
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Preparing for Extreme Heterogeneity
in High Performance Computing

Jeffrey S. Vetter
With many contributions from FTG Group and Colleagues

R-CCS International Symposium
Kobe
18 Feb 2020

ORNL is managed by UT-Battelle
for the US Department of Energy http://ft.ornl.gov vetter@computer.org

http://ft.ornl.gov/
mailto:vetter@computer.org

1616

Highlights

• Recent trends in extreme-scale HPC paint an ambiguous future
– Contemporary systems provide evidence that power constraints are driving architectures to change rapidly
– Multiple architectural dimensions are being (dramatically) redesigned: Processors, node design, memory systems, I/O
– Complexity is our main challenge

• Applications and software systems are all reaching a state of crisis
– Applications will not be functionally or performance portable across architectures
– Programming and operating systems need major redesign to address these architectural changes
– Procurements, acceptance testing, and operations of today’s new platforms depend on performance prediction and

benchmarking.

• We need portable programming models and performance prediction now more than ever!
– Heterogeneous processing

• OpenACC->FGPAs
• Intelligent runtime system (IRIS)
• Clacc – OpenACC support in LLVM (not covered today)
• OpenACC dialect of MLIR for Flang Fortran (not covered today)

– Emerging memory hierarchies (NVM)
• DRAGON – transparent NVM access from GPUs (not covered today)
• NVL-C – user management of nonvolatile memory in C (not covered today)
• Papyrus – parallel aggregate persistent storage (not covered today)

• Performance prediction is critical for design and optimization (not covered today)

2828

Time for a short poll…

3030

History

Q: Think back 10 years. How
many of you would have

predicted that many of our
top HPC systems would be
GPU-based architectures?

Yes

No

Revisionists 

3232

Future

Q: Think forward 10 years.
How many of you predict
that most of our top HPC

systems will have the
following architectural

features?

Assume general purpose multicore CPU

GPU

FPGA/Reconfigurable processor

Neuromorphic processor

Deep learning processor

Quantum processor

RISC-V processor

Some new unknown processor

All/some of the above in one SoC

3434

Implications

Q: Now, imagine you are building
a new application with an

expected ~3M LOC and 20 team
members over the next 10 years.

What on-node programming
model/system do you use?

C, C++ XX, Fortran XX

Metaprogramming, etc (e.g., AMP, Kokkos, RAJA, SYCL)

CUDA, cu***, HIP, OpenCL

Directives: OpenMP XX, OpenACC XX

R, Python, Matlab, etc

A Domain Specific Language (e.g., Claw, PySL)

A Domain Specific Framework (e.g., PetSc)

Some new unknown programming approach

All/some of the above

35

The FTG Vision

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

36

The FTG Vision | Applications

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

37

National security
Stockpile

stewardship
Next-generation
electromagnetics

simulation of hostile
environment and

virtual flight testing for
hypersonic re-entry

vehicles

Energy security
Turbine wind plant

efficiency
High-efficiency,
low-emission

combustion engine
and gas turbine

design
Materials design for

extreme
environments of
nuclear fission

and fusion reactors
Design and

commercialization
of Small Modular

Reactors
Subsurface use

for carbon capture,
petroleum extraction,

waste disposal
Scale-up of clean

fossil fuel combustion
Biofuel catalyst

design

Scientific discovery
Find, predict,

and control materials
and properties

Cosmological probe
of the standard model

of particle physics
Validate fundamental

laws of nature
Demystify origin of
chemical elements

Light source-enabled
analysis of protein

and molecular
structure and design
Whole-device model

of magnetically
confined fusion

plasmas

Earth system
Accurate regional

impact assessments
in Earth system

models
Stress-resistant crop
analysis and catalytic

conversion
of biomass-derived

alcohols
Metagenomics
for analysis of

biogeochemical
cycles, climate

change,
environmental
remediation

Economic security
Additive

manufacturing
of qualifiable
metal parts

Reliable and
efficient planning
of the power grid
Seismic hazard
risk assessment
Urban planning

Health care
Accelerate

and translate
cancer research

ECP applications target national problems in 6 strategic areas
https://exascaleproject.org/

https://exascaleproject.org/

38

DARPA Domain Specific System on Chip Program is investigating Performance
Portability of Software Defined Radio

• Signal processing: An open-
source implementation of IEEE-
802.11 WIFI a/b/g with GR OOT
modules.

