Lattice QCD at the Exascale

The 2nd R-CCS International Symposium *K* to Fugaku

RIKEN Center for Computational Science February 17-18, 2020

N.H. Christ Columbia University

Outline

- Overview of Lattice QCD
- Algorithms and architectures
- Recent calculations
 - Muon *g*-2
 - $K_L \rightarrow \mu^+ \mu^- / \pi^0 \rightarrow e^+ e^-$
 - $K_L K_S$ mass difference
- Exascale plans

The RBC & UKQCD collaborations

BNL and BNL/RBRC

Yasumichi Aoki (KEK) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Meifeng Lin Aaron Meyer Hiroshi Ohki Shigemi Ohta (KEK) Amarjit Soni

> <u>UC Boulder</u> Oliver Witzel

<u>CERN</u> Mattia Bruno

Columbia University

Ryan Abbott Norman Christ Duo Guo Christopher Kelly Bob Mawhinney Masaaki Tomii Jiqun Tu Bigeng Wang Tianle Wang Yidi Zhao

University of Connecticut

Tom Blum Dan Hoying (BNL) Luchang Jin (RBRC) Cheng Tu

Edinburgh University

Peter Boyle Luigi Del Debbio Felix Erben Vera Gülpers Tadeusz Janowski Julia Kettle Michael Marshall Fionn Ó hÓgáin Antonin Portelli Tobias Tsang Andrew Yong Azusa Yamaguchi University of Liverpool

Nicolas Garron

<u>MIT</u> David Murphy

<u>Peking University</u> Xu Feng

University of Regensburg Christoph Lehner (BNL)

University of Southampton

Nils Asmussen Jonathan Flynn Ryan Hill Andreas Jüttner James Richings Chris Sachrajda

Stony Brook University

Jun-Sik Yoo Sergey Syritsyn (RBRC)

Particle Physics – Overview

- Search for new phenomena at the highest energies.
- Goal of the Large Hadron Collider at CERN.

- High precision results at lower energies may have greater reach: Belle II at KEK.
- To compare with Standard Model need lattice QCD predictions: HPC plays a critical role

Standard Model

• γ (photon), g (gluon) and W⁺ (weak) exchange

2nd R-CCS Symposium - 02/17/2020 (5)

Standard Model

- Proton and neutron in atomic nucleus composed for *u* and *d* quarks.
- These are bound by the exchange of gluons *g*.

- *u* and *d* quarks nearly massless and highly relativistic
- Copious virtual pair creation \rightarrow many body problem

Lattice QCD

2nd R-CCS Symposium - 02/17/2020 (7)

Lattice QCD

- Introduce a space-time lattice
- Evaluate the Euclidean Feynman
 path integral
 - Study $e^{-H_{QCD}t}$
 - Precise non-perturbative formulation

$$\sum_{n} \langle n | e^{-H(T-t)} \mathcal{O} e^{-Ht} | n \rangle = \int d[U_{\mu}(n)] e^{-\mathcal{A}[U]} \det(D+m) \mathcal{O}[U](t)$$

- Use Monte Carlo importance sampling with hybrid, MD/Langevin evolution
- ~40 samples give sub-percent errors

Challenges

- Numerical control of the path integral
 - $96^3 \times 192$ lattice $\rightarrow 5 \times 10^9$ dimensional integral
 - Long autocorrelation times \rightarrow misleading errors
- Extend Schrodinger quantum mechanics into Euclidean time
 - Unphysical time evolution
 - Time-like processes challenging
- Fermion sign problem
 - $\mu_{\text{baryon}} \neq 0 \rightarrow \text{path integral weight not positive}$
 - Poor signal to noise ratio in baryon correlators

 $\langle |q(x)\overline{q}(y)|^2 \rangle \sim e^{-|x-y|m_{\pi}} \langle (q(x))^{3B} (\overline{q}(y))^{3B} \rangle \sim e^{-|x-y|Bm_N}$

Historical overview

- <u>1974</u> Gauge-invariant lattice theory formulated. [Ken Wilson]
- <u>1980</u> String tension computed with physical dependence on the gauge coupling. [Mike Creutz]

 $a^{2}K$ 0.1 $b^{2}K$ 0.1 $b^{2}K$ 0.1 $b^{2}K$ 0.1 $b^{2}K$ 0.1 $b^{2}K$ $c^{2}K$ 0.1 $c^{2}K$ $c^{2}K$ c

- <u>1990</u> Fermion loops routinely included.
- <u>1992</u> Fermion doubling problem solved. [David B. Kaplan]
- 2002 Routine use of chiral quarks.
- <u>2014</u> Routine calculation with physical *u*, *d* and *s* quark masses.

