
The Extreme-scale Scientific Software Stack (E4S)
for Collaborative Open Source Software

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology, US Exascale Computing Project

The 2nd R-CCS International Symposium
February 18, 2020

ECP Context for E4S

3

ECP Software Technology (ST) is one of three focus areas

Application
Development (AD)

Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale
Aggressive RD&D

Project
Mission apps &

integrated S/W stack
Deployment to DOE

HPC Facilities
Hardware tech

advances

Integrated delivery of ECP
products on targeted systems at

leading DOE HPC facilities

6 US HPC vendors focused on
exascale node and system

design; application integration
and software deployment to

facilities

Deliver expanded and vertically
integrated software stack to

achieve full potential of exascale
computing

70 unique software products
spanning programming models
and run times, math libraries,

data and visualization

Develop and enhance the
predictive capability of

applications critical to the DOE

24 applications including
national security, to energy, earth

systems, economic security,
materials, and data

4

ECP ST has six technical areas

Programming
Models & Runtimes
•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

10-8

10-4

100

104

 0 100 200 300 400 500 600 700 800 900
R

e
s
id

u
a
l

Iteration

PAPI SDE Recorder: Residual per Iteration (662-bus: 662 x 662 with 2,474 nonzeros)

CG
CGS

BICGSTAB

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST
• Open source

NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Xaioye (Sherry) Li, Math Libraries (2.3.3)
Sherry is a senior scientist at Berkeley Lab. She has over 20 years of experience in high-performance numerical software, including development of
SuperLU and related linear algebra algorithms and software.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Lois Curfman McInnes, Software Technology Deputy Director
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in high-
performance numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software
ecosystems.

Rob Neely, NNSA ST (2.3.6)
Rob is an Associate Division Leader in the Center for Applied Scientific Computing (CASC) at LLNL, chair of the Weapons Simulation & Computing
Research Council, and lead for the Sierra Center of Excellence. His efforts span applications, CS research, platforms, and vendor interactions.

Todd Munson, Software Ecosystem and Delivery (2.3.5)
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards.

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards.

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms.

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors.

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features.

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies.

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage.

Viz/Data Analysis ParaView-related product development, node concurrency.

Key themes:
• Exploration/development of new algorithms/software for emerging HPC capabilities:
• High-concurrency node architectures and advanced memory & storage technologies.
• Enabling access and use via standard APIs.
Software categories:
• The next generation of well-known and widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Some lesser used but known products that address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products that enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

7

ECP ST
Subprojects
- WBS
- Name
- PIs
- Project
Managers
(PMs)

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, Carter, J.
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Baden, Scott Hargrove, Paul (and PI)
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Mellor-Crummey, John
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries McInnes, Lois
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Smith, Barry Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Xiaoye Li, Xiaoye
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.6 NNSA ST Neely, Rob
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST
Stats
- 33 L4

subprojects
- 10 PI/PC same
- 23 PI/PC

different

E4S Overview

9

Delivering an open, hierarchical software ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

10

Delivering an open, hierarchical software ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

11

E4S: Extreme-scale Scientific Software Stack
• Curated release of ECP ST products based on Spack [http://spack.io] package manager
• Spack binary build caches for bare-metal installs

– x86_64, ppc64le (IBM Power 9), and aarch64 (ARM64)
• Container images on DockerHub and E4S website of pre-built binaries of ECP ST products
• Base images and full featured containers (GPU support)
• GitHub recipes for creating custom images from base images
• GitLab integration for building E4S images
• E4S validation test suite on GitHub
• E4S VirtualBox image with support for container runtimes

• Docker
• Singularity
• Shifter
• Charliecloud

• AWS image to deploy E4S on EC2
https://e4s.io

12

Extreme-scale Scientific Software Stack (E4S)

•E4S: A Spack-based distribution of ECP ST and related
and dependent software tested for interoperability and
portability to multiple architectures

•Provides distinction between SDK usability / general
quality / community and deployment / testing goals

•Will leverage and enhance SDK interoperability thrust

•Oct 2018: E4S 0.1 - 24 full, 24 partial release products
• Jan 2019: E4S 0.2 - 37 full, 10 partial release products
•Nov 2019: E4S 1.0 - 50 full, 5 partial release products
• Feb 2020: E4S 1.1 - 50 full,10 partial release products

e4s.io
Lead: Sameer Shende

(U Oregon)

