

Z[3] Z[2] Z[1] Z[0]

+ + + +

Distributed memory system

 each processor has its own local address space

 memory is logically or physically distributed

 systems, where compute nodes (w/ CPU and memory) are connected via network

 each program on each compute node exchanges data (messages) through network

 expandable

 Massively Parallel Processor

 Cluster

Network Interface ControllerNIC

M Memory

P Processor

NIC

P

M

NIC

P

M

NIC

P

M

NIC

P

M

Interconnection Network

Shared memory system

 all processors can access a single address space

 each program (thread) on each compute node reads/writes a memory to exchange data

 Modern CPUs include multi-processor cores and a shared memory

M Memory

P Processor

PP PP

M

Shared memory system: SMP Symmetric Multi-Processor

M Memory

P Processor

C Cache

 multi-processors are connected to a single, shared main memory

 multi processors access a (set of) shared memory module(s) via network switch or bus

 all processors are treated equally

 traditional: without cache

 modern: with coherent caches, which keep the data in the caches consistent

 limits on the scalability of SMP, cache coherence and shared objects

 Performance degradation when

traffic is concentrated

Fujitsu HPC2500 (2002)

Hitachi SR16000 (2011)

etc..

PP PP

Switch or System Bus

M

CC CC

coherency

Symmetric

Shared memory system: NUMA Non-Uniform Memory Access

 a memory module (local memory) dedicated to each CPU

 a CPU can access a memory dedicated to a different CPU via
shared bus or switch (remote memory)

 non-symmetric, where access to remote memories takes a
longer time than access to local memory

 AMD Opteron Barcelona (2007)

P

M

C

P

M

C

P

M

C

P

M

C

S
w

itch
 o

r S
ystem

 B
u
s

non uniform access
faste

r

Multi-core processors
 core is a processing unit

 two or more cores in a computer processor : multi-core processor

 ex. 8-cores in the SPARC64 VIIIfx processor (K-computer)

 cores are independent

 a processor can issue multiple (different/same) instructions from multiple cores

 inter-core communication:

 via message passing

 via shared-memory
can be both

Single core

CPU Die

CPU Core

Cache

BIU

Dual core

CPU Die

C

Cache

BIU

C

Quad core

CPU Die

Cache

BIU

C C C C

Many core

CPU Die

Cache
BIU

Multi-core processors: SMP (SMC?) / NUMA

M Memory

Co Core

L1 L1 Cache

L2 L1 Cache

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus

Hybrid of distributed parallel and shared memory systems

 several (80,000+ in case of K-computer) nodes of shared memory systems are connected as a
distributed parallel system

 because of the popularity of the shared memory architecture in a single processor, i.e. a multi-
core processor

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Example of multi-core processors (1)
Intel Xeon Platinum 8280 in Oakbridge-CX (OBCX)
 A processor have 28 cores

 L1/L2 cache are dedicated to each core

 L3 and memory are shared by all cores

 A core

 AVX-512

 8 dp / 16 fp

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

Oakbridge-CX (OBCX) : Node and system

 2 CPUs in a node

 All cores in the CPUs can access both memories (NUMA)

 1,368 nodes in a system

 up to 8 nodes are available in this course

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI=Ultra Path Interconnect

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

C C C C C C

C C C C C C

C C C C C C

C C C C

C C C C C C

M
e
m

o
ry

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

UPI

UPI

UPI

Network

Overview of parallelism in modern HPC systems

 Multi-nodes connected by network

 multi-processors (multi-sockets) in a single node

 multi-cores in a single processor

 SIMD instructions in a single core

 pipelined

 A programming model for a level of parallel architectural level

 Hybrid of parallel programming models for a whole system

 Discuss parallel programming model for these levels+

automatically parallelized by compilers

and hardware !

※ you can help compilers

to generate more efficient

program, even you can

parallelize your code on

these levels

Some important concepts about parallel programming

 Speedup

 Amdahl's law

 Weak scaling vs Strong scaling

Speedup

 the relative performance of two systems processing the same program

 typically, the relative performance of parallel and serial executions

 If we use 2 processors and the execution time becomes the half of the 1 processor case, then
the speedup is “2”

𝑇1
𝑇𝑝

execution time w/ 1 processor

execution time w/ p processors

the number of nodes

Speedup

1

1

Amdahl's law
 Total execution time: T1 on a single processor

 Total execution time: Tp on p processors

 𝛼 is the ratio of non-parallelizable part

 P processors take 𝑇1𝛼 (sec) for the part

 The rest can be parallelized:
𝑇1(1−𝛼)