Lattice QCD – 2020

- Physical quark masses (ChPT not needed)
- Chiral quarks (doubling problem solved)
- Large physical volumes: (6 -10 fm)³
- Small lattice spacing: 1/a = 2.774 GeV
- Some quantities with ~0.1% precision
- Now an essential tool for many standard model tests.

Algorithms and Architectures

2nd R-CCS Symposium - 02/17/2020 (12)

Architecture

- Regular lattice problem:
 easy for parallel computer.
- Difficulty scales as $\sim L^6$.
- Weak scaling not sufficient
- Large demand on network
 bandwidth:
 - Local 4D volume grows with node flops
 - Off-node bandwidth grows as (node flops)^{3/4}
 - Mira → Summit

0.2 TF/s /20 GB/s \rightarrow 42 TF/s /25 GB/s

Serious algorithm challenge

Numerical methods

- Use low eigenmodes to solve $\not D G_n = h_n$ for multiple right-hand sides (deflation).
- 96³ x 192 volume requires 5K eigenvectors (160 TB).
- Compress using local coherence: 30x (Clark, Jung & Lehner, arXiv:1710.06884)
- Use All-Mode-Averaging technique (Blum, Izubuchi & Shintani, arXiv:1208.4349 [hep-lat])
 - Loosen CG stopping condition $10^{-8} \rightarrow 10^{-4}$.
 - Obtain accurate result for 8 out of 128 time slices
 - O(10⁻⁸) accurate result = $\langle G_{10^{-4}} \rangle_{124} + \langle G_{10^{-8}} G_{10^{-4}} \rangle_{8}$
 - Achieve 5-20 x speed-up.

Numerical methods - cont

- Split-Grids (Boyle and Jung)
 - Deflate multiple right-hand sides on full machine
 - Perform separate CG inversions on many subpartions
 - 4x speed-up on Cori at NERSC (Cray XC40/KNL)
- Multi-splitting preconditioned conjugate gradient (Tu, Guo, and Mawhinney, arXiv:180408593)
 - Precondition with Dirac operator without off-node comms.
 - Use many local inversions, exploit large node performance.
 - Use tensor cores on Summit and obtain 1.5x speedup
 - Must include halo sites in product D⁺_{pcond} D_{pcond}.

New Directions

 Use machine learning to infer the results for complex quantities from those of simple ones. (Boram Yoon, LANL)

Correct small errors with a few exact results.

• Use machine learning to generate Markov samples. (Albergo, Kanwar and Shanahan, arXiv:1904.12072)

New Directions

 Use machine learning to simplify local MSPCG approximation (Jiqun Tu: Columbia → NVIDIA)

$$M_{L_s}^{-1} \simeq T^{\dagger} M_{L_s'}^{-1} T + \mu \mathbb{I}$$

Learn optimal 1536 parameters in T

Use Quantum Computing to generate real-time evolution?

Muon anomalous magnetic moment

2nd R-CCS Symposium - 02/17/2020 (18)

g - 2 for the muon

• Anomalous moment: $a_{\mu} = (g_{\mu}^2)/2$

 3σ difference between the

• BNL E821 expt:

 a_{μ} = 11699208.9 ± 6.3 x 10⁻¹⁰

(19)

- standard model prediction and experiment: FNAL E989 $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 27.4(2.7)(2.6)(6.3) \times 10^{-10}$
- Effects of quark and gluons enter at order $\alpha_{\rm EM}^2$:

Brookhaven, Columbia, Connecticut, Nagoya, RIKEN

Thomas Blum (Connecticut)
Norman Christ (Columbia)
Masashi Hayakawa (RIKEN & Nagoya)
Taku Izubuchi (BNL & RIKEN BNL)
Luchang Jin (Columbia → Connecticut)

Chulwoo Jung (Brookhaven)

Christoph Lehner (Regensburg & BNL)

Use lattice QCD to calculate HLbL

• Compute connected and leading disconnected parts. $\vec{\mu} = \frac{1}{2} \int d^3r \left(\vec{r} \times \vec{j}(\vec{r}) \right)$

- Treat E&M through an expansion in $\alpha_{\rm EM}$
- Massless photon introduces new problems
- Sum stochastically over *x* and *y*

Use lattice QCD to calculate HLbL

- Use Lattice QCD for quark loop and gluons
- Evaluate photons and muon parts analytically

- With physical mass and continuum limit
- μ = 7.20(3.98)stat(1.65)sys × 10⁻¹⁰ from QED_L (arxiv:1911.081230)

