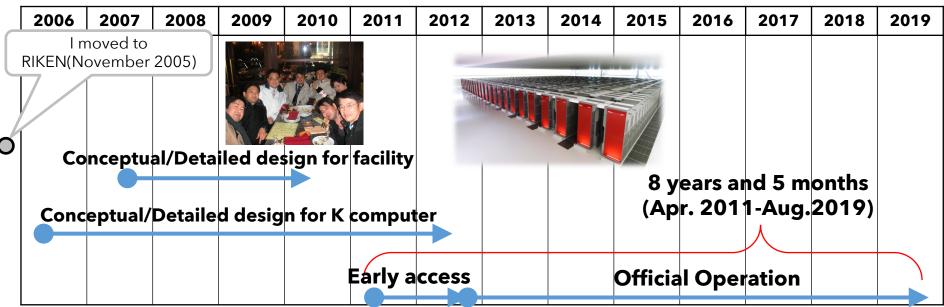
The concept of user services

on Fugaku

Fumiyoshi Shoji Operations and Computer Technologies Div., R-CCS, RIKEN @ 2nd R-CCS international symposium February 17, 2019

0010 1111101 110100


۲e

K computer retired Aug.2019

- Achievements:
 - TOP500 #1 x 2
 - Graph500 #1 x 10
 - HPCG #1 x 3
 - Gordon Bell prize winner x 2

Operation/service stats of K computer

Service duration	2,513 days 9 hours (Sep. 28 th , 2012 – Aug. 16 th , 2019)
# of job	4,178,431
Node x time delivered	3,637,258,658
Average job filling rate	75.6%
System availability (for the service duration/for planned service node time)	93.6/97.3%
# of user (cumulative/no double counting)	11,095/2,631
# of project (cumulative)	1,015

RIKEN

Ħ

R-CCS

The Nex-Gen "Fugaku" Supercomptuer

Presentation by Satoshi Matsuoka @EEHPC SOP Workshop 2019

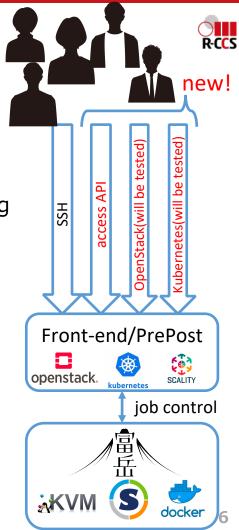
https://sites.google.com/view/eehpcsop2019/

• Improving usability

- accessibility
- open source software deployment
- data science platform

Improving efficiency

- Pre/Post I/O
- node allocation
- checkpoint/restart
- power knob by user and admin


Accessibility

<u>Compute nodes</u>

- Jobs can be executed via Fujitsu batch job scheduler
 - CUI and access API(NEWT2.0 based) are available
 - interactive use is also available under batch job scheduling
- KVM and Singularity will be tested

Front-end/PrePost environment

- Multi architecture based
 - x86(w/ GPU), arm TX2(w/ GPU), A64FX(48 nodes)
 - interactive/batch/OpenStack/Kubernetes (will be tested)
- Amazon S3 compatible object storage (under procurement)

R-CCS **Collaboration with commercial service providers** existing users Fugaku 画品 potential users Service provider #1 Service provider #2 Service provider #?

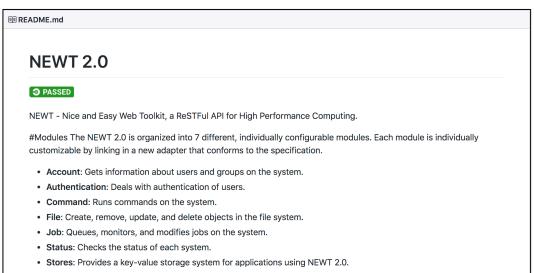
Collaborating with service providers, we can provide more flexible service for wider field of science and engineering users

Collaboration partners selected

https://www.r-ccs.riken.jp/library/topics/200213.html (in Japanese)

<u>Action</u>

R


RIKEN

- Cool Project name and logo!
- Trial methods to provide computing resources of Fugaku to end-users via service providers
- Evaluate the effectiveness of the methods quantitatively as possible and organize the issues
- The knowledges gained will be feedbacked to scheme design of Fugaku by the government