𝑝

E
xe

cu
ti
o
n
 t
im

e

of processors

non-parallelizable parts

𝛼𝑇

(1
−
𝛼
)𝑇

1 p42

1
−
𝛼
𝑇

2

1

𝑝

1

2

1

4

𝑇𝑝 = 𝑇1𝛼 +
𝑇1(1 − 𝛼)

𝑝

Amdahl's law

 The speed-up from parallelization

× 2 processors ⇒ 2 times faster

𝑆 𝑠 =
1

1 − 𝛼
𝑃

+ 𝛼

𝛼 the fraction of running time a program spends on non-parallelizable parts

𝑃𝑝: concurrency (# of processors)

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1024 # of processors

S
p
e
e
d
-u

p

% of non-parallel portion

20 x faster even if 1000 times processors

5%

10%

50%

25%

Weak scaling vs Strong scaling

 We do not have to solve the program size of a small system for large systems

 Parallelism : Faster time to solution / larger computing problems(scalability)

 Strong scaling

 Fixed problem size while the number of processors are increased

 problem size for each processor becomes smaller

 Amount of communication between processors may be smaller or stay
constant or grow

 Limited scalability due to Amdahl’s low

 Weak scaling

 Fixed problem size for each processor

 (Total) problem size increases when the number of processors are increased

 Amount of communication between processors remains constant or grows

 Note: Communication overhead may grow even the amount remains
constant, because of synchronization overhead, etc..

Serial P:

P0

P1

P2

P3

P0

P1

P2

P3

Data

Parallelization and parallel programming

 Shared memory programming

 Overview

 OpenMP

 Distributed parallel programming, Message Passing

 Overview

 MPI

 Hybrid programming

 OpenMP+MPI

Shared memory programming model

 Threads share a common address space

 on the shared memory architectures

 Easy to program (/extend) from a serial code

Co

L1

Co

L1

Co

L1

Co

L1

L2

M
A r r a y

processed

Thread
Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L2

M

Switch or System Bus

0101

1010

1011

※ Note:

Process: independent, separate memory space

Thread: subsets of a process, shared memory

space. Two or more threads can share a core

(Hyperthreading, simultaneous multithreading)

Shared memory programming model: OpenMP

 Most popular parallel programming language (and library) for the shared memory
programming

 “Fork-Join” execution model

 A parent thread calls “Fork” to create new threads

 The parent thread continues operation, the children threads also start
operation

 “Join” is called by both the parent and children threads

 Children exit

 Parent waits until all children join

 Parent continues operation (serial)

 Directive based

 insert directives into C/fortran

Fork

Join

Join

Fork

p
aralle

l re
g
io

n

serial region

PROGRAM TEST

print *,”Thanks”

!$OMP PARALLEL

print *,”Many Thanks”

!$OMP END PARALLEL

END PROGRAM TEST

Distributed parallel programming model, Message Passing

 In distributed parallel systems, each processor
can not access all data

 Processors must access non-local data by
communication

 Message passing Interface (MPI)

 Parallel Virtual Machine (PVM)

 etc..

 Applications must be parallelized explicitly

 work mapping

 data distribution

 Scalable from the viewpoint of construction

 Just increase the number of nodes

 Note: Distributed parallel programming model
is available on shared memory systems

NIC

P

M

NIC

P

M

NIC

P

M

NIC

P

M

Interconnection Network

send recv

MPI : Message Passing Interface

 de fact standard for parallel programming for distributed parallel systems

 SPMD programming model

 SIMD : Single Instruction Multiple Data

 MIMD : Multiple Instruction Multiple Data

 SPMD: Single Program Multiple Data

 a same binary runs on multiple nodes to process multiple data

 use if (rank=**) to assign a special work on a certain process

Node0 Node1 Node2 Node3 Node4
start exec.

a.out

rank=0

a.out

rank=1

a.out

rank=2

a.out

rank=3

a.out

rank=4

fin exec.

Note: MPI is not a programming language.

MPI is a message passing interface

specification.

