

AICS TECHNICAL Report

N0. 2015-001

An efficient algorithm

for the computation of the reduced determinant

for Wilson-Dirac operator

By

Shinji Takeda1,2, Yoshinobu Kuramashi2,3,4

and Yoshifumi Nakamura2

1 Institute of Physics, Kanazawa University

2 RIKEN Advanced Institute for Computational Science

3 Graduate School of Pure and Applied Sciences,

University of Tsukuba

4 Center for Computational Sciences, University of Tsukuba

Submitted on 06/02/2015

Accepted on 06/03/2015

Published and copyrighted by

RIKEN Advanced Institute for Computational Science (AICS)

7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan

An efficient algorithm for the computation

of the reduced determinant for Wilson-Dirac operator

Shinji Takedaa,b, Yoshinobu Kuramashib,c,d and Yoshifumi Nakamurab

a Institute of Physics, Kanazawa University, Kanazawa 920-1192, Japan
b RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 650-0047, Japan

c Graduate School of Pure and Applied Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8571, Japan

d Center for Computational Sciences, University of Tsukuba,
Tsukuba, Ibaraki 305-8577, Japan

February 6, 2015

Abstract

The computation of the determinant for Wilson-Dirac operator contains two steps: 1) analytical
reduction from the determinant of the original sparse matrix to that of lower order dense matrix,
and 2) numerical evaluation of the latter determinant. The first part was already done by Ref. [1]
and we use their reduction. In this report, we present a efficient technique for the computation of the
determinant of the lower order dense matrix. Furthermore we address a reduction of Dirac-spinor
space and its implementation. The algorithm shown here was used in Ref. [2].

1

Contents

1 Definition of problem 3

2 Time reduced case 5
2.1 How to compute corner blocks of an inverse matrix 5

2.1.1 For lower corners . 5
2.1.2 For upper corners . 7
2.1.3 Flow . 8

2.2 How to compute A0 . 9
2.3 Comments . 10

3 Time reduced + Dirac-spinor reduced case 12
3.1 Reduction of spinor space . 12

3.1.1 D(1) related case . 12
3.1.2 D(3) related case . 15
3.1.3 Flow . 16

3.2 How to obtain D−1
(2∗2) and D−1

(4∗4) . 19
3.3 How to obtain H0 and H± . 20
3.4 How to obtain V̂(q) . 21
3.5 Comment . 21
3.6 Computation of A0 . 21

4 Benchmark 22

Appendix A
Dirac-gamma matrix notation 23

Appendix B
Formula for block matrix 23

2

1 Definition of problem

Our purpose here is to compute the determinant of the Wilson-Dirac operator in 4-dimensional
Euclidean system with finite chemical potential µ for one-flavor,

Dx,y(µ) = δx,y − κ

4∑
ν=1

[eµaδν,4(1 − γν)Uν(x)δx+ν̂,y + e−µaδν,4(1 + γν)U†
ν (y)δx−ν̂,y], (1)

where γν (ν = 1, 2, 3, 4) are the gamma-matrix in the system, κ is the hopping parameter and
Uν(x) are link variables. The determinant of the operator1 in a time-blocked form with temporal
lattice size NT = 8 is given by,

det D(µ)

= det

d(1) d(12) 0 0 0 0 0 e−µ/T d(18)

d(21) d(2) d(23) 0 0 0 0 0
0 d(32) d(3) d(34) 0 0 0 0
0 0 d(43) d(4) d(45) 0 0 0
0 0 0 d(54) d(5) d(56) 0 0
0 0 0 0 d(65) d(6) d(67) 0
0 0 0 0 0 d(76) d(7) d(78)

eµ/T d(81) 0 0 0 0 0 d(87) d(8)

, (2)

where we have defined the matrices of order 12N3
L (where NL is the spatial lattice linear size).

For example, the block diagonal elements d(t) for t = 1, 2, 3, ..., NT(= 8) are three-dimensional
Wilson-Dirac operator. The block off-diagonal elements for t = 1, 2, ..., NT − 1(=7) are hopping
term for the time-direction,

d(t+1,t) = −2κP+U†
4 (t)δx,y, (3)

d(t,t+1) = −2κP−U4(t)δx,y, (4)

and for t = NT(= 8) due to the anti-periodic boundary condition for fermion field, the corner
elements are given by (additional minus sign cancels the original sign)

d(1,NT) = 2κP+U†
4 (NT)δx,y, (5)

d(NT,1) = 2κP−U4(NT)δx,y, (6)

where we denote U4(t) = Uν=4(x0 = t,x) is the link-variable for time-direction and P± = (1±γ4)/2.
The details of the Dirac-gamma matrices are given in appendix Appendix A.

By making use of the domain decomposition representation2,

det D(µ) = det

D(1) D(12) 0 e−µ/T D(14)

D(21) D(2) D(23) 0
0 D(32) D(3) D(34)

eµ/T D(41) 0 D(43) D(4)

 , (12)

1Inclusion of the clover term is straightforward.
2Decomposed into four domains:

domain (1) : for t = 1, 2, 3, (7)

domain (2) : for t = 4, (8)

domain (3) : for t = 5, 6, 7, (9)

domain (4) : for t = 8, (10)

(11)

3

and the reduction for the time direction [1], the determinant may be written as

detD(µ) = A0 det[1 − H0 − eµ/T H+ − e−µ/T H−], (13)

where

A0 = detD(1) det D(3) detD(2∗2) det D(4∗4), (14)

H0 = D−1
(4∗4)D(412)D

−1
(2∗2)D(214) + D−1

(4∗4)D(432)D
−1
(2∗2)D(234), (15)

H+ = D−1
(4∗4)D(412)D

−1
(2∗2)D(234), (16)

H− = D−1
(4∗4)D(432)D

−1
(2∗2)D(214), (17)

with

D(2∗2) = D(2) − D(21)D
−1
(1)D(12) − D(23)D

−1
(3)D(32), (18)

D(4∗4) = D(4) − D(41)D
−1
(1)D(14) − D(43)D

−1
(3)D(34), (19)

D(412) = D(41)D
−1
(1)D(12), (20)

D(432) = D(43)D
−1
(3)D(32), (21)

D(214) = D(21)D
−1
(1)D(14), (22)

D(234) = D(23)D
−1
(3)D(34). (23)

In this note, we do not derive this form, but we address how to numerically compute the expression
eq.(13) in an efficient way. Now, our task is to compute the following matrix products

D(21)D
−1
(1)D(12), (24)

D(21)D
−1
(1)D(14), (25)

D(41)D
−1
(1)D(14), (26)

D(41)D
−1
(1)D(12), (27)

and

D(43)D
−1
(3)D(34), (28)

D(43)D
−1
(3)D(32), (29)

D(23)D
−1
(3)D(32), (30)

D(23)D
−1
(3)D(34). (31)

An algorithm to compute them will be given in section 2.1. On the other hand, the computation
of A0 in eq.(14) will be addressed in section 2.2.