13

E4S 1.1 Full Release: 50 ECP Packages and all dependencies
• Adios
• AML
• Argobots
• Bolt
• Caliper
• Darshan
• Dyninst
• Faodel
• Flecsi
• Gasnet
• GEOPM
• Gotcha
• HDF5
• HPCToolkit
• Hypre

• Kokkos
• Legion
• Libnrm
• Libquo
• Magma
• Mercury
• MFEM
• MPICH
• MPIFileUtils
• Ninja
• OpenMPI
• PAPI
• Papyrus
• Parallel

netCDF

• PDT
• PETSc
• Qthreads
• Raja
• Rempi
• SCR
• Spack
• Strumpack
• Sundials
• SuperLU
• SZ
• Tasmanian
• TAU
• Trilinos
• Turbine

• Umpire
• UnifyFS
• UPC++ Veloc
• Zfp

Packages installed using Spack

All ST products
will be released

through E4S

Partial (in-progress) Release: ASCENT, Catalyst, Flang, libEnsemble, LLVM, Visit, others

ECP SW Technology
Software Architecture –
Spack Software
Distribution System

15

• Spack automates the build and installation of scientific software
• Packages are templated, so that users can easily tune for the host environment

• Ease of use of mainstream tools, with flexibility needed for HPC tuning

• Major victories:
• ARES porting time on a new platform was reduced from 2 weeks to 3 hours
• Deployment time for 1,300-package stack on Summit supercomputer

reduced from 2 weeks to a 12-hour overnight build
• Used by teams across ECP to accelerate development

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

16

Spack is being used on many of the top HPC systems
• Official deployment tool for the

U.S. Exascale Computing Project
• 7 of the top 10 supercomputers
• High Energy Physics community

– Fermilab, CERN, collaborators
• Astra (Sandia)
• Fugaku

Summit (ORNL), Sierra (LLNL) Edison, Cori, Perlmutter (NERSC)SuperMUC-NG (LRZ,
Germany)

Fugaku at RIKEN
DOE/MEXT collaboration

17

Spack is used worldwide! Over 3,400 software packages
Over 2,000 monthly active users

Over 400 contributors (and growing)

Active users of Spack documentation site for one month
https://spack.readthedocs.io

18

Spack strategy is to enable exascale software distribution
on both bare metal and containers
1. New capabilities to make HPC packaging easy and automated

• Optimized builds and package binaries that exploit the hardware
• Workflow automation for facilities, developers, and users
• Strong integration with containers as well as facility deployments

2. Develop exascale enhancements to container runtimes
• Understand and automate performance/portability tradeoffs
• Optimized containers & build automation for exascale HPC centers
• Enable portability from laptops to exascale

3. Outreach to users
• Ongoing working groups, Best practice guides
• Tutorials, workshops, BOFs for Spack and Containers

4. Collaboration across ECP
• Work with HI and other areas to build service infrastructure
• Facilitate curation of packages through E4S and facilities
• Ongoing ECP user support Exascale Container

Runtimes

Spack Packaging

Bare Metal
Exascale Machines

Build / Deployment
Automation

19

• We have added security features to the
open source GitLab product.
– Integration with center identity management
– Integration with schedulers like SLURM, LSF

• We are democratizing testing at Livermore Computing
– Users can run tests across 30+ machines by editing a file
– Previously, each team had to administer own servers

• ECP sites are deploying GitLab CI for users
– All HPC centers can leverage these improvements
– NNSA labs plan to deploy common high-side CI infrastructure
– We are developing new security policies to allow external open

source code to be tested safely on key machines

Spack heavily involved in the
ECP CI project.

. . .

