An Introduction to Quantum Monte Carlo for Strongly Correlated Electrons

Y. Otsuka

Computational Materials Science Research Team

AICS Cafe (24/02/2012)
Outline

1 Background
 - target
 - model
 - methods

2 determinant QMC (det-QMC)
 - formulation
 - Example: 2d Hubbard model

3 Stochastic Series Expansion (SSE-QMC)
 - formulation
 - Example: 1d extended Hubbard model coupled to lattice

4 Summary
condensed matter physics

<table>
<thead>
<tr>
<th>size (cm)</th>
<th>target</th>
<th>mechanics</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-33}</td>
<td>the early stages of the Big Bang</td>
<td>relativity</td>
<td>cosmology (gr-qc)</td>
</tr>
<tr>
<td>10^{-16}</td>
<td>weak interaction</td>
<td>quantum</td>
<td>particle physics</td>
</tr>
<tr>
<td>10^{-13}</td>
<td>atomic nucleus</td>
<td></td>
<td>nuclear physics</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>atom</td>
<td>statistical</td>
<td>cond-mat</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>molecule</td>
<td>classical</td>
<td>biophysics</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>DNA</td>
<td></td>
<td>astrophysics</td>
</tr>
<tr>
<td>10^{0}</td>
<td>apple</td>
<td></td>
<td>cosmology</td>
</tr>
<tr>
<td>10^{2}</td>
<td>human</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{9}</td>
<td>earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{15}</td>
<td>solar system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10^{28}</td>
<td>universe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the 20th century

Bloch’s theorem (1928)
→ Band theory

“free” electrons (weekly correlated)

Next generation

"strongly correlated"

target materials
• transition metal oxide
• rare earth compound
• molecular conductors etc...

High-Tc material

semiconductor
strongly-correlated electron systems

basic science:
- quantum many-body systems
- coupled degrees of freedom
 - charge, spin, orbital, lattice
- variety: phase transitions
 "More is different."
 P. W. Anderson (1967)
- challenging

applied physics:
- High-Tc superconductivity
- magnetism
- ferroelectricity
- multiferroic
- material design / phase control
High-Tc fever in 1986

- doped Mott insulators
electrons in lattice: tight-binding model

“site”:
outermost orbital / HOMO

electron:
 • charge (-e) & spin (↑ or ↓)
 • Pauli exclusion principle

filling:
 \[n = \frac{N_e}{N} \leq 2 \]

Ne: # of electrons
N : # of sites

“CuO2 plane”
electrons in lattice: band insulator

\[n = \frac{N_e}{N} = 2 \]

Insulating state due to periodic potential
Background

det-QMC

SSE-QMC

Summary

Electrons in lattice: Mott insulator

\[n = \frac{N_e}{N} = 1 \]

Insulating state due to Coulomb interactions
canonical model: Hubbard model

\[\mathcal{H} = \mathcal{H}_t + \mathcal{H}_U \]

\[\mathcal{H}_t = -t \sum_{\sigma=\uparrow,\downarrow} \sum_{<i,j>} \left(c_{i\sigma}^\dagger c_{j\sigma} + c_{j\sigma}^\dagger c_{i\sigma} \right) \]
\[\sim \text{kinetic energy} \]

\[\mathcal{H}_U = U \sum_i n_{i\uparrow} n_{i\downarrow} \]
\[\sim \text{Coulomb repulsion} \]

- “quantum”
\[\mathcal{H}_t \mathcal{H}_U \neq \mathcal{H}_U \mathcal{H}_t \]

- “many-body”
\[n_{i\uparrow} n_{i\downarrow} \neq n_{i\uparrow} \langle n_{i\downarrow} \rangle \]

parameters:
\[U/t, n, T/t \]
numerical methods for strongly-correlated electrons

- **Exact Diagonalization (ED)**
 - “exact”
 - only for small cluster \((N \sim 40)\)

- **Density Matrix Renormalization Group (DMRG)**
 - large system \((N \sim 1000)\)
 - only for 1D

- **Quantum Monte Carlo (QMC)**
 - large system \((N \sim 1000)\)
 - \(d > 1\)
 - negative sign problem
What is QMC?

