

Modelling strategies for Nuclear Probabilistic Safety Assessment in case of natural external events

Evelyne FOERSTER, Director of the SEISM Institute, Paris-Saclay University

evelyne.foerster@cea.fr

2nd R-CCS International Symposium, Kobe, February 17th, 2020

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Insight into Probabilistic Safety Assessment for nuclear sites

On-going developments regarding seismic risk assessment of nuclear sites

- Model reduction techniques to produce virtual charts
- High Performance Computing

Perspectives

Modelling strategies for Nuclear Probabilistic Safety Assessment in case of natural external events

NARSIS (2017-2021)

New Approach to Reactor Safety ImprovementS

www.narsis.eu

Insight into Probabilistic Safety Assessment for nuclear sites

CEA Paris-Saclay - www.cea.fr

Mains objectives:

- Identifying gaps between practice & needs in existing PSA methodologies for external multi-hazard events (in particular for lowprobability but high-consequences events)
- Improving parts of these methodologies, based on & complementing other researches (e.g. European projects, ...)
- Considering 4 main primary hazards & related secondary effects / combinations: earthquakes, tsunamis, floods, extreme meteo hazards

Framework of extended PSA

- Calculates the risk induced by the main sources of radioactivity on the site (reactor core & spent fuel storages, other sources)
- Accounts for all plant operating states for each main source & all possible relevant accident initiating events (both internal and external) affecting one or more nuclear power plants (NPPs) or the environment.

A threefold methodology:

- Theoretical improvements including progress in evaluation of uncertainties and reduction of subjectivity related to expert judgments:
 - Multi-hazard framework with probabilistic modelling of hazards combinations
 - Multi-hazard-harmonized fragility models
 - Multi-risk modelling approach via dynamic Bayesian Belief Networks

Verification of the applicability and robustness of the proposed improvements for the safety assessment (tests on a virtual PWR NPP)

Application of the outcomes at demonstration level on a real PWR NPP by providing improved supporting tools for operational and severe accident management purposes. Modelling strategies for Nuclear Probabilistic Safety Assessment in case of natural external events

école	
normale	
supérieure —	-
paris-saclay-	

Dr. Pierre-E. Charbonnel Sebastian Rodriguez-Iturra (PhD) Pr. Pierre Ladevèze Pr. David Néron **Dr. George Nahas**

On-going developments regarding seismic risk assessment of nuclear sites

- > Model reduction techniques to produce virtual charts
- ⇒ Verification of the applicability and robustness of the proposed improvements for the safety assessment (tests on a virtual PWR NPP)

Motivations for virtual charts

- Virtual structural testing using "Model Reduction" techniques to solve timedependent nonlinear problems with parameters (data, design variables)
 - Reduced time costs
 - Possible for a family of structures
 - Works
 - Offline: preparing virtual charts to get outputs of interest (data, design variables)
 - Online: using virtual charts as a decision-making tool, to review design, optimize solutions...

Simple illustration [after Ladeveze]

Main objectives

Computing the response of a site with respect to parameters $\gamma \in \Gamma$ defining a seismic scenario ξ , to be included in a probabilistic assessment process

Huge uncertainty/variability on the input (loading)

- On the parameters $\gamma \in \Gamma$ defining the seismic scenario ξ
 - Source mechanism, magnitude, distance, velocity structures (propagation), etc.
- On equations (e.g. GMPEs) used to derive synthetic signals from γ
 - Infinity of "trajectories" derived from a unique set of parameters (stochastic modelling)
 [Rezaeian & Der Kiureghian, 2010] [Zentner et al, 2013]

Necessity of computing the nonlinear response of a structure (e.g. reactor building) for numerous input signals (time domain)

- Several weeks for a full FEM simulation of a damaging RC structure (in sequential)
- Uncertainties on the constitutive parameters: stiffness, plastic yield/damage thresholds, etc.

Proposed approach: LATIN (LArge Time INcrement)/PGD (Proper Generalized Decomposition)

- Non-incremental method dedicated to solving nonlinear problems [e.g. Ladeveze 1985, 1999...]
- Using parametrization strategies for resolution (so-called "Model Reduction Techniques"), even for large number of parameters and/or large number of loading cycles
- **Existing scientific bottlenecks with LATIN/PGD:**
 - Never been applied in Dynamics
 - Loading for large number of cycles described only as sine functions (one frequency)
 - \Rightarrow How to model seismic input signals with a reduced number of deterministic parameters
 - \Rightarrow How to parametrize seismic input signals (large number of cycles + frequencies)

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ : topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ : topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain Search of Sea
- Iterative resolution by alternating two types of steps and using search directions (A, G operators):
 - Initialization: dynamic elastic time-space solution

$$\forall v \in \mathcal{U}^{S}(\Omega, 0) \otimes \mathcal{U}^{T}(I)$$
$$\int_{I \times \Omega} \sigma : \varepsilon(v) \ d\Omega dt = -\int_{I \times \Omega} \rho \ddot{u} \cdot v \ d\Omega dt + \int_{I \times \Omega} f \cdot v \ d\Omega dt + \int_{I \times \partial_{N} \Omega} f^{N} \cdot v \ dS dt$$

