First day

Basics of parallel programming

RIKEN CCS HPC Summer School
Hiroya Matsuba, RIKEN CCS

e Ol II Computer simulations

anz=w  R-CCS create the future



. ° M Olll Computer simulations
Today’s schedule: Basics of parallel programming 2 M e

® 7/22 AM: Lecture
e Goals
o Understand the design of typical parallel computers

« Understand how we can make programs for such parallel
computers

® 7/22 PM-1: Preparation of programming environment

e Goal
o Loginto K computer
® 7/22 PM-2: Hands on
e Goal

o Create and run simple parallel programs



p OI.. Computer simulations
men RCC

S create the future

Why do we need parallel programing?

® Most of the today’s computers are parallel computers
e Cloud infrastructure
« Amazon, Google, Microsoft have huge number of servers
o PC
« Intel Core i7 Processor has 4 or 6 cores
e Smartphones

o Samsung Galaxy S9 has an 8-core processor

® Does everyone do parallel programming?

- No.



° ° Olll Computer simulations
Why do we need parallel programing? R e

® We don’t have to do parallel programming if we have multiple
processors for different purposes.

Computer (PC or Smartphone)

Application Application Application Application
A B C D

CPUO CPU1 CPU 2 CPU 3

e All the applications are NOT parallel programs

e Operating system automatically selects available CPUs and
different applications run on different CPUs

e This is what is happening in most cases



. ° OIII Computer simulations
Why do we need parallel programing? e ekt

e® What if an application needs more power than a single
processor?

- Parallel programming is required.

Computer (PC or Smartphone)

Application X
CPUO CPU1 CPU 2 CPU 3
Computer 0 Computer 1
Application Y

CPUO CPU 1 CPUO CPU 1




° ° OII. Computer simulations
Two types of parallel programming R QI oz

® Type 1: An application uses multiple processors in a single
computer

e “Single computer” means a computer that consists of a set
of processors that share the same memory

- Shared memory parallel programming

Computer (PC or Smartphone)

Application X

CPUO CPU 1 CPU 2 CPU 3

Memory

All the CPUs are connected to a single memory



Two types of parallel programming

® Type 2: An application uses multiple computers

- Distributed memory parallel programming

Computer 0 Computer 1

p. OI II Computer simulations

awzw  R-CCS createthe future

ApplicationY

CPUO CPU 1 CPUO CPU 1

Memory Memory

CPUs can access only their local memory



. ° OIII Computer simulations
Shared memory parallel programming QM oz

® We usually use threads of operating systems

e This is a functionality of operating systems that enable us to
run a part of application programs on different processors

Computer (PC or Smartphone)

Application X
. Sub Sub Sub
Main function function function
function e DY oP
1 % 2 2 3 (%
A\ a\0 a\0
CPUO CPU 1 CPU 2 CPU 3

Memory




ﬂ (NIl computer simulations
Exa m p I e p rogra m aeen R-CCS  create the future

® The following program is used throughout this lecture

O 1 2 3 4 5 6 7 998 999 10001001
Array A 10.2|0.2]1.3|2.3/1.5|8.3|6.9|5.8| ========= 11.5/8.3/16.9/6.9

Array B

for(int i = 1; i <= 1000; i++) {
b[i] = (a[i-1] + a[i+1]) / 2.0;
}




Shared memory parallel programming

® How we program with threads

e You don’t have to understand this program

P. OII. Computer simulations
Rl

awzw  R-CCS createthe future

#include <pthread.h>

/* They are shared among threads */ Voqﬁ
char a[1002], b[1002]; &.\SN‘\
\
. 02
void *calc(void *arg) { 2\l
int start = (int)(long)arg;
for(int i = start; i < start + 250; i++)
b[i] = (a[i-1] + a[i+1]) / 2.90;
}
int main(int argc, char *argv[]) {

load _a();
for(int 1 = 0; 1 < 4; i++) {

/* NOTE: this returns immediately */
}

pthread create(calc, (void *)(i * 250 + 1));

pthread _join(..) /* Wait for the threads done */

* This doesn't compile because some arguments are omitted




p. OI.. Computer simulations

Shared memory parallel programming %8 RLCS crtetne e

® Multi thread programming
e The concept is easy to understand
o Target data exists on the shared memory

o Single- and multi-thread programming can essentially be
the same

~ Just the difference of how many processors are
participating

e Writing a stable multithread program is extremely difficult

o Some data structures may be destroyed if we access them
simultaneously from multiple threads

~ You don’t have to worry about it today



P. OII. Computer simulations

Shared memory parallel programming %8 RLCS crtetne e

® Shared memory parallel programming for HPC
e OpenMP

o Very useful language extension that enables easy multi-
thread programming

e Example of OpenMP program

o Just to add one line to the unparallelized program!

char a[1002], b[1002];

int main(int argc, char *argv[]) {
load a();