QMC = quantum-classical mapping + importance sampling

“quantum-classical mapping”

classical: \[\langle A \rangle = \frac{1}{Z} \sum_n A_n e^{-\beta E_n} \]

quantum: \[\langle A \rangle = \frac{1}{Z} \sum_{\alpha} \langle \alpha | \hat{A} e^{-\beta \hat{H}} | \alpha \rangle \]

Q: How to integrate out without diagonalization?

A: map to \((d + 1)\) dim. classical system

“importance sampling”

\[\langle A \rangle = \frac{1}{Z} \sum_{\{c\}} A(\{c\}) W(\{c\}) \]

\[Z = \sum_{\{c\}} W(\{c\}) \]

- configuration: \(\{c\} \sim 2^N \)
- general method for high dimensional integrals

Y. Otsuka (RIKEN/AICS)
QMC for strongly correlated electrons
AICS Cafe
12 / 38
(roughly) 3 ways for quantum-classical mapping

1. world-line QMC (WL-QMC)
 - path-integral w/ checkerboard decomposition
 - electrons: only for 1d
 - spins: without frustration

2. Stochastic Series Expansion (SSE-QMC)
 - based on high-temperature series expansion
 - similar to WL-QMC

3. determinant QMC (det-QMC)
 - path-integral w/ Hubbard-Stratonovitch transformation
 - $d > 1$
organization

- determinant QMC
 - procedure:
 - Suzuki-Trotter decomposition
 - Hubbard-Stratonovich transformation → \(\{s_{il}\} \): auxiliary field
 - Integrating out fermions
 - MC sampling for \(\{s_{il}\} \)
 - example:
 - some results for 2d Hubbard model
Suzuki-Trotter decomposition

\[Z = \text{Tr} \, e^{-\beta \mathcal{H}} \]
\[= \text{Tr} \, e^{-L \Delta \tau (\mathcal{H}_t + \mathcal{H}_U)} \]
\[\approx \text{Tr} \prod_{l=1}^{L} e^{-\Delta \tau \mathcal{H}_t} e^{-\Delta \tau \mathcal{H}_U} \]
\[(\beta = L \Delta \tau) \]

- quantum-to-classical mapping
- \(d\)-dim. quantum system = \((d+1)\)-dim. classical system
discrete Hubbard-Stratonovich transformation

\[e^{-\Delta \tau U(n_i^\uparrow - \frac{1}{2})(n_i^\downarrow - \frac{1}{2})} = \frac{1}{2} e^{-\Delta \tau U/4} \sum_{s_{ii}=\pm1} e^{-\lambda s_{ii}(n_i^\uparrow - n_i^\downarrow)} \]

\[\{s_{ii}\}: \text{auxiliary field} \]

\[\Rightarrow Z = \text{Tr}_{\{s_{ii}\}} \text{Tr}_F \prod_{l=1}^{L} D_{\uparrow l} D_{\downarrow l} \]

\[\text{Tr}_{\{s_{ii}\}}: \text{trace over Ising spins } (2^{NL}) \]

\[\text{Tr}_F: \text{trace over free fermions} \]
Trace out fermions

\[
\text{Tr}_F \prod_{l=1}^{L} D_{\uparrow l} D_{\downarrow l} = \det \mathcal{O}_{\uparrow} \det \mathcal{O}_{\downarrow}
\]

\[
\mathcal{O}_\sigma = \begin{pmatrix}
I & 0 & \ldots & 0 & B_{\sigma 1} \\
-B_{\sigma 2} & I & 0 & \ldots & 0 \\
0 & -B_{\sigma 3} & I & \ldots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & -B_{\sigma L} & I
\end{pmatrix}
\]

