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Highlights

e Recent trends in extreme-scale HPC paint an ambiguous future
— Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
— Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, |/O
— Complexity is our main challenge

e Applications and software systems are all reaching a state of crisis
— Applications will not be functionally or performance portable across architectures
— Programming and operating systems need major redesign to address these architectural changes

— Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and
benchmarking.

 We need portable programming models and performance prediction now more than ever!

— Heterogeneous processing
* OpenACC->FGPAs
e Intelligent runtime system (IRIS)
e Clacc—OpenACC support in LLVM (not covered today)
e OpenACC dialect of MLIR for Flang Fortran (not covered today)
— Emerging memory hierarchies (NVM)
e DRAGON —transparent NVM access from GPUs (not covered today)
¢ NVL-C - user management of nonvolatile memory in C (not covered today)

e Papyrus — parallel aggregate persistent storage (not covered today)
OAK RIDGE

s * Performance prediction is critical for design and optimization (not covered today) Ry



Time for a short poll...
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History

Q: Think back 10 years. How

ma
prec
top

ny of you would have
icted that many of our
HPC systems would be

GPU

-based architectures?
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Future

Q: Think forward 10 years.

How many of you predict
that most of our top HPC
systems will have the
following architectural
features?

Assume general purpose multicore CPU

GPU

FPGA/Reconfigurable processor

Neuromorphic processor

Deep learning processor
Quantum processor

RISC-V processor

Some new unknown processor

All/some of the above in one SoC

OAK RIDGE
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Implications

Q: Now, imagine you are building
a new application with an
expected ~“3M LOC and 20 team
members over the next 10 years.
What on-node programming
model/system do you use?

34

C, C++ XX, Fortran XX

Metaprogramming, etc (e.g., AMP, Kokkos, RAJA, SYCL)

CUDA, cu***, HIP, OpenCL

Directives: OpenMP XX, OpenACC XX

R, Python, Matlab, etc

A Domain Specific Language (e.g., Claw, PySL)

A Domain Specific Framework (e.g., PetSc)

Some new unknown programming approach

All/some of the above

OAK RIDGE
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The FTG Vision

p
Applications
Enginsezfi:;e(:;d 5 (eStrisvai:go Sensing Deep learning Analytics Robotics
Materials, Fl:ls.i’on) ’ Experirﬁgéhtal instrur'nent) (e.g., SAR, vision) (e.g., CNN) (e.g., graphs) (e.g., sense and react)
\_

Compiler

Task Scheduling

Discovery and Mapping

Multicore CPU FPGA

Domain Specific Just-in-time
Languages Compilation

Data Orchestration

Al Accelerator

Synchronization

Persistent
Memory

Autotuning

Load balancing

Performance

Productivity
Energy Efficiency
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The FTG Vision | Applications
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https://exascaleproject.org/

ECP applications target national problems in 6 strategic areas

National security Energy security Scientific discovery Earth system Health care

Stockpile
stewardship

Next-generation
electromagnetics
simulation of hostile
environment and
virtual flight testing for
hypersonic re-entry
vehicles
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Turbine wind plant
efficiency

High-efficiency,
low-emission
combustion engine
and gas turbine
design

Materials design for
extreme
environments of
nuclear fission
and fusion reactors

Design and
commercialization
of Small Modular
Reactors

Subsurface use
for carbon capture,
petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst
design

Additive Find, predict,
manufacturing and control materials
of qualifiable and properties
metal parts Cosmological probe
Reliable and of the standard model

of particle physics

Validate fundamental
laws of nature

Demystify origin of
chemical elements

Light source-enabled
analysis of protein
and molecular
structure and design

efficient planning
of the power grid

Seismic hazard
risk assessment

Urban planning

Whole-device model
of magnetically
confined fusion

plasmas

Accurate regional
impact assessments
in Earth system
models

Stress-resistant crop
analysis and catalytic
conversion
of biomass-derived
alcohols

Metagenomics
for analysis of
biogeochemical
cycles, climate
change,
environmental
remediation

Accelerate
and translate
cancer research

—
\\ J EXASCAHALE
) COMPUTING
PROJECT
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DARPA Domain Specific System on Chip Program is investigating Performance
Portability of Software Defined Radio

Xavier SoC #1

Video/Image
Files

38

Signal processing: An open-
source implementation of IEEE-
802.11 WIFI a/b/g with GR OOT
modules.

Input / Output file support via
Socket PDU (UDP server) blocks

Image/Video transcoding with
OpenCL/OpenCV

QR
|

—

Antenna

Xavier SoC #2
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The FTG Vision | Architectures

p
Applications
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Contemporary devices are approaching fundamental limits

I Stuttering [ Chipintroduction
® Transistors per chip, ‘000 @ Clock speed (max), MHz ® Thermal design power*, w dates, selected

Transistors bought per §, m
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Traditional 22 nm Sub-10 nm

10° Figure 1 | As a metal oxide-semiconductor field effect transistor
(MOSFET) shrinks, the gate dielectric (vellow) thickness ap proaches several
atoms (0.5 nm at the 22-nm technology node). Atomic spacing limits the

T T T T 1 T
200204 06 08 10 12 15

| 8086

10°
r Elec-tric.al potential
|l 4004 | i
10
rrr o rgp rrtvr g rrrrgrrrtrrrrrtrrryrrrrrJprr1r 11| 711 °~r T TTT] lﬂ-l
1970 75 80 85 a0 a5 2000 05 10 15
Sources: Intel; press reports; Bob Colwell; Linley Group; 1B Consulting; The Economist *Maximum safe power consumption

Channel

Figure 2 | As a MOSFET transistor shrinks, the shape of its electric field

Dennard scaling has already ended. Dennard observed that voltage and departs from basic rectilinear models, and the level curves become

current should be proportional to the linear dimensions of a transistor: 2x disconnected. Atomic-level manufacturing variations, especially for dopant
transistor count implies 40% faster and 50% more efficient.
p I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54, OAK RIDGE
R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, "Design of ion-implanted 2014, doi-10.1038/nature13570. National Laboratory
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MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974,



End of Moore’s Law : what’s your prediction ??

