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Highlights

• Recent trends in extreme-scale HPC paint an ambiguous future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O
– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and 

benchmarking.

• We need portable programming models and performance prediction now more than ever!
– Heterogeneous processing

• OpenACC->FGPAs
• Intelligent runtime system (IRIS)
• Clacc – OpenACC support in LLVM  (not covered today)
• OpenACC dialect of MLIR for Flang Fortran  (not covered today)

– Emerging memory hierarchies (NVM) 
• DRAGON – transparent NVM access from GPUs (not covered today)
• NVL-C – user management of nonvolatile memory in C (not covered today)
• Papyrus – parallel aggregate persistent storage  (not covered today)

• Performance prediction is critical for design and optimization (not covered today)
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Time for a short poll…
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History

Q: Think back 10 years. How 
many of you would have 

predicted that many of our 
top HPC systems would be 
GPU-based architectures?

Yes

No

Revisionists 
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Future

Q: Think forward 10 years. 
How many of you predict 
that most of our top HPC 

systems will have the 
following architectural 

features?

Assume general purpose multicore CPU

GPU

FPGA/Reconfigurable processor

Neuromorphic processor

Deep learning processor

Quantum processor

RISC-V processor

Some new unknown processor

All/some of the above in one SoC
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Implications

Q: Now, imagine you are building 
a new application with an 

expected ~3M LOC and 20 team 
members over the next 10 years. 

What on-node programming 
model/system do you use? 

C, C++ XX, Fortran XX

Metaprogramming, etc (e.g., AMP, Kokkos, RAJA, SYCL)

CUDA, cu***, HIP, OpenCL

Directives: OpenMP XX, OpenACC XX

R, Python, Matlab, etc

A Domain Specific Language (e.g., Claw, PySL)

A Domain Specific Framework (e.g., PetSc)

Some new unknown programming approach

All/some of the above
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The FTG Vision

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent 
Memory Neuromorphic

Applications
Science and 

Engineering (e.g., CFD, 
Materials, Fusion)

Streaming 
(e.g., SW Radio, 

Experimental instrument)

Sensing 
(e.g., SAR, vision)

Deep learning 
(e.g., CNN)

Analytics 
(e.g., graphs)

Robotics 
(e.g., sense and react)

Programming Systems

Compiler Domain Specific 
Languages

Just-in-time 
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling 
and Mapping Data Orchestration IO Synchronization Load balancing
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The FTG Vision | Applications

Architectures
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National security
Stockpile 

stewardship
Next-generation 
electromagnetics 

simulation of hostile 
environment and 

virtual flight testing for 
hypersonic re-entry 

vehicles 

Energy security
Turbine wind plant 

efficiency
High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design
Materials design for 

extreme 
environments of 
nuclear fission 

and fusion reactors
Design and 

commercialization 
of Small Modular 

Reactors
Subsurface use 

for carbon capture, 
petroleum extraction, 

waste disposal
Scale-up of clean 

fossil fuel combustion
Biofuel catalyst 

design

Scientific discovery
Find, predict, 

and control materials 
and properties

Cosmological probe 
of the standard model 

of particle physics
Validate fundamental 

laws of nature
Demystify origin of 
chemical elements

Light source-enabled 
analysis of protein 

and molecular 
structure and design
Whole-device model 

of magnetically  
confined fusion 

plasmas

Earth system
Accurate regional 

impact assessments 
in Earth system 

models
Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols
Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Economic security
Additive 

manufacturing 
of qualifiable 
metal parts

Reliable and 
efficient planning 
of the power grid
Seismic hazard 
risk assessment
Urban planning

Health care
Accelerate 

and translate 
cancer research

ECP applications target national problems in 6 strategic areas
https://exascaleproject.org/

https://exascaleproject.org/
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DARPA Domain Specific System on Chip Program is investigating Performance 
Portability of Software Defined Radio

• Signal processing: An open-
source implementation of IEEE-
802.11 WIFI a/b/g with GR OOT 
modules.

