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Backgrounds and Motivations _ _ R I e
How HPC can change the industrial CFD?
e High-resolution turbulence simulation

e Higher time resolution realizing the unsteady simulation, capturing the transient
phenomena.
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e Higher spatial resolution realizing the highly accurate simulation, independent on
turbulence modeling.

e Coupled analysis realizing real-world simulation
o Application of CFD to what conventional experiments are difficult to treat.

o Coupling simulation of fluid motion with other physics such as structure
deformation/vibration, heat and mass transfer, or aero-acoustics.

e Big data analysis
e Optimization, Machine/Deep learning based on Al technique.



Backgrounds and Motivations

FrontFlow/red-HPC on the K computer

e Unstructured Finite Volume Method.
e Most popular and conventional data structure in industry.

e Hybrid OpenMP/MPI for HPC.
e Single node performance.
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e Thread parallelization by OpenMP. 100000
e 9.5%/7.4% for hexa/tetra-hedral elements. e

e Parallel efficiency.
e Domain decomposition by application “METIS”.
e MPI among nodes. p
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o 96.5% parallelization efficiency (weak scaling). 0.1 T

e Up to 10 billion unstructured meshes on 10,0
nodes (80,000cores) on the K-computer .

e Various moving boundary methods including ALE.
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Backgrounds and Motivations Computeratmutons

Success of the Unstructured CFD on the K Con‘iﬁ‘ﬁf““’""“‘””
e Precise prediction of aerodynamic forces comparable to wind-tunnel

measurements.
e The key is the surface resolution of less than 1mm.

Coarse mesh o= g . T
(Conventional Supercomputer) e s Fine mesh (K computer) B ot E'{“',‘:)

Normalized Drag
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e Real-World Aerodynamics Simulation.
o Coupled with 6DoF vehicle motion and

driver’s reaction.

e Successful from the view point of academic research,
but...



Backgrounds and Motivations [ M computesimsions
Surface Clean-up for Mesh Generation

e Industrial CAD is always very dirty---

e Higher resolution requires very long time for CAD clean-up.

e Resolution of less than 1mm surface is not realistic in industries.

Red : gap
-Cyan: overlap

Surface repair by 5mm
resolution using conventional
wrapping technique (ANSA(R))

Surface repair by 1mm resolution
Conventional wrapping technique
does not work...




Numerical Methods ons

CUBE: Building Cube Method for Unified Slmulatlon

e Hierarchically structured Finite Volume Method

o A solver for coupled phenomena:
fluid/structure/acoustics/chemical reaction--

e Building Cube Method for the unified data
structure (Nakahashi et al., 2003)

. Easy tune for both single node and parallel performance
e Immersed Boundary Method (Fadlun et al., 2002)
(1) Dirty CAD treatment (Onishi et al., 2013)
(2) Moving Boundary Method (Bale et al., 2016)
(3) Unified Compressible/Incompressible analysis (Li)
(4) Unified Fluid/Structure analysis (Nishiguchi)

Unstructured SAE 2014 01- 0621

Structured(Cartesian) SAE 2014-01-0580

Domain
decomposition by Allocation of meshes
—| different size of cubes ‘ | for each cube

o [
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Numerical Methods
Performance on the K computer

e Single node performance.

o 16x16x%x16 cells per cube.
o 23.7% on the K computer (8 threads).

e Parallel efficiency.

e 16 cubes per node.

o Effective parallelization ratio: 99.99954%.
o /5.324899% parallel efficiency (weak scaling).
. Total nodes on the K computer

e Expected to be 25 times faster on Fugaku
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Numerical Methods w

Full-scale vehicle aerodynamics simulation mazoa
e World-largest full-scale vehicle simulation (27 billion meshes).

e Maximum of 27 billion meshes with 0.7 mm resolution within 1 hour from the
dirty CAD data.

Condtn
o763

Pre-flow computatl_onal time (immersed About 30 min.
boundary preparation)

Deltat 1.0x10%[s]
Solution time 0.010 [s]

Parallel num 273,576 cores
. (37,197 nodes)

Flow computation time Several days 3




Capacity Computing for Shape Optimization @
Multi-Objective Shape Optimization ‘

e 4 objectives (0° and -3° yaws)
e Drag and Lift at 0 yaw

 Delta Drag (difference bet. 0 and -3) = iL

o Delta Lift (difference bet. 0 and -3)
o Smaller is better for all four variables
e 8 design parameters
e Multi-objective Genetic Algorithm
e 18 models for each generation

Aerodynamic characteristics
(Objective function)
Text

=

Geometry
STL format

’

Shape parameters
(Design variables)
Text

04 0.6
deltaCD



Capacity Computing for Shape Optimization —
Results of multi-objective shape optimization &9
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Real-World Simulatior_n . s
Narrow band noise from a full-scale vehicle

SUZUKI

e Acoustic feedback noise
generated at a small gap.

e Very peaky and uncomfortable:-:-

e For the prediction, full coupling
simulation of flow and acoustics is
needed.

Grid size 0.2 mm/1.6mm
Cube num. 471,059
Cell num. 1,929,457,664

Core num. 13086x8 / 50 hrs




Real-World Simulation
Coupled Aerodynamics, Vehicle Motion and Driver’s Reaction Simulation

HPC-CFD for flow around a vehicle (Aerodynamics)

Multi-Body vehicle motion analysis (6DoF body motion with suspension and steering)
Autonomous Vehicle Motion by a Driver’s steering wheel, accelerator/braking actions
Lane changing motion at 100km/h

— -
.

-




Toward FUGAKU
Coupling Data Science and HPC-CFD for Innovative CAE

e Innovative Industrial CAE Solution by a Fusion of Data Science and High-
Performance Computing Simulation

e Machine/Deep Learning, Data Assimilation, Multi-Objective Optimization:--

e Surrogate Model: Realizing real time evaluation of aerodynamic performance such as
drag and lift force.

e Reduction Model: Realizing complicated real world simulation and reproducing flow field

at lower cost.
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Toward FUGAKU

Shape Optimization based on a Surrogate Model

e Development of a Surrogate Model based on Neural Network.
e Hundreds of HPC-CFD results as teaching data.

o Prediction of Drag less than 5% error against the HPC simulation results.
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Toward FUGAKU
Reduction Model of the Navier-Stokes Simulation
e Reduced order model by Proper-Orthogonal Decomp05|t|on

enoony

o Full flow simulation results are projected on = .
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e The base functions are obtained by Neural Network(Murata).
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Concluding Remarks ) A s

L

e CFD use in industries are conservative, which is just an
alternative to conventional experiments, so far--

e HPC expands the possibility of CFD by exceeding their accuracy
and applying to real-world problems, while data structure is the
key to massively utilize HPC environment.

e Hierarchically structured data realized very fast and real-world
aerodynamics simulation on the K computer.

e Coupling data science and HPC simulation will create next-
generation Computer-Aided Engineering on FUGAKU.

e Surrogate model for real time evaluation.
e Reduction model for real world simulation.
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