
The concept of user services
on

Fugaku
Fumiyoshi Shoji

Operations and Computer Technologies Div., R-CCS, RIKEN
@ 2nd R-CCS international symposium

February 17, 2019

2

K computer retired Aug.2019
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Conceptual/Detailed design for K computer

Official Operation

Conceptual/Detailed design for facility
8 years and 5 months
(Apr. 2011-Aug.2019)

I moved to
RIKEN(November 2005)

• Achievements:
• TOP500 #1 x 2
• Graph500 #1 x 10
• HPCG #1 x 3
• Gordon Bell prize winner x 2

Early access

3

Operation/service stats of K computer

Service duration 2,513 days 9 hours
(Sep. 28th, 2012 – Aug. 16th, 2019)

of job 4,178,431

Node x time delivered 3,637,258,658

Average job filling rate 75.6%

System availability
(for the service duration/for planned service node time)

93.6/97.3%

of user
(cumulative/no double counting)

11,095/2,631

of project
(cumulative)

1,015

4

Fugaku – successor of K computer -

Broad Base --- Applicability & Capacity
Broad Applications: Simulation, Data Science, AI, …

Broad User Bae: Academia, Industry, Cloud Startups, …

H
igh-Peak ---A

cceleration of
Large Scale A

pplication
(C

apability)

Mt. Fuji representing
the ideal of supercomputing

The Nex-Gen “Fugaku” Supercomptuer

Presentation by Satoshi Matsuoka @EEHPC SOP Workshop 2019
https://sites.google.com/view/eehpcsop2019/

富 岳
ふ が く

https://sites.google.com/view/eehpcsop2019/

5

l Improving usability
l accessibility
l open source software deployment
l data science platform

l Improving efficiency
l Pre/Post I/O
l node allocation
l checkpoint/restart
l power knob by user and admin

Action

6

Accessibility

job control

SS
H

ac
ce

ss
 A

PI

O
pe

nS
ta

ck
(w

ill
 b

e
te

st
ed

)

Ku
be

rn
et

es
(w

ill
 b

e
te

st
ed

)

l Compute nodes
l Jobs can be executed via Fujitsu batch job scheduler

l CUI and access API(NEWT2.0 based) are available
l interactive use is also available under batch job scheduling

l KVM and Singularity will be tested

l Front-end/PrePost environment
l Multi architecture based

l x86(w/ GPU), arm TX2(w/ GPU), A64FX(48 nodes)
l interactive/batch/OpenStack/Kubernetes (will be tested)

l Amazon S3 compatible object storage (under
procurement)

new!

Front-end/PrePost

Collaboration with commercial service providers

7

Fugaku

existing users

potential users

Collaborating with service providers, we can provide more
flexible service for wider field of science and engineering users

Service provider #1

Service provider #2

Service provider #?

...

Collaboration partners selected

8

×
Action
• Cool Project name and logo!
• Trial methods to provide computing resources of Fugaku to end-users via service providers
• Evaluate the effectiveness of the methods quantitatively as possible and organize the issues
• The knowledges gained will be feedbacked to scheme design of Fugaku by the government

https://www.r-ccs.riken.jp/library/topics/200213.html (in Japanese)

https://www.r-ccs.riken.jp/library/topics/200213.html

Access API

9

l We employed NEWT2.0 as a prototype of access API of Fugaku

l We will discuss standardization of API with HPC centers/providers
l An implementation of the API on Fugaku will be available August

2020 https://github.com/NERSC/newt-2.0

https://github.com/NERSC/newt-2.0

10

l For K computer
l Due to special ISA (Sparc based), there was no software eco-system…

l For Fugaku
l Activities for open source software on arm ISA

- Arm HPC Users Group https://arm-hpc.gitlab.io/

- Linaro https://www.linaro.org/

- Spack: https://spack.io/

- Official software package manager of the Exascale Computing Project

l R-CCS Software Center
- Activity in R-CCS to develop, deploy and promote high quality applications, libraries,

programming tools, etc. make in R-CCS for many HPC platforms including Fugaku.

l DL4Fugaku
- R-CCS & Fujitsu collaboration for Deep learning framework on Fugaku

- Target: PyTorch, TensorFlow, Chainer, etc.

