
First day

Basics of parallel programming

RIKEN CCS HPC Summer School
Hiroya Matsuba, RIKEN CCS

Today’s schedule: Basics of parallel programming

2

 7/22 AM: Lecture

 Goals

 Understand the design of typical parallel computers

 Understand how we can make programs for such parallel
computers

 7/22 PM-1: Preparation of programming environment

 Goal

 Log in to K computer

 7/22 PM-2: Hands on

 Goal

 Create and run simple parallel programs

Why do we need parallel programing?

3

 Most of the today’s computers are parallel computers

 Cloud infrastructure

 Amazon, Google, Microsoft have huge number of servers

 PC

 Intel Core i7 Processor has 4 or 6 cores

 Smartphones

 Samsung Galaxy S9 has an 8-core processor

 Does everyone do parallel programming?

- No.

Why do we need parallel programing?

4

 We don’t have to do parallel programming if we have multiple
processors for different purposes.

 All the applications are NOT parallel programs

 Operating system automatically selects available CPUs and
different applications run on different CPUs

 This is what is happening in most cases

CPU 0

Application
A

CPU 1

Application
B

CPU 2

Application
C

CPU 3

Application
D

Computer (PC or Smartphone)

Why do we need parallel programing?

5

 What if an application needs more power than a single
processor?

- Parallel programming is required.

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

CPU 0

Application Y

CPU 1 CPU 0 CPU 1

Computer 0 Computer 1

Two types of parallel programming

6

 Type 1: An application uses multiple processors in a single
computer

 “Single computer” means a computer that consists of a set
of processors that share the same memory

- Shared memory parallel programming

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

Memory

All the CPUs are connected to a single memory

Two types of parallel programming

7

 Type 2: An application uses multiple computers

- Distributed memory parallel programming

CPUs can access only their local memory

CPU 0

Application Y

CPU 1 CPU 0 CPU 1

Computer 0 Computer 1

Memory Memory

Shared memory parallel programming

8

 We usually use threads of operating systems

 This is a functionality of operating systems that enable us to
run a part of application programs on different processors

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

Memory

Main
function

Sub
function

1

Sub
function

2

Sub
function

3

Example program

9

 The following program is used throughout this lecture

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

for(int i = 1; i <= 1000; i++) {
b[i] = (a[i–1] + a[i+1]) / 2.0;

}

Shared memory parallel programming

10

 How we program with threads

 You don’t have to understand this program

#include <pthread.h>

/* They are shared among threads */
char a[1002], b[1002];

void *calc(void *arg) {
int start = (int)(long)arg;
for(int i = start; i < start + 250; i++)

b[i] = (a[i-1] + a[i+1]) / 2.0;
}

int main(int argc, char *argv[]) {
load_a();
for(int i = 0; i < 4; i++) {

pthread_create(calc, (void *)(i * 250 + 1));
/* NOTE: this returns immediately */

}
pthread_join(…) /* Wait for the threads done */

}
* This doesn't compile because some arguments are omitted

Shared memory parallel programming

11

 Multi thread programming

 The concept is easy to understand

 Target data exists on the shared memory

 Single- and multi-thread programming can essentially be
the same

- Just the difference of how many processors are
participating

 Writing a stable multithread program is extremely difficult

 Some data structures may be destroyed if we access them
simultaneously from multiple threads

- You don’t have to worry about it today

Shared memory parallel programming

12

 Shared memory parallel programming for HPC

 OpenMP

 Very useful language extension that enables easy multi-
thread programming

 Example of OpenMP program

 Just to add one line to the unparallelized program!

char a[1002], b[1002];

int main(int argc, char *argv[]) {
load_a();

#pragma omp parallel for
for(int i = 1; i <= 1000; i++) {

b[i] = (a[i-1] + a[i+1]) / 2.0;
}

}

Distributed memory parallel programming

13

 Today’s main interest

 It is difficult and complicated but we have to learn because:

 most of today’s supercomputers are distributed memory
parallel computers

 it is only the way to speed up programs by more than
hundreds times

 it is only the way to solve problems that are larger than the
size of single computer’s memory

Distributed memory parallel programming

14

 Basic structure:
A single program is run on different CPUs with different data

Memory

0.2 0.2 1.3

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Memory

2.1 3.2 5.7

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Memory

8.1 9.2 6.2

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Different data

Same program

Process 0 Process 1 Process 2

Distributed memory parallel programming

15

 How to write a distributed parallel program

1. Divide data

2. Write a program so that each node processes its own data

 What’s difficult is some data must be shared between
multiple processes

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

Let’s do this calculation with 4 processes

Distributed memory parallel programming

16

 Divide the arrays A and B

0 1 2 1001500 501 1000

0.2 0.2 1.3 5.2 1.6 6.9 6.9Array A

Array B

249 250

1.5 8.3

251

3.7

252

9.3

750 751

4.4 3.8

Process 2Process 1Process 0 Process 3

Let’s recall b[i] requires a[i-1] and a[i+1]

Distributed memory parallel programming

17

 Communication is usually required in distributed parallel
programming

Array A of Process 0

249 250

1.5 8.3

251

?