• Input / Output file support via 
Socket PDU (UDP server) blocks

• Image/Video transcoding with 
OpenCL/OpenCV

Video/Image 
Files

GR IEEE-802.11 Transmit (TX)

UDP

Antenna

UDP

IEEE-802.11  Receive (RX)

Xavier SoC #1 Xavier SoC #2



39

The FTG Vision | Architectures

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent 
Memory Neuromorphic

Applications
Science and 

Engineering (e.g., CFD, 
Materials, Fusion)

Streaming 
(e.g., SW Radio, 

Experimental instrument)

Sensing 
(e.g., SAR, vision)

Deep learning 
(e.g., CNN)

Analytics 
(e.g., graphs)

Robotics 
(e.g., sense and react)

Programming Systems

Compiler Domain Specific 
Languages

Just-in-time 
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling 
and Mapping Data Orchestration IO Synchronization Load balancing
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Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54, 
2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted 
MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974, 

Dennard scaling has already ended. Dennard observed that voltage and 
current should be proportional to the linear dimensions of a transistor: 2x 
transistor count implies 40% faster and 50% more efficient.
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End of Moore’s Law : what’s your prediction ?? 

Economist, Mar 2016

“The number of people predicting the death of Moore’s Law doubles every two years.” – Peter Lee, Microsoft 
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Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition 
Period

6th wave
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Predictions for Transition Period

Optimize Software and 
Expose New Hierarchical 

Parallelism

• Redesign software to 
boost performance on 
upcoming 
architectures

• Exploit new levels of 
parallelism and 
efficient data 
movement

Architectural 
Specialization and 

Integration

• Use CMOS more 
effectively for specific 
workloads

• Integrate components 
to boost performance 
and eliminate 
inefficiencies 

• Workload specific 
memory+storage
system design

Emerging Technologies

• Investigate new 
computational 
paradigms
• Quantum 
• Neuromorphic
• Advanced Digital
• Emerging Memory 

Devices
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Quantum computing: Qubit design and fabrication 
have made recent progress but still face challenges

Science 354, 1091 (2016) – 2 December

http://nap.edu/25196

http://nap.edu/25196
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Fun Question: when was the field effect transistor patented?

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-
transistor--October-8--1926

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-transistor--October-8--1926
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https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Pace of Architectural Specialization is Quickening
• Industry, lacking Moore’s Law, will need to continue to 

differentiate products (to stay in business)
– Use the same transistors differently to enhance performance

• Architectural design will become extremely important, 
critical

– Dark Silicon

– Address new parameters for benefits/curse of Moore’s Law

• 50+ new companies focusing on hardware for Machine 
Learning

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics 
simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-
ai-platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP

HotChips 2018

HotChips 2018
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Analysis of Apple A-* SoCs

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis
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Intel Stratix 10 FPGA
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• Intel Stratix 10 FPGA and four banks of DDR4 external 
memory

– Board configuration: Nallatech 520 Network Acceleration Card

• Up to 10 TFLOPS of peak single precision performance

• 25MBytes of L1 cache @ up to 94 TBytes/s peak 
bandwidth

• 2X Core performance gains over Arria® 10

• Quartus and OpenCL software    (Intel SDK v18.1) for 
using FPGA

• Provide researcher access to advanced FPGA/SOC 
environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/
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NVIDIA Jetson AGX Xavier SoC
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• NVIDIA Jetson AGX Xavier:

• High-performance system on a chip for autonomous 
machines 

• Heterogeneous SoC contains: 
– Eight-core 64-bit ARMv8.2 CPU cluster (Carmel)
– 1.4 CUDA TFLOPS (FP32) GPU with additional 

inference optimizations (Volta) 
– 11.4 DL TOPS (INT8) Deep learning accelerator 

(NVDLA)
– 1.7 CV TOPS (INT8) 7-slot VLIW dual-processor 

Vision accelerator (PVA)
– A set of multimedia accelerators (stereo, LDC, 

optical flow)

• Provides researchers access to advanced high-
performance SOC environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/
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Qualcomm 855 SoC (SM8510P) Snapdragon™
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

