
First day

Basics of parallel programming

RIKEN CCS HPC Summer School
Hiroya Matsuba, RIKEN CCS

Today’s schedule: Basics of parallel programming

2

 7/22 AM: Lecture

 Goals

 Understand the design of typical parallel computers

 Understand how we can make programs for such parallel
computers

 7/22 PM-1: Preparation of programming environment

 Goal

 Log in to K computer

 7/22 PM-2: Hands on

 Goal

 Create and run simple parallel programs

Why do we need parallel programing?

3

 Most of the today’s computers are parallel computers

 Cloud infrastructure

 Amazon, Google, Microsoft have huge number of servers

 PC

 Intel Core i7 Processor has 4 or 6 cores

 Smartphones

 Samsung Galaxy S9 has an 8-core processor

 Does everyone do parallel programming?

- No.

Why do we need parallel programing?

4

 We don’t have to do parallel programming if we have multiple
processors for different purposes.

 All the applications are NOT parallel programs

 Operating system automatically selects available CPUs and
different applications run on different CPUs

 This is what is happening in most cases

CPU 0

Application
A

CPU 1

Application
B

CPU 2

Application
C

CPU 3

Application
D

Computer (PC or Smartphone)

Why do we need parallel programing?

5

 What if an application needs more power than a single
processor?

- Parallel programming is required.

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

CPU 0

Application Y

CPU 1 CPU 0 CPU 1

Computer 0 Computer 1

Two types of parallel programming

6

 Type 1: An application uses multiple processors in a single
computer

 “Single computer” means a computer that consists of a set
of processors that share the same memory

- Shared memory parallel programming

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

Memory

All the CPUs are connected to a single memory

Two types of parallel programming

7

 Type 2: An application uses multiple computers

- Distributed memory parallel programming

CPUs can access only their local memory

CPU 0

Application Y

CPU 1 CPU 0 CPU 1

Computer 0 Computer 1

Memory Memory

Shared memory parallel programming

8

 We usually use threads of operating systems

 This is a functionality of operating systems that enable us to
run a part of application programs on different processors

CPU 0

Application X

CPU 1 CPU 2 CPU 3

Computer (PC or Smartphone)

Memory

Main
function

Sub
function

1

Sub
function

2

Sub
function

3

Example program

9

 The following program is used throughout this lecture

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

for(int i = 1; i <= 1000; i++) {
b[i] = (a[i–1] + a[i+1]) / 2.0;

}

Shared memory parallel programming

10

 How we program with threads

 You don’t have to understand this program

#include <pthread.h>

/* They are shared among threads */
char a[1002], b[1002];

void *calc(void *arg) {
int start = (int)(long)arg;
for(int i = start; i < start + 250; i++)

b[i] = (a[i-1] + a[i+1]) / 2.0;
}

int main(int argc, char *argv[]) {
load_a();
for(int i = 0; i < 4; i++) {

pthread_create(calc, (void *)(i * 250 + 1));
/* NOTE: this returns immediately */

}
pthread_join(…) /* Wait for the threads done */

}
* This doesn't compile because some arguments are omitted

Shared memory parallel programming

11

 Multi thread programming

 The concept is easy to understand

 Target data exists on the shared memory

 Single- and multi-thread programming can essentially be
the same

- Just the difference of how many processors are
participating

 Writing a stable multithread program is extremely difficult

 Some data structures may be destroyed if we access them
simultaneously from multiple threads

- You don’t have to worry about it today

Shared memory parallel programming

12

 Shared memory parallel programming for HPC

 OpenMP

 Very useful language extension that enables easy multi-
thread programming

 Example of OpenMP program

 Just to add one line to the unparallelized program!

char a[1002], b[1002];

int main(int argc, char *argv[]) {
load_a();

#pragma omp parallel for
for(int i = 1; i <= 1000; i++) {

b[i] = (a[i-1] + a[i+1]) / 2.0;
}

}

Distributed memory parallel programming

13

 Today’s main interest

 It is difficult and complicated but we have to learn because:

 most of today’s supercomputers are distributed memory
parallel computers

 it is only the way to speed up programs by more than
hundreds times

 it is only the way to solve problems that are larger than the
size of single computer’s memory

Distributed memory parallel programming

14

 Basic structure:
A single program is run on different CPUs with different data

Memory

0.2 0.2 1.3

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Memory

2.1 3.2 5.7

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Memory

8.1 9.2 6.2

Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]

}

if(myrank==0) {
printf(“r=%f”,..)

}

return 0;

Different data

Same program

Process 0 Process 1 Process 2

Distributed memory parallel programming

15

 How to write a distributed parallel program

1. Divide data

2. Write a program so that each node processes its own data

 What’s difficult is some data must be shared between
multiple processes

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

Let’s do this calculation with 4 processes

Distributed memory parallel programming

16

 Divide the arrays A and B

0 1 2 1001500 501 1000

0.2 0.2 1.3 5.2 1.6 6.9 6.9Array A

Array B

249 250

1.5 8.3

251

3.7

252

9.3

750 751

4.4 3.8

Process 2Process 1Process 0 Process 3

Let’s recall b[i] requires a[i-1] and a[i+1]

Distributed memory parallel programming

17

 Communication is usually required in distributed parallel
programming

Array A of Process 0

249 250

1.5 8.3

251

?