• Input / Output file support via
Socket PDU (UDP server) blocks

• Image/Video transcoding with
OpenCL/OpenCV

Video/Image
Files

GR IEEE-802.11 Transmit (TX)

UDP

Antenna

UDP

IEEE-802.11 Receive (RX)

Xavier SoC #1 Xavier SoC #2

39

The FTG Vision | Architectures

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

46

Contemporary devices are approaching fundamental limits

I.L. Markov, “Limits on fundamental limits to computation,” Nature, 512(7513):147-54,
2014, doi:10.1038/nature13570.

Economist, Mar 2016

R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc, “Design of ion-implanted
MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 9(5):256-68, 1974,

Dennard scaling has already ended. Dennard observed that voltage and
current should be proportional to the linear dimensions of a transistor: 2x
transistor count implies 40% faster and 50% more efficient.

4747

End of Moore’s Law : what’s your prediction ??

Economist, Mar 2016

“The number of people predicting the death of Moore’s Law doubles every two years.” – Peter Lee, Microsoft

48

50

Sixth Wave of Computing

http://www.kurzweilai.net/exponential-growth-of-computing

Transition
Period

6th wave

5151

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

5252

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

5353

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

5454

Quantum computing: Qubit design and fabrication
have made recent progress but still face challenges

Science 354, 1091 (2016) – 2 December

http://nap.edu/25196

http://nap.edu/25196

58

Fun Question: when was the field effect transistor patented?

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-
transistor--October-8--1926

https://www.edn.com/electronics-blogs/edn-moments/4422371/Lilienfeld-patents-field-effect-transistor--October-8--1926

5959

Predictions for Transition Period

Optimize Software and
Expose New Hierarchical

Parallelism

• Redesign software to
boost performance on
upcoming
architectures

• Exploit new levels of
parallelism and
efficient data
movement

Architectural
Specialization and

Integration

• Use CMOS more
effectively for specific
workloads

• Integrate components
to boost performance
and eliminate
inefficiencies

• Workload specific
memory+storage
system design

Emerging Technologies

• Investigate new
computational
paradigms
• Quantum
• Neuromorphic
• Advanced Digital
• Emerging Memory

Devices

6060
https://www.thebroadcastbridge.com/content/entry/1094/altera-announces-arria-10-2666mbps-ddr4-memory-fpga-interface

Pace of Architectural Specialization is Quickening
• Industry, lacking Moore’s Law, will need to continue to

differentiate products (to stay in business)
– Use the same transistors differently to enhance performance

• Architectural design will become extremely important,
critical

– Dark Silicon

– Address new parameters for benefits/curse of Moore’s Law

• 50+ new companies focusing on hardware for Machine
Learning

http://www.wired.com/2016/05/google-tpu-custom-chips/

D.E. Shaw, M.M. Deneroff, R.O. Dror et al., “Anton, a special-purpose machine for molecular dynamics
simulation,” Communications of the ACM, 51(7):91-7, 2008.

http://www.theinquirer.net/inquirer/news/2477796/intels-nervana-
ai-platform-takes-aim-at-nvidias-gpu-techology

https://fossbytes.com/nvidia-volta-gddr6-2018/

Xilinx ACAP

HotChips 2018

HotChips 2018

6262

Analysis of Apple A-* SoCs

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

http://vlsiarch.eecs.harvard.edu/accelerators/die-photo-analysis

6767

Intel Stratix 10 FPGA
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• Intel Stratix 10 FPGA and four banks of DDR4 external
memory

– Board configuration: Nallatech 520 Network Acceleration Card

• Up to 10 TFLOPS of peak single precision performance

• 25MBytes of L1 cache @ up to 94 TBytes/s peak
bandwidth

• 2X Core performance gains over Arria® 10

• Quartus and OpenCL software (Intel SDK v18.1) for
using FPGA

• Provide researcher access to advanced FPGA/SOC
environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/

68

NVIDIA Jetson AGX Xavier SoC
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