Adreno 640

Hexagon 690

Kyro 485

Kyro 485 (8-ARM Prime+BigLittle Cores)

Prime 
Core

Hexagon 690 (DSP + AI)

7nm TSMC

Adreno 640
• Vulkan, OpenCL, OpenGL ES 3.1
• Apps: HDR10+, HEVC, Dolby, etc
• Enables 8k-360o VR video playback
• 20% faster compared to Adreno 630

• Quad threaded Scalar Core
• DSP + 4 Hexagon Vector Xccelerators
• New Tensor Xccelerator for AI
• Apps: AI, Voice Assistance, AV codecs

• Snapdragon X24 LTE (855 built-in) modem LTE Category 20
• Snapdragon X50 5G (external) modem (for 5G devices)
• Qualcomm Wi-Fi 6-ready mobile platform: (802.11ax-ready, 

802.11ac Wave 2, 802.11ay, 802.11ad)
• Qualcomm 60 GHz Wi-Fi mobile platform: (802.11ay, 

802.11ad)
• Bluetooth Version: 5.0
• Bluetooth Speed: 2 Mbps
• High accuracy location with dual-frequency GNSS.

Connectivity (5G)

Spectra 360 ISP
• New dedicated Image Signal Processor (ISP)
• Dual 14-bit CV-ISPs; 48MP @ 30fps single camera
• Hardware CV for object detection, tracking, streo depth process
• 6DoF XR Body tracking, H265, 4K60 HDR video capture, etc.

Spectra 360

5G

Qualcomm Development Board connected to (mcmurdo) HPZ820

• Connected Qualcomm board to HPZ820 through USB 
• Development Environment: Android SDK/NDK
• Login to mcmurdo machine

$ ssh –Y mcmurdo
• Setup Android platform tools and development environment

$ source /home/nqx/setup_android.source
• Run Hello-world on ARM cores 

$ git clone https://code.ornl.gov/nqx/helloworld-android
$ make  compile  push  run

• Run OpenCL example on GPU
$ git clone https://code.ornl.gov/nqx/opencl-img-processing
• Run Sobel edge detection

$ make  compile  push  run  fetch
• Login to Qualcomm development board shell

$ adb shell 
$ cd /data/local/tmp

Created by Narasinga Rao Miniskar, Steve Moulton

© Qualcomm Inc.

© Qualcomm Inc.

https://excl.ornl.gov/

For more information or to apply for an account, visit https://excl.ornl.gov/

https://code.ornl.gov/nqx/helloworld-android
https://code.ornl.gov/nqx/opencl-img-processing
https://excl.ornl.gov/
https://excl.ornl.gov/
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Growing Open Source Hardware Movement Enables Rapid Chip Design

RISC-V Summit, 2018
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DARPA ERI Programs Aiming for Agile (and Frequent) Chip Creation

A. Olofsson, 2018



7272

Summary: 
Transition Period will be Disruptive – Opportunities and Pitfalls Abound

• New devices and architectures may not 
be hidden in traditional levels of 
abstraction

• Examples
– A new type of CNT transistor may be 

completely hidden from higher levels
– A new paradigm like quantum may require 

new architectures, programming models, and 
algorithmic approaches

Layer Switch, 3D NVM Approximate Neuro Quantum
Application 1 1 2 2 3
Algorithm 1 1 2 3 3
Language 1 2 2 3 3
API 1 2 2 3 3
Arch 1 2 2 3 3
ISA 1 2 2 3 3
Microarch 2 3 2 3 3
FU 2 3 2 3 3
Logic 3 3 2 3 3
Device 3 3 2 3 3

Adapted from IEEE Rebooting Computing Chart
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LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
AMD/Cray

LLNL
TBD

LANL/SNL
Cray/Intel  Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance
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Frontier Continues the Accelerated Node Design 

• Partnership between ORNL, Cray, and AMD
• The Frontier system will be delivered in 2021
• Peak Performance greater than 1.5 EF
• Composed of more than 100 Cray Shasta cabinets