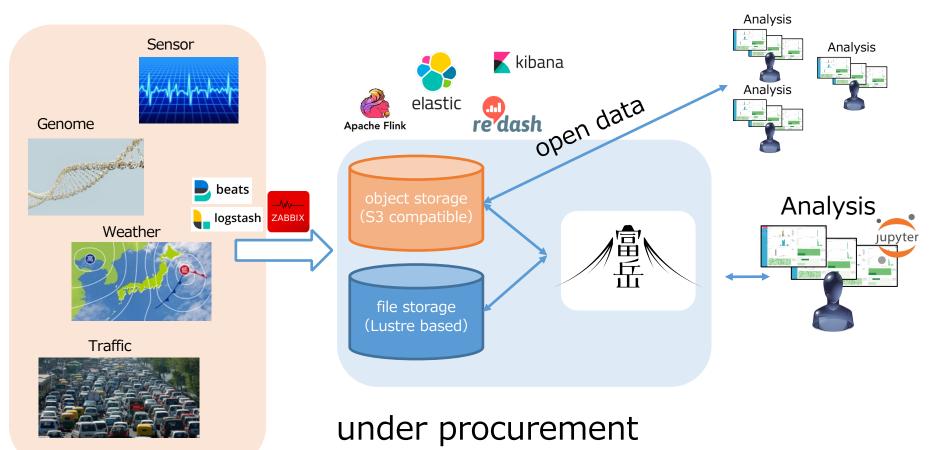
We employed NEWT2.0 as a prototype of access API of Fugaku

We will discuss standardization of API with HPC centers/providers

 An implementation of the API on Fugaku will be available August 2020

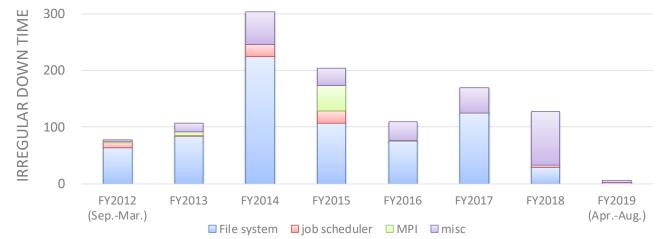
Open source software for Fugaku

- For K computer
 - Due to special ISA (Sparc based), there was no software eco-system \cdots
- For Fugaku
 - Activities for open source software on arm ISA
 - Arm HPC Users Group https://arm-hpc.gitlab.io/
 - Linaro https://www.linaro.org/
 - Spack: <u>https://spack.io/</u>
 - Official software package manager of the Exascale Computing Project
 - R-CCS Software Center https://www.r-ccs.riken.jp/software_center/
 - Activity in R-CCS to develop, deploy and promote high quality applications, libraries, programming tools, etc. make in R-CCS for many HPC platforms including Fugaku.
 - DL4Fugaku <u>https://github.com/dl4fugaku/dl4fugaku/wiki</u>
 - R-CCS & Fujitsu collaboration for Deep learning framework on Fugaku
 - Target: PyTorch, TensorFlow, Chainer, etc.



Data science platform

- Improving usability
 - accessibility
 - open source software deployment
 - data science platform


Improving efficiency

- Pre/Post I/O
- node allocation
- checkpoint/restart
- power knob by user and admin

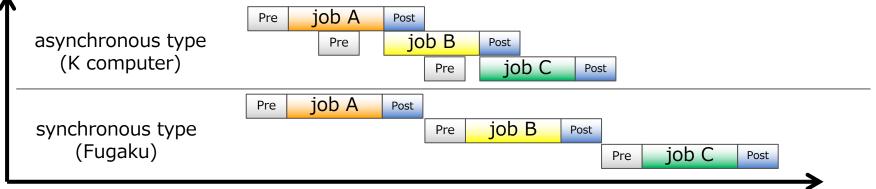
Sharing pain for efficiency

- Average job filling rate : 75.6% (= node allocation loss : 24.4%)
 - 1. A complicated Pre/Post I/O implementation and operation rule

2. An inefficient node allocation rule (2-3%)

3. Resource compensation rule for system failure (1-2%)

Sharing pain for efficiency (Pre/Post I/O)



