Turbulent Combustion Simulation and *In Situ* Analytics on Titan and Summit with S3D-Legion

Jacqueline H. Chen¹, Elliott Slaughter², Wonchan Lee³, Sean Treichler⁴, Michael Bauer⁴, Konduri Aditya¹, Hemanth Kolla¹, Pat McCormick⁵ and Alex Aiken³ ¹Sandia National Laboratories ²SLAC National Accelerator Laboratory ³Stanford University ⁴NVIDIA

⁵Los Alamos National Laboratory

1st R-CCS Symposium, February 18-19, 2019

Exascale Simulation of Combustion

- Predict behavior of new fuels in different combustion scenarios at realistic pressure and turbulence conditions
 - Optimize co-design of fuels and engines
 - Reduce greenhouse gas emissions, increase efficiency, shorten time-tomarket
- High-fidelity direct numerical simulation and hybrid DNS/LES methodologies
 - turbulence- chemistry interactions
 - chemical fidelity to differentiate effects of fuels
 - uncertainties in thermo-chemical properties and physics models
 - complex flows due to compression by a piston, swirl, bluff-bodies, cavities

Emissions and Efficiency Drivers for Autoignition in

Fundamental Turbulence-Chemistry Interactions Motivated by Advanced Engines

- Higher fuel efficiency and lower emissions driving combustion towards more fuel lean, partiallypremixed conditions
- Mixed-regime combustion
- Multi-stage autoignition sensitivity to fuel chemistry and preferential diffusion

• Multi-scale interactions and backscatter

Lifted dimethyl ether jet flame at 5 bar stabilized on cool flame ignition intermediate, flame marker OH (blue); methoxymethylperoxy (ignition marker (yellow)

DOE Exascale Computing Project (ECP) uses codesign and integration to achieve capable exascale in 2021-2023

ECP's work encompasses applications, system software, hardware technologies and architectures, and workforce development

6 Exascale Computing Project, www.exascaleproject.org From Paul Messina's ASCAC talk April 19, 2017

Pele Project: Transforming Combustion Science and Technology Through Exascale Simulation

Direct Numerical Simulation – S3D

- DNS of turbulent reacting flows
- Solves compressible reacting Navier-Stokes, total energy and species continuity equations
- High-order finite-difference methods
- Detailed reaction kinetics and molecular transport models
- Lagrangian particle tracking (tracers, spray, soot)
- In situ analytics and visualization
- Machine learning
- Refactored for multi-threaded, many core heterogeneous architectures

DNS provides unique fundamental insight into the chemistryturbulence interaction

Chen et al., Comp. Sci. Disc., 2009, Treichler et al. 2017

Computational intensity of DNS scales with Moore's Law

- [1] T. Echekki, J.H. Chen, Comb. Flame, 1996, vol.106.
- [2] T. Echekki, J.H, Chen, Proc. Comb. Inst., 2002, vol. 29.
- [3] R. Sankaran, E.R. Hawkes, J.H. Chen, Proc. Comb. Inst., 2007, vol. 31.
- [4] E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, Comb. Flame, 2012, vol. 159.
- [5] 2015 submission for Gordon Bell prize
- [6] H. Wang, E. Hawkes, J. H. Chen, Comb. Flame 2017

Outline:

- DNS of tubulent combustion with complex flow at the petascale:
 - DNS of turbulent autoigniting n-dodecane diesel jets
 - DNS of reheat combustion in staged gas turbines
- Path to exascale combustion simulations (2021-2023)
 - Programming models
 - Composable in situ workflow (analytics, machine learning)

DNS of a Turbulent Autoigniting n-Dodecane Jet at 25 Bar

Giulio Borghesi¹, Alex Krisman¹, Tianfeng Lu² and Jackie Chen¹ ¹Combustion Research Facility, Sandia National Laboratories ²University of Connecticut

Ketohydroperoxide mass fraction

Borghesi et al. Combustion and Flame, 2018

Background and Objective

- Low-temperature combustion (LTC) aims at increasing fuel efficiency and reducing emissions
- Under LTC conditions, combustion occurs in a mixed mode and in multiple ignition stages
- Ignition is now very sensitive to the fuel chemistry, especially to the low temperature reactions branch

Question: How does transport and low-temperature chemistry affect ignition in low-temperature diesel combustion?