User commits
to GitLab

GitLab test runners are now
integrated with HPC machines

ECP SW Technology
Software Architecture –
SDKs

21

Software Development Kits (SDKs): Key delivery vehicle for ECP
A collection of related software products (packages) where coordination across package teams improves usability
and practices, and foster community growth among teams that develop similar and complementary capabilities

• Domain scope
Collection makes functional sense

• Interaction model
How packages interact; compatible, complementary, interoperable

• Community policies
Value statements; serve as criteria for membership

• Meta-infrastructure
Invokes build of all packages (Spack), shared test suites

• Coordinated plans
Inter-package planning. Augments autonomous package planning

• Community outreach
Coordinated, combined tutorials, documentation, best practices

ECP ST SDKs: Grouping similar products
for collaboration & usability

Programming Models &
Runtimes Core
Tools & Technologies
Compilers & Support
Math Libraries (xSDK)
Viz Analysis and Reduction
Data mgmt., I/O Services & Checkpoint/
Restart
“Unity in essentials, otherwise diversity”

22

xSDK community policies
xSDK compatible package: Must satisfy
mandatory xSDK policies:
M1. Support xSDK community GNU Autoconf or CMake options.
M2. Provide a comprehensive test suite.
M3. Employ user-provided MPI communicator.
M4. Give best effort at portability to key architectures.
M5. Provide a documented, reliable way to contact the development team.
M6. Respect system resources and settings made by other previously called
packages.
M7. Come with an open source license.
M8. Provide a runtime API to return the current version number of the
software.
M9. Use a limited and well-defined symbol, macro, library, and include file
name space.
M10. Provide an accessible repository (not necessarily publicly available).
M11. Have no hardwired print or IO statements.
M12. Allow installing, building, and linking against an outside copy of external
software.
M13. Install headers and libraries under <prefix>/include/ and <prefix>/lib/.
M14. Be buildable using 64 bit pointers. 32 bit is optional.
M15. All xSDK compatibility changes should be sustainable.
M16. The package must support production-quality installation compatible
with the xSDK install tool and xSDK metapackage.

Also recommended policies, which
currently are encouraged but not required:

R1. Have a public repository.
R2. Possible to run test suite under valgrind in order
to test for memory corruption issues.
R3. Adopt and document consistent system for error
conditions/exceptions.
R4. Free all system resources it has acquired as
soon as they are no longer needed.
R5. Provide a mechanism to export ordered list of
library dependencies.
R6. Provide versions of dependencies.

xSDK member package: Must be an xSDK-
compatible package, and it uses or can be
used by another package in the xSDK, and
the connecting interface is regularly tested
for regressions.

We welcome feedback. What policies
make sense for your software?

https://xsdk.info/policies

https://xsdk.info/policies

23

SW engineering
• Productivity tools.
• Models, processes.

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-Scale Scientific Software Development Kit (xSDK)

Domain components
• Reacting flow, etc.
• Reusable.

Tested on key machines at ALCF,
NERSC, OLCF, also Linux, Mac OS X

xSDK version 0.4.0: December 2018

Multiphysics Application C

Application B

Impact: Improved code quality,
usability, access, sustainability

Foundation for work on
performance portability, deeper

levels of package interoperability

Each xSDK member package uses or
can be used with one or more xSDK
packages, and the connecting interface
is regularly tested for regressions.

https://xsdk.info

Application A

Alquimia hypre

Trilinos

PETSc

SuperLU More
libraries

PFLOTRAN

More domain
components

MFEM

SUNDIALS

HDF5

BLAS

More
external
software

STRUMPACK

SLEPc
AMReX

PUMI

Omega_h

DTK Tasmanian

PHIST

deal.II

PLASMA

December 2018
• 17 math libraries
• 2 domain

components
• 16 mandatory

xSDK community
policies

• Spack xSDK
installer

MAGMA

24

xSDK Member

Dependency

p4est

openmpi

automakelibtoolzlib

autoconf

alquimia

cmake

pflotran

hdf5

python

sqlite

xz

readline

gdbm

pkgconf

ncurses

opensslbzip2

expat libffigettext

libbsd

nanoflann

petsc

glm

m4

libsigsegv

plasma

openblas

intel-tbb

hypre

superlu-dist

py-libensemble

py-petsc4py

py-setuptools

py-numpy

slepc

arpack-ng

cuda

util-macros

parmetis

metis

eigen

diffutils

libiconv

matio

libxml2

tar

oce

butterflypack

netlib-scalapack

pumi

gsl

numactl

magma

hwloc

sundials

mfem

precice

boost

adol-clibpciaccess

omega-h

trilinos

xsdk

amrex

ginkgo

tasmanian

strumpack

phist

dealii

py-mpi4py

perl

suite-sparse

muparser

netcdf-c

25

xSDK version 0.5: November 2019
(21 math libs, 2 domain-specific packages)
• AMReX
• ButterflyPACK
• DTK
• deal.ii
• Ginkgo
• hypre
• libEnsemble
• MAGMA
• MFEM
• Omega_h

