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Preface

This technical report describes the FLAGSHIP 2020 project for the development and deploy-
ment of the next-generation　 Japanese flagship supercomputer named as Fugaku, which was
carried out by RIKEN and supported by the Ministry of Education, Culture, Sports, Science
and Technology (MEXT) from FY2014 to FY2020.

In the development of Fugaku, the goal is to realize a general-purpose system that can solve
a wide range of problems by the world’s top 　 level performance by around 2020. RIKEN
carried out the basic design of the system from October 2014 to August 2015 with Fujitsu as a
vender partner. After the evaluation of the design done by the committee organized by MEXT
in January 2016, the detailed design and implementation, and the software development were
carried out, and it signed a manufacturing contract with Fujitsu in March 2019. From December
2019 to May 2020, the hardware was manufactured and installed, then system adjustments were
made, the public service started in March 2021, and the project was finished.

In this project, the ”co-design” of the system and applications is a key to making the system
power efficient and high performance. In the development of exascale large-scale parallel systems,
it is necessary to improve the power efficiency of the system in order to obtain the maximum
performance with the power supply capacity of our facility. As well as improving the system
performance, we set the target application, designed the system while taking the characteristics
of the actual application into account, and optimized the application to make effective use of
the system.

This report summarizes our codesign efforts in the design of systems and applications.
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Notes

• In this report, the unit of memory capacity is by a power expression of 2 using the unit
such as MiB, GiB, etc. Other numbers are not expressed are power expressions of 10.

• The name of the system is indicated as ”Fugaku” decided in May 2019. If it should be
distinguished from the system under development, the development code name ”Post-K”
is used.
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Chapter 1

FLAGSHIP 2020 project and
Supercomputer “Fugaku”

1.1 Project Overview

The FLAGSHIP 1 2020 Project was launched in April 2014. The missions were defined as
follows:

• Building the Japanese national flagship supercomputer, the successor to the K computer,
which was tentatively named the “Post-K”.

• Developing a wide range of HPC applications that will run on the Post-K in order to solve
the pressing societal and scientific issues facing our country.

The RIKEN Center for Computational Science (R-CCS) is charged with the research and
development of the Post-K. For the system development, we have been working with Fujitsu
since October 2014 after the vendor’s selection phase.

Our government committee organized and selected nine Priority Issues and projects tackling
these issues. The nine Priority Issues with the institutions selected to lead each project are
listed in Table 1.1.

Figure 1.1 shows the schedule of the project. The first two years (JFY2014 and JFY2015) 2

were spent on the basic design. From JFY2016 to JFY2018, detailed design and implementation
were conducted. A prototype system was built in the summer of 2018 at Fujitsu. The review
committee of the Japanese government reviewed the prototype system and decided to build the
Post-K. From JFY2019 to JFY2020, the hardware is manufactured, and the system is installed
and tuned.

Figure 1.1: Schedule of FLAGSHIP 2020 Project

1FLAGSHIP: Acronym for Future LAtency core-based General-purpose Supercomputer with HIgh Productivity
2The Japanese fiscal year (JFY) starts from April.

15
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Table 1.1: Nine Priority Issues with leading institutions
Health and longevity

1. Innovative computing infrastructure for
drug discovery

RIKEN Quantitative Biology Center

2. Personalized and preventive medicine
using big data

Institute of Medical Science, the Univer-
sity of Tokyo

Disaster prevention / Environment

3. Integrated simulation systems induced
by earthquake and tsunami

Earthquake Research Institute, the Uni-
versity of Tokyo

4. Meteorological and global environmen-
tal prediction using big data

JAMSTEC, Center for Earth Information
Science and Technology of Japan

Energy issues

5. New technologies for energy creation,
conversion / storage, and use

Institute for Molecular Science, National
Institute of Neural Science

6. Accelerated development of innovative
clean energy systems

School of Engineering, the University of
Tokyo

Industrial competitiveness enhancement

7. Creation of new functional devices and
high-performance materials

The Institute of Solid State Physics, the
University of Tokyo

8.Development of innovative design and
production processes

Institute of Industrial Science, the Univer-
sity of Tokyo

Basic science

9. Elucidation of the fundamental laws
and evolution of the universe

Center for Computational Sciences,
Tsukuba University

1.2 Project KPIs

At the beginning of the project, we defined the following three Key Performance Indicators
(KPIs):

1. Power-efficient system: We set the maximum electric power supply capacity of our
facility between 30 and 40 MW. We should maximize the system performance within this
capacity. We set more than 15 GFlops/W as the target efficiency for the dgemm kernel.

2. Effective performance of real applications: We focus on the performance of real
applications rather than that of benchmarks. We aimed at a (maximum case) speed
improvement of one hundred times over the K computer for some applications. This
should be accomplished through codesign of system development and target applications
for the nine Priority Issues.

3. Ease-of-use: Since the system will be shared by a variety of users, the system should be
easy to use.

We carried out the FLAGSHIP 2020 Project to develop the Japanese next-generation flagship
supercomputer, the Post-K, recently named “Fugaku”. We have designed an original manycore
processor based on Armv8 instruction sets with the Scalable Vector Extension (SVE), an A64FX
processor, as well as a system including interconnect and a storage subsystem with the industry
partner, Fujitsu. In 2019, the name of the system was decided as “Fugaku”. The delivery of the
whole system was completed in May, 2020.
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1.3 Specification of the Fugaku system

The Fugaku system is a large-scale distributed memory system with Fujitsu A64FX manycore
processors connected via Tofu-D interconnect. Table1.2 describes the specification of Fugaku.

Table 1.2: Specification of Fugaku

Theoretical Peak Perf. 537 PF (boost mode)
of system (DP) 488 PF (normal mode)

Number of compute nodes 158976 (24 x 23 x 24 x 12)

Network toplogy 6-dim mesh/torus (Tofu-D interconnect)

Total memory size 4.8 PiB

Storage capacity (1-st layer,
SSD)

15.8 PB

Storage capactiy (2-nd layer,
HDD)

150 PB

Node processor Fujitsu A64FX

Si technology 7 nm FinFET

Proc. Freq. 2.2 GHz(boost mode)
2.0 GHz(normal mode)

Number of Proc. per node 1

Theoretical Peak Perf. 3.3 TF (boost mode)
of Node (DP) 3.0 TF (normal mode)

1.4 Specifications of the A64FX Processor

The node processor is a single chip, named A64FX, which consists of 48 cores with 2 or 4 cores
dedicated for OS activities, 32 GiB of HBM2 memory, TofuD Interconnect, and a PCI express
controller, as shown in Table 1.3. The diagram, the photograph of die and package are shown
in Figure 1.2 and 1.3.

The details of the microarchitecture are described in [2].

1.5 Specifications of the System and Storage

Each node has one A64FX chip connected with the TofuD Interconnect. The 1st-layer storage
system consists of SSDs attached to SIO nodes allocated one for every 16 compute nodes. The
2nd-layer storage system is the global file system, which is a Luster-based parallel file system,
FEFS, developed by Fujitsu. FEFS is connected to the system via the InfiniBand network.

The specifications of the 1st- and 2nd-layer storages are shown in Table 1.4.
A Linux kernel runs on each node. All system daemons run on two or four additional cores,

called assistant cores. The CPU chip with two assistant cores is used on compute only nodes.
The chip with four assistant cores is used on compute & IO nodes because such nodes service
I/O functions requiring more CPU resources.
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Table 1.3: Specification of the A64FX Processor
Component Specification

Architecture Armv8.2-A SVE (512 bits SIMD)

Core 48 cores for compute and 2/4 for OS activities
Normal Mode: Freq: 2.0 GHz, DP: 3.072 TF,
SP: 6.144 TF, HP: 12.288 TF
Boost Mode: Freq: 2.2 GHz, DP: 3.3792TF, SP:
6.7584 TF, HP: 13.5168 TF

L1 Cache 64 KiB, 4 way, 256 GB/s(load), 128 GB/s
(store) @2.0GHz

L2 Cache 8 MiB/CMG, Total 32MiB/16way, BW for
Core: 128 GB/s (load), 64 GB/s (store) @
2.0GHz

Memory HBM2 32 GiB, BW for Chip 1024 GB/s

Interconnect TofuD: 28 Gbps x 2 lane x 10 port, injection
BW: 6.8GB/s x 6

I/O PCIe Gen3 x 16 lane

Silicon 　
Technology

7nm FinFET, CoWoS (Chip on Wafer on Sub-
strate)[1] for HBM2

Figure 1.2: Block diagram of the A64FX processor

1.6 Benchmark Results

1.6.1 Basic Performance

We have confirmed the node performance for the basic kernels, more than 830 GB/s for the
stream triad benchmark and more than 2.5 TFLOPS for the dgemm kernel with 90% efficiency.
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Figure 1.3: Chip package and die photograph of the A64FX processor

Table 1.4: Specifications of the 1st- and 2nd-layer Storages
Minimum Throughput Measured Throughput

1st Storage write 49 MB/s /node 125 MB/s /node
read 113 MB/s /node 293 MB/s /node

2nd Storage
write

200 GB/s /volume
211 GB/s /volume

read 220 GB/s /volume
Note: The 2nd storage is formed from 6 volumes.

The latency and bandwidth of the TofuD Interconnect are from 0.49 to 0.54 µs and 6.35 GB/s
for a 1-MB put operation.

1.6.2 SPEC benchmark

SPEC benchmarks are well-known benchmarks suites for the evaluation of various kinds of
computer systems. Figure 1.4 shows the results for SPEC CPU (int) and SPEC OMP. For our
evaluation, Speed (an index for evaluating the performance of single task) and Base (metrics
when the compile option common to all benchmarks) were taken. For all benchmarks, A64FX
runs at 2.0GHz (normal mode). “Xeon” used for the SPEC CPU is Platinum 8168(Skylake),
2.7GHz, 24cores x 2 chip, turbo on. “Xeon” used for SPEC OMP is Platinum 8280(Cascade
Lake), 2.7GHz, 28cores x 1chip, hyperthread on (56threads), turbo on. The benchmark programs
of SPEC CPU (int) except 647.xz s run by a single thread. As shown in the results, the
performance of A64FX is about one-quarter of the performance of the Xeon processor. The
reason for the low single thread integer performance is that the SIMD rate is low in SPEC CPU
(int) and the frequency and the O3 resource are limited for the throughput-oriented architecture
of A64FX. As for SPEC OMP, the performance of A64FX using 48 threads is about 65% of
the performance of the Xeon processor using 56 threads (28 cores). For some programs such
as 363.swim and 370.mgrid, A64FX archives extremely good performance thanks to the high
memory bandwidth of the HBM2. Note that, although the performance of 350.md is very bad,
the performance improvement has been confirmed by manual source code tuning such as in-lining
and loop unrolling. Other SPEC results of the A64FX are published in [3].
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Figure 1.4: Results of SPEC Benchmarks

Figure 1.5: Performance and power efficiency of open-source applications (results are shown in
%, relative to Intel Xeon (dual sockets))

1.6.3 Open-source HPC Applications

Several open-source scientific applications are ported and evaluated on A64FX.
Figure 1.5 shows the execution time and the average power of A64FX (2.2 GHz, single socket)

relative to dual sockets of Xeon Platinum 8268 (Cascadelake, 2.90 GHz, 24 cores/socket) for sev-
eral open-source scientific applications, described in Table 1.5. As the results demonstrate, the
power consumption of A64FX is about half that of the Intel Xeon’s in most of these applications,
while the performance of A64FX is better.
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Table 1.5: Descriptions and Parameters of Open-source Applications

Applications Field Ver. Size Model Solver MPI/
OpenMP

Measured
Section

OpenFOAM
[4]

CFD 1812 14 mil-
lion
meshes

Motor
Bike

PCG FlatMPI
(48 procs)

Time in-
tegration
loop

FrontISTR[5] Structure
Analy-
sis

5 0.4 mil-
lion
meshes

Hinge SSOR+CG FlatMPI
(48 procs)

Analysis
section

ABINIT[6] Material 8.10
.2

26244
FFT
meshes

tmbt 3 GW/spectral
method

FlatMPI
(48 procs)

Analysis
section

SALMON[7] Ab-
initio
Light-
Matter

1.2.1 1.0 mil-
lion
meshes

exercise
07 classic
EM lr

FDTD FlatMPI
(48 procs)

Analysis
section

SPECFEM
3D[8]

Seismic 7.0.2 64 x 64 s362ani SEM Hybrid (4
procs x 12
threads)

Iteration
loop

WRF[9] weather 3.8.1 425 x
300 x 35

Conus 12km Hybrid (4
procs x 12
threads)

Domain
integration
loop

MPAS[10] weather 6.2 40962
meshes

The Jablonowski
and Williamson
baroclinic wave

Hybrid (24
procs x 2
threads)

Time in-
tegration
loop

1.6.4 HPL(TOP500), HPCG, HPL-AI and Graph500

In June 2020, the Fugaku achieved HPL performance of 415.53 PFLOPS, using 396 racks
(152,064 nodes, approximately 95.6% of the entire system) with a computing efficiency ratio
of 80.87%, and ranked as the 1st position of the TOP500 list. It also took the first place in the
ranking of HPCG, achieving 13,400 TFLOPS (360 racks, 138,240 nodes, approximately 87% of
the entire system), while claiming the first position in the HPL-AI ranking with 1.421 EFLOPS
using 330 racks (126,720 nodes, approximately 79.7% of the entire system). HPL-AI is a new
benchmark that takes into account the capabilities of single-precision and half-precision arith-
metic logic units used in artificial intelligence. It has taken the top spot on the Graph500 list, a
ranking of the world’s fastest supercomputers on data-intensive workloads, with the performance
of a breadth-first search of a large scale graph 70,980 GTEPS, using 92,160 nodes (approximately
58% of the entire system), The achievement of remarkable records in these rankings demonstrates
the overall high performance of Fugaku for a wide range of workloads.

In November 2020, the results of these benchmarks were updated by using the full system.
The results are shown in Table 1.6.



CHAPTER 1. FLAGSHIP 2020 22

Table 1.6: Benchmark Results using the full system of Fugaku

Benchmark Measured Peek Perf Efficiency (June 2020)

HPL 442.01 PF 537.21 PF 82.3% (415.53 PF)

HPCG 16.00 PF 537.21 PF 3.0% (13.4PF)

HPL-AI 2.00 EF 2.14 EF 93.2% (1.42EF)

Graph500 102.95 Tteps (70.98)

1.6.5 Green500

The successful achievement of our codesign effort is such that the prototype systems of A64FX
processors took the 1st place at Green500[11] in November 2019. This performance measure-
ment demonstrated that the A64FX processor has the highest energy efficiency, achieving 1.9995
PFLOPS for HPL compared to 2.36 PFLOPS in peak performance and 16.87 GFLOPS/W in
performance per 1 watt of power consumption, exceeding the efficiency of GPUs. This corre-
sponds to the first item in our KPIs, that is, a power-efficient system.
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Chapter 2

Codesign of Archtecture

The “codesign” of the system and applications is a key to making it power efficient and high
performance. We determined many architectural parameters by reflecting an analysis of a set
of target applications provided by applications teams. In this section, the pragmatic practice of
our codesign effort for “Fugaku” is described.

2.1 codesign for exascale computing

As a key strategy for this challenge, codesign, has received considerable attention in the HPC
community for several years[12]. The term codesign has become popular in the development
of mobile phone or embedded systems, where the two perspectives of hardware and software
design are brought into a codesign process. In embedded systems, codesign sometimes includes
“specialization” for particular applications. The codesign process of HPC must maximize the
benefits to cover as many applications as possible. Codesign has been proposed as a methodology
for the scientific application, software, and hardware communities to work together for designing
future HPC systems.

In this chapter, we describe the pragmatic practice of our codesign effort in our project.
According to the outcomes of feasibility study projects prior to the FLAGSHIP 2020 Project,
we have chosen a huge-scale system with general-purpose manycore processors. With Fujitsu
as a vendor partner, a new manycore processor supporting the Arm instruction set has been
designed through codesign with the collaboration of architecture teams, software teams, and
application teams. During the codesign process, we focused on not only energy efficiency, but
also programmability for ease-of-use and efficient execution of real scientific applications with
some compatibility with the K computer. As a result, the system has been proven to be a very
power-efficient system, and it is confirmed that the performance of some target applications
using the whole system is more than 100 times the performance of the K computer.

2.2 Codesign Methodology

2.2.1 Target Applications for Codesign

Under the codesign concept, R-CCS, Fujitsu, and the nine selected projects have been collabo-
rating closely to design the architecture, system software, and applications so that the societal
and scientific issues can be solved effectively and early achievements can be attained. Since
increasing power consumption is a critical issue in the design of the next-generation large-scale

23
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supercomputer, it is important to make trade-offs between energy/power, cost, and performance
by taking application characteristics into consideration.

In the codesign process, a set of target applications was provided from each area of the nine
Priority Issues. Refer the chapter 6 for the detailed descriptions of the target applications. The
reasons for choosing these applications as target applications are based on two criteria. One
criterion is from the computational viewpoint, e.g., 1) the total target applications cover dense
matrix operation and sparse matrix operation, and 2) they also cover the data access pattern
(continuous, stride, random). The other criterion is from the viewpoint of scientific excellence.
We selected each application and its problem size, discussing with members of the project for the
post-K priority issues. For example, the target application in the meteorological field is a very
ambitious problem, which estimates global atmospheric conditions in very high resolution (3.5
km) using a global cloud resolving model and the data assimilation technique of the localized
ensemble transformed Kalman filter based on over 1000 ensembles.

System design has been performed using these applications as a target. For each application,
the target performance is set relative to the K computer when using the whole system with a
power budget under approximately 30 to 40 MW. The target performance is estimated by
codesign tools in the basic design phase.

The target applications are also considered representatives of almost all of our applications in
terms of computational methods and communication patterns relevant to designing architectural
features. The table shows the points of the codesign process for each application. These target
applications are used to set the performance goals of the system and are also used to verify that
these goals have been achieved.

Moreover, the typical benchmarks kernels such as dgemm, HPL, and the stream benchmark
were used for performance analysis.

2.2.2 Tools for Codesign

The following tools were used for the codesign process:

• The performance estimation tool: This tool, taking execution profile data of the latest
Fujitsu supercomputer, FX100, as an input, enables the performance projection by a given
set of architecture parameters. The performance projection is modeled according to the
Fujitsu microarchitecture. This tool can also estimate the power consumption based on
the architecture model. ‘This tool has been available since the initial phase of the codesign
process.

• Fujitsu in-house processor simulator: We used an extended FX100 (SPARC) simu-
lator and compiler, developed by Fujitsu, for preliminary studies in the initial phase, and
an Armv8+SVE simulator and compiler afterwards. It runs at a frequency of roughly 100
kHz.

• Hardware emulator: The hardware emulator for the processor was used for logic design
verification and accurate evaluation of performance and power consumption. It runs at a
frequency of roughly 1 MHz and has been available since the later phase of the codesign
process, after the circuit design was almost completed.

• Gem5 simulator for the Post-K processor: Gem5[13] is an open-source system-level
processor simulator. The Post-K processor simulator[14] based on gem5 has been developed
by R-CCS during the codesign process for architecture verification and performance tuning
of software.
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Figure 2.1: Usage of the performance estimation tool

2.2.3 Codesign Process: Design Space Exploration

As described in the next section, the basic architecture has been chosen as a manycore processor
system by the feasibility studies before starting the project. Even for designing a manycore
processor, there are many parameters and items to be determined in the design space exploration.

A fundamental problem is the scale of scientific applications that are expected to be run
on the Post-K. Even our target applications are thousands of lines of code and are written to
use complex algorithms and data structures. Although the processor simulators are capable of
providing very accurate performance results at the cycle level, they are very slow and are limited
to execution on a single processor without MPI communications between the nodes.

On other hand, our performance estimation tool is very useful since it enables performance
analysis based on the execution profile taken from an actual run on the FX100 hardware. The
FX100 hardware has a rich set of performance counters, including busy cycles for read/write
memory access, busy cycles for L1/L2 cache access, busy cycles of floating-point arithmetic,
and cycles for commited instruction. It enables the performance projection for a new set of
hardware parameters by changing the busy cycles of functional blocks. The breakdown of the
execution time (cycles) can be calculated by summing the busy cycles of each functional block
in the pipeline according to the processor microarchitecture. For example, suppose the L2 cache
access is a bottleneck. When doubling L2 cache bandwidth, the busy cycles of L2 cache access
are halved and the execution time will be reduced if the time for L2 cache access is not hidden by
other cycles in the pipeline. Since the execution time is estimated by a simple formula modeling
the pipeline, it can be applied to a region of uniform behavior such as a kernel loop. Otherwise,
the accuracy of the estimation would worsen. Furthermore, it is hard to take the impact of the
O3 (out-of-order) resources into account in the performance estimation.

The first step of performance analysis is to identify kernels in each target application and
insert the library calls to get the execution profile. As shown in Figure 2.1, the total execution
time is calculated by summing the estimated execution time of each kernel. We repeated this
process changing several architecture parameters for design space exploration.

Some important kernels were extracted as independent programs. These kernels can be
executed by the cycle-level processor simulators for more accurate analysis. This enables analysis
for a new instruction set and the effect of changing the O3 resources. These kernels were also
used for the processor emulator for logic-design verification.

We used an analytical model for simple kernels, such as the HPL and dgemm kernel, and
the stream benchmark. This is sometimes useful because the execution time can be calculated



CHAPTER 2. CODESIGN OF ARCHITECTURE 26

by a simple mathematical formula using some hardware parameters.
In the codesign process for the interconnect, the communication patterns were extracted,

and we estimated the communication performance by an analytical model, such as the LogP
network performance model.

2.3 Codesign of Post-K

In this section, we describe how we made several decisions on the architecture of the Post-K
through our codesign process. Most codesign for the architecture was done during the basic
design phase from 2014 to 2015. Since the production of the system was scheduled for 2019,
the codesign process needed to be preceded by assessing what kinds of technologies for silicon
fabrication and memory, SerDes, and IO interface standards would be available at the time of
the production.

2.3.1 Basic Architecture Design by Feasibility Studies

Prior to the FLAGSHIP 2020 Project, the following feasibility study projects were carried out
in order to investigate the basic design from 2012 to 2013:

• System study for the Next-generation “General-Purpose” Supercomputer, led by the Uni-
versity of Tokyo

• System study for Exascale Heterogeneous Systems with Accelerators, led by the University
of Tsukuba

• System study for Memory-bandwidth Oriented Vector Architecture, led by Tohoku Uni-
versity

• Application study led by the RIKEN R-CCS

Based on these feasibility studies, the initial plan at the beginning (2014) was a combined
system of a general purpose supercomputer and accelerators with a target performance goal of
exaFLOPS. The development of the accelerator part was, however, canceled due to a budget
problem. As a result, the basic architecture was decided as a large-scale system using only
general-purpose manycore processors studied by the feasibility study project of the University
of Tokyo.

The processor architecture suggested by the feasibility study was a manycore processor with
64 cores and two 512-bit-width SIMD arithmetic units for each core. It was reported that
other configurations, such as wider SIMD arithmetic units or a dedicated small matrix multiply
arithmetic, have been examined but not adopted due to low applicability and low efficacy for
real applications. Since the evaluation was done by the configuration supporting one pipe of
1,024-bit-width SIMD and matrix multiply units together, the number of cores was reduced to 32
cores per chip, resulting in poor performance. For example, the execution time of the RS-DFT
application by this configuration was increased by 28% compared to two pipes of 512-bit-width
SIMD. Only 1,024-bit-width SIMD without matrix multiply units was not evaluated, but the
difference from two pipes of 512-bit-width SIMD would be small by the estimation tool based
on the profile.
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2.3.2 Instruction Set Architecture and SIMD Instructions

The choice of the instruction set architecture was an important decision for architecture design.
Instead of the SPARC instruction set[15] used for the K computer, Fujitsu offered the Armv8 in-
struction set with the Arm SIMD instruction set called the Scalable Vector Extension (SVE)[16]
for the Post-K. They collaborated with Arm, contributing to the design of the SVE as a lead
partner, and adopted the results in the processor architecture design. The processor is custom
designed by Fujitsu using their microarchitecture as a backend of the processor core.

The Arm instruction-set architecture has been widely accepted by software developers and
users not only for mobile processors, but also for HPC recently. For example, Cavium Thunder
X2 is a processor designed for servers and HPC and used for several supercomputer systems,
including Astra[17] and Isambard[18]. While the Intel x86 architecture is dominant in HPC, Arm
processors are expected to be open to the possibilities and the diversity in the HPC community.

The SVE is an extended SIMD instruction set. The most significant feature of the SVE
is uniform support for vector lengths from 128 bits to 2,048 bits. The SVE realizes Vector
Length Agnostic (VLA) programming, as the name suggests, and does not depend on the vector
length. We have decided to have two 512-bit-width SIMD arithmetic units, as suggested by the
feasibility study. Our paper[19] using the gem5 simulator and McPAT also suggests that this
configuration of SIMD provides a good balance between performance and energy consumption
under the current O3 resources described later. Note that our implementation, A64FX processor,
is the first processor supporting the SVE.

2.3.3 Processor Chip Configuration

Fujitsu proposed the basic structure of the manycore processor architecture. Each core has an
L1 cache, and a cluster of cores shares an L2 cache and memory controller. This cluster of
cores is called a Core-Memory Group (CMG). In a processor chip, CMGs are connected via a
network-on-chip.

While other high-performance processors, such as those of Intel and AMD, have L1 and L2
caches in the core and share an L3 cache as a last-level cache, the core of our processor has only
an L1 cache to reduce the die size for the core. In the case of the A64FX chip, the area size
for the L1 cache occupies more than 10% of each core. If an additional other level of cache was
implemented and required a similar area in each core, the die size would increase by at least
more than 4%, estimated from the chip photograph. This impact is so large that it would be
not acceptable from a cost perspective.

Based on this basic structure, we had to decide the following parameters:

• The number of cores in a CMG

• The number of CMGs in a chip

• How to connect cores to shared L2 in a CMG

• The number of ways, the size, and throughputs of the L1 and L2 caches

• The topology of network-on-chip to connect CMGs

• The die size of the chip

• The number of chips in a node

Our technology target for silicon fabrication was 7-nm FinFET technology. The die size of
the chip is the most dominant factor in terms of cost. It is known that the cost of the chip



CHAPTER 2. CODESIGN OF ARCHITECTURE 28

Table 2.1: Cost of Die and Package, Multi-Chip Module

#Cores x #Dies Die Die PKG/MCM Total
#PKG(p)/MCM(M) area cost cost

64 x 1p 1 1.00 0.82 0.18 1.00
32 x 2p 2 0.65 0.80 0.26 1.06
16 x 4p 4 0.38 0.73 0.30 1.03
32 x 2M 2 0.64 0.77 0.31 1.08
16 x 4M 4 0.37 0.71 0.34 1.05

Table 2.2: Kernel Performance by the 4 CMGs and 8 CMGs Configurations for 64 Cores

kernel 4 CMGs 4 CMGs 8 CMGs
1 proc/CMG 2 proc/CMG 1 proc/CMG

16threads/proc 8threads/proc 8threads/proc

Kernel (Adventure) 100% 112% 112%
Kernel (FFB) 100% 105% 110%

KernelA (NICAM) 100% 100% 100%
KernelC (NICAM) 100% 90% 90%
kernelD (NICAM) 100% 113% 122%

NOTE: The performance in this table is the average of small kernels extracted in the different ways

from the kernel shown Table 2.4, 2.3

increases in proportion to the size and increases significantly beyond a certain size. Moreover,
the yield of the chip becomes low as the size of the chip increases. One configuration is to use
small chips and connect these chips by multi-chip module (MCM) technology. Recently, AMD
has used this “chiplet” approach successfully. The advantage of this approach is that a small
chip can be relatively cheap with a good yield. However, in the present case, the cost of MCM
was deemed too high, and furthermore, a different kind of chip for the interconnect and IO must
be made, resulting in even higher costs. Table 2.1 shows the cost of die and package, MCM,
relative to the cost of 64 cores in 1 package at the time of basic design phase. The connection
between chips on the MCM would also increase the power consumption.

Thus, our decision was to use a single large die containing some CMGs and the network
interface for interconnect and PCIe for I/O connected by a network-on-chip. The size of the die
was about 400mm2 , which was reasonable in terms of cost for 7-nm FinFET technology.

In order to maintain a certain degree of compatibility with the K computer, we assumed
that a commonly used programming model was OpenMP-MPI hybrid programming in which
each MPI process multithreaded with OpenMP runs in a CMG. In order to share the L2 cache
with cores in a CMG, we chose a cross-bar connection between L2 and cores.

We assumed that the total number of cores was 64 and examined the performance for 8
cores/CMG x 8 CMGs and 16 cores/CMG x 4 CMGs by running extracted kernels from the
target applications. Table 2.2 shows the performance of some kernels by the 4 CMGs and 8
CMGs configurations for 64 cores. For the performance evaluation, the total L2 cache size was
kept the same for both cases. The results evaluated by the performance estimation were as
follows:

• For some kernels, the performance of 8 cores/CMG was better since the latency to the
small L2 cache is reduced compared to the 16 cores/CMG configuration.
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• We found that a few kernels ran slower on 8 cores/CMG because the cache hit ratio of the
smaller cache was low.

If the number of cores in CMGs was less than 8, then the L2 cache size was too small. The
number of cores in a CMG was examined by the analytical performance model of HPL.

Our conclusion was that 8 cores/CMG was better than 16 cores/CMG. When we made a
decision to use the 7-nm FinFET technology of TSMC, we decided 48 cores (plus 4 cores) and
12 cores/CMG x 4 CMGs. Four CMGs provided 4 High-Bandwidth Memory (HBM) units as a
main memory, as described later.

We have designed the network-on-chip similar to a ring-topology network to support the
memory coherence protocol between CMGs so that a shared memory program can be executed
using multiple CMGs.

2.3.4 Memory Technologies

As the peak floating-point performance of the CPU chip was expected to reach a few TFLOPS,
the memory bandwidth of DDR4 was too low compared to the floating-point performance.
Thus, high-speed memory technologies, such as HBM and Hybrid Memory Cube (HMC), were
examined to balance the memory bandwidth and floating-point performance.

The HMC is a technology to connect the stacked memory chips and the CPU chip via high-
speed serial links. Fujitsu already had adopted the HMC 1.0 for the FX100. The link speed
by HMC 2.0 was 60 GB/s per link (per direction), and up to 4 links can be used. The power
consumption to drive the serial links is large.

The HBM is a stacked memory chip connected via TSV on a silicon interposer. The HBM2
provides a bandwidth of 256 GB/s per module. The capacity of HBM2 is up to 8 GiB, but the
cost is high because the silicon interposer is required.

As a memory technology available around 2019, HBM2 was chosen for its power efficiency
and high memory bandwidth for both read and write. We decided not to use any additional
DDR memory to reduce the cost. As described in the previous section, the number of HBM2
modules attached to CMGs is 4, that is, the main memory capacity is 32 GiB. Although it seems
small for certain applications, we already have many scalable applications developed for the K
computer. Such scalable applications can increase the problem size by increasing the number of
used nodes.

2.3.5 Cache Structure

The key to designing a cache architecture is to provide a high hit rate for many applications and
to prevent a bottleneck when data is supplied with full bandwidth from memory. We examined
various parameters such as the line size, the number of ways, and the capacity in order to
optimize the cache performance under the constraint of the size of the area on the die and the
amount of power consumption.

When the capacity of data is increased and the line size is the same, the area for tags is
increased as well as the area for data. The area size of the cache for the tag and data depends
on the kind of available RAM macro. When the number of ways is increased, the complexity
of the data path and the amount of control logic are increased even when the size of the data
remains the same. We found that changing the number of ways and the line size of the L1 cache
affects the area size. When the line size is changed from 256 bytes to 128 bytes, the area size is
increased by 5%.

We examined the impact of the cache configuration on the performance by running some
kernels extracted from target applications on the simulator for a single CMG. As shown in Table
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Table 2.3: Kernel Performance by Changing L1 Cache Line Sizes (Normalized to the Estimated
Performance of 256 Bytes)

Kernel (Application) 128 Byte 256 Byte

Kernel (Adventure) 99 % 100 %
Kernel (FFB) 78 % 100 %

Kernel A (NICAM) 86 % 100 %
Kernel B (NICAM) 56 % 100 %

Table 2.4: Kernel Performance by Changing L1/L2 Cache Sizes and Number of Ways (Normal-
ized to the Estimated Performance of L1:64KiB4Way and L2:6MiB24Way)

L1 64K4W 64K8W 64K4W
Kernel (Application) L2 6MiB24W 6MiB24W 8MiB16W

Kernel (Adventure) 100 % 100 % 100 %
Kernel (FFB) 100 % 101 % 101 %

Kernel B (NICAM) 100 % 94 % 110 %
Kernel C (NICAM) 100 % 101 % 101 %
Kernel D (NICAM) 100 % 98 % 101 %
Kernel (Seism3D) 100 % 100 % 99 %

2.3, when changing the cache line size from 256 bytes to 128 bytes, a performance degradation
was found in some kernels because the number of cache misses was increased. Although appli-
cations with fine-grain memory access would have the benefits of a small cache size, many HPC
applications have a good performance with a 256-byte line size. No significant benefit was found
by changing the cache line size to more than 256 bytes. Moreover, a wider cache line requires a
wider data path, resulting in a larger area and longer latency. Table 2.4 shows the performance
by changing the L1/L2 cache size and number of ways. No significant performance gain is found
by changing from 4 ways to 8 ways, which has a very small impact on the power consumption.
As a result, we chose a four-way L1 cache with a 256-byte line size and an 8 MiB L2 size.

We have designed the cache to save power for accessing data in a set associative cache. Data
read from a way and tag search may be used in parallel to reduce the latency, but this may
waste power because the data will not be used when the tag is not matched. In our design, data
access is performed after a tag match. While it causes a long latency, there is less impact on
the performance in the case of throughput-intensive HPC applications. This design is applied to
the L1 cache for vector access and the L2 cache. We found that this design reduces the amount
of power by 10% in HPL with almost no performance degradation.

2.3.6 Out-of-Order (O3) Resources

The microarchitecture is an out-of-order architecture designed by Fujitsu. The parameters for
O3 resources include:

• Number of entries in the reservation station

• Number of Re-Order Buffers (ROBs)
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Base Set: #RS=40, #ROB=64, renaming regs #FP=48, #GP=32,

#Fetch Port=20, #Store Port=12, #write Buffer=4

Figure 2.2: Impact to area size and kernel performance by changing the amount of O3 resources
(Size and performance are shown in %, relative to “Base Set”)

• Number of renaming registers (general-purpose registers and floating-point/SIMD regis-
ters)

• Number of entries for the load/store queue

First, we examined several combinations of these parameters by running some kernels on the
processor simulator to decide the ratio of the O3 resources. Keeping the decided ratio, the
amount of the O3 resources was decided by the trade-off between the performance and the
impact to the die size. Figure 2.2 shows the impact to the area size and the performance of
kernels picked from a set of measured kernels and the average by changing the amount of O3
resources. We found that the impact of O3 resources to the area size is large when increasing
these O3 resources, while larger resources may improve the performance.

The decisions regarding the O3 resources were some of the most difficult problems in the
core design because of the following reasons:

• At the basic design phase, the compiler optimization was immature to evaluate reasonable
sets of the parameters.

• Fujitsu had experience in designing O3 processors, but these instruction sets were SPARC
with proprietary extensions and were completely different from Armv8.

As shown in the Figure, “base x 2.0” and “base x 2.5” can be candidates, and “base x 2.0”
was chosen with respect to the impact to area size. The final decision was made as described in
the microarchitecture document[2], considering the balance with the area size.
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2.3.7 Enhancement for Target Applications

During the codesign process, we received feedback to enhance the architecture to improve the
performance of the target applications. The chosen enhancements are as follows:

• Combined gather operations: For the indirect memory access in the gather instruction,
when target elements are within a 128-byte aligned block for a pair of regs, requests to
cache access are combined into one request, resulting in doubling the gather (indirect)
load’s data throughput. We found the performance improvement of the kernels containing
the indirect load: 36% in “Kernel (FFB)” and 20% in “Kernel D (NICAM)”.

• Optimization for re-use of data on L2 cache: In some applications, we found that
the same data on the L2 cache is re-used frequently and increases the traffic to replace
the data on the L1 cache, resulting in a performance bottleneck. We reduce the traffic for
eviction by updating only the tag when it is detected that data on the L1 cache is not
modified. This optimization contributes decreasing the L1 busy rate from 84% to 78% in
“Kernel A (NICAM)”, making room for improvement of the cache bandwidth.

2.3.8 Interconnect between Nodes

We have selected the Tofu network topology, a six-dimensional torus network, for performance
compatibility with the K computer in large-scale applications.

From the viewpoint of the technology availability and maturity, we chose 28 Gbps SerDes for
the link of the interconnect. While the link speed is 6.8 GB/s per link, the injection bandwidth
per node is 40.8 GB/s because the number of Tofu Network Interfaces (TNIs), which are DMA
engines between the network and the memory in a chip, is six.

Communication patterns were extracted from target applications, and the communication
performance was estimated by the analytical model. Many target applications have neighbor
communication patterns or communicate with near nodes. Therefore, the “Tofu” network with
an injection bandwidth of 40.8 GB/s was concluded to be sufficient.

For all-to-all communication used in some applications, we investigated the benefits or feasi-
bility of an additional dedicated all-to-all network, but it was not adopted due to cost. Instead,
we decided to enhance the reduction operation in the interconnect to support the reduction of
three double-precision floating-point numbers for QCD applications.

The new version of the interconnect is named “TofuD”. The details of TofuD are described
in [20].

2.3.9 Co-Design for Low Power

One of the most important challenges for an exascale system is to reduce the power consumption.
We investigated several power control mechanisms for saving power. Our fundamental policy was
to increase the power efficiency by reducing unnecessary power without degrading performance.
To meet this goal, we prepared multiple power control mechanisms called power knobs, which
can be turned them on and off according to the characteristics of applications.

The initial candidates for the power knobs were: the clock frequency, the SIMD width, the
number of pipelines for the floating-point unit and the integer unit, the number of ways for
the L2 cache, the number of instruction issuances, the O3 resources such as reservation station
entries and rename registers, and memory access throttling. In order to determine which power
knob should be implemented, we first estimated the power consumption by the performance
estimation tool, followed by evaluation using a cycle-level simulator for more accurate analysis.
We used the DGEMM kernel as a compute-intensive workload and the Stream benchmark as a
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Table 2.5: Evaluation of Power Knobs for DGEMM and Stream

Power Knob Default Setting DGEMM Stream
Perf. Power Perf. Power

Frequency 2.0GHz 1.6GHz 80% 82% 98% 89%
Inst. issuances 4 inst. 2 inst. 59% 95% 100% 98%
FPU 2 pipes 1 pipe 52% 84% 100% 100%
EXU 2 pipes 1 pipe 96% 100% 100% 100%
Memory throttling 100% 50% 100% 100% 62% 84%

Table 2.6: Power Mode for Target Applications (Performance and Power is Relative to Normal
Mode (N))

Application Power B N+E B+E
mode perf. pow. perf. pow. perf. pow.

GENESIS B 1.09 1.20 1.00 0.80 1.09 0.96
Genomon B 1.10 1.17 - - - -
GAMERA B+E 1.06 (1.14) 1.00 0.81 1.06 0.89
NICAM+LETKF B+E 1.07 (1.18) 0.97 0.79 1.04 0.91
NTChem B 1.08 1.21 0.57 0.69 0.62 0.83
ADVENTURE N 1.07 (1.21) 0.90 0.85 0.98 1.00
RSDFT B 1.06 1.20 0.71 0.80 0.77 0.90
FFB B+E 1.10 (1.17) 1.00 0.80 1.10 0.94
LQCD B+E 1.05 1.17 1.00 0.74 1.05 0.83

memory-intensive workload, as well as some kernels from target applications. As a result, we
decided not to implement the control related to O3 resources because they were not so effective,
except for the number of instruction issuances. As described in the section on the cache design,
the cache is well designed for the lower power, and the control of the number of ways in the L2
cache was found to be no longer effective in reducing power consumption. Table 2.5 shows a
part of the results of evaluation of power knobs using DGEMM and Stream. For example, when
changing the frequency from 2.0 GHz to 1.6 GHz, the performance of DGEMM is 20% reduced
and power is 18% reduced, while when limiting the FPU pipeline to one pipe, the performance
of DGEMM is 48% reduced but power is only 16% reduced.

Memory access throttling was expected to be beneficial for compute-intensive applications.
However, in the case of HBM, unlike HMC, the benefit by changing the frequency to access the
memory is small since the power consumption to access the HBM is small enough if the memory
is not accessed frequently.