I Faith no Moore
Selected predictions for the end of Moore's law

1995 2000 2005 2010 2015 2020 2025 2030
G. Moore, Intel @-==—==—==gocecc-- --

Frediction Predicted

D. Hutcheson, o o - issued end date

VLSI Research

L Chuang, IBM Research @======sspocnscncspmessssscqennns s -a

L Gargani, Intél @=——pr=esmsanceanmnmmpotenmnmm——— -
L. Krauss, Case Western, . . | | | approx. 2600
& G. Starkman, CERN
G. Moore, Intel @=====ccciccccac=a A ° 015-25
M. Kaku, City College of NY @---===2=-==cuu=x -|2021-22

Cited reason:

M Economic limits R. Colwell, DARPA; (formerly Intel) @==========x -— 2020-22
M Technical limits

G. Moore, Intel @=====m=memmm————— -
Sources: Intel; press reports; The Economist Economist, Mar 2016
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“The number of people predicting the death of Moore’s Law doubles every two years.” — Peter Lee, Microsoft
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News & Analysis Number of Foundries with a Cutting Edge Logic Fab
Foundries' Sales Show Hard Times sfters | [ . —

INnul XFAB '
ContanIng ] ‘ TSMC’s 5-Nanometer Process on
Peter Clarke Dongbu HiTek Track for First Half of 2020
5/23/2016 08:33 PM EDT ADI ADI Devices are 15 percent faster, 30 percent more energy
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- - - - Photo: Taiwan Semiconductor Manufacturing Co.
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. . N partly due to the inclusion of a "high-mobility channel." How is it created? TSMC
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3 Intel Intel Intel Intel Intel Intel Intel Intel Intel Intel | Future
By Dylan McGrath, 05.2018 [J1 Moore S Law

e et Samsung and TSMC move to 180 nm 130 nm | 90 nm 65nm | 45nm/40 nm | 32nm/28 nm 22 nm/20 nm | 16 nm/14nm | 10nm  7nm | 5nm
5-nanometer manufacturing
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Sixth Wave of Computing

> 6'h wave

o
o
o
7
@
a
[®]
C
Q
O
@
w
o)
o
w
c
Q
=
i)
3
O
O
@)

Transition
Period

1900 10 20 30 40 50 60 70 80 90 QQQ 0810

http://www.kurzweilai.net/exponential-growth-of-computing
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Predictions for Transition Period

e Redesign software to
boost performance on
upcoming
architectures

e Exploit new levels of
parallelism and
efficient data
movement

Architectural

Specialization and
Integration

e Use CMOS more
effectively for specific
workloads

* Integrate components
to boost performance
and eliminate
inefficiencies

e Workload specific
memory+storage
system design

* [nvestigate new
computational
paradigms
e Quantum
e Neuromorphic
e Advanced Digital

e Emerging Memory
Devices




Predictions for Transition Period

Optimize Software and Architectural
Expose New Hierarchical Specialization and Emerging Technologies

Parallelism Integration

e Redesign software to
boost performance on
upcoming
architectures

e Exploit new levels of
parallelism and
efficient data
movement

National Laboratory
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Predictions for Transition Period

e Redesign software to
boost performance on
upcoming
architectures
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workloads

* Integrate components
to boost performance
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inefficiencies
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memory+storage
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Quantum computing: Qubit design and fabrication
have made recent progress but still face challenges

Science 354, 1091 (2016) — 2 December

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Current

Laser

Capacitors

T

——Microwaves

Inductar

Electron

Superconducting loops Trapped ions
A resistance-free current

acircuit loop. An injected
microwave signal excites
the current into super-
position states.

Longevity (seconds)
0.00005 >1000

Logic success rate
99.4% 99.9%

Company support
Google, IBM, Quantum Circuits ionQ

Pros

Fastworking. Buildonexisting  Very stable. Highest
achieved gate fidelities.

semiconductor industry.

Cons
Collapse easily and must Slow operation. Many
be kept cold. lasers are needed.

Electrically charged atoms, or
oscilates back and forth around ions, have quantum energies
that dependon the location of
electrons. Tuned lasers cool
and trap theions, and put
themn in superposition states.

Microwaves

Silicon quantum dots

These “artificial atoms”
are made by adding an
electrontoa small piece

of pure silicon. Microwaves
control the electron’s
quantum state.

Stable. Build on existing
semiconductor industry.

Only a few entangled.
Must be kept cold.

Tirme

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures. Their
braided paths can encode
guantum information.

Microsoft,
Bell Labs

Greatly reduce
errors.

Existence not yet
confirmed.

Electron

Vacancy—‘}-

Laser

Diamond vacancies

A nitrogen atom and a
vacancy add anelectrontoa
diamond lattice. Its quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.

Quanturm Diamand
Technologies

Can operate at
room temperature.

Difficult to
entangle.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rateis the highest reported gate fidelity for logic operations on two qubits,
and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

SCIEM * EMC ER CIME

CONSENSUS STUDY REPORT

QUANTUM COMPUTING

Progress and Prospects

Large, fault-tolerant
modular QC c4

MILESTONES FOR
QUANTUM COMPUTING Ingical qubit

QUANTUM ANNEALING

. GATE-BASED QUANTUM COMPUTING

P COMMERCIALLY USEFUL QC

) IMore qubits, better fidelity

Gate-based QC with 100'
of qubits running GEC

*

Gate-based OC

wiith 100% of

Find compeilling

NISQ aplication Gate based OC

demaonstrating
QEC oo

Seale number of qubits
while maintaining fidelity

hmprove qubit quality

Gate-based QC demonstrating
quantum supremacy
Gla

FUTURE R&D ——

Seale to 504+ quhits while
maintaining qate fidelity

Small (105 of quiits)

nate-hased QC

CURRENT RED

FIGURE 7.4 An illustration of potential milestones of progress in quantum com-
puting. The arrangement of milestones corresponds to the order in which the
committee thinks they are likely to be achieved; however, it is possible that some
will not be achieved, or that they will not be achieved in the order indicated.

http://nap.edu/25196 ‘
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Fun Question: when was the field effect transistor patented?

Lilienfeld patents field effect transistor,
October 8, 1926

Jessica MacNeil -October 08, 2018
6 Comments

Go gle lilienfeld controlling electric curre © “ 10f25 >

¢ Backtoresults ° controlling; electric; currents; Assignee: lilienfeld;

Method and apparatus for controlling electric currents
On this day in tech history, JE Lilienfeld filed a patent for a three-

electrode structure using copper-sulfide semiconductor material,
known today as a field-effect transistor.

Images (1)
US1745175A
United States
Lilienfeld's patent for a "method and apparatus for controlling
electric currents” was granted on January 28, 1930. " [ Download PDF  [& Find Prior Art
- 3 Similar
According to the patent, his invention was for controlling the =
flow of electric current between two terminals of an electrically
conducting solid by establishing a third potential between the terminals, p(—.|rt|cuL::|rlyr for the

amplification of oscillating currents like those in radio communication.

