

The 1st R-CCS International Symposium Feb. 18, 2019, Kobe Int. Conference Center, Kobe, Japan

Accelerated Development of Innovative Clean Energy Systems : Post-K Project Priority Issue 6

Shinobu Yoshimura, The University of Tokyo

Tomonori Yamada, The University of Tokyo (Sub A) Naoki Shikazono, The University of Tokyo (Sub B) Akiyoshi Iida, Toyohashi University of Technology (Sub C) Yasuhiro Idomura, Japan Atomic Energy Agency (Sub D)

https://postk6.t.u-tokyo.ac.jp/en/

FLAGSHIP 2020 Project

Priority Issue 6 Accelerated Development of Innovative Clean Energy Systems (Leader : S. Yoshimura, UTokyo) (2014.12-2020.3)

Sub Issue A : Energy Conversion Systems Accompanied by Highpressure Combustion and Gasification (Leader : S. Yoshimura)

Sub Issue B : Advancement of **Fuel Cell** Design Process (Leader : N. Shikazono, UTokyo)

Sub Issue C : High-efficiency Wind Power Generation System (Large Scale Offshore Wind Farm) (Leader : A. Iida, Toyohashi University of Technology)

Sub Issue D : Core Design of **Fusion Reactor** (Leader : Y. Idomura, Japan Atomic Energy Agency)

Posters related to Sub Issue D (Fusion Plasma)

- 33. Development of Exascale Fusion Plasma Turbulence
 Simulations for Post-K
 (Y. Idomura, T. Ina, K. Obrejan, Y. Asahi, S. Matsuoka, T. Imamura)
- 34. Communication Avoiding Multigrid Preconditioned Conjugate Gradient Method for Extreme Scale Multiphase CFD Simulations

(S. Yamada, N. Onodera, T. Ina, S. Yamashita, Y. Idomura, T. Imamura)

- 36. Extended Kinetic-Magnetohydrodynamic Hybrid Simulations of Magnetically Confined Laboratory Plasmas (Y. Todo, M. Sato, H. Wang, R. Seki)
- 37. Communication Reduced Multi-Time-Step Algorithm for the AMR-based Lattice Boltzmann Method on GPU-rich Supercomputers
 - (N. Onodera, Y. Idomura, Y. Ali, T. Shimokawabe)

Posters related to Sub Issue A (Combustion)

- 67. LES Modeling and Simulation of Coal Gasification on an O₂-CO₂ Blown Coal Gasifier (H. Watanabe, R. Kurose, K. Tanno)
- 68. Large-eddy Simulation of a Supercritical CO₂ Combustion Field in a Realistic Combustor (P. Jain, Y. Iwai, Y. Kobayashi, M. Itoh, T. Nishiie, R. Kurose)
- 70. Large-eddy Simulation of Combustion Instability of Spray Combustion : Effect of Time Fluctuation of Liquid Fuel Mass Flow Rate
 - (J. Nagao, A. Pillai, R. Awane, R. Kurose)
- 73. Fully Coupled Simulation of Coal Gasification System Using LES based Solver for Combustion and Thermal Conduction Solver in Vessel
 - (T. Yamada, N. Mitsume, H.Watanabe, R.Kurose, H.Uchida, S.Yoshimura)

Sub Issue A

Multiscale and Multiphysics Simulations of Coal Gasification Plant Including Reaction (Combustion, Gasification, Particle Tracing, Slug Melting) – Thermal Conduction – Cooling – Deformation

Overview of Coal Gasification Plant

REVOCAP_Coupler : Two-way coupling simulation of thermo-fluid–structure and cooling phenomena

ADVENTURE_Solid (FEM) : Nonlinear material behavior and damage assessment under elevated-temperature and high-pressure environments

Relations among Applications

Application	Notes	
FFR-Comb (FVM)	Combustion Flow (Gas-Liquid-Particles)	
REVOCAP_Coupler #1	Two-way Coupling on K-computer	
ADVENTURE_Thermal (FEM)	Thermal Conduction in Vessel and Cooling	
EVOCAP_Coupler #2	Off-line One-way Coupling	
ADVENTURE_Solid (FEM)	Nonlinear Thermal Fatigue, Structural Integr	rity

Simulation Modelsn of Combustor, Vessel, Pipes

X

スロート・コンバスタ部拡大図

CAD Model

1D Model of Cooling Pipes

	Fluid model	Solid model
Nodes	23,883,517	25,510,852
Elements	118,803,415	155,999,061
Kinds of Eelements	Tet Prizm Pyramid Hex	Tet
Coupling Nodes	634,678	243,024