11

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ: topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain
- Iterative resolution by alternating two types of steps and using search directions (A, G operators):
 - Initialization
 - Nonlinear Local step: solving constitutive relations on all space integration (Gauss) points, at each time-step

Visco plasticity case: $\dot{arepsilon}^p = \mathbb{B}(\sigma)$

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ: topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain

Iterative resolution by alternating two types of steps and σ using search directions (A, G operators):

- Initialization
- Nonlinear Local step
- Linear Global step (on all Gauss points + whole time domain)
 - Updating admissibility conditions

$$\begin{aligned} & \textit{Weak form - equilibrium equation} \qquad \forall v \in \mathcal{U}^{S}(\Omega, 0) \otimes \mathcal{U}^{T}(I) \qquad \mathscr{S}(f, f^{N}) \\ & \int_{I \times \Omega} \sigma : \varepsilon(v) \; d\Omega dt = -\int_{I \times \Omega} \rho \ddot{u} \cdot v \; d\Omega dt + \int_{I \times \Omega} f \cdot v \; d\Omega dt + \int_{I \times \partial_{N} \Omega} f^{N} \cdot v \; dS dt \end{aligned}$$

 $\partial_{D}\Omega$

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ: topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain

Iterative resolution by alternating two types of steps and σ using search directions (A, G operators):

- Initialization
- Nonlinear Local step
- Linear Global step
 - Updating admissibility conditions

$$\mathcal{S}^{(n)}(t,x) = \sum_{m=1}^{M} \alpha_m(t) \phi_m(x)$$
 with $(\alpha, \phi) = PGD$ "modes"

Viscoplasticity case:
$$\sigma(x,t) = \sum_{m=1}^{M-1} \alpha_m(t) C_m(x)$$

 $\dot{\varepsilon}^{an}(x,t) = \sum_{m=1}^{M-1} \dot{\alpha}_m(t) E_m^{an}(x)$

LATIN/PGD method: principal ingredients

Splitting difficulties:

- Γ : topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain
- Iterative resolution by alternating two types of steps and using search directions (A, G operators):
 - Initialization
 - Nonlinear Local step
 - Linear Global step
 - Updating admissibility conditions
 - Seeking an approximate global solution
 - Converged time-space solution: $S = A_d \cap \Gamma$

LATIN/PGD method: principal ingredients

Splitting difficulties:

- **Γ**: topological variety where constitutive material relations are verified
- A_d : affine admissibility space where equilibrium & kinematic equations are verified over the whole time-space domain
- ► Iterative resolution by alternating two types of steps and using search directions (A, G operators):
 - Initialization
 - Nonlinear Local step
 - Linear Global step
 - Updating admissibility conditions
 - Seeking an approximate global solution
 - Converged time-space solution: $S = A_d \cap \Gamma$

► Well fitted for solving a parametrized problems

LATIN/PGD method vs. standard step-by-step methods

Newton-Raphson scheme (incremental)

 \Rightarrow Time loop then convergence loop \Rightarrow Minimizing the energy residual in the convergence loop only

 $u_{k+1} = \arg \min_{\substack{u \in CA0 \\ v \in CA0}} \mathcal{R}(u, v; \mathcal{S}_k)$

LATIN method (non-incremental): ~Newton-Raphson on processes

- \Rightarrow Time & convergence loops inverted
- ⇒ Solution and residual minimization performed over the whole time-space domain

$$\mathcal{S}^{(n+1)} = \arg \min_{\mathcal{S} \in \mathrm{Ad}} \underbrace{\left\| \mathcal{S} - \mathcal{S}^{(n)} + \Delta \right\|_{\Omega, T}}_{\mathcal{R}}$$

17

Test example for LATIN/PGD

Simple 3D nonlinear parametrized problem (viscoelastoplasticity, quasi-static loading)

Test example for LATIN/PGD

Simple 3D nonlinear parametrized problem (viscoelastoplasticity, quasi-static loading)

CPU times for the 1,000 nonlinear sets:

- 25 days with Abaqus
- **17h** for LATIN/PGD (multiple runs algorithm with erratic exploration of the design space)

142 KDofs 60 ∆t 12 Intel cores Modelling strategies for Nuclear Probabilistic Safety Assessment in case of natural external events

Dr. Afeef M. Badri (postdoc) Dr. Evelyne Foerster Dr. Giuseppe Rastiello

On-going developments regarding seismic risk assessment of nuclear sites

- > High Performance Computing
- Verification of the applicability and robustness of the proposed improvements for the safety assessment (tests on a virtual PWR NPP)

Our main goals:

- To achieve full FEM "best-estimate" and/or "high-fidelity" 3D modeling e.g. for seismic PSA of nuclear sites including interactions (soils, structures, components) and detailed material behaviors (damage, ...), variabilities and uncertainties
- To have a full parallel perspective for computing but also for pre- & postprocessing (meshing, visualization, ...)
- To work either on Exascale parallel or multi-core computing architectures (even on the "every-day" laptops and PC's)