• NVIDIA Jetson AGX Xavier:

• High-performance system on a chip for autonomous
machines

• Heterogeneous SoC contains:
– Eight-core 64-bit ARMv8.2 CPU cluster (Carmel)
– 1.4 CUDA TFLOPS (FP32) GPU with additional

inference optimizations (Volta)
– 11.4 DL TOPS (INT8) Deep learning accelerator

(NVDLA)
– 1.7 CV TOPS (INT8) 7-slot VLIW dual-processor

Vision accelerator (PVA)
– A set of multimedia accelerators (stereo, LDC,

optical flow)

• Provides researchers access to advanced high-
performance SOC environment

https://excl.ornl.gov/

Mar 2019For more information or to apply for an account, visit https://excl.ornl.gov/

https://excl.ornl.gov/
https://excl.ornl.gov/

69

Qualcomm 855 SoC (SM8510P) Snapdragon™
Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group

Adreno 640

Hexagon 690

Kyro 485

Kyro 485 (8-ARM Prime+BigLittle Cores)

Prime
Core

Hexagon 690 (DSP + AI)

7nm TSMC

Adreno 640
• Vulkan, OpenCL, OpenGL ES 3.1
• Apps: HDR10+, HEVC, Dolby, etc
• Enables 8k-360o VR video playback
• 20% faster compared to Adreno 630

• Quad threaded Scalar Core
• DSP + 4 Hexagon Vector Xccelerators
• New Tensor Xccelerator for AI
• Apps: AI, Voice Assistance, AV codecs

• Snapdragon X24 LTE (855 built-in) modem LTE Category 20
• Snapdragon X50 5G (external) modem (for 5G devices)
• Qualcomm Wi-Fi 6-ready mobile platform: (802.11ax-ready,

802.11ac Wave 2, 802.11ay, 802.11ad)
• Qualcomm 60 GHz Wi-Fi mobile platform: (802.11ay,

802.11ad)
• Bluetooth Version: 5.0
• Bluetooth Speed: 2 Mbps
• High accuracy location with dual-frequency GNSS.

Connectivity (5G)

Spectra 360 ISP
• New dedicated Image Signal Processor (ISP)
• Dual 14-bit CV-ISPs; 48MP @ 30fps single camera
• Hardware CV for object detection, tracking, streo depth process
• 6DoF XR Body tracking, H265, 4K60 HDR video capture, etc.

Spectra 360

5G

Qualcomm Development Board connected to (mcmurdo) HPZ820

• Connected Qualcomm board to HPZ820 through USB
• Development Environment: Android SDK/NDK
• Login to mcmurdo machine

$ ssh –Y mcmurdo
• Setup Android platform tools and development environment

$ source /home/nqx/setup_android.source
• Run Hello-world on ARM cores

$ git clone https://code.ornl.gov/nqx/helloworld-android
$ make compile push run

• Run OpenCL example on GPU
$ git clone https://code.ornl.gov/nqx/opencl-img-processing
• Run Sobel edge detection

$ make compile push run fetch
• Login to Qualcomm development board shell

$ adb shell
$ cd /data/local/tmp

Created by Narasinga Rao Miniskar, Steve Moulton

© Qualcomm Inc.

© Qualcomm Inc.

https://excl.ornl.gov/

For more information or to apply for an account, visit https://excl.ornl.gov/

https://code.ornl.gov/nqx/helloworld-android
https://code.ornl.gov/nqx/opencl-img-processing
https://excl.ornl.gov/
https://excl.ornl.gov/

7070

Growing Open Source Hardware Movement Enables Rapid Chip Design

RISC-V Summit, 2018

7171

DARPA ERI Programs Aiming for Agile (and Frequent) Chip Creation

A. Olofsson, 2018

7272

Summary:
Transition Period will be Disruptive – Opportunities and Pitfalls Abound

• New devices and architectures may not
be hidden in traditional levels of
abstraction

• Examples
– A new type of CNT transistor may be

completely hidden from higher levels
– A new paradigm like quantum may require

new architectures, programming models, and
algorithmic approaches

Layer Switch, 3D NVM Approximate Neuro Quantum
Application 1 1 2 2 3
Algorithm 1 1 2 3 3
Language 1 2 2 3 3
API 1 2 2 3 3
Arch 1 2 2 3 3
ISA 1 2 2 3 3
Microarch 2 3 2 3 3
FU 2 3 2 3 3
Logic 3 3 2 3 3
Device 3 3 2 3 3

Adapted from IEEE Rebooting Computing Chart

103103

LLNL
IBM/NVIDIA

Department of Energy (DOE) Roadmap to Exascale Systems
An impressive, productive lineup of accelerated node systems supporting DOE’s mission

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
TBD

ANL
Intel/Cray

ORNL
AMD/Cray

LLNL
TBD

LANL/SNL
Cray/Intel Xeon/KNL

2012 2016 2018 2020 2021-2023

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia (10)

Cori (12)

Trinity (6)

Theta (24)Mira (21)

Titan (9) Summit (1)

NERSC-9Perlmutter

Aurora

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon/KNL

First U.S. Exascale Systems

Sierra (2)

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!]

Jan 2018

Heterogeneous Cores

Deep Memory incl NVM

Plateauing I/O Performance

118118

Frontier Continues the Accelerated Node Design

• Partnership between ORNL, Cray, and AMD
• The Frontier system will be delivered in 2021
• Peak Performance greater than 1.5 EF
• Composed of more than 100 Cray Shasta cabinets

– Connected by Slingshot™ interconnect with adaptive routing, congestion control,
and quality of service

• Accelerated Node Architecture:
– One purpose-built AMD EPYC™ processor
– Four HPC and AI optimized Radeon Instinct™ GPU accelerators
– Fully connected with high speed AMD Infinity Fabric links
– Coherent memory across the node
– 100 GB/s injection bandwidth
– Near-node NVM storage

119

Comparison of Titan, Summit, and Frontier Systems
System Specs Titan Summit Frontier

Peak 27 PF 200 PF ~1.5 EF
cabinets 200 256 > 100

Node 1 AMD Opteron CPU
1 NVIDIA Kepler GPU

2 IBM POWER9™ CPUs
6 NVIDIA Volta GPUs

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

On-node
interconnect

PCI Gen2
No coherence
across the node

NVIDIA NVLINK
Coherent memory
across the node

AMD Infinity Fabric
Coherent memory
across the node

System
Interconnect

Cray Gemini network
6.4 GB/s

Mellanox Dual-port EDR IB network
25 GB/s

Cray four-port Slingshot network
100 GB/s

Topology 3D Torus Non-blocking Fat Tree Dragonfly

Storage 32 PB, 1 TB/s, Lustre
Filesystem

250 PB, 2.5 TB/s, IBM Spectrum
Scale™ with GPFS™

2-4x performance and capacity
of Summit’s I/O subsystem.

On-node NVM No Yes Yes

Power 9 MV 13 MV 29 MV

120

Complex architectures yield…

System: MPI, Legion, HPX, Charm++, etc

Low overhead

Resource contention

Locality

Node: OpenMP, Pthreads, U-threads, etc

SIMD

NUMA, HBM

Cores: OpenACC, CUDA, OpenCL, OpenMP4, …

Memory use, coalescing Data orchestration Fine grained parallelism Hardware features

Complex
Programming

Models

121

During this Sixth Wave transition, Complexity is our major challenge!

Design

How do we design future systems so
that they are better than current

systems on important applications?

• Simulation and modeling are more difficult
• Entirely possible that the new system will be

slower than the old system!
• Expect ‘disaster’ procurements

Programmability

How do we design applications with
some level of performance portability?

• Software lasts much longer than transient
hardware platforms

• Proper abstractions for flexibility and
efficiency

• Adapt or die

124

The FTG Vision | Programming Systems

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

125

What more to say ?!?!? 

131131

Directive-based Strategy with OpenARC: Open Accelerator
Research Compiler

• Open-Sourced, High-Level Intermediate
Representation (HIR)-Based, Extensible
Compiler Framework.

– Perform source-to-source translation from
OpenACC C to target accelerator models.
• Support full features of OpenACC V1.0 (+ array

reductions and function calls)
• Support both CUDA and OpenCL as target accelerator

models

– Provide common runtime APIs for various back-
ends

– Can be used as a research framework for various
study on directive-based accelerator computing.
• Built on top of Cetus compiler framework, equipped with

various advanced analysis/transformation passes and
built-in tuning tools.

