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National Strategic Computing Initiative (NSCI)

“The NSClI is a whole-of-government effort designed to create a cohesive, multi-agency strategic vision and Federal investment strategy, executed in
collaboration with industry and academia, to maximize the benefits of HPC for the United States.” — Executive Order, July 2015

NSCI

e The NSCI Strategic Plan calls out five objectives:
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Accelerate delivery of a capable exascale computing system delivering approximately 100 times the performance
of current systems across a range of applications;

Increase coherence between the technology base used for modeling and simulation (M&S) and that used for
data analytic computing (DAC);

Establish a viable path forward for future HPC systems even after the limits of current semiconductor technology
are reached (the "post-Moore's Law era");

Increase the capacity and capability of an enduring national HPC ecosystem; and

Develop an enduring public-private collaboration to ensure that the benefits of the research and development
advances are shared among government, industrial, and academic sectors.
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DOE Exascale Program: The Exascale Computing Initiative (ECI)

US DOE Office of Science (SC) and National
Nuclear Security Administration (NNSA)

Exascale

Selected program Computing
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° ;‘;?,;'3';,‘:;,‘5“ Project Accelerate R&D, acquisition, and deployment to

(Bﬁﬁ,S%S, (ECP) deliver exascale computing capability to DOE

national labs by the early- to mid-2020s

Delivery of an enduring and capable exascale
Exascale system ! - g
procurement projects & computing capability for use by a wide range
facilities of applications of importance to DOE and the US
ALCF-3 (Aurora)
OLCF-5 (Frontier)
ASC ATS-4 (El Capitan)
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ECP by the Numbers

7 A seven-year, $1.7 B R&D effort that launched in 2016
YEARS

$1.7B

5 Six core DOE National Laboratories: Argonne, Lawrence
CORE DOE Berkeley, Lawrence Livermore, Oak Ridge, Sandia

LABS  Staff from most of the 17 DOE national laboratories take part
in the project

FOéUS Four focus areas: Hardware and Integration, Software Technology,

AREAS Application Development, Project Management

100
R&D TEAMS More than 100 top R&D teams

1000 Hundreds of consequential milestones delivered on
MESI=REO =R schedule and within budget since project inception
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Department of Energy (DOE) Roadmap to Exascale Systems

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!] First U.S. Exascale Systems
2012 2016 2018 2020 2021-2023
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ECP Industry Council Members
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ECP applications target national problems in 6 strategic areas

National security Energy security Scientific discovery Earth system Health care
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electromagnetics low-emission

simulation of hostile

combustion engine
environment and

and gas turbine

virtual fligh_t testing for design
hypersonic re-entry | niaterials design for
vehicles SsdETE

environments of
nuclear fission
and fusion reactors

Design and
commercialization
of Small Modular
Reactors

Subsurface use
for carbon capture,
petroleum extraction,
waste disposal

Scale-up of clean
fossil fuel combustion

Biofuel catalyst
design

Additive
manufacturing
of qualifiable
metal parts

Reliable and
efficient planning
of the power grid

Seismic hazard
risk assessment

Urban planning

Find, predict,
and control materials
and properties

Cosmological probe
of the standard model

of particle physics

Accurate regional
impact assessments
in Earth system
models

Stress-resistant crop
analysis and catalytic

Accelerate
and translate
cancer research

Validate fundamental conversion
laws of nature of biomass-derived
alcohols

Demystify origin of
chemical elements
Light source-enabled

analysis of protein
and molecular

Metagenomics
for analysis of
biogeochemical
cycles, climate

_ change,
structure and design environmental
Whole-device model remediation

of magnetically
confined fusion
plasmas

\
EXASCALE
\) —) COMPUTING

PROJECT




Common Challenges
1) Optimization for accelerator-based architectures
2) Exposing additional parallelism
3) Coupling codes to create new multiphysics capability
4) Adopting new mathematical approaches
5) Algorithmic or model improvements

6) Leveraging optimized libraries
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Co-Design

Develop efficient exascale libraries that address computational motifs common to multiple application projects

Advance understanding of the constraints, mappings, and configuration choices that determine
interactions of applications, data analysis and reduction, and exascale platforms

