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Standard Model
• Electromagnetism
• Weak Interaction
• QCD

• Test of the Standard Model
• Seeking physics beyond the Standard Model for “New” Physics
are central targets of particle physics

• QCD has most complex dynamics → numerical simulation is most powerful tool
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Figure 34: Summary of |Vub| and |Vcb| determinations. Left and right panels correspond
to using the BGL and CLN parameterization for the B → D∗ form factor, respectively.
The solid and dashed lines correspond to 68% and 95% C.L. contours. As discussed in
the text, baryonic modes are not included in our averages. The results of the fit in the
two cases are (|Vcb|, |Vub|) × 103 = (41.47 ± 0.70, 3.76 ± 0.14) with a p-value of 0.15 and
(|Vcb|, |Vub|)× 103 = (39.45 ± 0.60, 3.74 ± 0.14) with a p-value of 0.62, for the BGL and CLN
B → D∗ parameterizations, respectively.
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QCD for the tool to bridge new physics

proton decay matrix element as an example 
• bridge between new theories and experiments 
                             (GUTs)             (SuperKamiokande etc) 
non-chiral fermions used for a test 
• chiral extrapolation : largest systematic uncertainty 
• physical point simulation will solve this completely 
• small mass, large volume (644, 964) required 
• All mode averaging (AMA) with many sloppy linear solv 

• correlation: r≃0.9994 OK:  NG=256

Aoki, Kuramashi, Shintani, Tsukamoto @ Lattice 2019 
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holds: OðappxÞ is covariant on each configuration, rather
than on average, OðappxÞ½Ug$ ¼ OðappxÞ;g½U$).
Note that OðappxÞ and OðappxÞ;g refer to the approximations
before and after applying a symmetry transformation g.

Using O and OðappxÞ one can define an improved
observable

OðimpÞ ¼ OðrestÞ þOðappxÞ
G ;

OðrestÞ ¼ O'OðappxÞ; OðappxÞ
G ¼ 1

NG

X

g2G

OðappxÞ;g;
(2)

where an average over NG symmetry transformations in G
is taken.

For appx-1, the statistical error of hOðimpÞi is

errðimpÞ ( err

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1' rÞ þ 1

NG

s
; (3)

which can be made smaller than the original (err) by a
judicious choice ofOðappxÞ. The fluctuation fromOðrestÞ, the
first term in (3), is suppressed due to r(1, while the
second term is reduced by 1=NG without too much addi-
tional cost as required by appx-2 (correlations among O,
OðappxÞ, and OðappxÞ;g have been ignored, which is a good
approximation for noisy observables or large volume). Due
to covariance, appx-3, it is easy to prove that the ensemble
averages of (primary observables) OðappxÞ, OðappxÞ;g,

and OðappxÞ
G are all equal, so the improved estimator (2) is

unbiased, hOðimpÞi ¼ hOi.
The idea of exploiting covariance [14,15] to improve

statistical errors has a wider range of applicability than
LMA, so in general we call it covariant approximation
averaging (CAA). Several comments on CAA follow.
From Eq. (3) the accuracy of the approximation OðappxÞ (
O (appx-1) should be precise enough so that the statistical

error fromOðrestÞ is below, say, one-half of the desired final
precision. Too accurate an approximation wastes resour-
ces. In OðimpÞ, most of the statistical fluctuation is carried
by OðappxÞ, which is reduced by averaging over NGð) 1Þ
measurements with smaller cost (appx-2). Balance be-
tween these opposing parts of the method allows CAA to
reduce statistical errors significantly while keeping the
computational cost low.
In the framework of CAA the best choice of approxi-

mation depends on the target observables and lattice pa-
rameters such as quark mass and volume. In principle, any
set of lattice symmetries, G, can be used in CAA. We limit
ourselves to the case of translation symmetries in the
following examples.
The first example is LMA. In LMA eigensystems of the

Hermitian Dirac operator are obtained for the part of the
spectrum closest to zero,

DHvi ¼ !ivi; ði ¼ 1; 2; . . . ; NeigÞ; (4)

0< j!1j * j!2j * + + + * j!Neig
j ¼ !cut; (5)

which is then used to construct, through spectral decom-
position, the low-mode approximation of the fermion
propagator,

SLMðx; yÞ ¼
XNtot

i¼0

viðxÞfLMð!iÞvy
i ðyÞ; (6)

fLMð!Þ ¼
1

!
"ð!cut ' j!jÞ: (7)

Ntot is the total dimension of the Dirac matrix. The recipe
for LMA in terms of the CAAmaster equation (2) is shown
in the left column of Table I. Although LMA is particularly
good for observables dominated by low modes, such as

TABLE I. LMA and AMA algorithms.