• OpenARC’s IR provides an AST-like syntactic view of the
source program, easy to understand, access, and
transform the input program.

S. Lee and J.S. Vetter, “OpenARC: Open Accelerator Research Compiler for Directive-Based, Efficient Heterogeneous Computing,”
in ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC). Vancouver: ACM, 2014

149149

FPGAs| Approach

• Design and implement an OpenACC-to-FPGA translation
framework, which is the first work to use a standard and portable
directive-based, high-level programming system for FPGAs.

• Propose FPGA-specific optimizations and novel pragma
extensions to improve performance.

• Evaluate the functional and performance portability of the
framework across diverse architectures (Altera FPGA, NVIDIA
GPU, AMD GPU, and Intel Xeon Phi).

S. Lee, J. Kim, and J.S. Vetter, “OpenACC to FPGA: A Framework for Directive-based High-Performance Reconfigurable Computing,” Proc. IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 2016, 10.1109/IPDPS.2016.28.

153

FPGA OpenCL Architecture

FPGA

Memory

Local Memory
Interconnect

Local Memory
Interconnect

Local Memory
Interconnect

Memory

Memory

Memory

Memory

Memory

Global Memory Interconnect

PCIe

External Memory
Controller and PHY

External Memory
Controller and PHY

Host Processor

External DDR Memory External DDR Memory

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Kernel
PipelineKernel

PipelineKernel
PipelineKernel

Pipeline

Pipeline
Depth

Vector
Width

Number of Replicated Compute Units

156156

Kernel-Pipelining Transformation Optimization

• Kernel execution model in OpenACC
– Device kernels can communicate with

each other only through the device
global memory.

– Synchronizations between kernels are
at the granularity of a kernel
execution.

• Altera OpenCL channels
– Allows passing data between kernels

and synchronizing kernels with high
efficiency and low latency

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

Kernel communications through
global memory in OpenACC

Kernel communications with
Altera channels

157

Kernel-Pipelining Transformation Optimization (2)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

channel float pipe_b;
__kernel void kernel1(__global float* a) {

int i = get_global_id(0);
write_channel_altera(pipe_b, a[i]*a[i]);

}
__kernel void kernel2(__global float* c) {

int i = get_global_id(0);
c[i] = read_channel_altera(pipe_b);

}

(a) Input OpenACC code

(b) Altera OpenCL code with channels

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

158

Kernel-Pipelining Transformation Optimization (3)

#pragma acc data copyin (a) create (b) copyout (c)
{

#pragma acc kernels loop gang worker present (a, b)
for(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker present (b, c)
for(i=0; i<N; i++) {c[i] = b[i]; }

}

(a) Input OpenACC code

(c) Modified OpenACC code for kernel-pipelining

Global Memory

Kernel 1 Kernel 2

Global Memory

Kernel 1 Kernel 2Channel

#pragma acc data copyin (a) pipe (b) copyout (c)
{

#pragma acc kernels loop gang worker pipeout (b) present (a)
For(i=0; i<N; i++) { b[i] = a[i]*a[i]; }
#pragma acc kernels loop gang worker pipein (b) present (c)
For(i=0; i<N; i++) {c[i] = b[i];}

}

Kernel-pipelining
transformation

Valid under
specific conditions

159

175

Overall Performance of OpenARC FPGA Evaluation

FPGAs prefer applications with deep execution pipelines (e.g., FFT-1D and
FFT-2D), performing much higher than other accelerators.
For traditional HPC applications with abundant parallel floating-point operations,
it seems to be difficult for FPGAs to beat the performance of other accelerators,
even though FPGAs can be much more power-efficient.

• Tested FPGA does not contain dedicated, embedded floating-point
cores, while others have fully-optimized floating-point computation units.

Current and upcoming high-end FPGAs are equipped with hardened floating-
point operators, whose performance will be comparable to other accelerators,
while remaining power-efficient.

