

shaping tomorrow with you

Supercomputer Fugaku

Toshiyuki Shimizu

Feb. 18th, 2020

FUJITSU LIMITED

Copyright 2020 FUJITSU LIMITED

Outline

- Fugaku project overview
- Co-design
 - Approach
 - Design results
- Performance & energy consumption evaluation
 - Green500
 - OSS apps
 - Fugaku priority issues
- Summary

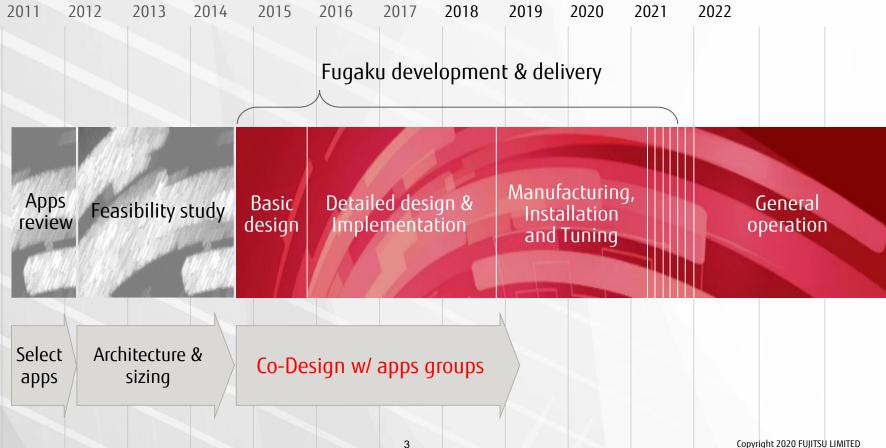
Supercomputer "Fugaku", formerly known as Post-K Fujirsu

FOCUS

Application performance
Power efficiency
Usability

<u>に</u>介.

Approach


Co-design w/ application developers and Fujitsu-designed CPU core w/ high memory bandwidth utilizing HBM2

Leading-edge Si-technology, Fujitsu's proven low power & high performance logic design, and power-controlling knobs

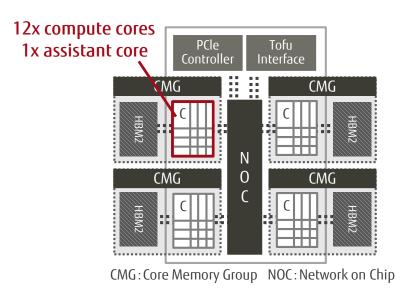
Arm®v8-A ISA with Scalable Vector Extension ("SVE"), and Arm standard Linux

Fugaku project schedule

Fugaku co-design

- Co-design goals
 - Obtain the best performance, 100x apps performance than K computer, within power budget, 30-40MW
 - Design applications, compilers, libraries, and hardware
- Approach
 - Estimate perf & power using apps info, performance counts of Fujitsu FX100, and cycle base simulator
 - Computation time: brief & precise estimation
 - Communication time: bandwidth and latency for communication w/ some attributes for communication patterns
 - I/0 time:
 - Then, optimize apps/compilers etc. and resolve bottlenecks
- Estimation of performance and power
 - Precise performance estimation for primary kernels
 - Make & run Fugaku objects on the Fugaku cycle base simulator
 - Brief performance estimation for other sections
 - Replace performance counts of FX100 w/ Fugaku params: # of inst. commit/cycle, wait cycles of barrier, inst. fetch, branch, fp exec, data load/store wait cycles of L1D/L2, etc.
 - Power estimation
 - DGEMM execution toggles on the emulator + estimation of memory and interconnect considering utilization + loss of convertors