Background on high-temperature ignition

- Homogeneous PSR calculations show the existence of x value, x_m, where ignition delay has a minimum;
- Flamelet simulations show the ignition delay increases with scalar dissipation N until a critical value is reached;
- In practical systems, ignition occurs at locations close to x_m where N is low. The ignition delay is longer than in PSR;
- **Question:** which features of high-T ignition carry over to low-T ignition?

Figure: ignition delay time in PSR and in nonpremixed flamelet simulation¹

Low Temperature Diesel Combustion Experiments – Engine Combustion Network

3167-3174

Dahms et al., PROCI 36 (2017) 2615-2623

DNS Configuration and Physical Parameters

- Pressure: 25 bar
- **Air stream:** 15% X₀₂+85% X_{N2}, T=960 K
- Fuel stream: *n*-dodecane at ξ =0.3, T=450 K
- Kinetics: 35-species non-stiff reduced (Lu)
- **Fuel jet velocity:** 21 m/s, Re_i = 7000, Re_t ~ 950
- Code and cost: S3D Legion, 60M CPUh
- Setup:
 - 3 billion grids
 - 3 microns spatial grid resolution
 - Dimensions: 3.6 mm x 14.0 mm x 3.0 mm
 - 1 ms of physical time with 4 ns timesteps to observe ignition and propagation of burning flames throughout the domain
 - BCs: X and Z periodic, Y NSCBC outflows

L_x= 12xH_{JET}

Figure: H₂O₂ mass fraction at t=0.17 ms after start of reactions

Homogeneous Multi-Stage Autoignition

Temporal evolution of selected reactive scalars

Dynamics of Two-Stage n-dodecane Autognition in a Jet at Diesel Conditions

Rendering by Chris Ye, Min Shih, Franz Sauer, and Kwan-Liu Ma

Ketohydroperoxide and T,K (>1150K)

 H_2O_2 mass fraction

Conditional statistics reveal ignition dynamics

time

Turbulent versus homogeneous ignition

Low-T and high-T ignition in jet can be faster and than homogeneous ignition!

Propagation mechanism for low-T reaction front

Low-T fronts propagate through diffusively supported flame

Effect of Scalar Dissipation Rate on Low Temperature Ignition

Conclusions

- Low-temperature reactions create the conditions for hightemperature ignition to occur faster than under homogeneous conditions;
- Low-temperature front appears to propagate through a diffusively supported cool flame;
- High scalar dissipation appears to delay low-temperature ignition; however, it leads to faster ignition at very rich mixture conditions;
- High-T ignition starts at conditions richer-than-homogeneous conditions (ξ =0.16 compared to ξ =12). Edge flames are seen to form around ξ_{st} . High-T flame ignites mainly by propagation of rich premixed flames following hot ignition to ξ_{st} .

Direct Numerical Simulation of flame stabilization assisted by auto-ignition at *reheat* conditions

Konduri Aditya^a, Andrea Gruber^b, Mirko Bothien^c and Jacqueline H. Chen^a

^aCombustion Research Facility, Sandia National Laboratories, Livermore, CA, USA ^bSINTEF Energy Research, Trondheim, Norway ^cAnsaldo Energia, Baden, Switzerland

Acknowledgements: Basic Energy Sciences, Office of Science, DOE OLCF, NERSC, Norwegian CCS Research Centre (NCCS)

Aditya et al. PCI 2018

Staged gas turbine combustion

- Originally developed by ABB for high efficiency, load flexibility and low emissions
- Recently improved and simplified (reduced cost) for the H-class GT36 (538MW of power)
- First (premix) combustion stage based on flame propagation
- Second (sequential) combustion stage based on auto-ignition