187

The FTG Vision | Runtime and Operating Systems

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

189

IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming
Models

ARM CPU

NVIDIA GPU

OpenACC
Intel FPGA

CUDA

OpenMP

Intel OpenCL

General
AcceleratorsOpenCL

CPU/Xeon PhiOpenMP

SYCL

HIP AMD GPUIR
IS

 C
om

m
on

 R
un

tim
e

AP
I

IRIS offers a common API for diverse heterogeneous
devices and also allows intermixing of multiple
programming models (mix CUDA, OpenMP, OpenCL, etc.).

Support more
programming
models.

190

IRIS: An Intelligent Runtime System for Extremely Heterogeneous
Architectures

• Provide programmers a unified programming
environment to write portable code across
heterogeneous architectures (and preferred
programming systems)

• Orchestrate diverse programming systems
(OpenCL, CUDA, HIP, OpenMP for CPU) in a single
application

– OpenCL
• NVIDIA GPU, AMD GPU, ARM GPU, Qualcomm GPU, Intel

CPU, Intel Xeon Phi, Intel FPGA, Xilinx FPGA
– CUDA

• NVIDIA GPU
– HIP

• AMD GPU
– OpenMP for CPU

• Intel CPU, AMD CPU, PowerPC CPU, ARM CPU,
Qualcomm CPU

191191

The IRIS Architecture

• Platform Model
– A single-node system equipped with host CPUs

and multiple compute devices (GPUs, FPGAs,
Xeon Phis, and multicore CPUs)

• Memory Model
– Host memory + shared device memory
– All compute devices share the device memory

• Execution Model
– DAG-style task parallel execution across all

available compute devices

• Programming Model
– High-level OpenACC, OpenMP4, SYCL* (*

planned)
– Low-level C/Fortran/Python IRIS host-side

runtime API + OpenCL/CUDA/HIP/OpenMP
kernels (w/o compiler support)

192

Supported Architectures and Programming Systems by IRIS

ExCL* Systems Oswald Summit-node Radeon Xavier Snapdragon

CPU Intel Xeon IBM Power9 Intel Xeon ARMv8 Qualcomm
Kryo

Programming Systems • Intel OpenMP
• Intel OpenCL

• IBM XL OpenMP • Intel OpenMP
• Intel OpenCL

• GNU GOMP • Android NDK
OpenMP

GPU NVIDIA P100 NVIDIA V100 AMD Radeon VII NVIDIA Volta Qualcomm
Adreno 640

Programming Systems • NVIDIA CUDA
• NVIDIA OpenCL

• NVIDIA CUDA • AMD HIP
• AMD OpenCL

• NVIDIA CUDA • Qualcomm OpenCL

FPGA Intel/Altera
Stratix 10

Programming Systems • Intel OpenCL

* ORNL Experimental Computing Laboratory (ExCL) https://excl.ornl.gov/

https://excl.ornl.gov/

193

IRIS Booting on Various Platforms

194194

Task Scheduling in IRIS

• A task
– A scheduling unit
– Contains multiple in-order commands

• Kernel launch command
• Memory copy command (device-to-host, host-to-device)

– May have DAG-style dependencies with other tasks
– Enqueued to the application task queue with a device

selection policy
• Available device selection policies

– Specific Device (compute device #)
– Device Type (CPU, GPU, FPGA, XeonPhi)
– Profile-based
– Locality-aware
– Ontology-base
– Performance models (Aspen)
– Any, All, Random, 3rd-party users’ custom policies

• The task scheduler dispatches the tasks in the
application task queue to available compute devices

– Select the optimal target compute device according to
task’s device selection policy

195195

SAXPY Example on Xavier

• Computation
– S[] = A * X[] + Y[]

• Two tasks
– S[] = A * X[] on NVIDIA GPU (CUDA)
– S[] += Y[] on ARM CPU (OpenMP)

• S[] is shared between two tasks
• Read-after-write (RAW), true dependency

• Low-level Python IRIS host code +
CUDA/OpenMP kernels

– saxpy.py
– kernel.cu
– kernel.openmp.h

196

SAXPY: Python host code & CUDA kernel code

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

kernel.cu (CUDA)
extern "C" __global__ void saxpy0(float* S, float
A, float* X) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
S[id] = A * X[id];

