

The 1st R-CCS International Symposium, Feb 18-19, 2019, Kobe, Japan

Revealing Drug-Target Binding Pathway using Two-dimensional Replica-Exchange Molecular Dynamics Method

Suyong Re, Hiraku Oshima, Kento Kasahara, Motoshi Kamiya, and Yuji Sugita

Laboratory for Biomolecular Function Simulation RIKEN Center for Biosystems Dynamics Research (BDR)

Priority Issue 1 – Building innovative drug discovery infrastructure through functional control of biomolecular systems (Sub-issue A: MD advancement and algorithms for the post-K) by MEXT

Molecular Dynamics, MD Simulation For analyzing biomolecular dynamics and functions

Nobel Prize in Chemistry 2013 M. Karplus, M. Levitt, and A. Warshel "Development of multiscale models for complex chemical systems".

Evolution of MD Simulation

Toward more realistic modeling, and longer timescale

(Slide from Dr. C. Kobayashi)

GENESIS

Generalized-ensemble simulation system

Highly scalable Enhanced sampling General purpose

Leader: Y. Sugita

Main developers: C. Kobayashi, J. Jung, Y. Matsunaga, T. Mori, T. Ando, K. Tamura, M. Kamiya

This is free software under GPLv2 License. https://www.r-ccs.riken.jp/labs/cbrt/ Current version: 1.3.0

J. Jung, T. Mori et al. WIREs Comput. Mol. Sci. 5, 310-323 (2015)

Computational Drug Discovery

From "Docking" to "Binding"

Static shape complementarity

Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314:141-151 (1999)

2D-REMD for Ligand Binding

Enhanced sampling of ligand-binding events

Multidimensional REMD: Y. Sugita, A. Kitao, and Y. Okamoto, J. Chem. Phys. 113: 6042-6051 (2000), MREM, REUS, H. Fukunishi, O. Watanabe, and S. Takada, J. Chem. Phys. 2002, 116 (20), 9058–9067, H-REMD First application: H. Kokubo et al. J. Comput. Chem. 34:2601-2614 (2013)

Src Kinase – Inhibitor Binding A key signaling kinase in cancer process

ATP competitive inhibitor design based on the X-ray structure is limited

Only a part of whole functional interactions is given.

Thr338A Lys295A

Lys295A

Leu393A

Val281A

Three Essential States

Bound, TS, Encounter, Unbound states

gREST/REUS simulations provide atomic-level details of these states, we will discuss them in the presentation.

Take-Home Message

MD simulations using enhanced sampling techniques as gREST/REUS can provide the information of **multiple bound poses, multiple intermediates, and multiple pathways** in protein-ligand bindings with high statistical accuracy.

The binding pathway information **provides the functional interactions that cannot be seen in the X-ray structures**, exploring new deign principle.

GENESIS on K and post-K computers would be a promising tool for next-generation drug discovery.

Acknowledgement

RIKEN Center for Biosystems Dynamics Research (BDR) Laboratory for Biomolecular Function Simulation

Dr. Yuji Sugita – Team leader Dr. Hiraku Oshima Dr. Kento Kasahara Dr. Motoshi Kamiya (IMS) Dr. Ai Niitsu (RIKEN Wako) Prof. Michael Feig (MSU, USA)

<u>About GENESIS usage</u> Dr. Jung Jaewoon Dr. Chigusa Kobayashi

Priority Issue 1 – Building Innovative drug discovery infrastructure through functional control of biomolecular systems (Sub-issue A: MD advancement and algorithms for the post-K)

Computational resources: K computer (Project ID: hp170254), FX10 in University of Tokyo (Project ID: hp170115) by HPCI system, and HOKUSAI (Project ID: G17016) by RIKEN Advanced Center for Computing and Communication.

Thank you for your attention!