Reheat burner

DNS of idealized reheat burner configuration from Ansaldo Energia Operating conditions:

- Inlet temperature: ~ 1100 K
- Pressure: ~ 20 atm

Scaled conditions:

- Mean inlet temperature:
- Pressure: 1 atm
- Fuel: hydrogen

Turbulent NSCBC inflow Isothermal walls

Objective:

- Understand the flame stabilization
- Identify the modes of combustion
- Quantify the role of auto ignition

Simulation parameters

1.25 billion grid points 20 million CPU hours $Re_b = 13000$

- Chemical mechanism: 9 species hydrogen-air (Li et al., 2004)
- Inflow composition: premixed H2 + O2 + N2 + H2O (ϕ = 0.35)
- U_{bulk} = 200m/s, u' = 20m/s, T_{inlet} = 1100K, T_{wall} = 750K
- Inflow profile: feed from DNS of a fully developed channel flow,
- $Re_b \sim 13,000, Re_\tau = 378$ (viscous length scale)

Feed data sampling plane

Two Combustion States

Two combustion configurations are observed:

- Design state: mainly auto-ignition in the combustion chamber
- Intermittent auto-ignition state: ignition in mixing section

Design combustion state

Mass fraction of HO₂

Heat release rate

Combustion modes:

- Autoignition along centerline
- Flame propagation near corners
- HO2: indicative of chain branching

Transport budget analysis

$$\frac{\partial (\rho Y_{OH})}{\partial t} = -\nabla_{\beta} \cdot (\rho Y_{OH} \mathbf{u}_{\beta}) - \nabla_{\beta} \cdot (\rho Y_{OH} \mathbf{V}_{\beta,OH}) + W_{OH} \dot{\omega}_{OH}$$
Advection Diffusion Reaction

- Auto-ignition: balance between advection and reaction
- Flame propagation: balance between diffusion and reaction

Modes segmented with chemical explosive mode analysis (CEMA)

• $\alpha = \varphi_s / \varphi_\omega$: ratio of the projected non-chemical source term and the projected chemical source term (C. Xu et al., PROCI 2018)

Three modes are identified:

- Assisted-ignition ($\alpha > 1$): diffusion significantly promotes reaction
- Auto-ignition ($-1 < \alpha < 1$): chemistry plays a dominant role
- Extinction zone ($\alpha < -1$): diffusion dominates chemistry and suppresses ignition

Intermittent auto-ignition state

2 1 0.8 0.6 0.4 УL 1 0.2 0 0 2 6 4 XL Temperature 2 0.8 0.6 УL 1 0.4 0.2 0 0 2 6 4 XI

Mass fraction of HO₂

Heat release rate

- Early auto-ignition in the mixing section
- Ignition kernel advects downstream
- Occurs intermittently

Intermittent auto-ignition state

Contours of instantaneous dilatation

- High reactivity of hydrogen
- Decrease in ignition delay time (30%)

Conclusions

- Performed DNS of a reheat burner at scaled conditions
- Two states of hydrogen/air combustion have been observed:
 - design state: flame propagation and auto-ignition in the combustor
 - intermittent auto-ignition in mixing section
- Premature auto-ignition arises due to pressure (and following temperature) rise in mixing section
- Quantified the contribution of different modes towards heat release using chemically explosive mode analysis (CEMA)

Constraints imposed by exascale architecture

- **Power:** primary design constraint for future HPC system design
- Cost: Data movement dominates: optimize to minimize data movement
- **Concurrency:** Exponential growth of parallelism within chips
- Locality: must reason about data locality and possibly topology
- Memory Scaling: Compute growing 2x faster than capacity or bandwidth, Heterogeneity:Architectural and performance nonuniformity

Conceptual model of future HPC node

Express data locality and independence, express massive parallelism, minimize data movement and reduce synchronization, detect and address faults