For memory-intensive applications, the control of the arithmetic pipeline is expected to be
beneficial for saving power because the utilization of the arithmetic unit is low. Actually, we
found that there is no reduction of power by controlling the arithmetic unit for Stream as in Table
2.5. This was because the mechanism for stable operations against power fluctuation consumed
a certain amount of power, even when the arithmetic unit was not working. We defined a new
mode called eco mode in which only one arithmetic unit is active with the mechanism for stable
operation for another unit inactive.

In order to improve the power efficiency, it is important to lower the power supply voltage as
much as possible while increasing the frequency. Another demand is to improve the maximum
performance even if the power consumption is slightly increased in order to pursue the perfor-
mance. For this demand, we provide boost mode in which the power supply voltage is increased
to increase the maximum frequency beyond that in the normal mode. As described in Chapter
2 “overview Fugaku”, the clock frequency of the boost mode is 2.2 GHz, increased from 2.0GHz
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Figure 2.3: Effects of eco mode and core retention on the Stream benchmark

of the normal mode.
Since the eco mode can also be active in the boost mode, the four modes of ‘boost’ (B),

‘boost+eco’ (B+E), ‘normal’ (N), and ‘normal+eco’ (N+E) can be selected. We have evaluated
several kernels taken from target applications using a performance estimation tool, and estimated
the modes that could achieve the maximum performance within the capacity of the maximum
power. Table 2.6 shows the results. The values are the ratio based on each normal performance
and power. The value in parentheses indicates that the maximum power has been exceeded. It
should be noted that four applications out of nine target applications choose the ‘boost eco mode’
for maximum performance, where it improves performance while reducing power in comparison
with normal mode.

The power knobs can be controlled within user programs using the Sandia Power API [21],
which is now maintained as the Power API Community Specification [22]. Moreover, this API
allows acquiring the measured power of the node and the estimated power calculated from the
performance counters.

In a large-scale system, the power consumption at the idle state is also important because
the number of nodes is huge and the total power consumption of the system reaches several
megawatts. To save power in the idle state, we defined a new CPU power state called node
retention, in which the power consumption is reduced to 50% of the CPU standby state. In the
node retention, all cores except one assistant core are in the core retention state. The transition
to core retention can be controlled on a core-by-core basis. When not using all the cores in the
chip, power saving can be expected by using core retention.

Figure 2.3 illustrates the result for Stream benchmark while scaling the number of threads.
We compared 4 power modes; normal mode, eco mode, retention mode and eco retention (ecoret)
mode. In normal mode, two FPU is active, while in eco mode, only one FPU is active. In normal
mode, inactive threads is just in idle state, while in retention mode, inactive threads is in core
retention state. The ecoret mode is the combination of eco mode and retention mode.

The figure shows total throughput in each power mode by line graph, but they are almost
the same and they are overlaid. The throughput is increased up to 24 threads in proportion to
the number of threads. The peak throughput is about 800GB/s, this is about 80% of theoretical
memory throughput.

Bar graphs show the measured power consumption of node in each power mode. When the
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Figure 2.4: Effects of boost mode and core retention on the DGEMM benchmark

number of threads is 4, the power in normal mode is about 120W and the power in eco mode
is about 90W, which is 25% lower keeping throughput. In retention mode, 44 cores are in the
core retention state and only 4 cores are in the active state. Therefore, the power consumption
is about 70W, which is 40% lower. As the number of threads increases, the number of retained
cores decreases, so the effect of core retention decreases. The throughput is saturated with
24 threads, and at this point the power consumption of normal mode is about 190W. In eco
retention mode, the power is about 145W, which is 23% lower.

Figure 2.4 shows the evaluation results of DGEMM execution. We compared 4 power modes;
normal mode, boost mode, retention mode and boost retention (boostret) mode. In normal
mode, program runs at 2.0GHz, while in boost mode, it runs on 2.2 GHz. The boostret mode
is the combination of boost mode and retention mode.

The Line graphs show the performance by GFLOPS in each mode, but they are almost the
same whether or not core retention is set, and we can only see two lines. One is the performance
of normal mode, and the other is the performance of boost mode, which is 10% higher than
normal mode as same as the frequency increase. Both performance increase in proportion to the
number of threads. The maximum performance in boost mode is about 3200 GFLOPS, which
is 95% of theoretical peak performance.

Bar graphs show the measured power consumption of node in each power mode. When the
number of threads is 4, the power of normal mode is 106W while the the power of boost mode
is 119W, which is 12% larger than normal mode. On the other hand, the power in the retention
mode is 58W, which is 46% lower. This is because that 44 cores are in the core retention state,
and only 4 cores are in the active state. When the number of threads increase, the effects
of retention becomes small. When the number of threads is 32, the power of normal mode is
137W while the power of boostret is 132W, which is 4% smaller than normal mode but the
performance is 10% higher. In this way, if inactive cores exist, by using active cores in boost
mode and keeping the rest in the core retention state, it is possible to get a 10% performance
improvement by boost mode while the power consumption remains the same or less by core
retention.

More detailed analysis of the processor power consumption is described in [23].
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Figure 2.5: Performance improvement of Livermore Loops by software pipelining optimization

2.4 Codesign of Compiler

Since October 2019, the test system of Fugaku has been available for users. As well as the
performance evaluation of several programs, including the target applications and benchmark
programs, the codesign effort must move in the direction from architecture to software, including
compiler optimization and performance turning of application programs.

2.4.1 Compiler Optimization for A64FX Processor

Through the codesign process for the A64FX processor, the architecture has been designed as
an HPC-oriented processor. This means that the latencies to execute floating-point instructions
are relatively long because many kinds of floating-point arithmetic operations are executed in
nine cycles by using a Fused Multiply Add (FMA) arithmetic unit. This unit contributes to
reducing the die size, but may cause a long latency. The cache structure having only an L1 cache
within each core may increase the latency to access the data, while other server-class processors
have L1 and L2 caches inside the core. Many HPC applications can be executed efficiently
with throughput-oriented operations, such as loops for vector operations, but this may cause
a problem if there are a lot of operations affected by long latency. This latency problem may
cause another problem whereby the O3 resources tend to be depleted, resulting in a performance
degradation.

To mitigate the problem, we found that the software pipelining technique is effective to
improve the performance of some types of loops. This is because the software pipelining opti-
mization may help to make the live period of values in O3 execution short so that it enables O3
resources to be used efficiently. Figure 2.5 shows the performance improvement of each loop in
the Livermore benchmark[24]. Note that each loop is executed by a single core.

Another optimization is loop fission. As the amount of O3 resources is small compared to
the latency of floating-point instructions and load/store instructions, a loop with a long body
may cause a shortage of O3 resources. In addition, such a loop causes a lot of register spills,
resulting in low performance. The Fujitsu compiler supports the function of automatic loop
fission. Moreover, this compiler facilitates software pipelining for split loops and expects overlap
in operations.
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Chapter 3

Codesign of System Software

3.1 Co-Design of Operating System Kernel

3.1.1 Approach

3.1.1.1 Issues on K Computer

1. Linux distribution and continuity of providing latest Linux Kernel version
Although the K Computer, whose CPU architecture is SPARC, adopted the Linux kernel,
no major Linux distributions, such as Red Hat and SUSE, was supported at the time
unlike Intel CPU architectures. Thus, users had to build programming tools, not provided
by Fujitsu or RIKEN, from source code. This was sometimes difficult because such tools
were not implemented for the SPARC architecture.

The Linux kernel has meanwhile evolved, but it was also difficult to upgrade to the latest
Linux kernel because K’s Linux kernel was modified specifically for the K Computer.

2. Improvment of easy-of-use
A Linux distribution mainly provides a programming environment and does not specifically
support applications for supercomputers. Even if an application is available as open source,
it may not be easy to install it on a supercomputer due to differences in supercomputer-
specific settings. Also, the Linux kernel does not always provide system functions that are
suitable to running HPC applications.

Figure 3.1: Architectural overview of IHK/McKernel.

38
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3. Runtime environment for computer scientists
Most of the K Computer users were computional scientists, and the number of computer
scientists were limited. This is due not only to the lack of programming tools mentioned
above and the lack of support for the latest Linux kernel, but also due to the lack of an
experimental environment to evaluate new Linux features.

3.1.1.2 New Hardware Support

1. Reducing OS noise
In Fugaku, which has twice the number of computing nodes and 12 times the number
of CPU cores in the K Computer, OS noise reduction is required more than in the K
computer.

2. Large page support
The page table size of the Arm architecture can be flexibly configured to 4KiB, 16KiB,
2MiB, 32MiB, 64MiB, 512MiB, and 1GiB (with some restrictions on combinations). It
is necessary to determine the normal page size and large page size in consideration of
the balance between the TLB cache miss rate and memory utilization (using large pages
could increase sub-page-sized memory regions which are hold but not used) of the target
applications.

3. Many-core support
The Fugaku CPU is a many-core architecture, equipped with 48 cores. In order to in-
crease the efficiency of parallel processing in a node, it is desired to realize an execution
environment that does not share variables like a process and operates in the same address
space like a thread.

Table 3.1: Large Page Size Avaialbility
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3.1.2 codesign Results

Results of codesign mentioned in the previous section are summarized.

3.1.2.1 Issues on K Computer

1. Linux distribution and contiguous support for the latest Linux Kernel version
Fujitsu has implemented various Fugaku specific functions by adding kernel modules with-
out modifying Linux kernel itself. Problems found during the porting of Linux to Fugaku
and their fixes were reported to the Linux community and reflected in the mainstream.

We decided to use Red Hat Enterprise Linux 8 (RHEL8) as the Linux Distribution. With
RHEL’s support for Arm, it will be possible in the future to update the distribution to
the latest version in a timely manner because the Linux kernel itself is not modified.

2. Operating system scalability and Linux compatibility

While the K Computer succeded in providing a scalable execution environment it suf-
fered from the inability to follow Linux changes and thus it offered limited features for
emergin applications. We have developed IHK/McKernel, that is a light-weight multi-
kernel operating system designed for high-end supercomputing for addressing this issue.
IHK/McKernel runs a lightweight kernel side-by-side with Linux on difference CPU cores
of compute nodes with primary motivation of providing a scalable execution environment
for HPC applications but to retain Linux compatibility at the same time. IHK/McKernel
is open source under the GPL license and was originally developed at the University of
Tokyo. Unlike K computer, Fugaku has extra CPU cores for OS activities on each node.
That is, in addition of 48 CPU cores, four or two CPU cores are available on a compute
& IO node or a compute node, resplectively. As shown in Figure 3.1, Linux runs on some
CPU cores, called assistant cores in the case of Fugaku, and McKernel runs on the rest of
CPU cores, 48 cores in the case of Fugaku. IHK/Mckerel provides an efficient memory and
device management so that resource contention and data movement are minimized at the
system level. It eliminates OS noise by isolating OS services in Linux and provides jitter
free execution on the application cores. IHK/McKernel supports the full POSIX/Linux
APIs by selectively offloading (slow-path) system calls to Linux.

A low-level software infrastructure, called Interface for Heterogeneous Kernels (IHK), is a
general framework that provides capabilities for partitioning resources in a many-core envi-
ronment (e.g.,CPU cores and physical memory) and it enables management of lightweight
kernels. IHK can allocate and release host resources dynamically and no reboot of the host
machine is required when altering configuration. IHK also provides a low-level inter-kernel
messaging infrastructure, called the Inter-Kernel Communication (IKC) layer.

There are two OS modes on the Fugaku, the Linux-only and IHK/McKernel modes. The
default is Linux-only mode in which Linux runs on all CPU cores. Because IHK/McKernel
only implements basic OS functions, such as memory and process/thread management and
signal handling, and the other Linux functions, such as file I/O, are offloaded to Linux,
applications, whose file I/O time is dominant in the total execucion time, should run on
Linux-only mode. The users may select the Linux-only or the IHK/McKernel mode.

While the Fugaku hardware was unavailable, we develped IHK/McKernel on the Intel
many-core architecture Xeon Phi. A comparative evaluation between Linux and IHK/M-
cKernel both on the Xeon Phi based Oakforest-PACS supercomputer and on Fugaku has
been published in [25].
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3. Improvment of easy-of-use
RHEL and CentOS, a free Linux distribution compatible with RHEL, are widely used
in academia and industry. The introduction of RHEL gives people, who have not used
supercomputers, easier access to Fugaku, contributing to improvement of usability.

We invegstiged introducing EasyBuild or Spack as a tool to easily install open source
software to Fugaku. EasyBuild is a tool developed at CERN in Europe and is actively used
at CEA in France. Spack is a tool developed at Lawrence Livermore National Laboratory in
the US ECP (Exascale Computing Project) and is widely used in the US. As a result of the
examination, Spack was adopted to Fugaku because it can describe tool dependencies more
flexibly and many open sources software already registered. However, since supporting the
Arm architecture was delayed, RIKEN and Fujitsu cooperated to promote the support for
the Arm architecture. As a result of the cooperation users can use as much open source
software on x86 and aarch64. Table 3.2 shows a comparison of build success rate between
the begging and the latest final result.

Table 3.2: Comparison of build success rate of June 2019 and Feb. 2021
Architecture Compiler June 2019 Feb. 2021 (Final Result)

x86 64 GCC 72.70%(2357/3242) 84.19%(4499/5344)

aarch64 GCC 67.82%(2199/3242) 81.08%(4333/5344)

aarch64 Fujitsu Compiler 34.20%(1109/3242) 74.59%(3986/5344)

4. Runtime environment for computer scientists
KVM (Kernel-based Virtual Machine) is provided. It is possible to run a different version
of Linux from the Linux kernel provided by Fugaku and experiment with new kernel
functions.

3.1.2.2 New Hardware Support

1. Reducing OS noise
Introducing assistant cores makes OS noises reduce. The number of assistant cores were
determined by investigating how much CPU resource is needed to run OS daemons. Fujitsu
published a paper of OS noise evaluation in Fujitsu Technical Review[26].

2. Large page support
Large page size availability on Linux and McKernel is shown in Table 3.1. By setting
the following shell environment variable, the users can use Transparent Huge Page (THP)
function provided by McKernel.

export XOS_MMM_L_HPAGE_TYPE=thp

3. Many-core support

We have researched and developed Process-in-Process (PiP) to efficiently execute parallel
processing in a node[27, 28, 29]. PiP offers a new in-node parallel execution model alongside
conventional multi-process (e.g. MPI) and multi-thread (e.g. OpenMP) execution model.
PiP performs multiple PiP tasks (corresponding to previous processes) in the same address
space. Here, the PiP task is different from the multi-thread in such a way that the static
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variables of each PiP task are privatized for each PiP task. Therefore, exclusive control
is not required when updating the values of these variables. Also, in the case of multi-
process, each process has an independent address space, so there is a drawback that the
communication overhead between processes becomes large, but since PiP shares the same
address space, it is simple and has little overhead. Memory access also has the advantage
of enabling data exchange among PiP tasks.

PiP can be implemented if Position Independent Executable (PIE), the Linux clone()

system call or POSIX pthread create(), and the dlmopen() function are supported. For
this reason, entire PiP implementation is user-level library and does not require a special
OS kernel or dedicated compiler. Here, the dlmopen() function is different from dlopen()

in that it can load libraries and programs in the new namespace. Unfortunately, in normal
GLIBC, dlmopen() specifies that the maximum number of namespaces is 16, which is
the maximum number of PiP tasks. This is completely insufficient for current manycore
processors. For this reason, the PiP software package also provides a separately modified
GLIBC to ease this limitation, which can be used to generate up to 300 PiP tasks.

Since the PiP tasks shares the page table, the context switching time is as fast as the
thread. In the multi-process parallelism, a method of providing a shared memory area to
reduce communication overhead is widely used, but in this case, a problem may occur in
the memory consumption of the page table in the OS kernel. A method of mapping the
memory area of another process to its own address space using XPMEM has also been
proposed, but the overhead of map generation and deletion is very large. In order to reduce
the overhead, it is necessary to devise an implementation such as introducing a cache-like
mechanism. Also, it is difficult to map the area containing the pointers and refer to the
pointers as they are, because mapping memory pages of other processes does not guarantee
to be mapped to the same addresses. However, since it is not necessary to newly map the
memory by using PiP, there is no overhead of area generation and deletion. Moreover, since
it can be accessed with the same address, no special consideration is required for accessing
the area including pointers. Therefore, it is possible to refer to the data of different PiP
tasks at high speed and flexibly as needed.

The publicly available PiP software package also includes pip-gdb, which allows users to
debug PiP tasks. In Pip-gdb, each PiP task is associated with the gdb’s inferior. There
is also an installer called PiP-pip to install PiP and patched GLIBC and GDB. The spack
recipe for the PiP package is also registered in the spack main repository.

3.2 Co-Design of Communication Library

3.2.1 Approach

3.2.1.1 Issues on K Computer

The specifications of the MPI communication library, which is a de facto standard, are discussed
at the MPI Forum and are often implemented by the open source communities, such as Open MPI
and MPICH, even before the specifications are finalized. Once the specification is standardized,
open source conforming to the new specification will be distributed in a short period of time.
The K computer’s MPI communication library is based on the Open MPI, which is an open
source code, but there are many modifications to it, and Fujitsu’s library could not catch up
with new versions that comply with the specifications added later.

In the Fugaku development, we have cooperated with the Open MPI and MPICH communi-
ties, and did not extend them without upstreaming to or getting accepted by the communities
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so that the cost of catching up with a new standard can be reduced. Fujitsu continued to use
Open MPI for Fujitsu MPI and RIKEN developed an MPI library based on MPICH, called
MPICH-Tofu. By providing two MPI implementations, a wider range of MPI functions can be
provided.

Reducing the dynamic process creation time (MPI Comm spawn) and the following restric-
tions on K computer were taken care of by Fujitsu MPI.

• Topology-aware node allocation is not possible.

• The number of processes in a node cannot be specified (inherited from the original job).

• Shell environment variables (especially related to Open MP) cannot be specified (inherited
from the original job).

• More than one job cannot run on a node because only one MPI COMM WORLD is managed on
each node in K computer.

The pack / unpack processing of derived data types is parallelized using Open MP to speed
up such processing. MPI runtime can tell Open MP threads are available to parallelize the
processing by checking if they are used for other purposes by calling the Open MPI library
function omp in parallel(). The number of available Open MP threads can be obtained by
using omp get num threads() and omp get max threads().

Since the 1 processes-per-node (PPN) execution mode was recommended for the K computer,
the inter-process communication performance within the compute node was not optimized. On
the other hand, in Fugaku, the 4 PPN execution mode is recommended, so it is necessary to
optimize the communication performance between the processes in the compute node. To do
that, a 1 COPY implementation method is adopted in which the sender’s data is directly copied
to the receiving area of the receiving process using shared memory. There are several shared
memory implementations in Linux kernel, e.g., KMEM, CMA, and XPMEM. Which shared
memory implementation is used was determined by comparing the performance figures of those
implementations.

3.2.1.2 Needs of Target Applications

It was pointed out that reducing the Alltoall communication latency in the 4 PPN execution
mode greatly contributes to the improvement of the execution time of a target application.

At the time of K computer’s development, the MPI communication library was assumed to be
used by computational scientists. Most users satisfied with Fujitsu MPI performance. However,
there was a need to use a low-level communication library to reduce communication latency
as much as possible for those applications in which the communication latency occupy a large
portion of the execution time. Computer scientists, who develop middleware and programming
environments, also need to use a communication library located one layer down MPI. Thus, it
was decided that Fugaku provides a low-level communication library.

3.2.1.3 New Hardware Support

Fugaku has more functionalities or a larger amount of hardware resources when compared to
K computer, as shown in the followings. Using these, point-to-point communication function
and collective communication algorithms were improved and the amount of memory used was
reduced.
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1. Assistant cores
Fugaku is equipped with cores, called assistant cores, for executing the OS daemons and
processing interrupts. Such OS functions do not run on CPU cores executing application
codes.

2. Tofu ARMW (Atomic Read Modify Write) functions
TofuD interconnect has ARMW (Atomic Read Modify Write) functions which perform
swapping, addition, logical exclusive OR, logical AND and logical OR operation on 4 or 8
byte integer values.

3. Resource of network interface
TofuD has 6 network interfaces and 32 x 6 barrier gates.

4. Increased number of processes
We assumed that Fugaku would have about 636 K processes (4 PPN) while K computer
has about 80 K processes (1 PPN). Memory usage increases in proportion to the number
of processes. The amount of memory used by MPI has been reduced in the K computer as
well, but it is necessary to further reduce the amount of memory used in Fugaku. The mem-
ory used by MPI consists of process information, such as the network addresses required
for communication, and communication buffers. Those memory usages were reviewed and
redesigned in order to reduce memory size.

3.2.2 Codesign Results

3.2.2.1 Issues on K Computer

1. Catching up with latest MPI standards
Fujitsu MPI has adopted OpenMPI-4.0.1, which is close to the latest version of Open
MPI, by not allowing to add modifications to it which are not upstreamed or not accepted
by the community. This version is compatible with the latest MPI standard version 3.
In addition, the Persistent Collective function, discussed in the MPI Forum as the next
version feature, was implemented. Fujitsu implemented the module of the persistent col-
lective communication scheduler by extenting the libnbc (non-blocking collective) library
included in Open MPI, and made it available to the Open MPI development community.

2. Flexible dynamic process creation
Open MPI uses PMIx as the process management interface. PMIx defines the interface
between the execution environment daemon and the MPI process. The functions pro-
vided include exchanging information, such as the network address of the remote process
required before an MPI process establishes a communication channel connected to the re-
mote process, key-value communication between processes, synchronization, and dynamic
process creation. PMIx interfaces PMIx Publish(), PMIx Unpublish(), PMIx Lookup(),
PMIx Connect(), PMIx Disconnect(), and PMIx Spawn() are provided for dynamic pro-
cess creation.

Fujitsu designed and implemented an interface, called jTofu, for obtaining topology infor-
mation that is a hint for optimizing communication and process placement. jTofu provides
the following functions:

• Inquiry about physical or logical shape of job

• Conversion between rank and physical or logical coordinates

• Inquiries about commuication path for communication
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3. Improving Pack / Unpack Processing
In MPI + OpenMP parallel model, when a user program calls an MPI function outside of
Open MP’s parallel region, the MPI runtime can use the waiting thread to parallelize the
Pack / Unpack processing that occurs in the derived data type. In the Fujitsu MPI, the
runtime option opal_mt_memcpy enables this feature.

4. Improving intra-node inter-process communication
As a result of evaluating shared memory implementations, KMEM, CME, and XPMEM in
Linux, XPMEM was chosen for implementig 1 COPY method for intra-node inter-process
communication. This is because XPMEM is suited to parallelization of the communication.
That is, in KMEM and CMA, both mapping pages of remote process and copying the
contents are done in kernel mode. On the other hand in XPMEM, only the map part
is done in kernel mode and the copy part is done in user mode, making it possible to
parallelize the copy part with OpenMP without the overhead of kernel mode switching.

3.2.2.2 Target Application Needs

1. Collective communication
As an intra-node communication method for the Alltoall communication, Fujitsu de-
signed and implemented a 3-step CMG-to-CMG communication method.

2. Low-latency communication
In addition to providing an MPI communication library, Fujitsu developed uTofu as an API
to directly access the TofuD hardware to provide low-latency communication functions,
and made its interface open to the public. uTofu is implemented at the user level except
for privileged accesses, such as memory registration.

RIKEN has developed another user-level communication library, called utf, using uTofu
and released it to the public. The utf has a similar interface to the MPI point-point
communication function, i.e., tagged message. The utf was developed in order to port the
MPICH communication library, developed mainly by the Argonne National Laboratory in
the United States, to Tofu, but the utf communication library can also be used in MPI
application programs.

3.2.2.3 New Hardware Support

1. Improving point-to-point communication function
Fujitsu implemented a progress engine running on assistant cores which proceeds non-
blocking communication in background. In addition, the ARMW (Atomic Read Modify
Write) function of TofuD was used to implement the MPI point-to-point communication
function with less memory footprint.

2. Collective communication algorithms
Fujitsu redesigned the Allreduce and Bcast collective communication algorithms to make
use of the network interface resources whose number is increased from the K computer.

3. Reducing memory consumption
Memory consumed by the process information management, such as the network address,
is reduced by changing information gathering timing in OpenMPI and making use of
shared memory in PMIx interface used by Open MPI. That is, communication between the
execution environment daemon and MPI processes in the same node uses shared memory
(since PMIx 1.2). OpenMPI added an execution mode in which the information of the
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receiver’s process is obtained on demand or at the first communication, instead of obtaining
the information of all remote processes at the MPI initialization time.

The memory reduction of the communication buffers used by the Fujitsu MPI is described
here. In the point-to-point communication by Tofu interconnect of K computer, a receive
buffer is allocated for each sender process at the first communication. There are two
modes, memory-saving and high-speed, depending on the size of the receive buffer, which
can be selected by a run-time option. By default, the memory-saving communication
mode is employed at the first communication of peers, and then the mode is changed to
the high-speed mode after 16 communications. The number of receive buffers increases in
proportion to the number of communication peer processes.

In Fugaku, a mechanism for sharing the receive buffer was introduced using TofuD’s
ARMW functions. The receive buffer is managed by 64 bit memory value in which the
producer counter and the consumer counter are packed. This area can be manipulated
remotely by all processes. The receive buffer area is allocated by increasing the producer
counter using TofuD’s remote atomic add operation at the sender side.

3.3 Codesign of File System and File I/O

3.3.1 Approach

At the basic design phase, we investigated file IO patterns of target applications. Table 3.3
summarizes file sharing relationship, lifetime, and applied file systems. In this table, the “Name
Space” specifies visibility of a file, e.g., process location, in other words, the MD (meta data)
server’s accessibility. Temp. Local FS, Temp. Shared FS, and Global FS, represents temporary
file system in a node, temporary shared file system in a job, and global file system, respectively.

As a result of this investigation, the following basic design policy was decided.

1. Three-layered storages are introduced. Solid State Disk (SSD), a parallel file system using
hard disk, and an archive system using such like a tape form each layer. The first layer
storage is used for a local storage and cache system for the second layer storage.

2. A file staging system operated in K is not supported in Fugaku. Instead, asynchronous
file I/O processing and cache of the second layer storage on the first layer storage are
introduced.

3. LLIO, a file I/O middle ware, is developed. LLIO utilizes main memory and the first layer
storage for cache of the second layer storage. It realizes fast data transfer using the RDMA
capability of the Tofu-D interface.

RIKEN developed an application-level file I/O transfer framework, called DTF (Data
Transfer Framework). DTF offers applications API of pNetCDF file I/O library. DTF
implements data exchange between applications using the MPI API instead of file I/O
API.

4. A parallel file system, based on Lustre file system, is equipped in the second storage.

5. The hardware and software configurations from the perspective of fault tolerance is re-
viewed.
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Table 3.3: File Sharing Relationship, Lifetime, and File Systems

Created File
Name Space
(MD server)

Placement File System

Local in
Process

Discarding
after job
finished

Local in com-
pute node

In file: 1st layer cache
Out file: 2nd layer if exceeds
1st layer cache size

Temp. Local FS.
Or Global FS

Saving after
job finished

Local in com-
pute node or
2nd layer

In file: 1st layer cache
Out file: 1st layer cache

Temp. local FS →
Global FS.
Or Global FS

Shared by
MPI
processes

Removing
after job
finished

Local in Job
In file: 1st layer cache
Out file: 2nd layer if exceeds
1st layer cache size

Temp. Shared FS

Saving after
job finished

Local in Job
or 2nd layer

In file: 1st layer cache
Out file: 2nd layer if exceeds
1st layer cache size

Temp. Shared FS →
Global FS.
Or Global FS

Shared
among MPI
app.
(Coupler)

Removing
after job
finished

— — DTF

Saving after
job finished

Global on 2nd
layer

In file: 1st layer cache
Out file: 2nd layer if exceeds
1st layer cache size

Global FS

Shared
among jobs
(workflow)

Removing
after job
finished

Global on 2nd
layer

In file: 1st layer cache
Out file: 1st layer cache

Global FS

Saving after
job finished

Global on 2nd
layer

In file: 1st layer cache
Out file: 1st layer cache Global FS

3.3.2 Codesign Results

Table 3.4 summarizes the specification of 1st and 2nd layer storages. The designed file I/O
performance was confirmed by investigating target applications. For detailed results, please
refer to the paper[30].

Table 3.4: The Specification of 1st and 2nd Layer Storages

Minimum Throughput Measured Throughput

1st Storage write 49 MB/s /node 125 MB/s /node
read 113 MB/s /node 293 MB/s /node

2nd Storage
write

200 GB/s /volume
211 GB/s /volume

read 220 GB/s /volume

Note: The 2nd storage is formed from 6 volumes.
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Chapter 4

Codesign of Programming models
and tools

This chapter describes the programming models and tools available on Fugaku: 1) a Partitioned
Global Address Space Language, 2) compilers for standard programming languages, 3) a frame-
work for developing particle simulator, and 4) programming tools. The users can efficiently
develop and execute their programs on Fugaku by using them.

4.1 Introduction

In order to make the most effective use of Fugaku, the programming environment including
compilers, languages, and tools also plays an important role. We have therefore designed and
developed it on the basis of lessons learned from our experiences on the K computer and requests
from pilot users of Fugaku. In this chapter, we describe the programming models and tools
available on Fugaku.

The remainder of this chapter is organized as follows. First, Section 4.2 describes a Parti-
tioned Global Address Space (PGAS) Language XcalableMP and its preliminary performance
on Fugaku. In Section 4.3, the support of compilers for standard programming languages such
as Fortran, C, and C++, are briefly explained. In Section 4.4, FDPS (Framework for Developing
Particle Simulator), a universal software application for particle-based simulations, are outlined.
Section 4.5 gives an overview of the programming tools such as an integrated development
environment (IDE), debugger, and performance profilers.

4.2 XcalableMP Partitioned Global Address Space Language

In this section, we report our early experience and the preliminary performance of XcalableMP
on Fugaku. XcalableMP is available as a parallel programming language for Fugaku, supported
by R-CCS team with Fujitsu. C and Fortran are supported as base languages with XcalableMP
1.2 compliant.

We report the preliminary performance of XcalableMP program running on Fugaku 1.
We used the following versions:

• Omni XcalableMP Version: 1.3.2, Git Hash:6d23f46

• Language specification: 1.2.25

1 The reported results were obtained on the evaluation environment in the trial phase. Note that the perfor-
mance is not guaranteed at the start of its operation.

49
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The performance of XcalableMP on Fugaku is enhanced by the manycore processor and a
new Tofu-D interconnect.

4.2.1 Performance of XcalableMP Global View Programming

We executed IMPACT-3D for the evaluation of XcalableMP global view programming on Fu-
gaku, using up to 512 nodes. The scalability on Fugaku is shown in Figure 4.1, comparing to
the K computer. The program is parallelized by hybrid XMP-OpenMP parallel programming:
An XMP node is assigned to a node, and 48 OpenMP threads are running within a node. The
problem size is 512 × 512 × 512 with 3-dimensional block distribution. The compile option is
“-Kfast”.

As shown in the figure, we found a good scalability on Fugaku, and the performance is
better than that by MPI thanks to the optimized XMP runtime for communications in the
stencil computation[31].

Figure 4.1: Speedup of Impact3D on Fugaku and Performance comparing to K computer

4.2.2 Performance of XcalableMP Local View Programming

Fugaku has a customized interconnection, called Tofu-D, which supports hardware-supported
RDMA (Remote Direct Memory Access) operations. We implemented the XMP runtime library
to make use of Tofu-D for one-sided communication for the XMP local view programming. The
library is implemented by using a low-level communication layer, uTofu API [32], provided by
Fujitsu.

For performance evaluation of XMP local view programming, we used CCS QCD and
NTChem-MINI taken from the coarray version of Fiber Miniapp Suite [33][34].

To run CCS QCD mini-application[35], eight XMP nodes are assigned to one node, running
in a flat XMP mode. The size and conditions are as follows:

• Target data: Class 2 (32 x 32 x 32 x 32) (strong scaling)

• Compiler options: -Kfast,zfill,simd=2

• Timing region: sum of “Clover + Clover inv Performance” and “BiCGStab(CPU:double
precision) Performance” of the built-in timing feature

Figure 4.2 shows the speedup on Fugaku, comparing to the performance of the K computer.
The XMP version archives almost same performance of the MPI version. Note that the reason of
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the performance degradation of the XMP version on the K computer is the overhead of allocation
for allocatable coarray used as a buffer for communication. It is improved by removing this
overhead by using the uTofu communication layer.

Figure 4.2: Speedup of CCS QCD on Fugaku and Performance comparing to the K computer

The NTChem-MINI is a mini-application taken from NTChem [36], a high-performance
software package for molecular electronic structure calculation. One XMP node is assigned
to one node, and within a node, BLAS functions are executed using 48 cores. The size and
conditions are set as follows:

• Target data: taxol (strong scaling)

• Compiler options: -Kfast,simd=2

• Timing region:“ RIMP2 Driver”of the built-in timing feature

As shown in Figure 4.3, the XMP versions archive almost the same performance of the
original MPI versions.

Figure 4.3: Speedup of NTChem-MINI on Fugaku and Performance comparing to the K com-
puter
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4.2.3 Global Task Parallel Programming

Recently, large-scale clusters of many-core processor such as Intel Xeon Phi have been deployed in
many sites from the latest TOP500 Lists. In order to program many-core processors, OpenMP is
widely used as a shared-memory programming model. Most of OpenMP programs are written
using work sharing constructs for loops, which involves a global synchronization. However,
especially in modern many-core processors, the global synchronization cost for work sharing
becomes bigger, and the load imbalance among cores lead to the performance degradation as the
number of cores on the processor increases. Task parallel programming using task dependency
in OpenMP 4.0 is a promising candidate to facilitate the parallelization for such many-core
processors because it enables users to avoid global synchronization by fine-grained task-to-task
synchronization through user-specified data dependencies.

We are interested in extending the task parallel programming model to the PGAS model
of XcalableMP for distributed memory systems. As well as removing expensive global synchro-
nization, it is expected to enable the overlapping of communication and computation. In XMP
2.0, we propose the global task parallel programming.

In OpenMP, the task dependency in a node depends on the order of reading and writing to
data based on the sequential execution. Therefore, the OpenMP multi-tasking model cannot
be applied to describe the dependency between tasks running in different nodes since threads
of each nodes are running in parallel. In OmpSs, interactions between nodes are described
through the MPI task that is executing MPI communications. Task dependency between nodes
is guaranteed by the completion of MPI point-to-point communication in tasks.

We propose new directives for communication with tasks in XMP, and they enable users
to write easily the multi-tasking execution based on XMP language constructs. The tasklet
directive generates a task for the associated structured block on the node specified by the
on clause, and the task is scheduled and immediately executed by an arbitrary thread in the
specified node if there is no task dependency. If it has any task dependencies, the task execution
is postponed until all dependencies are resolved. The tasklet gmove directive copies the variable
of the right-hand side (rhs) into the left-hand side (lhs) of the associated assignment statement
for local or distributed data in tasks. If the variable of the rhs or the lhs is the remote data, this
directive may synchronize on data dependency between nodes and execute communication. The
tasklet reflect directive is a task-version of reflect operation. It updates halo regions of the array
specified to array-name in tasks. In this directive, data dependency is automatically added to
these tasks based on the communication data because the boundary index of the distributed
data is dynamically determined by XMP runtime system.

We have designed a simple code translation algorithm from the proposed directives to XMP
runtime calls with MPI and OpenMP. We have evaluated the performance using block-Cholesky
Factorization Program on KNL based-system, Oakforest-PACS. Through the experiment, we
confirmed the advantage of task-parallelism over the traditional loop-based data parallelism. At
the same time, we found the performance problems on communication between multiple threads
(MPI THREAD MULTIPLE). Currently, we are investigating a lower-level communication API
for efficient one-sided communication of PGAS operations in multithreaded execution environ-
ment.

Details of the proposal in this chpater are decribed in [37].

4.2.3.1 OpenMP and XMP Tasklet Directive

While OpenMP originally focuses on work sharing for loops as the parallel for directive,
OpenMP 3.0 introduces task parallelism using the task directive. It facilitates the parallelization
where work is generated dynamically and irregularly as in recursive structures or unbounded
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#pragma xmp tasklet [clause[, clause] ... ] [on { node-ref | template-ref } ]
(structured-block)

#pragma xmp taskletwait [on { node-ref | template-ref } ]

#pragma xmp tasklets

(structured-block)

where clause is :
{in | out | inout} (variable[, variable] ... ])

Figure 4.4: Syntax of the tasklet, taskletwait, and tasklets directives in XMP.

loops. The depend clause on the task directive is supported from OpenMP 4.0 and specifies
data dependencies with dependence-type in, out, and inout. Task dependency can reduce the
global synchronization of a thread team because it can execute fine-grained synchronization
between tasks through user-specified data dependencies.

To support task parallelism in XMP as in OpenMP, the tasklet directive2 is proposed in
XMP 2.0. Fig. 4.4 describes the syntax of the tasklet, tasklets, and taskletwait directives
for the multi-tasking execution in XMP. The tasklet directive generates a task for the asso-
ciated structured block on the node specified by the on clause, and the task is scheduled and
immediately executed by an arbitrary thread in the specified node if there is no task depen-
dency. If it has any task dependencies, the task execution is postponed until all dependencies
are resolved. These behaviors occur when these tasks are surrounded by tasklets directive.
When these tasks are not surrounded by the tasklets directives, they are executed sequentially
at the specified node. The tasklet directive supports several clauses for the description of the
task dependency. The in, out, and inout clauses represent the task dependency in a node.
When in, out, or inout clause presents on the tasklet directive, the generated task has each
data dependency in a node. The behavior of these data dependencies is same as OpenMP task

depend clause: flow, anti, and output dependencies.
The taskletwait directive waits on the completion of the generated tasks on each node.

Since the directive does not involve the barrier synchronization, the barrier directive of XMP
is also required in order to guarantee that all tasks of all nodes are finished at this point. There
is an implicit barrier on each node at the end of the tasklets directive.

In OpenMP, the task dependencies are created according to the order of reading and writing
to data based on the sequential execution in a node. Therefore, the OpenMP task parallel model
cannot be directly applied to describe the dependency between tasks running in different nodes
since threads of each nodes are running in parallel.

In OmpSs[38], interactions between nodes are described through the MPI task that is exe-
cuting MPI communications. Task dependency between nodes is guaranteed by the completion
of MPI point-to-point communication in tasks. While this approach can satisfy dependencies
between nodes, it may cause further productivity degradation because it forces users to use a
combination of two programming models that are based on different description formats. There-
fore, we propose new directives for communication with tasks in XMP, and they enable users to
write easily the multi-tasking execution for clusters by only using language constructs.

2There is the task directive in XMP, it is different from OpenMP ’s one.
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4.2.3.2 A Proposal for Global Task Parallel Programming

In order to achieve multi-tasking execution for distributed memory parallel systems, we need
to perform point-to-point communication within tasks in local task dependency graphs. While
XMP provides some directives for communication, many of these are performed collectively, and
cause an implicit synchronization among execution nodes. This causes a performance degrada-
tion, because tasks participating in communications, such as broadcast, wait for synchronization
until all tasks are completed. We propose two directives, tasklet gmove and tasklet reflect,
as shown in Fig. 4.5, to describe interactions between nodes in tasks by point-to-point commu-
nication, for inter-node data dependency. These communications are only synchronized between
the sender and receiver of the communication in each task.

The details of these two directives are as follows:
tasklet gmove directive: Although this copies the variable from the right-hand side (rhs)

into the left-hand side (lhs) of the associated assignment statement for local or distributed data
like the gmove directive, it is executed in tasks. The copy operation is basically performed on
all execution nodes. However, if the distributed array is specified at the associated assignment
statement, only nodes with the distributed array execute the operation in the task. The execu-
tion nodes can also be determined by the on clause. When the in, out, or inout clause is present
on the tasklet gmove directive, the generated task has the corresponding data dependency in
a node, similar to the tasklet directive. While the gmove directive also supports one-sided
communication by the in and out clauses, which differ from those used for data dependencies,
the tasklet gmove directive does not support.

tasklet reflect directive: Although this update halo regions of the array specified to
array-name like the reflect directive, it is executed in tasks. For example, when updating one
side of a halo region for a one-dimensional distributed array on two nodes, these communications
are separated into four tasks: the sender of the upper element on node 1, the receiver of the
upper halo region on node 1, the sender of the lower element on node 2, and the receiver of the
lower halo region on node 2. In this directive, data dependency is automatically added to these
generated tasks based on the communication data, because the boundary index of the distributed
array is dynamically determined by the XMP runtime system. The chunksize clause can be
added to match to the task dependency descriptions of users using the dependency generated
by the tasklet reflect directive. When users calculate an array in block units, such as in the
cache blocking technique for a node with data dependency, the user-specified task dependency
and generated data dependency for halo exchange may not identically match. By specifying
the chunksize clause, the halo region is distributed logically to equal-sized contiguous chunks,
and data dependencies for the halo exchange are generated automatically by the XMP runtime
system based on the specified chunk size.