Inventor: Lilienfeld Julius Edgar

Classifications
Worldwide applications

® HO3F3/04 Amplifiers with only discharge tubes or only 1925 - CA 1926 - US

semiconductor devices as amplifying elements with
\/‘Zﬂ' @’7{9 5 semiconductor devices only L
Application US140363A events @
HO1L29/00 Semiconductor devices adapted for rectifying,
26 7 - - 10-22 * Priori
a b_{.‘l az £l “‘::3 2.3 —fz‘;:. j;‘—ml amplifying, oscillating or switching, or capacitors or resistors with 1925-10-22 » Priority to CA272437T
a—g % 'E ‘ l‘ “g v at least one potential-jump barrier or surface barrier, e.g. PN 1926-10-08 * Application filed by
"l ¢ "1 $ t o e " =1 et junction depletion layer or carrier concentration layer; Details of Lilienfeld Julius Edgar
14 | i semiconductor bodies or of electrodes thereof; Multistep 1930-01-28 * Application granted
I_I manufacturing processes therefor
1= 1930-01-28 * Publication of US1745175A
= '“l 'E'l gl ® H01L29/78681 Thin film transistors, i.e. transistors with a » o
Z8 ;;j z " F I&Z TDI’} ; channel being at least partly a thin film having a semiconductor 1947-01-28 * Anticipated expiration
“ lu‘fw‘dﬁﬁr Len body comprising AllIBV or AlIBVI or AIVBVI semiconductor 2020-02-16 + Application status is Expired
-
materials, or Se or Te - Lifetime
ATTORMNEY 0 R
https://www.edn.com/electronics-blogs/edn-moments/442237 1/Lilienfeld-patents-field-effect- National Laboratory

58 transistor--October-8--1926
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Predictions for Transition Period

e Redesign software to
boost performance on
upcoming
architectures

e Exploit new levels of
parallelism and
efficient data
movement

Architectural

Specialization and
Integration

e Use CMOS more
effectively for specific
workloads

* Integrate components
to boost performance
and eliminate
inefficiencies

e Workload specific
memory+storage
system design

e [nvestigate new
computational
paradigms
e Quantum
e Neuromorphic
e Advanced Digital

e Emerging Memory
Devices
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“RAVEN RIDGE” APU

Pace of Architectural Specialization is Quickening

GOOGLE BUILT ITS VERY OWN
CHIPS T0 POWER ITS Al BOTS

e Industry, lacking Moore’s Law, will need to continue tO  intets Nervana ai platform takes aim

at Nvidia's GPU techology

differentiate products (to stay in business)

— Use the same transistors differently to enhance performance

e Architectural design will become extremely important,
critical

— Dark Silicon

— Address new parameters for benefits/curse of Moore’s Law

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-
ai-platform-takes-aim-at-nvidias-gpu-techology

* 50+ new companies focusing on hardware for Machine
Learning

on,” Communications of the ACM, 51(7):91-7, 2008.

XAVIER

s First Autonomo

HotChips 2018

HotChips 2018 Xilinx ACAP

D.E. Shaw, M.M. Deneroff, R.O. Dror et al,, “Anton, a special-purpose machine for molecular dynamics

GOOGLE HAS DESIGNED its own computer chip for driving
deep neural networks, an Al technology that is reinventing
the way Internet services operate.

This morning at Google 1/0, the centerpiece of the
company’s year, CEO Sundar Pichai said that Google has
designed an ASIC, or application-specific integrated circuit,
that’s specific to deep neural nets. These are networks of

http://www.wired.com/2016/05/google-tpu-custom-chips/

M SIMONITE BUEINEEE 11.27.18 08:12 PM

NEW AT AMAZON: ITS
OWN CHIPS FOR
CLOUD COMPUTING

BIG SOFTWARE COMPANIES don't just stick to software any
more—they build eomputer chips. The latest proof comes from
Amazon, which announced late Monday that its cloud computing
division has created its own chips to power customers’ websites
and other services. The chips, dubbed Graviton, are built around
the same technology that powers smartphones and tablets. That
approach has been much discussed in the cloud industry but never

https://fossbytes.com/nvidia-volta-gddr6-2018/

https:/i




Analysis of Apple A-* SoCs

Emma Wang
@Ha@rvard GP

U o maPU Shared
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o O,

A4 A5 A6 A7 A8 A9 A10 A11
2010 2017
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http://visiarch.eecs.harvard.edu/accelerators/die-photo-analysis
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Intel Stratix 10 FPGA

Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

e |ntel Stratix 10 FPGA and four banks of DDR4 external
memory

STRATIX 10

— Board configuration: Nallatech 520 Network Acceleration Card e

e Up to 10 TFLOPS of peak single precision performance

e 25MBytes of L1 cache @ up to 94 TBytes/s peak
bandwidth

e 2X Core performance gains over Arria® 10

e Quartus and OpenCL software (Intel SDK v18.1) for 5
using FPGA ' | ety

Mini Display Port Useri/Os
(TX only)

* Provide researcher access to advanced FPGA/SOC - | tiomemory Wl ..,

I
1
10/100/1000 | Power

e nVi ro n m e nt Ethernet : : ‘ 1, peen degnr "B .5-5. I Minhgar

User LEDs

Power Regulators

x16 PCle* Edge Fingers

OAK RIDGE

National Laboratory
For more information or to apply for an account, visit https://excl.ornl.gov/
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NVIDIA Jetson AGX Xavier SoC

Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

e NVIDIA Jetson AGX Xavier:

e High-performance system on a chip for autonomous
machines

1

-

=)
i U_}
=l
o
T
oy

* Heterogeneous SoC contains:
— Eight-core 64-bit ARMv8.2 CPU cluster (Carmel)

— 1.4 CUDA TFLOPS (FP32) GPU with additional
inference optimizations (Volta)

— 11.4 DL TOPS (INT8) Deep learning accelerator

Volta GPU

E ik A

~ AHd vyad

(NVDLA) __
— 1.7 CV TOPS (INT8) 7-slot VLIW dual-processor —
Vision accelerator (PVA) RS '_L [ emi ]
— A set of multimedia accelerators (stereo, LDC, S VAl
optical flow) PAD
DMAD \VPUO
e Provides researchers access to advanced high- RS ———
performance SOC environment " Lioma VAL

OAK RIDGE

National Laboratory
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Qualcomm 855 SoC (SM8510P) Snapdragon""

