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Smart cities

• Controlling cities based 
on real-time data for 
higher efficiency

• Computer modeling via 
high-performance 
computing is expected as 
key enabling tool

• Disaster resiliency is 
requirement; however, 
not established yet
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Example of highly dense city: Tokyo 

Station district
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Fully coupled aboveground/underground 

earthquake simulation required for resilient 

smart city



Earthquake modeling of smart cities
• Unstructured mesh with implicit solvers required for urban earthquake 

modeling
• We have been developing high-performance implicit unstructured finite-element solvers 

(SC14 & SC15 Gordon Bell Prize Finalist, SC16 best poster)

• However, simulation for smart cities requires full coupling in super-fine 
resolution

• Traditional physics-based modeling too costly
• Can we combine use of data analytics to solve this problem?
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SC14, SC15 & SC16 solvers: 

ground simulation only Fully coupled ground-structure simulation with underground structures



Data analytics and equation based 
modeling

• Equation based modeling
• Highly precise, but costly

• Data analytics
• Fast inferencing, but accuracy not as high

• Use both methods to complement each other
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Phenomena

Data analytics Equation based modeling



Integration of data analytics and equation 
based modeling
• First step: use data generated by equation based modeling for 

data analytics training
• Use of high-performance computing in equation based modeling 

enables generating very large amounts of high quality data
• We developed earthquake intensity prediction method using this 

approach (SC17 Best Poster)
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Phenomena

Data analytics 

(with better 

prediction)

Equation based 

modeling
Simulated 

data for 

training

SC17 • SC14: equation based modeling

• SC15: equation based modeling

• SC16: equation based modeling

• SC17: equation based modeling for AI



Integration of data analytics and equation 
based modeling

• We extend this concept in this paper: train AI to accelerate 
equation based modeling
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Phenomena

Data 

analytics
Equation based 

modeling

(25-fold speedup 

from without AI)

AI for accelerating 

equation based 

solver

SC18

• SC14: equation based modeling

• SC15: equation based modeling

• SC16: equation based modeling

• SC17: equation based modeling for AI

• SC18: AI for equation based modeling



a) Overview of city 

model c) Close up view of city model

b) Location of underground structure d) Displacement response of city
e) Displacement response 

of underground structure

Earthquake modeling for smart cities

• By using AI-enhanced solver, we enabled fully coupled ground-
structure simulation on Summit
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Difficulties of using data analytics to 
accelerate equation based modeling
• Target: Solve A x = f

• Difficulty in using data analytics in solver
• Data analytics results are not always accurate
• We need to design solver algorithm that enables robust and cost 

effective use of data analytics, together with uniformity for 
scalability on large-scale systems

• Candidates: Guess A-1 for use in preconditioner
• For example, we can use data analytics to determine the fill-in of 

matrix; however, challenging for unstructured mesh where sparseness 
of matrix A is nonuniform (difficult for load balancing and robustness)

➡ Manipulation of A without additional information may be difficult…
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Designing solver suitable for use with AI

• Use information of underlying governing equation
• Governing equation’s characteristics with discretization conditions 

should include information about the difficulty of convergence in solver

• Extract parts with bad convergence using AI and extensively solve 
extracted part
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Phenomena

Data 

analytics

Governing equation

A x = f

Equation based modeling

Discretization



Solver suitable for use with AI

• Transform solver such 
that AI can be used 
robustly

• Select part of domain to 
be extensively solved in 
adaptive conjugate 
gradient solver

• Based on the governing 
equation’s properties, 
part of problem with bad 
convergence is selected 
using AI
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Adaptive Conjugate Gradient iteration

(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)

Approximately solve Ac zc = rc

PreCGc
part (1st order tetrahedral mesh)

Approximately solve Acp zcp = rcp

PreCG (2nd order tetrahedral mesh)

Approximately solve A z = r
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Use zc as initial solution

Use zcp as initial solution

Use z for search direction

AI preconditioner – use to roughly solve A z = r



How to select part of problem using AI

• In discretized form, governing equation becomes function of 
material property, element and node connectivity and 
coordinates

• Train an Artificial Neural Network (ANN) to guess the degree of 
difficulty of convergence from these data

1212Whole city model Extracted part by AI (about 1/10 of whole model)



Performance of AI-enhanced solver on K computer

• FLOP count decreased by 5.56-times from PCGE (standard solver; Conjugate 
Gradient solver with block Jacobi preconditioning) and 1.32-times from SC14 
Gordon Bell Prize finalist solver (with multi-grid & mixed-precision arithmetic)
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Porting to Piz Daint/Summit

• Communication & memory bandwidth relatively lower than K 
computer

• Reducing data transfer required for performance
• We have been using FP32-FP64 variables
• Transprecision computing is available due to adaptive preconditioning

K computer Piz Daint Summit

CPU/node 1×SPARC64 VIIIfx 1×Intel Xeon E5-2690 v3 2×IBM POWER 9 

GPU/node - 1×NVIDIA P100 GPU 6×NVIDIA V100 GPU

Peak FP32 

performance/node

0.128 TFLOPS 9.4 TFLOPS 93.6 TFLOPS

Memory bandwidth 512 GB/s 720 GB/s 5400 GB/s

Inter-node throughput 5 GB/s 

in each direction

10.2 GB/s 25 GB/s



Introduction of FP16 variables

• Half precision can be used for reduction of data transfer size

• Using FP16 for whole matrix or vector causes overflow/underflow 
or fails to converge

• Smaller exponent bits → small dynamic range

• Smaller fraction bits → no more than 4-digit accuracy

S e x p o n e n t f r a c t i o n
Single precision

(FP32, 32 bits)

1bit sign + 8bits exponent + 23bits fraction

S e x p f r a c t i o n
Half precision

(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction



FP16 computation in Element-by-Element method

• Matrix-free matrix-vector multiplication 
• Compute element-wise multiplication
• Add into the global vector

• Normalization of variables per element can be performed
• Enables use of doubled width FP16 variables in element wise computation
• Achieved 71.9% peak FP64 performance on V100 GPU

• Similar normalization used in communication between MPI partitions 
for FP16 communication

f = Σe Pe Ae Pe
T u

[Ae is generated on-the-fly]

Element-by-Element

(EBE) method
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Introduction of custom data type: FP21

• Most computation in CG loop is memory bound
• However, exponent of FP16 is too small for use in global vectors

• Use FP21 variables for memory bound computation
• Only used for storing data (FP21×3 are stored into 64bit array)
• Bit operations used to convert FP21 to FP32 variables for computation

S e x p o n e n t f r a c t i o n

S e x p o n e n t f r a c t i o n

Single precision

(FP32, 32 bits)

(FP21, 21 bits)

1bit sign + 8bits exponent + 23bits fraction

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o n
Half precision

(FP16, 16 bits)

1bit sign + 5bits exponent + 10bits fraction



Performance on Piz Daint/Summit
• Developed solver demonstrates higher scalability compared to previous solvers

• Leads to 19.8% (nearly full Piz Daint) & 14.7% (nearly full Summit) peak FP64 performance
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Summary and future implications

• New algorithms are required for accelerating equation based 
simulation by data analytics

• We accelerated earthquake simulation by designing a scalable solver 
algorithm that can robustly incorporate data analytics

• Combination with FP16-FP21-FP32-FP64 transprecision
computation/communication techniques enabled high performance on 
recent supercomputers

• Idea of accelerating simulations with data analytics can be 
generalized for other types of equation based modeling

• We plan to expand on this idea, together with transprecision computing 
for application development on Post-K computer
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