– Connected by Slingshot™ interconnect with adaptive routing, congestion control, 
and quality of service 

• Accelerated Node Architecture: 
– One purpose-built AMD EPYC™ processor 
– Four HPC and AI optimized Radeon Instinct™ GPU accelerators 
– Fully connected with high speed AMD Infinity Fabric links
– Coherent memory across the node
– 100 GB/s injection bandwidth 
– Near-node NVM storage
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Comparison of Titan, Summit, and Frontier Systems
System Specs Titan Summit Frontier

Peak 27 PF 200 PF ~1.5 EF
# cabinets 200 256 > 100

Node 1 AMD Opteron CPU
1 NVIDIA Kepler GPU

2 IBM POWER9™ CPUs
6 NVIDIA Volta GPUs

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

On-node 
interconnect

PCI Gen2
No coherence 
across the node

NVIDIA NVLINK
Coherent memory 
across the node

AMD Infinity Fabric
Coherent memory 
across the node

System 
Interconnect

Cray Gemini network
6.4 GB/s

Mellanox Dual-port EDR IB network 
25 GB/s 

Cray four-port Slingshot network
100 GB/s

Topology 3D Torus Non-blocking Fat Tree Dragonfly

Storage 32 PB, 1 TB/s, Lustre
Filesystem

250 PB, 2.5 TB/s, IBM Spectrum 
Scale™ with GPFS™ 

2-4x performance and capacity 
of Summit’s I/O subsystem.  

On-node NVM No Yes Yes

Power 9 MV 13 MV 29 MV
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Complex architectures yield…

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …

Memory use, coalescing Data orchestration Fine grained parallelism Hardware features

Complex 
Programming

Models
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During this Sixth Wave transition, Complexity is our major challenge!

Design

How do we design future systems so 
that they are better than current 

systems on important applications?

• Simulation and modeling are more difficult
• Entirely possible that the new system will be 

slower than the old system!
• Expect ‘disaster’ procurements

Programmability

How do we design applications with 
some level of performance portability?

• Software lasts much longer than transient 
hardware platforms

• Proper abstractions for flexibility and 
efficiency

• Adapt or die
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The FTG Vision | Programming Systems

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent 
Memory Neuromorphic

Applications
Science and 

Engineering (e.g., CFD, 
Materials, Fusion)

Streaming 
(e.g., SW Radio, 

Experimental instrument)

Sensing 
(e.g., SAR, vision)

Deep learning 
(e.g., CNN)

Analytics 
(e.g., graphs)

Robotics 
(e.g., sense and react)

Programming Systems

Compiler Domain Specific 
Languages

Just-in-time 
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling 
and Mapping Data Orchestration IO Synchronization Load balancing
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What more to say ?!?!? 
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Directive-based Strategy with OpenARC: Open Accelerator 
Research Compiler

• Open-Sourced, High-Level Intermediate 
Representation (HIR)-Based, Extensible 
Compiler Framework.

– Perform source-to-source translation from 
OpenACC C to target accelerator models.
• Support full features of OpenACC V1.0 ( + array 

reductions and function calls)
• Support both CUDA and OpenCL as target accelerator 

models

– Provide common runtime APIs for various back-
ends 

– Can be used as a research framework for various 
study on directive-based accelerator computing. 
• Built on top of Cetus compiler framework, equipped with 

various advanced analysis/transformation passes and 
built-in tuning tools.

• OpenARC’s IR provides an AST-like syntactic view of the 
source program, easy to understand, access, and 
transform the input program.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,” 
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014
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FPGAs| Approach

• Design and implement an OpenACC-to-FPGA translation 
framework, which is the first work to use a standard and portable 
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma 
extensions to improve performance.

• Evaluate the functional and performance portability of the 
framework across diverse architectures (Altera FPGA, NVIDIA 
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 
International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.
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FPGA OpenCL Architecture

FPGA

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory 
Controller and PHY

External Memory 
Controller and PHY

Host Processor

External DDR Memory External DDR Memory

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Pipeline 
Depth

Vector 
Width

Number of Replicated Compute Units
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Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with 

each other only through the device 
global memory.