Fig. 4.6 presents an example of the tasklet gmove directive. In this example, array A[]
with length three is distributed onto three nodes in equal-sized contiguous blocks. This code
creates three kinds of tasks. TaskA and taskC are executed on nodes specified by the on clause.
TaskB is executed on nodes 1 and 2, because these nodes have the specified distributed array
A[0] or A[1] in the associated assignment statement under the tasklet gmove directive. There
is a flow dependency between taskA and taskB on node 1 by A[0]. After the execution of taskA,
taskB sends A[0] to node 2, which is determined by the distributed array A[1]. In node 2, taskB
receives A[0] from node 1 in A[1]. When the receive operation in taskB is finished, taskC is
immediately started, because the flow dependency of A[1] is satisfied. TaskC sends the A[1] to
variable B of node 3. Because the variable B is a local variable for each node, the communication
destination is determined from the execution nodes specified by the on clause.
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#pragma xmp tasklet gmove [clause[, clause] ... ] [on { node-ref | template-ref } ]
(an assignment statement)

#pragma xmp tasklet reflect (array-name[, array-name] ... )
[blocksize (reflect-blocksize[, reflect-blocksize] ... ) ]

where clause is :
{in | out | inout} (variable[, variable] ... ])

Figure 4.5: Syntax of the tasklet gmove and tasklet reflect directives in XMP

int A[3], B;
#pragma xmp nodes P(3)
#pragma xmp template T(0:2)
#pragma xmp distribute T(block) onto P
#pragma xmp align A[i] with T(i)

#pragma xmp tasklets
{
#pragma xmp tasklet out(A[0]) on P(1)

A[0] = 0; /* taskA */
#pragma xmp tasklet gmove in(A[0]) out(A[1])

A[1] = A[0];   /* taskB */
#pragma xmp tasklet gmove in(A[1]) out(B) on P(2:3)

B = A[1]; /* taskC */
}

out(A[0])

Node 1 Node 2

taskA

taskB

taskC

in(A[0])
out(A[1])

in(A[0])
out(A[1])

in(A[1])
out(B)

in(A[1])
out(B)

Node 3

dependency

send/recv

Figure 4.6: Example of the tasklet and tasklet gmove directives.

4.2.3.3 Prototype Design of Code Transformation

We have designed a simple code transformation from the code using the proposed directives to
the code with XMP runtime calls using MPI and OpenMP. As for a preliminary evaluation, we
have made a hand-translated MPI and OpenMP code by using the proposed transformation.

The tasklets directive is converted into the OpenMP parallel and single directives.
The execution node is determined by the on clause, which is translated to an if statement.
The tasklet gmove and tasklet reflect directives are converted into MPI Send/Recv(), and
these MPI functions are executed in OpenMP tasks with data dependency specified by users. In
the case that an MPI blocking call, such as MPI Send/Recv(), occurs in these codes, a deadlock
may occur depending on the task scheduling mechanism, from the combination of MPI and
OpenMP. To prevent this deadlock, in the actual implementation we used MPI asynchronous
communications, such as MPI Isend/Irecv(), MPI Test(), and the OpenMP taskyield directive,
which makes the current task become suspended at the time point at which it is invoked, and
may result in switching to different tasks.

4.3 Compilers and Languages

4.3.1 Compilers

We developed compilers that support the languages shown in Tab. 4.1 and is capable of opti-
mization for Fugaku.

We interviewd the developers of the target application codes to get requests about compilers
and languages on Fugaku. Table 4.2 shows a part of them and the response to them.
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Table 4.1: Supported Language standards/specifications

Language Standard/Specification

Fortran ISO/IEC 1539-1:2018 (Fortran 2018)
ISO/IEC 1539-1:2010 (Fortran 2008)
ISO/IEC 1539-1:2004, JIS X 3001-1:2009 (Fortran 2003)
ISO/IEC 1539-1:1997, JIS X 3001-1:1998 (Fortrn 95)
Fortran 90 and FORTRAN77
OpenMP Application Program Interface Version 4.0 July 2013
OpenMP Application Program Interface Version 4.5 November 2015 (partially)
OpenMP Application Program Interface Version 5.0 November 2018 (partially)

C ISO/IEC 9899:2011 (C11)
ISO/IEC 9899:1999 (C99)
ISO/IEC 9899:1990 (C89)
GNU extensions
Clang extensions
OpenMP Application Program Interface Version 4.0 July 2013
OpenMP Application Program Interface Version 4.5 November 2015 (partially)
OpenMP Application Program Interface Version 5.0 November 2018 (partially)

C++ ISO/IEC 14882:2014 (C++14)
ISO/IEC 14882:2011 (C++11)
ISO/IEC 14882:2017 (C++17)
GNU extensions
Clang extensions
OpenMP Application Program Interface Version 4.0 July 2013
OpenMP Application Program Interface Version 4.5 November 2015 (partially)
OpenMP Application Program Interface Version 5.0 November 2018 (partially)

Table 4.2: Excerpt of the response to requests about compilers and languages
No Request Response

1 inlining elemental functions enhance the inlining feature.

2 optimization for C/C++ improve STL, more efficient compilation process,
etc.

3 interprocedural optimiza-
tion (IPO)

For C/C++, enhance the feature of link-time op-
timization. For Fortran, support inter-module op-
timization.

4 mandatory optimization
and parallelization

support the feature for parallelization and
SIMDization.

5 starategy of optimization support the features of selecting the strategy by
specifying the characteristics of the target pro-
gram.

6 multi-dimensional SIMDiza-
tion

supported

7 optimization of single-
precision operations

enhance the optimization based on the instruction
set architecture of Fugaku.

8 pragma for memory alloca-
tion

support a compiler option or pragma for memory
padding.
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4.3.2 Support of Half-Precision Floating-Point Type (fp16)

The FP16 feature can be used in Fortran, C, and C++. The feature supports the binary16
format of the IEEE754-2008 standard.

The supported type qualifiers are as follows:

• Fortran

– REAL(KIND=2)

– COMPLEX(KIND=2)

• C/C++

– _Float16

– __fp16

4.3.3 Other Languages

Java, Ruby, and Python are available on Fugaku. In particular, for Python, a technique for
efficient execution based on mathematical libraries is provided since Python has been widely
used in the field of HPC.

4.4 FDPS

FDPS (Framework for Developing Particle Simulators), [39, 40] is a framework which allows
application programmers develop their own high-performance parallelized particle-based sim-
ulation code, without implementing the necessary parallelization algorithms such as domain
decomposition, particle migration and some way to evaluate interactions between particles in
different computational domains. We have made FDPS available on Fugaku and made a number
of optimizations specific to Fugaku. Also, we have added a code generator for particle-particle
interaction kernel, PIKG, which generates highly optimized particle-particle interaction ker-
nel from high-level description of the interaction kernel. PIKG can generate optimized code
for AVX2, AVX512, Cuda and A64fx SVE. Optimizations for A64fx include the use of SIMD
intrinsics, loop unrolling and loop division.

4.5 Tools

4.5.1 GUI-based Integrated Development Environment

As the GUI-based Integrated Development Environment on Fugaku, we adopted Eclipse [41]
with PTP, which is one of Eclipse plugins. PTP has features of editing programs, monitoring
systems, and controling jobs. We enhanced or modified the second and third features to be
suitable to the usage on Fugaku.

4.5.2 Features for Debugging

There are the following three features for debugging programs on Fugaku.

• Deadlock inspection
This feature enables users to locate the point of deadlock and get the information of
backtrace, memory map, and variables in the stack.
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• Abnormal termination inspection
This features enable users to get information of the backtrace, memory map, and disas-
sembled code of the function at the abnormal termination

• Scripted debugging
This feature enables users to execute a sequence of the debbugging operations specified in
a file (i.e. script). It is possible to apply the script to all of the processes or to certain
specified processes.

4.5.3 Performance Profiler

There are two performance profilers available on Fugaku: Instant Performance Profiler and
Advanced Performance Profiler.

• Instant Performance Profiler

The Instant Performance Profiler measures and outputs the statistical information of the
entire program through sampling analysis. The information includes:

– Statistical time information
program elapsed time, user CPU time, and system CPU time.

– CPU performance characteristics
information related to CPU performance characteristics, such as memory throughput,
the number of instructions, and the number of operations.

– Cost information
the number of sampling times during program execution as the cost for each proce-
dure, loop, or line.

– Call graph information
procedure call traces and the cost for each procedure call trace.

– Source code information
the cost of each line of the source code.

• Advanced Peformance Profiler

The Advanced Performance Profiler measures and outputs the execution performance in-
formation of the specified region of an application. The information includes:

– Statistical time information
the number of calls, elapsed time, user CPU time, system CPU time breakdown, etc.
in the target region.

– MPI communication cost information
the number of executions of MPI functions, message length, and average, maximum,
and minimum execution time, and waiting time in the target region

– CPU performance analysis information
CPU performance characteristics at the time of application execution in the target
region.
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Chapter 5

Codesign of Numerical library

5.1 Overview of Numerical software on Fugaku

Large-scale computing for science and technology often involves a standard problem format
or uses similar computational methods, even though various physical problems can be solved.
The numerical calculation functions for such general-purpose processing should be provided as a
library for science and technology computing to exploit a new supercomputer’s performance fully.
The basic numerical functions represented by BLAS are also critical as fundamental components
to be used internally from such libraries for science and technology calculations. Since there are
many opportunities to be used directly by application programs, it is important to deliver high
performance processing under various calling conditions through implementation that matches
the underlying hardware architecture.

We have designed the numerical library stack on Fugaku for general-purpose scientific and
technological computation, which is capable of fully exploiting the performance of Fugaku. The
following were the three outlines of the development policy.

1. The scientific and mathematical libraries that had been provided for the K computer have
been inherited to Fugaku to ensure satisfactory performance. In particular, the most
important BLAS, LAPACK, ScaLAPACK and FFT related functions have been developed
from detailed design to the implementation of the algorithms to the new architecture.

2. In the development of Fugaku, we focused on the codesign with application developers.
We did not only enhance the functions from the viewpoint of numerical analysis, but also
considered the issues involved in using Fugaku from actual application programs.

3. Based on the modernization trends in applied mathematics and computer science, new
functionalities, algorithms of increasing importance, and implementation methodologies
were considered and actively developed. We have shared the knowledge gained from tuning
the libraries, and cooperated with both RIKEN and Fujitsu in porting and developing
additional functions.

Following the above policies, the numerical library development working group from Fujitsu
and RIKEN collaborated to establish the Fugaku numerical environment. Specifically, we pur-
sued the software stack design with four sub-stacks; i) Fujitsu software stack, which inherits a
similar numerical software environment from the K computer. ii) RIKEN software stack, which
also inherits RIKEN-provided numerical software considering the conventional software’s perfor-
mance bottleneck. iii) codesign efforts, which are based on tight and robust interactions among
application users. iv) OSS stack, which is also an inevitable piece of parallel programming.

60
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5.1.1 Fujitsu software stack

Fujitsu’s software stack provides Netlib [42]-based libraries and SSL II-based libraries[43], which
have proven functions in the K computer as shown in Table 5.1.

5.1.2 RIKEN software stack

RIKEN software stack contains more advanced and highly functional numerical libraries. It has
aimed to utilize and enhance the BLAS kernels tuned for A64FX by Fujitsu.Then we intended
that the total numerical software stack maximizes the computational potential of Fugaku by
reducing the wide variety of overheads in a highly parallel and highly threaded environment.
Consequently, RIKEN has added mainly four numerical packages to provide a user with high
performance numerical framework on Fugaku, as shown in Table 5.2.

5.1.3 CoDesign efforts

The CoDesign is reflectively applied to the design of the numerical libraries in response to the
requirements of the users of the prioritized application codes in the basic design. In particular, we
clarified the problems of the tuning target based on the results of the interviews and obtained the
parameter conditions (size, precision, number of threads, and so on) for the performance-critical
problems. In addition, during the detailed design, the functions to be tuned were determined
based on the detailed evaluation results of the prioritized application codes and the information
from the hot spot analysis, and the acquired information was reflected in the development.

5.1.4 OSS software stack

When we shift the current computational platforms to the new Fugaku system, OSS is used in
various applications as a significant building block for parallel programming, and some of them
need to be tuned for high performance by using the A64FX capabilities. Through the interviews
and questionnaires in CoDesign, we have tried to understand the OSS that need to be tuned
and the functions that cannot be covered by SSL II and RIKEN developments. In fact, porting
many OSS is supported by the Spack framework, but Fujitsu has contributed significantly to
the SVE vectorization of FFTW, which is exceptionally performance-oriented.

5.2 Netlib on Fugaku

For de facto standard software distributed by so called netlib, such as BLAS, LAPACK, and
ScaLAPACK, we have tuned each function to reflect the hardware performance of Fugaku and
users’ demands. In particular, for the BLAS kernel designed for a single core, we conducted
assembler-level programming and assembler tuning using SVE instructions in order to exploit the
computational performance of the processor. In addition, DGEMM, which is highly demanded
in many applications, has been tuned not only for square matrix conditions, but also for special
cases such as small size and tall-skinny shapes. ARMv8 also supports IEEE754 half precision
(so-called half precision, FP16). In this development, the API and the kernel code of the BLAS
library that supports FP16 has been determined and has been implemented, respectively.

5.2.1 BLAS/LAPACK/ScaLAPACK

BLAS (Basic Linear Algebra Subprograms) is a set of subroutines that extract the basic op-
erations used in linear calculations. Since these are forming the kernel part that accounts for
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Table 5.1: Typical software packages included in the Fujitsu software stack
Functionality Library name Summary

Sequential libraries SSL II Covering broad range of computational
fields. A numerical library containing ap-
proximately 300 types of Fortran routines.

C-SSL II C interface for SSL II
BLAS, LA-
PACK

A de facto standard numerical linear alge-
bra routines developed in the US, and pub-
lished on the Netlib site. Approximately
80 and 400 routines are contained in BLAS
and LAPACK, respectively.Some of them
support fp16.

Quad-precision
library

A library that represents quadruple-
precision numbers in double-double format
and performs operations on them. It in-
cludes some thread parallel routines.

Thread parallel
libraries

SSL II thread-
enhanced ver-
sion

Thread-parallel version with about 80 rou-
tines performing performance-critical func-
tions. It provides a separate interface to
the sequential version of SSL II for mixed
use.

C-SSL II
thread-
enhanced

Thread version of C-SSL II

BLAS, LA-
PACK

The same interface as the sequential ver-
sion, including PLASMA, a task-parallel
version of LAPACK, also available in
Python (NumPy, SciPy). Some fp16 ker-
nels are supported.

MPI-parallel libraries SSL II/MPI 3D FFT
ScaLAPACK An MPI parallelized libraries with BLAS

and LAPACK functionality. About 200
kinds of routines are available.
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Table 5.2: Typical software packages included in the RIKEN software stack
Functionality Library name Summary

Eigenvalue solvers EigenExa Eigenvalue library for massively parallel
environments. It supports two schemes
based on ”tri-diagonalization” and ”penta-
diagonalization” routines. A new routine
is adopted to improve the scalability com-
pared to the previous version in the K com-
puter era.

Kevd Eigenvalue library for thread-parallel exe-
cution, offering an API almost equivalent
to LAPACK. It employs a numerical algo-
rithm suitable for high performance on an
A64FX. Mainly optimized for the problem
size in the DA part of NICAM-LETKF.

Enhanced/optimized
BLAS kernels

Batched BLAS Batch-typed BLAS library, which executes
multiple small-scale problems simultane-
ously. It provides all BLAS API’s with
variable- and fixed-type batch functions.

2.5D-
PDGEMM

A low communication latency parallel
matrix-matrix product routine using a 2.5-
dimension algorithm. It is partially com-
patible with PBLAS (PxGEMM), and sup-
ports various process grids and matrix
shapes with some restrictions.
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a high percentage of each linear calculation function’s computational cost, a group of routines
with particularly focused performance tuning was materialized. A thread-safe sequential version
library for use in OpenMP-parallel regions or flat MPI execution and a thread-parallel version
library were realized considering ILP64 and LP64 compatibility.

We have implemented a sequential version and a thread-parallel version of LAPACK (Linear
Algebra PACKage), a numerical linear algebra library. In addition to the policy of improving
performance through tuning and threading of the internally called BLAS, the following tuning
was performed for the basic routines.

1. Block size adjustment (sequential, parallel),

2. Modification of the processing configurations (sequential, parallel),

3. Parallelization in the LAPACK layer (parallel), and

4. Reduction of the ‘OMP PARALLEL’ overhead (parallel)

ScaLAPACK has been implemented as a numerical linear algebra library with MPI and
Hybrid parallelism. The basic development policy was to use highly-optimized BLAS and MPI
for Fugaku to ensure performance, and to tune the ScaLAPACK layer as necessary.

5.2.2 FP16 extension to BLAS kernels

The following ten BLAS routines are to be enhanced to FP16. However, since the Netlib version
of BLAS has no FP16 routines, it was decided to use the naming rule (BLAS function name
R16) discussed for the next generation BLAS at present, with the prefix FJ (for Fortran) or fj
(for cblas). The three routines, GEMV, GER, and GEMM, were tuned for assembler.

• SWAP (FJBLAS_SWAP_R16) x↔ y

• SCAL (FJBLAS_SCAL_R16) x← αx

• COPY (FJBLAS_COPY_R16) y ← x

• AXPY (FJBLAS_AXPY_R16) y ← αx+ y

• DOT (FJBLAS_DOT_R16) dot← x⊤y

• ASUM (FJBLAS_ASUM_R16) asum← |Re(x)|1 + |Im(x)|1

• AMAX (FJBLAS_AMAX_I32_R16) amax← argmax{x(k)}

• GEMV (FJBLAS_GEMV_R16) y ← αAx+ βy (general matrix)

• GER (FJBLAS_GER_R16) A← αxy⊤ +A (general matrix)

• GEMM (FJBLAS_GEMM_R16) C ← αAB + βC (general matrix)
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5.2.3 Additional extensions to the BLAS routines

As a result of the codesign efforts, several function extensions that received a lot of feedback
from users have been implemented.

1. The matrix copy and transpose routines:
The library supports matrix- copy and transposition functionality similar to the mlk_Xomatcopy
routine in Intel MKL for half-precision floating-point, single-precision real, double-precision
real, single-precision complex, and double-precision complex types, and has sequential and
thread-parallel versions.

2. Single-threaded API:
A dedicated API for sequential (single-threaded calls) is provided for using both sequential
and thread-parallel versions of BLAS in an application. The sequential-only version of
BLAS can be managed under an alias to ensure that the sequential and parallel versions
can be called separately in a single program.

3. Matrix-matrix product function for SIMD length unit real imaginary separated array for
complex numbers:
This provides a GEMM-compatible function that takes as input and output a complex ma-
trix of data structure in which the real and imaginary parts are held consecutively for SIMD
length. The data of the real part ‘R’ and the imaginary part ‘I’ are managed as an AOSOA
(Array Of Structures Of Arrays) layout such as RRRRRRRRRRIIIIIIIIRRRRRRRRRIIIIIIII.

5.2.4 Preliminary performance

Figure 5.1 shows the performance of GEMM kernels, a BLAS matrix product routine. The
BLAS matrix product routine performs on an A64FX processor so that the double-, single-,
and half- precision arithmetic show the optimal performance according to the theoretical peak,
which is equally proportional to the physical SVE unit length 8, 16, and 32 words, respectively.
Sustained performance achieved roughly 710Gflop/s, 1.58Tflop/s, and 2.81Tflop/s, for DGEMM,
SGEMM, HGEMM, respectively, at CPU frequency 2.0 GHz a single CMG with N=5,120 and
LDA=5,184.

In addition for performance of matrix-vector product of sufficiently large size for DGEMV
as a representative routine from Level 2 BLAS, 50.15 Gflops was obtained at CPU frequency
of 2.0 GHz with 12 thread (1 CMG/1 node) execution. This is 6.52% of the theoretical peak
performance.

5.3 SSL II on Fugaku

SSL II, which consists of about 300 routines covering 10 fields of numerical analysis, is a high-
performance library for scientific and technological calculations provided by Fujitsu on the Fu-
jitsu platform. In this project, SSL II is developed and provided on Fugaku. For example, as
well as the netlib development, we have tuned the performance to the A64FX CPU architecture
by using the SIMD instruction generation built-in function. In addition to porting and tuning
the accumulated assets, we intend to continue functional enhancement with a strategic perspec-
tive. The entire SSL II on Fugaku supports about 300 single- and double-precision routines
covering 10 major areas of numerical analysis. Various versions are available in thread parallel,
C/Fortran, and MPI distributed parallel versions as shown in Table 5.1.
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Figure 5.1: [DSH]GEM performance (Gflop/s) on a single CMG with 2.0GHz mode

5.3.1 FFT on a single core / a single CMG / pencil-decomposition 3D-FFT

The FFT function is recognized as an increasingly critical subroutine in science and technology.
As a configuration method, we adopted a configuration method in which the related routines
are organized by utilizing the single-core FFT kernel features tuned for performance under the
condition that the used arrays can be placed in the L1 cache. In addition, the existing APIs
developed for the K computer were inherited to call sequential and thread parallel functions,
while the pencil-shape decomposed three dimensional MPI parallel functions were developed in
response to requests of the application developers. In particular, the most important implemen-
tation point was how to realize continuous data access and uniform stride access suitable for the
internal data format and the SVE instruction in the kernel that must handle real and complex
numbers simultaneously.

Figure 5.2 demonstrates the achievement of excellent performance improvement by compar-
ing naive compilation of FFTW3, FFTW3+SVE optimization, and Fujitsu’s SSL II. In particu-
lar, the 1d FFT kernel in the SSL II library performs 3.3 fold faster than the naive compilation
of FFTW3. It also exploits the fact that SVE provides noticeable performance improvements
even for complex algorithms.

We have also developed a three-dimensional FFT with two-axis distribution in the input
and output data, following the advancement of the SSLII distributed parallel FFT function.
The main purpose of the implementation is to reduce the amount of communication. Both
input and output data are distributed in two axes, namely pencil decomposition or pillared
decomposition. The local input and output arrays of each process are stored in different shapes,
which are generated by dividing the global data into columns in different directions. When
the size of each dimension is not divisible by the divisor of each axis, the local shape and the
amount of data held by each process are adjusted internally to balance the workload by varying
the input and output. Since the MPI_Comm_split cost is visible in small-scale problems, the
sub-communicators in each axis direction are passed as arguments.
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Figure 5.2: 1d-FFT kernel performance benchmark on a single core of an A64FX

5.3.2 Pseudo Random Number Generator (PRNG)

As a consequence of investigating possible ways to use each parallel hierarchy for the pseudo-
random number generator, we have added a new random number routine dm_vranu5 using
MRG8 (Multiple Recursive Generator with 8 th-order full primitive polynomial) to the existing
random number routine (dvranu4/dm_vranu4) in SSL II.

MRG8 was invented originally by Miura[44], and its principle is based on a recurrence that
xn = a1xn−1+a2xn−2+a3xn−3+a4xn−4+a5xn−5+a6xn−6+a7xn−7+a8xn−8 mod(p) providing
a 4.5× 1074 period and passing the TESTU01 test program perfectly. It also generates random
numbers with an arbitrary interval, and parallelization and vectorization are pretty straightfor-
ward. Another PRNG algorithm available on many platforms is Mersenne Twister developed
by Matsumoto and Nishimura [45], which offers several variational PRNG packages such as MT,
SFMT, dSFMT, TinyMT, and MTGP, showing a very very long period as 106001. We confirmed
that some packages from them, for example, dsFMT, perform on A64FX platforms without any
modifications.

5.4 Math functions linked with compiler

The following two speedups have been made for Fugaku for the built-in mathematical functions
called from compiler objects.

1. Acceleration of basic mathematical functions:
The primary basic mathematical functions have been tuned for inline expansion of built-
in functions and multi-operator functions, taking advantage of SVE features (dedicated
instructions and long SIMD instructions).

2. Accelerating MATMUL:
Linking tuned BLAS matrix product routines to Fotran’s MATMUL library.
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5.5 EigenExa on Fugaku

As a result of the survey with application users and codesign with computational science com-
munity, it has been clarified that eigen- and singular- value decomposition routines are also
frequently used. These routines are included in LAPACK and ScaLAPACK[46], which are the
standard numerical libraries, but there are no fast implementations (in terms of realistic aspects)
for thread parallelism, distributed parallelism, or hybrid parallelism in highly parallel systems.
Since singular value computation can be derived from eigenvalue computation, we eventually
develop highly parallel versions of both eigenvalue computation and singular value computa-
tion routines at the same time, utilizing the knowledge of EigenExa developed by RIKEN [47,
48]. As is the case with EigenExa on the K computer, MPI+X(X=OpenMP), so called hybrid
parallelization, is guaranteed to perform on most of systems, and it enables to perform on an
arbitrary number of processes and two-dimensional process grid.

5.5.1 Quick review, Background of State-of-the-arts engensolvers

EigenExa contains the traditional dense-matrix eigenvalue solvers, mainly Householder tridiag-
onalization and Cuppen’s divide-and-conquer method as well as other state-of-the-art libraries,
ScaLAPACK and DPLASMA [49] by ICL U. Tennessee, ELPA [50] by the German group, and
SLATE [51] by Exascale Computing Project (ECP).

To be more specific, essential steps of the eigenvalue calculations are schemed as follows
(Fig.5.3). At first, the conventional scheme, highlighted in green, goes through real symmetric
(A) to tridiagonal (T ) via Householder tridiagonalization, to eigenpairs of T via Cuppen’s divide-
and-conquer algorithm (or QR, bisection, MRRR, etc.), finally eigenpairs of A via Householder
backward transformation. This scheme is the most conventional one in the dense eigenvalue
calculation (PDSYEVD in ScaLAPACK, ELPA1, SLATE(hetrd), and eigen_s in EigenExa). Al-
though it offers freedom of algorithm choice in the intermediate second stage, the divide-and-
conquer method is usually chosen to consider parallel performance and numerical stability. It
is endorsed by its high parallel performance and successful history. On the other hand, the
bottleneck of this scheme is the Householder tridiagonalization part, where principle computing
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patter is to compute a vector v and rank-2k update of a matrix such that

v =

(
Au− 1

2
uβ(u⊤Au)

)
β, (5.1)

A← A− UV ⊤ − V U⊤. (5.2)

The former computational pattern is known to be bound to communication, whereas we should
be strongly aware of memory- and network- intensive computing.

To overcome the memory bound challenges, modern eigenvalue solvers employ a scheme that
performs a two-step transformation: dense-to-band-to-tridiagonal. This is highlighted by the
blue line in Fig.5.3. Major difference between the above-mentioned conventional scheme is dense-
to-band reduction (A to B) by a block Householder transformation and backward transformation
(eigenparis of B to those of A). In contrast to eq. (5.1), the construction of vector v is replaced
by the blocked version as,

Ṽ =

(
AŨ − 1

2
ŨC⊤(Ũ⊤AŨ)

)
C. (5.3)

Although the structure is similar to that of eq. (5.1), the significant performance bottleneck
caused by memory traffic is avoided by restructuring the algorithm using matrix-matrix opera-
tions. This bypass procedure is implemented as dsytrd_2stage in LAPACK (version 3.8 later),
heev in SLATE (but band-tridiagonal part is only provided as a single node functionality), and
bandred_real_double + tridiag_band_real_double in ELPA2. There are several algorithm
at the second reduction from a band to a tridiagonal form, such as Rutishauser’s method and
Murata-Horikoshi s’ method. These are generally called ‘bulge chase’ algorithms. The computa-
tional complexity is estimated as roughly O(kN2) (k refers to the semi-bandwidth of the banded
matrix), which is not dominant compared to the first reduction. On the contrary to the forward
transformation (dense-banded-tri), the backward transformation of the tri-to-banded phase is
not a negligible part, where the computational cost accounts for O(N3), analytically equaling
to that of the banded-to-dense back-transform. Meanwhile, together with the implementation
difficulties, the band-tri-band intermidiate transformation scheme is inefficient under high com-
putational loads, such as when computing all eigenvectors. Note, though, that this is not the
case when computing a small number of eigenvalue modes or when sufficient machine-specific
tuning is performed.

The third approach highlighted in red is our EigenExa method (eigen_sx kernel), which
avoids the band-to-tri-to-band transformation. Since it directly calculates the eigenvalues of the
band matrix, it is unnecessary to have intermediate tridiagonal format, but necessary to intro-
duce a new solution method (divide-and-conquer method for band matrices) different from the
conventional method, while essential part of the new kernel is realized as a sequential operation
of the algorithm for tridiagonal matrices with the computational complexity O(43(2k − 1)N3).
Accordingly, the factor k included in the complexity term works negatively, but we must consider
the trade-off against the speed-up achieved by blocking in the dense-to-band transformation.

5.5.2 New implementation of the divide and conquer method

The Cuppen’s divide and conquer method [52] is briefed by combining the rank-one perturbation
theory and recursive merging of sub-eigenproblems mapped onto a binary tree. If we split a

tridiagonal matrix T
(0)
0 = T ∈ R2r×2r by the following recursive way,

T
(j)
i = T

(j+1)
2i ⊕ T

(j+1)
2i+1 + ρ

(j)
i gigi

T , gi = e2r−j−1 ± e2r−j−1+1 (5.4)

T
(j+1)
i′ = T

(j+2)
2i′ ⊕ T

(j+2)
2i′+1 + ρ

(j+1)
i′ gi′gi′

T , · · · . (5.5)
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Figure 5.4: Schematics of the Cuppen’s divide and conquer method

where T (j) ∈ R2r−j×2r−j
. Eigen-decomposition such as T

(j+1)
i = Q

(j+1)
i Λ

(j+1)
i Q

(j+1)
i

T
yields a

one-rank perturbation problem as (Q
(j+1)
2i ⊕Q

(j+1)
2i+1 )

T
T
(j)
i (Q

(j+1)
2i ⊕Q

(j+1)
2i+1 ) = Λ

(j+1)
2i ⊕ Λ

(j+1)
2i+1 +

ρiu
(j)
i u

(j)
i

T
= D

(j)
i + u

(j)
i u

(j)
i

T
. For a diagonal matrix with a one-rank perturnbation such as

D + ρuuT , we have a trivial scheme to compute eigenvalues λ as the solutions of

f(λ) =
1

ρ
+
∑ u2i

di − λ
= 0, (5.6)

and the corresponding eigenvector q can be calculated as

q = (D − λI)−1u. (5.7)

If we solve for all the leaf problems on the same level on the binary tree, we can recursively
construct Λ = {λ1, λ2, · · · } and Q = [q1, q2, · · · ], which will be merged into the upper-level
problem. Figure 5.4 schematics the overview of the DC method. Since this process allows full
parallelism on solving individual problems, highly efficient parallel processing is anticipated by
appropriate data partitioning and task assignment.

We had a couple-year evaluation and internal analysis of the divide and conquer method
routines in EigenExa, then have identified some problems; i) Due to the use of data distribution
method fixed with the ScaLAPACK/BLACS context, some processes are idle when the process-
ing small matrix products. ii) The independently executable processes are not executed in par-
allel, resulting in performance saturation immediately when the number of executing processes
is increased. iii) Furthermore, some processes that are supposed to be logically neighboring may
be located on physically distant processors, and the congestion on the same network routing will
lead to performance degradation.

We have decided to develop a new divide-and-conquer routine that inherits the efficiency of
the eigenvalue calculation library ELPA, but with a natural extension that is highly maintainable
and flexible.

1. The data distribution method for eigenvectors during the merging process is a generalized
form of the ELPA method, while the actual execution of the matrix product is done in
parallel using one-way ring communication.

2. The partitioning order of the process grid is not fixed in either the vertical or horizontal
axis, and dynamic flexibility allows the partitioning method to be adapted to the process
grid information at runtime.
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3. Generate concise and easy-to-maintain code that reflects the recursive structure of the
merging process.

To be more specific in the implementation, whole process/design of our new parallel divide and
conquer is summarized in three steps as follow.

5.5.2.1 Recursive partitioning

Perform a recursive partition so that the number of leaf problems matches the number of pro-
cesses.

• For a given process grid, generate a tree structure of process rows/columns by partitioning
vertically or horizontally, in short, alternatively split along the x-/y- axis, to determine
the process to solve the partitioned leaf problems.

• Get the process row/column of the block-split position in the overall matrix by referring
to the process id assigned to the leaf problems.

• Similarly, determine the process responsible for the split block in the overall matrix by
referring to the obtained overall process row/column number.

5.5.2.2 Solve the leaf problems

Each leaf problem is solved by a local divide-and-conquer solver that works in the process. The
local divide-and-conquer solver uses LAPACK’s DSTEDC subroutine.

5.5.2.3 Recursive Merge

Recursive merging is done in a breadth-first manner. The eigenvectors of the subproblems that
appear along the way are stored in the given storage area in the following distributed data
structure

• Determine the block responsible for each process matrix in the final overall matrix shape
when the recursive partitioning is performed.

• The eigenvectors of the subproblems that appear along the way are stored in the corre-
sponding array positions in the overall matrix shape.

5.5.2.4 Matrix-products on a Ring topology

Eventually, as ELPA implemented, the high-speed matrix products based on the ring communi-
cation is significant to obtain high-performance, and it is derived from the following implemen-
tation keys.

• When computing Q = Q2 × S, ring communication is used in the process column for Q2

and on-the-fly computation is used for the column corresponding to Q2 for S.

• During the on-the-fly computation of S and local matrix product computation by DGEMM,
asynchronous communication is performed for Q2 corresponding to the next process col-
umn to be computed to reduce the communication time by overlapping computation and
communication.

When this recursive merging is repeated, the final distributed data structure differs from the
general two-dimensional block cyclic; the final redistribution into two-dimensional block cyclic
or two-dimensional cyclic completes the series of processes. The merging process and the final
redistribution are illustrate in Figure 5.5.
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Figure 5.5: Node topology in a 2D fashion and matrix data distribution scheme for our new DC
implementation

5.5.3 Other technical considerations and development perspectives

One of the technical issues in the development of the eigensolver on Fugaku was the relative
slowdown of the network performance since the K computer, in contrast to the improvement of
the processor performance, which leads to the imbalance eventually. In fact, even in the small-
scale supercomputers of recent years, communication has been the biggest bottleneck in the
highly parallel supercomputers, and it has been recognized before the development of Fugaku
that the results of various performance evaluations support the fact that this situation cannot
be ignored in the scale of Fugaku. Consequently, discussions are converged into the two primary
subjects as follows;

• to realize the communication avoidance technology for Fugaku in the householder tridiag-
onalization, and

• to adopt a new process mapping method that is attentive to improving the load balance
of the divide and conquer method.

These techniques have yielded significant performance improvements in a highly parallel environ-
ment on the scale of the K computer. These are also expected to provide significant performance
improvements on Fugaku for practical scale problems. Since the early stage of the development
of EigenExa, it has been developed using various parallel programming languages and libraries
such as MPI, OpenMP, high performance BLAS, as well as general SIMD vectorization and For-
tran90 compiler technology. Along with these technical advantages, long vector technology with
SVE, which was enhanced in an A64FX processor, and support for NUMA environment consist-
ing of multiple CMGs are newly arising technical issues from Fugaku. Lastly, as an addition, we
faced on a numerical difficulty of bitwise-reproducibility on an Intel Cluster environment, which
takes advantage of Intel compiler and Intel MPI as well.

5.5.4 Preliminary performance benchmark

Fig. 5.6 shows the preliminary benchmark results of the overall performance using one of the
beta version 2.6c, which is the new implementation for the Fugaku project and based on the
latest release version EigenExa 2.7 (released on the 1st of April 2021). Figure 5.6 demonstrates
the overall performance of EigenExa2.6c and PDSYEVD routine contained in ScaLAPACK us-
ing 128 to 16,384 nodes on Fugaku, on which three-dimension cases such as N=65,536, 131,072,
and 262,144. However, that of PDSYEVD for the largest case was not measured due to the
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Table 5.3: Performance comparison with K computer (N=32,768 for top, and 65,536 for bottom)
Num of Nodes 128 256 512 1024 2048 4096

K (2.6) 43.56 29.84 22.18 17.32 16.65 17.24
Fugaku (2.6c) 1ppn 28.66 22.47 11.98 11.55 11.14 30.98

ratio (K/F) 1.52 1.33 1.85 1.50 1.49 0.56

Num of Nodes 128 256 512 1024 2048 4096

K (2.6) 246.31 149.32 95.32 67.79 54.66 47.02
Fugaku (2.6c) 1ppn 93.27 70.91 40.47 31.93 17.39 45.15

ratio (K/F) 2.64 2.11 2.36 2.12 3.14 1.04

inexpectation of higher performance. We can see good scalability when solving a large eigen-
problem. For example, in the most significant case, when we solve a 262,144 dimension matrix,
good parallel efficiency and scalability are observed from 128 to 4,096 nodes, and gradually scales
down but with acceptably better parallel performance.

On the other hand, PDSYEVD yileds only 10 to 25% of the performance of EigenExa, which
means that, in short, it needs four to ten folds more execution time. Also, parallel scalability
is relatively poor even though that is a vendor-provide optimized routine. It is known that the
other eigenvalue routines PDSYEV, PDSYEVX, and PDSYEVR have disadvantages in terms
of parallel and absolute performance. Therefore, we conclude that ScaLAPACK needs a drastic
restructuring if it continues to be used as the de facto standard eigenvalue solver on Fugaku.

The Figure 5.7 illustrates the time breakdown of the three main routines of EigenExa2.6c.
As in the performance evaluation of the K computer, the Householder tridiagonalization is
the most dominant kernel, and the backward transformation part, in which DGEMM is the
primary component, requires the least computation time[53]. It can be seen that the divide-
and-conquer method developed in the project has improved the absolute performance in the
small to medium scale region, while the performance has not improved in the highly parallel
environment as not expected initially. Further analysis is needed, but in the mapping of the
binary tree partitioning between the process map and the Tofu topology, conflicts and overlaps
between sub-process groups may occur in the case of high-order processes, which could be the
cause of the performance degradation.

The performance comparison of the K computer should be fascinating. Table 5.3 shows the
performance comparison for a small problem in Fugaku. Since the problem domain is larger
in the K computer, it is not fair to make some comparisons, but roughly speaking, we can say
that this domain’s performance difference is a factor of two or more. This is consistent with
the growth rate of the network bandwidth, and if the problem size is further increased, the
performance is expected to improve up to 16 times the growth rate of the memory bandwidth.

5.6 Batched BLAS

Fugaku is primarily empowered by many-core processors an A64FX. To boost linear algebra
operations in a sense of thread-level parallelism on a single node, we must adopt a more strategic
way to assign a large number of small-size BLAS tasks or their internal sub-tasks into each
physical core, taking up all of the core resources rather than ‘single-job on single-core’ scheduling.
The Batched BLAS would offer a new scheduling form of linear algebra operations based on
such a mechanism. The practical application of experimental Batched BLAS, part of which has
already been used in AI and other applications, was eagerly awaited.

Since the Batched BLAS was not collected in the Fujitsu numerical library (SSL II), the
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RIKEN development team decided to implement a full version of the Batched BLAS based on a
design policy that could be easily applied to the not-yet-standardized specifications in 2017. We
have made a poster presentation regarding the implementation and evaluation of Batched BLAS
at ISC18 [54] to accelerate AI applications running on Fugaku. Although our implementation
did not support a current standard API, we mentioned the possibility of a methodology and
some scheduling techniques that would support all APIs before the standard specified all the
APIs from level 1 to level 3 kernels. In July 2018, the formal standard [55] was released, and we
have also responded to adjust the APIs to the formal standard (the reference implementation
of NLAFET [55]), resulting in the publication of the package in February 2021. In addition,
we partially support an FP16 enhancement, which has been adopted in IEEE754-2008 as half-
precision or binary16.

Currently, our Batched BLAS implemenation is available on not only for Fugaku but other
major systems based on many/multi-core processors such as Intel Xeon, an Intel Core, AMD
RYZEN, ans so on. This software was released as OSS in February 2021 [56]. The number of
available API is more than two hundred. A typical batched API for DGEMM, the matrix-matrix
multiplication routine, has the following call formats in Fig. 5.8.

void blas_dgemm_batch(

const int group_count, const int* group_size,

const bblas_enum_t layout,

const bblas_enum_t* transa, const bblas_enum_t* transb,

const int* m,const int* n, const int* k,

const double* alpha, const double** a, const int* lda,

const double** b, const int* ldb,

const double* beta, double** c, const int* ldc,

int *info)

Figure 5.8: A typical API of Batched BLAS

The argument parameters refer to arrays with the group_counts described below. On the
other hand, the layout parameter is the same across the board, regardless of the group as
illustrated in Fig. 5.9. Since each function’s core part is generated from a few templates, the
Batched-X approach is extensible to any other thread-safe kernels. Preliminary performance was
examined on an A64FX, where computational cores are bound in a a specific CMG by numactl
command (see Figure 5.10).

