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Quantum Field Theory

e Quantum mechanics: physics framework for microscopic world
e Special Relativity: physics framework of fast moving particle

e Quantum Field Theory (QFT)

e Standard Model of Particle Physics : most successful application of QFT

Standard Model
¢ Electromagnetism
¢ \Weak Interaction

e QCD

e Test of the Standard Model

e Seeking physics beyond the Standard Model for “New” Physics
are central targets of particle physics

e QCD has most complex dynamics — numerical simulation is most powerful tool
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heavy flavor reality is much complicated
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Kamioka | proton decay
QCD for the tool to bridge new physics

proton decay matrix element as an example
- bridge between new theories and experiments

(GUTSs) (SuperKamiokande etc)
non-chiral fermions used for a test

- chiral extrapolation : largest systematic uncertainty o
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Kamioka proton decay
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QCD for the tool to bridge new physics

proton decay matrix element as an example
- bridge between new theories and experiments

(GUTSs) (SuperKamiokande etc)
non-chiral fermions used for a test
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QCD for the tool to bridge new physics

proton decay form factors
® more demanding comp.
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operator renormalization

¢ RI/SMOM non-perturbative renormalization

e application: proton decay, nucleon charges
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e improved Wilson fermions with 6 stout-link smeared

e admixture from chiral symmetry breaking is as
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proton decay composite Higgs
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Revealing the history
of Universe
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BNL / CERN
QCD phase : Post-K priority issues #9

Scientific motivation

%ndamental understanding of QCD
ase transition

- Through the use of methods with no QCD phase
compromise

y spontaneous breakdown of chiral
symmetry

* use of chiral fermion algorithm

+in-depth study Columbia plot

- role of the symmetry 6 oo ()
- role of the anomaly : U(1)a symmetry 2
. . . o /phyS/ca/ ot. -
- will give most precise description of the Ms | %" ©1O55 OVt * Ms

QCD at finite temperature

/1;?(1& transition

0 Mud > 0 Mud 0

= experiment / early universe
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QCD phase : Post-K priority issues #9

Columbia plot (phase diagram for Ni=2+1 as
function of quark mass)

spontaneous breakdown of chiral symmetry
use of chiral fermion algorithm

essential; interplay of symmetry and
quantum anorr?a?y y i

demanding comp.

N=2 (ms— ) phase: yet to be conclusive
knowledges being acquired

interesting development of fate of U(1)a

around physical point = Fugaku
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QCD phase : Post-K priority issues #9

Columbia plot (phase diagram for Ni=2+1 as
function of quark mass)

- spontaneous breakdown of chiral symmetry

* use of chiral fermion algorithm
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plans for QCD phase

direct access to physical point and surrounding area degenerate 3 quark system: simpler

1st order 1st order

Ms he—o Ms | 5

1st order crossover 1s¥order crossover

0 Mud e 0 Mud oo

Started using HPCI resources and Hokusai-BW
Planned to be explored on Fuga ku &



computational technologies and developments

ongoing projects and plans Post-K/Fugaku development in the team

1) QCD code packaging and tuning for Fugaku

. lé)é/\ﬁ%t revel taken from co-design QCD codes for Fugaku and future machines

- higher level, packaging, tuning
2) algorithms for chiral fermions for big volume /\
- mostly for linear solvers [25+] x K

- AMA, multigrid, etc
3) new algorithms / developments

CD wide
5|md library for
fugaku

" BB PERPLRRI NS P ( aco

- integration path (start, end fixed)

- MD parameters

- tensor network BNL/

4) collaborations for developments and science Edinburgh/
* priority issue #9 and successors FS Priority Priority Regensburg
. international 2020 issue #9 issue #9/

co-design JLDCD



Use of Fugaku w/ our developments

extends the reach of simulation
e with Domain-wall Fermions (chiral)
e QCD phase
*Ni=16 for Ni=2+1 (dynamical u,d,s quarks)
» real chiral simulation for phase transition
e Heavy flavor
*Mp a = 1
» to control discretization error

» B—rlv, etc
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extends the reach of simulation fst order
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Ultimate understanding
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e with Domain-wall Fermions (chiral)
Ultimate understanding More stringent constraint
e QCD phase of QCD phase on Standard Model
*Ni=16 for Ni=2+1 (dynamical u,d,s quarks) Previously, Nt=2 (only u,d quarks) or N¢=8
» real chiral simulation for phase transition — lattice spacing amev/aold = 1/2

e Heavy flavor

*Mp a = 1
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» By, etc



