

AICS TECHNICAL Report

N0. 2014-002

Optimization of matrix-vector multiplication for

Real-Space Density Functional Theory Code on the

K computer

By

H. Suno*, Y. Nakamura, Y. Kuramashi, Y. Futamura,

and T. Sakurai

RIKEN Advanced Institute for Computational Science

* Corresponding Author E-mail: suno@riken.jp

Submitted on 08/09/2014

Accepted on 03/10/2014

Published and copyrighted by

RIKEN Advanced Institute for Computational Science (AICS)

7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan

Optimization of matrix-vector multiplication for Real-Space

Density Functional Theory Code on the K computer

H. Suno∗

RIKEN Advanced Institute for Computational Science, Kobe 650-0047, Japan and

RIKEN Nishina Center, Wako 351-0198, Japan

Y. Nakamura

RIKEN Advanced Institute for Computational Science, Kobe 650-0047, Japan

Y. Kuramashi

RIKEN Advanced Institute for Computational Science, Kobe 650-0047, Japan

Center for Computational Science, University of Tsukuba, Ibaraki 305-8577, Japan and

Graduate School of Pure and Applied Science,

University of Tsukuba, Ibaraki 305-8571, Japan

Y. Futamura

Department of Computer Science, University of Tsukuba, Ibaraki 305-8573, Japan

T. Sakurai

Department of Computer Science, University of Tsukuba, Ibaraki 305-8573, Japan and

Center for Computational Science, University of Tsukuba, Ibaraki 305-8577, Japan

(Dated: September 8, 2014)

1

Abstract

We have carried out an optimization of the matrix-vector multiplication in the Real-Space Den-

sity Functional Theory (RSDFT) program on the K computer. We have performed a reduction

of the cache misses, an efficient SIMDization and a reduction of the memory access latency by

modifying the source code and inserting optimization directives. The performance efficiency for

the finite-difference operation is improved up to a peak ratio of more than 19% thanks to the code

tuning. For the whole part of the matrix-vector multiplication in the RSDFT code, the perfor-

mance efficiency is increased from 2.98% to 8.33%, i.e., the procedure can be now performed 2.8

times faster than the previous version.

∗Electronic address: suno@riken.jp

2

I. INTRODUCTION

The Real-Space Density Functional Theory (RSDFT) code is a program for electronic-

structure calculations based on first-principles of quantum mechanics developed by Center

for Computational Sciences (CCS) at University of Tsukuba in order to simulate the phys-

ical properties of materials in microscopic scale [1]. The code is based on the Density

Functional Theory (DFT) proposed by Kohn and Sham 50 years ago [2, 3] and it employs

the pseudopotential method [4]. The Real-Space (RS) scheme [5, 6] allows us to efficiently

use massively parallel computations, since it does not need any Fast Fourier Transforma-

tion (FFT). Although the applications are limited to medium-sized systems consisting of

hundreds of atoms until recently, current research interests in the material sciences requires

the RSDFT calculations for much larger systems such as nanoscale systems with O(104)

atoms or more. In order to carry out such large calculations, it is imperative to optimize the

code on massively parallel supercomputers such as the K computer at the RIKEN Advanced

Institute for Computational Science.

The primary bottleneck in the RSDFT calculations is the Gram-Schmidt orthogonal-

ization and the subspace diagonalization (diagonalizing the Hamiltonian matrix within a

limited eigen-subspace), which consume 60% and 20% of the total wall clock time for the

typical benchmark data, respectively. These computations can be performed with high ef-

ficiency by rearranging them to matrix-matrix multiplications, extending the parallelized

axis coordinates (additional parallelizing with respect to the number of orbitals), using an

optimized mapping (automatically choosing one-, two-, or three-dimensional torus mapping

adapted for a given problem), and the Tofu-specific collective communication algorithms [7–

9]. The secondary bottleneck is the Conjugate Gradient (CG) calculation, where almost all

the computational cost is spent in the matrix-vector multiplication operating the Hamilto-

nian matrix on orbitals. Since the CG calculations take small portion of computation time

in the RSDFT code, its optimization has been left behind so far. However, we expect that

the cost of these calculations potentially increase when the RSDFT program is applied to

a wider range of problems, such as band structure calculations using the Sakurai-Sugiura

eigensolver[10]. In this report, we make an optimization for the matrix-vector multiplication

in the CG calculation on the K computer aiming at a better performance of the RSDFT

calculations.