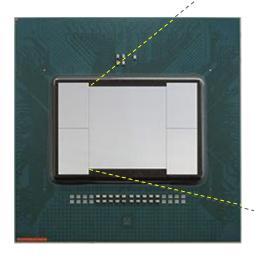
Co-design iterations around year 2015

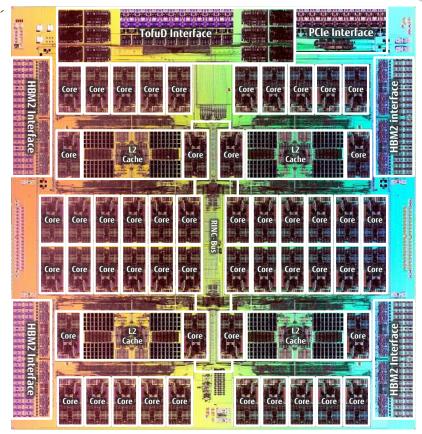

- Apply each of application kernels
 - Define/refine a set of architecture parameters
 - Implement/tune the kernel under the architecture parameters
 - Evaluate execution time using the estimation tools
 - Identify hardware bottlenecks and explore design space
- Examples of architecture parameters
 - Frequency, # of arch regs, SIMD width, cache structure & size, # of cores...
 - Memory, interconnect parameters
 - Implementation of instructions: i.e. Combined gather...

A64FX CPU

Arm SVE, high performance and high efficiency

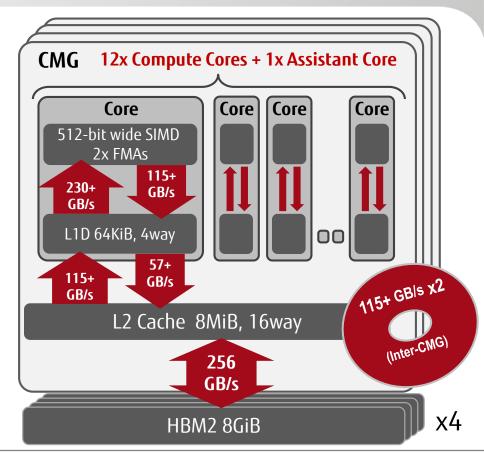
DP performance 2.7+ TFLOPS, >90%@DGEMM, (CPU freq=1.8/2.0/2.2 GHz)
 Memory BW 1024 GB/s, >80%@STREAM Triad




	A64FX		
ISA (Base, extension)	Armv8.2-A, SVE		
Peak DP performance	2.7+ TFLOPS		
SIMD width	512-bit		
# of cores	48 + 4		
Memory capacity	32 GiB (HBM2 x4)		
Memory peak bandwidth	1024 GB/s		
PCIe	Gen3 16 lanes		
High speed interconnect	TofuD integrated		

A64FX leading-edge Si-technology

- TSMC 7nm FinFET & CoWoS
 - Broadcom SerDes, HBM I/O, and SRAMs
 - 8.786 billion transistors
 - 594 signal pins

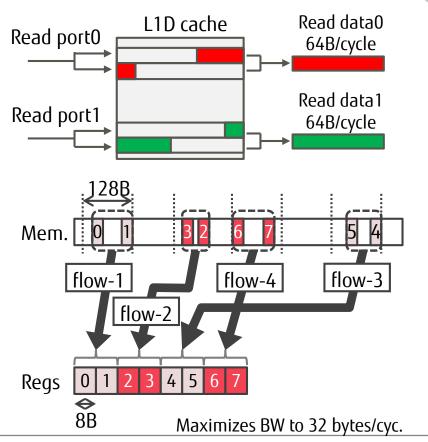


Fujitsu-designed CPU core w/ High Memory Bandwidth

A64FX out-of-order controls in cores, caches, and memories achieve superior throughput

BW and calc. perf.	A64FX	B/F	
DP floating perf. (TFlops)	2.7+	-	
L1 data cache (TB/s)	11+	4	
L2 cache (TB/s)	3.6+	1.3	
Memory BW (GB/s)	1024	0.37	

