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Mains objectives:

» Identifying gaps between practice & needs in existing PSA
methodologies for external multi-hazard events (in particular for low-
probability but high-consequences events)

» Improving parts of these methodologies, based on & complementing
other researches (e.g. European projects, ...)

» Considering 4 main primary hazards & related secondary effects /
combinations: earthquakes, tsunamis, floods, extreme meteo hazards

Framework of extended PSA

» Calculates the risk induced by the main sources of radioactivity on the
site (reactor core & spent fuel storages, other sources)

» Accounts for all plant operating states for each main source & all
possible relevant accident initiating events (both internal and external)
affecting one or more nuclear power plants (NPPs) or the
environment.
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A threefold methodology:

» Theoretical improvements including progress in evaluation of

uncertainties and reduction of subjectivity related to expert judgments:
- Multi-hazard framework with probabilistic modelling of hazards
combinations
- Multi-hazard-harmonized fragility models
- Multi-risk modelling approach via dynamic Bayesian Belief Networks

» Verification of the applicability and robustness of the proposed
improvements for the safety assessment (tests on a virtual PWR NPP)

» Application of the outcomes at demonstration level on a real PWR

NPP by providing improved supporting tools for operational and severe
accident management purposes.
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On-going developments regarding seismic risk assessment of nuclear sites

> Model reduction techniques to produce virtual charts

— Verification of the applicability and robustness of the proposed improvements for
the safety assessment (tests on a virtual PWR NPP)
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Model reduction techniques to produce virtual charts

Motivations for virtual charts

» Virtual structural testing using “Model Reduction” techniques to solve time-

dependent nonlinear problems with parameters (data, design variables)
- Reduced time costs

- Possible for a family of structures

- Works
= Offline: preparing virtual charts to get outputs of interest (data, design variables)
= Online: using virtual charts as a decision-making tool, to review design, optimize
solutions...

» Simple illustration [after Ladeveze]

nitial functon
1000 x 1000
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Model reduction techniques to produce virtual charts

Main objectives

Computing the response of a site with respect to parameters y € I' defining a
seismic scenario & to be included in a probabilistic assessment process
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Seismic

scenario
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4~ Huge uncertainty/variability on the input (loading)
®* Onthe parameters y € I defining the seismic scenario &
®  Source mechanism, magnitude, distance, velocity structures (propagation), etc.
®* Onequations (e.g. GMPEs) used to derive synthetic signals from y
" Infinity of “trajectories” derived from a unique set of parameters (stochastic modelling)
[Rezaeian & Der Kiureghian,2010] [Zentner et al,2013]

H— Necessity of computing the nonlinear response of a structure (e.g. reactor building) for
numerous input signals (time domain)

- Several weeks for a full FEM simulation of a damaging RC structure (in sequential)
- Uncertainties on the constitutive parameters: stiffness, plastic yield/damage thresholds, etc.
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Model reduction techniques to produce virtual charts

Proposed approach: LATIN (LArge Time INcrement)/PGD
(Proper Generalized Decomposition)

» Non-incremental method dedicated to solving nonlinear problems [e.g. Ladeveze
1985, 1999...]

» Using parametrization strategies for resolution (so-called “Model Reduction
Techniques”), even for large number of parameters and/or large number of
loading cycles

» Existing scientific bottlenecks with LATIN/PGD:
- Never been applied in Dynamics
- Loading for large number of cycles described only as sine functions (one frequency)

— How to model seismic input signals with a reduced number of deterministic
parameters

— How to parametrize seismic input signals (large number of cycles + frequencies)
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified
- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified
- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

» Iterative resolution by alternating two types of steps -

and using search directions (A, G operators):
- Initialization: dynamic elastic time-space solution

Yo € U5 (9,0) @UT ()

/ a:e(v)dﬂdt=—/ pii - v dQdt + f-Udet+/ N v dSadt
IxQ

IxQ Ix8) IxonQ2

Initialization:
Elastic solution

F

INQY
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified
- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

Local step

» Iterative resolution by alternating two types of steps - \
and using search directions (A, G operators):
- Initialization
- Nonlinear Local step: solving constitutive relations on all
space integration (Gauss) points, at each time-step

[ Visco plasticity case: el = B(o) }
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients
» Splitting difficulties:

- T :topological variety where constitutive material relations are verified

- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

» Iterative resolution by alternating two types of steps and
using search directions (A, G operators):
- Initialization
- Nonlinear Local step