2nd R-CCS Symposium - 02/17/2020 (22)

$K_{L} \rightarrow \mu^{+} \mu^{-}$ $\pi^{0} \rightarrow e^{+} e^{-}$

2nd R-CCS Symposium - 02/17/2020 (23)

Physics of $K_L \rightarrow \mu^+ \mu^-$

 A second order weak, ``strangeness changing neutral current''

(Cirigliano, et al., Rev. Mod. Phys., 84, 2012)

- $K_L \rightarrow \mu^+ \mu^- \text{decay rate is known:}$ - BR($K_L \rightarrow \mu^+ \mu^-$) = (6.84 ± 0.11) x 10⁻⁹
- Large ``background" from two-photon process:

2nd R-CCS Symposium - 02/17/2020 (1)

Calculation $\pi^0 \rightarrow e^+ e^-$

- Avoid Euclidean calculation
- Evaluate in Minkowski space
- Wick rotate internal time integral:

2nd R-CCS Symposium - 02/17/2020 (3)

Lattice Results for $\pi^0 \rightarrow e^+ e^-$ (Yidi Zhao)

 $\mathcal{A}_{\pi^0 \to e^+ e^-} \to \int d^4 w \ \widetilde{L}(k_-, k_+, w)_{\mu\nu} \langle 0 | T \Big\{ J_{\mu}(\frac{w}{2}) J_{\nu}(-\frac{w}{2}) \Big\} | \pi^0(\vec{P} = 0) \rangle$

- Lattice result is complex:
 - Exponentially small FV corrections
 - Physical kinematics, $1/a \le 1.73$ GeV :
 - Im(A) = 35.94(1.01)(1.09) [Expt: 35.07(37)]
 - Re(*A*) = 20.39(72)(70). [Expt: 21.51(2.02)]
- First step in predicting $K_L \rightarrow \mu^+ \mu^-$
 - Lattice QCD calculation needed to remove two-photon background.
 - Would allow ~10% test of standard model prediction for rare, 2nd order weak decay

K_L – K_S mass difference

2nd R-CCS Symposium - 02/17/2020 (27)

$K^0 - \overline{K^0}$ system

- $K^0 \overline{K}^0$ are distinct anti-particles: ($\overline{s}d$) and ($\overline{d}s$) bound states
- These are mixed by the strangeness-violating weak couplings:

- M_{K_L} M_{K_S} = 3.483(6) x 10⁻¹² MeV
- Sensitive to 1000 TeV energy scale, 1000 x LHC energies
- Evidence for charm quark energy scale first found here.
- Effects of QCD can now be computed from first principles!

Lattice Version

• Evaluate standard, Euclidean, 2^{nd} order $\overline{K^0} - K^0$ amplitude:

$$\mathcal{A} = \langle 0 | T \left(K^0(t_f) \frac{1}{2} \int_{t_a}^{t_b} dt_2 \int_{t_a}^{t_b} dt_1 H_W(t_2) H_W(t_1) K^{0^+}(t_i) \right) | 0 \rangle$$

2nd R-CCS Symposium - 02/17/2020 (29)

- Physical light, strange and charm masses
- 64³ x 128, 1/a = 2.36 GeV
- Integrate: $0 \le \delta \le 10$
- 152 configurations
- *a*² errors 20% ?

Many new lattice results

- Study two-nucleon problem (S. Aoki, et al. HAL QCD)
- Use Euclidean lattice data to constrain spectral functions in inclusive decays (S. Hashimoto, *et al.*)
- Results for *KI*3 decay on largest lattice to date (K.-I. Ishikawa, *et al.*, PACS Collaboration)
- Calculate long-distance part (5%) of direct CP violation in $K \rightarrow \pi\pi$ decay: ε_K (J. Karpie):
- $K \rightarrow \pi\pi$ decay and direct CP violation (RBC/UKQCD) re $(\varepsilon'/\varepsilon) = (1.38 \pm 7) \times 10^{-4}$ (lattice) (16.6 ± 0.23) x 10⁻⁴ (Expt)

Lattice QCD at the Exascale

- Important opportunities to discover new physics beyond the standard model.
- Much work still needed to compensate for the increasingly weak inter-node network.
- Target smaller lattice spacing
 - Increase accuracy of charm quark physics
 - Use open boundary conditions (Luscher & Schaefer)
 - Fourier accelerate: HMC → RMHMC (Girolami & Calderhead)
 - Studying QCD at β =100:

²nd R-CCS Symposium - 02/17/2020 (32)