LMA algorithm AMA algorithm

1: Compute low modes vi of DH 1: If !cut ! 0, Neig > 0,
compute low mode vi of DH

2: Set source b and G-invariant initial guess x0

3: Compute exact S and O½S$ precisely (use deflated CG if vi exists)

4: Repeat for SLM in (6)
and OðappxÞ ¼ O½SLM$

4: Repeat for SAM in (8)

and OðappxÞ ¼ O½SAM$ using
deflated CG (if !cut ! 0)

5: OðrestÞ ¼ O½S$ 'O½SLM$ 5: OðrestÞ ¼ O½S$ 'O½SAM$
6: Set shifted source bg and G-invariant initial guess xg0

7: Average OðappxÞ;g ¼ O½SLM$
over g 2 G to get OðappxÞ

G

7: Average OðappxÞ;g ¼ O½SAM$
over g 2 G to get OðappxÞ

G

8: OðimpÞ ¼ OðrestÞ þOðappxÞ
G

THOMAS BLUM, TAKU IZUBUCHI, AND EIGO SHINTANI PHYSICAL REVIEW D 88, 094503 (2013)

094503-2
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QCD for the tool to bridge new physics operator renormalization 
• RI/SMOM non-perturbative renormalization 
• application: proton decay, nucleon charges  
• improved Wilson fermions with 6 stout-link smeared 

• admixture from chiral symmetry breaking is as 
small as 1%
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Columbia	plot
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• spontaneous breakdown of chiral symmetry 
• use of chiral fermion algorithm 

• essential: interplay of symmetry and quantum anomaly 
• demanding comp. 
• Nf=2 (ms→∞) phase: yet to be conclusive 

• knowledges being acquired 
• interesting development of fate of U(1)A 
• around physical point → Fugaku
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ongoing projects and plans
1)  QCD code packaging and tuning for Fugaku 

• lowest revel taken from co-design activity 
• higher level, packaging, tuning 

2) algorithms for chiral fermions for big volume 
• mostly for linear solvers 
• AMA, multigrid, etc 

3) new algorithms / developments 
• AI: may be used for optimizing implicit parameters / initial guess 

• integration path (start, end fixed) 
• MD parameters 

• tensor network 
4) collaborations for developments and science 

• priority issue #9 and successors 
• international

computational technologies and developments

Post-K/Fugaku	development	in	the	team

FS	
2020

Priority	
issue	#9	
co-design

Priority	
issue	#9/	
JLDCD

Iroiro++	

Grid

BNL/
Edinburgh/
Regensburg

Bridge	
++	

Bridge	
++	

QCD	wide	
simd	library	for	

fugakuBQCD

QCD	codes	for	Fugaku	and	future	machines

[25+]	x	K



Use of Fugaku w/ our developments

extends the reach of simulation 

• with Domain-wall Fermions (chiral) 

• QCD phase 

✴Nt=16   for Nf=2+1 (dynamical u,d,s quarks) 

‣ real chiral simulation for phase transition  

• Heavy flavor 

✴MB a ≲ 1 

‣ to control discretization error 

‣ B→πlν, etc
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• with Domain-wall Fermions (chiral) 

• QCD phase 

✴Nt=16   for Nf=2+1 (dynamical u,d,s quarks) 

‣ real chiral simulation for phase transition  

• Heavy flavor 

✴MB a ≲ 1 

‣ to control discretization error 

‣ B→πlν, etc

Previously,	Nf=2	(only	u,d	quarks)	or	Nt=8

→	lattice	spacing			anew/aold = 1/2

�17

mud

ms

0 ∞

∞
1st order

1st order crossover

mud

ms

0 ∞

∞
1st order

1st order crossover

plans for QCD phase

direct	access	to	physical	point	and	surrounding	area degenerate	3	quark	system:	simpler

Planned	to	be	explored	on	Fugaku Started	using	HPCI	resources	and	Hokusai-BW	Ultimate	understanding	
of	QCD	phase	



Use of Fugaku w/ our developments

extends the reach of simulation 

• with Domain-wall Fermions (chiral) 

• QCD phase 

✴Nt=16   for Nf=2+1 (dynamical u,d,s quarks) 

‣ real chiral simulation for phase transition  

• Heavy flavor 

✴MB a ≲ 1 

‣ to control discretization error 

‣ B→πlν, etc

Previously,	Nf=2	(only	u,d	quarks)	or	Nt=8

Previously	MB	a ≃ 2

→	lattice	spacing			anew/aold = 1/2

→	lattice	spacing			anew/aold ≲ 1/2

Figure 34: Summary of |Vub| and |Vcb| determinations. Left and right panels correspond
to using the BGL and CLN parameterization for the B → D∗ form factor, respectively.
The solid and dashed lines correspond to 68% and 95% C.L. contours. As discussed in
the text, baryonic modes are not included in our averages. The results of the fit in the
two cases are (|Vcb|, |Vub|) × 103 = (41.47 ± 0.70, 3.76 ± 0.14) with a p-value of 0.15 and
(|Vcb|, |Vub|)× 103 = (39.45 ± 0.60, 3.74 ± 0.14) with a p-value of 0.62, for the BGL and CLN
B → D∗ parameterizations, respectively.
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