In the rest of this section, we explain a key idea in the computation of eq.(24-27). For NT = 8
case, D(12), D(14), D(21) and D(41) are given in a block form

D(12) =

 0
0
∗

 , (32)

D(14) =

 ∗
0
0

 , (33)

D(21) =
(

0 0 ∗
)
, (34)

D(41) =
(
∗ 0 0

)
, (35)

4

where each block element is a matrix with the size 12N3
L and there are many zeros. Thus, we need

only four corner elements (∗ element) of D−1
(1),

D−1
(1) =

 ∗ − ∗
− − −
∗ − ∗

 . (36)

Usually, LU decomposition algorithm automatically computes all elements of D−1
(1), but we need

only small fraction of them. The same goes for eq.(28-31) where D−1
(3) appears instead of D−1

(1).
Question now is how to compute only the corners without computing others. This report provides
an answer to this demand and the details will be given in section 2.1.

2 Time reduced case

2.1 How to compute corner blocks of an inverse matrix

2.1.1 For lower corners

2-block for lower corners

First of all, consider 2-block size matrix,

α2 =
(

d(1) d(12)

d(21) d(2)

)
. (37)

By using the formula in eq.(178) in appendix Appendix B, the inverse matrix of α2 (in a block
form) is given by

α−1
2 =

(
d−1
(1) + d−1

(1)d(12)B
−1
2(2)d(21)d

−1
(1) −d−1

(1)d(12)B
−1
2(2)

−B−1
2(2)d(21)d

−1
(1) B−1

2(2)

)
, (38)

where the “B”ackward (hopping domains (2) → (1) → (2)) matrix is given by

B2(2) = d(2) − d(21)d
−1
(1)d(12). (39)

While the second index of B2(2) refers to the lattice domain (it is (2)), the first index refers the
block size (it is 2) of α2, although B2(2) itself is 1-block size. We call the first index “level”.

In the end, we obtain lower corner block elements

(2, 2) element of α−1
2 = B−1

2(2), (40)

(2, 1) element of α−1
2 = −B−1

2(2)d(21)d
−1
(1), (41)

for 2-block size case.
In principle, one can compute other (upper) corner elements, but it requires additional calcula-

tion. As we will see later in section 2.1.2, other decomposition is useful for the computation of the
upper corner elements.

3-block for lower corners

For 3-block size case,

α3 =

 d(1) d(12) 0
d(21) d(2) d(23)

0 d(32) d(3)

 . (42)

5

By using eq.(178), the inverse matrix of α3 (in a block form) is given by

α−1
3

=

 α2
0

d(23)

0 d(32) d(3)

−1

(43)

=

 α−1
2 + α−1

2

[
0

d(23)

]
B−1

3(3)

[
0 d(32)

]
α−1

2 −α−1
2

[
0

d(23)

]
B−1

3(3)

−B−1
3(3)

[
0 d(32)

]
α−1

2 B−1
3(3)

 (44)

=

 ∗ ∗ d−1
(1)d(12)B

−1
2(2)d(23)B

−1
3(3)

∗ ∗ −B−1
2(2)d(23)B

−1
3(3)

B−1
3(3)d(32)B

−1
2(2)d(21)d

−1
(1) −B−1

3(3)d(32)B
−1
2(2) B−1

3(3)

 , (45)

where the backward (hopping domains (3) → (2) → (3)) at level 3 matrix is given by

B3(3) = d(3) − (0, d(32))α−1
2

(
0

d(23)

)
,

= d(3) − d(32)B
−1
2(2)d(23), (46)

which can be obtained from B2(2) that is the backward matrix at level 2 in eq.(39).
Thus we can see that

(3, 3) element of α−1
3 = B−1

3(3), (47)

(3, 1) element of α−1
3 = B−1

3(3)d(32)B
−1
2(2)d(21)d

−1
(1), (48)

for 3-block size case.

4-block for lower corners

For

α4 =

d(1) d(12) 0 0
d(21) d(2) d(23) 0

0 d(32) d(3) d(34)

0 0 d(43) d(4)

 . (49)

Then

(4, 4) element of α−1
4 = B−1

4(4) = (d(4) − d(43)B
−1
3(3)d(34))−1, (50)

(4, 1) element of α−1
4 = −B−1

4(4)d(43)B
−1
3(3)d(32)B

−1
2(2)d(21)d

−1
(1), (51)

for 4-block size case.

t-block for lower corners

Here we show only the results for t-block size case.

(t, t) element of α−1
t = B−1

t(t) = (d(t) − d(t,t−1)B
−1
t−1(t−1)d(t−1,t))−1, (52)

(t, 1) element of α−1
t = (−)t+1B−1

t(t)d(t,t−1)B
−1
t−1(t−1)d(t−1,t−2)...B

−1
2(2)d(21)d

−1
(1). (53)

If one wants to obtain those of D−1
(3), one has to shift the domain in eq.(52) and (53)

(t) −→ (t + NT/2), (54)

but the level is intact.

6

2.1.2 For upper corners

2-block for upper corners

First of all, consider 2-block size matrix with n = NT/2 − 1

β2 =
(

d(n−1) d(n−1,n)

d(n,n−1) d(n)

)
. (55)

By using the above formula, the inverse matrix of β2 (in a block form) is given by

β−1
2 =

(
F−1

2(n−1) −F−1
2(n−1)d(n−1,n)d

−1
(n)

−d−1
(n)d(n,n−1)F

−1
2(n−1) d−1

(n) + d−1
(n)d(n,n−1)F

−1
2(n−1)d(n−1,n)d

−1
(n)

)
, (56)

where the “F”orward (hopping domains (n − 1) → (n) → (n − 1)) matrix is given by

F2(n−1) = d(n−1) − d(n−1,n)d
−1
(n)d(n,n−1). (57)

In the end, we obtain the upper corner block elements

(1, 1) element of β−1
2 = F−1

2(n−1), (58)

(1, 2) element of β−1
2 = −F−1

2(n−1)d(n−1,n)d
−1
(n), (59)

for 2-block size case.