Experlmental Computlng Lab (ExCL) managed by the ORNL Future Technologles Group

'YX

. e [Adreno 640 Snapdragon X264 modem

L

Wi-Fi |
|

AL

855 |

Wi-Fi/BT/Location
Hexagon 690
Spectra 360

,7,— Audio | Snapdragon

I )j //J//” | pMic égﬁi;,"ge
/ﬂ | T ,
ral e e
Connectivity (5G)

* Snapdragon X24 LTE (855 built-in) modem LTE Category 20
* Snapdragon X50 5G (external) modem (for 5G devices)

Kyro 485

Security

* Qualcomm Wi-Fi 6-ready mobile platform: (802.11ax-ready,
802.11ac Wave 2, 802.11ay, 802.11ad)

Qualcomm 60 GHz Wi-Fi mobile platform: (802.11ay,
802.11ad)

Bluetooth Version: 5.0

* Bluetooth Speed: 2 Mbps

Hexagon 690 (DSP + Al)
* Quad threaded Scalar Core

* DSP + 4 Hexagon Vector Xccelerators
* New Tensor Xccelerator for Al

« Apps: Al, Voice Assistance, AV codecs * High accuracy location with dual-frequency GNSS.

Adreno 640 Spectra 360 ISP
* Vulkan, OpenCL, OpenGL ES 3.1 * New dedicated Image Signal Processor (ISP)

* Apps: HDR10+, HEVC, Dolby, etc * Dual 14-bit CV-ISPs; 48MP @ 30fps single camera
* Enables 8k-360° VR video playback * Hardware CV for object detection, tracking, streo depth process
* 20% faster compared to Adreno 630 * 6DoF XR Body tracking, H265, 4K60 HDR video capture, etc.
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For more information or to apply for an account, visit https://excl.ornl.gov/

Qualcomm Development Board connected to (mcmurdo) HPZ820

iHﬂ#H'i‘M'MIh

* Connected Qualcomm board to HPZ820 through USB
* Development Environment: Android SDK/NDK
* Login to mcmurdo machine

S ssh =Y mcmurdo

Setup Android platform tools and development environment
S source /home/ngx/setup_android.source
* Run Hello-world on ARM cores
S git clone https://code.ornl.gov/ngx/helloworld-android
S make compile push run

* Run OpenCL example on GPU

S git clone https://code.ornl.gov/ngx/opencl-img-processing
* Run Sobel edge detection

S make compile push run fetch
* Login to Qualcomm development board shell
$ adb shell

S cd /data/local/tmp
AN NI
National Laboratory

Created by Narasinga Rao Miniskar, Steve Moulton


https://code.ornl.gov/nqx/helloworld-android
https://code.ornl.gov/nqx/opencl-img-processing
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Growing Open Source Hardware Movement Enables Rapid Chip Design

< RISC-V Ecosystem

Open-source software: Commercial software:
Gcg, binutils, glibc, Linux, BSD, Lauterbach, Segger, Micrium,
LLVM, QEMU, FreeRTOQOS, ExpressLogic, ...

ZephyrQS, LiteOS, SylixOs, ...
Software

P RISC

ESUnannen ISA specification || Golden Model || Compliance

Hardware

Open-source cores: Commercial core providers: Inhouse cores:
Rocket, BOOM, RI5CY, Andes, Bluespec, Cloudbear, Nvidia, +others
Ariane, PicoRV32, Piccolo, Codasip, Cortus, C-Sky,

SCR1, Hummingbird, ... Nuclei, SiFive, Syntacore, ...

RISC-V Summit, 2018
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Open-source computing

A new blueprint for microprocessors
challenges the industry’s giants

RISC-V is an alternative to proprietary designs

Alazndar Skandisn

I Print edition | Science and technology > o w @ e
Oct 3rd 2019

0ST MICROPROCESSORS—the chips that do the grunt work in
M computers—are built around designs, known as instruction-
set architectures (1sAs), which are owned either by Intel, an
American giant, or by Arm, a Japanese one. Intel's 1SAs power
desktop computers, servers and laptops. Arm's power phones,
watches and other mobile devices. Together, these two firms
dominate the market. Almost every one of the 5.1bn mobile phones
on the planet, for example, relies on an Arm-designed 1sA. The past
year, however, has seen a boomlet in chips made using an 1sa called
rRi1sC-v. If boomlet becomes boom, it may change the chip industry
dramatically, to the detriment of Arm and Intel, because unlike the
1sAs from those two firms, which are proprietary, risc-v is available

to anyone, anywhere, and is free.

An 1sA is a standardised description of how a chip works at the most
basic level, and instructions for writing software to run on it. To
draw an analogy, a house might have two floors or three, five
bedrooms or six, one bathroom or two. That is up to the architect. An
1A, however, is the equivalent of insisting that the same sorts of
electrical sockets and water inlets and outlets be put in the same
places in every appropriate room, so that an electrician or a plumber
can find them instantly and carry the correct kit to connect to them.

RIDGE

taboratory




DARPA ERI Programs Aiming for Agile (and Frequent) Chip Creation

IDEA/POSH End State — A Universal Hardware Compiler

$ git clone https://github.com/darpa/idea
$ git clone https://github.com/darpa/posh
$ cd posh

$ make soc42

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited) 23

A. Olofsson, 2018
OAK RIDGE
7 National Laboratory



Summary:
Transition Period will be Disruptive — Opportunities and Pitfalls Abound

e New devices and architectures may not
be hidden in traditional levels of

abstraction
Layer Switch, 3D NVM Approximate Neuro Quantum

Application 1 1 2 2
Algorithm 1 1 2
e Examples Language 1 2 2
. API 1 2 2

— A new type of CNT transistor may be

. . Arch 1 2 2
completely hidden from higher levels s . 5 .
— A new paradigm like guantum may require Microarch 2 2
new architectures, programming models, and FU 2 2
algorithmic approaches Logic 2
Device 2

Adapted from IEEE Rebooting Computing Chart

OAK RIDGE

National Laboratory
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Department of Energy (DOE) Roadmap to Exascale Systems

An impressive, productive lineup of accelerated node systems supporting DOE’s mission

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!] First U.S. Exascale Systems
2012 2016 2018 2020 2021-2023