Create co-designed numerical recipes for particle-based methods that meet application
team requirements within design space of STs and subject to constraints of exascale platforms

Build framework to support development of block-structured adaptive mesh refinement
algorithms for solving systems of partial differential equations on exascale architectures

Develop next-generation discretization software and algorithms that will enable
a wide range of finite element applications to run efficiently on future hardware

Develop methods and techniques for efficient implementation of key combinatorial (graph) algorithms

Target learning methods to aid application and experimental facility workflows: deep neural networks
(RNNs, CNNs, GANSs), kernel & tensor methods, decision trees, ensemble methods, graph models,
reinforcement learning

Improve the quality of proxy applications created by ECP and maximize the benefit
received from their use. Maintain and distribute ECP Proxy App Suite.
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Exascale Software Infrastructure

Example Products Engagement

MPI — Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards.
OpenMP/OpenACC —On-node parallelism Explore/develop new features and standards.

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors.

PAPI, TAU, HPCToolkit — Perf Tools Explore/develop new features.

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies.
|O: HDF5, MPI-IO, ADIOS Standard and next-gen 10, leveraging non-volatile storage.
Viz/Data Analysis ParaView-related product development, node concurrency.

Key theme: Exploration/development of new algorithms/software for emerging HPC capabilities:
* High-concurrency node architectures and advanced memory & storage technologies.
 Enabling access and use via standard APIs.

« The next generation of capabilities that the HPC community will need.
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ECP Software Stack

Data & Visualization
Applications Co-Design
4 N ( " N )
Prolar;\drrelgmg Mathematical Embedded Data & Development
SrEs Libraries Visualization Tools
N\ AN . VAN _J
(" )
Software Ecosystem & Delivery

_ _J

< Hardware interface

11

S

4

\\ ) EXASCALE
) COMPUTING
PROJECT



ECP’s Math SDK (xSDK)

Key interactions with apps, packages, Spack

[ e e 1
otation: A= B | ECP AD Multiphysics Applicat | xSDK functionality, Nov 2017
A can use B to provide : ultipnysics Application : X unctionality, NOV
functionality on behalf of A I — !

: Aoplication A Abpli -~ tion B ! Tested on key machines at ALCF,

1| 7PP pplication | NERSC, OLCF, also Linux, Mac OS X

SUNDIALS ‘
xSDK

O @ Spack

More domain
components More contributed

libraries MAG MA:
PLASMA
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Many ECP ST products are available (many github sites)
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ECP’s Flow of Product Delivery and Deployment

Software
projects

ADIOS,
ATDM, LLVM,
Kokkos,
RAJA, Legion,
Trilinos, . . .

Contribution
complies
with SDK

specifications

Development
Kits (SDKs)

HPC and scientific community

Software

APls

Software
R&D

Applications

Integration of
ST products
via SDK

Software
integration

Apps
integration

Communication and release: GitLab, openHPC, workshops, conferences, publications, . . .

Systems
Aurora
Frontier

El Capitan

Pre-Exascale
systems

Software
deployment

Ty
\\ EXASCALE

jr— ) —) COMPUTING
\ PROJECT
S




15

ECP Progress Report

We are currently “on track” for meeting our key performance parameters (> 50x on applications)

25 application teams actively engaged in targeted development and capability enablement for 2+ years
» Apps have well-defined exascale challenge problem targets with associated “science work rate” goals

* Initial performance experiences on pre-exascale systems (Summit, Sierra) exceeding expectations

» Regular capability assessment of software stack products ensures line-of-sight to apps and HPC Facilities
» Software product impact goals and metrics defined and being measured regularly

 Plans for broad containerized delivery of products via Software Development Kits (SDKs) being executed

» Return on PathForward vendor hardware R&D element evident in recent exascale RFP responses
 Plans for deployment and continuous integration of SDKs into DOE HPC Facilities being executed

* Prioritized performance engineering of applications targeting first three exascale systems underway
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Aurora (A21) The Argonne Exascale System a

Architecture supports three types of computing
* Large-scale Simulation (PDEs, traditional HPC)
* Data Intensive Applications (scalable science pipelines)
* Deep Learning and Emerging Science Al (training and inferencing)




