

Post-K Development

Yutaka Ishikawa Project Leader, Flagship 2020 RIKEN Center for Computational Science

Post-K

- A Post-K prototype machine was built in Summer 2018. Since then, Fujitsu has been testing and evaluating the machine.
- Ten racks of Post-K achieve almost the same performance of K computer (864 racks)

X 10 =

		Post-K	K
CPU Architecture		A64FX (Armv8.2-A SVE +Fujitsu Extension)	SPARC64 VIIIfx
	Cores	48	8
7	Peak DP performance	2.7+ TF	0.128 TF
Node	Main Memory	32 GiB	16 GiB
(D	Peak Memory Bandwidth	1024 GB/s	64 GB/s
	Peak Network Performance	40.8 GB/s	20 GB/s
Rack	Nodes	384	102
каск	Peak DP performance	1+ PF	< 0.013PF
Process Technology		7 nm FinFET	45 nm

An Overview of Post-K Hardware

- 150k+ node
- Two types of nodes
 - Compute Node and Compute & I/O Node connected by Fujitsu TofuD, 6D mesh/torus Interconnect
- 3-level hierarchical storage system
 - 1st Layer
 - One of 16 compute nodes, called Compute & Storage I/O Node, has SSD about 1.6 TB
 - Services
 - Cache for global file system
 - Temporary file systems
 - Local file system for compute node
 - Shared file system for a job
 - 2nd Layer
 - Fujitsu FEFS: Lustre-based global file system
 - 3rd Layer
 - Cloud storage services

CPU A64FX

L1 Cache

(64KiB/4way)

L2 Cache

(8 MiB/16way)

57+ GB/s

115+ GB/s

Architecture	Armv8.2-A SVE (512 bit SIME	D)		
Core	48 cores for compute and 2/4 for OS activities			
	DP: 2.7+ TF, SP: 5.4+ TF, HP: 10.8+ TF			
Cache L1	64 KiB, 4 way, 230+ GB/s(load), 115+ GB/s (store)			
Cache L2	CMG: 8 MiB, 16way Node: 3.6+ TB/s Core: 115+ GB/s (load), 57+ GB/s (store)			
Memory	HBM2 32 GiB, 1024 GB/s			
Interconnect	TofuD (28 Gbps x 2 lane x 10 port)			
1/0	PCIe Gen3 x 16 lane	Core		
Technology	7nm FinFET	2.7 TF+ 512-bit SIMD 2x FMAs		
		230+ GB/s 115+ GB/s		

ғијітѕи А64FХ[™]

Courtesy of FUJITSU LIMITED

CMG (Core-Memory-Group) Core Core1 Core2 Core3 Core4 Core5 Core6 Core7 Core8 Core9 Core1 Core1 Core1 L2 Cache (8 MiB 16 way) Memory Controller 256GB/S Network on Chip

Performance

Stream triad: 830+ GB/s

Dgemm: 2.5+ TF (90+% efficiency)

ref. Toshio Yoshida, "Fujitsu High Performance CPU for the Post-K Computer," IEEE Hot Chips: A Symposium on High Performance Chips, San Jose, August 21, 2018.

TofuD Interconnect

- 6 RDMA Engines
- Hardware barrier support
- Network offloading capability

8B Put latency	0.49 – 0.54 usec
1MiB Put throughput	6.35 GB/s

rf. Yuichiro Ajima, et al., "The Tofu Interconnect D," IEEE Cluster 2018, 2018.

Post-K Programming Environment

- Programing Languages and Compilers provided by Fujitsu
 - Fortran2008 & Fortran2018 subset
 - C11 & GNU and Clang extensions
 - C++14 & C++17 subset and GNU and Clang extensions
 - OpenMP 4.5 & OpenMP 5.0 subset
 - Java
 - GCC, LLVM, and Arm compiler will be also available
- Parallel Programming Language & Domain Specific Library provided by RIKEN
 - XcalableMP
 - FDPS (Framework for Developing Particle Simulator)
- Process/Thread Library provided by RIKEN
 - PiP (Process in Process)

- Script Languages provided by Fujitsu
 - E.g., Python+NumPy, SciPy
- Communication Libraries
 - MPI 3.1 & MPI4.0 subset
 - Fujitsu MPI (Based on Open MPI), Riken MPI (Based on MPICH)
 - Low-level Communication Libraries
 - uTofu (Fujitsu), LLC(RIKEN)
- File I/O Libraries provided by RIKEN
 - pnetCDF, DTF, FTAR
- Math Libraries
 - BLAS, LAPACK, ScaLAPACK, SSL II (Fujitsu)
 - EigenEXA, Batched BLAS (RIKEN)
- Programming Tools provided by Fujitsu
 - Profiler, Debugger, GUI

Other Software

- Batch Job System (Fujitsu)
 - Technical Computing Suite
 - Successor of K's batch job system
- Operating System on Compute Nodes
 - Linux (Fujitsu)
 - McKernel, Light-weight Kernel (RIKEN)
 - Executes the same binary of Linux without any recompilation
 - One of advantages is that McKernel provides much larger page sizes
 - Applications, accessing a huge memory area randomly, may benefit
 - User may select one of McKernel configurations without rebooting

- Other User-Land
 - A Linux distribution
- Open Source Management Tools
 - Spack/EasyBuild

			McKernel Default 4K	McKernel Default 64K	Linux			
	.text		4K	64K	64K			
У	.data		64K,2M,32M, 1G	2M, 512M	2M			
	.bss		64K,2M,32M, 1G	2M, 512M	2M			
	Stack		64K,2M,32M, 1G	2M, 512M	2M			
	malloc		64K,2M,32M, 1G	2M, 512M	2M			
	thread stack		64K,2M,32M, 1G	2M, 512M	2M			
	Shared memory	System V IPC	64K,2M,32M, 1G	2M, 512M	64K			
		POSIX	4K	64K	64K			
		XPMEM	64K,2M,32M, 1G	2M, 512M	64K			

Concluding Remarks

- Post-K board, CMU, is displayed in the poster session room
- Poster presentations
 - Programming Environments
 - [50] Dynamic Multitasking in Upcoming XcalableMP 2.0
 - System Software
 - [53] Prototype Implementation of MPICH and Data Transfer Framework for Post-K Supercomputer
 - [54] Operating System and Runtime Enhancements for the Post-K Computer
 - [55] Enhancing MPI-IO with Topology-Awareness at the K computer
 - [56] Development of Scientific Numerical Libraries on post-K computer
- Post-K Information is available

https://postk-web.r-ccs.riken.jp/