5.7 2.5D-PDGEMM

On massively parallel systems such as the supercomputer Fugaku, the performance of a problem
that is computation-bound on conventional systems may become communication-bound when
the problem size is insufficient for the degree of parallelism. In addition, compared with the
K computer, as the balance between communication and computation performance of the su-
percomputer Fugaku is more computation-oriented, the computation performance can easily
become communication-bound. This problem can occur even in matrix multiplication, which is
a fundamental kernel in numerical computing and is known as a computation-intensive task.

To address this issue, a communication-avoiding distributed matrix multiplication algorithm,
the 2.5D algorithm[57], has been proposed. The algorithm replicates and stacks the 2D dis-
tributed matrices on the 3D process (2.5D distribution), in contrast to the conventional algo-
rithm (2D algorithm) that distributes the 2D distributed matrices on the 2D process in two
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Figure 5.9: Schematic of batched arguments, layouts, and groups for Batched-GEMM
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Figure 5.11: Implementation

dimensions. The conventional 2D algorithm completes the inner products in a matrix multipli-
cation by circulating matrix elements through communication by steps. On the other hand, the
2.5D algorithm uses the same principle of the conventional 2D algorithm on each 2D process
grid, but takes advantage of the data redundancy of the 2.5D distribution to reduce the number
of communication steps by executing the inner product in parallel using the vertical processes
corresponding to the number of stacks. For instance (see Figure 5.11), on a 2D process grid with√
p ×√p processes, the 2D algorithm requires O(

√
p) communications. On the other hand, on

a 3D process grid with
√

p/c×
√
p/c× c, where c corresponds to the stack size or the vertical

processes, the 2.5D algorithm takes O(
√

p/c3) communications. However, the 2.5D algorithm
requires c times more memory than the 2D algorithm since the matrices A and B are replicated
in stacks on each 2D process grid and the intermediate results are also placed on each stack.

To use the 2.5D algorithm, the matrices need to be distributed on a 3D process grid with
the 2.5D distribution. In order to substitute for ScaLAPACK’s distributed parallel matrix mul-
tiplication routine (PxGEMM), which uses the conventional 2D distribution, the matrix redis-
tribution between the 2D distribution and the 2.5D distribution on a 2D process grid is needed.
Therefore, we have developed a PDGEMM routine with the 2.5D algorithm that supports the
2D distribution (2D-compatible 2.5D-PDGEMM). The 2D-compatible 2.5D-PDGEMM adopts
the SUMMA algorithm [58]. Figure 5.11 shows the schematic of our implementation. It executes
the following three steps. First, it creates a virtual 3D process grid on the initial 2D process grid
and then redistribute the matrices from the 2D distribution to the 2.5D distribution on it using
MPI Allgather ((1)–(2) in the figure). The matrices are duplicated in stacks on each 2D grid on
the 3D grid. Second, the 2.5D algorithm based on the SUMMA algorithm is executed on each
stack, which consists of MPI Bcast and DGEMM ((3) in the figure). Finally, the intermediate
results on each 2D grid are reduced and redistributed using MPI Allreduce ((4) in the figure).
Currently, for simplicity, our implementation supports only the number of processes that can
create a 3D process grid from a 2D process grid without any remaining processes.

Figure 5.12 shows the strong-scaling performance on the supercomputer Fugaku (it is evalu-
ated on the pre-evaluation environment with language version 1.2.25-02 and MPI version M0514.
This is the performance at the development stage, and the performance of the one available after
the start of the full operation may be different). In the figure, “ScaLAPACK” is the PDGEMM
routine in ScaLAPACK, and “SUMMA(c=n)” is our 2D-compatible 2.5D-PDGEMM with stack
size n. “c=1” is equivalent to the 2D algorithm. “NN/NT/TN/TT” show the transpose modes
for the operand matrices A and B (‘N’: non-transposed, ‘T’: transposed). You can see that the
2.5D algorithm is effective when the problem size per process is small.
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Figure 5.12: Strong scaling performance of 2D-compatible 2.5D-PDGEMM on the supercom-
puter Fugaku (on the pre-evaluation environment).

In the development stage, the performance has been evaluated and analyzed using the K
computer in RIKEN [59] and the Oakforest-PACS system hosted by Joint Center for Advanced
High Performance Computing (JCAHPC) [60]. Figure 5.13 shows the performance of “NN”
mode on both systems. This result shows that the 2.5D algorithm is more effective on Oakforest-
PACS than on the K computer because the Oakforest-PACS is more computation-oriented in
terms of the balance between the computation performance and the communication performance.
The details of the performance are analyzed in each paper [59][60].

In order to take advantage of the 2.5D algorithm in existing applications using ScaLAPACK’s
PDGEMM, a 2D compatible implementation such as the one we have developed will be beneficial.
Our implementation will be released as open source and is expected to contribute to speeding
up applications in massively parallel computing environments such as Fugaku.

5.8 Surveys, interviews, and questionnaires in Codesign

Based on the consideration for codesign with applications, the important OSS libraries are main-
tained by prioritizing the requests from the priority issue applications that RIKEN is developing.
The selection of OSS is based on the importance of the applications’ requests and the capability
to large-scale computation, in which a certain amount of care for computational performance
and accuracy are required. Following the priority of the individual routines, the following clas-
sification was conducted: 1) simple porting only, 2) tuning of the source code modification to
improve the performance of the core part, 3) algorithm change for the part where simple tuning
is not enough, and the decision on the performance improvement work was taken according to
the priority.
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Figure 5.13: Strong scaling performance of 2D-compatible 2.5D-PDGEMM on the K computer
and Oakforest-PACS (Note: in these evaluations, the performance excludes the cost for creating
a virtual 3D process grid, unlike Figure 5.12)

5.8.1 Demand from nine priority issue applications

During the design phase of our numerical libraries, we had interviews among major application
users and developers of prioritized application codes. What is more, we conducted a survey of
the K computer users. From these preliminary investigations with, so called, ‘nine priority issue
application’ developers, the initial demand of each application code can be summarized as Table
5.4.

Table 5.4: Review summary of nine priority issue applications

Code name
(field)

Numerical algorithms Typical computational
properties and condi-
tions

Key issues for the
codesign

Genomon
(Gene de-
tection)

Parallel hash search,
and parallel sorting

Few real number oper-
ations

This does not utilize
a library for scientific
and technological cal-
culations.

GENESIS
(Molcular
dynamics)

3D-FFT with dis-
tributed parallelism
is important. Eigen-
value, inverse matrix,
erf function, B-spline,
and PRNG

FFT is required to
scale up to 1283. Real
FFT forward/back-
ward. The correspon-
dence between the
data storage location
and the frequency
index is critical.

Library including a
distributed parallel
part, and FFT kernels
with single precision
SIMD support.



CHAPTER 5. CODESIGN OF NUMERICAL LIBRARY 80

GAMERA
(Seismic
waves)

Solving a system of
linear equations for a
sparse and real system

The weights of single-
precision calculations
in the inner iterations
of nested loops are
greater.

It is challenging to sup-
port with generic inter-
face solver functions.

NTChem
(Quantum
chemistry)

Dense eigenproblems,
numercal integration,
incomplete Gamma
function, and random
number generator

Currently, real num-
bers are the main
numbers, but complex
numbers are likely to
be required. Eigen-
value problems and
matrix product opera-
tions of about 20,000
orders are performed
by 16 processes in a
subcommunicator.

It is desirable that
eigenvalue calculations
scale on a medium
scale. (p)dgemm per-
formance is important
Possibility to use the
Mersenne twister ran-
dom number, etc.

RSDFT
(Density
function
theory)

Eigenvalue problems Consider up to 200,000
dimensions, 20,000
parallel.

dgemm performance is
critical.

FFB (CFD) Solving a system of
linear equations for a
sparse and real system

There are many possi-
ble options for solvers
and preprocessing, but
so far no change in the
methodology.

It is challenging to sup-
port with generic inter-
face solver functions.

QCD
(Quantum
chromody-
namics)

Mainly the determi-
nant calculation of
sparse matrices is
crucial. In addition,
eigenvalue calcula-
tion, inverse matrix,
singular value decom-
position, FFT, random
numbers, etc.

Mainly complex num-
ber processing. Some
multiprecision calcula-
tions are required.

pzgemm needs to be
fast.

NICAM-
LETKF
(Weather/-
climate)

Eigenvalue calcula-
tions, Inverse matrix,
and Symmetric square
root

NICAM works with
double precision,
and Diagonalization
is several tens to
several hundreds of
dimensions.

Possibility to use the
Mersenne twister ran-
dom number, dgemm
performance is critical.

Eventually, the following guidelines have been decided to be highly prioritized when we have
developed and enhanced the numerical libraries on Fugaku.

• High speed eigensolver on a single node for NICAM-LETKF,

• Higher-precision matrix-matrix multiplication for ADVENTURE, and
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• Orthogonzlization algorithm on distributed system for RSDFT.

5.8.2 Survey result on frequently used OSS

The following is a list of the numerical libraries (OSS and commercial software) that are most
frequently used by users, or those implemented on the K computer.

• OSS mentioned at the first survey:
PLASMA, DPLASMA, ELPA, Elemental, EigenExa, PETSc, Trilinos, ppOpen-HPC, Lis,
MUMPS, SuperLU, UMFPACK, METIS, (P)ARPACK, z-Pares, BLOPEX, JADAMILU,
SLEPc, FFTW, FFTE, FFTSS, OpenFFT, FFTS, FFTPACK, SFMT, exib, GNU MP,
QD, FMLIB, MPACK, GSL

• OSS mentioned at the interview:
EigenExa, ELPA, RANLUX (PRNG), NL2Sol (Non-linear Least Square), LibInt (functions
for evaluation of two-body molecular integrals), PFAPACK (A library for numerically
computing the Pfaffian of a real or complex skew-symmetric matrix), Boost (C++ library)

• OSS ported on the K computer:
SuperLU, SuperLU DIST, METIS, ParMETIS, gmp, mpc, mpfr, UMFPACK, ARPACK,
PETSc, SLEPc

• OSS invented/developed in the Japanese HPC projects:
z-Pares, EigenExa, ppOpen-HPC, FFTE

5.8.3 Required numerical algorithms and parameters, etc

In the questionnaire for users, the required numerical algorithms and parameters, parallel com-
puter resources, and others were investigated in association with the internal details of the
users’ applications. Among them, the major algorithms required by the users are as follows (the
number of voters was 50).

• eigenvalue calculation: 13

• FFT: 12

• linear solver (system of linear equations): 9

• random number generator: 4

• matrix-matrix multiplication: 3

• numerical integration: 2

• special functions: 2

• matrix inversion: 1

• matrix diagonalization (eigensolver): 1

• dense matrix-multiplication: 1

• matrix-vector product: 1

• 3-dimensional FFT: 1
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Chapter 6

Overview of Target Applications

In the development of supercomputer Fugaku, codesign effort with target applications plays an
essential role. Each application leads its own codesign effort to address the performance bottle-
neck and to improve the computational performance of the application. The target applications
cover different numerical schemes, space and time discretization, grid structure and data types.
These different workload characteristics exhibit the bottlenecks in the system’s different compo-
nents. Because of the wide coverage of workload characteristics as a total, the combined codesign
effect should help improve the the computational performance of the applications for not only
the priority issues but also the wide range of high performance computing demand on Fugaku.
The codesign effort is effectively the repeated mutual optimization between the application and
the system in terms of performance, with power consumption and economy constraints.

6.1 Target applications

In the development of supercomputer Fugaku, a.k.a post K computer, codesign with target
applications is regarded as the essential design approach. The target applications represent the
nine social and scientific priority issues selected by the ministry. The list of the nine social and
scientific priority issues is shown as the iconic representation in Figure 6.1 . Their corresponding
Web pages are shown in the references [61] [62] [63] [64] [65] [66] [67] [68] [69].

Figure 6.1: social and scientific priority issues to be tackled by using supercomputer Fugaku

The target applications are developed by the priority issues organizations, and are used

84
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throughout the design and implementation phases of Fugaku. The list of target applications is
shown in Table 6.1 , with the related Web sites shown in the reference section.

Table 6.1: priority issues and their target applications

no. priority issue organizations
target
application

1 Innovative drug discovery infras-
tructure through functional control
of biomolecular systems

RIKEN Center for Biosystems
Dynamics Research and 6 other
institutions

GENESIS

2 Integrated computational life sci-
ence to support personalized and
preventive medicine

The Institute of Medical Science,
the University of Tokyo and 4
other institutions

Genomon

3 Development of integrated simula-
tion systems for hazards and dis-
asters induced by earthquakes and
tsunamis

Institute, the University of Tokyo
and 4 other institutions

GAMERA

4 Advancement of meteorological and
global environmental predictions
utilizing observational“ Big Data”

Japan Agency for Marine-Earth
Science and Technology (JAM-
STEC) and other 5 institutions

NICAM
+LETKF

5 Development of new fundamental
technologies for high-efficiency en-
ergy creation, conversion/storage
and use

Institute for Molecular Science,
National Institute of Natural Sci-
ences and 8 other institutions

NTChem

6 Accelerated development of innova-
tive clean energy systems

School of Engineering, the Uni-
versity of Tokyo and 11 other in-
stitutions

ADVENTURE

7 Creation of new functional devices
and high-performance materials to
support next-generation industries
（CDMSI）

The Institute for Solid State
Physics, the University of Tokyo
and 9 other institutions

RSDFT

8 Development of innovative design
and production processes that lead
the way for the manufacturing in-
dustry in the near future

Institute of Industrial Science,
the University of Tokyo and 7
other institutions

FFB

9 Elucidation of the fundamental laws
and evolution of the universe

Center for Computational Sci-
ences, University of Tsukuba and
10 other institutions

LQCD

The target applications cover different numerical schemes, space and time discretization,
grid structure and data types. Table 6.2 shows the numerical scheme/algorithm of the target
applications. They have different workload characteristics and exhibit the bottlenecks in the
system’s different components, and cover typical applications workload as a total. Details of
each target application and its codesign contents should be described in the following chapters.
Table 6.3 shows the workload characteristics of the target applications. Addressing and relaxing
these performance bottlenecks should improve the computational performance of the applications
for not only the priority issues but also the wide range of high performance computing demand
on Fugaku.
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Table 6.2: target applications and their description (numerical scheme)
application description (numerical scheme)

GENESIS Molecular dynamics for proteins

Genomon Genome data analysis

GAMERA Earthquake simulation using hybrid grid FEM

NICAM+LETKF Weather prediction using structured FVM + LETKF

NTChem Electron correlation energy using molecular orbital method

ADVENTURE Structure analysis FEM

RSDFT Electronic-structure calculations using density functional theory

FFB Thermal fluid flow using FEM

LQCD Lattice QCD simulation using grid Monte Carlo method

Table 6.3: computational workload of the target applications
application struc-

tured
grid

unstruc-
tured
grid

particle
method

dense
local
ma-
trix

dense
distr.
ma-
trix

comm.
la-
tency

comm.
B/W

neigh-
bor
comm.

global
comm.

heavy
I/O

GENESIS ◯ ◯ ◯
Genomon ◯
GAMERA 　 ◯ ◯ ◯ ◯
NICAM+LETKF ◯ ◯ ◯ ◯ ◯
NTChem ◯ ◯ ◯ ◯ ◯
ADVENTURE ◯ ◯ ◯ ◯ ◯ ◯
RSDFT ◯ ◯ ◯ ◯ ◯
FFB ◯ ◯ ◯
LQCD ◯ ◯ ◯ ◯ ◯

6.2 Target problems for performance evaluation

In order to set the basis for performance evaluation, each target application has defined the
target problem to be executed on Fugaku. The target problems are chosen by the priority
issue organizations so that they represent the expected jobs to be run on Fugaku. By running
the target problems on K computer, the elapsed time needed for completion is regarded as the
baseline performance. Some target problems can be run on the existing K computer, while others
can not be run because they exceed the capacity of K computer. If actual measurement is not
possible, the estimed elapsed time on K computer is used as the baseline. Speed up objectives
are defined for each target application, coupled with the target problem. The description of
target problems is given in table 6.4

6.3 Codesign from applications view

Codesign is conducted at various levels and stages of Fugaku system design. The initially
proposed post K system architecture is refined and completed through the course of codesign.
From applications view, codesign means the repeated optimization of the application, interacting
with system development. It can be captured from macroscopic and microscopic views.

Codesign in the macroscopic view is closely related with the overall system architecture.
Major system design variables that affect applications design include the followings:

• system size, i.e. the number of nodes, memory capcity, inter node network design
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Table 6.4: target problem description
application parallel

type
nodes
/job

target problem description

GENESIS multi
job
mix

1 For safe and efficient screening of the new pharmaceutical drug
candidate compounds, execute 100,000 cases of all-atom molecular
dynamics simultion. each case carries out 100 nano seconds of
100,000 atoms bonding including protein and solvent water.

Genomon multi
job
mix

96 Whole genome anlysis for elucidating cancer. achieve 1000 sam-
ples/day throughput for 1,400,000,000 reads of 150 read length
base pair.

GAMERA single
huge

158976 For representing the ground strain calculation of urban regeion,
execute 120 second non-linear land earthquake analysis in 120,000
time steps, using 1,000,000,000,000 D.O.F. unstructured grid finite
element model.

NICAM
+LETKF

multi
job
mix
+
single
huge

131072 For achieving highly precise prediction of localized torrential rain
and tornados, execute (a) as multi case mix type job, 3.5 Km
horizontal mesh 1024 member ensemble weather calculation with
observational data assimilation every 3 hours for 2 months. (b) as
single large case job, global 220 meter horizontal mesh 94 vertical
layer atmosphere circulation simulation for 72 hours.

NTChem multi
job
mix

20732 As a typical example of high precision ab-initio electron state cal-
culation for elucidating the mechanism of photochemical reaction
and screening the material candidates for light energy conversion,
execute the energy calculation of 720 atom 19680 electron orbital
carbon nanographene molecular complex. 20 cases should be exe-
cuted.

ADVEN-

TURE

multi
job
mix

4096 For achieving the structure design optimization of complex geome-
try, execute the structure alanysis cased on finite element method.
non-linear response problem of thin plate region modeled using
1,650,000,000 second order tetrahedron solid elements. conduct
100 cases of 10,000 time step integration, applying 500 BDD iter-
ations per time step.

RSDFT multi
job
mix

10368 For elucidating the nanoscale interface composed of multiple com-
posite materials, execute the silicon device structure optimization
based on ab-initio quantum mechanics. run 24 cases of 110,000
atoms 220,000 bands 200 SCF cycle calculations.

FFB single
huge

158976 For the analysis of the fluid flow in complex geometry regions such
as internal flow of water machinery and turbulent flow around
the automobile which requires precise evaluation of heat gener-
ation, cooling/exhaust loss, cycle fluctuation, execute finite ele-
ment method based flow analysis using 670,000,000,000 elements
in 100,000 time steps.

LQCD single
huge

147456 For elucidating the history of the creation of matter over wide
range of scales from elementary particles to the universe, compute
the quark propagation function in 1924 lattice field via iterative
method.
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• node configuration, i.e. the number of cores/CMG/CPU, SIMD supporting mechanism,
type of memory, data transaction bandwidth from/to memory

• processor working frequency and power consumption

For applications, codesign in this macroscopic view means the decision of appropriate program
model, sometimes requiring the source code refactoring for enabling the challenging computation
at scale. Codesign in macroscopic view includes the following subjects:

• design of data distribution for massively parallel computation

• implementation of multiple level parallelism in view of performance and memory limit

• execution framework for applications parameter study

The macroscopic codesign can impact system level design decicion. The system level specification
such as the number of nodes and the node configuration is finalized through the macroscopic
codesign with emphasis on power consumption and cost.

On the other hand, codesign in the microscopic view is more related with the processor micro-
architecture. Followings are some of the important micro-architecture related design variables.

• instruction scheduling, i.e. best mix of scalar/SIMD instructions, pipelining, out of order
resource use, cache hit rate,

• cache design, i.e. cache size, cache lines, number of lines, data transaction bandwidth
from/to cache hierarchy.

• memory access, i.e. prefetch control, indirect load/store implementation

Codesign in the microscopic view includes the following subjects:

• establishing the performance analysis and estimation methodology

• validating the various source code tuning patterns

• implementing the optimization feature into compilers

• optimized functionality in MPI libraries and numerical libraries

The application developpers identify the performance bottlenecks, typically using perfor-
mance tools. Various performance tools were made available at each phase of development.
Such tools include the performance prediction tools based on preceding systems hardware per-
formance counters, the post K software simulators at cycle level precision, hardware emulator
and Fugaku prototype test vehicle.

The bottlenecks can reside on both of hardware and software, and they are addressed from
both sides. In the applications, the study for optimizing the apllications software is conducted.
In the system software side, the effort is conducted to implement the corresponding automated
optimization feature in the compilers. In the hardware component, the feasibility study for
improving the design is conducted seeking for essential performance boost. Some microscopic
codesign can apply general to many applications, while some are local to specific applications
only.

From practical point of view, it is not feasible to mathematically formulate the general
sensitivity in the systems design parameter space. Instead, experimenting the reasonable trials
and choosing the local optimal options is the only realistic approach in many situations. The
codesign is effectively the repeated mutual optimization between the application and the system
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in terms of performance, with power consumption and economy restriction. From systems view,
the codesign in the early stage contributes to the design of system architecture such as the
processor and memory specification and configuration, and in the later stage, it contributes to
the design of the system software such as compilers and libraries.

The performance is evaluated in the contex of power control mode. Until later stages of
codesign, the estimated system power consumption of some applications in the combination of
boost enabled and eco disabled mode, i.e. the highest performance mode, exceeded the designed
facility capacity. So all the application have been evaluated for the all power control modes of
(boost enabled—disabled) x (eco enabled—disabled) in order to seek for the optimal mode which
fits in the power consumption constraint [70]. The finally produced Fugaku processors performed
better power efficiency, and allowed all the applications to run in the highest performance mode.

6.4 Design improvement request to the system

As the result of codesign, numerous design improvement and enhancement requests were raised
from target applications to system development teams. There are more than 60 codesign requests
that have been accepted and implemented on Fugaku. The list of such codesign requests is shown
in Table 6.5.

Some examples of the reflected implementation are shown in Table 6.6.
Macroscopic codesign in the early stage contributed to finalizing the systems architecture

such as processor and memory configuration, data transaction in cache registers. Microscopic
codesign in later stage mostly contributed to improving the hardware control parameters such
as hardware prefetch distance, and the system software improvement such as the compiler opti-
mization feature, numerical library, MPI/network library

Table 6.5: codesign request from the target applications to
the system development

application codesign request

GENESIS performance improvement of communication inside the node for dis-
tributed FFT computation

GENESIS development of high performance sequential FFT for 2/3/5/7/mixed
basis

GENESIS wait time reduction of floating point arithmetic operations

GENESIS high performance bit wise operations in Fortran programs

GENESIS Optimization enhancement for loops using array pointers

Genomon Achieve job scheduling that effectively fills processes and reduces free
computing cores

Genomon fast character string comparison using SIMD

Genomon performance improvements of zlib and other system libraries

Genomon maintain Python programming environment

Genomon file I/O consideration for realizing effective Genomon2 workflow

Genomon Eliminating delays in reading files with I/O lengths that exceed the page
cache size

Genomon Providing the feature equivalent to Grid Engine like batch job manage-
ment software

GAMERA compiler feature of loop splitting and scheduler optimization
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codesign request from the target applications to the system development (continued)

application codesign request

NICAM
+LETKF

Improvement of L1 cache busy rate by suppressing the excessive indirect
load instructions

common Reduction of busy cycles in L1 cache miss

common Optimized HW / SW prefetch coordination

NICAM
+LETKF

fast single-precision exponentiation arithmetic

NICAM
+LETKF

supporting the store operation that bypasses the cache

NICAM
+LETKF

Optimal implementation selection and appropriate messages for
OpenMP collapse with/without innermost loop

NICAM
+LETKF

Eliminating hardware prefetch lost

NICAM
+LETKF

preparing the compiler environment on FX100 for performance evalua-
tion with hardware resource limit settings equivalent to post-K .

NICAM
+LETKF

Evaluation of the advanced performance profiler overhead .

NTChem Evaluation and implementation of high-performance DGEMM library

NTChem Evaluation and implementation of high-performance SGEMM library

ADVEN-

TURE

Faster short message MPI Allgather when there are multiple processes
in a node

RSDFT Improvement of MPI Allreduce communication algorithm for medium
message size of 1KB 1MB.

RSDFT Improving intra-node MPI Allreduce communication for long messages

RSDFT improving pipelined process in intra-node MPI Reduce communication

RSDFT implementation of intra-node collective communication by multiple rep-
resentative processes

RSDFT performance enhancement of single process DGEMM using multiple
CMGs

RSDFT Accelerate MPI Bcast using memcpy between CMGs

RSDFT improving the throughput of MPI Allreduce communication by using the
representative processes method and by reducing the number of memory
copies

RSDFT Applying Tofu-specific algorithm for Allreduce/Reduce communication
using MPI IN PLACE

RSDFT Resolving known issues with the EigenExa library

RSDFT feature to call sequential DGEMMs from PARALLEL regions in
EigenExa library

FFB Performance improvement by issuing indirect SIMD load instructions
for indirect array references

FFB feature to support effective SIMD operations when the loop length does
not match a multiple of 8 double-precision elements or 16 single-precision
elements.

FFB feature to perform rerolling (processing to restore to the original loop)
for a loop that has been manually unrolled
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codesign request from the target applications to the system development (continued)

application codesign request

LQCD capability to return the values via registers when inlining a function that
returns an array of size equal to the SIMD width

LQCD Enhancement of Tree Height reduction optimization

LQCD Removal of temporary arrays used across multiple loops

LQCD Reduction of integer register usage by utilizing the SIMD addressing
mode

LQCD OS development that does not degrade application performance due to
OS jitter

LQCD Providing RDMA communication mechanism

LQCD Reduced issue time for multiple RDMA communications

LQCD Countermeasures for the problem that communication time is signifi-
cantly increased due to the influence of file I/O by other jobs

LQCD Fast implementation of short (1-3 elements) MPI Allreduce

common Reduced latency for intra-node communication

common configuring the assistant cores

common Eliminating the decrease in L1 cache throughput when there is a cache
index conflict

common Load reduction for the access requests to L1 cache when executing indi-
rect SIMD load instructions

common performance enhancement of MPI Scatter

common performance enhancement of built-in functions

RSDFT compiler optimization enhancement for C language functions whose ar-
guments are pointer type

LQCD development of GEMM variation library for complex data that takes the
array argument of real part values and imaginary part values in sequence

GENESIS error detection feature for OpenMP private directive when a pointer
type is specified

common SFI detection feature in profiler

Genomon Providing an API to get Tofu coordinates

ADVEN-

TURE

Combined use of sequential BLAS and thread parallel BLAS

NTChem efficient SIMD implementation for loops in which single-precision and
double-precision operations are mixed

GENESIS New interface design for accelerated distributed parallel FFT

LQCD Improved intra-node communication performance for distributed FFT
computation

LQCD FFT batch mode support

NICAM
+LETKF

add a simple compiler option that does not affect the calculation results
still providing performance

common Improve the profiling feature to detect and report the SFI condition in
CPU performance analysis report with smaller number of repetitions

common Simplification of prefetch instruction line

common Expansion of the number of elements that can use the Structure Load
instructions
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Table 6.6: examples of the reflected implementation into the system
application codesign request reflected implementation

common separate services from computation add and integrate assistant cores
into CPU so that compute cores can
be dedicated to computing

common load reduction of the access requests
in L1 cache when executing indirect
SIMD load instructions

furnish combined gather mechanism
to reduce L1 pressure

GAMERA automatic and optimized loop fis-
sion

enhance compiler to automatically
execute fission optimization when
the compiler judges as effective

LQCD OS development that does not de-
grade application performance due
to OS jitter

develop the noiseless operating sys-
temMcKernel and integrate into the
system as user choosable option per
job

The effect of codesign is almost obvious, impacting the value of both the target applications
and Fugaku. Target applications become production ready from day 1 on Fugaku with optimized
performance. Fugaku system becomes throughly optimized to typical HPC workload demand
represented by target applications.
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Chapter 7

Innovative computing infrastructure
for drug discovery by GENESIS

7.1 Overview of GENESIS

7.1.1 Molecular Dynamics on Biological Systems

Molecular Dynamics (MD) is a method of tracking movements of atoms and molecules using
numerical integration of Newton’s equation of motion. In MD, coordinates and velocities of
these particles are updated with a small-time step based on force evaluations. By the repeating
the update procedure in many steps, the coordinates or velocities are used in investigating
dynamics and statistics of the atoms and molecules. The method is widely used in chemical
physics, biophysics, material science, and so on.

In the biophysics field, MD simulation is widely used to understand structures, dynamics,
and functions of bio-molecules. The method can also predict binding and affinities for protein-
drug complexes from free energy profiles on biochemical reactions. In the reactions, many
bio-molecules and solvents are involved in the reactions and the reaction time scale order is
usually greater than milliseconds. Therefore, the amount of calculation is enormous. From the
first study in 1970’s [71], various MD programs and algorithms have been developed to overcome
computational limits of system size and simulation time. Improvements of architectures have
extended to the temporal and spatial range of MD simulations. Special purpose systems for MD
like MDGRAPE [72, 73] and Anton/Anton2 [74, 75] have made it possible to simulate 10-100
times faster than the computers of the time. Even without using these specialized machines,
the simulation speed has been increased by using Graphics Processing Unit (GPU). Many MD
software packages like GENESIS[76], AMBER[77], Gromacs[78], NAMD[79], and OpenMM[80]
are making use of GPU. It is very effective for systems up to about 1 million atoms.

It is also important to expand the spatial range of simulations. The biological functions
work in large biological systems such as cellular environments with proteins, nucleic acids, and
metabolites. These calculations have been achieved by using massively parallel computing on
supercomputers.[81, 82, 76]

However, even the specialized machines, the simulation range is on the order of milliseconds
for a small protein in solution. It is quite difficult to investigate processes on biological functions.
The enhanced conformational sampling algorithms such as replica exchange molecular dynamics
(REMD).[83, 84] are powerful tools to solve the problem.

The method simulates multiple copies of the target system (we call the copy “replica”) with
different physical parameters at the same time. By exchanging the physical parameters at certain
timings, the simulation allows to sample a larger conformational space. The advantage of the

94
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method is that communication between replicas is negligible, and it can be considered almost
as a collection of stand-alone simulations.

7.1.2 Energy and force description in MD

In general, biological MD simulations use empirical functions called ‘force field’ to calculate the
force on each particle in the simulation system. Bonded interactions involve covalent bonds
between atoms, and non-bonded interactions consist of van der Waals and electrostatic inter-
actions. For the bonded interactions, the computational cost is proportional to the number of
particles (N). The non-bonded interactions should be applied to all pairs separated by three or
more covalent bonds. The non-bonded interaction energy is generally described as

Enon-bonded =
1

2

N∗∑
i,j=1

(
aij
r12ij

+
bij
r6ij

+
qiqj
rij

)
(7.1)

where ∗ means that we exclude bonded interactions. The computational cost of non-bonded
interaction based on the above equation is O(N2). The first and second terms, showing repulsive
and dispersive interactions, decay rapidly as we increase the pairwise distance, and can be
evaluated with the upper threshold, named “cutoff” rc:

Evdw =
1

2

N∗∑
i,j=1,rij<rc

(
aij
r12ij

+
bij
r6ij

)
(7.2)

The electrostatic interaction has much longer interaction range than van der Waals terms, so
we could not assign the same cutoff value. To reduce the computational cost in the electrostatic
interaction, we usually decompose the electrostatic interaction into real- and reciprocal-space
interactions. The real-space interactions are truncated at the same cutoff values as van der
Waals by making use of complementary error functions. Then the real-space interaction energy
becomes

Ereal =
1

2

N∗∑
i,j=1,rij<rc

(
aij
r12ij

+
bij
r6ij

+
erfc (αrij)

rij

)
(7.3)

The reciprocal-space interaction energy only includes the electrostatic ones and is are expressed
as

Ereciprocal =
1

2πV

∑
m⃗/∈0⃗

e−α2π2m⃗2

m⃗2
S(m⃗)S(−m⃗) (7.4)

By assuming (K1,K2,K3) grids, S(m⃗) is

S(m⃗) =

N∑
j=1

qje
2πim⃗·r⃗j (7.5)

=
∑
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∑
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∑
k3

Q (k1, k2, k3) e
2πi

(
m1k1
K1

+
m2k2
K2

+
m3k3
K3

)
(7.6)

In Eq. (7.6), the reciprocal-space interaction requires the approximation of Q (k1, k2, k3) and
fast Fourier transform (FFT). There are various ways to approximate Q (k1, k2, k3). Among
them, one of the most popular schemes is the smooth particle mesh Ewald (SPME) method [85],
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which uses B-spline interpolations. The computational cost of Q (k1, k2, k3) and FFT is O(N)
and O(N logN), respectively.

In actual MD simulations, the real-space interactions are calculated based on a neighbor lists
with a few angstroms larger than rc. The list, called pair-list, is updated at a certain timing
during MD simulation to reduce the computational cost.

7.1.3 Characteristics of a MD software package, GENESIS

GENESIS (GENeralized-Ensemble Simulation System) [86, 87] is a MD software package de-
veloped by RIKEN and it is released under the LGPLv3 license. The package consists of two
MD programs (SPDYN and ATDYN) and trajectory analysis tools. The main difference be-
tween two MD programs are parallelization (decomposition) schemes. ATDYN is parallelized
with the atomic decomposition scheme. The program allows for a variety of models including
quantum mechanics/molecular mechanics and coarse-grained methods as well as all-atom force
fields such as CHARMM and AMBER. SPDYN is parallelized with the domain decomposition
scheme as described below. The program is designed to achieve high-performance simulations
with efficient parallelization while the program can use the all-atom force fields. Both ATDYN
and SPDYN allow us to perform various kinds of enhanced-sampling schemes using replicas, in-
cluding REMD, generalized replica exchange with solute tempering (gREST) [88, 89, 90], string
method [91], and so on. From now on, we will discuss SPDYN only.

The program has its own parallelization schemes and speed-up algorithms. It has achieved
high performances and parallel efficiencies on supercomputers such as K computer, TSUBAME,
and KNL supercomputers. [76, 81, 92]

Taking advantage of these high performances, we have succeeded simulations of systems
consisting of 100 million–1 billion atoms systems on K computer in RIKEN [81] and Trinity
Phase 2 platform in Los Aramos National Laboratory. [82]

In SPDYN, the simulation system is divided into subdomains from number of MPI pro-
cesses, and each subdomain is further divided into smaller cells. The forces on the particles are
calculated on this cell-by-cell basis, and the interaction between the atoms in different cells are
computed by the midpoint cell scheme. [93] Based on the domain decomposition scheme, each
MPI process performs the calculation of forces and time evolution of positions for atoms in its
own cells. Fig. 7.1 is an example of two-dimensional case with 16 MPIs. The system is divided
into 16 subdomains. Each subdomain is again divided into 4 unit-cells. Each MPI has a data
of corresponding subdomain (colored orange) and the buffer region consisting of adjacent cells
of the subdomain (colored gray). For energy and force evaluations, the program first makes all
cell pairs from the subdomain and buffer regions and checks if the midpoint cell of each cell
pair is in the subdomain or not. If it is in the subdomain, it assigns the cell pairs in the corre-
sponding MPI process. With this scheme, we can assign the same subdomain structure between
real- and reciprocal-space, and can avoid communications in the evaluation of Q (k1, k2, k3) and
its derivates. Based on the scheme, the main computational bottleneck is the real-space non-
bonded interactions and the bottleneck turns into reciprocal-space interactions as we increase
the number of processes and system sizes.

In this report, we will mainly discuss our various efforts (including those that failed unfortu-
nately) in this project. The optimization schemes of GENESIS has been discussed elsewhere. [94]
The recent version of GENESIS optimized on Fugaku has been released in https://github.com/genesis-
release-r-ccs/genesis-2.0.
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Figure 7.1: Hybrid (MPI+OpenMP) parallelization scheme in GENESIS

7.2 Codesign procedures for GENESIS

7.2.1 Target system and performance on K computer

In the project, we’ve targeted MD simulations of a middle-sized system for drug discovery
calculations. We selected a target system with 92,224 atoms. We consider the target problem to
be capacity computing, which includes large number of computations for various drug candidates.
In the actual calculations, there may be some variation in the performance due to difference of
number of atoms. However, in this case, we got a computation time of a single simulation
and calculated a ratio of time for two systems. The performance ratio of K and Fugaku was
estimated by multiplying the scale ratio of number of nodes.

In the evaluation, we calculated 4 ps simulation and got elapse time of main loop of MD
simulation. The cost of initialization such as reading files and setting variables is a constant
value regardless of the number of steps and was not considered in this evaluation. We first get
a computation time on 16 nodes of K computer. The numbers of MPI processes and OpenMP
threads were 16 and 8, respectively. We got 115.2 seconds for the 4 ps simulation and the
computation time is used as the baseline.

7.2.2 Finding bottleneck

From the evaluation, more than 50 % of the total elapse time was given from the calculation
of forces from real-space non-bonded interactions. In addition, generation of pair-list costed
more than 10 % although it was executed only every 10 steps. The cost of the reciprocal-
space interactions was around 20 %. We selected target modules from the evaluation and have
improved the performance one by one.
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7.2.3 Real-space non-bonded Interaction

The main consideration to improve the performance in real-space non-bonded interaction was
the efficient application of single instruction, multiple data (SIMD) and software pipelining in
the source code dealing with that part. In the codesign procedure, the two main factors that
prevents high performance in real-space interactions are list access with pair-list usage and
lookup tables used in energy/force evaluations.

With pair-list usage, the program stores indices of atoms, which is retrieved by list access.
The list access caused long waiting time of operation and load caches. To avoid the problem,
we considered the scheme without using pair-list. However, it increases the operation amount
more than six times and was not adopted although SIMD can be applied more easily.

The usage of lookup table was another source preventing high performance. The real-space
interaction requires the evaluations of inverse square roots, switch function, and complementary
error functions. By making use of lookup table instead of direct calculation of these, we can save
the computational time, and almost MD programs adopt it. GENESIS also uses a lookup table
with a modification from the conventionally used one. [95] Despite the lookup table reduces the
computational time, it requires random array access, and increases access latency. In the early
stage of the codesign, we tried an algorithm to reduce access latency by eliminating lookup table,
but finally found that keeping the lookup table is better considering the overall performance.
During the codesign procedure, we finally found a way to improve the performance by changing
the algorithm.

7.2.4 Long-range interactions

In GENESIS MD software, reciprocal-space electrostatic interaction consists for the following
five steps:

• step1: charge grid data before forward FFT

• step2: forward FFT calculation

• step3: energy and virial calculation

• step4: backward FFT calculation

• step5: force evaluation

In these five steps, codesign observed the performance in two categories: computational perfor-
mance of step 1 and 5 and communicational costs in step 2 and 4. In particular, in step 2 and
4, we tested the communicational costs of various types of MPI alltoall communications.

7.2.5 Updates of integrator for large time steps

In early stage, we evaluated the performance under constant particle number, volume, and energy
(NVE) conditions without temperature and pressure control. In the past in the biophysical
field, the NVE condition was widely used in the evaluation, but in the actual drug discovery
calculations, NPT (constant particle number, pressure, and temperature) condition is more
realistic. Therefore, researches in the priority issue 1 requested us to evaluate under NPT
conditions corresponding to the actual drug candidate calculation. In response to this request,
the GENESIS development team developed a more accurate numerical integration scheme under
NPT conditions. [96]
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7.2.6 Requests to hardware and system (MPI, libraries) working groups

Through this project, we have made the following requests to other working groups; 1) improve-
ment of compiler that causes long waiting time for floating-point operations, 2) improvement
of compiler for efficient software pipelining, 3) adoption of a high-speed method of intra-node
communication, 4) optimized FFT library with small number of grids on Fugaku. The first three
have already been implemented and shown to be effective. The last part is under development
and the performance improvement in the development version was confirmed.

7.3 Optimization of GENESIS

7.3.1 Real-space non-bonded interaction

One of the features we found is that there are non-negligible operand and cache wait whenever
we confront the most inner do loop. Here, wait time means the number of cycles (unit intervals)
in which all instructions are not completed. The wait time depends on the frequency of the
most inner loop and the most inner loop-length. Even the same numbers of instructions, we
found that we can reduce the wait time by increasing the most inner loop in the case of Fugaku.
The GENESIS program originally calculates these interactions based on the cell pairs. Let us
assume the two cell indices are i and j, respectively, for a given cell pair. Let us also assume
that the atom indices in i-th and j-th cells are ia and ja. Then, GENESIS calculates the non-
bonded interactions by making do loops of ja for each given ia. The loop-length is given by the
number of atoms in j-th cells within pair-list cutoff distance from ia-th atom. For the optimized
performance on Fugaku, we accumulate the lists of ja obtained in different cell pairs for a given
ia. For example, in Fig. 7.2, we accumulate 6 different ja lists for a ia-th atom in cell 1 to
make a longer loop-lengths in the most inner do loops. By doing this way, we could increase the
average loop-lengths by a factor of 10 for the target system (Fig. 7.3. The detailed explanation
with pseudo code is shown in [94].