FRONTIER

Titan (9)es
ORNL ORNL
Cray/AMD/NVIDIA AMD/Cray

Intel/Cray

CLNL ity Sierra (2) CROSS(ROADS PITAN B
IBM BG/Q LANL/SNL LLNL LANL/SNL
Cray/Intel Xeon/KNL IBM/NVIDIA TBD QAKllﬁiDGE
ationa a OI'B.tOI'y
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Frontier Continues the Accelerated Node Design

e Partnership between ORNL, Cray, and AMD
The Frontier system will be delivered in 2021 oee | FHUOINTIER
Peak Performance greater than 1.5 EF '

e Composed of more than 100 Cray Shasta cabinets

— Connected by Slingshot™ interconnect with adaptive routing, congestion control,
and quality of service

e Accelerated Node Architecture:
— One purpose-built AMD EPYC™ processor
— Four HPC and Al optimized Radeon Instinct™ GPU accelerators
— Fully connected with high speed AMD Infinity Fabric links
— Coherent memory across the node
— 100 GB/s injection bandwidth
— Near-node NVM storage

¥ OAK RIDGE
- Nati( nal Labor: tory

OAK RIDGE

National Laboratory
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Comparison of Titan, Summit, and Frontier Systems

Peak
# cabinets

Node

On-node
interconnect

System
Interconnect

Topology

Storage
On-node NVM

Power

27 PF
200

1 AMD Opteron CPU
1 NVIDIA Kepler GPU

PCIl Gen2
No coherence
across the node

Cray Gemini network
6.4 GB/s

3D Torus

32 PB, 1 TB/s, Lustre
Filesystem

No

9 MV

200 PF
256

2 |1BM POWER9™ CPUs
6 NVIDIA Volta GPUs

NVIDIA NVLINK
Coherent memory
across the node

Mellanox Dual-port EDR IB network
25 GB/s

Non-blocking Fat Tree

250 PB, 2.5 TB/s, IBM Spectrum
Scale™ with GPFS™

Yes

13 MV

~1.5 EF
> 100

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

AMD Infinity Fabric
Coherent memory
across the node

Cray four-port Slingshot network
100 GB/s

Dragonfly

2-4x performance and capacity
of Summit’s 1/0O subsystem.

Yes
29 MV

OAK RIDGE
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Complex architectures yield...

— y

Processor M

Complex
— Programming
System: MPI, Legion, HPX, Charm++, etc M Od e I S

Low overhead Node: OpenMP, Pthreads, U-threads, etc

Resource contention SIMD

Cores: OpenACC, CUDA, OpenCL, OpenMP4, ...

Locality NUMA, HBM Memory use, coalescing Data orchestration Fine grained parallelism Hardware features

120

%OAK RIDGE

National Laboratory



During this Sixth Wave transition, Complexity is our major challenge!

Design Programmability

How do we design future systems so
that they are better than current
systems on important applications?

How do we design applications with
some level of performance portability?

« Simulation and modeling are more difficult « Software lasts much longer than transient
* Entirely possible that the new system will be hardware platforms

slower than the old system! « Proper abstractions for flexibility and
« Expect ‘disaster’ procurements efficiency

« Adapt or die

OAK RIDGE

National Laboratory
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The FTG Vision | Programming Systems

p
Applications
Enginsezfi:;e(:;d 5 (eStrisvai:go Sensing Deep learning Analytics Robotics
Materials, Fl:ls.i’on) ’ Experirﬁgéhtal instrur'nent) (e.g., SAR, vision) (e.g., CNN) (e.g., graphs) (e.g., sense and react)
\_

Compiler

Task Scheduling

Discovery and Mapping

Multicore CPU FPGA

Domain Specific Just-in-time
Languages Compilation

Data Orches

Al Accelerator

tration Synchronization

Persistent
Memory

Autotuning

Load balancing

Performance

Productivity
Energy Efficiency

OAK RIDGE

National Laboratory



What more to say ?!?1? ©

Heterogeneous Node Programming Models

C++AMP Kokkos ———RZ:]L\ SYCL
Z/ti;n/\‘ penACC [ "L-OpenMP4.5/5 //
HIP B CUDA OpenCL /
e s LSRN NN
SoC ?F/P‘(y\ PU >Manysare \4\ \. C}ll{ \
— * K
NVDA Xavier Zynq Snapdragon Xilinx Intel NVIDIA AMD Intel T Intel Xeon Phi Intel AMD ARM POWER

125
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Directive-based Strategy with OpenARC: Open Accelerator

Research Compiler

e Open-Sourced, High-Level Intermediate
Representation (HIR)-Based, Extensible
Compiler Framework.

— Perform source-to-source translation from
OpenACC C to target accelerator models.

e Support full features of OpenACC V1.0 ( + array
reductions and function calls)

e Support both CUDA and OpenCL as target accelerator
models

— Provide common runtime APIs for various back-
ends

— Can be used as a research framework for various
study on directive-based accelerator computing.

e Built on top of Cetus compiler framework, equipped with
various advanced analysis/transformation passes and
built-in tuning tools.

e OpenARC’s IR provides an AST-like syntactic view of the
source program, easy to understand, access, and
transform the input program.

' OpenACC
' OpenMP 4

NVL-C :
ut C Programs

Extended
LLVM IR
Generator

NVL
Passes

S _ndard
LLVM
Passes

OpenARC Compiler

E C Parser

Directive
Parser

Preprocessor

|

General
Optimizer

!

\

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,”

in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014

Kernels &

Specific
Optimizer

Configuration
Generator

Search Space
Pruner

Host Program

OpenARC Runtime

Kernels for
Target Devices

CUDA, OpenCL
Libraries

HeteroIR Common Runtime
with Tuning Engine

GPU Phl FPGA

NVM NVM NVM

RO .

NVL Runtime

pmem.io
NVM Library

OAK RIDGE
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FPGAs| Approach

e Design and implement an OpenACC-to-FPGA translation
framework, which is the first work to use a standard and portable
directive-based, high-level programming system for FPGA:s.

* Propose FPGA-specific optimizations and novel pragma
extensions to improve performance.

e Evaluate the functional and performance portability of the
framework across diverse architectures (Altera FPGA, NVIDIA
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, "OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE 1(\1){XK1I§£D(§E
International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28. NSRS
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FPGA OpenCL Architecture

External DDR Memory

External DDR Memory

+

+

Pipeline
Depth

Vector
Width

J0SS320.d ISOH

—» PCle

v

v

FPGA

External Memory
Controller and PHY

External Memory
Controller and PHY

!

!

!