• PETSc/TAO
• PHIST
• PLASMA
• preCICE
• PUMI
• SLEPc
• STRUMPACK
• SUNDIALS
• SuperLU
• Tasmanian

• Trilinos
• Pflotran
• Alquimia

Notes:

• Growth:
§ 5 in release 0.1.
§ 7 in 0.2
§ 9 in 0.3
§ 19 in 0.4
§ 23 in 0.5

• You do not need to build all packages.
• We build and test all packages.
• Any subset is guaranteed to build if using the

same build parameters, platforms.
• Similar builds should work or require less effort

for success.

26

SDK “Horizontal” Grouping:
Key Quality Improvement
Driver

Horizonal (vs Vertical) Coupling
–Common substrate
–Similar function and purpose
•e.g., compiler frameworks, math libraries

–Potential benefit from common Community Policies
•Best practices in software design and development and customer support

–Used together, but not in the long vertical dependency chain sense
–Support for (and design of) common interfaces
•Commonly an aspiration, not yet reality

PETSc Trilinos

SuperLU Version X SuperLU Version Y

Horizontal grouping:
• Assures X=Y.
• Protects against regressions.
• Transforms code coupling from

heroic effort to turnkey.

27 Exascale Computing Project

Development of xSDK Community Policies
• Community policies now available on Github for revision control and to preserve history:

https://github.com/xsdk-project/xsdk-community-policies

• Established process on how to change or add policies

• Newest release: 0.5.0
Also recommended policies, which currently are encouraged but
not required:
R1. Have a public repository.
R2. Possible to run test suite under valgrind in order to test for memory
corruption issues.
R3. Adopt and document consistent system for error conditions/exceptions.
R4. Free all system resources it has acquired as soon as they are no longer
needed.
R5. Provide a mechanism to export ordered list of library dependencies.
R6. Provide versions of dependencies.
R7. Have README, SUPPORT, LICENSE, and CHANGELOG file in top
directory.

Changes in 0.5.0:
q New recommended policy R7
q Dropped the requirement to detect MPI 2 features in M3
q Made various editorial changes in M5, M13, M15, and R2 for

clarification or to fix typos.

https://github.com/xsdk-project/xsdk-community-policies

28 Exascale Computing Project

Integration of Community Policies

• Potential new xSDK members will fill out
compatibility form:
https://github.com/xsdk-project/xsdk-policy-compatibility

• xSDK team will check for compatibility
and approve if compatible

• Designing and implementing xSDK policy
checker to automate the policy compliance
checking.
– Implemented checkers for a few policy rules.

Examples:
• M3: Employ user-provided MPI Communicator: Policy checker lists the file names that

contain MPI_COMM_WORLD.
• M7: Come with an open source license. Policy checker search license files at the top

directly of the source and scan the headers of source code files.

https://github.com/xsdk-project/xsdk-policy-compatibility

29 Exascale Computing Project

Processes for xSDK release and delivery

• 2-level release process
– xSDK

• Ensure and test compatibility of mostly independent package releases

– xSDK member packages
• Achieve compatibility with xSDK community policies prior to release

– https://github.com/xsdk-project/xsdk-policy-compatibility

• Have a Spack package

• Port to target platforms

• Provide user support

• Obtaining the latest release: https://xsdk.info/releases
• Draft xSDK package release process checklist:

– https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit?usp=sharing

xSDK delivery process

• Regular releases of software
and documentation, primarily
through member package
release processes

• Anytime open access to
production software from
GitHub, BitBucket and related
community platforms

https://github.com/xsdk-project/xsdk-policy-compatibility
https://xsdk.info/releases
https://docs.google.com/document/d/16y2bL1RZg8wke0vY8c97ssvhRYNez34Q4QGg4LolEUk/edit%3Fusp=sharing