#pragma omp parallel for
for(int i = 1; 1 <= 1000; i++) {
2.

b[i] = (a[i-1] + a[i+1]) / 2.0;




p. OI.. Computer simulations

Distributed memory parallel programming 82 RCCS oootorue

® Today’s main interest
® |t is difficult and complicated but we have to learn because:

e most of today’s supercomputers are distributed memory
parallel computers

e it is only the way to speed up programs by more than
hundreds times

e itis only the way to solve problems that are larger than the
size of single computer’s memory



p. OIII Computer simulations

awzw  R-CCS createthe future

Distributed memory parallel programming

® Basic structure:
A single program is run on different CPUs with different data

Different data

Process 0 E;;Cﬁ‘%\ Process 2
Memory 4 emory / N Memory
0.210.2|==1.3 2.1|3.2|==|5.7 8.1/9.2|==|6.2
Program Program Program

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]
}

if(myrank==0) {
printf(“r=%f”,..)
}

return 0; ‘

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]
}

if(myrank==0) {
printf(“r=%f’,..)
}

~" peturn 0;

Same program

e~

for(i=0; i<200;i++){
b[i]=a[i-1]+a[i+1]
}

if(myrank==0) {

printf(“r=%f’,..)
}

return 0;




. . ° M OII. Computer simulations
Distributed memory parallel programming R e

® How to write a distributed parallel program
1. Divide data
2. Write a program so that each node processes its own data

® What's difficult is some data must be shared between
multiple processes

O 1 2 3 4 5 6 7 998 999 10001001
Array A |0.2/10.2{1.3|12.3|1.5|8.3|/6.9|5.8| ========= 115|8.3/6.9/6.9

Array B

Let’s do this calculation with 4 processes



. . ° M Olll Computer simulations
Distributed memory parallel programming R e

® Divide the arrays A and B

0 1 2 249 2501251 252 500] 501 750|751 10001001
Array A|0.2|0.2|1.3 1.518.313.7:9.3 5.2]11.6 4.413.8 6.9/6.9
Array B
Process O Process 1 |Process 2 Process 3

Let’s recall b[i] requires a[i-1] and a[i+1]



. . ° M OII. Computer simulations
Distributed memory parallel programming R e

® Communication is usually required in distributed parallel
programming

Step 1: Initial state

249 2501251 252

Array A of Process 0 === [1,5/8.3| ? >We usually add additional
1= areas near borders

Array A of Process 1 ?13.7/9.3| ===

Step 2: Communicate

249 2501251 252

Array A of Process 0 ===11.5/8.3|3.7
v | 1
Array A of Process 1 8.313.7|9.3| ===




. . ° M OII. Computer simulations
Distributed memory parallel programming R e

® Communication is usually required in distributed parallel
programming

Step 3: Calculate

249 250|251 252

Array A of Process O === |1.5/8.3|3.7

\//

Array B of Process O 2.6

Array A of Process 1 8.313.7|9.3| ===

V4

Array B of Process 1 8.8




. . ° M Olll Computer simulations
Distributed memory parallel programming R e

® Example program

e Many tedious parts are simplified

char a[252], b[252]; /* We only have 7% of the array */

int main(int argc, char *argv[]) {
int myrank = Get_my_rank(); /* shown later */
initialize_a(myrank); /* load only my part */

/* Pay attention to the first and last processes! */
send_border_left to right(a, myrank);
send_border_right to left(a, myrank);

for(int i = 1; i <= 250; i++) {
b[i] = (a[i-1] + a[i+1]) / 2.e;
}

/* NOTE: looking at the resulting b[] is more difficult
than in a serial version because every node has only
a part of b[] */



p. OI.. Computer simulations

Message Passing Interface (MPI) LR staebrite

e MPI

e A de facto standard communication library that provides
communication APIs for data exchange in distributed
memory parallel programs

e Benefits

« MPI program can run almost on any supercomputers

o MPI is usually optimized by the administrator of each
supercomputer so that we can take full advantage of high-
speed network of the supercomputer

e Problems

o Not very easy to program with



H ° OII. Computer simulations
Message Passing Interface (MPI) R QM o

® Example

e Transferring a message between the two processes

#include <mpi.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
int nprocs, myrank;
double number;

MPI_Init(NULL, NULL);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) {
number = 1.0;
MPI_Send(&number, 1, MPI_DOUBLE, 1, ©, MPI_COMM_WORLD);
} else if (myrank == 1) {
MPI_Recv(&number, 1, MPI_DOUBLE, 1, 1, MPI_COMM WORLD,
MPI_STATUS_ IGNORE);
printf(“recv: %f¥n”, number);

}
MPI Finalize();




H ° Olll Computer simulations
Message Passing Interface (MPI) R QM o

® How to compile and run MPI programs

e An example of running C program on a standard PC cluster
# mpicc -0 -0 myprog myprog.c