In addition to the new algorithm increasing the most inner do-loop length, we further op-
timized by applying the “CONTIGUOUS” attribute to the arrays and by applying L1 cache
prefetch for related arrays. Like the previous section, the detailed explanation is shown in [94]

7.3.2 Optimization of reciprocal-space interaction

In step1 in 7.2.4, charge grid data, Q (k1, k2, k3) in Eq. (7.6) is obtained by B-spline interpo-
lation. In step5, we need to evaluate the derivate of Q (k1, k2, k3) with respect to the atomic
coordinates. If the B-spline order is n, the computational cost of these becomes O

(
Nn3

)
, and

for small number of processes, this could be the main bottleneck in reciprocal-space interac-
tions. In previous version of GENESIS, each MPI process obtain a part of Q (k1, k2, k3) from
the subdomain and its buffer regions (Fig. 7.4). In this algorithm, there are two problems.
First, each MPI sometimes generates unnecessary charge data that are not in the corresponding
subdomain, which increases the overall operation amount. Second, to minimize the operation by
discarding unnecessary calculation, the “conditional” statement is used, which again prevents
SIMD. However, it has an advantage that we do not need any communication before starting
forward FFT and after finishing backward FFT.

To circumvent the performance loss in the previous FFT scheme, we suggest a new algorithm.
Buffer region of each subdomain is not considered in charge grid data generation. We can increase
the performance by reducing operations and by excluding conditional statements. The generated
charge grid data then communicated to the neighboring processes to complete the data in each
subdomain. This has the weakness that it requires communications. In the updated version,
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Figure 7.2: The original non-bonded schemes in GENESIS (left) and its modification for Fugaku.
In the left figure, we assume that particles in cell 1 have interactions with particles in cells 2,
4, 5, 9, 10, and 11. Based on this, we generate cell pair-lists (1,2), (1,4), (1,5), (1,9), (1,10),
and (1,11). For each cell pair (1, j), we consider the do loop of ja-th particle in cell j for a
given ia-th particle in cell 1. In the updated version for Fugaku, we accumulate all the ja lists
interacting ia-th particle, and make the do loop calculation for the accumulated lists of ja.

we make a routine to compare these schemes before starting MD simulations to obtain the best
performance condition. More detailed explanation is described in [94].

7.3.3 Minimizing communication from intra- and inter-node communication
patterns

On Fugaku, we optimized the performance by minimizing communication costs. Generally,
communication on intra-node is faster than that on inter-node, and we need to optimize the
performance by considering the intra- and inter-node communicational costs. With Px, Py, and
Pz subdomains in x, y, and z dimension respectively, the total number of processes, P is same
as the total number of subdomains, i.e., P = Px × Py × Pz. By defining the MPI rank in each
dimension, Rx, Ry, and Rz, we can obtain the relationship between the MPI rank and those in
each dimension using

R = Rx +Ry × Px +Rz × Px × Py (7.7)

In GENESIS, there are three time-consuming communications in FFT:

• Alltoall x: Alltoall communication between processes having the same Ry and Rz.
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Figure 7.3: Do loop length distribution using the original (left) and new (right) schemes. In the
original scheme, the do loop length of the most inner loop is less than 100. On the other hand,
in the modified one, the longest do loop length becomes larger than 800.

Figure 7.4: (a) Charge data on grids from a charge in a real-space. The amount of effect on grid
points depends on the spline order. (b) Charge data generation on grids with the original scheme
in GENESIS. The MPI process corresponding to the subdomain D7 and its buffer generates grids
points in the region colored in blue. From them, we only select the data in the subdomain region
colored in red.

• Alltoall y: Alltoall communication between processes having the same Rx and Rz.

• Alltoall z: Alltoall communication between processes having the same Rx and Ry.

• Alltoall xy: Alltoall communication between processes having the same Rz.

Generally, given the same amount of process and communication data, Alltoall x is less time-
consuming than others. Therefore, we considered FFT with more frequent Alltoall x than
Alltoall z.

7.3.4 Optimization of bonded interactions

Bonded interaction is less time-consuming than non-bonded interactions, but we could slightly
increase the performance by optimizing this part, too. First, “no simd” directive is assigned for
do loops with short loop-length. Without the directive, it takes additional computational time
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for scheduling optimization in each do loop. If the loop-length is short, the time for scheduling
can be larger than that for the computation of the loop itself. Second, we increased OpenMP
threads balances in each do loop by dynamic scheduling of the do loops.

7.3.5 Optimization of the performance by an integration scheme with a large
time step

To maximize the performance, we have developed MD integration schemes enabling a larger
time step. First, we have developed ways to evaluate temperature and pressure in more accu-
rate way during MD simulations. Second, we have designed a group-approach for temperature
and pressure evaluations. This way accelerates MD integration speed by removing iterations re-
quired in pressure and temperature evaluations. These developments allowed us to perform MD
simulations with 3.5 fs time step for real-space and 7.0 fs time step for reciprocal-space forces
by combining the accurate temperature/pressure evaluates with hydrogen mass repartitioning
(HMR) schemes. [97]. Even without HMR, the developments allowed stable MD simulations
with 2.5 to 3.0 fs time step for real-space and 5.0 to 6.0 fs time step for reciprocal-space forces.

7.3.6 Performance of real-space non-bonded interaction

The improvement from the real-space optimization has been discussed by comparing it with a
conventional scheme without these updates for 1.58 million atoms in the previous paper. [94] In
the paper, we showed that the new scheme improves the performances of both force calculation
and generation of pair-list more than twice of the conventional one. The reason is reduction
of the waiting times before starting floating-point operations and accesses to the L1D cache by
increasing the most inner do loop length.

In this section, we show the improvements by applying the “CONTIGUOUS” attribute and
L1 cache prefetch using the target system. We used a single node of Fugaku with 2.0 GHz CPU
clock and assigned 16 MPI processes with 3 threads. The performance is given by 0-th core
memory group (CMG). We performed 4 ps MD simulation by assigned 1600 steps and 2.5 fs
time step. In the force calculation, the calculation no “CONTIGUOUS” attribute, no prefetch,
and SoA coordinate and force arrays reduces the performance by low memory throughput rate
(Table 7.1). In particular, it is found that the “CONTIGUOUS” attribute makes an important
role in performance. If we see it in more detail, we measured the floating-point cache access
wait time and floating-point operation wait time in Table 7.2 . Low performance from no
“CONTIGUOUS” attribute is mainly from large operation wait time. Performance reduction
from no prefetch and SoA arrays are mainly due to L2 cache access wait time.

7.3.7 Performances on Fugaku

We evaluated computer times of 4 ps MD simulation on a single node of Fugaku. We also
compared the times using different clocks of CPU and “eco” modes. The version of develop-
ment environment on Fugaku is lang/tcds-1.2.26b. These performances are shown in Table 7.3.
Finally, we got 131.1 times speed-up of K computer on 2.2GHz clock CPU on Fugaku. We note
that the version is optimized to use on three OMP threads on a single node and the perfor-
mance would be decreased for more than 6 OMP threads. Therefore, the released version has
been updated for use of large numbers of OMP threads.
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Table 7.1: Performance statistic summary

Schemes GFlops MTa (GB/s) SIMD (%)

Optimized 57.14 11.92 85.09
No contiguous 39.41 11.67 75.39
No prefetch 44.30 7.87 88.14
SoA array 48.45 11.32 85.39

a Memory throughput

Table 7.2: Floating-point cache access wait and operation wait

Schemes WT L1Da WT L2Db Operationc

Optimized 6.67 1.40 1.72
No contiguous 5.60 4.50 1.55
No prefetch 5.53 1.43 7.37
SoA array 6.58 3.57 1.85

a Floating-point and integer load L1D cache access wait
b Floating-point load L2 cache access wait
c Floating-point operation wait

Table 7.3: Performance on K and Fugaku

System K Fugaku
w/o eco w eco

Mode Base 2.2GHz 2.0GHz 2.2GHz 2.0GHz

Computation time (sec) 115.2 26.9 29.6 28.1 30.6
Ratio of performance (a job) 1.0 4.3 3.9 4.1 3.8
Number of nodes (a job) 16 1 1 1 1
Number of nodes (system) 82944 158976 158976 158976 158976
Ratio of performance (system) 1.0 131.1 119.4 125.6 115.4
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7.4 Summary

In this project, we have developed new algorithms and MD integration scheme to optimize
GENESIS on Fugaku. Since GENESIS is able to operate with fewer nodes (even a single node),
it was able to make many trials possible on trial machine and Fugaku. Therefore, we can
increase the performances of most modules, not just the bottleneck modules. Although the
target system is less than 100,000 atoms, these updates also speed up the simulations in more
realistic biological system on Fugaku. [94] Finally, we would like to thank all the people who
were involved in the GENESIS working group of the project.
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Chapter 8

Codesign of Genomon

8.1 Co-Design of Genomon

8.1.1 Application Features

Genomon is a whole genome sequencing (WGS) data analysis pipeline for human cancer de-
veloped in the Human Genome Center at the Institute of Medical Science, the University of
Tokyo. In the basic design phase, Genomon-fusion for K (GFK), Genomon-fusion running on K
computer, was taken into account as a target application. It analyzes RNA sequences utilizing
the Bowtie and BLAT alignment tools, and detects mutations of fusion genes that cause can-
cer. After the completion of the basic design phase, the target application was replaced with
Genomon2. Genmon2 employs the BWA (Burrows-Wheeler Aligner) tool for alignments of WGS
data. The target problem size was decided as follows, based on the prediction of high-througput
genome sequencer’s performance in 2017.

Before 2017 read counts: 3.9M read, read length: 200 base pair

After 2017 read counts: 1.4M read,read length: 150 base pair

The WGS variant callers are a kind of workflow applications performed by connecting small
programs that process using input data and output data for the next program in a pipeline way.
Programs running in each pipeline stage are called a task in this paper. Also, Genomon2 is
referred to Genomon in this paper.

Genomon workflow and job scheduling are controlled by Ruffus1 and Grid Engine (Sun Grid
Engine/Univa Grid Engine). The overall workflow of the DNA analysis pipeline is shown in
Figure 8.1. The area in the red frame is used for the Fugaku evaluation.

In order to carry out high-throughput ensemble computing for genome analysis, such as
Genomon, on a large-scale supercomputer, the following common features of such applications
must be paid attention:

• Many of tasks in pipeline are not thread-parallelized or cannot be parallelized.

• Node-level parallelisms in each task differs than other tasks.

– The alignment computation task can be parallelized with any number of nodes by
dividing the input data. Its load-balance can be well obtained.

– On the other hand, node-level parallelisms in other tasks are limited and its load-
balance cannot be well obtained.

1http://www.ruffus.org.uk/
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Figure 8.1: DNA analysis workflow in Genomon

– It cannot be ignored that some tasks are serialized.

Genomon has following characteristics from the view of codesign methodology: It is an
integer arithmetic intensive application for string operations. Some program’s execution times
are dominated by file I/O processing. Several processes may access about tera-byte files at
the same time. Thus, codesign of Genomon is not only for the Genomon application, but also
contributes to applications whose performance is dominated by integer arithmetic and file I/O
processing.

Since Genomon utilizes open source codes and its workflow is written by python, we have
not optimized such codes except the BWA tool, which SIMD paralleization was applied to. This
report focuses on the workflow runtime environment and file I/O which are key contributions.
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8.1.2 Workflow Runtime

8.1.2.1 User-level Job Scheduler

Many large-scale bioinformatics applications, such as Genomon, are described using the array
job feature provided by a batch job system, such as the Grid Engine. An array job is a collection
of jobs each of which uses the same application code, but different input parameters. Especially,
Genomon has been provided with the assumption of Grid Engine.

Genomon-fusion for K was running on VGE (Virtual Grid Engine), developed in the Human
Genome Center. VGE is an MPI application that realizes the array job feature and other Grid
Engine features needed by Genomon. Though the same function of Grid Engine is provided
in Fugaku, it is not the same API and Genomon must be modified to adopt it to the Fugaku
environment. Thus, the Human Genome Center has ported VGE to Fugaku.

Though Genomon does not require Grid Engine features in Fugaku, the following require-
ments were summarized and requested to Fujitsu:

• A batch job can be submitted on compute nodes.

• The smallest job unit should be node or CMG.

• The limit on the number of jobs in a bulk job is relaxed. A bulk job is the similar function
of array job in K and Fugaku, but only 15 jobs can be submitted in K.

8.1.3 File I/O

8.1.3.1 Investigation of File I/O Patterns

Genomon consists of open source codes, not developed by the Genomon developers, and thus
all intermediate files generated by those codes are not known. In order to reveal such file I/O
patterns and file sizes, a file I/O profiler was developed and applied to Genomon. The profiler is
an extension of Darshan2, that enables an MPI application to capture I/O behavior. Extended
features are listed below: i) recording I/O stream functions, such as fwrite, ii) recording stack
trace at an I/O function call, iii) recording the maximum file size if the same file is multiply
opened and closed, and iv) recording file I/O by a program invoked by the multiprocessing
module in python. The extended Darshan I/O profiler is available in https://github.com/

yutaka-ishikawa/darshan-mod/.
The placements of files used in applications, the 1st or 2nd layer storage, were decided based

on a result of measuring file I/O patterns and file sizes by the extended Darshan I/O profiler.

8.1.3.2 Utilization of the 1st layer Storage

In Fugaku, SSDs as the 1st layer storage are utilized by dividing it into the following areas for
each purpose.

(1) Temporary files within node

(2) Shared files among nodes

(3) Copy of files on the 2nd layer

(4) Cache for files on the 2nd layer

Files used in Genomon are classified into input files, output files, and temporary files and
those are ideally placed in the 1st layer storage as shown below.

2https://www.mcs.anl.gov/research/projects/darshan/

https://github.com/yutaka-ishikawa/darshan-mod/
https://github.com/yutaka-ishikawa/darshan-mod/
https://www.mcs.anl.gov/research/projects/darshan/
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• Input files

Accessed only by programs on a single node → (4)

Others → (3)

• Output files → (4)

• Temporary files

Temporally accessed by a program → (1)

Temporally accessed in a task → (1)

Temporally accessed across tasks → (2)

Genomon uses 96 nodes for one sample analysis in the target problem size. Since 1,600 GB
1st layer storage are equipped in each 16 nodes, the total amount of 1st layer storage is 9,600
GB on 96 nodes, and 100 GB can be used per node.

The requirement of total file sizes in most tasks except one task does not exceed 9,600 GB,
but one task exceeds this limitation because it generates 157.1 GB temporary file in each node.
This file is allocated in a shared temporary area so that storage size requirements of each node
is reduced.

8.1.4 Results

8.1.4.1 Computational Performance in 100 base pairs

Because we could not obtain sample data whose base pair size is 150, sample data of 100 base
pairs are used to measure the computational performance. Experimental job parameters are
summarized as follows:

• The node allocation option is “4x3x8:strict-io”

• Stripe size and counts in the 2nd layer storage are 2 MiB and 32, respectively

• Stripe size and counts in the 1st layer storage are 2 MiB and 6, respectively.

Because it is not enough capacity in the 1st storage to hold all input files, those are accessed
via cache provided by the 1st storage. The access latency of the 2nd storage depends on the load
of the 2nd storage that are shared by other jobs. Thus, the performance result is the fastest
execution time of multiple executions.

The measurement was performed for four cases of the combination of normal or boost mode
and eco-disabled or enabled mode. The result is shown in Table 8.1. In this table, average power
consumption is calculated by the average of all “AVG POWER CONSUMPTION OF NODE
(MEASURED)” values of nodes, reported in the statistic information generated by the batch
job system. The maximum power consumption is also calculated using the “MAX POWER
CONSUMPTION OF NODE (MEASURED)” values of nodes.

In Genomon, the variation in execution time due to external factors is larger than the effect
of eco-setting. In this experience, the eco-enabled boost mode was slightly faster than the
eco-disabled boost mode.

As shown in Figure 8.2, the power consumption varies greatly depending on the type of
node in Genomon. In this figure, the left and right graphs shows average and maximum power
consummations, respectively. CN, BIO, SIO, and GIO represents compute only node, compute
node with boot IO device, compute node with SSD, compute node with I/O network. ALL
represents all nodes.



CHAPTER 8. CODESIGN OF GENOMON 111

Table 8.1: Computational Performance in 100 base pairs
Eco off Eco on

Normal Boost Normal Boost

exec. time (s) 8918 8552 9038 8532

Max memory/Node(GiB) 24.8 24.8 24.7 24.8

Avg. power cons./Node(W) 103 116 76 84

Max power cons./Node(W) 110 123 83 92
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Figure 8.2: Power Consumption in Genomon

8.1.4.2 Prediction of Computational Performance in 150 base pairs

The computational performance in 150 base pairs is predicted using the result of 100 base pairs.
The result is shown in Table 8.2. Note that power consumption is not the predicted one, but
the result of 100 base pairs.

Table 8.2: Predicted performance using 100 base pairs
K Fugaku

Eco off Eco on
Baseline

Normal Boost Noramal Boost

# node used 36 96 96 96 96

Analyzed samples/Day 261 5888 6046 5732 6091

Time for 1 analysis (day) 8.84 0.28 0.27 0.29 0.27

Improved perf. ratio 1 22.6 23.2 22.0 23.4

Max memory/Node(GiB) - 24.8 24.8 24.7 24.8

Avg. power cons./node(W) - 103 116 76 84

Max power cons./node(W) - 110 123 83 92



Chapter 9

Codesign of GAMERA

9.1 Overview of target application

GAMERA is an implicit unstructured finite element analysis method for seismic ground motion
simulation originally designed for the K computer (Ichimura at al. 2014 (SC14)). This program
combines mixed-precision arithmetic and multi-grid method in the preconditioner of a conjugate
gradient method for solving large linear system of equations at each time step, and the Element-
by-Element (EBE) method is used for matrix-vector products in the conjugate gradient solver.
In standard finite-element solvers, sparse matrices

K =
∑
i

PiKiP
T
i , (9.1)

is often stored in memory and read each time a matrix-vector product is called as

f ⇐ Ku. (9.2)

On the other hand, matrix-vector products are computed as

f ⇐
∑
i

(Pi(Ki(P
T
i u))). (9.3)

in the EBE method. Here, the subscript indicates the value related to the element number i, Ki

is the element matrix, and Pi is the mapping matrix from the global node number to the element
node number. By using Eq. (9.3) for the matrix-vector product, the amount of data read from
memory to compute Ki and Pi is reduced from the amount of data read from memory when
using the global matrix K in Eq. (9.2). On the other hand, on-cache computation is increased
for generating Ki at each matrix-vector product, and random load of u and random write to f
are required. As the single-precision EBE kernel in the second-order tetrahedral element mesh
used in the multi-grid preconditioner becomes the most costly kernel of the total application,
we conducted codesign of single-precision EBE kernel in GAMERA for Fugaku. In this way,
GAMERA contributes to codesign of applications with on-cache unstructured computation, that
requires random access performance such as indirect SIMD load (gather load) and low cache
latency.

9.2 EBE kernel for K computer

Figure 9.1 shows the overview of the EBE kernel before codesign. When parallelizing Eq. (9.3)
in the element direction (i), data recurrence occurs in f for nodes that are shared between
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elements. Thus, in the kernel for K computer, temporary buffer ftmp is generated (Part I in
Fig. 9.1), and each thread adds results (Pi(Ki(P

T
i u))) into ftmp (Part II in Fig. 9.1), and thread

wise results are added into the final vector f (Part III in Fig. 9.1). As the parts accessed by
each thread is localized, only the parts updated is initialized to 0 in Part I and added in Part III
for reducing thread parallelization cost. On the other hand, as data recurrence occurs in ftmp,
SIMD cannot be applied to the main computation loop (Part II).

1 !$OMP PARALLEL DO
2 ! for each thread
3 do iu=1,numberofthreads
4 ! clear temporary vector
5 do i=1,nnum(iu)
6 i1=nlist(I,iu)
7 ftmp(1,i1,iu)=0.0
8 ftmp(2,i1,iu)=0.0
9 ftmp(3,i1,iu)=0.0
10 enddo
11 do ie=nstart(iu),nend(iu)
12 ! compute BDBu
13 cny1=cny(1,ie)
14 cny2=cny(2,ie)
15 cny3=cny(3,ie)
16 cny4=cny(4,ie)
17 ue11=u(1,cny1)
18 ue21=u(2,cny1)

...
19 ue34=u(3,cny4)
20 xe11=coor(1,cny1)
21 xe21=coor(2,cny1)

...
22 xe34=coor(3,cny4)
23 ! compute BDBu using ue11~ue34 and xe11~xe34
24 BDBu11=...
25 BDBu21=...

...
26 BDBu34=... 
27 cny1=cny(1,ie)
28 cny2=cny(2,ie)
29 cny3=cny(3,ie)
30 cny4=cny(4,ie)
31 ftmp(1,cny1,iu)=BDBu11+ftmp(1,cny1,iu)
32 ftmp(2,cny1,iu)=BDBu21+ftmp(2,cny1,iu)

...
33 ftmp(3,cny4,iu)=BDBu34+ftmp(3,cny4,iu)
34 enddo ! ie
35 enddo ! iu
36 !$OMP END PARALLEL DO

Part II
(non-SIMD 
computation)

2. Update 
components by 
EBE (black)

1. Initialize necessary 
components (gray)

Core-wise 
temporary 
vectors 
(ftmp)

37 !$OMP PARALLEL 
38 !$OMP DO
39 ! clear global vector
40 do i=1,n
41 f(1,i)=0.0
42 f(2,i)=0.0
43 f(3,i)=0.0
44 enddo
45 !$OMP END DO
46 do iu=1,np
47 !$OMP DO
48 ! add to global vector
49 do i=1,nnum(iu)
50 i1=nlist(i,iu)
51 f(1,i1)=f(1,i1)+ftmp(1,i1,iu)
52 f(2,i1)=f(2,i1)+ftmp(2,i1,iu)
53 f(3,i1)=f(3,i1)+ftmp(3,i1,iu)
54 enddo
55 !$OMP END DO
56 enddo
57 !$OMP END PARALLEL

3. Add necessary 
components

+ =
=
=

+ =
=

+ =

Global left hand side vector (f)

Part I

Part III

Figure 9.1: EBE kernel before codesign

9.3 Codesign of EBE kernel for Fugaku

9.3.1 Use of SIMD in EBE kernel

We first worked on the parallelization of SIMD in Part II, keeping in mind that the SIMD
width increases in Fugaku. Here, we first split Part II into two parts: the first half without
data recurrence and the other with data recurrence (Fig. 9.2 Part II-A and II-B). By such
loop splitting, parallel computation by SIMD is utilized in the first half. Since computation of
(Pi(Ki(P

T
i u))), which is the main computation of the EBE kernel, is performed in Part II-A,

most of the floating-point computation of the kernel can be performed by SIMD arithmetic
units. Temporary buffers (BDBu11∼BDBu34) for passing variables between Part II-A and II-B
is required to divide Part II into two; however, by using loop blocking (block length NL=SIMD
width), we can suppress the size of the temporary buffers, and the SIMD calculation of the main
computation part can be conducted on L1 cache.
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1 !$OMP PARALLEL DO
2 ! for each thread
3 do iu=1,numberofthreads
4 ! clear temporary vector
5 do i=1,nnum(iu)
6 i1=nlist(I,iu)
7 ftmp(1,i1,iu)=0.0
8 ftmp(2,i1,iu)=0.0
9 ftmp(3,i1,iu)=0.0
10 enddo
11 ! block loop with blocksize NL
12 do ieo=nstart(iu),nend(iu),NL
13 ! compute BDBu
14 do ie=1,min(NL, nend(iu)-ieo+1)
15 cny1=cny(1,ieo+ie-1)
16 cny2=cny(2,ieo+ie-1)
17 cny3=cny(3,ieo+ie-1)
18 cny4=cny(4,ieo+ie-1)
19 ue11=u(1,cny1)
20 ue21=u(2,cny1)

...
21 ue34=u(3,cny4)
22 xe11=coor(1,cny1)
23 xe21=coor(2,cny1)

...
24 xe34=coor(3,cny4)
25 ! compute BDBu using ue11~ue34 and xe11~xe34
26 BDBu11(ie)=...
27 BDBu21(ie)=...

...
28 BDBu34(ie)=...
29 enddo
30 ! add to temporary vector
31 do ie=1,min(NL, nend(iu)-ieo+1)
32 cny1=cny(1,ieo+ie-1)
33 cny2=cny(2,ieo+ie-1)
34 cny3=cny(3,ieo+ie-1)
35 cny4=cny(4,ieo+ie-1)
36 ft(1,cny1,iu)=BDBu11(ie)+ftmp(1,cny1,iu)
37 ft(2,cny1,iu)=BDBu21(ie)+ftmp(2,cny1,iu)

...
38 ft(3,cny4,iu)=BDBu34(ie)+ftmp(3,cny4,iu)
39 enddo
40 enddo ! ieo
41 enddo ! iu
42 !$OMP END PARALLEL DO

Part II-A
(SIMD
Computation)

Part II-B
(non-SIMD 
computation)

2. Update 
components by 
EBE (black)

1. Initialize necessary 
components (gray)

Core-wise 
temporary 
vectors 
(ftmp)

43 !$OMP PARALLEL 
44 !$OMP DO
45 ! clear global vector
46 do i=1,n
47 f(1,i)=0.0
48 f(2,i)=0.0
49 f(3,i)=0.0
50 enddo
51 !$OMP END DO
52 do iu=1,np
53 !$OMP DO
54 ! add to global vector
55 do i=1,nnum(iu)
56 i1=nlist(i,iu)
57 f(1,i1)=f(1,i1)+ftmp(1,i1,iu)
58 f(2,i1)=f(2,i1)+ftmp(2,i1,iu)
59 f(3,i1)=f(3,i1)+ftmp(3,i1,iu)
60 enddo
61 !$OMP END DO
62 enddo
63 !$OMP END PARALLEL

3. Add necessary 
components

+ =
=
=

+ =
=

+ =

Global left hand side vector (f)

Part I

Part III

Figure 9.2: EBE kernel computed using SIMD arithmetic units

9.3.2 Coloring in EBE kernel for efficient multi-core computation

Since Part II became faster due to the use of SIMD, the random access costs in Part I and Part
III became relatively large. Especially in Fugaku, the cost of these random accesses increases
becomes significant as the SIMD width increases compared to the K computer. Therefore, as a
codesign for Fugaku, we carried out coloring of the element loop to reduce the random access
costs involved in Part I and III (Fig. 9.3). In normal element coloring, a subset of elements that
do not share a node is extracted and used as one color (Fig. 9.4). This method allows the nodal
values calculated in each thread to be added directly to f , eliminating the use of temporary
vector ftmp. On the other hand values of u and f cannot be reused on the cache. In order
to circumvent this situation, we developed a graph partitioning-based method to partition the
target mesh into the number of threads (Fig. 9.5). As a result, u and f can be reused on the
cache in each thread, and Parts I and III can be omitted.
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9.3.3 Reduction of register spills by loop splitting of the EBE kernel

Part II-A (Fig. 9.3), which is the main calculation part of the EBE kernel, has a large loop body
of 500 lines or more in the source code. In the K computer, high-speed calculation with reduced
cache access was possible by utilizing a large number of registers, but in Fugaku, it was expected
that spills would occur frequently due to the limitation in the number of registers. Indeed, it
turned out that compiling that part of the code produces many register spills. Therefore, the
relevant loop was subdivided into 18 loops. As a result, the number of spills in the assembly
code could be reduced by 5-fold (from 6692 to 1149).

9.4 Performance of GAMERA on Fugaku

As a result of the codesign, the developed solver attained 63-fold speedup from that of the as
is solver on full K computer. The details of the measurement results are shown below. First,
in order to confirm the scalability of the application, we measured the performance on weak
scaling model set A-1 to A-9 by setting the problem scale per compute node close to the target
problem (Table 9.1). The smallest model (A-1) at 288 nodes could run at 4.13 s, while the
target model A-Fugaku (1.08 trillion degrees of freedom (DOF)) at 147456 nodes was 5.54 s
(49.6 TFLOPS, corresponding to 9.97% of FP64 peak performance) (Fig. 9.6). In this way, it
was confirmed that high weak scaling performance was achieved from 288 nodes to 147456 nodes.
Figure 9.6 also shows the performance when the as is code for K computer before codesign is
measured on Fugaku. It can be seen that a significant speedup has been achieved by codesign
in each weak scaling model, such as achieving 7.0 times faster speed in the target problem. It is
considered that the efficient calculation method of random access-based calculation developed
in this study can be applied to other applications, and it is expected that the performance of
those applications will be improved.

Details of the development and measurements are reported in: Kohei Fujita, Kentaro Koyama,
Kazuo Minami, Hikaru Inoue, Seiya Nishizawa, Miwako Tsuji, Tatsuo Nishiki, Tsuyoshi Ichimura,
Muneo Hori, Lalith Maddegedara, High-fidelity nonlinear low-order unstructured implicit finite-
element seismic simulation of important structures by accelerated element-by-element method,
Journal of Computational Science, 2020, https://doi.org/10.1016/j.jocs.2020.1012.

Table 9.1: Model set used for weak scaling of GAMERA. A-Fugaku and A-K indicate the target
problem on Fugaku and K computer, respectively.

Model # of nodes # of MPI processes DOF DOF per process

A-1 288 1152 1888114923 1638988
A-2 576 2304 3775253451 1638564
A-3 1152 4608 7548554667 1638141
A-4 2304 9216 15095157099 1637929
A-5 4608 18432 30186410283 1637718
A-6 9216 36864 60368916651 1637612
A-7 18432 73728 120730026027 1637505
A-8 36864 147456 241452244779 1637452
A-9 73728 294912 482888875563 1637399
A-Fugaku 147456 589824 1086476549163 1842035
A-K 82944 82944 1086476549163 13098916
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1 !$OMP PARALLEL
2 !$OMP DO
3 ! clear global vector
4 do i=1,n
5 f(1,i1)=0.0
6 f(2,i1)=0.0
7 f(3,i1)=0.0
8 enddo
9 !$OMP END DO
10 do icolor=1,ncolor
11 !$OMP DO
12 ! for each thread
13 do iu=1,numberofthreads
14 ! block loop with blocksize NL
15 do ieo=nstart(iu,icolor),nend(iu,icolor),NL
16 ! compute BDBu
17 do ie=1,min(NL, nend(iu)-ieo+1)
18 cny1=cny(1,ieo+ie-1)
19 cny2=cny(2,ieo+ie-1)
20 cny3=cny(3,ieo+ie-1)
21 cny4=cny(4,ieo+ie-1)
22 ue11=u(1,cny1)
23 ue21=u(2,cny1)

...
24 ue34=u(3,cny4)
25 xe11=coor(1,cny1)
26 xe21=coor(2,cny1)

...
27 xe34=coor(3,cny4)
28 ! compute BDBu using ue11~ue34 and xe11~xe34
29 BDBu11(ie)=...
30 BDBu21(ie)=...

...
31 BDBu34(ie)=...
32 enddo
33 ! add to temporary vector
34 do ie=1,min(NL, nend(iu)-ieo+1)
35 cny1=cny(1,ieo+ie-1)
36 cny2=cny(2,ieo+ie-1)
37 cny3=cny(3,ieo+ie-1)
38 cny4=cny(4,ieo+ie-1)
39 ft(1,cny1)=BDBu11(ie)+f(1,cny1)
40 ft(2,cny1)=BDBu21(ie)+f(2,cny1)

...
41 ft(3,cny4)=BDBu34(ie)+f(3,cny4)
42 enddo
43 enddo ! ieo
44 enddo ! iu
45 !$OMP END DO
46 enddo ! icolor
47 !$OMP END PARALLEL

Part II-A
(SIMD
computation)

Part II-B
(non-SIMD 
computation)

Figure 9.3: Reduction of random access in EBE kernel by element coloring

Overall mesh Color #1 Color #2 Color #3

…

Figure 9.4: Standard coloring method
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Overall mesh

Thread 1
Thread 2
Thread 3

Color #1 Color #2 Color #3
(Threads 2,3 idle)

Figure 9.5: Developed coloring method
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Figure 9.6: Weak scaling of GAMERA on Fugaku



Chapter 10

Codesign of NICAM+LETKF

10.1 Application Features and Codesign target

10.1.1 Weather/Climate applications

‘Priority Issue 4, ”Advancement of meteorological and global environmental predictions utilizing
observational ’Big Data,’ ” aimed to develop the technological basis for accurate prediction of
meteorological disasters that threaten human life and property. In the challenge to get a longer
”lead time”, which is the time from a forecast of weather disaster to its occurrence, we chose
both the global weather simulation model and the data assimilation (DA) system as the target
application to codesign with the supercomputer system.

Weather/climate application software has a long history and is a multidisciplinary community
code with many components. The total number of lines of source code is in the hundreds of
thousands, and the type of algorithm and degree of optimization of each component varies. Since
the computational section uses many state variables at 3D grid points, the software tends to
be bounded by the memory performance. In most cases, these simulation models do not have
so-called ”hot spot” sections that account for the most computational amount and elapsed time
[98, 99, 100]. The cost ranking by the performance profiler shows low peak and long tail, and
we call this the ”flat profile.” The part that solves the hydrodynamics and tracer advection is
called the dynamical core or the ”dycore” and accounts for about half of the computation time.
The other half is the physical processes that calculate, for example, the phase change of clouds
and radiative transfer in the atmosphere.

Commonly used in weather DA systems are the variational method and the ensemble Kalman
filter. The computational characteristics of these applications are very different from those of
simulation models. They have sections that read in model simulation results and observa-
tion data, perform spatial interpolation, and perform matrix and eigenvalue calculations. The
variational method has a component called the adjoint code that performs the inverse of the
simulation. The ensemble Kalman filter does not require such an adjoint code, but it is necessary
to perform multiple simulations (ensemble) with slightly different initial or boundary values.

10.1.2 NICAM+LETKF

We selected NICAM+LETKF [101] as our target application. NICAM+LETKF is a complex
application that consists of a Nonhydrostatic ICosahedral Atmospheric Model (NICAM) [102,
103, 104] and the ensemble DA system based on the Local Ensemble Transform Kalman Filter
(LETKF) [105, 106, 107]. This software solves the time evolution of global weather using the
ensemble simulation of the atmosphere and applies analytical process with Earth observations.
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The weather forecast requires both an accurate prediction model and precise initial condition.
NICAM is developed to improve the reproducibility of atmospheric phenomena with higher spa-
tial resolution. Since the computational amount increases explosively when the grid spacing of
the model is made finer, efficient computation is essential factor. NICAM is a next-generation
atmospheric model that discretizes non-hydrostatic equations on icosahedral grid points and
employs a software design suitable for vectorization and massively parallel computing and re-
alized the first atmospheric simulation with a horizontal resolution less than 1 km on the K
computer [108]. In the codesign process, NICAM mainly contributes to evaluating memory and
cache transfer performance and latency, thread parallelism, scheduling, and out-of-order exe-
cution, as a representative application of stencil computation using a structured grid system.
Furthermore, the non-stencil part of NICAM is expected to improve compiler performance by
accumulating knowledge on optimization methods for program codes with big loop bodies and
frequent conditional branches.

Another application, DA systems, is as important to weather forecasting as simulation mod-
els. Increasing the number of ensembles is a way to increase the accuracy of estimating initial
state values for forecasting using ensemble-based DA. NICAM+LETKF has been used to per-
form a low-resolution calculation with 10240 members on the K computer [109]. The experi-
mental results show that the ensemble size, which is more than an order of magnitude larger
than the conventional one, contributes to the use of more spatially distant observational infor-
mation. The DA system mainly contributes to evaluating large-sized file input/output (I/O),
global communication, and eigenvalue solver in the numerical library.

10.1.3 Benchmark Setting

We set our target problem directly relevant to future operational weather forecasting; the hor-
izontal resolution was a global 3.5 km mesh, the number of vertical layers was 94, and the
ensemble size was 1024. We made this decision after considering both the total memory ca-
pacity and the computation time. The Japan Meteorological Agency performs DA and 72-hour
forecasts every 6 hours. Therefore, we selected a horizontal resolution to be able to compute to
meet this schedule using the entire Fugaku system. The memory capacity was not enough to run
1024 members simultaneously, so We divided into four runs with 256 members. We determined
the number of members based on previous 10240-member experiments, which showed that at
least 1024 members are necessary to achieve a significant improvement in forecast performance.
Our target problem size is more than 500 times larger than that used by the weather centers
around the world for ensemble DA in terms of the combination of horizontal resolution and
the number of ensemble members. We set the number of the time steps to 2700, equivalent
to 4.5 hours with a time interval of 8 seconds. After the simulation part, we calculate the DA
part using the simulation result and hundreds of thousands of observation data. We defined
the combination of one simulation part and one DA part as one assimilation cycle. The time
required to execute 480 cycles (corresponding to the two months in the simulation) was used as
the criterion for performance evaluation.

The execution time of single NICAM members on the K computer was estimated from the
measured times of 10-nodes experiment, assuming perfect weak scaling. The total elapsed time of
the simulation part was estimated by dividing it into 32-times runs with 32 members. Regarding
the DA part, we measured the kernel code with the same problem size per process. The elapsed
times of communication parts for both NICAM and DA were estimated from the measurement
of the communication kernel using 81,920 nodes. The file I/O parts were also estimated from the
measurement using the 2560 node of the K computer. By combining these results, we estimated
that it would take 15 days per cycle and 20 years for 480 cycles.
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Since the target problem could only be actually measured in Fugaku, each interval of elapsed
time was estimated in a different way. For the NICAM part, 256-member computation was
substituted by one member. In addition, the measurements were weak-scaled from 2560 MPI
processes of 3.5 km mesh to 10 processes of 56 km mesh with the same problem size per process.
In the middle of the project, the number of processes per member was changed from 2560 (10) to
2048 (8). For the DA system, the file I/O and global communication part were estimated based
on the amount of data movement, and the computational core part of LETKF was measured by
one process calculation using the same problem size.

It was difficult to run the full application on the emulator and simulator of Fugaku. Therefore,
we extracted specific sections from the NICAM and DA system as kernels. These kernels have
computational patterns that characterize the application. However, as mentioned above, NICAM
has a computational performance feature called ”flat profile”, and the total computation time
of these kernels is less than half of the total computation time. Therefore, to estimate the total
computation time, we used the performance mapping method described in later section.

10.2 Detail of codesign

10.2.1 Kernel Extraction and Optimization

In this section, we mainly discuss the kernels extracted from NICAM. In order to estimate
the computational part in NICAM, six kernels were extracted from the stencil kernels with
different characteristics such as data dependency and conditional branching, and three kernels
were extracted from the physical processes.

In optimizing the kernels, we had to be aware of two trade-offs. One is to ensure data locality
and parallelism. For the K computer and Fugaku, the SIMD width increased from 2 to 8 in
double precision, and from 2 to 16 in single precision. In order to process data continuously
with this SIMD width, the size of the innermost loop and array must be large enough. In
addition, the length of the innermost loop needs to be longer in order for software pipelining to
be effective. However, the memory footprint corresponding to this degree of parallelism cannot
stay in the cache for long. Since weather/climate simulation models use three-dimensional state
variables of the atmosphere such as wind speed, temperature, and water vapor content in their
calculations, there are many large-size arrays to be used in the loop. This further reduces the
reusability of the cache.

The changes in the typical loop structure of NICAM due to the optimization strategies
are shown in Figure 10.1. First, we coded in a style that relied on memory performance to
ensure a continuous supply of data. From the point of view of continuous reading of data,
stencil calculations did not show good performance with hardware prefetching. This is because
when calculating 2-D or 3-D grid points in sequence, the halo grid points are skipped without
calculation, which may be judged as a cache miss. To solve the above problem, we serialized
the horizontal 2-D data and calculated the halo grid points as a dummy. This serialization
is a method having used in NICAM to secure the vector length in vector computers. In our
optimization for Fugaku, we found that stencil serialization can easily take advantage of hardware
prefetching, long SIMD width, and SWP, rather than using 2-D or 3-D cache tiling, which is a
common method to accelerate stencil computation.

Next, in order to make the memory footprint utilized as small as possible, we fused loops
manually to reduce the dimensions and sizes of intermediate arrays. Finally, the innermost loop
size was split and moved to the outermost loop to enhance the effect of cache blocking. For this
optimization, we did not change the size and dimension of the arrays. For thread parallelization,
we used the vertical axis of the 3-D grid points as the parallelization axis. However, in the case of
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loops with data dependency in the vertical direction, thread parallelization needs to be performed
on other axes. In this case, we parallelized the horizontal loop by dividing it by the number of
threads and fixing the loop range that each thread was responsible for.