252

Array A of Process 1 ? 3.7 9.3

Step 1: Initial state

We usually add additional
areas near borders

Array A of Process 0

249 250

1.5 8.3

251

3.7

252

Array A of Process 1 8.3 3.7 9.3

Step 2: Communicate

Distributed memory parallel programming

18

 Communication is usually required in distributed parallel
programming

Array B of Process 1

2.6

8.8

Step 3: Calculate

Array A of Process 0

249 250

1.5 8.3

251

3.7

252

Array A of Process 1 8.3 3.7 9.3

Array B of Process 0

Distributed memory parallel programming

19

 Example program

 Many tedious parts are simplified

char a[252], b[252]; /* We only have ¼ of the array */

int main(int argc, char *argv[]) {
int myrank = Get_my_rank(); /* shown later */
initialize_a(myrank); /* load only my part */

/* Pay attention to the first and last processes! */
send_border_left_to_right(a, myrank);
send_border_right_to_left(a, myrank);

for(int i = 1; i <= 250; i++) {
b[i] = (a[i-1] + a[i+1]) / 2.0;

}

/* NOTE: looking at the resulting b[] is more difficult
than in a serial version because every node has only
a part of b[] */

}

Message Passing Interface (MPI)

20

 MPI

 A de facto standard communication library that provides
communication APIs for data exchange in distributed
memory parallel programs

 Benefits

 MPI program can run almost on any supercomputers

 MPI is usually optimized by the administrator of each
supercomputer so that we can take full advantage of high-
speed network of the supercomputer

 Problems

 Not very easy to program with

Message Passing Interface (MPI)

21

 Example

 Transferring a message between the two processes

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int nprocs, myrank;
double number;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
number = 1.0;
MPI_Send(&number, 1, MPI_DOUBLE, 1, 0, MPI_COMM_WORLD);

} else if (myrank == 1) {
MPI_Recv(&number, 1, MPI_DOUBLE, 1, 1, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);
printf(“recv: %f¥n”, number);

}
MPI_Finalize();

}

Message Passing Interface (MPI)

22

 How to compile and run MPI programs

 An example of running C program on a standard PC cluster

 The format of hostfile varies depending on the MPI implementation

 It is usually unnecessary to provide hostfile in supercomputers

 mpiexec part should be written in a job script at supercomputers

mpicc –O –o myprog myprog.c

cat ~/machines
node00 slots=8
node01 slots=8
node02 slots=8
node03 slots=8

mpiexec –hostfile ~/machines –np 32 myprog

Message Passing Interface (MPI)

23

 MPI_Send/MPI_Recv

 Sends/receives a message

 datatype: MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, …

 tag: each matching pair of send/recv must have the same tag
number (any integer number works)

 I do not recommend always setting 0 (although it works)

 comm: Almost always MPI_COMM_WORLD

int MPI_Send(const void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

Message Passing Interface (MPI)

24

 MPI_Barrier

 Waits for all processes to call this function

int MPI_Barrier(MPI_Comm comm)

Message Passing Interface (MPI)

25

 MPI_Allreduce

 Combines values from all processes and distributes the result
back to all processes

int MPI_Allreduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

1 2 3 4Sendbuf

MPI_Allreduce(…, MPI_SUM, …)

Recvbuf 10 10 10 10

Message Passing Interface (MPI)

26

 Other important functions

 MPI_Sendrecv

 MPI_Bcast

 MPI_Gather/MPI_Allgather

 MPI_Alltoall

 …

27

Hands-on session

Preparation

28

Let’s write the following program

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
int myrank, nnodes;

MPI_Init(NULL, NULL);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nnodes);

printf("Hello MPI (C) from %d/%d¥n", myrank, nnodes);

MPI_Finalize();
return 0;

}

If you want to use C (hello.c)

Preparation

29

Let’s write the following program

program hello_mpi
use mpi
implicit none
integer:: ierr
integer:: myrank, nnodes

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, nnodes, ierr)

write (*, '(a,i2,a,i2)') 'Hello MPI (Fortran) from ', &
myrank, '/', nnodes

call MPI_FINALIZE(ierr)
end

If you want to use Fortran (hello.f90)

Preparation

30

Let’s compile the program

klogin3$ mpifccpx -o hello hello.c

Compiling C code

klogin3$ mpifrtpx -o hello hello.f90

Compiling Fortran code

Nothing will be displayed if you wrote the program correctly

Preparation

31

Let’s prepare the following job script

#!/bin/bash -x
#
#PJM --rsc-list "node=8"
#PJM --mpi "proc=8"
#PJM --mpi "rank-map-bynode"
#PJM --rsc-list "elapse=00:01:00"
#PJM --stg-transfiles all
#PJM --stgin "./hello* ./"
#PJM -s