3

II. MATRIX-VECTOR MULTIPLICATION IN THE RSDFT PROGRAM

The goal of the RSDFT calculations is to minimize the energy functional E[ρ] with

respect to the electronic density ρ. The real space scheme defines the theory on a three-

dimensional spatial grid with ML the number of grid points. The orbitals, electronic density

and potentials are expressed as column vectors, whose elements are the values at grid points.

For example, the orbitals are represented by

φ⃗ =

φ1

...

φi

...

φML

, (1)

where the i-th element is the value at the grid point ri:

φi = φ(ri), (2)

and the electronic density is expressed in the same way as

ρi = ρ(ri) =

MB∑
n=1

fn|φi
n|2, (3)

where MB is the total number of orbitals and fn the occupation number for the n-th orbital.

In this scheme, the energy functional can be written as

E[φ1, φ2, ..., φML] = −1

2

MB∑
n=1

fn

ML∑
i=1

ML∑
j=1

φi∗
n Lijφ

j
n∆Ω − 4π

2

ML∑
i=1

ML∑
j=1

ρiL−1
ij ρj∆Ω

+Exc[ρ
1, ρ2, ..., ρML] +

ML∑
i=1

vi
Lρi∆Ω +

MB∑
n=1

fn

ML∑
i=1

ML∑
j=1

φi∗
n V NL

ij φj
n∆Ω,(4)

where ∆Ω is the volume element, Lij, vi
L and V NL

ij represent the finite-difference operator,

local potential and nonlocal pseudopotential, respectively. The exchange-correlation energy

Exc characterizes the many-electron effects. Minimization of the energy functional combined

with the orthonormalization constraints for the orbitals leads to the eigenvalue equation for

the orbitals

Hφ⃗n = εnφ⃗n (5)

4

with

H = −1

2
L + V + V NL, (6)

where the Hamiltonian consists of a sparse matrix of the finite-difference operator L, a

diagonal matrix of the local potential V (including the Hartree and exchange-correlation

potentials) and a matrix of the nonlocal operator VNL .

The subject of this report is the optimization of the matrix-vector multiplication operating

the Hamiltonian matrix on the orbitals. Note that we treat multiple orbitals. The finite-

difference operator acts on orbitals as follows:(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
φn(xi, yi, zi) ≈

MD∑
m=−MD

Cmφn(xi + m∆x, yi, zi)

+

MD∑
m=−MD

Cmφn(xi, yi + m∆y, zi)

+

MD∑
m=−MD

Cmφn(xi, yi, zi + m∆z), (7)

where (∆x, ∆y, ∆z) are the grid spacings in the x-, y- and z-directions and Cm’s the coef-

ficients of the finite difference. Since the local potential is a diagonal matrix, its operation

on an orbital is straightforward:

(V φ⃗n)i = v(ri)φn(ri). (8)

The operation of the nonlocal potential is performed in two steps. First, we compute an

inner product between a projector function palm and an orbital φ,

βalm = Calm

∫
Ωa

drpalm(r)φn(r) ≈ Calm

∑
j∈Ωa

pk∗
almφj

n∆V, (9)

and then we compute the linear combination

(V NLφ⃗n)i =
N∑

a=1

La∑
l=0

l∑
m=−l

pi
almβalm, (10)

where the summation index a covers the number of ions N , and La is usually taken to be from

0 to 2. The integral of the inner product Eq. (9) is always performed within a small region

around each ion irrespective of the whole system size. The matrix-vector multiplication

in the RSDFT code is performed in parallel on the three-dimensional subgrids assigned in

MPI processes. The calculations are further parallelized with OpenMP threads in each MPI

process.