- Linear Global step (on all Gauss points + whole time domain)
= Updating admissibility conditions

o

Weak form - equilibrium equation Yo e US(Q,0) @ UT (1) L)

/ o:e(v) dQdt = f pti - v dQdt + f v dQdt +/ Y v dSdt Linear step
IxQ IxQ IxQ IxXINnE2 updating (PGD)

o o o ap oge - . f_.\'
Kinematic admissibility Vo* € 7 (0)

vu* € U (Q,0) @ UT(I)
—/ o 1 e(u) dQdt + / o*nul dSdt = / U pt dQdt
QxI 0QpxI QxI 4

INQY

é)(uﬂa 7:"0: U'D)
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified

- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

» Iterative resolution by alternating two types of steps and
using search directions (A, G operators):
- Initialization
- Nonlinear Local step
- Linear Global step
= Updating admissibility conditions

= Seeking an approximate global solution S(t, x) of the form:

S(t,x) = Z A (t) dm(z)  with (@, ) = PGD “modes” Linear step

m=1 updating (PGD)
M—-1

Viscoplasticity case:  o(z,t) = Z am (t) Cr(z)
m=1
M—1

> anlt) Ep(x)

m=1
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified

- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

» Iterative resolution by alternating two types of steps -
and using search directions (A, G operators):
- Initialization
- Nonlinear Local step

- Linear Global step
= Updating admissibility conditions

= Seeking an approximate global solution

= Converged time-space solution: S = A; NI

Converged
solution
Spatial Fixed point algorithm
problem
; Convergence or reach of
fixed point iterations
Temporal
problem
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Model reduction techniques to produce virtual charts

LATIN/PGD method: principal ingredients

» Splitting difficulties:
- T :topological variety where constitutive material relations are verified

- A, : affine admissibility space where equilibrium & kinematic equations are verified
over the whole time-space domain

» Iterative resolution by alternating two types of steps o
and using search directions (A, G operators):
- Initialization
- Nonlinear Local step
- Linear Global step
= Updating admissibility conditions

= Seeking an approximate global solution

= Converged time-space solution: S = A; NI

» Well fitted for solving a parametrized problems
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Model reduction techniques to produce virtual charts

LATIN/PGD method vs. standard step-by-step methods

u (1
» Newton-Raphson scheme . il . S
(incremental) & § E " S éuﬁfﬂl
—Time loop then convergence loop = g g’ el & 2 (q]}
—Mlinimizing the energy residual in the §' S g =1 3 = B q; /
convergence loop only - = v e ! - i“ﬂ'ﬂ
g1 = arg min  R(u,v;Sk) —— ~ < 0 i T
uccA0 Time loop One At o Tt o B t
veC AO
» LATIN method (non-incremental): =
~Newton-Raphson on processes %_?_, LocAL S
— Time & convergence loops inverted = ;_-: stage 2
= Solution and residual minimization 7°, g3 =
performed over the whole time-space ;.‘; :
domain ’g 2 : (
=] s -
St — arg;élﬂld ‘S sy AHQ,T o %é llsl:J:gAeR PGD “tm; — ;t[}ﬂ ;,[L'I: : 4t:[k}+l] —,
) % ’ L
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Model reduction techniques to produce virtual charts

Test example for LATIN/PGD

» Simple 3D nonlinear parametrized problem (viscoelastoplasticity, quasi-static
loading)

142 KDofs
60 At
12 Intel cores

Symmetry

Jis )l ACCINC Ilt llllll
condition I (

l
S P 0.15}-
5()/\ 60

[Néron et al., 2015] /j

time (s)

dliplnoement

Stress at most loaded Gauss point

(v 750 Comparison 20 AL e
+5.000e+02 . LATIN =
g with Abaqus 8

(Zmat module) z

o et t = °
- +1.2500+02 A

18.333¢ 101 B 0
+4.170e+01 .

+0.000e+-00 . . 5 -5
30% gain on a single |3

. . -10

simulation run
-15
-20
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Model reduction techniques to produce virtual charts

Test example for LATIN/PGD

» Simple 3D nonlinear parametrized problem (viscoelastoplasticity, quasi-static
loading) =

142 KDofs
60 At
12 Intel cores

Stress at most loaded Gauss point

500 | ] |
[Néron et al., 2015] ///
q)
<
=
= = .
o, 450 - 2 Virtual charts
— . .
= c U : loading amplitude
g = y : kinematic hardening coeff.
= 3 .
5 4004 3 R, : yield stress threshold