3-block for upper corners

For 3-block size case,

β3 =

 d(n−2) d(n−2,n−1) 0
d(n−1,n−2) d(n−1) d(n−1,n)

0 d(n,n−1) d(n)

 . (60)

By using eq.(180), the inverse matrix of β3 (in a block form) is given by

β−1
3

=

 d(n−2) d(n−2,n−1) 0
d(n−1,n−2)

0 β2

−1

(61)

=

 F−1
3(n−2) −F−1

3(n−2)

[
d(n−2,n−1) 0

]
β−1

2

∗ ∗ ∗
∗ ∗ ∗

 (62)

=

 F−1
3(n−2) ∗ F−1

3(n−2)d(n−2,n−1)F
−1
2(n−1)d(n−1,n)d

−1
(n)

∗ ∗ ∗
∗ ∗ ∗

 , (63)

where the forward (hopping domains (n − 2) → (n − 1) → (n − 2)) at level 3 matrix is given by

F3(n−2) = d(n−2) − d(n−2,n−1)F
−1
2(n−1)d(n−1,n−2), (64)

which can be obtained from F2(n−1) that is the forward matrix at level 2 in eq.(57).
Thus we can see that

(1, 1) element of β−1
3 = F−1

3(n−2), (65)

(1, 3) element of β−1
3 = F−1

3(n−2)d(n−2,n−1)F
−1
2(n−1)d(n−1,n)d

−1
(n), (66)

for 3-block size case.

7

4-block for upper corners

For

β4 =

d(n−3) d(n−3,n−2) 0 0

d(n−2,n−3) d(n−2) d(n−2,n−1) 0
0 d(n−1,n−2) d(n−1) d(n−1,n)

0 0 d(n,n−1) d(n)

 . (67)

Then

(1, 1) element of β−1
4 = F−1

4(n−3) = (d(n−3) − d(n−3,n−2)F
−1
3(n−2)d(n−2,n−3))−1, (68)

(1, 4) element of β−1
4 = −F−1

4(n−3)d(n−3,n−2)F
−1
3(n−2)d(n−2,n−1)F

−1
2(n−1)d(n−1,n)d

−1
(n), (69)

for 4-block size case.

t-block for upper corners

Here we show only the results for t-block (n = NT/2 − 1) size case.

(1, 1) element of β−1
t = F−1

t(n−t+1)

= (d(n−t+1) − d(n−t+1,n−t+2)F
−1
t−1(n−t+2)d(n−t+2,n−t+1))−1, (70)

(1, t) element of β−1
t = (−)t+1F−1

t(n−t+1)d(n−t+1,n−t+2)F
−1
t−1(n−t+2)d(n−t+2,n−t+3)...

×F−1
2(n−1)d(n−1,n)d

−1
(n). (71)

If one wants to obtain those of D−1
(3), one has to shift the domain in eq.(70) and (71) as that of

eq.(54).

2.1.3 Flow

We can obtain the corners of D−1
(1) by the following recursion method.

B0 ⇐ d−1
(1) · · · ⋆

L0 ⇐ d−1
(1)

F0 ⇐ d−1
(NT/2−1)

U0 ⇐ d−1
(NT/2−1)

do t = 2 ∼ NT/2 − 1
get d(t), d(t,t−1) and d(t−1,t)

B1 ⇐ d(t) − d(t,t−1)B0d(t−1,t)

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ −B1d(t,t−1)L0

B0 ⇐ B1 copy
L0 ⇐ L1 copy
get d(NT/2−t), d(NT/2−t,NT/2−t+1) and d(NT/2−t+1,NT/2−t)

F1 ⇐ d(NT/2−t) − d(NT/2−t,NT/2−t+1)F0d(NT/2−t+1,NT/2−t)

F1 ⇐ inverse of F1

U1 ⇐ −F1d(NT/2−t,NT/2−t+1)U0

F0 ⇐ F1 copy
U0 ⇐ U1 copy

enddo
Although B-L loop and F -U loop are independent each other, we show them in a combined form
just for a convenience of writing in note. This loop can be parallelized in an actual implementation.

8

The symbol ⋆ means that in the process with it the sub determinant can be computed as will be
discussed in section 2.2 for the evaluation of A0. In the end, all corner elements are obtained by

(NT/2 − 1, NT/2 − 1) element of D−1
(1) = B1, (72)

(NT/2 − 1, 1) element of D−1
(1) = L1, (73)

(1, 1) element of D−1
(1) = F1, (74)

(1, NT/2 − 1) element of D−1
(1) = U1. (75)

For D−1
(3) case, the domain of d(∗) has to be shifted as in eq.(54) compared with the previous one,

B0 ⇐ d−1
(NT/2+1) · · · ⋆

L0 ⇐ d−1
(NT/2+1)

F0 ⇐ d−1
(NT−1)

U0 ⇐ d−1
(NT−1)

do t = 2 ∼ NT/2 − 1
get d(NT/2+t), d(NT/2+t,NT/2+t−1) and d(NT/2+t−1,NT/2+t)

B1 ⇐ d(NT/2+t) − d(NT/2+t,NT/2+t−1)B0d(NT/2+t−1,NT/2+t)

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ −B1d(NT/2+t,NT/2+t−1)L0

B0 ⇐ B1 copy
L0 ⇐ L1 copy
get d(NT−t), d(NT−t,NT−t+1) and d(NT−t+1,NT−t)

F1 ⇐ d(NT−t) − d(NT−t,NN−t+1)F0d(NT−t+1,NT−t)

F1 ⇐ inverse of F1

U1 ⇐ −F1d(NT−t,NT−t+1)U0

F0 ⇐ F1 copy
U0 ⇐ U1 copy

enddo
In the end, all corner elements are obtained by

(NT/2 − 1, NT/2 − 1) element of D−1
(3) = B1, (76)

(NT/2 − 1, 1) element of D−1
(3) = L1, (77)

(1, 1) element of D−1
(3) = F1, (78)

(1, NT/2 − 1) element of D−1
(3) = U1. (79)