Global Memory Interconnect

Number of Replicated Compute Units

“«—
1

LA 4

———( N ———

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

I11

Memory

Memory

Local Memory |
Interconnect |

Memory

OAK RIDGE
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Kernel-Pipelining Transformation Optimization

e Kernel execution model in OpenACC

— Device kernels can communicate with
each other only through the device

global memory. Kernel 1 Kernel 2
— Synchronizations between kernels are Kernel communications through
at the granularity of a kernel global memory in OpenACC
execution.
* Altera OpenCL channels o, &
— Allows passing data between kernels Kernel 1 Channel >Kernel 2
and synchronizing kernels with high N .
.. Kernel communications with
eff|C|ency and IOW Iatency Altera channels

OAK RIDGE

National Laboratory
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Kernel-Pipelining Transformation Optimization (2)

(a) Input OpenACC code

#pragma acc data copyin (a) create (b) copyout (c)

{
#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; } o & B &
#pragma acc kernels loop gang worker present (b, c) B B
for(i=0; i<N; i++) {c[i] = b[i]; } o o

}

(b) Altera OpenCL code with channels

channel float pipe b;

__kernel void kernel1(___global float* a) {
inti = get_global _id(0);
write_channel_altera(pipe b, a[i]*a[i]);

}

__kernel void kernel2(__global float* c) { S —<
inti = get_global _id(0); erne erne
c[i] = read_channel_altera(pipe_b);

}

OAK RIDGE

National Laboratory
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Kernel-Pipelining Transformation Optimization (3)

(a) Input OpenACC code

#pragma acc data copyin (a) create (b) copyout (c)

{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[l*a[l]; VI AR VI
#pragma acc kernels loop gang worker present (b, c)

for(i=0; i<N; i++) {c[i] = b[i]; }

Kernel-pipelining >
transformation

(c) Modified OpenACC code for kernel-pipelining

Kernel 1 Kernel 2

}

#pragma acc data copyin (a) pipe (b) copyout (c)
{
#pragma acc kernels loop gang worker pipeout (b) present (a)
For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker pipein (b) present (c)
For(i=0; i<N; i++) {c[i] = b[i];}

Kernel 1 Kernel 2

}

OAK RIDGE

National Laboratory
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FPGA-specific Optimizations

» Single work-item

« Collapse

» Reduction

« Sliding window

+ (Branch-variant code motion)

« (Custom unrolling)

OAK RIDGE

National Laboratory



Overall Performance of OpenARC FPGA Evaluation

1 CPU Sequential mmmm Altera FPGA NVIDIA GPU
1E403 exa CPU OpenMP Xeon Phi AMD GPU
f N

O L
¢ 1E+00
Q 1E01 Lo | ERN ] N PR BRI
o 101 i

1E-03 ¢ =

SRAD FFT-1D FFT-2D

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.

For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.
« Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

g,OAK RIDGE

- National Laboratory
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The FTG Vision | Runtime and Operating Systems

p
Applications
Enginsezfi:;e(:;d 5 (eStrisvai:go Sensing Deep learning Analytics Robotics
Materials, Fl:ls.i’on) ’ Experirﬁgéhtal instrur'nent) (e.g., SAR, vision) (e.g., CNN) (e.g., graphs) (e.g., sense and react)
\_

Compiler

Task Scheduling

Discovery and Mapping

Multicore CPU FPGA

Domain Specific Just-in-time
Languages Compilation

Data Orches

Al Accelerator

tration Synchronization

Persistent
Memory

Load balancing

Performance

Productivity
Energy Efficiency

OAK RIDGE
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IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming
Models

O
) —
) —
—

OpenACC

Support more
programming
models.

189

o
<
w
&
=)
c
S
o
c
@)
=
&
@)
@)
)
oc

IRIS offers a common API for diverse heterogeneous
devices and also allows intermixing of multiple
programming models (mix CUDA, OpenMP, OpenCL, etc.).

OAK RIDGE

National Laboratory




190

IRIS: An Intelligent Runtime System for Extremely Heterogeneous
Architectures

* Provide programmers a unified programming
environment to write portable code across
heterogeneous architectures (and preferred
programming systems)

L
A e DB ra TINE YIS g
pencL, , , vpen or INn a singie
application _ : W
— OpenCL torary B Ubary [ o w w

* NVIDIA GPU, AMD GPU, ARM GPU, Qualcomm GPU, Intel
CPU, Intel Xeon Phi, Intel FPGA, Xilinx FPGA

— CUDA

* NVIDIA GPU
— HIP

e AMD GPU DDRA FBMD FBMD FBM2  LPDDRA
— OpenMP for CPU Weakly-Consistent Shared Device Memory

* Intel CPU, AMD CPU, PowerPC CPU, ARM CPU,
Qualcomm CPU

OAK RIDGE

National Laboratory
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The IRIS Architecture

Platform Model

— A ssingle-node system equipped with host CPUs
and multiple compute devices (GPUs, FPGAs,
Xeon Phis, and multicore CPUs)
e Memory Model
— Host memory + shared device memory
— All compute devices share the device memory

Execution Model

— DAG-style task parallel execution across all
available compute devices

* Programming Model

— High-level OpenACC, OpenMP4, SYCL* (*
planned)
— Low-level C/Fortran/Python IRIS host-side

runtime APl + OpenCL/CUDA/HIP/OpenMP
kernels (w/o compiler support)

——————————

Qualcomm
GPU

HBM2 HBM2 LPDDR4

Weakly-Consistent Shared Device Memory

OAK RIDGE

National Laboratory



Supported Architectures and Programming Systems by IRIS

ExCL* Systems Summit-node Snapdragon
ualcomm
CPU Intel Xeon IBM Power9 Intel Xeon ARMv8 Q e
Programming Systems * Intel OpenMP * |IBM XL OpenMP * Intel OpenMP *  GNU GOMP * Android NDK
* Intel OpenCL * Intel OpenCL OpenMP
ualcomm
GPU NVIDIA P100 NVIDIA V100 AMD Radeon VII NVIDIA Volta Q
Adreno 640
Programming Systems * NVIDIA CUDA * NVIDIA CUDA e AMD HIP * NVIDIA CUDA * Qualcomm OpenCL
* NVIDIA OpenCL * AMD OpenCL
Intel/Altera
FPGA /.
Stratix 10
Programming Systems * Intel OpenCL
OAK RIDGE

National Laboratory
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IRIS Booting on Various Platforms

3482 ssh #3 ssh 4

&Faﬂf EFME

Lck@xav1nr.~/work/br15bane rts/a ps/sax -py$ ./saxpy.
” T
o e 3 s e r—‘
B e e e
nile: foataslocal fnp/icis & sexg - - = - =