Calculation Conditions of Combustion Flow Region for FFR-Comb

Flow model	Zero Mach Approximation
Turbulence model	DLES
Time integration	Euler Implicit
FD Scheme for convection term	Eq. of Motion : 2 nd Order Central
	Difference (95%)
	Eq. of Energy: 2 nd Order Upwind
Time increment	$5.0 \times 10^{-6} \mathrm{s}$
Char reaction	C+0.5O2→CO
	C+CO2→2CO
	$C+H2O\rightarrow CO+H2$
Gas reaction	$CH4+0.5O2\rightarrow CO+2H2$
	H2+0.5O2→H2O
	$CO+0.5O2+H2O\rightarrow CO2+H2O$
	$CH4+H2O\rightarrow CO+3H2$
	$CO+H2O\rightarrow CO2+H2$
Initial condition	Initial pressure: 2 × 10 ⁶ Pa
	Initial temperature: 1273K
	Initial mass density: 5.06kg/m ³
	Initial chemical components: N2(57.26%)
	+CO2(18.69%)
	+CO(16.82%)+C(0.0053%)
	+ASH(0.0056%)
Temperature BC at Wall	Transfer condition, Tw=308K, htc=10.0

CPU Time per Step: 3 sec when using 9216 CPU (1152 nodes)

About 1 M elements (About 0.24 M nodes)

Coupling between 3D Thermal Conduction in Vessel and 1D Convection & Diffusion in Cooling Pipes

Multiscale and Multiphysics Simulations of CRIEPI's Coal Gasification Plant Including Reaction (Combustion, Gasification, Particle Tracing, Slug Melting) – Thermal Conduction – Cooling – Deformation

Parallel Two-way Coupling of FFR-Comb ⇔ REVOCAP_Coupler ⇔ ADVENTURE on the K computer

0000			(110)	<mark>≋1</mark> (s)	(s/step)	Conduction Analysis(s/step)	(s/step)	
1	128	5000	19	1501.5	2.60	8.97	0.11	107.0
2	2048	15000	25 💥 <mark>2</mark>	2856.8	2.68	0.66	0.13	219.2

Subdomains in Flow Region : 9216 (9216cores(1152nodes))

Sub Issue C

Multiscale and Multiphysics Simulations of Offshore Wind Farm to Evaluate Power Generation Efficiency and Accumulated Fatigue Damages of Blades

Wind Turbine of NREL 5MW

Rotor Operation	Upwind
Number of Blades	3
Rotor Diameter	126 m
Hub Diameter	3 m
Hub Height	<mark>90</mark> m
Tip Speed	<mark>80</mark> m/s

Tip Speed Ratio7.0In Benchmark Test

J. Jonkman, S. Butterfield, W. Musial, G. Scott, "Definition of a 5MW Reference Wind Turbine for Offshore System Development", NREL/TP-500-38060, (2009)

Various Nonlinear Fluid Dynamics Phenomena

Meandering of Wake
 Interaction among Turbines via Wakes
 Effect of Peeling Flow from Nacelle and Tower onto Wake
 Effect of Wake onto Power Generation
 Efficiency and Structural Reliability

➡ Key Issues in Site Selection, Optimum Design and Arrangement, Operation Cost Reduction

Effect of tower and nacelle on the flow past a wind turbine by using RIAM-COMPACT

Effect of Nacelle and Tower onto Wake _

Multiscale and Multiphysics Simulations of Offshore Wind Farm for Evaluation of Power Generation Efficiency and Fatigue Damages of Blades

Off-line One-way Coupling Analyses of NREL5MW Blade

CFD Results (FFB on K computer) (Abstraction) Time Variations of Fluid Loading Distributions on the Surface of Blade

REVOCAP_Coupler

Mapping of the above Fluid Loading onto the Surface of Blade Mesh

Example of Evaluation of Accumulated Fatigue Damage Evaluation Time Variation and Spatial Distribution Atmospheric Boundary Layer, Turbulence, Wake

of Fluid Loading by FFB on K

Time Variation and Spatial Distribution of Stress in Blade by ADVENTURE_Solid

Rainflow Counting+Goodman Diagram+S-N Curve+Yeary Wind History Cumulative Fatigue Damage in Blade

FLAGSHIP 2020 Project Social & Scientific Priority Issues to be Tackled by Using post-K computer Priority Issue 6

Accelerated Development of Innovative Clean Energy Systems

Thank you for your attention !

http://postk6.t.u-tokyo.ac.jp/en/

