Field Theory Simulation towards Fugaku

Yasumichi Aoki (Field Theory Research Team)

17, February 2020
2nd R-CCS International Symposium
Quantum Field Theory

• Quantum mechanics: physics framework for microscopic world
• Special Relativity: physics framework of fast moving particle

• Quantum Field Theory (QFT)

• Standard Model of Particle Physics: most successful application of QFT
Quantum Field Theory

• Quantum mechanics: physics framework for microscopic world
• Special Relativity: physics framework of fast moving particle

• Quantum Field Theory (QFT)

• Standard Model of Particle Physics: most successful application of QFT

Standard Model
• Electromagnetism
• Weak Interaction
• QCD
Quantum Field Theory

- Quantum mechanics: physics framework for microscopic world
- Special Relativity: physics framework of fast moving particle

- Quantum Field Theory (QFT)

- Standard Model of Particle Physics: most successful application of QFT

Standard Model
- Electromagnetism
- Weak Interaction
- QCD

- Test of the Standard Model
- Seeking physics beyond the Standard Model for “New” Physics are central targets of particle physics
Quantum Field Theory

- Quantum mechanics: physics framework for microscopic world
- Special Relativity: physics framework of fast moving particle
- Quantum Field Theory (QFT)
- Standard Model of Particle Physics: most successful application of QFT

Standard Model
- Electromagnetism
- Weak Interaction
- QCD

Test of the Standard Model
Seeking physics beyond the Standard Model for “New” Physics are central targets of particle physics

- QCD has most complex dynamics → numerical simulation is most powerful tool
Fermilab / J-Parc

μ

(g-2)$_\mu$

QCD

Standard Model

heavy flavor

KEK
(g-2)μ

QCD

Standard Model

New Physics

Fermilab / J-Parc

KEK

heavy flavor

3
Compute \neq Measure

KEK

QCD

Standard Model
Compute \((V_{ij})\) = Measure

Constrains parameters in Standard Model

Kobayashi-Maskawa matrix elements \(V_{ij}\)

Q: consistency btw many different processes?
proton decay

Fermilab / J-Parc

$(g-2)_\mu$

heavy flavor

KEK

Kamioka

QCD

Standard Model

New Physics
QCD for the tool to bridge new physics

proton decay matrix element as an example

• bridge between new theories and experiments
 (GUTs) (SuperKamiokande etc)
non-chiral fermions used for a test
• chiral extrapolation: largest systematic uncertainty
• physical point simulation will solve this completely
• small mass, large volume (64^4, 96^4) required
• All mode averaging (AMA) with many sloppy linear solve
 • correlation: $r=0.9994$ OK: $N_G=256$

\[\text{err}_{\text{imp}} \approx \text{err} \sqrt{2(1-r) + \frac{1}{N_G}}, \]

• old: long distance extrapolation

\[\frac{1}{\text{Proton Lifetime}} \propto [\text{QCD param.}] \times [\text{NewPhys. param}] \]

• new: on physical point simulation

Aoki, Kuramashi, Shintani, Tsukamoto @ Lattice 2019
QCD for the tool to bridge new physics

proton decay matrix element as an example
 • bridge between new theories and experiments (GUTs) (SuperKamiokande etc)
 • non-chiral fermions used for a test
 • chiral extrapolation: largest systematic uncertainty
 • physical point simulation will solve this completely
 • small mass, large volume \((64^4, 96^4)\) required
 • All mode averaging (AMA) with many sloppy linear solves
 • correlation: \(r=0.9994\) OK: \(N_G=256\)

\[
\text{err}_{\text{imp}} \approx \text{err} \sqrt{2(1 - r) + \frac{1}{N_G}}.
\]

- **old**: long distance extrapolation
- **new**: on physical point simulation

\[
\frac{1}{\text{Proton Lifetime}} \propto [\text{QCD param.}] \times [\text{NewPhys. param}]
\]
QCD for the tool to bridge new physics

- proton decay matrix element as an example
 - bridge between new theories and experiments (GUTs, SuperKamiokande etc)
- non-chiral fermions used for a test
 - chiral extrapolation: largest systematic uncertainty
- physical point simulation will solve this question
 - small mass, large volume ($64^4, 96^4$) required
- All mode averaging (AMA) with many sloppy linear combinations
 - correlation: $r=0.9994$ OK: $N_G=256$

Achievements with K

Hokusai BW and other HPCI resources

- new: on physical point simulation

1/Proton Lifetime \(\propto [\text{QCD param.}] \times [\text{NewPhys. param}] \)
QCD for the tool to bridge new physics

proton decay form factors
- more demanding comp.
- directly related to proton lifetime
- obtaining promising results

on-shell lepton: $-q^2 = m_l^2 = 0$

operator renormalization
- RI/SMOM non-perturbative renormalization
- application: proton decay, nucleon charges
- improved Wilson fermions with 6 stout-link smeared
 - admixture from chiral symmetry breaking is as small as 1%

old (after long extrpl.)
new (on physical mass)

$M_{a,b}^{\phi,\eta}$ for nucleon decay
$Nf=2+1$, PACS, 64*, 99 configurations

poster: Aoki, Kuramashi, Tsukamoto, Shintani @ Lattice 2019
QCD for the tool to bridge new physics

- proton decay form factors
 - more demanding comp.
 - directly related to proton lifetime
 - obtaining promising results

\[\langle \pi^0 (ud)_R u_L | p \rangle \]

on-shell lepton: \[-q^2 = m_l^2 = 0\]

\[W_0 (GeV^2) \]