MPI: communication types

 Cooperative operations

 cooperatively exchanged in message passing

 receiver explicitly allocate memory space to receive

 explicitly sent by a process and received by another

 communication and synchronization are combined

 One-sided operations

 remote memory reads/writes

 only one process needs to explicitly participate

 communication and synchronization are not combined

 faster

 Programmers must take care about local memory control

rank0 rank1

send(data)
recv(data)

rank0 rank1

Put(data)

M

MPI: Communication types, from a different perspective

 Pairwise (point-to-point) communication

 communication between 2 processes

 Send/Recv, Put/Get

 Collective communication

 communication between multiple processes

 a group of all processes

 a group of some processes

 ex: send a data from rank-0 to all processes

 rank-0 receives data from all other processes

MPI: another example : work sharing between processes

Serial:

for(i=0; i<100; i++)

for(j=0; j<100; j++)

A[i][j] = …..

Parallel:

i0=(100/2)*(rank/2); i1=(100/2)*(rank/2+1)

j0=(100/2)*(rank%2); j1=(100/2)*(rank%2+1)

for(i=i0; i<i1; i++) // 0 … 49, or 50 … 99

for(j=j0; j<j1; j++) // 0 … 49, or 50 … 99

A[i][j] = …..

node0 node1

node2 node3

Matrix A[N][N]

distributed on 4 nodes

• all nodes have a whole

matrix (100x100)

• Each node processes

different area of the matrix Bad news: more difficult to parallelize serial

source codes than OpenMP (shared

programming model)

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI (Today’s focus)

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI (Today’s focus)

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Distributed parallel, communication via network

Hybrid of shared memory and distributed parallel

 2 possible choices of programming models

 Hybrid of shared memory and distributed parallel programming models

 OpenMP + MPI

 distributed parallel programming model

 flat-MPI (remember! sometimes, this is not bad choice)

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Network

Shared memory

communication via

memory

Hybrid of shared memory and distributed parallel

 For NUMA (ex. 2-CPUs in a node), shared memory programming model has “non-local data
access” problem

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus
0101

1010

1011

0101

1010

1011

Hybrid of shared memory and distributed parallel

 For NUMA, shared memory programming model has “non-local data access” problem

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Co

L1

Co

L1

Co

L1

Co

L1

L2

M

Switch or System Bus

Distributed parallel programming model between sets of shared memory cores

Shared memory programming model inside a set of shared cores

Hybrid of OpenMP+MPI

 MPI describes parallelism between processes

 OpenMP provides a shared memory model within a process

Fork

Join

Fork

Join

MPI communication

Hybrid of OpenMP+MPI

 MPI describes parallelism between processes

 OpenMP provides a shared memory model within a process

 After the MPI_Init_thread, you can fork threads wherever you need

MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &prov);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel default(shared) private(iam, np)

{

np = omp_get_num_threads();

iam = omp_get_thread_num();

printf("Hybrid: Hello from thread %d out of %d from process %d out of %d¥n",

iam, np, rank, numprocs);

}

Fork

Join

Join

Fork

p
aralle

l re
g
io

n

serial region

Hybrid of OpenMP+MPI

 MPI specification defines four levels of hybrid parallelism to be used with OpenMP-programming

 MPI implementation do NOT always support all of them

 MPI_THREAD_SINGLE

 Only one thread will call communication interface at once

 MPI_THREAD_FUNNELED

 The process may be multi-threaded, but only the main thread will make MPI calls (all MPI
calls are funneled to the main thread).

 MPI_THREAD_SERIALIZED

 The process may be multi-threaded, and multiple threads may make MPI calls, but only one
at a time: MPI calls are not made concurrently from two distinct threads (all MPI calls are
serialized).

 MPI_THREAD_MULTIPLE

 Multiple threads may call MPI, with no restrictions.

https://www.mpich.org/static/docs/latest/www3/MPI_Init_thread.html

Fork

Join

Hybrid of OpenMP+MPI: Overlapping communication and computation

 The hybrid of OpenMP+MPI allows us to overlap communication and computation

 The threads which do not call MPI functions can continue to other works (not communication)

Fork

Join

Fork

Join

MPI communication

Fork

Join

MPI communication

pragma omp parallel

{

// computation

…..

#pragma omp single

MPI_function();

….