252

Array A of Process 1 ? 3.7 9.3

Step 1: Initial state

We usually add additional
areas near borders

Array A of Process 0

249 250

1.5 8.3

251

3.7

252

Array A of Process 1 8.3 3.7 9.3

Step 2: Communicate

Distributed memory parallel programming

18

 Communication is usually required in distributed parallel
programming

Array B of Process 1

2.6

8.8

Step 3: Calculate

Array A of Process 0

249 250

1.5 8.3

251

3.7

252

Array A of Process 1 8.3 3.7 9.3

Array B of Process 0

Distributed memory parallel programming

19

 Example program

 Many tedious parts are simplified

char a[252], b[252]; /* We only have ¼ of the array */

int main(int argc, char *argv[]) {
int myrank = Get_my_rank(); /* shown later */
initialize_a(myrank); /* load only my part */

/* Pay attention to the first and last processes! */
send_border_left_to_right(a, myrank);
send_border_right_to_left(a, myrank);

for(int i = 1; i <= 250; i++) {
b[i] = (a[i-1] + a[i+1]) / 2.0;

}

/* NOTE: looking at the resulting b[] is more difficult
than in a serial version because every node has only
a part of b[] */

}

Message Passing Interface (MPI)

20

 MPI

 A de facto standard communication library that provides
communication APIs for data exchange in distributed
memory parallel programs

 Benefits

 MPI program can run almost on any supercomputers

 MPI is usually optimized by the administrator of each
supercomputer so that we can take full advantage of high-
speed network of the supercomputer

 Problems

 Not very easy to program with

Message Passing Interface (MPI)

21

 Example

 Transferring a message between the two processes

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int nprocs, myrank;
double number;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
number = 1.0;
MPI_Send(&number, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);

} else if (myrank == 1) {
MPI_Recv(&number, 1, MPI_DOUBLE, 1, 1, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
printf(“recv: %f¥n”, number);

}
MPI_Finalize();

}

Message Passing Interface (MPI)

22

 How to compile and run MPI programs

 An example of running C program on a standard PC cluster

 The format of hostfile varies depending on the MPI implementation

 It is usually unnecessary to provide hostfile in supercomputers

 mpiexec part should be written in a job script at supercomputers

mpicc –O –o myprog myprog.c

cat ~/machines
node00 slots=8
node01 slots=8
node02 slots=8
node03 slots=8

mpiexec –hostfile ~/machines –np 32 myprog

Message Passing Interface (MPI)

23

 MPI_Send/MPI_Recv

 Sends/receives a message

 datatype: MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, …

 tag: each matching pair of send/recv must have the same tag
number (any integer number works)

 I do not recommend always setting 0 (although it works)

 comm: Almost always MPI_COMM_WORLD

int MPI_Send(const void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

Message Passing Interface (MPI)

24

 MPI_Barrier

 Waits for all processes to call this function

int MPI_Barrier(MPI_Comm comm)

Message Passing Interface (MPI)

25

 MPI_Allreduce

 Combines values from all processes and distributes the result
back to all processes

int MPI_Allreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

1 2 3 4Sendbuf

MPI_Allreduce(…, MPI_SUM, …)

Recvbuf 10 10 10 10

Message Passing Interface (MPI)

26

 Other important functions

 MPI_Sendrecv

 MPI_Bcast

 MPI_Gather/MPI_Allgather

 MPI_Alltoall

 …

27

Hands-on session

Preparation

28

Let’s write the following program

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
int myrank, nnodes;

MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nnodes);

printf("Hello MPI (C) from %d/%d¥n", myrank, nnodes);

MPI_Finalize();
return 0;

}

If you want to use C (hello.c)

Preparation

29

Let’s write the following program

program hello_mpi
use mpi
implicit none
integer:: ierr
integer:: myrank, nnodes

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, nnodes, ierr)

write (*, '(a,i2,a,i2)') 'Hello MPI (Fortran) from ', &
myrank, '/', nnodes

call MPI_FINALIZE(ierr)
end

If you want to use Fortran (hello.f90)

Preparation

30

Let’s compile the program

klogin3$ mpifccpx -o hello hello.c

Compiling C code

klogin3$ mpifrtpx -o hello hello.f90

Compiling Fortran code

Nothing will be displayed if you wrote the program correctly

Preparation

31

Let’s prepare the following job script

#!/bin/bash -x
#
#PJM --rsc-list "node=8"
#PJM --mpi "proc=8"
#PJM --mpi "rank-map-bynode"
#PJM --rsc-list "elapse=00:01:00"
#PJM --stg-transfiles all
#PJM --stgin "./hello* ./"
#PJM -s