Extending this to all possible final state mesons

old (after long extrpl.)

\[q^2 \text{ GeV}^2 \]

operator renormalization

- RI/SMOM non-perturbative renormalization
- application: proton decay, nucleon charges
- improved Wilson fermions with 6 stout-link smeared admixture from chiral symmetry breaking is as small as 1%

poster: Aoki, Kuramashi, Tsukamoto, Shintani @ Lattice 2019
Proton decay

μ

Fermilab / J-Parc

(g-2)$_\mu$

KEK

Heavy flavor

CERN

Kamioka

New Physics

QCD

Standard Model

QCD like

Proton decay

Composite Higgs
Revealing the history of Universe

BNL / CERN

QCD

Dark Matter

QCD phase

Standard Model
QCD phase: Post-K priority issues #9

Scientific motivation

• fundamental understanding of QCD phase transition
• Through the use of methods with no compromise
• spontaneous breakdown of chiral symmetry
• use of chiral fermion algorithm
• in-depth study
 • role of the symmetry
 • role of the anomaly: $U(1)_A$ symmetry
• will give most precise description of the QCD at finite temperature
 ➡ experiment / early universe
QCD phase: Post-K priority issues #9

Scientific motivation

• fundamental understanding of QCD phase transition
• Through the use of methods with no compromise
• spontaneous breakdown of chiral symmetry
• use of chiral fermion algorithm
• in-depth study
 • role of the symmetry
 • role of the anomaly: $U(1)_A$ symmetry
• will give most precise description of the QCD at finite temperature
 ➡ experiment / early universe

BNL / CERN

QCD phase: 2nd order transition

BNL / CERN

QCD phase: 1st order transition

Dark Matter

New Physics

Standard Model

Columbia plot

∞

m_s

physical pt. cross over

1st order transition

∞

0

m_{ud}

∞

0

m_{ud}

physicists
QCD phase: Post-K priority issues #9

Columbia plot (phase diagram for $N_f=2+1$ as function of quark mass)

- spontaneous breakdown of **chiral symmetry**
- use of **chiral fermion** algorithm
 - essential: interplay of symmetry and quantum anomaly
- demanding comp.
- $N_f=2$ ($m_s \to \infty$) phase: yet to be conclusive
 - knowledges being acquired
- interesting development of fate of $U(1)_A$
- around physical point \to Fugaku
QCD phase: Post-K priority issues #9

Columbia plot (phase diagram for $N_f=2+1$ as function of quark mass)

- spontaneous breakdown of **chiral symmetry**
- use of **chiral fermion** algorithm
 - essential: interplay of symmetry and quantum anomaly
- demanding comp.
- $N_f=2$ ($m_s \to \infty$) phase: yet to be conclusive
 - knowledges being acquired
- interesting development of fate of $U(1)_A$
- around physical point \rightarrow Fugaku

Achievements w/o K
KEK Blue Gene/Q
Oakforest PACS

[Volcano]
plans for QCD phase

direct access to physical point and surrounding area

degenerate 3 quark system: simpler

Planned to be explored on Fugaku

Started using HPCI resources and Hokusai-BW
ongoing projects and plans

1) QCD code packaging and tuning for Fugaku
 - lowest revel taken from co-design activity
 - higher level, packaging, tuning

2) algorithms for chiral fermions for big volume
 - mostly for linear solvers
 - AMA, multigrid, etc

3) new algorithms / developments
 - AI: may be used for optimizing implicit parameters / initial guess
 - integration path (start, end fixed)
 - MD parameters
 - tensor network

4) collaborations for developments and science
 - priority issue #9 and successors
 - international

Post-K/Fugaku development in the team

QCD codes for Fugaku and future machines

[25+] x K

QCD wide simd library for fugaku

BQCD

FS 2020

Bridge ++

Iroiro++

Priority issue #9 co-design

Priority issue #9/ JLDCD

Grid

BNL/ Edinburgh/ Regensburg
Use of Fugaku w/ our developments extends the reach of simulation

• with Domain-wall Fermions (chiral)

• QCD phase
 * N_t=16 for N_f=2+1 (dynamical u,d,s quarks)
 ‣ real chiral simulation for phase transition

• Heavy flavor
 * M_B a \approx 1
 ‣ to control discretization error
 ‣ B→πlν, etc
Use of Fugaku w/ our developments extends the reach of simulation

- with Domain-wall Fermions (chiral)
- QCD phase

 $N_t = 16$ for $N_f = 2+1$ (dynamical u,d,s quarks)

 - real chiral simulation for phase transition

- Heavy flavor

 $M_B \, a \approx 1$

 - to control discretization error

 $B \to \pi \nu$, etc

Previously, $N_f = 2$ (only u,d quarks) or $N_t = 8$

\to lattice spacing $a_{\text{new}}/a_{\text{old}} = 1/2$
Use of Fugaku w/ our developments

extends the reach of simulation

- with Domain-wall Fermions (chiral)
- QCD phase
 - $N_t=16$ for $N_f=2+1$ (dynamical u,d,s quarks)
 - real chiral simulation for phase transition
- Heavy flavor
 - $M_B a \lesssim 1$
 - to control discretization error
 - $B \to \pi \ell \nu$, etc

Previously, $N_f=2$ (only u,d quarks) or $N_t=8$

\to lattice spacing $a_{\text{new}}/a_{\text{old}} = 1/2$

Previously $M_B a \approx 2$

\to lattice spacing $a_{\text{new}}/a_{\text{old}} \leq 1/2$