5

III. CODE OPTIMIZATION

A. Computer environment and performance test for the original code

The code optimization is carried out on the K computer at the RIKEN Advanced Institute

for Computational Science. The machine consists of 82944 computational nodes and 5184

I/O nodes connected by the so-called “Tofu” network, providing 11.28 Pflops of computing

capability. The Tofu network has six-dimensional topology with 3D-mesh times 3D-torus

shape. Each node has a single 2.0GHz SPARC64 VIIIfx processor equipping 8 cores with

SIMD enabled 256 registers, 6MB shared L2 cache and 16GB of memory. The L1 cash sizes

per each core are 32KB/2WAY (instruction) and 32KB/2WAY (data). We use four compute

nodes on the K computer.

We employ a silicon nanowire consisting of 9084 Si atoms and 840 H atoms as a benchmark

data sample. The total grid size is 348×348×72 in the x×y×z directions, which is divided

into 2 × 2 × 1 MPI processes. Each process has therefore 174 × 174 × 72 grid points. The

Hamiltonian matrix is supposed to operate on 32 orbitals at once. The number of OpenMP

threads is 8 corresponding to the number of cores in each node on the K computer. In order

to pin down the most computationally expensive parts in the matrix-vector multiplication,

we carry out performance test employing the advanced profiler with the insertion of the

start collection and stop collection subroutines into the code. Table I shows the

results of the performance test for the original RSDFT code. We find that most of the

computational cost is paid in the operations of finite-difference (nondiagonal), nonlocal

potential (first half), and nonlocal potential (second half). The optimization should be

focused on these three parts.

B. Optimizing nondiagonal finite-difference operation

The finite-difference operation is given in Eq. (7). The source code for the operation of

the nondiagonal elements is written as follows:

real(8) :: www(a1b-Md:b1b+Md, a2b-Md:b2b+Md, a3b-Md:b3b+Md)

real(8) :: htpsi(n1:n2, ib1:ib2) ! n1=1,n2=217982

6

TABLE I: Results for performance test of the matrix-vector multiplication in the original RSDFT

code

time (sec) peak ratio (%) MFLOPS/CPU

Copy of orbitals to work array 0.38 0 0

Communication of border information 0.69 0 0

Finite difference (diagonal) 0.36 1.52 1949

Finite difference (nondiagonal) 3.79 7.76 9936

Local potential 0.50 2.20 2813

Nonlocal potential (first half) 1.66 2.89 3695

Communication of projection-orbital-product 0.25 0 3

Nonlocal potential (second half) 5.97 0.80 1018

Total 13.60 2.98 3821

do ib=ib1,ib2 ! ib1=1,ib2=32

n=ib-ib1+1

do m=1,Md ! Md=6

!$OMP parallel private(i)

i=n1-1+omp_idisp

do i3=omp_a3b,omp_b3b ! omp_a3b=0,omp_b3b=7

do i2=a2b,b2b ! a2b=0,b2b=173

do i1=a1b,b1b ! a1b=0,b1b=173

i=i+1

htpsi(i,ib)=htpsi(i,ib) &

+coef_lap(1,m)*(www(i1+m,i2,i3,n)+www(i1-m,i2,i3,n)) &

+coef_lap(2,m)*(www(i1,i2+m,i3,n)+www(i1,i2-m,i3,n)) &

+coef_lap(3,m)*(www(i1,i2,i3+m,n)+www(i1,i2,i3-m,n))

end do; end do; end do

!$OMP end parallel

end do; end do

where the start and end loop-indices given in the comments are those in the master node and