. /work/system/Env_base

mpiexec -np 8 ./hello

Job.sh

Preparation

32

Let’s submit the job

klogin3$ pjsub job.sh

Check job status by pjstat command

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL

0 1 0 0 0 0 0 0 0 1
s 0 1 0 0 0 0 0 0 0 1

JOB_ID JOB_NAME MD ST USER GROUP START_DATE ELAPSE_TIM NODE_RE
7414437 job.sh NM QUE a03573 ra001016 [--/-- --:--:--] 0000:00:00 8:-

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL

0 0 0 0 0 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0

pjstat will display as follows if your job is done

Preparation

33

Let’s look at the results

klogin3$ ls -ltr job.sh.o*
(pick up the last one)

klogin3$ cat job.sh.o7414437
Env_base: K-1.2.0-24
Hello MPI (C) from 3/8
Hello MPI (C) from 4/8
Hello MPI (C) from 0/8
Hello MPI (C) from 1/8
Hello MPI (C) from 2/8
Hello MPI (C) from 6/8
Hello MPI (C) from 7/8
Hello MPI (C) from 5/8

If you see the output like this, you are all set!

Problem 1

34

1. Let’s write the following simple MPI program and run it
with two nodes (either in C or Fortran)

#define BUFSIZE 1024
char sendbuf[BUFSIZE], recvbuf[BUFSIZE];

int main(int argc, char *argv[]) {
int msgsize = 1024;
1. Initialize MPI
2. Write something to the entire sendbuf[]
3. Wait until two process reaches here (MPI_Barrier)
4. Get the current time (MPI_Wtime)
5. Send a message with the size “msgsize” from

processes 0 to 1
6. Send back the message from 1 to 0

(use recvbuf at 0)
7. Get the current time again
if (myrank == 0) {

8. Check if sendbuf and recvbuf have same data
9. Calculate the elpsed time on process 0
10. Calculate the bandwidth (MB/s) and print it

}
11. Finalize MPI

}

Problem 1

35

2. Rewrite the program to iterate over various buffer and
message size

 4, 8, 16, 32 byte, …, 128 MByte

3. Plot the resulting bandwidth (if you have time)

NOTE:

Don’t forget to change the name of your executable program

#!/bin/bash –x
#PJM --rsc-list "node=2"
#PJM --mpi "proc=2"
#PJM --mpi "rank-map-bynode"
#PJM --stgin "./problem1 ./“
…

mpiexec –np 2 ./problem1

Problem 2

36

1. Let’s write a program in which each process sends data to
the next process

 Your program must work with any number of processes

 Check if communication was correctly performed

 Hint

send

Process 0

recv

send

Process 1

recv

send

Process 2

recv

send

Process 3

recv

int MPI_Sendrecv(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, int dest,
int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

Problem 2 (IMPORTANT!)

37

 Writing MPI_Send and MPI_Recv separately is wrong even if
it looks working

 Writing MPI_Recv first is obviously wrong (no one sends data)

 Writing MPI_Send first is also wrong. It causes deadlocks
because there are no spaces to store incoming data

 It does not always deadlock due to internal buffers of MPI
library (never rely on this buffering!)

 Another way to avoid deadlock: using non-blocking
communication (MPI_Irecv, MPI_Wait)

send

recv

send

recv

send

recv

send

recv

Not yet prepared

Problem 2

38

 If you set MPI_PROC_NULL as destination or source rank,
communication functions returns immediately without doing
anything

 It allows us to handle the first and last process in the same way as
other processes

send

Process 0

recv

send

Process 1

recv

send

Process 2

recv

send

Process 3

recv

MPI_PROC_NULL

MPI_PROC_NULL

Problem 3

39

 Let’s write a program of today’s example application with
MPI

 Hints are available around slide 16

 You may initialize the array A as you like, but let’s assume each node
knows only its part of the array (so you have to exchange values)

 You may make some restrictions on the size of array and the number
of processes

 E.g.) Array size is a multiple of the number of processes

for(int i = 1; i <= 1000; i++) {
b[i] = (a[i–1] + a[i+1]) / 2.0;

}

0 1 2 3 4 5 6 7 1001998 999 1000

0.2 0.2 1.3 2.3 1.5 8.3 6.9 5.8 1.5 8.3 6.9 6.9Array A

Array B

Problem 3

40

 This problem is a great preparation of tomorrow’s lecture

 If you have time, let’s parallelize the calculation in each
process using OpenMP

 Use -Kopenmp option to compile your OpenMP program

 You may not see performance gain unless you iterate the
calculation over and over again

 Copy back the array B to A and do the same thing again

 Set OMP_NUM_THREADS in your job script

 The number of CPUs (cores) of each node of K computer is 8

#!/bin/bash –x
PJM…
…
export OPM_NUM_THREADS=8
mpiexec …