# cat ~/machines
nhode@0 slots=8
node@l1 slots=8
node@2 slots=8
node®3 slots=8

# mpiexec -hostfile ~/machines -np 32 myprog

e The format of hostfile varies depending on the MPI implementation
e Itis usually unnecessary to provide hostfile in supercomputers

e mpiexec part should be written in a job script at supercomputers



H ° Olll Computer simulations
Message Passing Interface (MPI) R QM o

e MPI_Send/MPI_Recv

e Sends/receives a message

int MPI_Send(const void *buf, int count,

MPI Datatype datatype, int dest, int tag,
MPI Comm comm)

int MPI_Recv(void *buf, int count,
MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Status *status)
e datatype: MPI_INT, MPI_LONG, MPI_FLOAT, MPI_DOUBLE, ...

e tag: each matching pair of send/recv must have the same tag
number (any integer number works)

« | do not recommend always setting O (although it works)

e comm: Almost always MPI_COMM_WORLD



H ° OIII Computer simulations
Message Passing Interface (MPI) R QM o

e MPI_Barrier

e Waits for all processes to call this function

int MPI _Barrier(MPI_Comm comm)




H ° OIII Computer simulations
Message Passing Interface (MPI) R QM o

® MPI_Allreduce

e Combines values from all processes and distributes the result
back to all processes

int MPI_Allreduce(const void *sendbuf, void *recvbuf,
int count, MPI Datatype datatype,
MPI Op op, MPI_Comm comm)

Sendbuf 1 2 3 4

N NN

[ MPI_Allreduce(..., MPI_SUM, ...) ]

VA WANIANY:

Recvbuf 10 10 10 10




p OII. Computer simulations
men RCC

-CCS createthe future

Message Passing Interface (MPI)

® Other important functions
e MPI _Sendrecv
e MPI _Bcast
e MPI|_Gather/MPI_Allgather
e MPI_Alltoall



Hands-on session



P t. P. OIII Computer simulations
re p a ra I o n arzn R-CCS createthe future

Let’s write the following program

If you want to use C (hello.c)

#include <stdio.h>
#include <mpi.h>

int main(int argc, char *argv[]) {
int myrank, nnodes;

MPI_Init(NULL, NULL);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
MPI_Comm_size(MPI_COMM_WORLD, &nnodes);

printf("Hello MPI (C) from %d/%d¥n", myrank, nnodes);

MPI Finalize();
return 9;




P t. P. OII. Computer simulations
re p a ra I o n arzn R-CCS createthe future

Let’s write the following program

If you want to use Fortran (hello.f90)

program hello mpi
use mpi
implicit none
integer:: ierr
integer:: myrank, nnodes

call MPI INIT(ierr)
call MPI_COMM_RANK(MPI_COMM WORLD, myrank, ierr)
call MPI _COMM SIZE(MPI_COMM WORLD, nnodes, ierr)

write (*, '(a,i2,a,i2)') 'Hello MPI (Fortran) from ', &
myrank, '/', nnodes

call MPI FINALIZE(ierr)
end




p OII. Computer simulations
men RCC

-CCS createthe future

Preparation

Let’s compile the program

Compiling C code

klogin3$ mpifccpx -o hello hello.c

Compiling Fortran code

klogin3$ mpifrtpx -o hello hello.f90

Nothing will be displayed if you wrote the program correctly



P t. ﬁ OIII Computer simulations
re p a ra I o n arzn R-CCS createthe future

Let’s prepare the following job script

Job.sh

#!/bin/bash -x

#

#PIM --rsc-list "node=8"

#PIM --mpi "proc=8"

#PIM --mpi "rank-map-bynode"

#PIM --rsc-1list "elapse=00:01:00"
#PIM --stg-transfiles all

#PIM --stgin "./hello* ./"

#PIM -s

. /work/system/Env_base

mpiexec -np 8 ./hello




p. OI.. Computer simulations

P re p a ra t i O n arz=w R-CCS createthe future

Let’s submit the job

klogin3$ pjsub job.sh

Check job status by pjstat command

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL

0 1 0 0 % 0 %) %] 0 1
S 0 1 0 0 % 0 0 0 0 1
JOB_ID JOB_NAME MD ST  USER GROUP START_DATE ELAPSE_TIM NODE_RE
7414437 job.sh NM QUE a@3573 ra@e1e16 [--/-- --:--:--] 0©0000:00:00 8:-

pjstat will display as follows if your job is done

klogin3$ pjstat
ACCEPT QUEUED STGIN READY RUNNING RUNOUT STGOUT HOLD ERROR TOTAL
0 0 0 (%] (%] (%] (%] 0 0 0
S 0 0 0 (%] (%] (%] (%] 0 0 (9]



Preparation

Let’s look at the results

klogin3$ 1s -1ltr job.sh.o*

(pick up the last one)

klogin3$ cat job.sh.07414437
Env_base: K-1.