• Pre/Post I/O

R

RIKEN

Asynchronous Pre/Post I/O could be available on the K computer

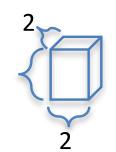
An asynchronous Pre/Post I/O was much more difficult to implement and its complexity might induce many serious bugs in system software. \rightarrow We adopt a synchronous type for Fugaku

• To optimize I/O requests, Pre/Post I/O will be counted as user time K computer Fugaku

Sharing pain for efficiency (node allocation)

• <u>K computer</u>

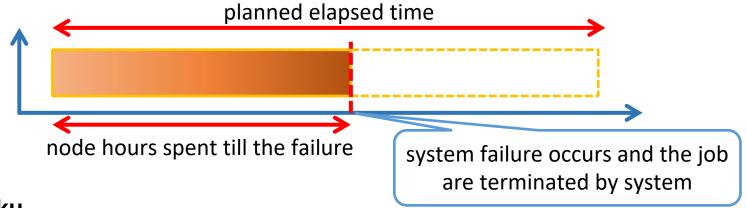
R


- A block-wise (≠distributed) node allocation policy due to a direct connection network topology
- node allocation unit is 2x3x2 = 12 nodes
- User can run a job with any node size (even not a multiple of 12 nodes)
- node allocation loss
 - \rightarrow by the gap between user request and system assigned
 - by scheduling difficulty

• Fugaku

- A block-wise policy and node allocation unit is 2x3x8 = 48 nodes
- User can choose node size in a multiple of 2x3x8 (job with more than 48 node case)

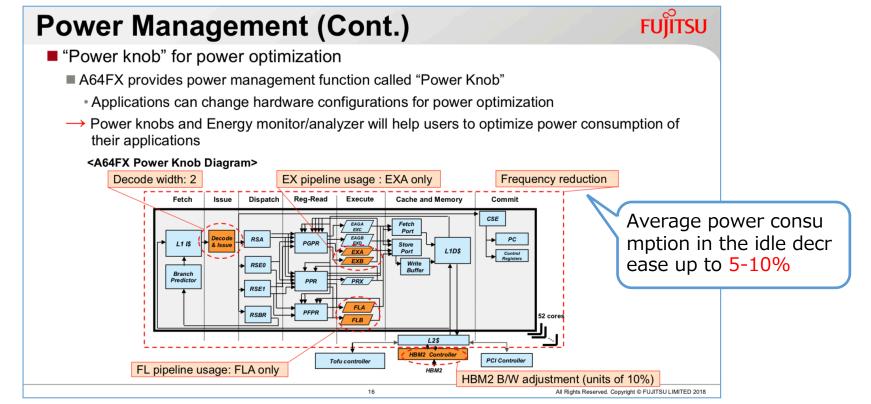
3



Sharing pain for efficiency (checkpoint/restart) 🧖

K computer

• Node hours lost by system failure was compensated.


Fugaku

- An user level checkpoint/restart tools (e.g. ECP-VeloC/VELOC) will be available on Fugaku
 - <u>https://github.com/ECP-VeloC/VELOC</u>
- \rightarrow It's time to finish resource compensation for system failure...

New functions of Fugaku for energy saving

Fujitsu's presentation @ Hot Chips30 https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf

User can use the power knob via Power API

- Which policy is better?
 - 1. all power knobs are turn off at default (start from minimum saving)
 - admin finds out jobs that are wasting power from profiling data
 - admin requests user to turn on the knob
 - Pros : Less user complaints
 - Cons : Less energy saving
 - 2. all power knobs are turn on at default (start from maximum saving)
 - user shows to admin that using the knob reduces (keeps) energy-to-solution for his/her job by trial
 - admin allow the user to turn off the knob
 - Pros : More energy saving
 - Cons : More user complaints

Be How can we motivate users for energy saving? (cont'd)

- Grant incentives depending on the contribution to the power saving
 - additional node hours, higher priority, etc.
 - Concern: How can we fairly evaluate "contributions" for energy saving ("as-is" --> tuned)?
- Change resource allocation unit
 - node x hours -> energy (watt hour)
 - Concern: How can we keep fairness between applications which have different power profile?

Summary

• Easy to use

- accessibility by collaboration with commercial service providers
- open source software deployment by Spack
- data science platform by object/file storages with analysis env.

Sharing pain for efficiency

- Pre/Post I/O
- node allocation
- aggressive use of power knob for power saving

Thank you for your attention