2.2 How to compute A0

For the computation of A0 in eq.(14), we need

det D(1), (80)
detD(3). (81)

9

To evaluate the first one, for the expression in eq.(42) where the time slice is n = NT/2 − 1 = 3,
we use eq.(183)

detD(1) = detα3

= det

 d(1) d(12) 0
d(21) d(2) d(23)

0 d(32) d(3)

= det

 α2
0

d(23)

0 d(32) d(3)

= detα2 · det

[
d(3) − (0, d(32))α−1

2

(
0

d(23)

)]
. (82)

The first factor in eq.(82) is given by

det α2 = det
(

d(1) d(12)

d(21) d(2)

)
= det d(1) · det

[
d(2) − d(21)d

−1
(1)d(12)

]
= detB1(1) · det B2(2), ∵ eq.(39), (83)

where we have defined B1(1) = d(1). The second factor in eq.(82) is given by

det
[
d(3) − (0, d(32))α−1

2

(
0

d(23)

)]
= det

[
d(3) − d(32)B

−1
2(2)d(23)

]
∵ eq.(38)

= detB3(3) ∵ eq.(46). (84)

So in the end, eq.(82) is given by

det D(1) = det B1(1) det B2(2) det B3(3). (85)

In general, for any n it is given by

det D(1) =
n∏

t=1

det Bt(t). (86)

The det Bt(t) can be computed in the process of the B−1
t(t) by the LU decomposition. This com-

putation of detBt(t) is not so crucial. The computation of det D(3) can be done in the exactly
same way. Furthermore, detD(2∗2) and detD(4∗4) can be also computed in the process of the their
inverse calculation by the LU decomposition.

2.3 Comments

• Note that this method works for NT ≥ 6.
• For Hermitian matrix H(1) = γ5D(1), we do not need to compute U by the above recursion

method, since it can be obtained by U = L†.
• Memory: The size of working matrix is 12N3

L. This is a big reduction compared with the old
method where the size 12N3

L(NT/2−1) was required. Thus, O(N2
T/4) memory size reduction

is achieved, and the memory size does not scale with NT.
• Cost: The proposed method here needs 2 × (NT/2 − 1) inverses for matrix whose size is

12N3
L. Old method requires inverse of matrix whose size is 12N3

L(NT/2 − 1) and the cost is
(12N3

L(NT/2− 1))3 for LU decomposition, while our case scales with 2(NT/2− 1)× (12N3
L)3.

We obtain N2
T/8 reduction!!! Of course, we have to take into account the dense matrix-matrix

multiplications ((12N3
L)3 × (NT/2 − 2) × 2), but its cost is still proportional to linear of NT.

10

• This method is useful for very large NT case. The cost scales with NT linearly and the
required memory is independent of NT.

• Note that loops for B and F are independent, thus this part can be paralleled.

NL 4 6 8 10 12
memory (GB unit) 0.2 1.3 7.3 27.7 82.6

Table 1: We use 12 working matrices with size 12N3
L with the double precision complex number.

Therefore the required memory size 12×16× (12N3
L)2GB. NL = 8 is now feasible for any value of NT.

11

3 Time reduced + Dirac-spinor reduced case

3.1 Reduction of spinor space

3.1.1 D(1) related case

For γ5 multiplied Wilson-Dirac operator H(µ) = γ5D(µ) case, by using eq.(3-6) with γ5, the terms
in eq.(24-27) are given by

D(21)D
−1
(1)D(12) = (0, .., 0, d(NT/2,NT/2−1))D−1

(1)

0
...
0

d(NT/2−1,NT/2)

= d(NT/2,NT/2−1)B

−1
NT/2−1(NT/2−1)d(NT/2−1,NT/2)

= (2κ)2γ5P+U(NT/2 − 1)†B−1
NT/2−1(NT/2−1)U(NT/2 − 1)γ5P−, (87)

D(21)D
−1
(1)D(14) = (0, .., 0, d(NT/2,NT/2−1))D−1

(1)

d(1,NT)

0
...
0

= d(NT/2,NT/2−1)[

(−)NT/2B−1
NT/2−1(NT/2−1)d(NT/2−1,NT/2−2)...d

−1
(1)

]
d(1,NT)

= −(2κ)2γ5P+U(NT/2 − 1)†
[
(−)NT/2...

]
U(NT)†γ5P+, (88)

D(41)D
−1
(1)D(14) = (d(NT,1), 0, ..., 0)D−1

(1)

d(1,NT)

0
...
0

= d(NT,1)F

−1
NT/2−1(1)d(1,NT)

= (−2κ)2γ5P−U(NT)F−1
NT/2−1(1)U(NT)†γ5P+, (89)

D(41)D
−1
(1)D(12) = (d(NT,1), 0, ..., 0)D−1

(1)

0
...
0

d(NT/2−1,NT/2)

= d(NT,1)

[
(−)NT/2F−1

NT/2−1(1)d(12)...d
−1
(NT/2−1)

]
d(NT/2−1,NT/2)

= −(2κ)2γ5P−U(NT)
[
(−)NT/2...F−1

1(NT/2−1)

]
U(NT/2 − 1)γ5P−. (90)

Note that the minus sign in eq.(88) and (90) whose origin is the anti-periodic boundary condition.
From the above form, it is obvious that we need some fraction of spinor space since they are
sandwiched by the spinor projections P±. In the following, we treat them separately.

12

How to obtain D(21)D
−1
(1)D(12)

First by looking at

Bt(t) = d(t) − d(t,t−1)B
−1
t−1(t−1)d(t−1,t)

= d(t) − (2κ)2γ5P+U(t − 1)†B−1
t−1(t−1)U(t − 1)γ5P−

= d(t) − (2κ)2U(t − 1)†P−γ5B
−1
t−1(t−1)γ5P−U(t − 1). (91)

The second term is sandwiched by the P− together with γ5 which interchange all element

γ5Aγ5 =
(

0 1
1 0

)(
A++ A+−
A−+ A−−

)(
0 1
1 0

)
=

(
A−− A−+

A+− A++

)
. (92)

Therefore we need ++ component of B−1
t−1(t−1) namely (B−1

t−1(t−1))++ in

B−1
t−1(t−1) =

(
(B−1

t−1(t−1))++ (B−1
t−1(t−1))+−

(B−1
t−1(t−1))−+ (B−1

t−1(t−1))−−

)
. (93)