30

There are 5 L4 projects to define and/or enhance SDKs

• Each L3 area has an L4 project devoted to
SDK definition and coordination across the
portfolio

• Software ecosystem L4 project focuses on
packaging
– Spack
– Containers

• Strong coordination with HI Software
Deployment projects

•Drives milestone-based planning

WBS Areas

ECP ST SDKs will span all technology areas

zfp

VisIt

ASCENT

Cinema

Catalyst

VTK-m

SZ

ParaView

Visualization Analysis
and Reduction (9)

ROVER

xSDK (16)

MAGMA

DTK

Tasmanian

TuckerMPI

SUNDIALS

PETSc/TAO

libEnsemble

STRUMPACK

SuperLU

ForTrilinos

SLATE

MFEM

Kokkoskernels

Trilinos

hypre

FleSCI

PMR Core (17)

UPC++

MPICH

Open MPI

Umpire

AML

RAJA

CHAI

PaRSEC*

DARMA

GASNet-EX

Qthreads

BOLT

SICM

Legion

Kokkos (support)

QUO

Papyrus

Tools and
Technology (11)

PAPI

Program Database Toolkit

Search (random forests)

Siboka

C2C

Sonar

Dyninst Binary Tools

Gotcha

Caliper

TAU

HPCToolkit

Compilers
and Support (7)

OpenMP V & V

Flang/LLVM Fortran comp

LLVM

CHiLL autotuning comp

LLVM openMP comp

openarc

Kitsune

Data mgmt, I/O Services,
Checkpoint restart (12)

Parallel netCDF

ADIOS

Darshan

UnifyCR

VeloC

IOSS

HXHIM

ROMIO

Mercury (Mochi suite)

HDF5

SCR

FAODEL

Ecosystem/E4S
at-large (12)

BEE

FSEFI

Kitten Lightweight Kernel

COOLR

NRM

ArgoContainers

Spack

MarFS

GUFI

Intel GEOPM

mpiFileUtils

TriBITS

Tools

PMR

Data and Vis
Ecosystems and delivery

Math Libraries Legend

Motivation: Properly chosen cross-team interactions will build relationships that support interoperability, usability,
sustainability, quality, and productivity within ECP ST.
Action Plan: Identify product groupings where coordination across development teams will improve usability and
practices, and foster community growth among teams that develop similar and complementary capabilities.

32

Data SDK: HDF5 API Initiative

• Adding The HDF Group (THG) to the Data & Vis SDK project to assist in various aspects of
improving the use of the HDF5 API
– Support and training

• Direct support and training will be provided to ECP applications and ST projects to assist in the
performant use of HDF5

– Compatible APIs with other I/O libraries
• DataLib (pnetcdf) and ADIOS will develop interfaces compatible with the HDF5 API, possibly through the

HDF5 Virtual Object Layer
• THG will provide support to the I/O projects to assist in achieving this compatibility

• Both Kitware and THG will identify the I/O usage patterns w.r.t. metadata operations, bulk data
operations, access patterns.
– This will help identify usage patterns that can be improved on by applications and ST projects
– Also will help identify usage patterns that HDF5 can work to optimize for.

33

SDK Summary
• SDKs will help reduce complexity of delivery:

– Hierarchical build targets.
– Distribution of software integration responsibilities.

• New Effort: Started in April 2018, fully established in August 2018.

• Extending the SDK approach to all ECP ST domains.
– SDKs create a horizontal coupling of software products, teams.
– Create opportunities for better, faster, cheaper – pick all three.

• First concrete effort: Spack target to build all packages in an SDK.
– Decide on good groupings.
– Not necessarily trivial: Version compatibility issues, Coordination of common dependencies.

• Longer term:
– Establish community policies, enhance best practices sharing.
– Provide a mechanism for shared infrastructure, testing, training, etc.
– Enable community expansion beyond ECP.