7

the master thread. Although these numbers may be different for other nodes and threads,

the loop lengths are chosen to be almost the same over all the nodes. Figure 1 shows the

distribution of the computational cost in the nondiagonal finite-difference operation. We

find that the floating point (FP) cache access waiting is dominant. Since the array elements

are arranged in the cache memory space in the way that the leftmost index changes most

rapidly in Fortran, the neighboring elements in the z-direction like www(i1,i2,i3±m,n)

locate far away in the memory space. This is a potential source of a number of cache

misses when loading those elements. Let us examine it in more detail. The array www

is defined by a four-dimensional array with a size of 186 × 186 × 84 × 32 expressed as

www(-6:179,-6:179,-6:77,1:32). The array lengths in the first, second and third dimen-

sions accommodate the original grid size of 174 × 174 × 72 assigned to each MPI process

and additional six border grid points necessary for the finite-difference operation. The ar-

ray length in the last (fourth) dimension corresponds to the number of orbitals employed

for the benchmark data set. Therefore, in double precision, the first dimension (left side)

extends over 1.5kB, the second one over 270kB, the third one over 22MB, and the fourth

one over 270MB in the memory space. Taking account of the fact that the K-computer

has 6MB of L2 cache per node, we can discuss whether the data are on cache or not. The

Md=6-th neighboring elements in the ±x and ±y directions are on cache since they locate

8B×13=104B and 270kB×13=3.43MB away in the memory space, respectively. On the

other hand, the neighboring elements in the ±z directions are not on cache since they locate

22MB×13=286MB away. They have to be fetched through access to the memory. Based on

these consideration we count the number of memory access and the number of operations.

We find that 9 floating point operations take place, while (2+3)×8=40B of data are fetched

from the memory through one load-store and three load. The B/F (Byte/Flop) ratio should

be about 4.

In such three-dimensional finite-difference operations, multiple cores can share the neigh-

boring data in the z-direction with the aid of block-cyclic distribution of memory-shared

parallelization[11], so that we can reduce the number of cache misses. The following exam-

ple shows the B/F ratio is reduced to be 2.7.

!$OMP parallel private(i)

do ib=ib1,ib2

8

FIG. 1: Distribution of computational cost in the nondiagonal finite-difference operation.

n=ib-ib1+1

do m=1,Md

!$OMP do schedule(static,1)

do i3=a3b,b3b

do i2=a2b,b2b

do i1=a1b,b1b

i=((i3-a3b)*(b2b-a2b+1)+(i2-a2b))*(b1b-a1b+1)+i1-a1b+n1

htpsi(i,ib)=htpsi(i,ib) &

+coef_lap(1,m)*(www(i1+m,i2,i3,n)+www(i1-m,i2,i3,n)) &

+coef_lap(2,m)*(www(i1,i2+m,i3,n)+www(i1,i2-m,i3,n)) &

+coef_lap(3,m)*(www(i1,i2,i3+m,n)+www(i1,i2,i3-m,n))

end do; end do; end do

!$OMP end do

end do; end do

!$OMP end parallel

With this modification, the wallclock time is reduced from 3.79 to 2.59 sec and the peak

ratio of floating point operation is increased from 7.76% to 11.40%. It should be noted that

we have failed to obtain any improvement by a cyclic distribution with the autoparalleliza-

tion directive (!ocl parallel cyclic(1)). This is probably due to the details of program

structure. We further modify the source code changing the loop position as shown below:

!$OMP parallel private(i)

9

FIG. 2: Distribution of computational cost in the nondiagonal finite-difference operation after

tuning.

do ib=ib1,ib2

n=ib-ib1+1

!$OMP do schedule(static,1)

do i3=a3b,b3b

do m=1,Md! the loop has come inside here.