Eq.(91) is given by

Bt(t) =
(

Bt(t)++ Bt(t)+−
Bt(t)−+ Bt(t)−−

)
=

(
d(t)++ d(t)+−
d(t)−+ d(t)−− − (2κ)2U(t − 1)†(B−1

t−1(t−1))++U(t − 1)

)
. (94)

In the next step t + 1, one needs ++ component of B−1
t(t) namely

(B−1
t(t))++ = (Bt(t)++ − Bt(t)+−B−1

t(t)−−Bt(t)−+)−1

= (d(t)++ − d(t)+−B−1
t(t)−−d(t)−+)−1, (95)

with
Bt(t)−− = d(t)−− − (2κ)2U(t − 1)†(B−1

t−1(t−1))++U(t − 1). (96)

In the end,

D(21)D
−1
(1)D(12) =

(
0 0
0 (2κ)2U(NT/2 − 1)†(B−1

NT/2−1(NT/2−1))++U(NT/2 − 1)

)
, (97)

equivalently

(D(21)D
−1
(1)D(12))−− = (2κ)2U(NT/2 − 1)†(B−1

NT/2−1(NT/2−1))++U(NT/2 − 1). (98)

How to obtain D(21)D
−1
(1)D(14)

D(21)D
−1
(1)D(14) = −(2κ)2γ5P+U(NT/2 − 1)†[

(−)NT/2B−1
NT/2−1(NT/2−1)d(NT/2−1,NT/2−1)...d(21)B

−1
1(1)

]
U(NT)†γ5P+

= −(2κ)2(−)NT/2(−2κ)NT/2−2

γ5P+U(NT/2 − 1)†B−1
NT/2−1(NT/2−1)

γ5P+U(NT/2 − 2)†B−1
NT/2−2(NT/2−2)...

γ5P+U(2)†B−1
2(2)γ5P+U(1)†B−1

1(1)γ5P+U(NT)†γ5P+. (99)

13

By using a property

γ5P+Aγ5P+ =
(

0 0
1 0

)(
A++ A+−
A−+ A−−

)(
0 0
1 0

)
=

(
0 0

A+− 0

)
, (100)

we obtain

(D(21)D
−1
(1)D(14))−+ = −(−)NT(2κ)NT/2U(NT/2 − 1)†(B−1

NT/2−1(NT/2−1))+−

U(NT/2 − 2)†(B−1
NT/2−2(NT/2−2))+−...

U(2)†(B−1
2(2))+−U(1)†(B−1

1(1))+−U(NT)†, (101)

with

(B−1
t(t))+− = −(B−1

t(t))++Bt(t)+−B−1
t(t)−−

= −(B−1
t(t))++d(t)+−B−1

t(t)−−, (102)

where (B−1
t(t))++ and Bt(t)−− are defined in eq.(95) and eq.(96) respectively. Note that there is the

minus sign in eq.(101) due to the anti-periodic boundary condition.

How to obtain D(41)D
−1
(1)D(14)

First looking at

Ft(n−t+1) = d(n−t+1) − d(n−t+1,n−t+2)F
−1
t−1(n−t+2)d(n−t+2,n−t+1)

= d(n−t+1) − (2κ)2γ5P−U(n − t + 1)F−1
t−1(n−t+2)U(n − t + 1)†γ5P+

= d(n−t+1) − (2κ)2U(n − t + 1)P+γ5F
−1
t−1(n−t+2)γ5P+U(n − t + 1)†. (103)

The second term is sandwiched by the P+ together with γ5. Therefore we need −− component of
F−1

t−1(n−t+2) namely (F−1
t−1(n−t+2))−− in

F−1
t−1(n−t+2) =

(
(F−1

t−1(n−t+2))++ (F−1
t−1(n−t+2))+−

(F−1
t−1(n−t+2))−+ (F−1

t−1(n−t+2))−−

)
. (104)

Eq.(103) is given by

Ft(n−t+1)

=
(

Ft(n−t+1)++ Ft(n−t+1)+−
Ft(n−t+1)−+ Ft(n−t+1)−−

)
=

(
d(n−t+1)++ − (2κ)2U(n − t + 1)(F−1

t−1(n−t+2))−−U(n − t + 1)† d(n−t+1)+−

d(n−t+1)−+ d(n−t+1)−−

)
.(105)

In the next step t + 1, one needs −− component of F−1
t(n−t+1) namely

(F−1
t(n−t+1))−− = (Ft(n−t+1)−− − Ft(n−t+1)−+F−1

t(n−t+1)++Ft(n−t+1)+−)−1

= (d(n−t+1)−− − d(n−t+1)−+F−1
t(n−t+1)++d(n−t+1)+−)−1, (106)

with

Ft(n−t+1)++ = d(n−t+1)++ − (2κ)2U(n − t + 1)(F−1
t−1(n−t+2))−−U(n − t + 1)†. (107)

In the end,

D(41)D
−1
(1)D(14) =

(
(2κ)2U(NT)(F−1

NT/2−1(1))−−U(NT)† 0
0 0

)
, (108)

equivalently
(D(41)D

−1
(1)D(14))++ = (2κ)2U(NT)(F−1

NT/2−1(1))−−U(NT)†. (109)

14

How to obtain D(41)D
−1
(1)D(12)

This can be obtained by Hermite conjugate of D(21)D
−1
(1)D(14), therefore we do not discuss it here.

3.1.2 D(3) related case

For γ5 multiplied Wilson-Dirac operator H(µ) = γ5D(µ) case, by using eq.(3-6) with γ5, the terms
in eq.(28-31) are given by

D(43)D
−1
(3)D(34) = (0, .., 0, d(NT,NT−1))D−1

(3)

0
...
0

d(NT−1,NT)

= d(NT,NT−1)B

−1
NT/2−1(NT−1)d(NT−1,NT)

= (2κ)2γ5P+U(NT − 1)†B−1
NT/2−1(NT−1)U(NT − 1)γ5P−, (110)

D(43)D
−1
(3)D(32) = (0, .., 0, d(NT,NT−1))D−1

(3)

d(NT/2+1,NT/2)

0
...
0

= d(NT,NT−1)[

(−)NT/2B−1
NT/2−1(NT−1)d(NT−1,NT−2)...d

−1
(NT/2+1)

]
d(NT/2+1,NT/2)

= (2κ)2γ5P+U(NT − 1)†
[
(−)NT/2...