\[
B_{\sigma l} = e^{-K} e^{-V_{\sigma l}} : N \times N \text{ matrix}
\]

\[
\det \mathcal{O}_\sigma = \det M_\sigma
\]

\[
M_\sigma = I + B_{\sigma L} B_{\sigma L-1} \cdots B_{\sigma 1}
\]

\[
\Rightarrow Z = \text{Tr}\{s_{li}\} \det M_{\uparrow} \det M_{\downarrow}
\]
Physical observables: Green’s function

$$\langle \langle c_{i\sigma} c_{j\sigma}^\dagger \rangle \rangle = \frac{1}{Z} \text{Tr} \left(c_{i\sigma} c_{j\sigma}^\dagger e^{-\beta \mathcal{H}} \right)$$

$$= \frac{\text{Tr} \{ s_l \} \langle c_{i\sigma} c_{j\sigma}^\dagger \rangle \det M \uparrow \det M \downarrow}{\text{Tr} \{ s_l \} \det M \uparrow \det M \downarrow}$$

$$\langle c_{i\sigma} c_{j\sigma}^\dagger \rangle = \frac{\text{Tr}_F c_{i\sigma} c_{j\sigma}^\dagger \prod_{l=1}^{L} D_{\sigma l}}{\text{Tr}_F \prod_{l=1}^{L} D_{\sigma l}} = (M_{\sigma}^{-1})_{ij}$$

MC sampling for configuration of Ising spins:

$$\langle \langle c_{i\sigma} c_{j\sigma}^\dagger \rangle \rangle = \lim_{N_{\text{MC}} \to \infty} \frac{1}{N_{\text{MC}}} \sum_{\text{MC}} \langle c_{i\sigma} c_{j\sigma}^\dagger \rangle$$

with weight $W[\{ s_l \}] = \det M \uparrow \det M \downarrow$
negative sign problem

- In general, \(W \) is **not** positive definite.

\[
\langle \langle A \rangle \rangle = \frac{\sum_{\{s_{li}\}} \langle A \rangle W[\{s_{li}\}]}{\sum_{\{s_{li}\}} W[\{s_{li}\}]}
\]

- some exceptions:
 - w/ p-h symmetry & bipartite lattice

- exponentially hard (?)

- Murphy’s Law (?)

\[
\langle \text{sgn} W[\{s_{li}\}] \rangle = \frac{W[\{s_{li}\}]}{|W[\{s_{li}\}]|}
\]
Effect of randomness on Mott insulator

Anderson-Hubbard model

\[H = -t \sum_{\langle j,k \rangle, \sigma} \left(c_{j\sigma}^\dagger c_{k\sigma} + \text{h.c.} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} + \sum_i \epsilon_i n_i \]

- Mott insulator: gapful, AF
- Anderson insulator: gapless, para

\[\rightarrow \text{collapse of charge gap} \]

Hubbard model with staggered flux

\[\mathcal{H} = \sum_{\langle j, k \rangle, \sigma} \left(c_{j\sigma}^\dagger t_{jk} c_{k\sigma} + c_{k\sigma}^\dagger t_{jk}^* c_{j\sigma} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow} \]

\[t_{jk} = t e^{i\theta_{jk}} \Rightarrow \phi = \sum_{\text{plaquette}} \theta_{jk} = \pm \pi \]

Suppression of AF due to flux

charge fluctuations in k-space

$$\kappa(k) = \left. \frac{dn(k)}{d\mu} \right|_{\mu=0}$$

N=16x16, \sim 100 MCS/1hour

Stochastic Series Expansion

- procedure:
 - high-temperature series-expansion
 - truncation at fixed $L \to \{S_L\}$: operator string
 - graphical representation
 - MC sampling for $\{S_L\}$