do i2=a2b,b2b

do i1=a1b,b1b

i=((i3-a3b)*(b2b-a2b+1)+(i2-a2b))*(b1b-a1b+1)+i1-a1b+n1

htpsi(i,ib)=htpsi(i,ib) &

+coef_lap(1,m)*(www(i1+m,i2,i3,n)+www(i1-m,i2,i3,n)) &

+coef_lap(2,m)*(www(i1,i2+m,i3,n)+www(i1,i2-m,i3,n)) &

+coef_lap(3,m)*(www(i1,i2,i3+m,n)+www(i1,i2,i3-m,n))

end do; end do; end do; end do

!$OMP end do

end do

!$OMP end parallel

The wallclock time is then reduced to 1.52 sec and the peak ratio of the floating point opera-

tion is improved to 19.41%. We successfully obtain better performance. The computational

cost is illustrated in Fig. 2, where the floating point load cache access waiting is reduced

significantly compared to Fig. 1.

10

FIG. 3: Distribution of computational cost in the nonlocal potential operation (first half).

C. Optimizing nonlocal potential operation (first half)

The first half of the nonlocal potential opeartion is expressed in Eq. (9). The source code

is given as below:

!$OMP parallel

!$OMP workshare

uVunk(:,:)=zero

!$OMP end workshare

do ib=ib1,ib2 ! ib1=1,ib2=32

!$OMP do

do lma=1,nzlma ! nzlma=10224

do j=1,MJJ(lma) ! MJJ=0-1056,sum(MJJ)=9501072

uVunk(lma,ib)=uVunk(lma,ib)+uVk(j,lma,k)*tpsi(JJP(j,lma),ib)

end do

uVunk(lma,ib)=iuV(lma)*dV*uVunk(lma,ib)

end do

!$OMP end do

end do

!$OMP end parallel

Since the above computation has a very high B/F ratio of 16 and also involves indirect

array access (list accesses or indirect references), it could be the most difficult part to be

11

speeded up on the K computer [8]. Figure 3 shows the distribution of the computational

cost measured by the advanced profiler. We find some load imbalance, potentially because

the innermost loop, which is OpenMP threaded, changes its length MJJ depending on the

variable lma. The prefetch is automatically disabled due to the indirect accesses. Accessing

the array uVunk after having set all the elements to zero is also superfluous referencing, since

it results in fetching each array element twice from the memory. Taking account of these

problems, we modify the source code as follows:

do ib=ib1,ib2

do lma=1,nzlma

uVunk1(lma,ib)=zero

!ocl prefetch

do j=1,MJJ(lma)

uVunk1(lma,ib)=uVunk1(lma,ib)+uVk(j,lma,k)*tpsi(JJP(j,lma),ib)

end do

uVunk1(lma,ib)=iuV(lma)*dV*uVunk1(lma,ib)

end do; end do

Here, instead of setting all the array elements to zero at once, we set each element to zero

and then use it for the computation while it is still on cache. We also implement forced

prefetching by inserting the directive (!ocl prefetch). We remove the OpenMP directive

to enhance autoparallelizing since the code may be better optimized with autoparallelizing

than with OpenMP threading [11]. With these modifications, the wallclock time is decreased

from 1.66 sec to 1.09 sec and the peak ratio of the floating point operation is improved from

2.89% to 4.39%. Furthermore, in order to make the maximum use of the uVk array on cache,

we modify the code as follows by unrolling 4-fold the outermost loop:

unroll=4

itemp=ib2-mod(ib2-ib1+1,unroll)

do ib=ib1,itemp,unroll

do lma=1,nzlma

uVunk1(lma,ib)=zero

uVunk1(lma,ib+1)=zero

12

FIG. 4: Computational cost distribution in the nonlocal potential operation (first half) after tuning