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

If you see the output like this, you are all set!

MPI
MPI
MPI
MPI
MPI
MPI
MPI
MPI

(C)
(C)
(C)
(C)
(C)
(C)
(C)
(C)

2.0-24

from
from
from
from
from
from
from
from

3/8
4/8
0/8
1/8
2/8
6/8
7/8
5/8

ll Computer simulations

-CCS createthe future



Problem 1

p. OI.. Computer simulations

awzw  R-CCS createthe future

1. Let’s write the following simple MPI program and run it
with two nodes (either in C or Fortran)

#define BUFSIZE 1024
char sendbuf[BUFSIZE], recvbuf[BUFSIZE];

int main(int argc, char *argv[]) {
int msgsize = 1024;

uihWNPR

(o)}

if

}
11.

. Initialize MPI

. Write something to the entire sendbuf[]

. Wait until two process reaches here (MPI_Barrier)
. Get the current time (MPI_Wtime)

. Send a message with the size “msgsize” from

processes 0 to 1

. Send back the message from 1 to ©

(use recvbuf at 9)

. Get the current time again

(myrank == 0) {

8. Check if sendbuf and recvbuf have same data
9. Calculate the elpsed time on process 0

10. Calculate the bandwidth (MB/s) and print it

Finalize MPI



Problem 1 2 QM o

2. Rewrite the program to iterate over various buffer and
message size

e 4,8, 16, 32 byte, ..., 128 MByte
3. Plot the resulting bandwidth (if you have time)

NOTE:

Don’t forget to change the name of your executable program

#!/bin/bash -x

#PIM --rsc-list "node=2"
#PIM --mpi "proc=2"

#PIM --mpi "rank-map-bynode"
#PIM --stgin "./probleml ./

mpiexec -np 2 ./probleml




° OIII Computer simulations
PrObIem 2 Q R-CCS createthe future
1. Let’s write a program in which each process sends data to

the next process

e Your program must work with any number of processes

e Check if communication was correctly performed

send \\\\\\\ send \\\\\\\\ send \\\\\\\\ send
recv ™ recv ™ recv ™ recv
Process O Process 1 Process 2 Process 3

e Hint

int MPI_Sendrecv(const void *sendbuf, int sendcount,
MPI Datatype sendtype, int dest,
int sendtag, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int source, int recvtag, MPI_Comm comm,
MPI_ Status *status)




p. OI.. Computer simulations
RIKEH

R-CCS createthe future

Problem 2 (IMPORTANT!)

® Writing MPI_Send and MPI_Recv separately is wrong even if
it looks working

e Writing MPI_Recv first is obviously wrong (no one sends data)

e Writing MPI_Send first is also wrong. It causes deadlocks
because there are no spaces to store incoming data

« It does not always deadlock due to internal buffers of MPI
library (never rely on this buffering!)

« Another way to avoid deadlock: using non-blocking
communication (MPI_Irecv, MPI_Wait)

send \ send \ send \ send
recv recv recv recv

AL

Not yet prepared



Problem 2

p. OIII Computer simulations
Rl

awzw  R-CCS createthe future

® |f you set MPI_PROC_NULL as destination or source rank,
communication functions returns immediately without doing

anything

® |t allows us to handle the first and last process in the same way as
other processes

MPI_PROC_NULL

S~

send

N

™ recv

N

send

N

™ recv

RS

send

N

™ recv

Process O

RS

send N

o

MPI_PROC_NULL

™ recv

Process 1

Process 2

Process 3



Problem 3 2 QM o

® Let’s write a program of today’s example application with
MPI
e Hints are available around slide 16

e You may initialize the array A as you like, but let’s assume each node
knows only its part of the array (so you have to exchange values)

e You may make some restrictions on the size of array and the number
of processes

o E.g.) Array size is a multiple of the number of processes

0O 1 2 3 4 5 6 7 998 999 1000 1001
ArrayA 0.210.2/13/2.3/15|8.3/6.9/5.8 1.5/8.3/6.9/6.9

Array B

for(int 1 = 1; i <= 1000; i++) {
b[i] = (a[i-1] + a[i+1]) / 2.0;

}



Problem 3 2 QM o

® This problem is a great preparation of tomorrow’s lecture

® |f you have time, let’s parallelize the calculation in each
process using OpenMP
e Use -Kopenmp option to compile your OpenMP program

e You may not see performance gain unless you iterate the
calculation over and over again

o Copy back the array B to A and do the same thing again
e Set OMP_NUM_THREADS in your job script

o The number of CPUs (cores) of each node of K computer is 8

#!/bin/bash -x
# PIM..

export OPM_NUM THREADS=8
mpiexec ..