]
U(NT/2)†γ5P+, (111)

D(23)D
−1
(3)D(32) = (d(NT/2,NT/2+1), 0, ..., 0)D−1

(3)

d(NT/2+1,NT/2)

0
...
0

= d(NT/2,NT/2+1)F

−1
NT/2−1(NT/2+1)d(NT/2+1,NT/2)

= (2κ)2γ5P−U(NT/2)F−1
NT/2−1(NT/2+1)U(NT/2)†γ5P+, (112)

D(23)D
−1
(3)D(34) = (d(NT/2,NT/2+1), 0, ..., 0)D−1

(3)

0
...
0

d(NT−1,NT)

= d(NT/2,NT/2+1)

[
(−)NT/2F−1

NT/2−1(NT/2+1)d(NT/2+1,NT/2+2)...d
−1
(NT−1)

]
d(NT−1,NT)

= (2κ)2γ5P−U(NT/2)
[
(−)NT/2...F−1

1(NT−1)

]
U(NT − 1)γ5P−. (113)

Note that there is no minus sign in eq.(111) and (113) compared with eq.(88) and (90). The above
equations are obtained by just shifting the domains as in eq.(54). In the following, we treat them
separately.

15

How to obtain D(43)D
−1
(3)D(34)

D(43)D
−1
(3)D(34) =

(
0 0
0 (2κ)2U(NT − 1)†(B−1

NT/2−1(NT−1))++U(NT − 1)

)
, (114)

equivalently

(D(43)D
−1
(3)D(34))−− = (2κ)2U(NT − 1)†(B−1

NT/2−1(NT−1))++U(NT − 1). (115)

How to obtain D(43)D
−1
(3)D(32)

(D(43)D
−1
(3)D(32))−+ = (−)NT(2κ)NT/2U(NT − 1)†(B−1

NT/2−1(NT−1))+−

U(NT − 2)†(B−1
NT/2−2(NT−2))+−...

U(NT/2 + 2)†(B−1
2(NT/2+2))+−

U(NT/2 + 1)†(B−1
1(NT/2+1))+−U(NT/2)†, (116)

with

(B−1
t(t′))+− = −(B−1

t(t′))++Bt(t′)+−B−1
t(t′)−−

= −(B−1
t(t′))++d(t′)+−B−1

t(t′)−−. (117)

Note that there is no minus sign in eq.(116).

How to obtain D(23)D
−1
(3)D(32)

D(23)D
−1
(3)D(32) =

(
(2κ)2U(NT/2)(F−1

NT/2−1(NT/2+1))−−U(NT/2)† 0
0 0

)
, (118)

equivalently

(D(23)D
−1
(3)D(32))++ = (2κ)2U(NT/2)(F−1

NT/2−1(NT/2+1))−−U(NT/2)†. (119)

How to obtain D(23)D
−1
(3)D(34)

This can be obtained by Hermite conjugate of D(43)D
−1
(3)D(32), therefore we do not discuss it here.

3.1.3 Flow

We can obtain D(2∗2)−− and (D(21)D
−1
(1)D(14))−+ which are D−1

(1) related quantities by the following
recursion method.

16

get d(1)−−
B0 ⇐ inverse of d(1)−− · · · ⋆
L0 ⇐ B0U(NT)†

get d(1)++, d(1)+− and d(1)−+

B1 ⇐ d(1)++ − d(1)+−B0d(1)−+

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ d(1)+−L0

L0 ⇐ B1 × L1

L1 ⇐ U(1)†L0

do t = 2 ∼ NT/2 − 1
get d(t)−−
B0 ⇐ d(t)−− − (2κ)2U(t − 1)†B1U(t − 1)
B0 ⇐ inverse of B0 · · · ⋆
L0 ⇐ B0 × L1

get d(t)++, d(t)+− and d(t)−+

B1 ⇐ d(t)++ − d(t)+−B0d(t)−+

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ d(t)+−L0

L0 ⇐ B1 × L1

L1 ⇐ U(t)†L0

enddo
get d(NT/2)−−
B0 ⇐ d(NT/2)−− − (2κ)2U(NT/2 − 1)†B1U(NT/2 − 1)
L0 ⇐ −(−)NT+NT/2−1(2κ)NT/2L1

Note the minus sign in the final step for L0 due to the anti-periodic boundary condition. The number
of required inversion is 2 + 2(NT/2 − 2). The symbol × shows the dense matrix multiplication,
which is needed 1+2(NT−2). The symbol ⋆ means that in the process with it the sub determinant
can be computed as will be discussed in section 3.6 for the evaluation of A0. In the end, B0 and
L0 are

D(2∗2)−− = B0, (120)

(D(21)D
−1
(1)D(14))−+ = L0. (121)

We can obtain D(4∗4)++ which is D−1
(1) related quantity by the following recursion method.

get d(NT/2−1)++

F0 ⇐ inverse of d(NT/2−1)++ · · · ⋆
get d(NT/2−1)−−, d(NT/2−1)+− and d(NT/2−1)−+

F1 ⇐ d(NT/2−1)−− − d(NT/2−1)+−F0d(NT/2−1)−+

F1 ⇐ inverse of F1 · · · ⋆
do t = 2 ∼ NT/2 − 1

get d(NT/2−t)++

F0 ⇐ d(NT/2−t)++ − (2κ)2U(NT/2 − t)F1U(NT/2 − t)†

F0 ⇐ inverse of F0 · · · ⋆
get d(NT/2−t)−−, d(NT/2−t)−+ and d(NT/2−t)+−
F1 ⇐ d(NT/2−t)−− − d(NT/2−t)−+F0d(NT/2−t)+−
F1 ⇐ inverse of F1 · · · ⋆

enddo
get d(NT)++

F0 ⇐ d(NT)++ − (2κ)2U(NT)F1U(NT)†

The number of required inversion is 2 + 2(NT/2 − 2). There is no dense matrix multiplication in
this case. The symbol ⋆ means that in the process with it the sub determinant can be computed

17

as will be discussed in section 3.6 for the evaluation of A0. In the end, F0 is

D(4∗4)++ = F0. (122)

For D−1
(3) case, the domain of d(∗) has to be shifted as in eq.(54) compared with the previous

one and take into account the minus sign from the anti-periodic boundary condition. Actually, in
this case there is no such a minus sign. We can obtain D(4∗4)−− and (D(43)D