For some arrays, even though the size of some dimensions was fixed at compiling time, the
optimization considering the size was not applied in some cases. This happens in the case of
Fortran modular arrays: even if an allocatable modular array is allocated at runtime with a
fixed size, the subroutine that uses the array cannot know the size of the array at compiling
time. On the other hand, if a subroutine is called with the array and array size as arguments,
optimization can proceed concerning some fixed array size.

10.2.2 Register Spill and Loop Fission Studies

The other of the two optimization tradeoffs is to ensure data locality and avoid register spilling.
The optimization described above has combined many loops and reduced the number of in-
termediate arrays. However, the number of instructions in one loop body has increased, and
register spilling had become a frequent problem. To avoid this, we had to split the innermost
loop again and create intermediate arrays. We first manually searched for the optimal number
of loop divisions. In particular, for the cloud microphysics process, which has thousands of
numbers of lines in the main loop, we split the innermost loop into 54. The division enabled
software pipelining first, and then solved the register shortage. Further splitting degraded the
performance due to memory access waiting. The optimal number of partitions depends on the
parameters of each CPU, so if we adopt the Fugaku-specific number of partitions we surveyed
here, computational performances on the other supercomputers may degrade. In order to solve
this problem in an advanced way, we enhanced the automatic loop partitioning function by the
compiler and evaluated it using the NICAM kernel. This is one of the major achievements of
Fugaku’s system software codesign.

In addition to these, improvements in compiler addressing were also applied, and in some
cases, speedup was achieved by using the option of scheduling assuming that the number of
registers was 10% larger.

10.2.3 Evaluation of Mixed-precision Calculation

The aggressive utilization of less-precision floating-point numbers is coming to be applied to
many climate models and DA systems worldwide [110, 111]. There are two major advantages of
using single-precision floating-point numbers for speeding up calculations. The first is that the
required Byte/FLOP ratio is reduced, which is expected to speed up computation, especially in
the sections that are limited by memory transfer performance; since the algorithms of NICAM
have low arithmetic densities and many sections are limited by memory bandwidth, this effect
was expected to be significant. The other point is that Fugaku can perform single-precision
SIMD operations with up to 16. This can be expected to increase the speed in the sections that
are slowed down by waiting for operations or where there is still room for the memory cache busy
rate. The average speedup ratio of single-precision calculations to double-precision calculations
was about 1.7 times for the six kernels. Kernels with a memory-bounded type were about 1.7
times faster, while kernels with a cache-bounded type achieved a speedup of about 2 times.

To perform simulations using mixed precision, it is necessary to show that the simulation
results do not degrade significantly even when using single-precision floating-point numbers. To
evaluate the simulation results, we used the baroclinic wave test case, which is widely used to
evaluate the performance of the dycore component of the atmospheric model. Experiments were
conducted using the K computer on meshes ranging from 224 km to 56 km, and results were
compared between single and double precision. 224 km mesh experiments showed little difference
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Figure 10.1: The optimization strategies for the typical loop structure of NICAM
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between all double-precision and all single-precision results, while 56 km mesh resolution results
clearly showed unnatural flow fields. To identify the sections that significantly impact the
calculation results, we conducted experiments using double-precision in a partial part of the
simulation model. We found that the reason for the degradation of the calculation results was
the inaccuracy of the coefficient values used in the stencil operator. The accuracy of the distance
calculation between two points on the sphere and the metrics term calculation was affected by
the single precision calculation. The calculation for the coefficient preparation is done once only
in the initialization part. By keeping the accuracy of the variables used in the calculation at this
time high, the results were not degraded even if the coefficients themselves were single precision.

When the experiment was conducted up to the target resolution of 3.5 km horizontal mesh,
the difference between the double- and single-precision results of the same model showed enough
small value of norms from the reference experiment [112]. Those were smaller than one order
of magnitude smaller than the difference between the results for multiple atmospheric models
reported in previous studies. However, at the highest resolution of 3.5 km mesh, as the cal-
culation proceeds, the differences between double and single precision results, which were not
visible by 7 km, emerge as patterns along the atmospheric disturbance. The results are shown
in Figure 10.2. From top to bottom, the results are for the control experiment, the case where
the pressure gradient force is calculated with double-precision, the case where the numerical
viscosity is calculated with double-precision, and the case where the single-precision rounding
filter is applied every time step. To investigate the generation factors of the noise pattern in
more detail, the experiments were conducted by partially increasing the calculation sections of
the pressure gradient force and numerical viscosity to double precision. However, We found that
the simulation accuracy was not improved by doubling the accuracy of these sections. On the
other hand, when we reduce the floating-point precision of the time-evolving variable to single-
precision at the end of the main loop and then immediately return to double-precision, the
simulation result showed larger noise. We concluded that the noise was generated by the fluid
dynamics solver while maintaining the mechanical balance and that it was difficult to remove.

We also modified the three main components of the physical process to single-precision, and
each of them achieved a speed-up of about 1.6 times. However, there are additional times for
casting arrays between the single-precision components and double-precision components. In
the atmospheric radiation process, we fixed some scalar variables to double precision because
some operations have the ”loss of significance” with the combination of exponential calculation
and subtraction.

10.2.4 Evaluation of Eigenvalue Solver

In the LEKTF method, we have to obtain the eigenvalues and eigenvector of the real symmetric
square matrix. The size of the target matrix is determined by the number of ensemble members,
which is quite small in the research field of HPC. However, we have to execute the solver as
much as the number of grid points. For this purpose, we used an eigenvalue solver named Kevd
[113]. Kevd is lightweight and highly optimized for small matrix sizes. Kevd takes advantage
of a particular matrix data layout (AoSoA) for better cache controls. For the Fugaku, it is
further improved with new features, including fine-grained thread controls and single-precision
floating-point supports, as well as vectorization on SVE. As a result, Kevd has more than 2x
better throughput on a single CMG of the Fugaku compared with a single CPU of the K.

10.2.5 Data-centric Design in Application Coupling

Usually, the performances of the weather simulation models and DA systems have been optimized
individually. However, we need to maximize the total performance of the DA cycles. In the
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Figure 10.2: Difference between single and double precision experiments in the 3.5km-mesh
baroclinic wave test case
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simulation part, each ensemble member is allocated to the individual process group. On the
other hand, in the DA part, each process requires the output of all ensemble members of the
same grid point. Therefore we have to transpose the data between simulation and DA. We
focused on file I/O and all-to-all communications. We redesigned the application to maximize
the total throughput of reads and writes and reduce data movement as much as possible [114].
In the simulation part, each process independently outputs files to local SSD storage. In the DA
part, the processes read them and perform group communication in small groups. In particular,
the fully independent and distributed file IO provided sufficient scalability to speed up the total
elapsed time. In the DA benchmark results described later, we achieved a data throughput of
0.14TiB/s (0.27GiB/s per node) in the case with 512 nodes and 30TiB/s (0.23GiB/s per node)
in the case with 131,072 nodes.

10.3 Estimations and Results

10.3.1 Performance Estimation and Mapping

As mentioned above, meteorological and climate applications have a computing performance
feature called ”flat-profile”. We extracted each characteristic section (subroutine) from dycore as
a kernel, optimized it, executed it in a CPU simulator, and predicted its performance. However,
these six kernels account for only about 10% of the total calculation time of NICAM. Therefore,
we reflected the performance prediction results using the kernel in the entire application, that
is, ”performance mapping”.

In the performance mapping, first, the performance of NICAMwas measured using FX100. We
have measured the elapsed time, memory transfer rate, and floating-point operations for the en-
tire section of the program code. Next, the measurement sections were subdivided into smaller
sections that made it easy to understand what type of calculation was being performed. The sub-
sections are categorized as computation-bound calculations, cache-bound calculations, memory-
bound calculations, branch processing, communication, I/O, etc. We fit a roofline model to
each computational subsection and evaluated whether the expected computational performance
or memory transfer rate was achieved. The results were summarized and prioritized for opti-
mization. In particular, we worked to reduce non-computational operations and latencies -for
example, data copy, thread imbalance, and register spill. This is similar to the way we review
our household spending in detail and increase our savings. That’s why we call this method the
”household account method”.

What we learned from the detailed measurements was that many of the computational sec-
tions were memory-controlled. We have tried to predict the performance of the non-kernelized
section by substituting the results of a representative kernel with memory-determining charac-
teristics. Initially, OPRT3D divdamp, a dycore kernel, was used as the representative kernel,
but as a result of single precision and optimization, the kernel characteristics changed from
memory-controlled to cache-controlled. We evaluated the performance of the six optimized
kernels, reselected horizontal adv flux as the representative kernel, and performed performance
mapping according to the following rules.

• The kernelized section itself uses the kernel performance estimation result.

• For non-kernelized sections, use the performance estimation results of the horizontal adv flux
kernel.

• Estimate the execution time of each non-kernelized section using the data transfer amount
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as a feature value and the relationship between the data transfer amount of the represen-
tative kernel and the execution time.

Using the measured data transfer amount of each section and the performance of the kernel in
FX100, the mapped estimated elapsed time and the measured time were compared (The bottom
panel of Figure 10.3). The predicted time was about 27% longer than the actual measurement.

This discrepancy was due to the presence of code in the non-kernelized section that was
less computationally dense than the representative kernel and resembled the STREAM-Triad
benchmark. Such sections are not as fast as the optimized representative kernel, as there is little
room for optimization. Therefore, referring to the NICAM source code, we added a streamlike
kernel with data access and calculation patterns that represent sections with low calculation
density, and optimized and measured it. Using this result, the second mapping rule was modified
as follows.

• The non-kerneled section is judged based on the memory transfer performance when mea-
sured with double precision on FX100.

• For sections with memory transfer performance of 120GB/s or more, use the performance
estimation results of the streamlike kernel.

• For sections with memory transfer performance of 120GB/s or less, use the performance
estimation results of the horizontal adv flux kernel.

The reason why 120GB/s was adopted as the threshold value for switching the kernel to
be applied is that the calculation density of each subdivided section of NICAM measured on
FX100 tended to change at this value. The measurement time estimated using the modified
mapping method was 1.7% longer than the actual measurement, and a more accurate estimate
was obtained (Figure 10.4).

Table 10.1 shows the transition of NICAM’s calculation time estimation breakdown at each
evaluation stage. Note that in Phases 3 to 4, the problem size per process increases due to
reviewing the number of nodes. The dycore has been gradually accelerated by the result of
refactoring reflecting the knowledge of the kernel. The estimation system has also improved due
to improvements in performance mapping. The elapsed time of the cloud microphysics compo-
nent was short in the initial estimates in 2014. We initially assumed that we would halve the
number of calls in the substep of the cloud microphysics part. However, in the subsequent study,
we considered the simulation accuracy, and the above assumption was discarded for estimation.
The elapsed time and amount of computation of the atmospheric radiation part increased due
to the sophistication of the component simultaneously as optimizing it. The boundary layer
component and other physical processes have significantly increased time in phases 2 to 3. This
is a result of improved performance mapping in phase 3, which has improved the accuracy of
the predicted time. We overestimated for speed-up until phase 2. The boundary layer compo-
nent was kernelized from phase 4 and measured directly. As a result of measurement under the
condition of simultaneous execution of 256 member ensembles in phase 6, the calculation time
increased in some sections, reflecting the different amount of calculation for each member.

10.3.2 Benchmark on Fugaku

Figure 10.5 shows the weak scaling performance evaluation of single member of NICAM on
Fugaku. The number of grid points per node is kept constant, and the horizontal resolution
is changed from 56km to 28km, 14km, 7km, and 3.5km. At this time, the number of using
nodes was increased by 4 times from 2 nodes (8 processes) to 512 nodes (2048 processes). The
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Figure 10.3: Scatterplot of the elapsed time of NICAM against the measured data transfer
amount
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on K Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

# of time steps 2,700 2,700 2,700 2,700 2,700 2,700 2,700

# of grid point per PE 16,900 16,900 16,900 16,900 21,780 21,780 21,780

# of ens. members per set 32 256 256 256 256 256 256

# of sets 32 4 4 4 4 4 4

Elapsed time [sec]

Dycore - Pre_Post 10,661

7,702 5,194

230 201 188 231

Dycore - Large_Step 40,475 595 548 566 845

Dycore - Small_Step 105,979 2,470 1,884 2,173 2,362

Dycore - Tracer_Advection 52,338 2,143 1,548 1,296 1,040 933 1,073

Phys - Cloud_Microphysics 35,887 771 816 1,557 1,354 1,483 1,257

Phys - Radiation 38,705 1,249 1,354 1,605 1,591 1,100 1,158

Phys - Boundary_Layer 31,152
2,779

232 1,133 754 728 706

Phys -  Others 60,666 470 623 395 926 1,449

Dycore total 209,454 9,845 6,742 4,592 3,673 3,860 4,511

Physics part total 1,66,409 4,799 2,872 4,918 4,094 4,237 4,570

MPI communications 1,243 283 291 114 229 116 -

NICAM Total 377,106 14,927 9,905 9,510 7,995 8,213 9,081

Table 10.1: Change of NICAM elapsed time estimation result

time interval was 6 seconds in all experiments, and 50-step calculations were performed with
double- and mixed-precision, respectively. The results show good weak scaling performance
in both two precision settings. The calculation part is almost constant on the node-averaged
elapsed time. In the communication section, the elapsed time tended to increase as the number
of nodes increased. This factor is due to the imbalance of both communication and calculation
time between nodes. The amount of calculation for, such as cloud phase changes, varies greatly
depending on the point on the Earth’s atmosphere. As a result of increasing the horizontal
resolution in weak scaling, the contrast between the grid point group with many clouds (heavy
computational load) and that with few clouds (low computational load) makes a large time
imbalance. The time for file I/O scaled very well. In this experiment, we used local SSDs, a
first-tier file system. When we used a second-tier lustre-based file system configured with HDD,
a large variation in I/O time occurred between nodes, and a significant waiting time appeared
in communication. Although not shown here, we also evaluated the time when 256 members
are executed simultaneously. Since all members are calculated from a different initial value, the
computation time varies. Therefore, the elapsed time increased by about 10% compared to that
for single-member.

Figure 10.6 shows the performance evaluation results of the DA part, including LETKF. We
calculated with different ensemble sizes, horizontal resolutions, and floating-point precisions.
When the ensemble size is increased, the amount of computation per process increases. In par-
ticular, the computation amount of eigenvalue decomposition performed on the array of ⟨ number
of ensemble members ⟩ × ⟨ number of ensemble members ⟩ increases. This is also clear in the
breakdown of the elapsed time in the case of the 14km mesh (Fig. 10.7)). When we use double-
precision, the elapsed time of the eigenvalue calculation part increases non-linearly with the
increase in the number of ensemble members. On the other hand, when we use mixed-precision,
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Figure 10.4: Scatterplot of the elapsed time of NICAM against the measured data transfer
amount (cont.)

Figure 10.5: Weak scaling test result of NICAM single run on Fugaku
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the eigenvalue calculation is performed in single precision, and the elapsed time increases almost
linearly with increasing ensemble size. The factor that suppressed the increase in elapsed time
is the effect of deflation when using single-precision calculation. When increasing the horizontal
resolution to 56km, 14km, 3.5km, we increased the number of nodes so that the number of
grid points per process was the same. Therefore, for the same ensemble size, the difference in
horizontal resolution is related to weak scaling. In this case, the growth of elapsed time was
small, and the results showed good scaling performance.

Figure 10.6: Benchmark results of DA part on Fugaku

Of particular note is the IO time. In Figure 10.6, we observed no delay even when the
used nodes were increased from 512 to 131072 by changing the horizontal resolution. In Figure
10.7, there is a slight increase in IO time for an increase in ensemble size at the same horizontal
resolution. Short I/O time in all cases results from achieving scalable file I/O with the redesigned
NICAM+LETKF workflow. In this data-centric workflow, file I/O can be performed using only
the local SSD, significantly improving data throughput.

The following procedure carried out the elapsed time estimation of the target problem on
Fugaku.

• Estimate the elapsed time of 480 DA cycles from the execution time for one DA cycle with
mixed-precision.

• Estimate or measure the execution time of the simulation part and DA part individually
and total them.

• For the simulation part, we run 256 members simultaneously as one set and use 512 nodes
per member, for a total of 131072 nodes. However, we scale the results by reducing the
number of sets to measure from 4 to 1 and the number of time steps from 2700 to 50 steps.

• For the DA part, we measure the total time using 131072 nodes. Both parts’ elapsed time
includes file I/O time and uses the tier-1 file system (local SSD).
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Figure 10.7: Benchmark results of DA part on Fugaku for the 14km-mesh case

• The execution mode of Fugaku is set to boost-mode and non-eco-mode, and the node
mapping pattern is not specified in any measurement.

The achieved performance is summerized in Table 10.2. We used 82% of the total node of
Fugaku for the execution. Total time of one DA cycle is 2.8 hours, and the estimated time of
480 DA cycle is 57 days, which is x127 faster than the time estimated on the K computer.

Table 10.2: Achieved performance on Fugaku

Elapsed

Time

[sec]

One DA Cycle total 10,239

Simulation part total

(estimated from set1 x4)
9,081

NICAM set1

(estimated from short time steps)
2,270

DA part total 1,158

StoO 196

LETKF 961

In addition, as an additional experiment, we further extended the time interval between
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simulation steps from the target problem to 8 seconds and calculated up to 450 steps for the one
set. We achieved 29 PFLOPS and 79 PFLOPS of effective performance for the simulation and
the DA part, corresponding to 7% and 18% of the peak performance, respectively. The paper
summarizing the results of this benchmark was selected as a finalist for the 2020 ACM Gordon
Bell Awards [115].

10.3.3 Summary

We have achieved more than x100 speedup of ensemble weather data assimilation on Fugaku
through the codesign in FS2020 project. This codesign activity shows that weather/climate
applications have specific performance characteristics named ”flat-profile” and need more im-
provement by focusing on the data movement. Finally, we would like to thank all the people
who were involved in the NICAM+LETKF working group of the project.
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Chapter 11

Codesign of NTChem

In Priority Issue 5, there were three research branches driving the research activities toward
the goal of “Development of new fundamental technologies for high-efficiency energy creation,
conversion/storage and use”. Priority Issue 5 chose NTChem/RI-MP2 module as the codesign
platform. NTChem is actively developed in order to be used for the solar battery simulator
and/or the chemical reaction simulator in the condensed phases. Such simulations require the
calculation based on the highly accurate quantitative electronic interaction theory. NTChem/RI-
MP2 module employs the 2nd order Møller-Plesset (MP2) pertubation method based on the
Resolution-of-Identity (RI) approximation, which was the economic and optimized algorithm
for the K computer when starting codesign, and was regarded as the appropriate choice for
codesign. The codesign contribution from NTChem/RI-MP2 to Fugaku is expected from the
viewpoint of highly dense computing coupled with heavy communication. This chapter describes
the contents of codesign in NTChem/RI-MP2 from computational science perspective.

11.1 NTChem/RI-MP2 overview

NTChem [116] is a general purpose software package for computing the molecular electronic
structure. It has been developed by R-CCS and related institutes with strong attention to state
of the art supercomputer such as Fugaku. NTChem enables the ab initio computational studies
for large and complicated molecular systems. Some of the major computational methodologies
implemented in NTChem includes:

• Calculation of molecular electron structure in ground state and excited state, based on the
Hartree-Fock (HF) method and density functional theory (DFT).

• Highly accurate calculation of the electron structure in ground state and excited states,
based on the Møller-Plesset 2nd order pertubation (MP2) method, the coupled cluster
(CC) method, the quantum Monte Carlo (QMC) method.

In Priority Issue 5, NTChem was actively developed in order to be used for the solar battery
simulator and the chemical reaction simulator in the condensed phases. Such simulations require
the calculation based on the highly accurate quantitative electronic correlation theory. Assuming
the number of atmic orbitals as N , the computational cost of the total calculation becomes
O(N5) or more, which is very expensive. With this background, Priority Issue 5 pours the
effort to implement the sofisticated high precision electronic correlation theory, and to codesign
Fugaku using NTChem as the performance evaluation.

Priority Issue 5 chose NTChem/RI-MP2 module, i.e. Resolution-of-Identity MP2 (RI-MP2)
method, as the codesign platform. NTChem/RI-MP2 module employed the most economic and
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optimized algorithm on the K computer at the time, and was regarded as the appropriate choice
for evaluating the electron-correlation effect in large size molecular systems.

NTChem/RI-MP2 module executes matrix element computations and dense matrix com-
putations such as matrix-matrix multiplication, and its computing density is high, i.e. low
Byte/Flop (B/F) ratio in total. It utilizes systems linear algebra library. NTChem/RI-MP2
requires frequent MPI collective data communication and point-to-point data communication
among processes to update matrix data. The communicatin data volume is fairly large.

The codesign contribution from NTChem/RI-MP2 is expected from these perspectives, i.e.
highly dense computing coupled with heavy communication. The actual codesign activity is
lead by the NTChem/RI-MP2 working group (NTChem WG) composed of the members from
the Priority Issue 5 organizations as well as the members from Riken R-CCS and from Fujitsu.

The main contents of the codesign in NTChem/RI-MP2 from computational science point
of view is described in the following sections.

11.2 NTChem/RI-MP2 baseline code

The version of NTChem/RI-MP2 module before starting codesign is reffered to as the baseline
code. The major computing routines and the communication routines in baseline code are listed
in Table 11.1 and Table 11.2.

Table 11.1: major computing routines in baseline code
routines brief description computing cost

RIMDInt3c calc 3-center integration (McD kernels) O(N3)
MOInt3c tran 1 3-center integration 1st transformation (calls DGEMM) O(N4)
MOInt3c tran 2 3-center integration 2nd transformation (calls DGEMM) O(N4)
AOInt2c calc 2-center integration (McD kernels) O(N2)
Inv2c DPOTRF 2-center int. Cholesky decomposition (calls DPOTRF) O(N3)
Inv2c DTRTRI 2-center int. Inverse upper triangle (calls DTRTRI) O(N3)
MOInt3c tran 3 3-center integration 3rd transformation (calls DGEMM) O(N4)
MOInt4c calc 4-center integration (calls DGEMM) O(N5)
MP2Energy calc MP2 correlation energy (global summ kernel) O(N4)

Table 11.2: major communication routines in baseline code
section brief description data length # of calls

MO comm
MPI Bcast in molecular orbital coefficient
matrix

O(N2) 1

RIMDInt3c comm MPI Allreduce in 3-center integration O(N3/NprocsMO) NprocsMO

MOInt3c2 comm MPI Allreduce in 3-center transformation O(N3/NprocsMO) NprocsMO

NBF RI rank comm
MPI Allgather in 3-center shell aux. basis
function

O(N) 1

MOInt3c comm 1aMPI ISend,MPI IRecv in 3-center integration O(N3/NprocsMO) NprocsMO

MOInt3c comm 1bMPI ISend,MPI IRecv in 3-center integration O(N3/NprocsMO) NprocsMO

MOInt3c comm 2 MPI ISend,MPI IRecv in 3-center integration O(N3) NprocsMO

MOInt3c comm 3 MPI ISend,MPI IRecv in 3-center integration O(N3) NprocsMO/2

MOInt4c comm MPI Allreduce in 4-center integration O(N4/NprocsMO) NprocsMO/2

MP2Energy commMPI Allreduce in MP2 correlation energy 1 1
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11.3 massively parallel implementation of RI-MP2 calculation

The original parallel hybrid algorithm of MPI and OpenMP applied to NTChem, scaled well up
to few thousands of processors on the K computer. Its parallel implementation was to divide the
index of virtual molecular orbitals for the four-center electron repulsion integration into MPI
process space [117]. The number of MPI processes for dividing the virtual molecular orbitals is
lableded NprocsMO hereafter. This algorithm shows better scalability than the other one which
divides the index of occupied molecular orbitals. However, the degree of parallelism NprocsMO is
limited by the number of virtual molecular orbitals in single dimension, and can not be extended.
Increasing the degree of parallelism to more than tens of thoughsands of processes is needed to
achieve the highly parallel computation of the large molecular systems.

In order to extend the degree of parallelism, we developed a new algorithm that adopted two-
dimensional layered parallel structure using the local MPI communicator [118]. The essence of
this algorithm is to apply the parallel processing in two different parameter spaces. In addition
to dividing the outmost loop of virtual orbital index as the first parallel axis, we added the
second parallel axis in the matrix data space, so that the integration and matrix computation
inside of the divided orbital loop would maintain the second level parallelism. Figures 11.1 and
11.2 show the scheme.

Figure 11.1: conventional 1-D v.s. new 2-D layered parallellization

In this development of two-dimensional layered parallel algorithm, we also modified the exist-
ing communication pattern in the three-center integration, which resulted in the improvement of
efficiency in point-to-point (P2P) communications. Previous implementation of P2P communi-
cation in the three-center integration was to communicate from an originating computing process
to all the related processes that required the data from the original process. While conducting
the large size test jobs on the K computer, it became apparent that the above P2P imple-
mentation suffered from significant communication performance degradation on Torus topology
network, because of the different number of hops among processes. After the detail study of
communicating data movement, we developed the ring communication. The ring communication
deploys the progressive data communication, basically send/receive the communicating data in
P2P pair wise and then form the next P2P pair toward the sending neighbour in ring manner.
These parallel algorithms are illustrated in Figure 11.3.

To verify the performance effect of this ring communication algorithm, we conducted the
benchmark test of the RI-MP2/cc-pVTZ calculation using a graphene dimer (C96H24)2 on the
K computer using 2048 nodes. The benchmark data was consisted of 240 atmos, 6432 atomic
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Figure 11.2: blocked matrix data distribution and communication pattern in new 2-D layered
parallel
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Figure 11.3: P2P communication in three-center integration, conventional all pairs versus newly
developed progressive ring pairs

orbitals, 600 occupied orbitals, 5832 virtual orbitals, 16992 auxiliary basis functions. In order to
isolate the effect of ring communication from other effects, the test was run using the previous
1-D index dividing communication algorithm, The result of the benchmark test is shown in
Figure 11.4, with the corresponding section colored red. Compared to the conventional all pairs,
the new ring communication reduced the wait time in the three-center integration to half. This
ring communication was incorporated into the new two-dimensional layered parallel algorithm.

Figure 11.4: communication wait time reduction in three-center integration

Next, to verify the total performance effect of the two-dimensional layered parallelization
algorithm, we conducted the benchmark test of RI-MP2/cc-pVTZ calculation using the same
graphene dimer (C96H24)2 with varied number of MPI processes over the first axis and the
second axis. The test results are shown in Table 11.3. The value of NprocsMat shows the
number of MPI processes in the second axis. The leftmost column of NprocsMat=1 corresponds
to the previous algorithm, and it shows the limited scalability only upto 2048 processes. By
increasing NprocsMat from 1 to 16, the strong scalability was improved, and the effectiveness of
this two-dimensional layered parallel algorithm became evident.

The breakdown of the computing time and the communication time for this benchmark test
using 2048 nodes is shown in Figure 11.5. By increasing the value of NprocsMat, i.e. the number
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Table 11.3: execution time on the K computer for a graphene dimer (C96H24)2
execution time (sec) for NprocsMat value of

number of nodes 1 2 4 8 16

1024 2366 2289 2211 2346 -
2048 1491 1292 1291 1315 1581
4096 1451 856 743 773 895
8192 826 532 490 541
16384 543 366 391
32768 359 298
65536 282

of MPI processes in the second axis, the time to compute the four-center integration, which is
the hot spot and colored green, is reduced. The communication wait time in the three-center
integration, which is colored red, is also reduced since the number of processes and the total
amount of communicated data in the three-center integration is reduced. On the other hand, the
total communicated data size for the matrix block collective communication within the local MPI
communicator increases according to NprocsMat. And the wait time for the local communicator
in the second axis becomes longer, which is colored blue. Figure 11.5 indicates that the balance
of computing time and communication time depends on the number of processes in the first axis
and the second axis, and that the appropriate parallel layout and distribution should be studied
for achieving the highly efficient massively parallel computation.

Figure 11.5: breakdown of the execution time for 2048 node jobs on the K computer for a
graphene dimer (C96H24)2

The benchmark test results for a larger molecule model are also shown as a reference. A
graphene dimer (C150H30)2 model with 360 atoms and 9840 atomic orbitals is tested on the K
computer using from 8911 to 80199 compute nodes, whose results are shown in Table 11.4 . The
RI-MP2/cc-pVTZ tests using this new two-dimensional layered parallel algorithm gained speed
up well beyond 8911 processes. Since the number of virtual orbitals for this graphene dimer
(C150H30)2 model is 8910, the original single axis parallel algorithm would not show any speed
up beyond 8910 processes, for comparison.
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Table 11.4: execution time on the K computer for a graphene dimer (C150H30)2
number of number of execution Peta peak/sustained
nodes cores time (sec) Flops ratio (%)

8911 71288 2692 0.7 62
17822 142576 1634 1.2 54
35644 285152 1095 2.0 44
62377 499016 817 2.8 36
80199 641592 759 3.1 30

11.4 memory data distribution - phase 1 implementation

The actual code with the massively parallel implementation explained in previous 11.3 adopted
the memory data layout that utilize the matrix data replica.

As we made progress in macroscopic codesign and code refactoring, both the accurate esti-
mated value of memory requirement to run the target job and the actually available memory
size became clear. Since the actual orbital data to run the target job was not available at the
time, the estimation was based on the theoretical study and the extrapolation from smaller
data. The memory requirement to run the target job was estimated to be 31.6 GB per process
using 80000 processes. From our point of view at that time, such requirement was judged not
realistic from process layout view and from scalability view. Our design of the target job at the
time was to launch 4 process on a compute node, running 1 process on each CMG, i.e. core-
memory-group, so that the job would run on 20000 nodes. The estimated memory requirement
was almost 4 times larger than the physical memory size. The number of required nodes would
be 80000 instead of 20000. We preferred to use less number of nodes considering the proportion
of computing and communication. So we started to investigate the algorithm that would enable
further memory reduction and less node requirement.

During the basic design phases, we spent time to redesign the implementation of the matrix
data replica, and to fully distribute the matrix data. During the detail design phases, we
carefully refactored the code for multiple purposes. The actual implementation was conducted
in the following three algorithm blocks.

1. two-center two electron integration, matrix element computation

2. two-center two electron integration, upper triangle matrix Cholesky decomposition and
inversion

3. three-center integration

For these blocks, electron integration is conducted per each shell block that depends on the
total angular momentum of the basis functions, and the actual implementation was based on
the non-uniform division of the matrix column blocks.

The first block (1) divides the shells in matrix column wise blocks, and executes the matrix
element computation of each block in MPI parallel way. Because of the relationship between
the shells and the basis functions, the dimension of the basis function which corresponds to the
divided dimension of the blocked matrix becomes non-uniform.

The second block (2) uses the block matrix data obtained in above (1), and utilizes the LA-
PACK Cholesky decomposition routine DPOTRF, inversion routine DTRTRI and BLAS level
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3 matrix-matrix multiplication routine DGEMM. The column blocked matrix data communi-
cation is implemented using MPI BCAST within the subcommunicator MPI COMM MAT as
shown in Figures 11.6 and 11.7 .

Figure 11.6: distributed parallel implementation of Cholesky decomposition

The third block (3) divides the shells in matrix column wise blocks, and executes the three-
center integration of each block in MPI parallel way. Similarly to (1), the divided dimension
of the blocked column matrix becomes non-uniform.. The matrix-matrix multiplication for
operating the coefficient matrix after the three-center integration is implemented using DGEMM
in each block, and the partial sum of the matrix data is implemented using MPI ALLREDUCE
within the subcommunicator MPI COMM MAT.

Although the main purpose of this implementation is to reduce the memory requirement,
there is some side effect of speed up brought by (a) the MPI prallelization of Cholesky decom-
position and inversion and (b) the reduction of MPI ALLREDUCE communication needed for
the sum of matrix elements kept in the matrix replica.

11.5 memory data distribution - phase 2 implementation

After the memory data distribution explained in the previous section 11.4 is completed, the
actual input orbital data to run the target problem is generated, and the memory usage to run
the target problem was verified on the K computer using 82944 nodes. The measured maximum
memory size per process was 11.1 GB. Compared to the originally estimated 31.6 GB, this
reduction was significant. However, our planned process layout for the target job was to launch
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Figure 11.7: distributed parallel implementation of upper triangular matrix inversion
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4 processes per compute node, and the memory size per process needed to be 8 GB or less. We
decided to pour further effort to reduce the memory requirement to achieve this.

The additional effort to reduce the memory requirement is conducted on top of 11.4 . The
strategy for this further reduction is to introduce the next level of block division, and to take
advantage of the mixed precision algorithm.

Introducing the next level of block division, for example, is to apply block division to the
already distributed data arrays, and accomplish the computation in nested loops, instead of long
un-nested loop. Then the size of the block divided distributed data arrays become variable, as
opposed to the constant values defined by the input atoms and orbitals.

The mixed precision algorithm will be explained in sections 11.6, 11.8, and 11.9 in detail.
Taking advantage of this mixed precision algorithm, some appropriate variables are kept in single
precision memory storage. Also the selective storage of the virtual orbitals contributed to reduce
the size of memory requirement.

With all these efforts, further reduced memory requirement enabled the computation of the
target problem on Fugaku. The final memory requirement to run the target problem on Fugaku
is summarized in section 11.12.

11.6 research of mixed precision algorithm and performance ef-
fect

The most computationally demanding section in RI-MP2 is the four-center integration section.

(ia|jb) =
∑
n

Bia
n Bjb

n

The kernel of this computation uses the multiplication of double precision matrices. The
actual electron correlation energy value obtained from the MP2 method or from the high preci-
sion coupled cluster method is 4 to 5 orders of magnitude smaller than the HF energy value or
the DFT energy value. The acceptable significant figures in the typical application are 3 digits
after the decimal point, which correspond to mHartree order in atomic unit.

The design of Fugaku provides the single precision floating point arithmetic whose peak
performance is twice the performance of the double precision arithmetic. With this background,
we conducted the feasibility study to apply single precision arithmetic in the matrix or tensor
calculation.

The first approach is purely mathematic, which is based on the data sorting and precision
separation algorithm as below.

1. The original double precision matrix multiplication is written as:(
C
)
=
(
A
) (

B
)

2. Separate the original double precision matrix into two matrices of double precision elements
only and single precision elements only, based on the value of the elements and certain
cut-off criteria δ.(
A
)
=
(
Adouble +Asingle

)
,
(
B
)
=
(
Bdouble +Bsingle

)
3. The original multiplication is now:(

C
)
=
(
A
) (

Bdouble
)
+
(
Adouble

) (
Bsingle

)
+
(
Asingle

) (
Bsingle

)
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4. Use single precision matrix multiplication SGEMM if both the matrices single.(
Asingle

) (
Bsingle

)
5. Use double precision multiplication if either of the matrices is double. Although the

element value distribution is not known at this point, we keep the double precision elements
kept in CSR sparse matrix format, and the multiplication is done using sparse matrix
library routines. If the performance gain is to be expected at all, the ratio of double
precision elelements should be low, and sparse handling can be judged reasonable in such
cases.(
A
) (

Bdouble
)
,
(
Adouble

) (
Bsingle

)
6. The performance boost by applying the mixed precision algorithm obviously depends on

the ratio of the number of single elements versus double, i.e. the performance becomes
high if the single/double ratio is high.

The performance estimation formula for above algorithm is built assuming the microarchi-
tecture parameters emplyed at the time, and the numerical study for Fugaku is conducted using
artificially generated data, comparing the performance with and without this algorithm. The
obtained conclusion is that the performance gain can be expected if the percentage of the double
precision elements is lower than 5% of the total elements.

We then conducted the data analysis using small molecules. Figure 11.8 shows the value dis-
tribution of the computed matrix elements from the RI-MP2/def2-SVP calculation of a coronene
dimer (C24H12)2 (72 atoms, 794 atmic orbitals, 158 occupied orbitals, 636 virtual orbitals, 2640
auxiliary basis functions). In this case, setting the cut-off criteria δ as 10−8, will allow all the
matrix elements storage and computation can be done in single precision. Setting the cut-off
criteria δ as δ = 10−9 will yield only 0.2% of the total elements as double precision, and al-
most all of the matrix computation can be done in single precision, and significant performance
improvement can be expected.

Figure 11.8: element value distribution of the three-center integration matrix for a coronene
dimer (C24H12)2

11.7 network communicated data reduction

Through the feasibility study of the mixed precision algorithm, the effect to reduce the network
communicated data volume by using single precision data also became evident. A simple es-
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timation formula of the network communication performance was built based on the assumed
interconnect design of Fugaku, and a quick estimation was done to find out the criteria for
reducing the communication wait time . The above first algorithm would enjoy the shorter
communication wait time if the ratio of the double precision elements to the total elements is
lower than 80%, which is quite likely. If the ratio is lower than 5%, the P2P communication
wait time can be reduced to almost half.

11.8 implementation of mixed precision algorithm and perfor-
mance evaluation

The first approach explained in 11.6 provides some interesting insight into the usefulness of the
mixed precision algorithm by separating the matrix according to a certain element value criteria.
However, in the applications using various molecular models, the criteria depends on the discrete
nature of the molecular model being analyzed. In order to implement the first approach, the
criteria must be generally formulated and must be valid not only from mathematical view but
also from quantum chemistry view. We perceive that general formulation of such criteria is
difficult, and we opt to seek for an alternative approach in quantum chemistry orientation.

This section describes this second approach which is finally adopted and implemented in
NTChem/RI-MP2. Our strategy in the second approach of mixed precision algorithm is to put
more weight on quantum chemistry algorithm view by classifying the sequence of electron repul-
sion integration steps and find out which calculation really tolerates single precision arithmetic
still providing accurate enough energy value.

For each of computing steps in NTChem/RI-MP2 integration sequence, we prepared both
double precision and single precision version of the procedure each having discrete storage and
arithmetic precision. We carefully analyzed the effect of applying precision and resulting effect
in backward manner using many molecular models, trying to find the appropriate location for
applying single precision arithmetic from both views of precision and performance.

We started the analysis using the prototype single precision implementation applyed to
matrix-matrix multiplication in the four-center integration, coupled with the single precision
pairwaise communication using MPI ISend and MPI IRecv.

Table 11.5: mixed precision test results of typical molecular models on Intel cluster
molecular model C24H12 Taxol C54H18 (C54H18)2 C60@C60H28

energy value error (Hartree) 6.0E-7 8.4E-7 -3.5E-8 -1.3E-7 6.1E-6
mixed precision time (sec) 5.9 46.6 96.7 1986.5 2717.9
double precision time (sec) 8.6 78.5 172.5 3821.9 5356.7

Table 11.5 shows the RI-MP2/cc-pVTZ test results of this prototype using a handful of test
molecular models. The tests were run on Intel Xeon Haswell cluster configured as: Xeon E5-2697
v4, 18 cores/CPU, 2CPUs/node, DDR4 256GB memory/node, 4 nodes/system, InfiniBand FDR
network. All the test cases show that the energy value difference between fully double precision
version and mixed precision version is less than 1.0E-6 Hartree and is judged accurate enough
for application usage. The performance effect of this mixed precision version ranges from 1.5x
to nearly 2x which is satisfactory.

The double precision execution time breakdown of major routines for the ritht most molecular
model C60@C60H28, also known as buckycatcher, in above Table 11.5 is shown in Figure 11.6 for
reference. The four-center integration and transformation routines named MOInt4c * spends
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most of the execution time and their effect of applying single precision dominates the overall
performance.

Table 11.6: execution time in double precision for buckycatcher C60@C60H28 per routine base
routine time (sec)

RIMDInt3c calc 49.89
MOInt3c tran 1 (DGEMM) 28.79
MOInt3c tran 2 (DGEMM) 27.33
MOInt3c comm 1a,b (MPI ISend) 15.12
AOInt2c calc 0.17
Inv2c DPOTRF 2.53
Inv2c DTRTRI 2.28
MOInt3c comm 2 (MPI ISend) 8.27
MOInt3c tran 3 (DGEMM) 70.43
MOInt3c comm 3 (MPI ISend) 0.04
MOInt4c calc (DGEMM) 3708.24
MOInt4c comm (MPI AllReduce) 1228.72
MP2Energy calc 56.03
MP2Energy comm (MPI AllRecude) 6.30
Total time 5356.70

This prototype implementation provided satisfactory speed up while maintaining the required
computational accuracy. So we proceeded to the backward steps into the three-center integration
and transformation, and prepared several implementation variations in order to check if precision
relaxation can be applied to further range of NTChem/RI-MP2 algorithm. To distinguish these
variations, we tentatively name precision implementation model as Table 11.7.

The routines named MOInt4c * are related with the four-center integration and transfor-
mation, and MOInt3c * are related with the three-center integration and transformation. For
example, MOInt3c tran 3 calculates the third transformation in the three-center integration.