Targets for Exascale Computers

Big Data Applications

APS Data Analysis
HEP Data Analysis
LSST Data Analysis
SKA Data Analysis
Metagenome Analysis
Battery Design Search
Graph Analysis

Virtual Compound
Library

Neuroscience Data
Analysis

Genome Pipelines

Deep Learning Applications

Drug Response Prediction

Scientific Image
Classification

Scientific Text
Understanding

Materials Property Design

Gravitational Lens
Detection

Feature Detection in 3D
Street Scene Analysis
Organism Design

State Space Prediction
Persistent Learning

Hyperspectral Patterns
17



Targets for Exascale Computers

Big Data Apblications

APS Data Analysis
HEP Data Analysis
LSST Data Analysis
SKA Data Analysis
Metagenome Analysis
Battery Design Search
Graph Analysis

Virtual Compound
Library Generation

Neuroscience Data
Analysis

Genome Pipelines

Jeep Learning Applications

Drug Response Prediction

Scientific Image
Classification

Scientific Text
Understanding

Materials Property Design

Gravitational Lens
Detection

Feature Detection in 3D
Street Scene Analysis
Organism Design

State Space Prediction
Persistent Learning

Hyperspectral Patterns
18



Projection of Junction Tree autoencoder space

Integration of Simulation and Al/ML

* Steering of simulations and Planning ahead
* ML/RL making decisions what to do next

* Embedding ML into Simulation
* Replacing explicit functions/kernels with learned models
* Trading accuracy for speed/power improvements +7% for 2x ?

* Tuning or Customization of Kernels and Parameters
* Customization of force fields in MD simulations (most accurate H,O sim)

e Function/Property association
* VAE to map latent representation to properties and generating candidates

e Student Teacher Model for Learning
* Augment training data with simulation generated ground truth



Al at Argonne: Broad Sp
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Expanding Leadership Computing Reach

Reactive Mesoscale Simulations
of Tribological Interfaces

PI: S. Sankaranarayanan, Argonne

Insight to the complex processes that make oils, coatings,
electrodes, and other electrochemical interfaces
effective. Using Mira, this team discovered a self-healing,
anti-wear coating that drastically reduces friction. Their
findings are being used to virtually test other potential
self-regenerating catalysts.
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Large-Scale Computing on the Connectomes of the
Brain

Pl: D. Gursoy, Argonne

3D reconstructions of high-resolution imaging will
provide a clearer understanding of how even the smallest
changes to the brain play a role in the onset and
evolution of neurological diseases, such as Alzheimer’s
and autism, and perhaps lead to improved treatments or
even a cure.

o

CANCcer Distributed Learning Environment (CANDLE)

Pl: R. Stevens, Argonne

CANDLE is tackling the hardest deep learning problems in
cancer research. Its first architecture release for large-
scale model hyperparameter exploration uses
representative problems--coded as deep learning
problems--at the core of the predictive oncology
challenge. Future data parallelism work will allow the
training of a single model across several nodes.
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CANDLE Goal

Enable the most challenging deep learning
problems in cancer research to be pursued on the
most capable supercomputers in the DOE

°ENERGY [5)) NATIONAL CANCER IN STITUTE



Machine Learning In
Cancer Research

Cancer Susceptibility

Cancer Detection and Diagnosis
Cancer Recurrence

Cancer Prognosis and Survival
Cancer Classification and Clustering
Cancer Drug Response Prediction
Cancer Genomics Analysis

Cancer Medical Records Analysis
Cancer Biology

Deep Learning in Cancer = many Methods

* AutoEncoders — learning data representations for

classification and prediction of drug response, molecular
trajectories

* VAEs and GANs — generating data to support methods

development, data augmentation and feature space
algebra, drug candidate generation

* CNNs, Attention — type classification, drug response,

outcomes prediction, drug resistance

* RNNs - sequence, text and molecular trajectories analysis




CANDLE: Deep Learning Meets HPC

Exascale Needs for Deep Learning
 Automated Model Discovery

* Hyper Parameter Optimization
e Uncertainty Quantification

* Flexible Ensembles

e Cross-Study Model Transfer

* Data Augmentation

e Synthetic Data Generation

e Reinforcement Learning

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
10,000
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CANDLE Project Components