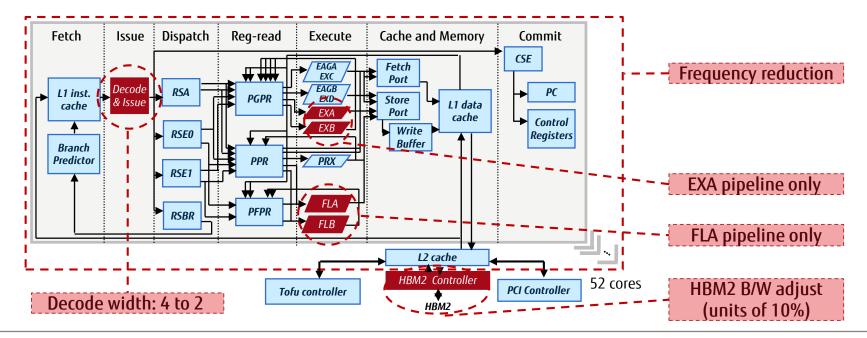
Copyright 2020 FUJITSU LIMITED


FUITSU

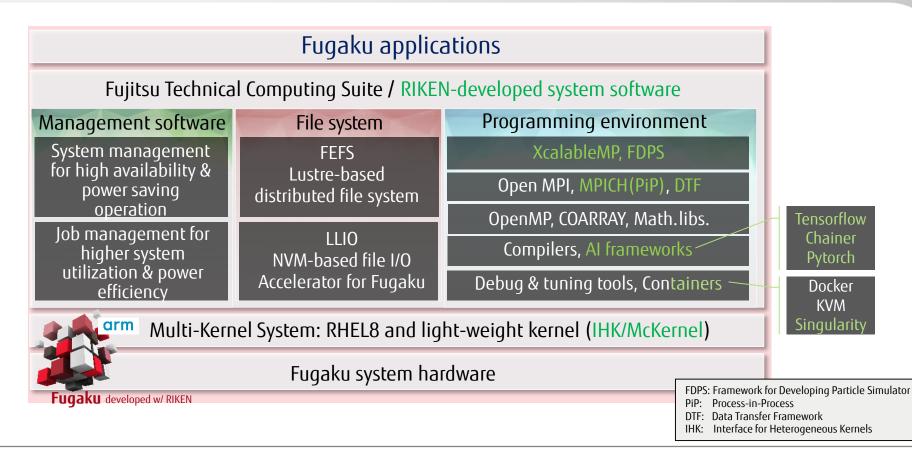
A64FX optimized load efficiency for apps performance

128 bytes/cycle sustained bandwidth even for unaligned SIMD load

"Combined Gather" doubles gather (indirect) load's data throughput, when target elements are within a "128-byte aligned block" for a pair of two regs, even & odd


Suggested through Co-design work w/ app teams

A64FX Power Knobs to reduce power consumption



- "Power knob" limits units' activities via user APIs
- Performance/Watt can be optimized by utilizing Power knobs

Fugaku system software developed with RIKEN

Outline

- Fugaku project overview
- Co-design
 - Approach
 - Design results
- Performance & energy consumption evaluation
 - Green500
 - OSS apps
 - Fugaku priority issues
- Summary

Green500, Nov. 2019

A64FX prototype – Fujitsu A64FX 48C 2GHz ranked <mark>#1</mark> on the list

768x general purpose A64FX CPU w/o accelerators

- 1.9995 PFLOPS @ HPL, 84.75%
- 16.876 GF/W
- Power quality level 2

GREEN500 LISTS - RESOURCES - ABOUT - MEDIA KIT

Home / Lists / November 2019

NOVEMBER 2019

- The most energy-efficient system and No. 1 on the Green500 is a new Fujitsu A64FX
 prototype installed at Fujitsu, Japan. It achieved 16.9 GFlops/Watt power-efficiency
 during its 2.0 Pflop/s Linpack performance run. It is listed on position 160 in the TOP500.
- In second position is the NA-1 system, a PE2Y Computing / Exascaler Inc. system which is currently being readied at PE2Y Computing, Japan for a future installation at NA Simulation in Japan. It achieve 16.3 GR/ops/Watt power efficiency. It is on position 421 in the TOP500.
- The No 3 on the Green500 is AiMOS, a new IBM Power systems at the Rensselaer Polytechnic Institute Center for Computational Innovations (CCI), New York, USA. It achieved 15.8 GFIops/Watt and is listed at position 25 in the TOP50

Green500 List for November 2019

Listed below are the November 2019 The Green500's energy-efficient supercomputers ranked from 1 to 10.