!ocl prefetch

do j=1,MJJ(lma)

uVunk1(lma,ib)=uVunk1(lma,ib)+uVk(j,lma,k)*tpsi(JJP(j,lma),ib)

uVunk1(lma,ib+1)=uVunk1(lma,ib+1)+uVk(j,lma,k)*tpsi(JJP(j,lma),ib+1)

end do

uVunk1(lma,ib)=iuV(lma)*dV*uVunk1(lma,ib)

uVunk1(lma,ib+1)=iuV(lma)*dV*uVunk1(lma,ib+1)

end do

end do

(remaining operations when the loop length is not divisible by 4)

The wallclock time is reduced to be 0.86 sec and the peak ratio of the floating point operation

becomes 5.53%, so that the code runs almost twice faster than the original version. The

cost distribution in Fig 4 shows significant improvement. The cost called “Integer register

writing restriction” means a failure in 4-instruction commit, albeit a success in 3-, 2-, or

1-instruction commit.

13

FIG. 5: Distribution of computational cost in the nonlocal potential operation (second half)

D. Optimizing nonlocal potential operation (second half)

The second half of the nonlocal potential operation is expressed in Eq. (10). The original

source code is as follows:

do ib=ib1,ib2 ! ib1=1,ib2=32

!$OMP parallel do private(i)

do lma=1,nzlma ! nzlma=10224

do j=1,MJJ(lma) ! MJJ=0~1056,sum(MJJ)=9501072

i=JJP(j,lma)

htpsi(i,ib)=htpsi(i,ib)+uVk(j,lma,k)*uVunk(lma,ib)

end do

!$OMP end parallel do

end do

end do

As in the first half of the nonlocal potential operation, prefetching is not performed due to

the indirect accesses. The operation is not SIMDized at all because of the indirect writing

to an array (zero SIMD rate). The cost distribution measured by the advanced profiler is

shown in Fig. 5. The length of the innermost loop changes depending on the variable lma,

so that load imbalance could happen when the lma loop is parallelized. In addition, we find

a significant contribution of the barrier synchronization waiting.

Based on the analysis of the advanced profiler, we modify the source code as follows:

14

do ib=ib1,ib2

do lma=1,nzlma

!ocl prefetch

!ocl norecurrence(htpsi)

do j=1,MJJ(lma)

htpsi(JJP(j,lma),ib)=htpsi(JJP(j,lma),ib)&

+uVk(j,lma,k)*uVunk1(lma,ib)

end do; end do; end do

Here, we insert the prefetching directive (!ocl prefetch) and the directive (!ocl

norecurrence(htpsi)) indicating that there is no multiple referencing to the array ele-

ments. The OpenMP directive for the innermost loop is removed in order to autoparallelize

the outermost loop. With these modifications, though the SIMD rate is still low at 6.2%, the

wallclock time is reduced from 5.97 sec to 1.38 sec and the peak ratio of the floating point

operation increased from 0.80% to 3.44%. The source code is further modified unrolling the

outermost loop for an efficient use of the uVk array in the cache as follows:

unroll=4

itemp=ib2-mod(ib2-ib1+1,unroll)

do ib=ib1,itemp,unroll

do lma=1,nzlma

!ocl prefetch

!ocl norecurrence(htpsi)

do j=1,MJJ(lma)

htpsi(JJP(j,lma),ib)=htpsi(JJP(j,lma),ib)+uVk(j,lma,k)*uVunk1(lma,ib)

htpsi(JJP(j,lma),ib+1)=htpsi(JJP(j,lma),ib+1)+uVk(j,lma,k)*uVunk1(lma,ib+1)

htpsi(JJP(j,lma),ib+2)=htpsi(JJP(j,lma),ib+2)+uVk(j,lma,k)*uVunk1(lma,ib+2)

htpsi(JJP(j,lma),ib+3)=htpsi(JJP(j,lma),ib+3)+uVk(j,lma,k)*uVunk1(lma,ib+3)

end do

end do

end do

(remaining operations when the loop length is not divisible by 4)

15

FIG. 6: Distribution of computational cost in the nonlocal potential operation (second half) after

tuning

As a result, the wallclock time is reduced to 1.08 sec and the peak ratio of the floating point

operation is increased to 4.41%. The code runs nearly six times faster than the original

version. The cost distribution measured by the advanced profiler is improved as shown in

Fig. 6.

