Beating heart simulation driven by three dimensional molecular dynamics model

Takumi Washio (UT-Heart Inc.) Ryo Kanada (RIKEN) Xiaoke Cui (UT-Heart Inc.) Seiryo Sugiura (UT-Heart Inc.) Yasushi Okuno (Kyoto Univ.) Toshiaki Hisada (UT-Heart Inc.)

Heart + Cell + Motor proteins FEM FEM MonteCarlo

Multiscale Challenge on K-computer (2012)

Model size

macro	#myocardial elements	659456
micro	#myofibril elements of a cell	5796
	NDOF of a cell	49245
	NDOF of a z disk	230
	#motor proteins	160

Performance

	Pflop/s			Pflop/s % of peak		
model\#nodes	20736	41472	82944	20736	41472	82944
49KDOF	0.72	1.39	2.74	28.10	27.43	27.72

 $IIB \quad Coronary \ Circulation$ $\sum_{C(K,I)=C} \overline{\eta}_{K} (\overline{\mu}_{C} - \overline{\mu}_{C(K,J)}) = 0, \ \forall C \quad (c)$ $\sum_{c(k,j)=c} \left(\frac{\pi}{4} D_{kj} \dot{D}_{kj} L_{k} + \eta_{k} (\mu_{c} - \mu_{c(k,j)}) \right) = 0, \ \forall c \ (d)$ $D_{i}(t) = \beta \cdot ((\mu_{i}(t) - \overline{p}_{m}(t)) - (\mu_{i}^{*} - \overline{p}_{m}^{*})) + D_{i}^{*} \ (e)$ $\Delta V_{cap} = \overline{\omega} \frac{\pi}{8} \sum_{k} L_{k} \sum_{i=1}^{2} \left(D_{kj}^{2} - D_{kj}^{0} \right)^{2}$ (f)

IIA Macroscopic Muscle and Blood

Conventional Multiscale Approach

Heart – Sarcomere Coupling Model

Application: Prediction of post-operation

Pressure 100 Pre -75 50 - 25 Mixture of arteria **High pressure Energy consumption** and venous bloods Pressure 100 Post -75 50 25 **Energy saving** Load reduction **Improvement of SPO2** (RV energy consumption) (RV blood pressure)

Research directions for Post-K : from 1d MC to 3d MD

1D Monte Carlo Load dependent state Transition

3D Molecular Dynamics **Post-K** Deformation potentials Super Coarse grained (UT-Heart Inc.) Focusing on 3D sarcomere structure

Κ

Cafemol (Takada Lab., Kyoto Univ.) Focusing on inside of the molecular motor

Switch the potentials at the state transitions

Thin filament (modeled by a rigid bar)

Preliminary test using Cafemol-Ring Coupling model

Micro-Macro interaction through the thin filament sliding

Behavior of the molecular motor under physiological condition

Verification of Pocket Deformation Feedback Model

Contour of the pocket deformation of the basic model

Verification of Pocket Deformation Feedback Model

Benefits of the feedback mechanism

- 1. 3% increase of blood ejection
- 2. 10% reduction of ATP consumption

Coupling technique : Efficiency & Stability

- 1. Reduction of communication overheads by the multiple time step method
- 2. Stability by taking the active stiffness

Coupling technique : Efficiency & Stability

- 1. Reduction of communication overheads by the multiple time step method
- 2. Stability by taking the active stiffness

Coupling technique : Efficiency & Stability

- Reduction of communication overheads by the multiple time step method 1.
- 2. Stability by taking the active stiffness

Strain in the fiber direction

Concluding Remarks

We constructed a multiscale platform that enables us to analyze the stochastic dynamics of motor proteins under the condition : that is generated by the protein motors themselves that can't be made from artificial boundary conditions

Big data & Al

- Huge numerical simulation data of the molecular behavior
- Seeking correlations between the functional parts in the protein motors
- Optimization of parameters of numerical models