* CANDLE Python Library — make it easy to run on DOE Big Machines,
scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis

 CANDLE Benchmarks — exemplar codes/models and data
representing the three primary challenge problems

* Runtime Software — Supervisor, Reporters, Data Management, Run
Data Base

 Tutorials — Well documented examples for engaging the community

* Contributed Codes — Examples outside of Cancer, including Climate
Research, Materials Science, Imaging, Brain Injury

* Frameworks — Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
e LL Libraries — CuDNN, MKL, etc. (tuned to DOE machines)



Personalized CancerTherapy ¢
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Drug Response is specific to Cancer type and
specific genetic variance in each tumor
|
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Fig. 2. Heatmap for normalized IC50 values of 75 drugs (columns) on 624 cell lines (rows). (irccn means the most sensitive, red means the most resistant.
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Our Predictive Oncology Goal

A single model trained on data from
many cancer samples, many drugs
and that can predict drug response
across wide range of tumors and
drug combinations



Modeling Cancer Drug Response

Response

Drug Concentration in Log scale
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Performance

Why deep learning

Deep learning

Amount of data
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“Uno” Model Predictions with Dropout UQ (trained on ALMANAC)

Samples found in Cluster 1 or Cluster 2

All Samples colored by Sample ID
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CANDLE GitHub and FTP

* ECP-CANDLE GitHub Organization:
https://github.com/ECP-CANDLE

* ECP-CANDLE FTP Site:

* The FTP site hosts all the public datasets for the benchmarks
http://ftp.mcs.anl.gov/pub/candle/public/



https://github.com/ECP-CANDLE
http://ftp.mcs.anl.gov/pub/candle/public/

Summary: DL Cancer Drug Response

* Can we build models that are predictive of drug response?

* Yes — demonstrated with cross validation between cell line studies

What features to use to represent drugs and tumors?

e tumors: transcripts, SNPs, drugs: descriptors, latent space (embeddings)

Are our models competitive with models from others?

* Yes — we have achieved and advanced state-of-the-art

Can we build models that generalize across studies?

* Yes — drug diversity and scale of study is important

How much data do we need to train drug response models?

e ~50K-100K high-quality dose independent samples maybe sufficient

Are models trained on cell lines predictive for PDX models?

* Indications are positive — achieving > 0.30 spearman rank correlation

* Likely but only after sufficient data scale and error rate has been achieved

eENEﬁGY () NATIONAL CANCER INSTITUTE

UnoMT Multitask Deep Learning Cross-Study
Best out of Study R2=0.61

Table 6. Best cross study validation results with a 3-task UnoMT

Testing set
NCI60 CTRP GDSC CCLE gCsl N/T CatAcc| Site Acc | Type Acc
OTRP | yie 20 | wAc-s27 | MAE=344 | MAE =203 | wAE=zas | °0SS% | see2% | sesew
Training set | GDSC Miz;oéfo M:ZE:?S'S’ MTEZ";?Z M12E==oé§l.]8 MTE:"Z'Z‘_’Z 99.43% | 96.93% | 96.97%
e
COLE | yap o369 | MAE=392 | MAE=389 | MAE-254 | WAEcaez | °012% | 8638% | se3e%

MAE = Mean Absolute Error (in

percent growth)

Active Learning Simulation

225,481
! 395,264

Will active learning improve the learning curves for drug response models?
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Conclusion and Summary

* The US Exascale Computing Initiative is on track

* First US Exascale Systems will be deployed in 2021
* Wide range of applications and software is under development

* Al (ML/DL) is growing in importance in HPC
* Our Exascale machines will be well suited for Al problems
 The DOE labs have growing Al portfolios, key software is being built

* Health care applications (Cancer, Brain Injury, etc.) are driving investment
and innovation from DOE in Al on HPC

 CANDLE project is supporting Cancer and other areas
* Deep Learning is an HPC and Exascale problem

* Progress on building DL models for Precision Oncology
* Drug response prediction is one target where deep learning is having impact
* Population level studies and Cancer biology are also targets
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