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ORNL Leadership Class Systems 2004 - 2018

) 2008 Cray XT5

Cray XT5 Jaguar

2008 Jaguar

c 2OO)ZT4 Jaguar
ra e
L2004 2005 ngé j;Tr?’ Jaguar From 2004 - 2018, HPC systems relied
Phoenix jgéuar on chiller-based cooling (5.5°C supply)

with annualized PUEs to ~1.4




ORNL'’s Transition to Warmer Facility Supply Temperatures

Summit: A combination of

Titan: Refrigerant-based direct on-package cooling

per-rack cooling with and RDHX with 21°C supply

direct rejection of heat to is > 95% room-neutral.

cold 5.5°C water + Above dewpoint

* Below dewpoint » Contribution by chillers

« 100% use of chillers ~20% of the hours of the
year
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Oak Ridge National Laboratory’s Cray XK7 Titan
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Operational from November 2012 Througﬂugws’r 019
18,688 compute nodes -1 AMD Opteron + 1 NVIBWK_Q_gr/node
27PF (peak); 17.59PF (HPL); 9.5MW (peak] —)
Delivered > 27B compute hours over its life -

7 v Tﬂan enfefed as fhé #1 supércompuféf
—_inthe world-in ‘November 2012, and was -
~_ still-#712 on the Top500 hsf af the hme of
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Perspective on Titan as an Air-cooled Supercomputer

ORNL'’s Cray XK7 “Titan” Wait. What?¢
+ 200 cabinets, each with a 3,000 CFM fan
+ 600,000 CFM (air volume) Titan moves as much air as a
« Dry air has a density of 13.076 cubic feet per pound long-range Airbus A340 at
« Titan moves 600,000/13.076/60 -> 765 Ibs/sec cruising altitude.

@ flightradar24 A ¢

Feet B ALTITUDE [ SPEED Knots
25.800 420

Airbus A340 17500 o S
+ At takeoff, each of (4) engines - 2
generates 140kN of force and | seo0o : - 140
consumes 1000 Ibs/sec of air ‘
At cruise, the A340’s engines 0

UTC 08:25 08:34 08:43

each produce ~29kN and

consumes ~200 Ibs/sec of air. """ SPEED

08:25 utc 2 KTS
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Motivation for “Warmer” Cooling Solutions Serving HPC Centers

Reduced Cost, Both CAPEX and OPEX

— Reduce or eliminate the need for traditional
chillers.

« No chillers, no ozone-depleting refrigerants (GREEN)
— Oak Ridge calculates an annualized PUE for

air--cooled devices of no better than 1.4
(ASHRAE Zone 4A — Mixed Humid)

- HPC power budgets continue to grow — Summit has a design point for
>12MW (HPC-only). Minimizing PUE/ITUE is critical to the budget.

Oak Ridge, TN

e Easier, more reliable design
— Design is reduced to pumps, evaporative cooling, heat exchangers.
— Traditional chilled water may not be necessary at all (NREL, NCAR, et al)




OLCF Facilities Supporting Summit __ i

Titan - 9MW @ heavy < et
[eYele N
Sitting on 250

pounds/ft2 raised floor

Uses 42F water and

special CDUs (XDPs)

Summit — 256
compute cabinets
on-slab

100% room-neutral
design uses RDHX
20MW warm-water
cooling plant using
cenfralized
CDU/secondary
loop




e Summit
— Demand: 3-10MW;

« Secondary Loop
— Supply 3300GPM (12,500

liters/min) @ 21°C; Return @
29-33°C

— CPUs and GPUs use cold
plates

— DIMMs and parasitic loads use
RDHX

— Storage and Network use
RDHX




Cooling Design

Existing chilled water cooling loop

Primary Loop uses Evaporative
Cooling Towers (~80% of the
hours of the year)

When the MTW RETURN is above
the 21C setpoint, use a second
set of Trim HX (with 5.5C on the
other side) to drive MTW to the
21C setpoint.

A4 A

Cooling Tower 1 Cooling Tower 2 S CHILLER 1

The need for the trim-loop is

about 20% of the hours in the )
year, and can ramp 0-100% to ' CHILLER 2
meet the setpoint back to
Summit CHILLER 3

CHILLER 4

CHILLER 5

New primary
cooling loop




Benefits of Warm Water + Operating Dashboards

« Warm Water allows annualized PUE of 1.1
— ~$1M cost per MW-year for consumption on Summit;
— ~$100k cost per MW-year for waste heat management

* Integration with PLC allows us to tune water flow
— Better delta(t); less pumping energy

 Integration with IBM’s OpenBMC allows us to protect these 40k
components from inadequate flow across the cold plates

 Integration with the scheduler allows us to correlate power and
temperature data with individual applications.

» Additional data streams to be added- most from the Facility PLC




Comparing Energy Performance - Titan to Summit

Demonstrated Performance on Titan (Oct 2012)
17.59 PF 8.9MW peak 8.3MW average

Demonstrated Performance on Summit (Oct 2018)
143.5 PF 11,065kW peak 9.783kW average

Titan: ~2.1 GFLOPs/Watt
Summit: 14.66 GFLOPs/Watt
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Active OpenBMC Datastreams

Live Summit Cooling Metrics

Live Summit OpenBMC data stream scraped every 10 sec - All 4606 nodes

Supply Temperature Flow

3381 gpm

Realtime Summit Power

Summit Total Power
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Summit MTW Cooling Loads and Temperatures
HPL Run 5/24/19 Durafion: 5:48

PUE during HPL Run = 1.081
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IT Load follows
:‘ a traditional
|

| HPL profile -

| SV
OAWBT remained
at/above the
supply target,
affecting ECT

Total power load
on the energy
plant reflects

storage and other -
items A small portion of

the total load
required the use of
CHW (trim RDHX)
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CTW and CHW comparison at July Wet Bulb Temperatures
July 1-21
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Caution - Secondary (Closed) Loop Concerns Worsen as
Temperatures Rise...

Allowable Wetted Materials
» Lead-free copper alloys with less than 15% zinc.
Stainless steels

+ EPDM

* Polypropylene

IBM’s Water Quality Requirements
All metals less than or equal to 0.10 ppm
Calcium less than or equal to 1.0 ppm

Magnesium
Manganese
Phosphorus

less than or equal to 1.0 ppm
less than or equal to 0.10 ppm
less than or equal to 0.50 ppm

Silica less than or equal to 1.0 ppm

Sodium less

than or equal to 0.10 ppm

Bromide less than or equal to 0.10 ppm

Nitrite less than or equal to 0.50 ppm
Chloride less than or equal to 0.50 ppm
Nitrate less than or equal to 0.50 ppm

Sulfate less than or equal to 0.50 ppm
Conductivity less than or equal to 10.0 uS/cm.

pH 6.5-8.0

Turbidity (NTU) less than or equal to 1

(

EEHPCWG is looking for
common ground among the
HPC suppliers for water quality

Accelerated Corrosion
System Blockages
Reduced System Efficiency

Water Chemistry - Biocides
» The choice of biocide depends on whether you are chasing anaerobic
bacteria, aerobic bacteria, fungi, and/or algae

Fungi might not be
detected in the water,
even though it can
grow and cause
blockage of cooling
channels in cold plates