Parallel Programming 101 - Productivity

Parallel Programming 101

Legion programming system applied to S3D

- A data-centric parallel programming system
- A programming model for heterogeneous, distributed machines
 - Automates many aspects of achieving high performance, such as extracting task- and data-level parallelism
 - Automates details of scheduling tasks and data movement (*performance optimization*)
 - Separates the specification of tasks and data from the mapping onto a machine (*performance portability*)
- Legion application example: S3D
 - Production combustion simulation
 - Written in ~200K lines of Fortran
 - Direct numerical simulation using explicit methods

S. Treichler et al., "S3D-Legion: An Exascale Software for Direct Numerical Simulation (DNS) of Turbulent Combustion with Complex Multicomponent Chemistry," CRC Book on Exascale Scientific Applications: Programming Approaches for Scalability Performance and Portability, 2017.

31 Exascale Computing Project, www.exascaleproject.org

Legion task graph for 1 time step for S3D-Legion DNS running ndodecane (35 species) on a single Summit node

- Nodes tasks (compute kernels or data copies)
- Edges ordering dependencies between the nodes

Exploring the design space of in situ workflows: constraints and observations

- Minimize performance impact to the simulation
 - Work within time and memory constraints
 - Minimize cache impact
- Behavior of analysis algorithms varies widely
 - Data dependencies, communication patterns, scalability, instruction mixes, time and memory requirements
 - Data dependent algorithms are very hard to characterize

Analytics Algorithms Used by Combustion Applications Differ in Behaviors (from Solvers and with Each Other)

- Multi-variate volume and particle rendering
- Particle querying and analysis
- Topological feature segmentation:
 - Contour trees
 - Morse-Smale complex
 - Time tracking
 - Scalar field comparison
- Filtering and averaging
- Floating point. Shape analysis
- Compute intensive Data-parallel • Statistical r reduction (

Build graphs

Integer ops Branching

dependent

Data

- Statistical moments (conditional), dimensionality reduction (joint PDFS), spectra (scalar, velocity, ...)
- UQ driven analytics (quantities of interest) communication
 - Machine Learning and anomaly detection

Flame-centric control volume analysis

In-situ data analytics in Legion Chemical Explosive Mode Analytics (CEMA)

CEMA: eigenvalue solve on the reaction rate Jacobian to determine the mode of combustion

- Run CEMA at each time step as a diagnostic to steer mesh refinement
- CEMA computation takes longer than a single explicit RK stage (6 stages/timestep)
- Dividing CEMA across RK stages and interleaving with other computation so as not to impact other critical operations would be hard to schedule manually
- Asynchronous task execution, schedule CEMA on CPU resources
- Interoperate Fortran CEMA with Legion code took a day to implement

Execution overhead of in-situ analytics (CEMA) in S3D-Legion is small (Titan & Piz Daint)

Legion S3D lessons learned

- Legion
 - S3D shows potential of data-centric, task-based models
 - Enables new simulation capabilities (physics, and in situ analytics)
 - Code is easier to modify and maintain
 - Ports are just new mappings, easy to tune for performance
 - New functionality usually just means new tasks
 - Legion will figure out the dependences and scheduling
 - Strong scaling well enables more complex workflows with analytics
 - Productivity requires higher level abstraction layer for scientists to write in

Co-Design and ECP

- The Legion/S3D experience is a tribute to application co-design
- Computer and computational scientists worked closely
- Major progress on important problems resulted

Exascale Targets: Science at Relevant Engine Conditions

- Hybrid DNS/LES (near DNS) with dynamic adaptive mesh refinement, multi-physics (sprays, soot, radiation at high pressure) in geometry
- Reactivity Stratified Compression Ignition IC Engines - multi-stage, high pressure autoignition of a liquid hydrocarbon fuel blend, soot formation
- Natural Gas IC Engines ignition and knock
- Scramjets cavity stabilized shear driven lean turbulent premixed flames, effect of products recirculation coupled with high Re, high Ka, compressible flames
- Gas Turbines swirl stabilized spray combustion gas turbines with lean premixed combustion, flame stabilization, nitric oxide emissions, thermoacoustics
- Include in-situ analytics & visualization