}

extern "C" __global__ void saxpy1(float* S,
float* Y) {
int id = blockIdx.x * blockDim.x + threadIdx.x;
S[id] += Y[id];

}

197

SAXPY: Python host code & OpenMP kernel code

kernel.openmp.h (OpenMP)
#include <iris/iris_openmp.h>

static void saxpy0(float* S, float A, float* X,
IRIS_OPENMP_KERNEL_ARGS) {
int id;

#pragma omp parallel for shared(S, A, X)
private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] = A * X[id];
IRIS_OPENMP_KERNEL_END

}

static void saxpy1(float* S, float* Y,
IRIS_OPENMP_KERNEL_ARGS) {
int id;

#pragma omp parallel for shared(S, Y) private(id)
IRIS_OPENMP_KERNEL_BEGIN
S[id] += Y[id];
IRIS_OPENMP_KERNEL_END

}

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

198

Memory Consistency Management

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_cpu)

print 'S =', A, '* X + Y', s

iris.finalize()

mem_s is
shared between

GPU and CPU

199199

Locality-aware Device Selection Policy

saxpy.py (1/2)
#!/usr/bin/env python

import iris
import numpy as np
import sys

iris.init()

SIZE = 1024
A = 10.0

x = np.arange(SIZE, dtype=np.float32)
y = np.arange(SIZE, dtype=np.float32)
s = np.arange(SIZE, dtype=np.float32)

print 'X', x
print 'Y', y

mem_x = iris.mem(x.nbytes)
mem_y = iris.mem(y.nbytes)
mem_s = iris.mem(s.nbytes)

saxpy.py (2/2)
kernel0 = iris.kernel("saxpy0")
kernel0.setmem(0, mem_s, iris.iris_w)
kernel0.setint(1, A)
kernel0.setmem(2, mem_x, iris.iris_r)

off = [0]
ndr = [SIZE]

task0 = iris.task()
task0.h2d_full(mem_x, x)
task0.kernel(kernel0, 1, off, ndr)
task0.submit(iris.iris_gpu)

kernel1 = iris.kernel("saxpy1")
kernel1.setmem(0, mem_s, iris.iris_rw)
kernel1.setmem(1, mem_y, iris.iris_r)

task1 = iris.task()
task1.h2d_full(mem_y, y)
task1.kernel(kernel1, 1, off, ndr)
task1.d2h_full(mem_s, s)
task1.submit(iris.iris_data)

print 'S =', A, '* X + Y', s

iris.finalize()

iris_data selects
the device that

requires
minimum data

transfer to
execute the

task

201

The FTG Vision

Architectures

Multicore CPU GPU FPGA AI Accelerator SoC DSP Deep Memory Persistent
Memory Neuromorphic

Applications
Science and

Engineering (e.g., CFD,
Materials, Fusion)

Streaming
(e.g., SW Radio,

Experimental instrument)

Sensing
(e.g., SAR, vision)

Deep learning
(e.g., CNN)

Analytics
(e.g., graphs)

Robotics
(e.g., sense and react)

Programming Systems

Compiler Domain Specific
Languages

Just-in-time
Compilation Metaprogramming Scripting Libraries Autotuning

Runtime and Operating Systems

Discovery Task Scheduling
and Mapping Data Orchestration IO Synchronization Load balancing

Pe
rfo

rm
an

ce
Pr

od
uc

tiv
ity

En
er

gy
 E

ffi
ci

en
cy

IRIS

OpenARC

204204

Recap

• Motivation: Recent trends in computing
paint an ambiguous future
– Multiple architectural dimensions are being

(dramatically) redesigned: Processors, node
design, memory systems, I/O

– Complexity is our main challenge

• Applications and software systems across
many areas are all reaching a state of crisis
– Need a focus on performance portability

• ORNL FTG investigating design and
programming challenges for these trends
– Performance modeling and ontologies
– Performance portable compilation to many

different heterogeneous architectures/SoCs
– Intelligent scheduling system to automate

discovery, device selection, and data movement
– Targeting wide variety of existing and future

architectures (DSSoC and others)