−1
(3)D(32))−+ which are

D−1
(3) related quantities by the following recursion method.

get d(NT/2+1)−−
B0 ⇐ inverse of d(NT/2+1)−− · · · ⋆
L0 ⇐ B0U(NT)†

get d(NT/2+1)++, d(NT/2+1)+− and d(NT/2+1)−+

B1 ⇐ d(NT/2+1)++ − d(NT/2+1)+−B0d(NT/2+1)−+

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ d(NT/2+1)+−L0

L0 ⇐ B1 × L1

L1 ⇐ U(NT/2 + 1)†L0

do t = 2 ∼ NT/2 − 1
get d(NT/2+t)−−
B0 ⇐ d(NT/2+t)−− − (2κ)2U(NT/2 + t − 1)†B1U(NT/2 + t − 1)
B0 ⇐ inverse of B0 · · · ⋆
L0 ⇐ B0 × L1

get d(NT/2+t)++, d(NT/2+t)+− and d(NT/2+t)−+

B1 ⇐ d(NT/2+t)++ − d(NT/2+t)+−B0d(NT/2+t)−+

B1 ⇐ inverse of B1 · · · ⋆
L1 ⇐ d(NT/2+t)+−L0

L0 ⇐ B1 × L1

L1 ⇐ U(NT/2 + t)†L0

enddo
get d(NT)−−
B0 ⇐ d(NT)−− − (2κ)2U(NT − 1)†B1U(NT − 1)
L0 ⇐ (−)NT+NT/2−1(2κ)NT/2L1

Note that there is no minus sign in the final step for L0 compared with the D−1
(1) case. The number

of required inversion is 2 + 2(NT/2 − 2). The symbol × shows the dense matrix multiplication,
which is needed 1+2(NT−2). The symbol ⋆ means that in the process with it the sub determinant
can be computed as will be discussed in section 3.6 for the evaluation of A0. In the end, B0 and
L0 are

D(4∗4)−− = B0, (123)

(D(43)D
−1
(3)D(32))−+ = L0. (124)

We can obtain D(2∗2)++ which is D−1
(3) related quantity by the following recursion method.

18

get d(NT−1)++

F0 ⇐ inverse of d(NT−1)++ · · · ⋆
get d(NT−1)−−, d(NT−1)+− and d(NT−1)−+

F1 ⇐ d(NT−1)−− − d(NT−1)+−F0d(NT−1)−+

F1 ⇐ inverse of F1 · · · ⋆
do t = 2 ∼ NT/2 − 1

get d(NT−t)++

F0 ⇐ d(NT−t)++ − (2κ)2U(NT − t)F1U(NT − t)†

F0 ⇐ inverse of F0 · · · ⋆
get d(NT−t)−−, d(NT−t)−+ and d(NT−t)+−
F1 ⇐ d(NT−t)−− − d(NT−t)−+F0d(NT−t)+−
F1 ⇐ inverse of F1 · · · ⋆

enddo
get d(NT/1)++

F0 ⇐ d(NT/2)++ − (2κ)2U(NT/2)F1U(NT/2)†

The number of required inversion is 2 + 2(NT/2 − 2). There is no dense matrix multiplication in
this case. The symbol ⋆ means that in the process with it the sub determinant can be computed
as will be discussed in section 3.6 for the evaluation of A0. In the end, F0 is

D(2∗2)++ = F0. (125)

3.2 How to obtain D−1
(2∗2) and D−1

(4∗4)

For

D(2∗2) =
(

D(2∗2)++ D(2∗2)+−
D(2∗2)−+ D(2∗2)−−

)
=

(
eq.(125) d(NT/2)+−

d(NT/2)−+ eq.(120)

)
, (126)

by using eq.(180) the inverse matrix is

D−1
(2∗2) =

(
(D−1

(2∗2))++ (D−1
(2∗2))+−

(D−1
(2∗2))−+ (D−1

(2∗2))−−

)
, (127)

with

(D−1
(2∗2))++ = (D(2∗2)++ − d(NT/2)+−D−1

(2∗2)−−d(NT/2)−+)−1, (128)

(D−1
(2∗2))+− = −(D−1

(2∗2))++d(NT/2)+−D−1
(2∗2)−−, (129)

(D−1
(2∗2))−− = D−1

(2∗2)−−(1 − d(NT/2)−+(D−1
(2∗2))+−). (130)

Note that for Hermite matrix A, (
A++ A+−
A−+ A−−

)
, (131)

A++ = A†
++, (132)

A−− = A†
−−, (133)

A−+ = A†
+−. (134)

19

For

D(4∗4) =
(

D(4∗4)++ D(4∗4)+−
D(4∗4)−+ D(4∗4)−−

)
=

(
eq.(122) d(NT)+−
d(NT)−+ eq.(123)

)
, (135)

by using eq.(180) the inverse matrix is

D−1
(4∗4) =

(
(D−1

(4∗4))++ (D−1
(4∗4))+−

(D−1
(4∗4))−+ (D−1

(4∗4))−−

)
, (136)

with

(D−1
(4∗4))++ = (D(4∗4)++ − d(NT)+−D−1

(4∗4)−−d(NT)−+)−1, (137)

(D−1
(4∗4))+− = −(D−1

(4∗4))++d(NT)+−D−1
(4∗4)−−, (138)

(D−1
(4∗4))−− = D−1

(4∗4)−−(1 − d(NT)−+(D−1
(4∗4))+−). (139)

3.3 How to obtain H0 and H±

For

H0 =
(

H0++ H0+−
H0−+ H0−−

)
, (140)

H+ =
(

0 H+,+−
0 H+,−−

)
, (141)

H− =
(

H−,++ 0
H−,−+ 0

)
, (142)

the elements are given by

H0++ = (D−1
4∗4)++D(412)+−(D−1

2∗2)−−D(214)−+, (143)

H0−+ = (D−1
4∗4)−+D(412)+−(D−1

2∗2)−−D(214)−+, (144)

H0+− = (D−1
4∗4)+−D(432)−+(D−1

2∗2)++D(234)+−, (145)

H0−− = (D−1
4∗4)−−D(432)−+(D−1

2∗2)++D(234)+−, (146)

H+,+− = (D−1
4∗4)++D(412)+−(D−1

2∗2)−+D(234)+−, (147)

H+,−− = (D−1
4∗4)−+D(412)+−(D−1

2∗2)−+D(234)+−, (148)

H−,++ = (D−1
4∗4)+−D(432)−+(D−1

2∗2)+−D(214)−+, (149)

H−,−+ = (D−1
4∗4)−−D(432)−+(D−1

2∗2)+−D(214)−+. (150)

This can be written in a systematic way

H0++ = APZP †, (151)
H0−+ = BPZP †, (152)
H0+− = B†QXQ†, (153)
H0−− = CQXQ†, (154)

H+,+− = APY Q†, (155)
H+,−− = BPY Q†, (156)
H−,++ = B†QY †P †, (157)
H−,−+ = CQY †P †. (158)

20

One needs 4(H0)+2(H+)+2(H−)+3(ABC)+3(XY Z)+2(PQ) = 16 matrices and 4+8+4 = 16
matrix multiplications.