Table 11.7: mixed precision implementation variation and corresponding matrix routines
implementation MOInt3c tran 1 MOInt3c tran 2 MOInt3c tran 3 MOInt4c calc
variation gemm gemm gemm gemm

SP123a SGEMM SGEMM SGEMM SGEMM
SP123b DGEMM SGEMM SGEMM SGEMM
SP23 DGEMM DGEMM SGEMM SGEMM
SP3 DGEMM DGEMM DGEMM SGEMM
DP DGEMM DGEMM DGEMM DGEMM

The accuracy of the computed results and the computing performance of each variation
is verified using nanographene C24H12 and C54H18 molecular models on the same Intel Xeon
Haswell cluster. Table 11.8 shows the test results. Regarding the accuracy of the computed
results, SP23 and SP3 provided accurate enough Hartree value compared with DP, whereas
SP123b and SP123a resulted in larger numerical error which is inadequate for real applica-
tion usage. Regarding the computing performance, SP3 provided significant speed-up, whereas
SP123b, SP123a and SP23 provided only marginal speed-up on top of SP3.



CHAPTER 11. CODESIGN OF NTCHEM 148

Table 11.8: mixed precision implementation variation for C24H12 and C54H18

C24H12 C54H18

variation error (Hartree) error (Hartree)

SP123a -4.9.E-03 -8.2.E-01
SP123b -6.7.E-04 -9.1.E-02
SP23 6.0.E-07 -3.5.E-08
SP3 8.1.E-08 3.4.E-07
DP 0.0 0.0

variation time (sec) time (sec)

SP123a 5.9 97.0
SP123b　　　　　 5.6 96.2
SP23 5.9 96.7
SP3 6.2 101.0
DP 8.6 172.5

variation speed-up (X) speed-up (X)

SP123a 1.5 1.8
SP123b 1.5 1.8
SP23 1.5 1.8
SP3 1.4 1.7
DP 1.0 1.0

Considering these test results, SP23 and SP3 implementation variations are suggested as
good choices in the balance of accuracy and performance.

On the other hand, the verification of the computational accuracy should be carried out using
various molecular systems in order to convince ourselves of the validity of this mixed precision
algorithm. Such broad and systematic verification is explained in the next section.

11.9 Further study and numerical verification of mixed preci-
sion algorithm

In order to evaluate the effect of the mixed precision algorithm in comprehensive and systematic
way, we conducted numbers of numerical tests of various molecular systems using the implemen-
tation variation in Table 11.7. We selected multiple data sets that handle many weak interactions
of molecules. The datasets are explained later in this section.

The molecular systems contained in the dataset are supramolecules in which two molecules
are close to each other and gather in a weak interaction that is not a covalent bond. The inter-
molecular interaction energy Ebind of supramolecule (1-2) formed in molecule (1) and molecule
(2) is computed by the following formula,

Ebind = E(supramolecule 1-2) − E(molecule 1) − E(molecule 2)

using the energy E of supramolecule(1-2), molecule(1) and molecule(2) each computed by RI-
MP2 method.

Table 11.7 shows the summary of the numerical accuracy tests of RI-MP2 with cc-pVTZ
basis function using intermolecular interaction datasets.

The value of the intermolecular interaction energy Ebind computed with each of SP3/SP23/SP123b/SP123a
implementation variation is compared to that of the original double precision (DP) implemen-
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tation, and the difference, i.e. numerical error, is shown in Table 11.7 in average absolute error
unit of (kcal/mol).

Table 11.9: numerical verification of implementation variation using intermolecular interaction
datasets

molecule implementation variation
dataset SP3 SP23 SP123b SP123a

S66x8 2.16E-05 2.09E-04 4.29E-04 6.51E-04
Water Cluster 1.80E-05 4.97E-04 5.49E-04 6.13E-04
X40 1.58E-05 1.17E-04 3.32E-04 5.62E-04
L7 8.98E-04 1.60E-03 1.51E+00 7.05E+02

Firstly, the numerical verification is conducted using the S66x8 dataset [119], which deals
with 66 small molecular systems and changes the intermolecular distance in 8 ways. By changing
the intermolecular distance, even a slight change in the intermolecular interaction energy can
be investigated, enabling more precise verification. The results are shown in Table 11.7. The
average absolute error of the intermolecular interaction energy in comparison to DP is less than
0.0001 kcal/mol for all of the implementation variations. This is accurate enough for practical
applications which require the computational accuracy in 0.1 kcal/mol order.

Secondly, the verification is conducted using the Water Cluster dataset [120], which deals
with 38 types of aggregate molecular systems of various water molecules. This dataset deals
with aggregate molecules containing up to 2-10 water molecules, including molecules larger
than S66x8. The average absolute error is, again, less than 0.0001 kcal/mol for all of the
implementation variations.

Thirdly, the same verification is conducted using the X40 dataset [121], which deals with
40 types of molecular systems containing organic halides, halohydrides, and halogen molecules.
The average absolute error is, again, less than 0.0001 kcal/mol for all of the implementation
variations. It was confirmed that the implementation variations can be adopted to practical
applications for the calculation of weak intermolecular interactions in small molecular systems.

Lastly, the same verification is conducted using the L7 dataset [122], which deals with rela-
tively large molecular systems such as the coronene dimer or the guanine trimer, etc.

The average absolute errors for SP3 and SP23 are 0.0009 and 0.0016 respectively. The errors
for SP3 and SP23 are 0.0009 and 0.0016 respectively. SP123b and SP123a becomes larger than 1
kcal/mol. Through the series of verification, it is obvious now that the single precision calculation
applied to larger molecular systems tends to accumulate the numerical error beyond acceptable
criteria unless we carefully choose the right implementation variation for mixed precision.

From computing cost view, the most demanding part is the four-center integration section
whose major routine (MOInt4c calc) executes matrix multiplication. It occupies the major por-
tion of the computing time of RI-MP2 calculation. The next demanding part is the third transfor-
mation in the three-center integration section, and the corresponding routine (MOInt3c tran 3)
spends the second most portion of the computing time. The upstream first and second transfor-
mation routines in the three-center integration section (MOInt3c tran 1 and MOInt3c tran 2)
spends less computing time.

Based on the facts obtained through the numerical verification, we decided to focus the im-
plementation effort of mixed precision algorithm at the time onto SP23 and SP3, and proceeded
to the numerical verification using the target problem which computes a large molecule system
which is explained in 11.12.

In the later phase of detail design, the NTChem/RI-MP2 codesign module furnished with
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various memory reduction scheme and the target problem (C150H30)4 molecule input data files
were made ready. We were able to run the numerical verification using the target problem on the
K computer before it was decommissioned. The accuracy results are summarized in Table 11.10.
The variation SP23 yielded 3.0 kcal/mol and SP3 yielded 0.041 kcal/mol. Remark that the unit
in the right most absolute error value is in kcal/mol, not hatree. SP3 has been judged adequate
for the calculation of intermolecular interactions. SP23 has been judged inadequate for the
calculation of intermolecular interactions. large size molecular systems. We finally selected SP3
mixed precision model as the default algorithm of NTChem/RI-MP2 module, which provides
efficient computational performance and precise accuracy for very large molecule systems such
as the target problem (C150H30)4.

Table 11.10: RI-MP2 correlation energy (a.u.) of the target problem and the relative error
compared to the fully double precision algorithm(DP)

variation correlation energy (a.u.) relative error (kcal/mol)

DP -105.2921859 0.0
SP3 -105.2921208 0.041
SP23 -105.2970498 3.0

11.10 performance improvement in the three-center integration

In the NTChem/RI-MP2 calculation of the target problem, the computing time of the three-
center integration section (electronic repulsion integration calculation) is much lower than that
of the four-center integration.

But, in smaller molecular systems, the portion of the three-center computing time becomes
relatively high in the total computing time. The computational performance of the three-center
integration section of NTChem/RI-MP2 is not good because of the rather naive implementation
of the classic algorithm. Since the three-center integration is widely used in the other applications
of Priority Issue 5 as well, we generally agreed that the performance improvement of the three-
center integration section should be addressed.

The original three-center integration routine was based on the naive implementation of
McMurchie-Davidson(McD) algorithm [123]. We investigated other computational method for
the three-center integration, and picked up an open source quantum chemistry package called
SMASH developed by Kazuya Ishimura. SMASH includes the integral calculation library opti-
mized for high performance computing, and it has the program structure that can be incorpo-
rated into NTChem/RI-MP2. We incorporated SMASH integration library into NTChem/RI-
MP2 as routines, so that it can be selected at run time.

In three-center integration, the computing cost of the integral based on the high angular
momentum function is particularly high. SMASH integral kernel routines reduce the computing
cost of the basis integral by using different algorithms for low angular momentum and for high
angular momentum. For integrals with low angular momentum, SMASH uses the Ishimura (IN)
algorithm [124] which combines the Pople-Hehre (PH) algorithm [125] and the McD algorithm.
For high angular momentum, SMASH uses the algorithm based on Rys quadrature method
(DRK) [126].

After incorporating the open source SMASH library into NTChem/RI-MP2, we applied some
source code tuning to that library trying to to reduce the computing wait time and cache access
wait time through better instruction scheduling.
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The benchmark test results of the three-center integration using original McD, SMASH open
source, SMASH tuning are shown in Table 11.11. The table shows the execution time and some
hardware performance counter (HWPC) statistics of interest. All the tests are run on Fujitsu
FX100 system.

Table 11.11: performance improvement of the three-center integration
routine version original McD SMASH asis SMASH

tuned

execution time (sec) 1.91 0.47 0.41
sustained/peak rate (%) 0.28% 0.98% 1.13%
L1 busy rate (%) 27% 24% 27%
L2 busy rate(%) 6% 4% 5%
memory busy rate(%) 0% 0% 0%
L2 throughput (GB/s) 36.51 25.56 27.87
memory throughput (GB/s) 0.50 0.17 0.03

11.11 selective file format for input data

The size of the molecular orbital coefficient file is 9.4 GB in text format. On the K computer,
it takes 589 seconds for reading. By changing the file format to binary, the file size is reduced
to 1/3, and the time for reading is reduced to 1/7. The program specification and the input file
specification is revised so that NTChem/RI-MP2 can read both types of file format.

11.12 the target problem and the process layout

The target problem is defined as a typical example of high precision ab initio electronic state
calculation for elucidating the mechanism of photochemical reaction and screening the material
candidates for light energy conversion, The target problem executes the RI-MP2 electron cor-
relation energy calculation of 720 atom 19680 electron orbital carbon nanographene molecular
complex (C150H30)4.

As explained previously, the NTChem/RI-MP2 job is distributed over the process space in
two dimensionalNprocsMO ×NprocsMat process layout. The design of such process layout affects
the computing performance as well as the required amount of memory space. The optimum
configuration for the target problem is searched considering the conditions such as the number
of used nodes, the required memory size per process, the number of threads, the size of the
matrices, the aspect ratio of the matrices, etc. We prepared a small subset of NTChem/RI-
MP2 in order to conduct this parameter study, and conducted the exhaustive search to find the
reasonable process layout patterns for the target problem. We first searched through the process
layouts based on the system recommended 4 processes × 12 threads per node patterns. This
standard 4 process/node layout is labled as ”Std”. We also searched through the fat process
thread layouts of 2× 24 and 1× 48 . These 2 process/node and 1 process/node layout patterns
are labeled as ”Fat”. Table 11.12 shows some of the process layout patterns and their attributes.

The final configuration we chose for running the target problem is shown in the last row, i.e.
Fat 17820x1 layout.

Altough the total computing volume stays the same across these layout patterns, the com-
putational performance and communication pattern varies a lot across the layout patterns. The
sustained/peak ratio for computing matrices often depends on the size and shape of the matri-
ces, and the communication wait time varies according to the length of messages, communicator
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Table 11.12: process layout candidate for the target problem

layout Nprocs threads Nprocs Nprocs mem.GB mem.GB matrix matrix matrix
pattern /process Mat MO /process /node m n k

Std 82928 82928 12 16 5183 7.50 30.0 7440 3263 7440
Std 71280 71280 12 8 8910 6.08 24.3 1860 1860 6525
Std 71288 71288 12 8 8911 6.86 27.4 3720 3720 6525
Fat 35640x2 35640 24 8 4455 10.12 20.25 7440 7440 6525
Fat 20376x1 20376 48 8 2547 14.17 14.17 13020 13020 6526
Fat 17820x1 17820 48 4 4455 13.68 13.68 7440 7440 13049

range and frequency communication. Table 11.13 shows a couple of layout patterns and their
comminication statistics of the selected sections for target job execution, as an example. Note
that they apply different precision model of DP and SP3.

Table 11.13: NTChem/RI-MP2 communication statistics for the target problem
layout routine called MPI message length # of calling total data
pattern routine (Bytes) times volume (GB)

Std MOInt3c comm 2 + MPI ISend/IRecv 194451840 5184 1008.0
82928 MOInt3c comm 3
(DP) MOInt4c comm MPI Allreduce 442828800 2271 1112.3

MOInt4c comm MPI Allreduce 332121600 321
Std MOInt3c comm 2 + MPI ISend/IRecv 48546000 35642 1730.3
71280 MOInt3c comm 3
(SP3) MOInt4c comm MPI Allreduce 13838400 17821 246.6

11.13 explicit promotion of overlapping the computation and
the communication

In order to take advantage of the assistant cores available on Fugaku CPU whose feature in-
clude the support of overlapping non-blocking MPI communication with arithmetic operations
on compute cores, explicit API for promoting the non-blocking MPI communication is added
to NTChem/RI-MP2. The overlapping performance of non-blocking MPI depends on systems
implementation and often does not meet the callers expectation. The Fugaku local APIs named
FJMPI Progress start() and FJMPI Progress stop(), as the extension from the standard Open-
MPI 4.0, explicitly promotes the overlapping data transfer and help reduce the MPI wait time.
The effect of this explicit overlapping promotion is apparent in the target problem run in the
final round.

11.14 early test on prototype vehicle

A year before the massive production of Fugaku begins, several prototype vehicles are made ready
for our early tests. These prototype vehicles are mainly regarded as the testing environment for
verifying the functionality of hardware and software. The early tests using small size test data
indicated the performance of Fugaku over the K computer is 5.8X faster using 1/4 number of
nodes. This is a quite encouraging speed-up at the time, and we continued the effort to complete
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the codesign subjects explained in the previous sections.

11.15 incorporating PMlib performance monitor library

In order to accurately measure the computational performance of the distributed processes,
PMlib performance monitor library [127, 128] is incorporated into NTChem/RI-MP2. Detail
statistics from Fugaku hardware performance counters (HWPC) are abtained and sorted ac-
cording to the user specified performance categories through environment variable. Supported
report categories and the corresponding HWPC statistics on Fugaku are shown in Table 11.14.

The measured HWPC statistics and wait time distribution of the specified sections across
the processes is useful when analyzing the load imbalance and/or computing and communication
overlapping effectiveness. The finally measured target jobs achieved quite high average FLOPs,
as shown in the later section 11.17.2, Since PMlib is an open source software, such installation
will help users conduct the performance analysis of the application across different systems.

Table 11.14: PMlib report variation on Fugaku
PMlib category reported HWPC statistics

FLOPS floating point operations in single precision and double precision
FLOPS and peak % (sustained over peak performance)

BANDWIDTH CMG local memory read and write counts, bytes and bandwidth
VECTOR floating point operations in single and double precision by SVE

and scalar/armv8 instructions
percentage of SIMD (vectorized) floating point operations

CACHE memory load and store instructions
L1 data cache hits and misses
L2 cache misses
data access hit(%) in L1 cache and in L2 cache

LOADSTORE memory load and store instructions grouped into:
scalar instructions
SVE and Advanced SIMD load and store instructions
Advanced SIMD multiple vector contiguous structure load/store
instructions
SVE non-contiguous gather-load and scatter-store instructions
percentage of SVE load/store instructions over all load/store in-
structions

CYCLE total cycles and instructions
percentage of fused multiply+add (FMA) instructions over all f.p.
instructions
performed instructions per machine clock cycle

USER User provided argument values (Arithmetic Workload) are accu-
mulated

11.16 implementation request to Fugaku system through code-
sign

NTChem WG requested the folowing design enhancements to Fugaku system through codesign.

• implement DGEMM double precision matrix library making it provide high performance
multiplication for various input matrix sizes
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• implement SGEMM single precision matrix library making it provide high performance
multiplication for various input matrix sizes

• optimize the loop containing the formula using single and double precision variables by
utilizing the 16 element single precision SIMD instructions.

As previously explained, the most demanding and time consuming part of the NTChem/RI-
MP2 calculation is the dense matrix multiplication in four-center integration. The size of such
matrix for the target problem can be seen in Table 11.12. For example, the first ”Std 82928”
layout requires the following matrix multiplication.(

C
)
=
(
A
) (

B
)
where

(
A
)
≡ A(7440, 3263) and

(
B
)
≡ B(3263, 7440)

From the experience of running HPL(Linpack) on various platforms, it is well known that
the computing performance of matrix multiplication (GEMM) can be very high if the input
matrices are appropriately blocked (tiled) so as to improve the data locality and reusability at
L1/L2 cache layers. Such blocking implementation in GEMM, especially DGEMM, is usually
optimized for HPL size of problem for good reasons.

However, the matrix size per process of the NTChem/RI-MP2 target problem is an order of
magnitude smaller than such HPL matrix size. There will many cases of electronic interaction
calculations by Priority Issue 5 and the related researchers using different molecular systems
as well. In order to effectively run NTChem/RI-MP2 using different matrices with parallel
combination of processes and threads, the provisioning of the high performance multiplication
for various matrix size is very important. Especially, the mixed precision algorightm heavily
depends on the performance of SGEMM in its usefulness as described in sections 11.6, 11.8 and
11.9. With this backgrond NTChem WG requested the design enhancement of both DGEMM
and SGEMM to system side with discrete values of sustained/peak ratio as must criteria. The
request has been reflected to DGEMM and SGEMM routines in Fugaku numerical library as
SSL II, achieving the requested performance criteria for each matrix size.

Regarding the loop optimization that contains both of single precision variables and double
precision variables, the general implementation using the 16 element SIMD instructions by
converting double precision variables into single precision turned out too expensive because
of the type conversion and register packing. Instead, a small set of optimization feature was
implemented into the compiler to support the mixed precision reduction using the 16 element
SIMD instructions in the form of

Ydouble = Ydouble .op. Xdouble

where .op. represents one of +−× reduction operators.

11.17 performance evaluation of Fugaku

The system wise performance measurement comparing the baseline performance on the K
computer and the performance on Fugaku using the latest NTChem/RI-MP2 module is con-
ducted. Such comparison is of interest from the viewpoint of overall codesign achievement as
the combined effect of the new system capability and the application improvement. The latest
NTChem/RI-MP2 module with various codesign subjects explained in the previous sections is
reffered to as NTChem/RI-MP2 codesign code.
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11.17.1 baseline performance on the K computer

The performance on the K computer using baseline code is reffered to as baseline performance.
At the time of starting codesign, it was not possible run the target problem using NTChem/RI-
MP2 module because of the total memory requirement, thus the baseline performance is esti-
mated with the following assumptions:

• the performance characteristics is represented by a set of kernel routines and their weight
• the computing volume is extrapolated from the number of atmos and atmic orbitals.
• the execution time is decoupled into computing time and communication time
• the preliminary process layout for the target problem is assumed

At a later stage of codesign, the actual measurement is conducted with run time parame-
ters set as close to that of baseline code and its condition, to confirm the adequacy of above
assumption. Table 11.15 shows the comparison of these estimated and measured baseline time.

Table 11.15: estimated and measured baseline performance on the K computer
total computing communication I/O wait

time (sec) time (sec) time (sec) time (sec)

estimated K baseline 7725 7609 116 -
measured K baseline 10938 9073 1265 600

The measured execution time in computing sections turns out 20% shorter than the esti-
mation, and the time in communication sections turns out an order of magnitude longer. The
excessive wait time in communication on the K computer is problematic, but it should be ad-
dressed in other context. The wait time is reduced to 1/5 by explicitly assigning the appropriate
MPI map file on the K computer, for readers interest. On Fugaku, the measured communication
time is well reduced by applying the appropriate process layout without needing such map file.

11.17.2 achieved performance on Fugaku

Table 11.16: achieved performance on Fugaku
total computing communication I/O wait speed up speed up sustained

time (sec) time (sec) time (sec) time (sec) /job /system /peak (%)

990 744 235 11 7.8 70 55

Table 11.16 shows the finally measured execution time of the target problem on Fugaku. The
measurement job was run on Fugaku for Fat 17820x1 layout at boost mode. The job achieved
the computing performance of 3.38 TFLOPS / node in average which is 55% of the peak single
precision performance of Fugaku compute node. With Fugaku’s 158976 compute nodes, more
than 8 copies of the similar jobs can be executed simultaneously on Fugaku, providing almost 70
times more powerful computing throughput compared to the K computer. This measurement
reflects the overall achievements of codesign, including the application improvement and the
system hardware/software enhancement.

Through the effort of codesign, not only the computational performance improvement, but
also the code modernization has been realized. The codesign effort is judged quite fruitful
resulting in production ready NTChem/RI-MP2 module on the supercomputer Fugaku, as well
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as the valuable insight and knowledge obtained through codesign, which has been described in
detail as above.
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[119] J. Řezáč, K. E. Riley, and P. Hobza. “S66: A Well-balanced Database of Benchmark
Interaction Energies Relevant to Biomolecular Structures”. In: J. Chem. Theory Comput.
7.8 (2011), pp. 2427–2438.

[120] B. Temelso, K. A. Archer, and G. C. Shields. “Benchmark Structures and Binding En-
ergies of Small Water Clusters with Anharmonicity Corrections”. In: J. Phys. Chem. A
115.43 (2011), pp. 12034–12046.
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Chapter 12

Codesign of ADVENTURE

12.1 Application features

In the domain decomposition method (DDM) structural analysis program ADVENTURE, the
analysis target is divided into multiple subregions that do not overlap each other, the simultane-
ous linear equations (interface problem) regarding the displacement of the nodes on the boundary
between the subregions are calculated by the conjugate gradient method. The iterative solver
part by the CG method, mentioned here, is the main processing of the ADVENTURE. That is,
in the main processing unit, the reaction force at the boundary between the partial regions is
calculated from the temporary forced displacement at the boundary between the partial regions,
and the temporary forced displacement between the partial regions is updated from the total
reaction force. This is repeated until the sum of the reaction forces at the boundary between
the partial regions is sufficiently close to zero. Further, in order to reduce the number of rep-
etitions of this CG iteration, a preprocessing consisting of two stages, the diagonal scaling for
each partial region and the course grid correction is also performed for each CG iteration.This
preprocessing is called BDD (Balancing Domain Decomposition) -diag preprocessing, and this
CG iteration with BDD-diag preprocessing is also called BDD iteration.

The main process for calculating the reaction force at the boundary between subregions from
the temporary forced displacement at the boundary between subregions is the Finite Element
Method (FEM) calculation (DomainFEM) for each subregion. In DomainFEM, the matrix
vector product of a matrix of local Schur complement and a vector of interface degree of freedom
is performed. The matrix of local Schur complement have one side length of the interface degree
of freedom and the matrix vector product is performed in function of MatVec produc.

The interface degrees of freedom of each sub-region is the total number of degrees of freedom
of nodes on the interface with the adjacent sub-region in each sub-region. The degree of freedom
per node is 3 in displacement only. Here, both the local Schur complement matrix and the
interface degree of freedom vector are held in double precision, and the operation related to
MatVec product, which is the product of the two, is also performed in double precision. Process
parallelization in DomainFEM is performed by allocating the same number of subregions to each
process, and the source program of MatVec product itself is not process parallelized. That is,
in each process, MatVec product is executed several times in the subregion allocated to that
process.

By using the results of DomainFEM, for the purpose of to evaluate the balance of reaction
forces on the boundaries between subregions, it is performed that is the boundary surface com-
munication (Exchange: mpi isend & mpi irecv) between adjacent subregions to exchange the
node data on the interface with adjacent subregions. Similarly, also the reduced communication
for summation (Allreduce) to calculate for two work variables (double precision type) is per-
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formed. In addition, to determine if the total reaction force is sufficiently close to zero and to
update the tentative forced displacement on the inter-regional interface from the total reaction
force, reduction communication (Allreduce:double precision type) for sum calculation related to
one working variable is performed.

In the course grid modification, which is the latter half of the BDD-diag preprocessing,
residual calculation and course solver solving are performed. Similar to DomainFEM, the main
processing of residual calculation in course grid modification is matrix-vector product opara-
tion(MatVec product) of a double-precision symmetric dense matrix having one side length of
interface degree of freedom and a double-precision vector having length of interface degree of
freedom. And also, inter-adjacent sub-region boundary surface communication (Exchange) for
exchanging node data (double precision type) on the interface with adjacent sub-regions is per-
formed.

In the course solver solution in the course grid modification, the sparse matrix (course matrix)
of the degree of freedom of the course problem and the inverse matrix is generated in advance
before entering the BDD iteration. During BDD iteration, a method (inverse matrix approach)
is adopted in which the inverse matrix is multiplied by a vector (course degree of freedom vector)
in which the iteration vector of the CG method is mapped on the course grid.

Therefore, the main processing of the course solver solution in the course grid modification
during BDD iteration is the dense matrix vector product(CoarseMatVec) of the inverse matrix
and the course degrees of freedom vector. Here, the course degree of freedom vector is a double
precision type, but the inverse matrix is held in a double precision format, and CoarseMatVec,
which is an operation of multiplying the matrix and vector, is also performed in the double
precision format. Process parallelization in CoarseMatVec is done by assigning the same number
of inverse matrix rows to each process.

That is, in each process, the dot product calculation in double-double-precision format of
double-precision and double-double-precision vector whose length having the degree of freedom
of the course problem is performed, as many as the row number of the inverse matrix assigned
to that each process.

At this time, since all processes need to hold the entire course degree of freedom vector
(double precision type), the course degree of freedom vector aggregation communication (All-
gather) is performed immediately before CoaseMatVec. Also, since the double-double-precision
vector obtained as a result of CoarseMatVec is converted to double-precision type immediately
after CoarseMatVec, ADVENTURE handles variables and operations in double-double-precision
format only for CoarseMatVec.

After the course grid modification, the adjacent subregion boundary surface communication
(Exchange) is performed in order to reflect the result of the course grid modification (double
precision type) to the displacement(double precision type) of the boundary between the subre-
gions.

12.2 Codesign policy

When estimating an execution time of Adventure, the main processing of Adventure is a time
step iteration and processing within BDD iteration, and the time taken to it is accounted the
execution time of Adventure. The BDD iteration is divided into eight operation intervals and
three communication intervals as follows, estimating execution time of each section, and esti-
mating the execution time of adventure by summing them. Within Adventure’s BDD iteration,
the heavy processing of the load is a dense row vector product (DomainFem, CoarseMatvec)
and a short consolidation communication (allgather) of the message length.
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12.3 Target problem for performance estimation

Here, I will show the assumed problem about ADVENTURE on the Fugaku computer. One
partial area is a cube and 256×256 = 65536 pieces of partial problems with a flat plate-like area
are a system to be analyzed and this non-linear response problem is made the assumed problem
when estimating an execution time. Expected Problem 10000 Time step iteration is performed
per one case, and 500 BDD repetitions per one step iteration are performed. In other words, it
is assumed that 5 million BDD repetitions per one case is performed. Estimate the execution
time of ADVENTURE in Fugaku, using the time required to process 100 cases of the assumed
problem as the execution time of ADVENTURE. In Fugaku, hypothetical problem 1 case shall
be handled by 16384 processes on 4096 nodes. Therefore, it will be in charge of 4 subregions
per process.

In the assumption problem, one side of the partial area is divided into 10 elements. Also, since
it uses a 3D solid tetrahedral quadratic element, it has an intermediate node for each element
side. Therefore, the number of nodes per side of one subregion is calculated as (10×2+1) = 21.
Here, in a system in which a plurality of subregions are arranged in a plane, the number of
nodes per side in the direction along the plane of the system is not equal to the number of
subregions times 21. Since it is necessary to avoid double counting of nodes on the boundary
between subregions, if two subregions are arranged side by side, the number of nodes per side in
the horizontal direction is calculated as (2×10×2+1) = 41. Based on this, the total number of
nodes in the system to be analyzed is calculated as (256×10×2+1)2×(1×10×2+1) = 550717461.
The number of degrees of freedom per node is only displacement 3, and the total number of
degrees of freedom of the system to be analyzed is about 1.65 billion, which is three times the
total number of nodes. The interface degrees of freedom of each subregion is the total number of
degrees of freedom of the nodes on the interface with the adjacent subregion in each subregion,
and in the system to be analyzed, It is calculated as (21× 21− 19× 19)× 21× 3 = 5040. Here
you need to be careful that is assumed that all the sub-regions are arranged in a plane, there
are no sub-regions adjacent to each other on the top and bottom, and the number of boundary
surfaces with the adjacent sub-regions is 4. The degree of freedom per node is 3 of displacement
only. The degree of freedom of the course problem is that each sub-region is represented by one
node per sub-region, and the degree of freedom per this node is displacement 3+ rotation 3=
total 6. It is 6 times the number of regions. And it is calculated as 65536× 6 = 393216.

12.4 Tuning of DomainFEM

In the kernel program of one process that cuts out the operation interval DomainFEM, the
double-precision product (MatVec product) of a double-precision symmetric dense matrix with
a side length of 5040 and a double-precision vector with a length of 5040 is performed multiple
times. In this kernel program, when only the lower triangle of the symmetric matrix is held, and
when it is used as the upper triangle, optimization to be used and used is adopted. The data
structure is a block-by-step type format that divides the lower triangular matrix into blocks of 6
rows and six columns. The data structure in the block of each sixth row of six rows is also a row
priority format. When the loop structure is shown from the outside, there is a block-based row
loop as first and a block-based column loop as second. Therefore, in order from the beginning
of the lower triangular matrix, the calculation load per row increases as the loop rotation of the
row in block units move on. Inside this double loop, processing is performed for blocks with 6
rows and 6 columns. This kernel program repeats the processing in units of blocks of 6 rows and
6 columns, and in the original source program, the processing for blocks of 6 rows and 6 columns
was fully unrolled, so the loop of columns blocks was the axis for SIMD. In other words, the
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SIMD axis was in the direction of straddling the blocks of 6 rows and 6 columns. For this reason,
coupled with full unrolling, the continuity of data access have tends to be interrupted. As a
result, hardware prefetching tends to fail, which has been a factor in performance degradation
in the original source program. Therefore, the performance was improved by issuing a software
prefetch instruction using the built-in prefetch function.

In the original source program, thread parallelization is performed by dynamic scheduling
with chunk size 1 in a loop of rows in block units, and the low continuity of memory access
due to the small chunk size of 1 and there was concern about the overhead associating with the
dynamic scheduling. Therefore, the source program was modified so that the schedule method
for looping rows in block units would be static scheduling in descending order folding cyclic
method with chunk size 12, and the performance was improved.

In the original source program, the processing for blocks of 6 rows and 6 columns was fully
unrolled, so the loop of columns in block units was the axis of SIMD. In other words, the SIMD
axis was in the direction of straddling the blocks of 6 rows and 6 columns. At this time, the
stride is 6 × 6 = 36, so it is an indirect SIMD access. In this case, data from multiple cache
lines was required within the SIMD length range, and the busy rate of the L1D cache was high.
In addition, many address calculation instructions for indirect SIMD access have been issued,
which has been a factor in increasing the number of instructions.

Therefore, by rerolling the column loop (innermost loop) of the processing for the 6-by-6
block and using it as the SIMD axis, SIMD access was made continuous and the busy rate of the
L1D cache was reduced. As a result, most of the fully unrolled operations are confined in the
SIMD instruction, so the effect of significantly reducing the required number of registers can be
expected. However, the loop length of the column here is 6, which is not divisible by the SIMD
length of 4 of FX100 or the SIMD length of 8 assumed by Fugaku. Therefore, by specifying the
optimization instruction line and using the masked SIMD instruction, SIMD processing including
the fractional part was performed. If you reroll the column loop (innermost loop) of processing
for a block of 6 rows and 6 columns and use it as the SIMD axis, the inner product calculation of
the vector of length 6 will be SIMD processed, and the reduction operation within SIMD will be
performed. This SIMD reduction operation requires more instructions than normal processing.
Therefore, by changing the source program so that the result of multiplication during the inner
product calculation is added to the working array, the SIMD reduction operation was reduced
and the increase in the number of instructions was suppressed.

Even though the number of rotations of the innermost loop is not divisible by the SIMD
length, by specifying the optimization instruction line, by using the masked SIMD instruction,
SIMD processing including the fractional part was made. At this time, due to this masked
part, when accessing the real memory in the i-th store and the i + 1-th load, the phenomenon
called the excessive SFI (Store-Fetch-Interlock) that store oparation prevents load oparation has
occurred. There is no problem in the logical movement of the program if load operation overtake
store operation, from the viewpoint of safety, the hardware perform a sequential operation, which
is also a commonly used method. As a result, pipeline operation is disrupted and performance
is degraded. Therefore, a margin considering the SIMD width is added to the first dimension of
the work array to avoid the excessive SFI, thereby avoiding performance deterioration.

Due to the improvement of the source program mentioned above, when the kernel program
of one process that cut out DomainFEM is executed using 12 cores of FX100, the execution
time per MatVec product is reduced from 1.902× 10−3 seconds to 1.091× 10−3 seconds.
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12.5 Tuning of CoarseMatVec

In the one-process kernel program that be cuted out the operation interval CoarseMatVec, the
product of the double-double-precision format matrix of 24 rows and 393216 columns and the
double-precision vector of length 393216 is repeatedly performed many times. Here, one double-
double-precision format number is represented by two double-precision types, one of these two
double-precision types is the double-precision type itself, and the other is the value using for he
precision extension.

The original source program used a function to calculate the double-double-precision form
product of a double-double-precision form matrix and a double-double-precision form vector.
The matrix data structure was in a row-priority format, and the loop configuration was a matrix
row loop from the outside, followed by a matrix column loop.

Inside this double loop, so the double precision form multiplication of the two double precision
form numbers and the double precision form addition to the work variable for sum calculation
of the result were performed sequentially, the inner most loop as a column of a matrix was
not SIMDized. The loop of the column of the matrix is divided equally into the number of
threads and thread parallelization that each calculation is assigned to each thread is performed.
Therefore, after the processing in each thread is completed, it had necessary to calculate the
sum of a work variables of double-double-precision form for each thread.

In addition, since the matrix row loop was unrolled in three stages, L1D cache was prone to
cache line conflicts. Furthermore, since the vector which is originally a double-precision type is
formalized in double-gouble-precision and then the product with the matrix is calculated, the
number of data streams increases by one, and cache line conflict is more likely to occur.

Therefore, the performance of this arithmetic kernel program was improved by changing the
program structure. First, by stopping the unrolling of the loop in the row of the outermost ma-
trix, we alleviated the situation where cache line contention is likely to occur in the L1D cache.
By making the loop of the rows of the matrix a thread parallelization loop, it is no longer neces-
sary to calculate the sum of the work variables of the double-double-precision form for sum calcu-
lation for each thread later. By calling a subroutine that performs the double-double-precision
format inner product of the double-doublke-precision format vector and the double-precision
type vector inside the loop of the rows of the matrix, the double-double-precision format ex-
pansion of the double-precision vector, which was originally unnecessary is stopped and reduced
the number of data streams by one to mitigate situations where cash line conflicts are likely to
occur. In order to utilize the SIMD arithmetic unit to perform the processing related to the
double-double-precision format inner product of the double-double-precision format vector and
the double-precision vector, the inside of the subroutine make be divided into a multiplication
part and a summation part. In the multiplication part, only the double-double-precision format
multiplication of the elements having the same element numbers of the double-double-precision
format vector and the double-precision type vector is performed, and the result is stored in a
work array formating double-double-precision. This process can be performed by SIMD.

In the summation section, the double-double-precision form sum of all the elements of the
work array for sum calculation of this double-double-precision form is calculated by the first
half second half two-division vector sum repetition method. Here, the first half second half two-
division vector sum repetition method is one of the methods for calculating the sum of vector
elements utilizing the SIMD calculator. When calculating the sum of the vectors of one element
number 2N, the first half element numbers 1 to N and the second half element numbers N + 1
to 2N are regarded as one independent vector, and these two Calculate the sum of the vectors.
The calculation of the sum of these two vectors can be SIMD processed. As a result, one vector
with the number of elements N is obtained. Subsequently, the first half element numbers 1 to
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N / 2 and the second half element numbers N / 2 + 1 to N, are regarded as one independent
vector. Calculate the sum of these two vectors. The calculation of the sum of these two vectors
can also be SIMD processed. As a result, one vector having N / 2 elements is obtained. The
above process is repeated until the number of vector elements becomes 1. This is a method
called the first half second half two-division vector sum repetition method, which calculates the
sum of vector elements utilizing a SIMD calculator. However, if the program is written using a
normal loop statement such as the ”do” statement without using the ”do concurrent” statement
newly defined in the Fortran 2008 standard, it is necessary to prepare two working arrays in
double-double-precision format. In that case, the summation part can be SIMD-processable, but
there is a weakness that both the amount of data and the number of data streams are increased
with respect to loading. Since Fugaku conforms to the Fortran 2008 standard, by adopting
the ”do concurrent” statement, it was nolonger need to prepare two arrays for summation
calculation in double-double-precision format even when writing the source program according
to the language. Then, by rewriting the source program to use only one double-double-precision
format, and reducing both the amount of data and number of data streams to be loaded, and
reduced execution time. Furthermore, in order to keep the working array of the double-double-
precision format for summention in the cache, the strip mining optimization was applied to the
entire inner product calculation part including both the multiplication part and the sum part. In
addition, we also searched for the strip length that minimizes the execution time when executing
the kernel program of one process that cut out CoarseMatVec using 12 cores of FX100. Due to
the improvement of the above source program, when the kernel program of one process that cut
out CoarseMatVec is executed using 12 cores of FX100, the execution time of CoarseMatVec is
reduced from 22.31 × 10−3 seconds to 2.41 × 10−3 seconds. This improved source program is
used for post-K computer performance estimation in the detailed design (3).

In the detailed design (3), the source program of CoarseMatVec was further improved. Specif-
ically, in the above, the processing related to the double-double-precision format inner product
of the double-double-precision format vector and the double-precision vector was divided into
the multiplication part and the summation part, but this should be stopped and the following
processing should be performed. First, for the first B elements of each of the double-double-
precision form vector and the double-precision type vector for which the inner product is to be
calculated, the double-double-precision form product of the elements having the same element
number is calculated and store the result to work array having length B. Next, for the next B
elements of each of the two vectors for which the inner product is to be calculated, the double-
double-precision formal product of the elements having the same element number is calculated
and added the result to the work array having length B. After that, similarly, for the two vec-
tors for which the inner product is to be taken, the result of the product of the vector elements
having the same element number is added to the work array for sum calculation. This processes
repeat until reach the end of the two vectors. Finally, the sum of all the elements of the work
array of length B is calculated by the above-mentioned first half and second half two-division
vector sum repetition method. In the detailed design (3), the size of B is tentatively set to 896.
As a result of improving the source program of CoarseMatVec by detailed design (3), when the
kernel program of one process that cut out CoarseMatVec is executed using 12 cores of FX100,
the execution time per CoarseMatVec is reduced to 1.95× 10−3 seconds.

12.6 Base line measurement on K

We measured the execution time of one case of the target problem that was processed by 32768
process on 32768 node of K. The measurement section in BDD iteration is divided into eight
calculation sections and three communication sections. The results are shown in table 12.1.
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Table 12.1: Execution time using 32768node(32768process) on K

section name
Execution time of 1BDD
iteration

DomainFEM 8.36972msec

CoarseMatVec 17.8402msec

CollectRhs.P3 0.26833msec

QuadMatVec.P1 1.04247msec

Exec.BlancingL 0.76123msec

Exch.Buffering 0.52835msec

DomainFem.P1 0.31601msec

Calc. Others 0.24571msec

Exchange 0.27125msec
Allreduce 0.20164msec
Allgather 3.84919msec

Total 33.69414msec

When calculate the performance improvement ratio fromK to Fugaku, we have used the total
of these 11 measurements as the measurement value of the ADVENTURE execution time(K
baseline value) at K.

This K computer’s baseline value (33.69414 ms per BDD iteration) was roughly the same as
33 ms per 1 BDD iteration that was measured by the ADVENTURE developer on 32768 nodes
in K prior to the start of the Flagship 2020 project.

12.7 Performance measurement on Fugaku

12.7.1 Tuning of MulMatVec

The new code provided in March 2020 allocates a row block pair when the lower triangular
matrix is folded back only once at the center row number to the threads, and equalizes the
processing amount per thread. In the symmetric matrix storage method, the lower triangular
matrix excluding the diagonal elements is stored in the skyline, and the diagonal elements are
stored in another array. These two points are different from the code used so far. The following
tuning was performed on this code.