• Visit us
– We host interns and other visitors year

round
• Faculty, grad, undergrad, high school,

industry

• Jobs in FTG
– Postdoctoral Research Associate in

Computer Science
– Software Engineer
– Computer Scientist
– Visit https://jobs.ornl.gov

• Contact me vetter@ornl.gov

https://jobs.ornl.gov/
mailto:vetter@ornl.gov

205205

Final Report on Workshop on Extreme Heterogeneity
1. Maintaining and improving programmer productivity

– Flexible, expressive, programming models and languages
– Intelligent, domain-aware compilers and tools
– Composition of disparate software components

• Managing resources intelligently
– Automated methods using introspection and machine learning
– Optimize for performance, energy efficiency, and availability

• Modeling & predicting performance
– Evaluate impact of potential system designs and application mappings
– Model-automated optimization of applications

• Enabling reproducible science despite non-determinism & asynchrony
– Methods for validation on non-deterministic architectures
– Detection and mitigation of pervasive faults and errors

• Facilitating Data Management, Analytics, and Workflows
– Mapping of science workflows to heterogeneous hardware and software services
– Adapting workflows and services to meet facility-level objectives through learning approaches

https://orau.gov/exheterogeneity2018/ https://doi.org/10.2172/1473756

https://orau.gov/exheterogeneity2018/
https://doi.org/10.2172/1473756

226226

Bonus Material

	Preparing for Extreme Heterogeneity in High Performance Computing
	Highlights
	Time for a short poll…
	History
	Future
	Implications
	The FTG Vision
	The FTG Vision | Applications
	ECP applications target national problems in 6 strategic areas
	DARPA Domain Specific System on Chip Program is investigating Performance Portability of Software Defined Radio
	The FTG Vision | Architectures
	Contemporary devices are approaching fundamental limits
	End of Moore’s Law : what’s your prediction ??
	Slide Number 48
	Sixth Wave of Computing
	Predictions for Transition Period
	Predictions for Transition Period
	Predictions for Transition Period
	Quantum computing: Qubit design and fabrication have made recent progress but still face challenges
	Fun Question: when was the field effect transistor patented?
	Predictions for Transition Period
	Pace of Architectural Specialization is Quickening
	Analysis of Apple A-* SoCs
	Intel Stratix 10 FPGA�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	NVIDIA Jetson AGX Xavier SoC�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	Qualcomm 855 SoC (SM8510P) Snapdragon™�Experimental Computing Lab (ExCL) managed by the ORNL Future Technologies Group
	Growing Open Source Hardware Movement Enables Rapid Chip Design
	DARPA ERI Programs Aiming for Agile (and Frequent) Chip Creation
	Summary: �Transition Period will be Disruptive – Opportunities and Pitfalls Abound
	Department of Energy (DOE) Roadmap to Exascale Systems�An impressive, productive lineup of accelerated node systems supporting DOE’s mission
	Frontier Continues the Accelerated Node Design
	Comparison of Titan, Summit, and Frontier Systems
	Complex architectures yield…
	During this Sixth Wave transition, Complexity is our major challenge!
	The FTG Vision | Programming Systems
	What more to say ?!?!? 
	Directive-based Strategy with OpenARC: Open Accelerator Research Compiler
	FPGAs| Approach
	FPGA OpenCL Architecture
	Kernel-Pipelining Transformation Optimization
	Kernel-Pipelining Transformation Optimization (2)
	Kernel-Pipelining Transformation Optimization (3)
	Slide Number 159
	Overall Performance of OpenARC FPGA Evaluation
	The FTG Vision | Runtime and Operating Systems
	IRIS: Mapping Strategy for Heterogeneous Architectures and Native Programming Models
	IRIS: An Intelligent Runtime System for Extremely Heterogeneous Architectures
	The IRIS Architecture
	Supported Architectures and Programming Systems by IRIS
	IRIS Booting on Various Platforms
	Task Scheduling in IRIS
	SAXPY Example on Xavier
	SAXPY: Python host code & CUDA kernel code
	SAXPY: Python host code & OpenMP kernel code
	Memory Consistency Management
	Locality-aware Device Selection Policy
	The FTG Vision
	Recap
	Final Report on Workshop on Extreme Heterogeneity
	Bonus Material