34

Putting it all together: Products + SDKs + E4S

• In ECP, teams increasingly need to ensure that their libraries
and components work together
– Historically, HPC codes used very few dependencies

• Now, groups of teams work together on small releases of
“Software Development Kits”

• SDKs will be rolled into a larger, periodic release.
Develop

Package

Build

Test

Deliver

Math
Libraries

Develop

Package

Build

Test

Deliver

Visualization

Develop

Package

Build

Test

Deliver

Programming
Models …

Build

TestDeliver

Integrate

E4S
ECP-wide

software release
https://e4s.io

E4S Collaborations

36

NSF Collaborations

https://oaciss.uoregon.edu/NSFDOE19/agenda.html

37

Extending Collaborations
•E4S/SDK collaborations make sense with:
– HPC open source development projects:
•deal.II (NSF math library),
•PHIST (DLR Germany library).

– Commercial open source packagers/distributors:
•OpenHPC.
•HPC systems vendors.

– HPC systems facilities:
•SDSC, TACC, others.

– Other organizations in search of collaborative open source software foundation:
•NSF science teams.
•NOAA, others.
•International collaborators.

38

E4S: Building on top of previous efforts

•E4S did not emerge from nothing.

•Leveraging the work of many others.

•HPC Linux: Work done at U of Oregon, and at ParaTools.

• IDEAS-Classic: xSDK – the original SDK continuing under ECP.

•Spack – Pre-dates E4S.

39

E4S: ARM64 Base Container Images

• Dockerhub
• Support for

NVDIA GPUs

E4S Wrap Up

41

Delivering an open, hierarchical software ecosystem

ST
Products

Source: ECP L4 teams; Non-ECP Developers; Standards Groups
Delivery: Apps directly; spack; vendor stack; facility stack

SDKs

Source: ECP SDK teams; Non-ECP Products (policy compliant,
spackified)

Delivery: Apps directly; spack install sdk; future: vendor/facility

E4S

Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Containerize binaries

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

• ECP Legacy: An open, hierarchical and extensible HPC software ecosystem
• SDK communities for enhanced developer and user experience
• Easy deployment via source and by container technologies
• In collaboration with DOE facilities, vendors, other US agencies and strategic collaborators
• A model for post-ECP coordinated software development and delivery.

42

E4S Summary

What E4S is
• Extensible, open architecture software ecosystem

accepting contributions from US and international teams.

• Framework for collaborative open-source product
integration.

• A full collection if compatible software capabilities and

• A manifest of a la carte selectable software capabilities.

• Vehicle for delivering high-quality reusable software
products in collaboration with others.

• The conduit for future leading edge HPC software
targeting scalable next-generation computing platforms.

• A hierarchical software framework to enhance (via SDKs)
software interoperability and quality expectations.

What E4S is not

• A closed system taking contributions only from DOE
software development teams.

• A monolithic, take-it-or-leave-it software behemoth.

• A commercial product.

• A simple packaging of existing software.

43

Final Remarks
• Software Development Kits (SDKs) provide a new software coordination mechanism:

– Do not significantly increase the number of software products in the HPC ecosystem.
– Provide intermediate build, install and test targets for E4S (reducing complexity).
– Enable development teams to improve and standardize look-and-feel, best practices, policies.
– Improve interoperability, interchangeability of similar products.
– Fosters communities of developers in a cooperative/competitive environment.
– Provides integration point for SDK-compatible, non-ECP products.

• The Extreme-scale Scientific Software Stack (E4S) provides a complete HPC software stack:
– Does not significantly increase the number of software products in the HPC ecosystem.
– Provides a coordinated approach to building, installing and testing HPC software.
– Tests some products with a subset of configurations on a subset of platforms.
– Improves stability of the ST stack so that any subset is more stable.
– Provides a complete software stack, including non-ECP products.

• The SDK/E4S architecture is open:
– Enables light-weight coordinated collaboration among open source software teams.
– ECP seeks collaboration: libraries/tools and SDKs, facilities and E4S.

44

ECP Software Technology Capability
Assessment Report (CAR) Version 2.0

https://exascaleproject.org/wp-content/uploads/2020/02/ECP-ST-CAR-V20-1.pdf

• Comprehensive document about ECP
ST structure, progress and planning.

• Version 2.0 – extensive revision:
– FY20 – 23 Organization.
– Planning, Execution, Tracking &

Assessment processes.
– E4S/SDK details.
– 2-page writeups for each product

development effort.
– Released February 1, 2020.