3.4 How to obtain V̂(q)

To compute the truncated V(q)

V̂(0) = tr[H0] +
1
2
tr[(H0)2] + tr[H+H−], (159)

V̂(q) =
1
q
tr[(H+)q] + tr[(H+)qH0], (160)

we need

tr[H0] = tr[H0++] + tr[H0−−], (161)
tr[(H0)2] = tr[(H0++)2 + H0+−H0−+] + tr[(H0−−)2 + H0−+H0+−], (162)

tr[H+H−] = tr[H+,+−H−,−+], (163)

(H+)q =
(

0 H+,+−Hq−1
+,−−

0 Hq
+,−−

)
, (164)

tr[(H+)q] = tr[(H+,−−)q], (165)
tr[(H+)qH0] = tr[H+,+−(H+,−−)q−1H0−+] + tr[(H+,−−)qH0−−]. (166)

3.5 Comment

• A gain for each LU decomposition and matrix-matrix multiplication is (1/2)3 = 1/8 but we
need twice, so total cost is proportional to 1/8 × 2 = 1/4.

• Since in the time reduced case, lapack is clever enough to skip zero element part, this spin
reduction is not so impressive compared with the time reduction case.

3.6 Computation of A0

When one computes eq.(86)

det D(1) =
NT/2−1∏

t=1

det Bt(t), (167)

the computation of
det Bt(t), (168)

is needed. This can be obtained by the spin decomposition form together with eq.(184)

det Bt(t) = det
(

Bt(t)++ Bt(t)+−
Bt(t)−+ Bt(t)−−

)
= det Bt(t)−− det

[
Bt(t)++ − Bt(t)+−B−1

t(t)−−Bt(t)−+

]
. (169)

The first term can be obtained when one computes B−1
t(t)−− in eq.(96). The second term can be

obtained when one computes (B−1
t(t))++ in eq.(95).

21

4 Benchmark

The actual benchmark was done on K computer and the computational cost is plotted as a function
of the lattice size in Fig.1. We find reduction method is several tens times faster than naive method.
Using reduction method algorithm changes from one matrix inversion for a matrix of order 12N3

LNT

to 5×4× (NT/2−1)+2 matrix-matrix multiplications and 2×4× (NT/2−1)+2 matrix inversions
for matrices of order 6N3

L. So numerical cost is reduced from

6 × (12N3
LNT)3 (170)

to
6 × (6N3

L)3 ×
[
28 × (NT/2 − 1) + 4

]
. (171)

In reduction method we use pzgemm, pzgetrf and pzgetri of ScaLAPACK optimized for the K com-
puter to compute matrix-matrix multiplication and matrix inversion which operates at ∼50% and
∼5% efficiency against the theoretical peak performance, respectively. Since most of computation
is done by higher performance pzgemm, one might get more speed-up, e.g. by a factor of O(100)
at NT = 6. Our speed-up factor, however, is not such high because there are number of matrix
copying and making inside of determinant calculation to save memory in our implementation.

Sz

Szz

Szzz

Szzzz

Szzzzz

Szzz Szzzz Szzzzz

,R
L

U
n
j�

jC
R
N

jC
L

3
)c

*

I�jjC,3 cCy3

N�Cq3. kf NR03
N�Cq3.S:: NR03
a30n,jCRN. Sf NR03
a30n,jCRN. kf NR03
a30n,jCRN. f: NR03
a30n,jCRN.S:: NR03

Figure 1: Computational cost [s] as function of lattice size N3
LNT. The lattice size is changed from the

left to right in the following ordering, 12×6×6×6, 12×12×6×6, 12×12×12×6, 24×12×12×6. In the
legend, “naive” means the determinant calculation without reduction, while “reduction” represents
the calculation according to the reduction technique for time and spinor space shown in this report.

Acknowledgments

All the results are obtained by using the K computer at the RIKEN Advanced Institute for Com-
putational Science.

References

[1] J. Danzer and C. Gattringer, Phys. Rev. D 78, 114506 (2008) [arXiv:0809.2736 [hep-lat]].
[2] X. Y. Jin, Y. Kuramashi, Y. Nakamura, S. Takeda and A. Ukawa, Phys. Rev. D 88, no. 9,

094508 (2013) [arXiv:1307.7205 [hep-lat]].

22

Appendix A
Dirac-gamma matrix notation

The Pauli matrices are

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (172)

The Dirac-gamma matrix in the non-relativistic representation are given by

γ1,2,3 =
(

0 −iσ1,2,3

iσ1,2,3 0

)
, γ4 =

(
12 0
0 −12

)
, (173)

γ5 = −γ1γ2γ3γ4 =
(

0 12

12 0

)
, (174)

σµν =
i

2
[γµ, γν]. (175)

γ5P+ =
(

0 0
12 0

)
, γ5P− =

(
0 12

0 0

)
. (176)

Appendix B
Formula for block matrix

In this note, the following formula is useful. For inverse matrix,(
A B
C D

)−1

=
(

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
(177)

=
(

A−1 + A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

)
(178)

=
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1

)
(179)

=
(

Y −1 −Y −1BD−1

−D−1CY −1 D−1 + D−1CY −1BD−1

)
, (180)

with

X = D − CA−1B, (181)
Y = A − BD−1C. (182)

For determinant

det
[

A B
C D

]
= detA det[D − CA−1B] (183)

= detD det[A − BD−1C]. (184)

23

	coverpage_003
	ms_Kuramashi_150206