– Synchronizations between kernels are 
at the granularity of a kernel 
execution.

• Altera OpenCL channels
– Allows passing data between kernels 

and synchronizing kernels with high 
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through 
global memory in OpenACC

Kernel communications with 
Altera channels
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Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;
__kernel void kernel1(__global float* a) {

int i = get_global_id(0);
write_channel_altera(pipe_b, a[i]*a[i]);

}
__kernel void kernel2(__global float* c) {

int i = get_global_id(0);
c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel
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Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)
{

#pragma acc kernels loop gang worker pipeout (b) present (a)
For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker pipein (b) present (c)
For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining 
transformation

Valid under 
specific conditions
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Overall Performance of OpenARC FPGA Evaluation

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and 
FFT-2D), performing much higher than other accelerators.
For traditional HPC applications with abundant parallel floating-point operations, 
it seems to be difficult for FPGAs to beat the performance of other accelerators, 
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point 
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators, 
while remaining power-efficient.
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The FTG Vision | Runtime and Operating Systems

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent 
Memory Neuromorphic

Applications
Science and 

Engineering (e.g., CFD, 
Materials, Fusion)

Streaming 
(e.g., SW Radio, 

Experimental instrument)

Sensing 
(e.g., SAR, vision)

Deep learning 
(e.g., CNN)

Analytics 
(e.g., graphs)

Robotics 
(e.g., sense and react)

Programming Systems

Compiler Domain Specific 
Languages

Just-in-time 
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling 
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IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming 
Models

ARM CPU

NVIDIA GPU

OpenACC
Intel FPGA

CUDA

OpenMP

Intel OpenCL

General 
AcceleratorsOpenCL

CPU/Xeon PhiOpenMP

SYCL

HIP AMD GPUIR
IS

 C
om

m
on

 R
un

tim
e 

AP
I

IRIS offers a common API for diverse heterogeneous 
devices and also allows intermixing of multiple 
programming models (mix CUDA, OpenMP, OpenCL, etc.).

Support more 
programming 
models.
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IRIS: An Intelligent Runtime System for Extremely Heterogeneous 
Architectures

• Provide programmers a unified programming 
environment to write portable code across 
heterogeneous architectures (and preferred 
programming systems)

• Orchestrate diverse programming systems 
(OpenCL, CUDA, HIP, OpenMP for CPU) in a single 
application

– OpenCL
• NVIDIA GPU, AMD GPU, ARM GPU, Qualcomm GPU, Intel 

CPU, Intel Xeon Phi, Intel FPGA, Xilinx FPGA
– CUDA

• NVIDIA GPU
– HIP

• AMD GPU
– OpenMP for CPU

• Intel CPU, AMD CPU, PowerPC CPU, ARM CPU, 
Qualcomm CPU
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The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs 

and multiple compute devices (GPUs, FPGAs, 
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all 

available compute devices

• Programming Model
– High-level OpenACC, OpenMP4, SYCL* (* 

planned)
– Low-level C/Fortran/Python IRIS host-side 

runtime API + OpenCL/CUDA/HIP/OpenMP 
kernels (w/o compiler support)
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Supported Architectures and Programming Systems by IRIS

ExCL* Systems Oswald Summit-node Radeon Xavier Snapdragon

CPU Intel Xeon IBM Power9 Intel Xeon ARMv8 Qualcomm
Kryo

Programming Systems • Intel OpenMP
• Intel OpenCL

• IBM XL OpenMP • Intel OpenMP
• Intel OpenCL

• GNU GOMP • Android NDK 
OpenMP

GPU NVIDIA P100 NVIDIA V100 AMD Radeon VII NVIDIA Volta Qualcomm 
Adreno 640

Programming Systems • NVIDIA CUDA
• NVIDIA OpenCL

• NVIDIA CUDA • AMD HIP
• AMD OpenCL

• NVIDIA CUDA • Qualcomm OpenCL

FPGA Intel/Altera 
Stratix 10

Programming Systems • Intel OpenCL

* ORNL Experimental Computing Laboratory (ExCL) https://excl.ornl.gov/

https://excl.ornl.gov/
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IRIS Booting on Various Platforms
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Task Scheduling in IRIS