. /work/system/Env_base

mpiexec -np 8 ./hello

Job.sh

Preparation

32

Let’s submit the job

klogin3$ pjsub job.sh

Check job status by pjstat command

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL

0 1 0 0 0 0 0 0 0 1
s 0 1 0 0 0 0 0 0 0 1

JOB_ID JOB_NAME MD ST USER GROUP START_DATE ELAPSE_TIM NODE_RE
7414437 job.sh NM QUE a03573 ra001016 [--/-- --:--:--] 0000:00:00 8:-

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL

0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0

pjstat will display as follows if your job is done

Preparation

33

Let’s look at the results

klogin3$ ls -ltr job.sh.o*
(pick up the last one)

klogin3$ cat job.sh.o7414437
Env_base: K-1.2.0-24
Hello MPI (C) from 3/8
Hello MPI (C) from 4/8
Hello MPI (C) from 0/8
Hello MPI (C) from 1/8
Hello MPI (C) from 2/8
Hello MPI (C) from 6/8
Hello MPI (C) from 7/8
Hello MPI (C) from 5/8

If you see the output like this, you are all set!

Problem 1

34

1. Let’s write the following simple MPI program and run it
with two nodes (either in C or Fortran)

#define BUFSIZE 1024
char sendbuf[BUFSIZE], recvbuf[BUFSIZE];

int main(int argc, char *argv[]) {
int msgsize = 1024;
1. Initialize MPI
2. Write something to the entire sendbuf[]
3. Wait until two process reaches here (MPI_Barrier)
4. Get the current time (MPI_Wtime)
5. Send a message with the size “msgsize” from

processes 0 to 1
6. Send back the message from 1 to 0

(use recvbuf at 0)
7. Get the current time again
if (myrank == 0) {

8. Check if sendbuf and recvbuf have same data
9. Calculate the elpsed time on process 0
10. Calculate the bandwidth (MB/s) and print it

}
11. Finalize MPI

}

Problem 1

35

2. Rewrite the program to iterate over various buffer and
message size

 4, 8, 16, 32 byte, …, 128 MByte

3. Plot the resulting bandwidth (if you have time)

NOTE:

Don’t forget to change the name of your executable program

#!/bin/bash –x
#PJM --rsc-list "node=2"
#PJM --mpi "proc=2"
#PJM --mpi "rank-map-bynode"
#PJM --stgin "./problem1 ./“
…

mpiexec –np 2 ./problem1

Problem 2

36

1. Let’s write a program in which each process sends data to
the next process

 Your program must work with any number of processes

 Check if communication was correctly performed

 Hint

send

Process 0

recv

send

Process 1

recv

send

Process 2

recv

send

Process 3

recv

int MPI_Sendrecv(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest,
int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

Problem 2 (IMPORTANT!)

37

 Writing MPI_Send and MPI_Recv separately is wrong even if
it looks working

 Writing MPI_Recv first is obviously wrong (no one sends data)

 Writing MPI_Send first is also wrong. It causes deadlocks
because there are no spaces to store incoming data

 It does not always deadlock due to internal buffers of MPI
library (never rely on this buffering!)

 Another way to avoid deadlock: using non-blocking
communication (MPI_Irecv, MPI_Wait)

send

recv

send

recv

send

recv

send

recv

Not yet prepared

Problem 2

38

 If you set MPI_PROC_NULL as destination or source rank,
communication functions returns immediately without doing
anything

 It allows us to handle the first and last process in the same way as
other processes

send

Process 0

recv

send

Process 1

recv

send

Process 2

recv

send

Process 3

recv

MPI_PROC_NULL

MPI_PROC_NULL

Problem 3

39

 Let’s write a program of today’s example application with
MPI

 Hints are available around slide 16

 You may initialize the array A as you like, but let’s assume each node
knows only its part of the array (so you have to exchange values)

 You may make some restrictions on the size of array and the number
of processes

 E.g.) Array size is a multiple of the number of processes

for(int i = 1; i <= 1000; i++) {
b[i] = (a[i–1] + a[i+1]) / 2.0;

}

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

Problem 3

40

 This problem is a great preparation of tomorrow’s lecture

 If you have time, let’s parallelize the calculation in each
process using OpenMP

 Use -Kopenmp option to compile your OpenMP program

 You may not see performance gain unless you iterate the
calculation over and over again

 Copy back the array B to A and do the same thing again

 Set OMP_NUM_THREADS in your job script

 The number of CPUs (cores) of each node of K computer is 8

#!/bin/bash –x
PJM…
…
export OPM_NUM_THREADS=8
mpiexec …

