

Heidelberg Institute for Theoretical Studies

HPC for biomaterials: Why does it hurt to play soccer (and baseball)?

Frauke [フラウケ] Gräter, 02/2019

MOLECULAR (bio)mechanics – why?

Strain and fracture: force distribution

conventional design tools: force distribution

in constructions, cars ...

macroscopic structures: meters

Strain and fracture: force distribution

conventional design tools: force distribution

in constructions, cars ...

macroscopic structures: meters

new: force distribution in (bio)molecules

e.g. in collagen

microscopic structures:

~ 10⁻⁹ meters

in graphene

W. Stacklies, et al, PLoS Comp Biol, 2009 Costescu et al, BMC Biophys, 2012

Forces from classical Molecular Dynamics

Forces from classical Molecular Dynamics

F'ij force between atom i and j in relaxed state

 $\mathbf{\nabla}$

 F_{ij} force between atom i and j in stretched state

change in pairwise forces $\Delta F_{ij} = F_{ij} - F'_{ij}$

Proteins: a jiggling and wiggling (Feynman)

Mean velocity:

$$\hat{v} = \sqrt{\frac{2RT}{M}}$$

R: gas constant T: temperature M: molar mass

-> roughly 100-1000 m/s

Molecular Dynamics

Strain and fracture: force distribution

conventional design tools: force distribution

in constructions, cars ...

macroscopic structures: meters

new: force distribution in (bio)molecules

e.g. in collagen

microscopic structures:

~ 10⁻⁹ meters

in graphene

W. Stacklies, et al, PLoS Comp Biol, 2009 Costescu et al, BMC Biophys, 2012

Mechanics of silk fibers

zigzag pattern of hydrogen bonds crucial for stabilization

Mechanics of bone & teeth:

Rupture mechanisms and stress concentration of flawed biominerals

Mechanics of polymer nanocomposites

Gromacs: fast, free, and flexible

- up to hundreds of millions of particles
- *extremely high performance* compared to all other MD programs.
- innermost loops are written in C using intrinsic functions that the compiler transforms to SIMD machine instructions
- excellent CUDA-based GPU acceleration
- tailored towards bio-simulations, but increasingly used in the materials science domain

Abraham, et al. (2015) SoftwareX **1-2** 19-25 GROMACS benchmarking: *Kutzner, et al.* (2015) J. Comput. Chem., **36** 1990-2008

Gromacs: fast, free, and flexible

Abraham, et al. (2015) SoftwareX **1-2** 19-25 GROMACS benchmarking: Kutzner, et al. (2015) J. Comput. Chem., **36** 1990-2008

Molecular Dynamics & HPC

among the largest Molecular Dynamics simulations of a biological system

Yuji Sugita, Michael Feig and co-workers at RIKEN, on K-Computer

Molecular Dynamics & HPC

Collagen: major load-bearing structure of the body

Anatomic plate from Laskowski's "Anatomie normale du corps humain" (1894), illustrations by Sigismond Balicki

Molecular Biomechanics

Ana Herrera-Rodriguez, Csaba Daday, Vedran Miletic, Florian Franz, Fabian Kutzki, **Christopher Zapp, Agniezska Obarska-Kosinski** Tobias Jäger Fan Jin **Benedikt Rennekamp**

> \$\$: Klaus Tschira foundation DFG, Volkswagen Foundation, AvH, Toyota