: EEIIEEHME [I] xavier [Platform.cpp:98:Init] Brisbane architectures[openmp:cuda:hip:opencl]
[T]

xavier [Platform cpp:238:InitOpenMP] OpenMP platform[0] ndevs[1]

v rcesser fec 1 (U teien [I] xavier [DeviceOpenMP.cpp:27:DeviceOpenMP] device[0] platform[0] device[ARMv8 Processor rev 0 (v81l)] type[64]

E [T] xavier [Platform.cpp:180:InitCUDA] CUDA platform[1l] ndevs[1]

T [I] xavier [DeviceCUDA.cpp:44:DeviceCUDA] device[l] platform[1l] vendor[NVIDIA Corporation] device[Xavier] type[128] v
10000] max compute units[8] max work group size [1024] max work item sizes[2199023254528,67107840,4194240] max block

]
[T] xavier [Loader.cpp:19:Load] libhip hcc.so: cannot open shared object file: No such file or directory

Lo [T] xavier [Platform.cpp:203:InitHIP] skipping HIP architecture

e [T] xavier [Platform.cpp:261:InitOpenCL] OpenCL nplatforms[0]

e [T] xavier [Loader.cpp:19:Load] brisbane.poly.so: cannot open shared object file: No such file or directory

[I] xavier [Platform.cpp:133:Init] nplatforms[2] ndevs[2] hub[O] polyhedral[0] profile[0]

[T] xavier [DeviceCUDA.cpp:64:Init] dev[1][Xavier] kernels[kernel.ptx]

X[e 1. 2. 3. 4. 5 6. 7.]

Y [0 Ta 2o 3 Ay 5a 6x Tal

[T] xavier [DeviceCUDA.cpp:92:MemH2D] mem[4] off[0] size[32] host[0x5572cd2bf0]

[T] xavier [DeviceCUDA.cpp:142:KernelLaunch] kernel[saxpy®] dim[1] grid[8,1,1] block[1,1,1] blockOff x[0]

[I] xavier [Device.cpp:44:Execute] task[8][saxpyO] complete dev[1l][Xavier] time[0.000877]

[T] xavier [DeviceCUDA.cpp:100:MemD2H] mem[6] off[0] size[32] host[0Ox7f68001110]

[T] xavier [Consistency.cpp:104:ResolveWithoutPolymem] kernel[saxpyl] memcpy[6] [Xavier] -> [ARMv8 Processor rev 0 (v
[I] xavier [Device.cpp:44:Execute] task[10][saxpyl] complete dev[0][ARMv8 Processor rev 0 (v8l)] time[0.001016]
S=10.0 * X +Y [ 0. 11. 22. 33. 44. 55. 66. 77.]

[I] xavier [Platform.cpp:595:ShowKernelHistory] kernel[saxpyl] k[0.000997][1] h2d[0.000018][2] d2h[0.000001][1]

[I] xavier [Platform.cpp:595:ShowKernelHistory] kernel[saxpy@] k[0.000189][1] h2d[0.000688][1] d2h[0.000000][0]

[I] xavier [Platform.cpp:595:ShowKernelHistory] kernel[brisbane null] k[0.000000][0] h2d[0.000000][0] d2h[0.000155][1
[I] xavier [Platform.cpp:600:ShowKernelHistory] total kernel[0.001186] h2d[0.000706] d2h[0.000156]

[ [

e

I] xavier [Platform.cpp:624:Finalize] total execution time:[0.106565] sec. initialize:[0.098530] sec. t-i:[0.008035]
ck@xavier:~/work/brisbane-rts/apps/saxpy-py$ [
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Task Scheduling in IRIS

e Atask
— A scheduling unit
— Contains multiple in-order commands
e Kernel launch command
*  Memory copy command (device-to-host, host-to-device)
— May have DAG-style dependencies with other tasks

— Enqueued to the application task queue with a device
selection policy

e Available device selection policies
— Specific Device (compute device #)
— Device Type (CPU, GPU, FPGA, XeonPhi)
— Profile-based
— Locality-aware
— Ontology-base
— Performance models (Aspen)
— Any, All, Random, 3rd-party users’ custom policies

e The task scheduler dispatches the tasks in the
application task queue to available compute devices

— Select the optimal target compute device according to
task’s device selection policy

IRIS Runtime System

" Device Selection Policies
Any ANl Random
Deviype Profile ~ Data
Custom0 Custom1 Custom?2

T

Out-of-Order R—

App Task Queue

Thread

Thread
DAG Task In-Order

Dependencies Device Task Queue

OAK RIDGE
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SAXPY Example on Xavier

e Computation

- S[I=A*X[I+YI] IRIS Rnntfme System

e Two tasks
— S[] = A * X[] on NVIDIA GPU (CUDA)
— S[] +=Y[] on ARM CPU (OpenMP)
e S[] is shared between two tasks

e Read-after-write (RAW), true dependency

* Low-level Python IRIS host code +
CUDA/OpenMP kernels

—  saxpy.py
— kernel.cu “NVIDIA RN CoU
— kernel.openmp.h GPU Xavier

OAK RIDGE

National Laboratory
195



196

SAXPY: Python host code & CUDA kernel code

saxpy.py (1/2) saxpy.py (2/2) kernel.cu (CUDA)

#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A=10.0

X = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

kernelO = iris.kernel("saxpy0") extern "C" __ global __ void saxpyO(float* S, float
kernel0.setmem(0, mem_s, iris.iris_w) A, float* X) {

::emelo'setmt(l' Al N int id = blockldx.x * blockDim.x + threadldx.x;
ernel0.setmem(2, mem_x, iris.iris_r) . .
S[id] = A * X[id];

off=[0] }
ndr = [ SIZE ]

extern "C" _ global__ void saxpyl(float* S,
taskO = iris.task() float* Y) {

task0.h2d_full(mem_x, x) C gL - . )
5O eme lermal, 4, @ fel m'f id = bIo.ckIdx.x blockDim.x + threadldx.x;
task0.submit(iris.iris_gpu) S[id] += Y[id];

}

kernell = iris.kernel("saxpy1")
kernell.setmem(0, mem_s, iris.iris_rw)
kernell.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
taskl.kernel(kernell, 1, off, ndr)
taskl.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print'S=", A, "*X+Y',s

iris.finalize()

OAK RIDGE
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SAXPY: Python host code & OpenMP kernel code

saxpy.py (1/2) saxpy.py (2/2) kernel.openmp.h (OpenMP)