- example:
 - 1d extended Hubbard model coupled to lattice
Heisenberg model

\[H = J \sum_{\langle i, j \rangle} \left\{ \Delta S_i^z S_j^z + \left(S_i^x S_j^x + S_i^y S_j^y \right) \right\} \]

\[= J \sum_{\langle i, j \rangle} \left\{ \Delta S_i^z S_j^z + \frac{1}{2} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right\} \]

base: \[|\alpha\rangle = |\sigma_1 \sigma_2 \sigma_3 \cdots \sigma_N\rangle, \quad \sigma_i = \uparrow, \downarrow \]

\[S_i^z | \uparrow_i \rangle = | \uparrow_i \rangle \]
\[S_i^z | \downarrow_i \rangle = | \downarrow_i \rangle \]
\[S_i^+ | \uparrow_i \rangle = 0 \]
\[S_i^+ | \downarrow_i \rangle = | \uparrow_i \rangle \]
\[S_i^- | \uparrow_i \rangle = | \downarrow_i \rangle \]
\[S_i^- | \downarrow_i \rangle = 0 \]
(1): Write H as a sum of bond operators

$$H = -\sum_{a=1}^{2} \sum_{b=1}^{M} H_{a,b}$$

- a: operator type (1=diagonal, 2=off-diagonal)
- b: bond index (b connects $i(b)$ and $j(b)$)

$$H_{1,b} = C - \Delta S_{i(b)}^{z} S_{j(b)}^{z}, \quad C > \Delta/4 : \text{constant}$$

$$H_{2,b} = \frac{1}{2} \left(S_{i(b)}^{+} S_{j(b)}^{-} + S_{i(b)}^{-} S_{j(b)}^{+} \right)$$
(2): high-temperature series-expansion

\[Z = \text{Tr} \left\{ e^{-\beta H} \right\} \]

\[= \sum_\alpha \langle \alpha | e^{-\beta H} | \alpha \rangle \]

\[= \sum_\alpha \sum_{n=0}^\infty \frac{\beta^n}{n!} \langle \alpha | H^n | \alpha \rangle \]

\[= \sum_\alpha \sum_{n=0}^\infty \sum S_n \frac{\beta^n}{n!} \langle \alpha | H_{l_1} H_{l_2} H_{l_3} \cdots H_{l_n} | \alpha \rangle \]

\[l_j : (a, b) \]

\[S_n : [l_1, l_2, \cdots, l_n] \quad \text{(operator string)} \]
(3): truncate at $n = L$

$$Z \simeq \sum_{\alpha} \sum_{n=0}^{L} \sum_{S_n} \frac{\beta^n}{n!} \langle \alpha | \prod_{l} H_{l} | \alpha \rangle$$

∴ $\langle n \rangle = -\beta \langle H \rangle$ (finite lattice)
(4): insert unit operators

\[Z = \sum_{\alpha} \sum_{S_L} \frac{\beta^n (L - n)!}{L!} \langle \alpha | \prod_{l_j=1}^{L} H_{l_j} | \alpha \rangle \]

\[l_j : \quad 0 \text{ or } (a, b) \]

\[H_0 = I \]
\begin{equation}
\langle A \rangle = \frac{1}{Z} \text{Tr} \left\{ A e^{-\beta H} \right\} = \frac{1}{Z} \langle \alpha | A e^{-\beta H} | \alpha \rangle = \frac{1}{Z} \sum_{\alpha} \sum_{S_L} \frac{\beta^n (L - n)!}{L!} \langle \alpha | A \prod H_j | \alpha \rangle = \frac{1}{Z} \sum_{\alpha} \sum_{S_L} \frac{\langle \alpha | A \prod H_j | \alpha \rangle}{\langle \alpha | \prod H_j | \alpha \rangle} \cdot \frac{\beta^n (L - n)!}{L!} \langle \alpha | \prod H_j | \alpha \rangle = \sum_{\alpha} \sum_{S_L} A(\alpha, S_L) W(\alpha, S_L) \frac{\sum_{\alpha} \sum_{S_L} W(\alpha, S_L)}{\sum_{\alpha} \sum_{S_L} W(\alpha, S_L)}
\end{equation}