C22 High Performance Computing

On-going developments:

- Linear/nonlinear implicit iterative solvers based on domain decomposition, for damage mechanics and dynamics
- Tailored Algebraic Multi-Grid preconditioner to improve the solver performances and reach quasi-linear scaling
- Vectorial FEM approach
- Fully parallel process: unstructured meshing, partitioning, assembling, solving & post-processing

The solving phase is more critical in nonlinear dynamics (numerous time steps and repeated updating of A needed) High Performance Computing

Linear solver spectra

Preconditioning:

What:

- Means to faster solution $x = A^{-1}b$
- Means to decrease number of iterations

► Why:

- Ill-conditioned problems
- Strongly coupled
- Efficient parallel algorithm

1. *M. Seaid et al., J. of Computational and Applied Mathematics,* v. 170 (2004).

► How:

- Use the Krylov subspace method (PETSc) on modified system such as:
 - Left preconditioned system: $M^{-1}Ax = M^{-1}b$
 - Right preconditioned system: $AM^{-1}y = b$ with $x = M^{-1}y$
- One level: CG Jacobi / Block Jacobi (BJacobi)
- Multi-level?

Cea High Performance Computing

Multigrid Preconditioning:

► What:

- Use of hierarchy discretization
- Restrict and interpolate cycle

Cons:

- Additional meshes
- Non trivial for unstructured meshes

Alternative: Algebraic Multigrid (AMG)

- Construct a hierarchy of independent coarser operators (i.e. subsets of indices of the unknowns) from the refined grid (operator *A*)
- Coarsen until LU or SVD
- Cons: difficult to implement and tune (on a case-basis)
 ⇒Threshold parameter (coarsening rate)
- Pros: reduced computing costs and high scalability

C22 High Performance Computing

Applications:

- 3D brittle cracking in randomly perforated medium (quasi-static), using hybrid phase-field formulation (Ambati et al., 2014):
 - In-house monolithic Vectorial FEM fracture mechanic solver (Badri et al. (submitted))
 - Crack propagation needs extremely refined meshing:
 - 81 Mdofs
 - Unstructured mesh (tetrahedral elements)
 - MPI-based domain decomposition method
 - 1,008 cores (Intel nodes. Inti supercomputer at CEA/TGCC. France)

High Performance Computing

Applications:

- SD brittle cracking in randomly perforated medium (quasi-static):
 - Performing 865 solving steps (phase-field) performed in less than ~145 min, using preconditioning (CG Jacobi, CG BJacobi or CG AMG) instead of ~101 days (sequential)

Cea High Performance Computing

Applications:

► 3D seismic wave propagation on a real nuclear site:

- In-house Vectorial FEM dynamic solver (linear)
- Basin domain: 5 x 4.5 x 2 km³
- Unstructured mesh (tetrahedral elements) with ~1.9 Bdofs
- Use of paraxial elements (order 0): input motion + absorbing boundary conditions
- Max frequency > 40 Hz (required for equipment analysis)
- MPI-based domain decomposition method
- 12 Kcores (Skylake nodes, Irene Joliot Curie supercomputer at CEA/TGCC, France)

28

Cea High Performance Computing

Applications:

► 3D seismic wave propagation on a real nuclear site:

- Monolithic residual drop for AMG
- Quasi-linear scaling (> 86%)

29

HPC

 Testing nonlinear dynamic solving strategies with different constitutive models (soils, structures, components)

Testing on various supercomputers and architectures:

- TGCC Joliot Curie IRENE (CEA Bruyères-le-Châtel, France):
 - Bull Sequana X1000 (SKL/KNL, 9.4 PFlops, ~136 Kcores)
 - AMD Rome (11.75PFlops, ~293Kcores)
- CINES OCCIGEN supercomputer (Atos-Bull B720, Bull Sequana X800, 3.5PFlops)
- R-CCS supercomputer (on-going RIKEN-CEA collaboration)?

Applying to real sites (on-going):

- Increased domain sizes to include seismic sources
- Increased number of seismic scenarios for probabilistic assessment
- Soil-structure-components interactions (to be tested with the virtual reactor building from NARSIS project)
- Going towards full digital twins of nuclear plants for safety assessment purposes (among others) and hybrid testing (real-time assimilation of physical data and simulations)

Perspectives

Multi-scale (in time) LATIN/PGD for nonlinear dynamics

- Parametrization of seismic signals (on-going): modeling the time-frequency content e.g. with a sum of simple sine functions [Ladeveze, 2018]
- Simulations (FEM kernel) with input parametrized signals (natural or synthetics):
 - Using **Big Data strategies** for data clustering combined with **damage indicators** for structures, systems or components (SSCs)
 - Defining a new strategy to produce virtual charts for SSCs
- Combining LATIN/PGD model reduction technique with optimized parallel solving strategies for PSA of nuclear sites

Example of parametrization with 7 modes, different macro discretization (sines)

Thank you for your attention!

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr