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Sub Issue A

Multiscale and Multiphysics Simulations of
Coal Gasification Plant

Including Reaction (Combustion,
Gasification, Particle Tracing, Slug

Melting) — Thermal Conduction — Cooling —
Deformation



| Overview of Coal Gasification Plant

REVOCAP_Coupler : Two-way coupling simulation of thermo-fluid—structure and cooling phenomena

Attachment
Assessment of and solution
heat transfer at of coal ash
coupling interface

Assessment of
complex thermo-fluid
combustion dynamics

Particulated coal
ADVENTURE_Thermal
(FEM)
Thermal Conduction in

vessel as well as _ )
cooling by water in FFR-Comb (FVM) : Combustion,

cooling pipes Slug goes downwards gasification and particle tracing models
Ash solution (solid-gas-liquid three-phase
model)

Cooling systems
by water in pipes

Assessment of
elevated-temperature
structural integrity

ADVENTURE_Solid (FEM) : Nonlinear material behavior and damage
assessment under elevated-temperature and high-pressure environments



IRelations among Applications
Applicaton ~~ Notes

FFR-Comb (FVM) Combustion Flow (Gas-Liquid-Particles)
REVOCAP_Coupler #1 Two-way Coupling on K-computer
ADVENTURE_Thermal (FEM) Thermal Conduction in Vessel and Cooling
EVOCAP_Coupler #2 Off-line One-way Coupling

ADVENTURE_Solid (FEM) Nonlinear Thermal Fatigue, Structural Integrity

Heat Flux(Q) Temperature (T)

6.0625m

‘ Wall Temperature
|

(Tw) ADVENTURE_Thermal A .
FFR-Comb (FVM) | (FEM) with Cooling by Pipes| ADVENTURE_Solid (FEM)

Online Two-way Coupling REVOCAP_Coupler Off-line One-way Coupling 5



| Simulation Modelsn of Combustor, Vessel, Pipes

20—k OV S AZEIEAR

CAD Model 1D Model of Cooling Pipes

Nodes 23,883,517 25,510,852
Elements 118,803,415 155,999,061
Kinds of Tet Tet
Eelements  Prizm
Pyramid
Hex x B |
Coupling 634,678 243,024 Combustion Coupling  Solid
Nodes Meshes



Calculation Conditions of Combustion
Flow Region for FFR-Comb

Flow model

Zero Mach Approximation

Turbulence model

DLES

Time integration

Euler Implicit

FD Scheme for convection term

Eq. of Motion: 2" Order Central
Difference (95%)
Eq. of Energy: 2" Order Upwind

Time increment

5.0x 10°s

Char reaction

C+0.502—CO
C+C02—-2CO
C+H20—-CO+H2

Gas reaction

CH4+4+0.502—CO+2H2
H2+0.502—H20
CO0+0.502+H20—-C02+H20
CH4+H20—-CO+3H2
CO+H20—-C0O2+H2

Initial condition

Initial pressure:2 X 10%Pa
Initial temperature:1273K
Initial mass density:5.06kg/m3
Initial chemical components: N2(57.26%)
+C02(18.69%)
+CO(16.82%)+ C(0.0053%)
+ ASH(0.0056%)

Temperature BC at Wall

Transfer condition, Tw=308K. htc=10.0

CPU Time per Step: 3 sec when using 9216 CPU (1152 nodes)

About 1 M elements
(About 0.24 M nodes)
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' Coupling between 3D Thermal Conduction in Vessel and
1D Convection & Diffusion in Cooling Pipes

3D thermal conduction

* finite element method
* implicit time integration
* large-scale analysis

Surface nodes of 3D finite elements on pipe

Heat flux on pipe surface

l

Source term of 1D analysis

—

Partitioned coupling scheme

—

Heat flux given by
heat transfer B.C.

1D cooling pipe model

* local discontinuous
Galerkin (LDG) method

» explicit time integration
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Multiscale and Multiphysics Simulations of _

CRIEPI’s Coal Gasification Plant Including Reaction

ﬁ:on]bustlon, Gasification, Particle Tracing, Slug _
elting) — Thermal Conduction — Cooling — Deformation

temperature
0

Vessel
k;I (Thermal
Conduction,
Deformation)

4

% Combustor
(Conbustiong
Gasification, :

w 2300.000

X
M 300.000

Two-way
Coupling

Combustion
Temperature o

" Vessel
“o0 Temperature

X LX L‘x x y

Fluid Model Coupling Surface Structure Model fr \
. . FFR-Comb REVOCAP_Coupler ADVENTURE ' . 4
Cooling Pipes (FVM, LES) (Parallel Coupling) (FEM) il Combusti
(Convection-Diffusion)  1.19M elements 0.63M fluid nodes 1.56M elements Combustion ~ ~OMPuStion

At=10° 0.24 Structure nodes At=102  CO distribution Slug Melting




Parallel Two-way Coupling of FFR-Comb &
REVOCAP_Coupler & ADVENTURE on the K computer

Actual, Large-scale,

Utilization of Multiple Complex shaped

Independent Parallel Solvers Pre, Post Processors

General-purpose

unication

Exchange of
physical Values

Parallel Coupler High Parallel Efficienc

Socket communication=»MPI Socket communication=»MPI
(Socket version) (MPI version)

Analysis Solid CPU Time Time for CPU Time for |  CPU Time for |CPU Time for|  Time for
Case Subdomains | Time Steps| (hrs) Pre-process | Flow Analysis Thermal Others Output (s)
%1 (s) (s/step) Cont_juctlon (s/step)
Analysis(s/step)
1 128 5000 19 1501.5 260 7 0.11 107.0
2 2048 | 15000 | 25 %2  2856.8 |C 2.68 ) C 0.66 O | 0.13 Y 219.2

Subdomains in Flow Region : 9216 (9216cores(1152nodes))
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Sub Issue C

Multiscale and Multiphysics Simulations of
Offshore Wind Farm to Evaluate Power
Generation Efficiency and Accumulated
Fatigue Damages of Blades
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! Wind Turbine of NREL 5MW

Rotor Operation  Upwind
Number of Blades 3
Rotor Diameter 126 m

Hub Diameter 3m
Hub Height 90 m
Tip Speed 80 m/s

Tip Speed Ratio 7.0
In Benchmark Test

J. Jonkman, S. Butterfield, W. Musial, G. Scott, “Definition of a 5SMW Reference
Wind Turbine for Offshore System Development”, NREL/TP-500-38060, (2009)




| Various Nonlinear Fluid Dynamics Phenomena

_ Effect of Nacelle and Tower onto Wake -
B Meandering of Wake

M Interaction among Turbines via Wakes

Ml Effect of Peeling Flow from Nacelle and Tower
onto Wake

M Effect of Wake onto Power Generation

Efficiency and Structural Reliability

= Key Issues in Site Selection, Optimum Design

and Arrangement, Operation Cost Reduction

Effect of tower and nacelle on the flow past a wind turbine
by using RIAM-COMPACT

Wake Meandering Wake Interaction

Turbine AV04 experiences meandering single wake from AV10.

59878 AV04 19th August 2013
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Actuator Line Modeling of Wind Turbine Side View
Lidar Scanning (PPI: Plan Peripheral Indicator) at Alpha Ventus Offshore Wind Farm Wakes by using RIAM-COMPACT




|Multiscale and Multiphysics Simulations of Offshore
Wind Farm for Evaluation of Power Generation Efficiency
and Fatigue Damages of Blades

Precise Comparison
on Wake Effect

Frame - 995
Time : 199.60

Instantaneces flow fiakd >

Computad wsing RIAM-COMPACT(R) LES model

RIAM-COMPACT for HPC ?‘

-Simultaneous Analyses for :.,“i
16(24) Wind Directions )
by Parallel LES Analyses

-Engineering Wake Model
-Hundreds M to B Elements :l>

| Two-way Coupling
Blade’s Deformation
Sl (—LES Analysis)

f

FFB : LES-based Simulation T——
of Tandem-placed Large-scale

Wind Turbines REVOCAP_Coupler

-Over 10 B Elements

*Wall Model e

One-way Coupling :‘> ADVENTURE_Solid:

-Analysis of Accumulated Fatigue
Fluid Loading acting to Blades Damage of Blade consisting of
Orthogonal Anisotropic Laminated
Solid Elements



' Off-line One-way Couplinginalyses of NREL5MW Blade

CFD Results (FFB on K computer)
4 (Abstraction)

Time Variations of Fluid Loading

Distributions on the Surface of Blade

N4

REVOCAP_Coupler

Mapping of the above Fluid Loading
onto the Surface of Blade Mesh

» ADVENTURE_Solid
Dynamic Stress Analyses
of Blade Structure

Analyses of Accumulated
Fatigue Damage

Blade Region 1
Buffer Region 1-2

Displacement Z

E(‘).0009+0l3

45
3
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0.0009+Oj- 7

tantaneous Ffow Field in the
direction of main stream




|Example of Evaluation of Accumulated Fatigue Damage
Evaluation

Time Variation and Spatial Distribution
of Fluid Loading by FFB on K

Atmospheric Boundary Layer, Turbulence, Wake

Time Variation and Spatial Distribution of Stress in
Blade by ADVENTURE_Solid

Rainflow Counting+Goodman Diagr
Cumulative Fatigue Damage in Blade

A
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+S-N Curve-+Yeary Wind Historysy

LE Panel

Spar Cap

Shear Web

TE Panel

30.0 m span”_

TE Reinforcement 25 Material Groups
Trailing Edge (TE) Hex Laminated Solid
Element

Total Elements: 289,202

Total DOFs:484,461

7.1 m span

1.0m an

T Margemen

Relatively Larger
Damage of Fatigue




FLAGSHIP 2020 Project
Social & Scientific Priority Issues to be Tackled by
Using post-K computer
;.. Priority Issue 6
Accelerated Development of Innovative Clean Energy Systems
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Thank you for your attention !
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