Note: Shaded entries in the table below mean the power data is derived and not meassured

Rank	TOP500 Rank	System	Cores	Rmax (TFlop/s)		Power Efficiency (GFlops/watts)
1	159	A64FX prototype - Fujitsu A64FX, Fujitsu A64FX 48C 2GHz, Tofu interconnect D , Fujitsu Fujitsu Numazu Plant Japan	36,864	1,999.5	118	16.876
2	420	NA-1 - ZettaScaler-2-2, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz, PEZY Computing / Exasceler Inc. PEZY Computing K.K. Japan	1,271,040	1,303.2	80	16.256
3	24	AIMOS - IBM Power System AC922, IBM POWER9 20C 3.456Hz, Dual-rail Metlanox EDR Infiniband, NVIDIA Volta 60/100, IBM Rensselaer Polytechnic Institute Center for Computational Innovations (ICCI) United States	130,000	8,045.0	510	15.771
4	373	Satori - IBM Power System AC922, IBM POWER9 20C 2.4GHz, Infiniband EDR, NVIDIA Tesla V100 SXM2, IBM MIT/MGHPCC Holyoke, MA United States	23,040	1,464.0	94	15.574
5	1	Summit - IBM Power System AC922, IBM POWER9 22C 3/07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Dak Ridge National Laboratory United States		148,600.0		^{14.719} 00.org/
		nups.	// ٧٧ ٧٧	w.to	har	JU.UIY/

FUjitsu

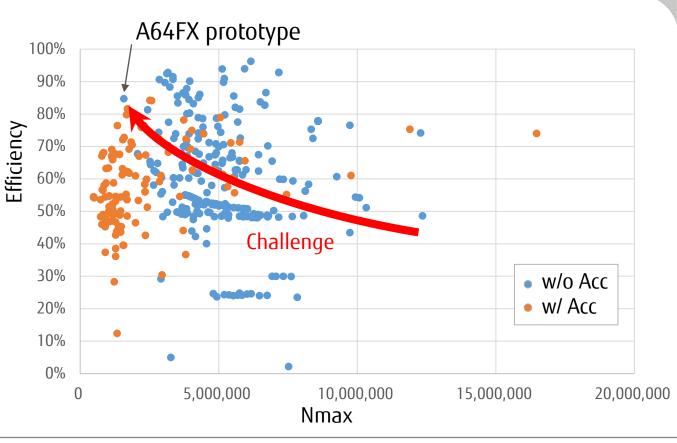
+ Concerted efforts of co-design

- Key for GF/W is {energy efficient HW} x {parallel/exec efficiency}
- A64FX is designed for energy efficient
 - Fujitsu's proven CPU microarchitecture & 7nm FinFET
 - SoC design: Tofu interconnect D integrated
 - CoWoS: 4x HBM2 for main memory integrated
- Superior parallel/exec efficiency

How we achieved

- Math. libraries are tuned for application efficiency
- Comm. libs are also tuned utilizing long experience of Tofu @ K computer
- Performance tuning is efficiently done utilizing rich performance analyzer/monitor

SC19 TOP500 calculation efficiency

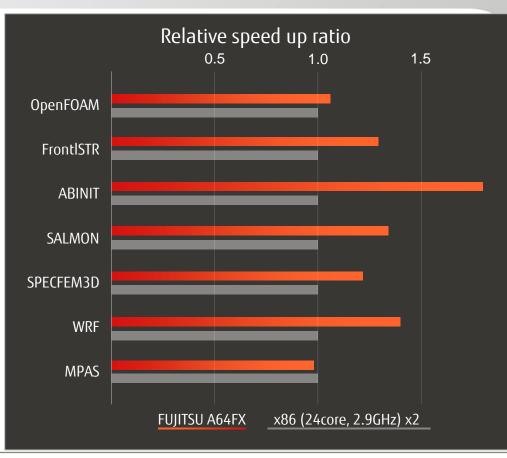


A64FX superior efficiency 84.75% with small Nmax

Results of:

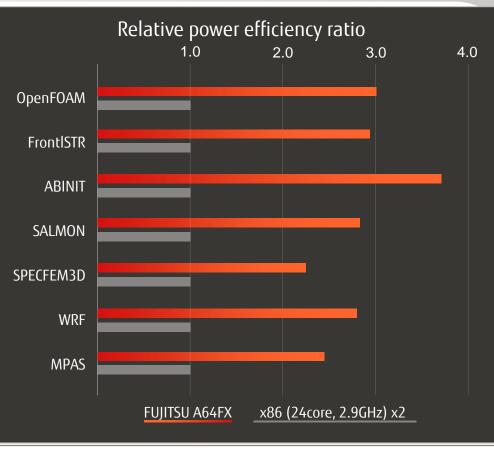
Optimized communication and math. libs

 Optimization of overlapped communication



Copyright 2020 FUJITSU LIMITED

FUITSU


A64FX CPU performance evaluation for real apps

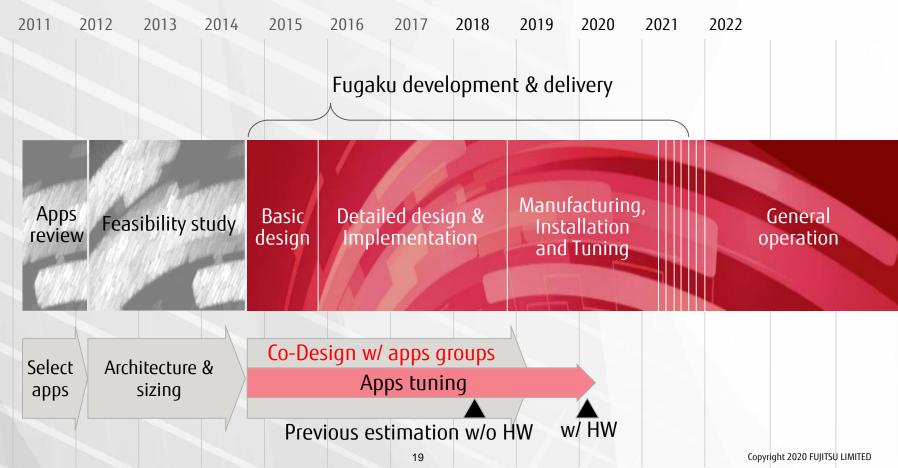
- Open source software, Real apps on an A64FX @ 2.2GHz
- Up to 1.8x faster over the latest x86 processor (24core, 2.9GHz) x2
- High memory BW and long SIMD length of A64FX work effectively with these applications

A64FX CPU power efficiency for real apps

- Performance / Energy consumption on an A64FX @ 2.2GHz
- Up to 3.7x more efficient over the latest x86 processor (24core, 2.9GHz) x2
- High efficiency is achieved by energy-conscious design and implementation

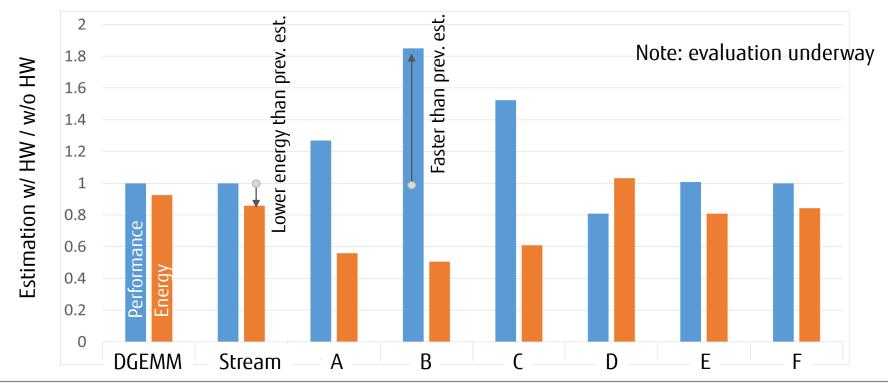
Fugaku priority issues and performance prediction

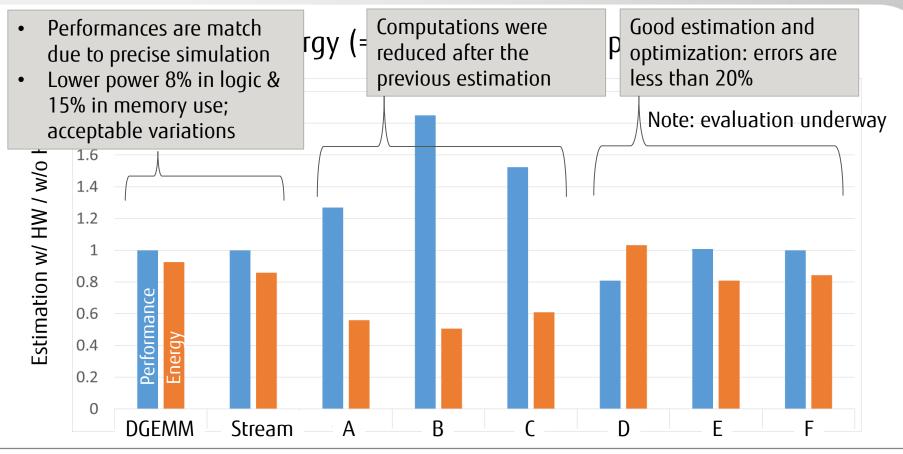
100x app performance and power budget requirements are met


- Some apps utilize power knob to reduce power consumption and achieve high energy efficiency
- Measuring and optimizing using real HW

https://postk-web.r-ccs.riken.jp/perf.html

Area	Priority Issue	Performance Speedup over K	Application	Brief description
Health and longevity	1. Innovative computing infrastructure for drug discovery	125x +	GENESIS	MD for proteins
lealth and longevity	2. Personalized and preventive medicine using big data	8x +	Genomon	Genome processing (Genome alignment)
Dis: preven Enviro	3. Integrated simulation systems induced by earthquake and tsunami	45x +	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)
Disaster prevention and Environment	4. Meteorological and global environmental prediction using big data	120x +	NICAM+ LETKF	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)
Energy issue	5. New technologies for energy creation, conversion / storage, and use	40x +	NTChem	Molecular electronic simulation (structure calculation)
y issue	6. Accelerated development of innovative clean energy systems	35x +	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)
Industrial competitiveness enhancement	7. Creation of new functional devices and high-performance materials	30x +	RSDFT	Ab-initio simulation (density functional theory)
trial veness ∍ment	8. Development of innovative design and production processes	25x +	FFB	Large Eddy Simulation (unstructured grid)
Basic science	9. Elucidation of the fundamental laws and evolution of the universe	25x +	LQCD	Lattice QCD simulation (structured grid Monte Carlo)


Fugaku project schedule



Current status normalized by the estimation w/o HW Fujirsu

Performance and energy (=power*elapse) of apps

Current status normalized by the estimation w/o HW Fujirsu

Summary

"Fugaku" is co-designed and runs apps at high performance w/ optimal power consumption

Arm HPC ecosystem and apps portfolio are growing by efforts of communities and selections of HW

> Fujitsu Supercomputer PRIMEHPC FX1000 & FX700 based on Fugaku tech.

Cray CS500 using Fujitsu A64FX Arm CPU

https://www.riken.jp/pr/news/2019/20190827_1/

A64FX

FUJITSU

shaping tomorrow with you