#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A=10.0

X = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

kernelO = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernelO.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off=[0]
ndr = [ SIZE ]

taskO = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernelO, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernell = iris.kernel("saxpy1")
kernell.setmem(0, mem_s, iris.iris_rw)
kernell.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
taskl.kernel(kernell, 1, off, ndr)
taskl.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print'S=", A, "*X+Y',s

iris.finalize()

#include <iris/iris_openmp.h>

static void saxpyO(float* S, float A, float* X,
IRIS_OPENMP_KERNEL_ARGS) {
int id;
#pragma omp parallel for shared(S, A, X)
private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] = A * X[id];
IRIS_OPENMP_KERNEL_END
}

static void saxpyl1(float* S, float* Y,
IRIS_OPENMP_KERNEL_ARGS) {
int id;
#pragma omp parallel for shared(S, Y) private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] += Y[id];
IRIS_OPENMP_KERNEL_END
}

OAK RIDGE
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Memory Consistency Management

taskO
cuMemcpyHtoD(dst, src)
Saxpy.py (1/ 2) Saxpy.-py (2/ 2) cuMemcpyDtoH(dst, src)
#!/usr/bin/env python kernelO = iris.kernel("saxpy0") memcpy(dst, src)
kernel0.setmem(O, -, iris.-)
; P kernelO.setint(1, A) saxpy0
!mport s kernel0.setmem(2, mem_x, iris.iris_r) kernel.cu
import numpy as np _—
import sys off=[0] Ag';lgpu[]
ndr = [ SIZE ]
iris.init()
taskO = iris.task()
— task0.h2d_full(mem_x, x)
iIZ-ElO ]6024 taskO.kernel(kernelO, 1, off, ndr)
B task0.submit(iris.iris_gpu)
"
( An inter-device
X = np.arange(SIZE, dtype=np.float32) kernell = iris.kernel("saxpy1") memory copy
y = np.arange(SIZE, dtype=np.float32) kernel1.setmem(0, mem_s, iris.iris_rw) °°uma“r"aa:t‘i;°
s = np.arange(SIZE, dtype=np.float32) kernell.setmem(1, mem_y, iris.iris_r) gmemory
ist
int X! taskl = iris.task() consisTeney
print X, X task1.h2d_full(mem_y, y) Injected from the
print 'Y, y taskl.kernel(kernell, 1, off, ndr) IRIS runtime and
task1.d2h_full(mem_s, s) h'dde']'.frc;f" the
mem_x = iris.mem(x.nbytes) taskl.submit(iris.iris_cpu) application
mem_y = iris.mem(y.nbytes) v

print'S=", A, "*X+Y',s

iris.finalize() COAK RIDGE
National Laboratory
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Locality-aware Device Selection Policy

saxpy.py (1/2) saxpy.py (2/2)

#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A=10.0

X = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)

kernelO = iris.kernel("saxpy0")
kernel0.setmem(O, -, iris.-)
kernelO.setint(1, A)

kernel0.setmem(2, mem_x, iris.iris_r)

off=[0]
ndr = [ SIZE ]

taskO = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernelO, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernell = iris.kernel("saxpy1")

kernell.setmem(O, -, iris.-)

kernell.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()

task1.h2d_full(mem_y, y) iris_data selects
task1.kernel(kernell, 1, off, ndr) the device that
task1.d2h_full(mem_s, s) requires

task1.submit(iris.iris_data) minimum data
transfer to

execute the
task

print'S=", A, "*X+Y',s

iris.finalize()

cuMemcpyHtoD(dst, src)
cuMemcpyDtoH(dst, src)

kernel.cu

Sgpu[] =
A*Xgpul ]

saxpyl
kernel.cu

Sgpu[] ar—
ngu[]

time
NVIDIA ARM
GPU Xavier C?U
OAK RIDGE
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The FTG Vision

4 )
Applications
Science and Streaming . . . .
Engineering (e.g., CFD, (e.g., SW Radio, S::;mg . Deep Iegl(lrll\llng Analytlc; RObOtICZ ¢
VR, Fusen) e gy [ A (e.g., , vision) (e.g., ) (e.g., graphs) (e.g., sense and react)
G _J
§ B >
S ' ! M JSt n “f“e Metaprogramming Scripting Libraries Autotuning 1) =
pilation o 2 S
- < = Q
c .= O
2 =
T >
T o ™
-
o c
L
: Task Scheduling . " .
m ata Orchestration Synchronization Load balancing
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Recap

* Motivation: Recent trends in computing
paint an ambiguous future

Multiple architectural dimensions are being
(dramatically) redesigned: Processors, node
design, memory systems, 1/0

Complexity is our main challenge

* Applications and software systems across
many areas are all reaching a state of crisis

Need a focus on performance portability

* ORNL FTG investigating design and
programming challenges for these trends

Performance modeling and ontologies

Performance portable compilation to many
different heterogeneous architectures/SoCs

Intelligent scheduling system to automate
discovery, device selection, and data movement

Tarﬁeting wide variety of existing and future
architectures (DSSoC and others%

e Visit us

We host interns and other visitors year
round

 Faculty, grad, undergrad, high school,
industry

e Jobsin FTG

Postdoctoral Research Associate in
Computer Science

Software Engineer
Computer Scientist
Visit https://jobs.ornl.gov

« Contact me vetter@ornl.gov

%OAK RIDGE
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Final Report on Workshop on Extreme Heterogeneity

1. Maintaining and improving programmer productivity Extreme Heterogeneity Viul:]

—  Flexible, expressive, programming models and languages SRl G Rl
IN THE ERA OF EXTREME HETEROGENEITY

Services Through Le

— Intelligent, domain-aware compilers and tools

her Productivity ...

—  Composition of disparate software components

Hlics, and Workflow:

e Managing resources intelligently
—  Automated methods using introspection and machine learning

—  Optimize for performance, energy efficiency, and availability

* Modeling & predicting performance
—  Evaluate impact of potential system designs and application mappings

—  Model-automated optimization of applications

e Enabling reproducible science despite non-determinism & asynchrony

- Methods for validation on non-deterministic architectures

—  Detection and mitigation of pervasive faults and errors

DOE ASCR Workshop on Extreme Heterogeneity
23-25, 2018

e Facilitating Data Management, Analytics, and Workflows i

Versic

—  Mapping of science workflows to heterogeneous hardware and software services

—  Adapting workflows and services to meet facility-level objectives through learning approaches

J vAw]
National Laboratory

25https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756
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Bonus Material
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