importance sampling for configuration \((\alpha, S_L) \Rightarrow \text{MC}\)
graphical representation for vertices

\[W(\alpha, S_L) = \frac{\beta^n (L - n)!}{L!} \langle \alpha(L) | H_L | \alpha(L - 1) \rangle \cdots \langle \alpha(2) | H_2 | \alpha(1) \rangle \cdot \langle \alpha(1) | H_1 | \alpha(0) \rangle \]

diagonal operator: \(H_{1,b} \)

off-diagonal operator: \(H_{2,b} \)
graphical representation for operator string

\[W(\alpha, S_L) = \frac{\beta^n(L - n)!}{L!} \langle \alpha(L) | H_L | \alpha(L - 1) \rangle \cdots \langle \alpha(2) | H_2 | \alpha(1) \rangle \cdot \langle \alpha(1) | H_1 | \alpha(0) \rangle \]

Ex. 4-site case:

\[\begin{align*}
N &= 4 \\
L &= 5 \\
|\alpha(0)\rangle &= |\downarrow\uparrow\uparrow\downarrow\rangle \\
S_L &= (H_{1,1}, H_{2,3}, H_{0,0}, H_{2,3}, H_{1,1})
\end{align*} \]

⇒ operator string: world-line (doubly linked list)
Molecular conductor: 1D π-electron system
Molecular conductor: “colorful” phase diagrams

similar one-electron band structures but variety of properties → interactions are important!
Molecular conductor: “colorful” phase diagrams

- “soft” → electron-lattice coupling, pressure
- low dimensinality → quantum/thermal fluctuations
- clean & material design → “model” material

charge order (CO): U, V

dimer-Mott (DM): U, t_d

CO+SP

DM+SP

SP: spin-Peierls

Molecular conductor: new phase diagram

\[\hat{H} = \hat{H}_{\text{extHub}} + \hat{H}_{e-l} + \hat{H}_\perp \]

\[\hat{H}_{\text{extHub}} = - \sum_{i,\sigma} t_i \left(c_{i\sigma}^\dagger c_{i+1\sigma} + \text{h.c.} \right) + \sum_i U n_i^\uparrow n_i^\downarrow + \sum_i V n_i n_{i+1} \]

\[\hat{H}_{e-l} = - \sum_{i,\sigma} t_i u_i \left(c_{i\sigma}^\dagger c_{i+1\sigma} + \text{h.c.} \right) + \frac{K_P}{2} \sum_i u_i^2 + \frac{K_{P2}}{4} \sum_i u_i^4 \]

\[\hat{H}_\perp = V_\perp \sum_{\langle j,k \rangle} n_j^\dagger n_j^k \]

- ¼-filled extended Hubbard model
- electron-lattice coupling
- inter-chain interaction

H. Seo et al., JPSJ 2007.
Molecular conductor: finite-\(T \) phase diagram

(a): \(\delta_d = 0, K_{P_2} = 0 \)

(b): \(\delta_d = 0, K_{P_2} = 0.75 \)

(c): \(\delta_d = 0.02, K_{P_2} = 0 \)

CO v.s. DM

CO+DM

\rightarrow \text{ferroelectoricity}

cf. TMTTF-salt

Molecular conductor: comparison with experiments

Summary

1. Determinant QMC
 - Procedure:
 - Trotter decomposition.
 - Hubbard-Stratonovich transformation $\rightarrow \{s_{il}\}$: auxiliary field
 - Integrating out fermions
 - MC sampling for $\{s_{il}\}$
 - Example: 2d Hubbard model

2. Stochastic Series Expansion
 - Procedure:
 - High-temperature series-expansion
 - Truncation at fixed $L \rightarrow \{S_L\}$: operator string
 - Graphical representation
 - MC sampling for $\{S_L\}$
 - Example: 1d extended Hubbard model coupled to lattice