}

Hands-on Practice

OpenMP: Hello world

 The directive to fork threads is #pragma omp parallel

 The threads join at the end of the region

Fork

Join

parallel region

serial region

Exercise: Hello world (OpenMP)

 write the hello world code, compile and run with 12 threads

 compile:

$ icc –qopenmp –O3 <your-source-code.c>

 execution: see next page

 To set the number of threads, set the environmental variable OMP_NUM_THREADS

 for example, export OMP_NUM_THREADS=12

 Edit your job-script and insert the command to set the environmental variable

 Check the result

 may be, you can find “Hello world”

repeated 12 times

Exercise: Hello world (OpenMP)

 write a job script (refer “OBCXlogin.pdf” by Kengo Nakajima for detail)

 submit your job

$ pjsub <your-job-script-file.sh>

#!/bin/sh

#------ pjsub option --------#

#PJM -L rscgrp=lecture

#PJM -L node=1

#PJM --omp thread=28 // set the maximum number of threads

#PJM -L elapse=00:05:00

#PJM -g gt57

#PJM -j

#------- Program execution -------#

export OMP_NUM_THREADS=<your number of threads>

./<your binary>

OpenMP: private data and shared data

 The basic idea of the shared programming model is that variables are shared by default, i.e.
thread can read/write arbitrary variables

 sometimes, threads need their own “private” workspace

 By using private clause, you can make a separate copy for each thread

Fork

Join

myid

myid

=0

myid

=1

myid

=2

myid

=3

Fork

Join

valdefault: all threads access

all variables

private directive enable us to

make the copies of the variables

OpenMP: private data and shared data (FYI)

 private: each thread has its own instance of a variable

 firstprivate: each thread has its own instance of a variable. The variable must be initialized
before the parallel region. At the beginning of the parallel region, the variables in all threads
have a same initial value.

 lastprivate: : each thread has its own instance of a variable. The final value can be transmitted
to the shared variable outside the parallel region.

 shared(default) : variable(s) can be shared among all threads. If you don’t specify any data type,
then the variables should be shared in the parallel region.

Exercise: Hello world from who?

 write, compile and run the following code w/ 12 threads

Note

 omp_get_thread_num() is a function to
obtain its thread-id.

 Another important function is
omp_get_num_threads(), which gives
the number of threads in the region.

OpenMP: set the number of threads

 You’ve already learned the way to specify the number of threads by using the environmental
variable OMP_NUM_THREADS, omp_set_num_threads(num) also allow us to set the number
of threads.

Exercise: the number of threads

 write, compile and run the code at the previous slide by specifying OMP_NUM_THREADS=12
at the job-script

 check the results

 how many threads can you find?

OpenMP: synchronization

 The synchronization directives allow us to control the order of execution of threads

 #pragma omp barrier: synchronizes all threads in the parallel region; all threads pause at the
barrier, until all threads execute the barrier

 #pragma omp critical: specifies mutual exclusion. Only one thread at a time can enter a critical
region

 #pragma omp atomic: Only one thread at a time can update the specified variable

Fork

Join

one thread at a time

Exercise: synchronization

 write, compile and run the following two codes w/ 28 threads, and compare the results

OpenMP: loop

 loop work-sharing is a typical
way to share workloads by
threads to speed-up!

 scheduling and work-
assignment can be specified by
clauses such as schedule

Note: these are

equivalent

loop index “i” is

private by default

in parallel for

OpenMP: reduction

 Standard reduction expressions such as +,
max, min, can be defined in the reduction
clause. reduction(op: list)

 If the reduction is declared, local copies of
“list” are made in all threads, local results
are stored in the local copies, and the local
copies are reduced into a single shared
value.

these are

equivalent

Exercise: parallelize the pi code by using OpenMP
and check execution time by changing the number of threads, 1, 2, 14, 28

#include<stdio.h>
#include<stdlib.h>
#include<omp.h>

#define N 100000000
double mytime();

int main(int argc, char **argv)
{

int i, n, seed;
double x, y;
double t0, t1;
struct drand48_data drand_buf;

t0 = mytime();

seed = 0;
srand48_r (seed, &drand_buf);

n = 0;
for(i=0; i<N; i++){

drand48_r (&drand_buf, &x);
drand48_r (&drand_buf, &y);

if(x*x + y*y < 1.0){
n++;

}
}

t1 = mytime();
printf("pi = %f time=%f¥n",4.0*(double)n/(double)N,

t1-t0);

}

double mytime()
{

struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec*1e-6;

}

Exercise: parallelize the pi code (FYI)

 Compute pi using Monte Carlo method

 generate N sets of two random numbers of [0, 1] : (x,y)

 if (x, y) is in the inside of quadrant of radius 1, then n++

 the ratio of n/N approximates the area of the quadrant

 n/N = (1*1*pi)/4

 pi = 4*n/N

x

y

x

y

x

yN=1 N=10 N=many

Exercise: parallelize the pi code

 Hints:

 drand_buf, seed, must be “private”

MPI (review) : Message Passing Interface

 MPI is not a programming language.