= \Variation of each parameter
(10 values): 1,000 sets of

350 900000 .
400 30
350 300 o5 parameters

CPU times for the 1,000 nonlinear sets:

- 25 days with Abaqus
- 17h for LATIN/PGD (multiple runs algorithm with erratic exploration of the design space)
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Modelling strategies for Nuclear Probabilistic Safety Assessment in case of natural
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On-going developments regarding seismic risk assessment of nuclear sites

> High Performance Computing

— Verification of the applicability and robustness of the proposed improvements for
the safety assessment (tests on a virtual PWR NPP)
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High Performance Computing

Our main goals:

» To achieve full FEM “best-estimate” and/or “high-fidelity” 3D modeling
e.g. for seismic PSA of nuclear sites including interactions (soils, structures,
components) and detailed material behaviors (damage, ...), variabilities and
uncertainties

» To have a full parallel perspective for computing but also for pre- & post-
processing (meshing, visualization, ...)

» To work either on Exascale parallel or multi-core computing
architectures (even on the “every-day” laptops and PC’s)
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High Performance Computing

On-going developments:

» Linear/nonlinear implicit iterative solvers based on domain
decomposition, for damage mechanics and dynamics

» Tailored Algebraic Multi-Grid preconditioner to improve the solver
performances and reach quasi-linear scaling

» Vectorial FEM approach

» Fully parallel process: unstructured meshing, partitioning, assembling,
solving & post-processing

|:| D Partitioning
I:I |:| Assembly A
60 - Il Assembly b

. - | The solving phase is more
BE inear sobe . critical in nonlinear dynamics

40 |- Post- |
00 Postprocess (numerous time steps and

20 |- ~ -| | repeated updating of A needed)
o o . “
0

Implicit solver % time
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High Performance Computing

Linear solver spectra
—— Direct Solver —— Hybrid Solver Iterative Solver —
Examples: O Domain Examples:
a L decomposition U Jacobi
 Cholesky O Multigrid methods  Gauss-Seidel
O QR O Krylov methods
L MUMPS (GMRES, Cg, ...)
Pros: Pros: Pros:
Robust Flexible Parallelism
Cons: Naturally | | Memory
Parallelism Cons:
Memory Robust
- 2D 10° dofs
- 3D 10° dofs
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High Performance Computing

Preconditioning:
Example !
» What: _ | | |
- Means to faster solution x = A~ 1h S o i
- Means to decrease number of iterations g — Jacobi
_ — GMRES
» Why: §103‘ _ ve |
- lll-conditioned problems S 10-5 | |
— | | \ |
- Strongly coupled O 20 40 60 80 100
- Efficient parallel algorithm Iterations
Jacobi extremely slow, GMRES and MG better”

1. M. Seaid et al., J. of Computational and Applied Mathematics,

> HOW' v. 170 (2004).
- Use the Krylov subspace method (PETSc) on modified system such as:

= Left preconditioned system: M~1Ax = M~1b

= Right preconditioned system: AM~1y = b with x = M1y

- One level: CG Jacobi / Block Jacobi (BJacobi)
- Multi-level?
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High Performance Computing

Multigrid Preconditioning:

» What:
- Use of hierarchy discretization
- Restrict and interpolate cycle
» Cons:
- Additional meshes
- Non trivial for unstructured meshes

» Alternative: Algebraic Multigrid (AMG)
- Construct a hierarchy of independent coarser
operators (i.e. subsets of indices of the unknowns)

from the refined grid (operator A) -

- Coarsen until LU or SVD

- Cons: difficult to implement and tune (on a case-basis)
—Threshold parameter (coarsening rate)
Pros: reduced computing costs and high scalability
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High Performance Computing

Applications:

» 3D brittle cracking in randomly perforated medium (quasi-static), using

hybrid phase-field formulation (Ambati et al., 2014):
- In-house monolithic Vectorial FEM fracture mechanic solver (Badri et al.
(submitted))

- Crack propagation needs extremely refined meshing:
= 81 Mdofs
= Unstructured mesh (tetrahedral elements)

-  MPI-based domain decomposition method
- 1,008 cores (Intel nodes. Inti supercomputer at CEA/TGCC. France)

Imposed upward
displacements

Initial crack surface

Fixed base /z/' 20 A
2% . 20 &°
S . o of
\‘l// < ra
00
(a) domain Q. (b) partitioned mesh {Q7}1998
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High Performance Computing

Applications:

» 3D brittle cracking in randomly perforated medium (quasi-static):
- Performing 865 solving steps (phase-field) performed in less than ~145 min, using
preconditioning (CG Jacobi, CG BJacobi or CG AMG) instead of ~101 days
(sequential)