Open source software for Fugaku

https://github.com/dl4fugaku/dl4fugaku/wiki

https://www.r-ccs.riken.jp/software_center/

https://arm-hpc.gitlab.io/
https://www.linaro.org/
https://spack.io/
https://github.com/dl4fugaku/dl4fugaku/wiki
https://www.r-ccs.riken.jp/software_center/

11

Data science platform

object storage
（S3 compatible）

file storage
（Lustre based）

open data

Analysis

��������

��������

��������

Sensor

Genome

Weather

Traffic

under procurement

12

l Improving usability
l accessibility
l open source software deployment
l data science platform

l Improving efficiency
l Pre/Post I/O
l node allocation
l checkpoint/restart
l power knob by user and admin

Action

13

l Average job filling rate : 75.6% (= node allocation loss : 24.4%)
1. A complicated Pre/Post I/O implementation and operation rule

2. An inefficient node allocation rule (2-3%)
3. Resource compensation rule for system failure (1-2%)

Sharing pain for efficiency

0

100

200

300

FY2012
(Sep.-Mar.)

FY2013 FY2014 FY2015 FY2016 FY2017 FY2018 FY2019
(Apr.-Aug.)

IR
R

E
G

U
LA

R
 D

O
W

N
 T

IM
E

File system job scheduler MPI misc

14

l Pre/Post I/O
l Asynchronous Pre/Post I/O could be available on the K computer

l To optimize I/O requests, Pre/Post I/O will be counted as user time

Sharing pain for efficiency (Pre/Post I/O)

synchronous type
(Fugaku)

asynchronous type
(K computer)

Pre job A Post

Pre job B Post

Pre job C Post

Pre job A Post

Pre job B Post

Pre job C Post

An asynchronous Pre/Post I/O was much more difficult to implement and its complexity might induce
many serious bugs in system software. à We adopt a synchronous type for Fugaku

no-counted counted no-counted

Pre job Post

counted counted counted

Pre job Post

K computer Fugaku

15

l K computer
l A block-wise (≠distributed) node allocation policy due to a direct

connection network topology
l node allocation unit is 2x3x2 = 12 nodes
l User can run a job with any node size (even not a multiple of 12

nodes)
à node allocation loss

à by the gap between user request and system assigned

à by scheduling difficulty

Sharing pain for efficiency (node allocation)

3

2

2

l Fugaku
l A block-wise policy and node allocation unit is 2x3x8 = 48 nodes
l User can choose node size in a multiple of 2x3x8 (job with more

than 48 node case)

16

l K computer
l Node hours lost by system failure was compensated.

Sharing pain for efficiency (checkpoint/restart)

l Fugaku
l An user level checkpoint/restart tools (e.g. ECP-VeloC/VELOC) will be

available on Fugaku
l https://github.com/ECP-VeloC/VELOC

à Itʼs time to finish resource compensation for system failure…

planned elapsed time

system failure occurs and the job
are terminated by system

node hours spent till the failure

https://github.com/ECP-VeloC/VELOC

17

New functions of Fugaku for energy saving
Fujitsuʼs presentation @ Hot Chips30 https://www.fujitsu.com/jp/Images/20180821hotchips30.pdf

Average power consu
mption in the idle decr
ease up to 5-10%

User can use the power knob via Power API

18

l Which policy is better?
1. all power knobs are turn off at default (start from minimum saving)

l admin finds out jobs that are wasting power from profiling data

l admin requests user to turn on the knob

l Pros : Less user complaints

l Cons : Less energy saving

2. all power knobs are turn on at default (start from maximum saving)
l user shows to admin that using the knob reduces (keeps) energy-to-solution for

his/her job by trial
l admin allow the user to turn off the knob

l Pros : More energy saving

l Cons : More user complaints

How can we motivate users for energy saving?

19

l Grant incentives depending on the contribution to the power saving
l additional node hours, higher priority, etc.
l Concern: How can we fairly evaluate “contributions” for energy saving

(“as-is” --> tuned)?

l Change resource allocation unit
l node x hours -> energy (watt hour)
l Concern: How can we keep fairness between applications which have

different power profile?

How can we motivate users for energy saving? (contʼd)

20

l Easy to use
l accessibility by collaboration with commercial service providers
l open source software deployment by Spack
l data science platform by object/file storages with analysis env.

l Sharing pain for efficiency
l Pre/Post I/O
l node allocation
l aggressive use of power knob for power saving

Summary

21

Thank you for your attention