E. Miscellaneous optimization

Since memory accesses are very expensive on scaler supercomputers such as the K com-

puter, it is not a good way to repeat the reference to the same huge array. A bad example

is as follows:

!$OMP parallel private(n,i)

do ib=ib1,ib2

n=ib-ib1+1; i=n1-1+omp_idisp

do i3=omp_a3b,omp_b3b

do i2=a2b,b2b

do i1=a1b,b1b

i=i+1

www(i1,i2,i3,n)=tpsi(i,ib)

do ib=ib1,ib2

!$OMP parallel do

16

do i=n1,n2

htpsi(i,ib)=c*tpsi(i,ib)

do ib=ib1,ib2

!$OMP parallel do

do i=n1,n2

htpsi(i,ib)=htpsi(i,ib)+Vloc(i,s)*tpsi(i,ib)

The entire tpsi array is referenced three times and the entire htpsi array is referenced

twice. These references can be saved by rewriting the code as follows,

do ib=ib1,ib2

do i3=a3b,b3b

do i2=a2b,b2b

do i1=a1b,b1b

i=((i3-a3b)*(b2b-a2b+1)+(i2-a2b))*(b1b-a1b+1)+i1-a1b+n1

www(i1,i2,i3,ib-ib1+1)=tpsi(i,ib)

htpsi(i,ib)=(c+Vloc(i,s))*tpsi(i,ib)

end do; end do; end do; end do

This modification allows us to reduce the wallclock time from 0.38 + 0.36 + 0.50 = 1.24 sec

to 0.65 sec.

IV. SUMMARY

After the optimizations described above, the performance of the matrix-vector multipli-

cation has been significantly improved as shown in Table II. The wallclock time is decreased

from 13.60 sec to 4.81 sec and the peak ratio of the floating point operation is increased

from 2.98 % to 8.33 %. The performance is about three times improved compared to the

original version. Note that our optimization is performed for a typical choice of the subgrid

size, the order of the finite difference and the number of orbitals. We also add a comment

that autoparallelizing makes the code run faster than OpenMP threading as reported in the

K-computer speedup workshop [11].

17

TABLE II: Results for performance test of the matrix-vector multiplication in the RSDFT code

after tuning

time(sec) peak ratio(%) MFLOPS/CPU

Copy of orbitals to work array

+Finite-difference (diagonal)

+Local potential 0.65 1.67 2144

Communication of border information 0.61 0 0

Finite-difference (nondiagonal) 1.52 19.40 24832

Nonlocal potential (first half) 0.86 5.53 7078

Communication of projection-orbital-product 0.08 0.01 9

Nonlocal potential (seconf half) 1.08 4.39 5618

Total 4.81 8.33 10666

Total (before tuning) 13.60 2.98 3821

Acknowledgments

All the results are obtained by using the K computer at the RIKEN Advanced Institute

for Computational Science.

[1] J. Iwata, D. Takahashi, A. Oshiyama, T. Boku, K. Shiraishi, S. Okada, and K. Yabana, J.

Comp. Phys. 229, 2339 (2010).

[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[3] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[4] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

[5] J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11355 (1994).

[6] K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).

[7] Y. Hasegawa, in K computer Speedup Workshop (2013).

[8] I. Minami, in K computer Speedup Workshop (2013).

[9] I. Minami, in Symposium on Advanced Computing Systems and Infrastructures (2012).

[10] Y. Futamura, T. Sakurai, S. Furuya, and J.-I. Iwata, Lecture Notes in Computer Science

18

7851, 226 (2013).

[11] Y. Aoyama, in Tora-no-maki for programming on the K computer (2013).

19