[I tassembly
- ,_‘\ D tsolve
; = H = ideal > 1-10-3
| 2 3 = A - & - observed
> ~ -
M S & = T
102 1 S — = & i £
—_ I A R— T Y B 3 a1 ™
T e — 5 = % —— :
=1 = =X & <@ o~ - 4 ©
g T ] T & % oS 2
2 r < A < X o5 % 7 g
t = < 2
o, [ — i — £l o L =S Py N 5]
~ ~ 3] H 10 8
2 [ %) SO -
g e I o
e | -~ <
0
101 -
C (a) vertical displacement field uz.
(=] o0 =] o] (=] *.o] =] o (=] oo o o] 1
— o I~ ] — o - jam] — o - o
— — —
Jacobi BJacobi AMG
=
]
MPI-ranks N &
)
=1008 Scallng g
<
64 MDofs ks

CG Jacobl 17.7

CG BJacobl 97 12.6
CG AMG 96 9‘2 (b) damage-field d.
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High Performance Computing

Applications:

» 3D seismic wave propagation on a real nuclear site:
- In-house Vectorial FEM dynamic solver (linear)
- Basin domain: 5 x 4.5 x 2 km3
- Unstructured mesh (tetrahedral elements) with ~1.9 Bdofs
- Use of paraxial elements (order 0): input motion + absorbing boundary conditions
- Max frequency > 40 Hz (required for equipment analysis)
- MPI-based domain decomposition method
- 12 Kcores (Skylake nodes, Irene Joliot Curie supercomputer at CEA/TGCC, France)

T
875000 880000 885000 890000
855000 860000 865000 870000 _ 1194000

usg;srms@ﬂzg@ll@!:!%@&@@g

60000
160000 159500
159000 158500

a3s00 " 00 Zone of interest

8
Altitude
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High Performance Computing

Applications:

» 3D seismic wave propagation on a real nuclear site:
- Monolithic residual drop for AMG
- Quasi-linear scaling (> 86%)

D Lassembly
- J_\ |:| tsolve

o - B - ideal

—

= = — ® - observed

(=2}
a Algebraic multigrid
5 S -2 — - s .

= 10°\S. 7 = . 10 :
= — © Jacobi
=1 oD _m
: _\ = — =
2 - b -
2, 5 —
= : — @ 107

I N ~

- =12
10" | | 10 . . 97 :
0 50 100 150 200 250 300 350 400
CG iterations k

6,144

1,536
3,072

MPI-ranks
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Perspectives

HPC

» Testing nonlinear dynamic solving strategies with different constitutive models
(soils, structures, components)

» Testing on various supercomputers and architectures:

- TGCC Joliot Curie IRENE (CEA Bruyeres-le-Chatel, France):
= Bull Sequana X1000 (SKL/KNL, 9.4 PFlops, ~136 Kcores)
= AMD Rome (11.75PFlops, ~293Kcores)

- CINES OCCIGEN supercomputer (Atos-Bull B720, Bull Sequana X800, 3.5PFlops)
- R-CCS supercomputer (on-going RIKEN-CEA collaboration)?

» Applying to real sites (on-going):
- Increased domain sizes to include seismic sources
- Increased number of seismic scenarios for probabilistic assessment
- Soil-structure-components interactions (to be tested with the virtual reactor building
from NARSIS project)

» Going towards full digital twins of nuclear plants for safety assessment purposes
(among others) and hybrid testing (real-time assimilation of physical data and
simulations)

CEA Paris-Saclay Evelyne FOERSTER 27 R-CCS Int’l Symposium, Feb. 17t, 2020



Perspectives

Multi-scale (in time) LATIN/PGD for nonlinear dynamics

» Parametrization of seismic signals (on-going): modeling the
time-frequency content e.g. with a sum of simple sine
functions [Ladeveze, 2018]

» Simulations (FEM kernel) with input parametrized signals
(natural or synthetics):

- Using Big Data strategies for data clustering combined with

damage indicators for structures, systems or components (SSCs)
- Defining a new strategy to produce virtual charts for SSCs

» Combining LATIN/PGD model reduction technique with
optimized parallel solving strategies for PSA of nuclear sites

CEA Paris-Saclay Evelyne FOERSTER

Displacement [m]

—— Seismic signal
Approximated signal

@
o 1 2 3 4 5 6 7 8 8 10

Example of parametrization
with 7 modes, different
macro discretization (sines)
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