• A task
– A scheduling unit
– Contains multiple in-order commands

• Kernel launch command
• Memory copy command (device-to-host, host-to-device)

– May have DAG-style dependencies with other tasks
– Enqueued to the application task queue with a device 

selection policy
• Available device selection policies

– Specific Device (compute device #)
– Device Type (CPU, GPU, FPGA, XeonPhi)
– Profile-based
– Locality-aware
– Ontology-base
– Performance models (Aspen)
– Any, All, Random, 3rd-party users’ custom policies

• The task scheduler dispatches the tasks in the 
application task queue to available compute devices

– Select the optimal target compute device according to 
task’s device selection policy
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SAXPY Example on Xavier

• Computation
– S[] = A * X[] + Y[]

• Two tasks
– S[] = A * X[] on NVIDIA GPU (CUDA)
– S[] += Y[] on ARM CPU (OpenMP)

• S[] is shared between two tasks
• Read-after-write (RAW), true dependency

• Low-level Python IRIS host code +
CUDA/OpenMP kernels

– saxpy.py
– kernel.cu
– kernel.openmp.h
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SAXPY: Python host code & CUDA kernel code

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

kernel.cu (CUDA)
extern "C" __global__ void saxpy0(float* S, float 
A, float* X) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
S[id] = A * X[id];

}

extern "C" __global__ void saxpy1(float* S, 
float* Y) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
S[id] += Y[id];

}
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SAXPY: Python host code & OpenMP kernel code

kernel.openmp.h (OpenMP)
#include <iris/iris_openmp.h>

static void saxpy0(float* S, float A, float* X, 
IRIS_OPENMP_KERNEL_ARGS) {
int id;

#pragma omp parallel for shared(S, A, X) 
private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] = A * X[id];
IRIS_OPENMP_KERNEL_END

}

static void saxpy1(float* S, float* Y, 
IRIS_OPENMP_KERNEL_ARGS) {
int id;

#pragma omp parallel for shared(S, Y) private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] += Y[id];
IRIS_OPENMP_KERNEL_END

}

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()
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Memory Consistency Management

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

mem_s is 
shared between 

GPU and CPU
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Locality-aware Device Selection Policy

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [ 0 ]
ndr = [ SIZE ]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_data)

print 'S =', A, '* X + Y', s

iris.finalize()

iris_data selects 
the device that 

requires 
minimum data 

transfer to 
execute the 

task
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The FTG Vision

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent 
Memory Neuromorphic

Applications
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Materials, Fusion)

Streaming 
(e.g., SW Radio, 

Experimental instrument)

Sensing 
(e.g., SAR, vision)

Deep learning 
(e.g., CNN)

Analytics 
(e.g., graphs)

Robotics 
(e.g., sense and react)

Programming Systems

Compiler Domain Specific 
Languages

Just-in-time 
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems
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Recap

• Motivation: Recent trends in computing 
paint an ambiguous future
– Multiple architectural dimensions are being 

(dramatically) redesigned: Processors, node 
design, memory systems, I/O

– Complexity is our main challenge

• Applications and software systems across 
many areas are all reaching a state of crisis
– Need a focus on performance portability

• ORNL FTG investigating design and 
programming challenges for these trends
– Performance modeling and ontologies
– Performance portable compilation to many 

different heterogeneous architectures/SoCs
– Intelligent scheduling system to automate 

discovery, device selection, and data movement
– Targeting wide variety of existing and future 

architectures (DSSoC and others)

• Visit us
– We host interns and other visitors year 

round
• Faculty, grad, undergrad, high school, 

industry

• Jobs in FTG
– Postdoctoral Research Associate in 

Computer Science
– Software Engineer
– Computer Scientist
– Visit https://jobs.ornl.gov

• Contact me vetter@ornl.gov

https://jobs.ornl.gov/
mailto:vetter@ornl.gov
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Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756
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