 MPI is a message passing interface specification.

 Programmers call MPI functions to communicate

 MPI_Init function initializes the MPI execution environment. All other MPI functions must be
called after the MPI_Init

 MPI_Finalize function finalizes the MPI

execution environment. All processes

must call this before exiting.

MPI: Hello world

 MPI programs must be launched by a
command for execution such as mpirun,
mpiexe:

$ mpiexec.hydra –n num your_binary

 This runs num copies of your_binary

includes MPI definitions

and types

Node0 Node1

start exec.
a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

a.out

“Hello

world”

fin exec.

MPI: Hello world from who?

 MPI library provides functions
to give

 ID number (rank) of a
specific process

 the number of processes in
a program

 MPI_Comm_rank gives the
rank of the calling process in
the communicator
(MPI_COMM_WORLD)

 MPI_Comm_size gives the
number of processes in the
communicator.

Note: Communicator contains a
list of processes attending a
program. MPI_COMM_WORLD is
the default communicator

Exercise: Hello world from who (MPI)

 write the hello world from who code,
compile and run with 4 processes

 Please refer “Overview of Oakbridge-
CX How to login” by kengo Nakajima
to see the special method to specify
the number of nodes and mpi
processes for the OBCX

Kengo Nakajima “Overview of Oakbridge-CX How to login”

MPI: Synchronization

 MPI also provides a function to synchronize all processes in a communicator, MPI_Barrier

MPI: Pairwise communication

 MPI_Send sends the buffer to the specified rank (dest)

 MPI_Recv receives the buffer from the specified rank (source)

int MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

 buf: the pointer to buffer to be sent/received

 count: the number of elements in the buffer

 datatype: MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, …

 dest/source: rank of destination/source

 tag: message tag

 comm: communicator

Remarks: If there is no corresponding MPI_Recv function call in dest processes, MPI_Send can never be success, and
never finish. vice, sersa

MPI: Pairwise communication

rank=0 rank=1 rank=2 rank=…

Send Recv

buf

printf

Exercise: Pairwise communication

 write, compile and run the code in the previous page with 2 processes

 modify the code in the previous page to perform the following communication:

rank-0 sends an integer to rank-1

rank-2 sends an integer to rank-3

…

rank-n sends an integer to rank-(n+1)

and run the program with 10, 11, and 24 processes

MPI: Collective communication bcast

 Collective communication involves all processes in a communicator

 we’ve already learned MPI_Barrier (MPI_COMM_WORLD), which is a kind of collective
communication to make all processes synchronize

 MPI_Bcast broadcasts a buffer from a process to all processes

int MPI_Bcast(const void *buf, int count, MPI_Datatype datatype,

int root, MPI_COMM comm);

 root is the rank of broadcast root. All processes can be root

rank=0 rank=1 rank=2 rank=…

buf

buf
buf

MPI: Collective communication reduction

 MPI_Reduce reduces the values on all processes to a single value

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, MPI_Datatype
datatype, MPI_Op op, int root, MPI_COMM comm);

 sendbuf, recvbuf: address of send/recv buffer

 op: reduce operation (MPI_SUM, MPI_MAX, MPI_MIN, etc)

 root: rank of root process

 MPI_Allreduce reduce the values on all processors to a single value, and share the value
among all processors

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_COMM comm);

1

P0

2

P1

3

P2

4

P3

10recvbuf

sendbuf

MPI_Reduce

1

P0

2

P1

3

P2

4

P3

10recvbuf

sendbuf

MPI_Allreduce

10 10 10

 Write, compile and run the code->

 Replace MPI_Reduce with
MPI_Allreduce, and compare the
results

Exercise: Collective communication

Exercise:

 prepare an integer array of size 3

 substitute your favorite numbers to the array at rank-0

 share the favorite numbers to all processes

1) by using MPI_Send/Recv

2) by using MPI_Bcast

3) by using MPI_Allreduce

 run the three program (all with 28 processors) and check if the numbers can be shared
successfully

References:

 https://ja.wikipedia.org/wiki/フリンの分類

 High Performance Scientific Computing, Marsha J. Berger and Andreas Kloecker

 “Structured Parallel Programming: Patterns for Efficient Computation,” Michael McCool, Arch
Robinson, James Reinders

 MPI and Hybrid Programming Models William Gropp

 https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