(1) :Equalize memory access costs by performing loopback cyclic allocation on a block-by-block
basis

(2) :Change the number of unrolls to 6

Next, the result of CPU analysis report when the tuning code is executed 100 times is
shown in the figure 12.1. The access wait time and instruction commit cycle are almost even
among threads, which is exactly what we were aiming for. The calculation wait time is a little
noticeable, but according to the compile list, it is perfomed software pipelining and not occurring
spill. Also, the memory throughput is close to the upper limit.

12.7.2 Tuning of MatVec Rect Quad

In Regions 1 and 2 that perform quadruple precision arithmetic matrix vector product of the
new code provided in March 2020, the addition calculation part in the inner product calculation
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図 ４.４-２  Region0: MulMatVecの PA解析ボトルネック時間 
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ピーク性能比 12.68% 

メモリスループット 196.22GB/s 
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メモリビジー率 76.65% 

L2ビジー率 83.16% 

L1ビジー率 41.70% 

 

 

 

 

 

Figure 12.1: Result of CPU performance report of MulMatVec

is the code that manually unrolled the innermost loop. In the same code, the inner product
calculation is blocked, and the multiplication result is passed from the multiplication part to
the addition calculation part to reduce memory access.

After abolishing the manual unroll of the innermost loop for this code, The blocking method
has been improved as follows.

(1) Store the multiplication result in the first block in the working array.

(2) Multiply in the i-th block, and add the result of the i-1st block and the elements. Repeat
this for the number of blocks-1 time.

(3) In-block reduction addition calculation by Recursive Halving is performed for the block of
the final result.

12.7.3 Other tuning

As another tuning, the processing corresponding to 4 and 5 in the figure 12.2 described later
was moved before the BDD iteration. In addition, the processes 11 and 12 were converted to
omp, and the processes corresponding to 23 were deleted.

12.7.4 Performance measurement result on Fugaku

A comparing result of the performance measurement results at Fugaku and the performance
estimation results at Fugaku indicate in the figure 12.2.

The correspondence between the section name shown in the table 12.1 and the section number
shown in the figure 12.2 indicate in the table 12.2.

It can be seen that the speed is increased by the tuning of MulMatVec, the tuning of
MatVec Rect Quad, and other tuning effects.

Figure 12.3 shows the final performance improvement and power consumption compared
with K. In the end, 63 times performance improvement is obtained normal and without eco.
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Time per one BDD 
iteration (msec) 

Ver.

Fugaku 16384P

Convensional Ver.
Calculation: 
Estimate using tools
Communication: 
Estimate on Desk 

Figure 12.2: FugakuResult of Performance measurement and estimation

System K computer

Mode Base line
Normal

without Eco
Boost

without Eco
Normal
with Eco

Boost
with Eco

Job ID 811306 812440 811616 821442
Number of Node 32768 4096 4096 4096 4096
Number of processes 32768 16384 16384 16384 16384
Number of subdomain/process 2 4 4 4 4
Total number of subdomain 65536 65536 65536 65536 65536
Excusion time [sec] 168470.7 40692.4 39294.9 42722.7 40989.9
The final performance
improvement  compared with K

63.5 65.7 60.5 63.0

MAX MEMORY SIZE (USE) [GB] 13 13 13 13
Power consumption [MW] Max
(and Average)

21 (19) 23 (19) 20 (18) 23 (19)

Fugaku

Figure 12.3: the final performance improvement on Fugaku compared with K
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Table 12.2: Correspondence between the section at the time of performance estimation and the
section at the time of performance measurement

Section name of performance estimation
Section name of perfor-
mance measurment

DomainFEM 8

CoarseMatVec 27

CollectRhs.P3 26

QuadMatVec.P1 26

Exec.BlancingL 24

Exch.Buffering 11

DomainFem.P1 6

Calc. Others R8 total

Exchange 13
Allreduce ComGetsum total
Allgather 25
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Chapter 13

Codesign of FrontFlow/blue

13.1 Codesign overview

This priority issue 8 aims at the development of computational science and technology that will
bring about changes in Japan’s future manufacturing. It includes changes in the performance
of the product itself by computer simulation, changes such as streamlining the product devel-
opment process, and dissemination to actual manufacturing sites such as industry. In the field
of manufacturing, all applications must handle various shapes as analysis targets, and many
applications use unstructured grids. When the unstructured grid is used, the position of the
data to be referred to in the memory space cannot be obtained from a simple rule. In order to
find the position of the data you want to refer to, you need to refer to the list that describes the
adjacency, which tends to increase the amount of memory transfer. Therefore, the required B/F
is high, and the processing of the core part of the FEM application is similar. FrontFlow/blue
(or FFB) is positioned as an application that represents a group of the FEM applications that
use unstructured grids and request high B/F value for indirect access via lists which frequently
occurs. It contributes to codesign from the viewpoint of improving the performance of calcu-
lations that require high and high memory throughput. If FrontFlow/blue can operate at high
speed on Fugaku, it will be easy to horizontally deploy the technology to other applications.

So far, FFB has a track record of executing flow analysis on a scale of up to 32 billion
elements using about 40,000 nodes in K. If the calculation of hundreds of billions of elements
can be realized using Fugaku, it will be possible to perform quasi-direct numerical calculation of
turbulence with Reynolds number of 107, and to perform the high-precision fluid calculation (the
internal flow of hydraulic machinery and the aerodynamic disturbance of the actual vehicle, etc)
with the same accuracy as loop test and wind tunnel experiment. In addition, using this highly
accurate analysis result as reference data, it will be possible to execute multipurpose design
optimization calculation for 10,000 case (100 case × 100 generation) in a few days with Fugaku.
It is possible to realize a wide range of multipurpose design optimization technologies with
higher precision than before, and it can contribute to the sophistication of related manufacturing
designs such as turbomachinery. In addition, since the scale of this problem is the largest in
the priority task 8, it is possible to carry out the target problem in other themes in the task.
FrontFlow/blue is a fluid simulation code based on the finite element method. The matrix is a
sparse matrix and an unstructured grid is used and the memory access pattern is random access
that differs depending on the input data. The calculation of the flow field in FrontFlow/Blue
is performed by obtaining the velocity predictor by calculating the convection/diffusion term,
obtaining the pressure from the velocity predictor, and determining the velocity by modifying
the velocity predictor from the pressure. Velocity predictor and pressure solving are implicit.

168
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The conjugate gradient (CG) method is used as the implicit solver, and the main operation is the
product of a sparse matrix and a vector. Even if it is kernels that are not implemented so that
the processing content can be clearly identified as a sparse matrix vector product, such as the
gradient calculation routine (GRAD3X) and divergence calculation routine (FLD3X2), and the
motion equation routine (VEL3D1), although the whole stiffness matrix is not generated from
the matrix defined in element units, the value corresponding to the whole matrix is calculated
using the adjacency information of the elements and the small matrix defined in each element,
so-called Element by Element. Since the method of abobe mentioned is used, it can be said that
all arithmetic kernels are basically the product of sparse matrices and vectors. The product of a
sparse matrix and a vector is a process that mainly depends on the memory throughput. Because
the memory access is discontinuous due to the data structure that the finite element method
presupposes, not only the matrix value but also the connectivity information must also be loaded
from the memory. Therefore, the main purpose of improving performance is to improve memory
throughput. With this in mind, we conducted a codesign study on each of the following items.
The main items of the specific contents of each of the above items are shown in the following
sections. Unless otherwise specified, the values for shortening the processing time by codesign
shown below are all the measured values when the test questions are executed with K at present.

• Gradient Calculation Routine (GRAD3X) Main Loop

• Divergence calculation routine (FLD3X2) main loop

• Equation of Motion Routine (VEL3D1) Main Loop

• Sparse matrix vector product routine (CALAX) main loop

• Copy of array

• Zero clear of array

• Non-threaded parallel routine(CRSCVA, CLRCRS, NODLEX, DGNSCL)

• List vectorization of loops containing if

• Eliminating type conversion loops

13.2 Gradient calculation routine (GRAD3X) SIMDization of
main loop, software pipelining, algorithm change for the
purpose of reducing the number of load stores

GRAD3X calculates the value on the node from the gradient (∇p) of the pressure value defined
in the center of the element. A loop is rotated by the elements, and the result of multiplying the
pressure value of each element by a coefficient is added to the node referenced by the element.
Figure 13.1 is a schematic diagram of this process. The square frame in the figure represents
the element, and the black circle indicates the node. Each element has a centrally defined
pressure Pn and factor value Cn,v depending on the number of vertices. For example, element
1 refers to four nodes, nodes 1,2,12,11 as vertices and has four coefficients C1,1,C1,2,C1,3,C1,4.
The arrow means the process of adding the value obtained by multiplying the pressure Pn and
the coefficient Cn,v to the corresponding node. Since processing is performed for each element,
addition to a specific node occurs multiple times at irregular intervals. In the example of this
figure, the addition to the node 12 circled in red in the figure occurs a total of four times when
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processing elements 1, 2, 11, and 12. The number of additions and the interval of occurrence
are random depending on the input data. Since the value of the same node is updated from
multiple elements, there is a data dependency and the thread parallelization, the SIMDization,
and the software pipelininning cannot be performed as it is.

Elem.1

Elem.11 Elem.12

Elem.3Elem.2

Elem.13

P1

Node

1 2 3 4

11 12 13 14

21 22 23 24

P3 P4

P11 P12 P13

C1,3

Pressure

Multiply Pressure and Coefficient. 
And store into node

C1,2C1,1

C1,4 C2,3

C2,2C2,1

C2,4 C3,3

C3,2C3,1

C3,4

C11,3

C11,2C11,1

C11,4 C12,3

C12,2C12,1

C12,4 C13,3

C13,2C13,1

C13,4

When process elem.1
Store into node 1, 2, 12, 11 occur

When process elem.2
Store into node 2, 3, 13, 12 occur

When process elem.11
Store into node 11, 12, 22, 21 occur

When process elem.12
Store into node 12, 13, 23, 22 occur

Figure 13.1: Processing contents and situation of store process of GRAD3X

Therefore, in this implementation, in addition to the domain decomposition for process
parallelism, the calculation area is divided into subdomain within the process to avoid data
dependency. Figure 13.2 is a schematic diagram of this process. The area processed by each
process is divided into multiple blocks, each with approximately the same number of elements,
coloring is performed so that blocks that are not adjacent to each other are not included in
the same color, and the numbers are arranged so that the block numbers are continuous in
each color. Although not shown in the figure, the element numbers are also sorted so as to be
continuous within each block. The lower part of the figure is the final data structure. The blocks
in each color are not adjacent to each other so there is no data dependency, but the elements
in each block are adjacent to each other so that the elements has data dependency . The loop
structure is a triple loop, the outermost loop is a loop of the collar, the middle loop goes is a
loop of the block in the collar, and the innermost loop is a loop of the elements inside the block.
Thread parallelism is done in an intermediate loop that runs in blocks that are not adjacent
to each other and have no data dependencies. Since the innermost loop is a loop that rotates
around elements adjacent to each other, it is data-dependent, and SIMDization and software
pipelining cannot be applied.

In an implementation that directly coloring elements without using such block division, the
loop structure has a double loop structure of a color’s loop and a element’s loop, and there is
no data dependency in the innermost loop. Therefore, thread parallelization, SIMDization, and
software pipelining can be applied in the innermost loop. But the locality of memory access is
poor and the time density for reusing reusable data on the cache is coarse and the performance
was not good. Since the processing of this loop strongly depends on the memory throughput,
it was decided that it is better to improve the memory throughput than to apply SIMDization
and software pipelinining, so it was implemented now. Even so, the memory throughput was
not sufficient, so I have futher improved this kernel.

This process accounted for 95 seconds of the total execution time of 394 seconds, and memory
access-related waits accounted for a large proportion of that time. Examining the breakdown
of execution instructions, there were many the store operation. This was due to the above-
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Figure 13.2: Loop structure of GRAD3X

mentioned characteristic that if a store to a node referenced by multiple elements is processed
in a loop that goes around the element, a store to the same node is required many times.

Therefore, the loop structure was changed to rotate at the node. In this implementation,
the contributions from all the elements that refer to that node are calculated and aggregated at
once for each node, so that each node can be stored only once.
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Figure 13.3: Situation of store process of GRAD3X before and after the loop structure change

Figure 13.3 shows a schematic diagram of the state of the store of before and after the loop
structure change and the source code after the change. Before the change, the processing is
performed in the order of the elements, so when processing element 1, a store to nodes 1,2,11,12
occurs, and when processing element 2, a store to nodes 2,3,13,12 occurs.

After the change, the processing is performed in the order of nodes. For example, when
processing node 2, as shown by the green arrow in the figure, the contributions from the two
elements using node 2 to node 2 are collectively calculated and stored in node 2. After that,
the value of node 2 is not updated to node. In addition, since the store order is sequential and
there is no need for a complicated structure for thread parallelization because there is no data
dependency. Futhermore, SIMDization and software pipelining can be applied to the loop at the
same time. As a result, the number of load/store instructions was reduced by 42%, the number
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of store instructions was reduced by 87%, and the execution time was improved from 95 seconds
to 41 seconds.

The memory throughput at this time improved from 23.2GB/s to 47.2GB/s that is almost
the effective upper limit for K. Fugaku It is estimated that the same process can be executed
in about 14 seconds or so in the measurement using the actual machine. At this time, the
memory throughput at Fugaku was 146.3 GB/s. This value indicates that there is still room for
improvement compared to the effective memory throughput upper limit of 205 GB/s for Fugaku
1CMG. In the implementation of this kernel, in the innermost loop, the array whose size is 3
is accessed 3 times like as A (1, I, J), A (2, I, J), A (3, I, J). It is a continuous access in the
memory space, but the compiler cannot grasp that it is continuous at compile time, and issues
an inappropriate load instruction (the gather load instruction) instead of a continuous SIMD
load instruction.

Therefore, here, by changing the shape of the array from A (1, I, J) to A (I, J, IP), the
continuous SIMD load instruction is issued. As a result, memory throughput has increased to
170GB/s.

(*)Currently, the compiler has been improved so that it can issue appropriate load instruc-
tions (Structure load instructions) even with access patterns such as A (1, I, J), A (2, I, J), and
A (3, I, J).

13.3 Divergence calculation routine (FLD3X2),apply of SIMDiza-
tion of main loop, stream number adjustment, use of sector
cache

This application is a code that has been used for a long time, and as an implementation to
avoid bank conflicts on vector supercomputers, it was originally declared that the size of the
first dimension of a multidimensional array should be 9, so 9 changed to 8. With such an
implementation, since the data is transferred in units of cache lines, the 9th array component
that is not actually used is also transferred, so 1/9 of the memory bandwidth is wasted. Also, in
FrontFlow/blue, all the arrays handled in the subroutine use the memory area allocated in the
main routine, and the array is passed to the subroutine together with the variable indicating
its size. Since this subroutine receives a two-dimensional array whose first-dimensional size is 8,
the size is already fixed at 8 at compile time, but since the array size is specified by a variable,
the compiler has recognized the first-dimensional size as variable. Due to this recognition of
this compiler, efficient instructions were not generated. Therefore, I have gave the compiler
information that the array size is fixed at 8. The main loop of this subroutine has a double
loop structure with an innermost loop that rotates 8 times in the most basic implementation
that realizes the algorithm, but in reality it was implemented single loop structure unrolled
the innermost loop into 8 oparation. It is desirable that the innermost load instruction can be
executed by the SIMD instruction, but because of the unroll implementation, the array index
is specified as an immediate value in the source code, and the SIMD load instruction cannot be
applied continuous access by the compiler. Therefore, it was re-implemented in a loop coding
again to promote SIMD loading.

In addition, the number of arrays in the loop was adjusted. Since the cache capacity is
smaller than the memory capacity, it often happens that data in different memory areas are
placed in the same cache line. The cache is managed in units called ways together with the
line number. For example, 2-way cache can hold data from two different addresses on the same
line number. However, since the number of ways is generally small, as the number of arrays
referenced in the loop increases, the array data on the same line increases, and as a result, the
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cache tends to overflow. In this loop, multiple arrays are referenced, but in particular, three
two-dimensional arrays are referenced with the same access pattern, and cache line contention is
likely to occur. Therefore, taking advantage of the feature that the access pattern is the same,
we reimplemented three 2D arrays as one 3D array and improved the cache utilization efficiency.

Furthermore, the parameter of the sector cache was adjusted and the execution time improved
from 61 seconds to 48 seconds. The memory throughput at this time improved from 40.3GB/s
to 42.5GB/s. This is a value that is almost equal to the effective upper limit of K.

When this tuning version code was executed on Fugaku and the CPU performance analysis
report was collected, imbalance between threads occurred. From the viewpoint of calculation
amount, imbalance between threads does not occur, but the cause is access to the array fgp in
the list-accessed array, and the cache miss rate changes for each thread.

Since the values in the list depend on the input data, as a workaround for this phenomenon,
a directive that promotes prefetching of the array fgp was inserted, and an appropriate prefetch
distance was determined by a parameter study. This eliminated the imbalance between threads.
As a result, it is estimated that the same process can be executed in about 18 seconds in
Fugaku. At this time, the memory throughput at Fugaku was 125GB/s. This value indicates
that there is still room for improvement compared to the effective memory throughput upper
limit of 205GB/s for Fugaku 1CMG.

13.4 Equation of Motion Routine (VEL3D1) Examination of
performance improving of the main loop

The equation of motion routine (VEL3D1) that remained unimproved has a target calculation
time of less than 10 seconds from the viewpoint of memory throughput, but it is currently about
30 seconds. We are continuing to consider improvements. Compared to other major loops, this
loop has a large and complicated loop body, and has a large number of referenced arrays and
temporary variables, so register spills occur. Occurrence of the register spill is a serious concern
in Fugaku because it has fewer registers than K, and we investigated spill reduction using the
currently available compilers for Fugaku for various implementation patterns. In addition, the
loop structure of this routine is the same as the gradient calculation routine before improvement.
Therefore, we examined the improvement of changing the loop structure shown in 13.2 to a
nodal loop. As a result, it took 32 seconds to execute, but it improved to 12 seconds. Memory
throughput is still low, so there is room for further improvement. The memory throughput at K
at this time improved from 11.3GB/s to 34.3GB/s. The value is still smaller than the effective
upper limit of K, but unlike other kernels, the ratio of operations is large for this kernel, and
the B/F ratio is not so large about 1 so it is staying to this level. Fugaku It is estimated that
the same process can be performed in a little less than 7 seconds in the measurement using the
actual machine. At this time, the memory throughput at Fugaku was 74.6GB/s.

13.5 Sparse matrix vector product routine (CALAX) main loop

Since this kernel performs the product of a sparse matrix and a vector, it is a double loop in
which the outer loop is a loop of row and the inner loop is a loop of a non-zero element in each
row. The rotation speed of the innermost loop is at most 30. In the implementation for K,
the innermost loop that rotates 30 times is unrolled, the index when accessing the array is not
specified by the loop variable, and it was specified as an offset value from the loop variable such
as i+1, i+2, i+3. Originally, it was a continuous access on the memory space, but the compiler
could not grasp it and issued an inappropriate load instruction (the gather load instruction)
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instead of a continuous SIMD load instruction, and the memory throughput was low (about 94
GB/s).

Therefore, the unrolled loops by 30 were re-looped again. As a result, the innermost loop
becomes a loop that rotates 30 times, and the immediate value does not appear in the index of
array access, and the compiler grasps that it is continuous access, and a continuous SIMD load
instruction is issued. As a result, the process that used to take about 5.3 seconds on Fugaku
can now be completed in about 2.8 seconds. The memory throughput at this time was greatly
improved from 94GB/s to about 182GB/s. This is a sufficient value compared to the effective
upper limit of 205GB/s of Fugaku.

13.6 List vectorization of loops containing if statement

This is the second loop of the gradient calculation routine (GRAD3X) described above. In
most input data, the number of upper elements of a certain node is about 8 at the maximum,
but when the shape is partially complicated, the number of upper elements is 8 or more. In
order to improve execution efficiency, GRAD3X divides the main calculation loop into a loop
that calculates the contribution from the 8th higher-level element and a loop that calculates the
contribution from the 9th and subsequent higher-level elements. This outside loop is the node
loop, and there is an if statement that determines whether the number of upper elements is 8
or more for each node. When it is only for nodes with 8 or more upper elements, execute a loop
that calculates the contribution of the 9th and subsequent higher-level elements to the gradient
value. This innermost loop is SIMDized and software-pipelined by the compiler. Since the test
problem does not include nodes with 8 or more high-order elements, this loop should be a ”do
nothing loop”, but in reality, it took about 8 seconds that is about 2% of the total execution
time of 394 seconds. As a result of the investigation, it was found that the waiting for the
branch instruction occupies most of the processing time of this loop. This is because the actual
operation of this loop is not ”do nothing”, but it is determined whether the number of upper
elements is 8 or more for all nodes, and the loop that turns at the node is the innermost loop.
This is because SIMD and software pipelines are not applied and instruction execution efficiency
is poor. In such a code that includes if in the loop, if the distribution where if is true does not
change every time when it is executed repeatedly, it is effective to create a list (list vector)
that collects only the indexes for which if is true in advance, and perform list vectorization that
processes only the objects included in the list vector. This loop was repeatedly executed 11880
times in the test problem, and the number of high-order elements at each node did not change
throughout the program execution, so list vectorization was applicable to this loop. As a result,
in the test problem, the upper list vector became empty, so the execution time improved from
about 8 seconds to almost 0 seconds. It should be noted that the time of the list vector creation
process that collects only those whose if is true, which is executed only once during program
execution, can be regarded as almost 0 seconds.

13.7 Baseline measurement on K

13.7.1 Terget problem

Here, considering large-scale analysis of turbomachinery, flow around the hull, aerodynamics of
the actual vehicle, etc., assuming a large-scale single problem type calculation that uses the entire
computer to calculate one problem about as 674.8 billion elements 10,000 time steps. In addition,
since FrontFlow/blue is a general-purpose application, it is necessary to handle various input
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data, but in this evaluation, the simple shape data creating by a program that automatically
generates input data using only 2 parameters(the number of elements and processes) is used.

Since FrontFlow/blue focuses on large-scale single-processing calculations, we estimated the
time required to solve a terget problem using the entire K system. The problem scale assumed
in Fugaku is a calculation of 100,000 time steps dealing with about 674.8 billion elements in
the entire system. The scale of this problem is determined by the upper limit of the amount
of memory that can be used by the application in each process on Fugaku, which is about 1.06
million elements per process on Fugaku. FrontFlow/blue is a general-purpose application, and
even if the problem scale is the same, the amount of calculation and communication load change
depending on the element type (hexa element, tetra element, etc.) and the aspect of domain
division. In this study, the number of elements per process and the shape generated by the
input data automatic generation program with the total number of processes as parameters are
cubic shapes consisting of only hexa elements, and the amount of calculation for each process
is equal. Each process is assumed to have a shape in which rank numbers are adjacent only
to adjacent processes, except for the last two processes. To calculate a problem of about 674.8
billion elements in K, it is necessary to handle about 8.14 million elements per process, but such
a problem size is not feasible in K due to lack of memory. Therefore, in this study, the calculation
of 1.06 million elements per process, which is the problem size that can be executed in K, is
executed in 100 time steps in 24 processes. And, the calculation time in 8.14 million elements
per process is estimated from these data. Hereinafter, execution of 1.06 million elements per
process, 24 processes in total, and 100 time steps is referred to as test execution.

13.7.2 Result

The execution time and the breakdown when the problem of about 674.8 billion elements, which
is the assumed problem in Fugaku, is executed in K are shown. The value here is the linear
extrapolation of the time of 100 time steps to 100,000 time steps. In the target problem,
the convergence test conditions for the iterative calculation are strictly set, so the iterative
calculation always goes up to the upper limit specified in advance. Therefore, the amount of
calculation is constant in every time step, and the calculation time for 100,000 time steps is 1000
times that of 100 time steps.

Table 13.1: Base line execution time of FrontFlow/blue on K (100000time step)
Problem size time (h)

total calculation communication

about 674.8Billion 838 824 14.2

13.8 Performance measurement on Fugaku

13.8.1 Tuning the gradient calculation routine (GRAD3X) on Fugaku

Improvement of to hide the cache access latency by ocl prefetch instruction line for list access
reference was performed. The CPU performance analysis report before and after tuning is shown
in Figure 13.4 and Figure 13.5. The execution time of the relevant section decreased from 6.52
seconds to 5.38 seconds. In addition, the elapsed time is approaching the memory busy time,
and the performance up to the upper limit of the memory bandwidth is obtained.

Further tuning was performed on other parts of GRAD3X. In pre-tuning code, instead of
multiple structures load, store instructions, the gather load and scatter store instructions were
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図 ４.６-１ tgrad3x_1：実行時間の内訳(asis) 

 

 

図 ４.６-２ tgrad3x_1：CPU性能解析レポート抜粋 1(asis) 

 

Figure 13.4: Performance of GRAD3X of before tuning

issued. As a result of investigation, the cause was that it referred to the same an array as the
definition. Therefore, the performance is improved by referring to another array called FXYZ
tmp and changing it to a form that can issue multiple structures load and store instructions.

The CPU performance analysis report before and after tuning is shown in Figure 13.6 and
Figure 13.7. The execution time of the relevant section decreased from 1.75 seconds to 1.24 sec-
onds. In addition, the elapsed time is approaching the memory busy time, and the performance
up to the upper limit of the memory bandwidth is obtained.

13.8.2 Tuning the divergence calculation routine(FLD3X2) on Fugaku

The prefetch operation made to apply to the innermost loop by the ocl instruction line, and
the scaler prefetch instruction was changed to the gather prefetch instruction to improve per-
formance. It also has the effect of changing the list access array:NODE from non-SIMD access
to SIMD access. The CPU performance analysis report before and after tuning is shown in Fig-
ure 13.8 and Figure 13.9. Due to the change of the prefetch instruction to the gather prefetch
instruction and the SIMD conversion of the list access array: NODE, the execution time of the
corresponding section was reduced from 9.15 seconds to 6.67 seconds. Non-SIMD load instruc-
tions decreased from 6.06E + 10 to 1.02E + 10, and Single vector contiguous load instructions
increased from 2.55E10 to 3.18E10. The total number of instructions and the 4-instruction
commit time decreased, and the L1 busy rate increased to 74.5%.
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図 ４.６-１８ tgrad3x_1：実行時間の内訳(tune) 

メモリビジー率は、78.6%となり、メモリバンド幅ネックとなった。 
 

Figure 13.5: Performance of GRAD3X of after tuning
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図 ４.６-５８ tgrad3x_5：実行時間の内訳(asis) 

L1Dアクセス待ちの時間が最も大きかった。 

 

 

図 ４.６-５９ tgrad3x_5：CPU性能解析レポート抜粋 1(asis) 

 

Figure 13.6: Performance of GRAD3X of before tuning(2)
FFB 
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図 ４.６-６６ tgrad3x_5：実行時間の内訳(tune) 

L2 ビジー率は、24.45%から 81.17%に増加した。また、メモリビジー率は、28.85%から 77.39%に増

加し、メモリバンド幅ネックとなった。 
 

 

図 ４.６-６７ tgrad3x_5：CPU性能解析レポート抜粋 1(tune) 

 

Figure 13.7: Performance of GRAD3X of after tuning(2)
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図 ４.６-２２ tfld3x2：実行時間の内訳(asis) 

L1ビジー率は、63.96%と高かった。4命令コミットは、全体の約 50%をだった。また、L1Dアクセス
待ちは、約 30%だった。 

 

Figure 13.8: Performance of FIELD3X of before tuning
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図 ４.６-３０ tfld3x2：実行時間の内訳(tune) 

プリフェッチ命令の SIMD化によって、総命令数、4命令コミット時間は減少した。また、L1ビジー率

は、74.5%に増加した。 
 

Figure 13.9: Performance of FIELD3X of after tuning
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13.8.3 Performance measurement result on Fugaku

The final single performance results of the main kernel are shown in Figure 13.10 and Figure
13.11. The parallel performance is shown in Figure 13.12.

It can be seen that the three kernels, which are the memory bandwidth necks, have almost
reached the limit of the effective memory bandwidth, and the highest peak performance ratio is
obtained for the one kernel, which is rich in calculation. It can be seen that even better parallel
performance is obtained.

2020/12/7 R-CCS  Cafe 12

Sustained Throughputs of Four Main Kernels

Three of the four main kernels achieved hardware limit.

STREAM Triad on Fugaku

STREAM Triad on K computer

(46.6 GB/s)

(820.0 GB/s)

Figure 13.10: Memory bandwidth value (node) of FFB main kernel on Fugaku

2020/12/7 R-CCS  Cafe 13

Sustained Performance of Four Main Kernels

Main kernels achieved a sustained performance of 4.5% to 7.8% of the peak.

7.4% of peak on Fugaku

19.5% of peak on K computer

4.4% of peak on Fugaku

5.9% of peak on Fugaku

Figure 13.11: Performance (node) of FFB main kernel of Fugaku
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2020/12/7 R-CCS  Cafe 14

Weak-scale Benchmark Test on Fugaku

FFB achieved 22.6 PFLOPS (4.3% of double-precision peak) with 7,630,848. 
Figure 13.12: Parallel performance of FFB on Fugaku

Figure 13.13 shows the final performance improvement and power consumption compared
with K. In the end, 51 times performance improvement is obtained boost and without eco.

System K computer

Mode Base line
Normal

without Eco
Boost

without Eco
Normal
with Eco

Boost
with Eco

Job ID 1639449 1639316 1639451 1639351
Number of Node 82944 158976 158976 158976 158976
Number of processes 82944 635904 635904 635904 635904
Number of element/process 8135928 1061208 1061208 1061208 1061208
Excusion time [sec](100000time
step)

3016325.0 62282.1 59632.8 69196.7 64681.1

The final performance
improvement  compared with K

48 51 44 47

MAX MEMORY SIZE (USE) [GiB] 27 27 27 27
Power consumption [MW] Max
(and Average)

21 (17) 23 (19) 16 (12) 21 (13)

Fugaku

Figure 13.13: the final performance improvement compared with K
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Chapter 14

Codesign of LQCD

Lattice quantum chromodynamics (LQCD) is an application to solve problems in elementary
particle physics. In LQCD, we compute the quantum chromodynamics (QCD) theory of quarks
and gluons on the four dimensional regular lattice. Solver of the Dirac equations, so-called “quark
solver”, which would be solved by iterative methods consumes CPU time in this application. In
quark solver computation on the supercomputer Fugaku, we achieve a factor 38 time speedup
from the supercomputer K, with 102 PFLOPS, 10% floating-point operation efficiency against
single precision floating-point operation peak.

14.1 Application detail and its codesign

Lattice quantum chromodynamics (LQCD) is an application to solve problems in elementary
particle physics. In LQCD, we compute the quantum chromodynamics (QCD) theory of quarks
and gluons on the four-dimensional (4D) regular lattice. Solver of the Dirac equations, so-called
“quark solver”, which would be solved by iterative methods is the most time consuming part in
this application.

The coefficient matrix of quark solver using Wilson type fermions is a large stencil sparse
matrix. The 4D space and time is discretized to a 4D square lattice. Quark field of 12 complex
numbers is put at the site and gauge field of 9 complex numbers is put at the link on the lattice.
Computaional speed is usually limited by main memory bandwidth and network bandwidth,
although required memory size is relatively small compared to other applications. Therefore
achieving nice strong scaling is very challenging in LQCD.

LQCD contributes to the codesign as an application requiring high memory bandwidth and
network bandwidth, the communication mechanism of direct memory access, low cache latency,
low network latency, no OS jitter, and enough registers to maximize performance of floating-
point arithmetic unit by out-of-order execution.

To get high performance for computing quark solver on the supercomputer Fugaku (here-
inafter referred to as Fugaku), we have developed “Lattice quantum chromodynamics simulation
library for Fugaku and computers with wide SIMD” (QWS [129]) and compared the performance
on the entire system of Fugaku to the the performance on the entire system of the supercomputer
K (hereinafter referred to as K) using highly optimized code for K [130]. QWS is an open source
software on github. It provides a set of functions related to the Wilson-clover quark solver as a
library of LQCD and has been used by actual applications of LQCD [131].

182



CHAPTER 14. CODESIGN OF LQCD 183

14.2 Optimization for quark solver

We optimize and evaluate the region of “the single precision BiCGStab for a Wilson-clover Dirac
matrix with Schwarz Alternating Procedure domain decomposition preconditioning [132] using
Jacobi iteration for the local domain matrix inversion (hereinafter referred to as QCDJDD)”
in quark solver. The lattice size of the target problem is 1924. QCDJDD is divided to sev-
eral computation and communication regions as in Table 14.1. Performance evaluation using
“performance and power estimation tool (hereinafter referred to as ppptool)”1 and using “a
prototype of Fugaku (hereinafter referred to as prototype)” differ in how to divide a region for
the computation region.

Table 14.1: Regions of LQCD
Computation region for ppptool

jinv_ddd_in_s_ static solver in domain
ddd_in_s_ matrix vector multiplication in domain
ddd_out_pre_s_ preprocess for interdomain matrix vector multiplication
ddd_out_pos_s_ postprocess for interdomain matrix vector multiplication
other_calc other calculation in iteration

Computation region for prototype
all_calc all calculation
overlapped region overlapped by communication

Communication region
comlib_irecv_all_c start receiving for neighboring communication
comlib_isend_all_c start sending for neighboring communication
comlib_recv_wait_all_c wait receiving for neighboring communication
comlib_send_wait_all_c wait sending for neighboring communication
s_drbicgstab_dd_hpc_iter_reduc1_ Allreduce for one float
s_drbicgstab_dd_hpc_iter_reduc2_ Allreduce for two floats
s_drbicgstab_dd_hpc_iter_reduc3_ two times of Allreduce for three floats

14.2.1 Avoiding main memory bandwidth bottleneck

It is known that mixed precision iterative solver is efficient for large linear systems [133, 134,
135]. In mixed precision iterative solver, main calculations are done in single precision and double
precision solution accuracy is obtained by iterative refinement. In applications that performance
is limited by main memory bandwidth bottleneck as LQCD, required main memory bandwidth
and/or low level cache capacity can be decreased by half by using mixed precision algorithms.
We use a double precision BiCGStab with single precision preconditioning which is QCDJDD.
Memory size for QCDJDD in the target problem size 1924 is about 2TB which is enough smaller
than about 5 TB of L2 cache capacity of Fugaku. We perform LQCD on almost full nodes,
147456 nodes (589824 processes), to avoid main memory bandwidth bottleneck in QCDJDD. In
codesign, we have removed unnecessary temporal array and zero-fill for memory size reduction
and performance improvement.

14.2.2 Utilizing wide SIMD

Main computations in LQCD are complex arithmetic. The original code used for Fugaku code-
sign was tuned for narrow SIMD width which was used in HPC architectures in early 2000s. On
K, the data layout for complex number, (Real-Imag)-(Real-Imag)-..., was used since the SIMD
width was 128 bits and operations for complex numbers were supported. In the case of wide
SIMD width in recent HPC architectures, a different optimization like for vector computers in

1ppptool estimates performance on Fugaku’s CPU by using Performance analysis (PA) information obtained
on FX100.
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1990s is needed. We have considered simple data layout that sequential access continues to use
wide SIMD width effectively in LQCD. The SIMD width on Fugaku is 512 bits. It is for 8 double
precision floating-point numbers, 16 single precision floating-point numbers, or 32 half precision
floating-point numbers. Operations for complex numbers are available on Fugaku. Therefore
we have compared two data layouts, an array of complex numbers and a layout that real part
and imaginary part is separated. Resulting performance of the real-imaginary separated layout
is better than the complex number layout. Data layouts we adopt for fermion field, for example,
can be written in C language as follows,

K : [nt][nz][ny][nx][3][4][2]
Fugaku (double) : [nt][nz][ny][nx/8][3][4][2][8]
Fugaku (single) : [nt][nz][ny][nx/16][3][4][2][16]
Fugaku (half) : [nt][nz][ny][nx/32][3][4][2][32]

where nx, ny, nz, nt are 4D lattice size per process. nx is divided by SIMD length on Fugaku for
consecutive access.

14.2.3 Eliminating thread imbalance by loop splitting and changing the thread
parallelization axis

When 1924 lattices is divided by 589824 MPI processes, lattice size per process would be 32×3×
6×4, 32×6×6×2 if nx = 32. In the detailed design (1), 32×3×6×4 was used because neighboring
communications can be minimized. But there was a load imbalance between threads in regions
ddd_in_s_ and ddd_out_pos_s_ when number of threads is 12 and we handle accessing data
outside process in a triple loop of 3× 6× 4 for YZT directions2.

To avoid the load imbalance, we considered using 32 × 6× 6× 2 in the detailed design (2).
In this local size, the load imbalance can be solved if we change a triple loop for 6× 6× 2 to the
following.

For(nz, nt loop (6x2=12) OpenMP parallel)
For(nx, ny loop )
X-direction difference computation
Y-direction difference computation

EndFor
EndFor
For(ny, nt loop (6x2=12) OpenMP parallel)
For(nx, nz loop)
Z-direction difference computation
T-direction difference computation

EndFor
EndFor

Hereinafter this optimization is referred to as thread-balancing. We can expect further optimiza-
tion by the compiler because loop bodies become simpler than the original code. On the other
hand, dividing accumulation of difference computations for each direction into two loops may
cause a performance reduction due to cache missing and additional add operations. Therefore we
compared the new and original codes and found that the new one showed a better performance
on single process. We also found that the elapsed time of the new code on 32 × 6 × 6 × 2 (see

2Loop iteration of the innermost loop for X-direction is one since 32 is divided by SIMD length 16 and 2 of
division number for domain decomposition in process.
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subsec. 14.2.17) lattice per process is shorter than that on 32 × 3 × 6 × 4 used in the detailed
design (2).

In the detailed design (3), we disused this loop fission tuning and reverted to the simple
quadruple loop. Further tuning on jinv_ddd_in_s_ and ddd_in_s_ such as inline expansion
of functions, optimization arrestation of common subexpression elimination reduced the num-
ber of spill/fill operations and showed a better performance on “Fugaku CPU performance
simulator (hereinafter referred to as simulator)”3. Load balancing had been still applied in
ddd_out_pre_s_ and ddd_out_pos_s_ due to lack of time for tuning. The performance was
estimated on 32× 6× 6× 2 lattice per process, which was still faster than on 32× 3× 6× 4 case.

In the detailed design (4), we disused the loop fission in jinv_ddd_in_s_ and ddd_in_s_

as well and applied the similar tuning to them. Resulting performance was improved although
there was possibility of performance reduction due to load balancing in threads. So we estimated
performance with prototype on 32 × 6 × 4 × 3. We, however, estimated performance with
ppptool on 32× 6× 6× 2 because performance on FX100 decreased significantly due to special
optimizations for ARM CPU.

14.2.4 Unequal OpenMP parallelization for reducing L1I missing

Quadruple loop for nx, ny, nz, and nt is allocated to all 12 threads in original ddd_out_pre_s_.
The number of the loop iterations is small and the ratio of L1I miss count is high when lattice
size per process is small. So we had tried unequal OpenMP parallelization that we allocate
four threads for nx, nt loops and two threads for ny, nz loops, respectively. By this change, L1I
missing was reduced and performance increased. In the detailed design (4), ddd_out_pre_s_
was reverted to the simple quadruple loop and optimized as ddd_in_s_.

14.2.5 Manual insertion of software prefetch

We manually insert software prefetch requests to reduce access wait time for floating-point load
from L2 cache. We prefetch data which will be used at one iteration ahead in the innermost
loop for in ddd_in_s_, and so on. For *in of union scs t defined as following, we prefetch
data every 256 Byte in the case of VLENS = 8. We also prefetch data which will be used in the
next loop at the end of loop.

typedef union {

float c[3][4][2][VLENS];

float c_prefetch[24*VLENS];

rvecs_t cv[3][4][2];

rvecs_t cs[12][2];

rvecs_t ccs[24];

} scs_t;

__builtin_prefetch(&((( in+i0+_PFI)->c_prefetch)[0]),0,1);

__builtin_prefetch(&((( in+i0+_PFI)->c_prefetch)[64]) ,0,1);

__builtin_prefetch(&((( in+i0+_PFI)->c_prefetch)[128]),0,1);

The compiler options and run time environments on FX100 are as follows.

Environments XOS MMM L ARENA FREE=2
OMP NUM THREADS=12

Options -Kfast,restp=all,ocl,preex,openmp,noswp,noprefetch,unroll=100

The weak prefetch is the default setting in prefetch oprations with builtin prefetch

function. We changed it to the strong prefetch by modifiyng the assemble code in the makefle
as follow

3It simulates Fugaku’s CPU performance.
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ddd_in_s_strp.s:ddd_in_s.s

sed -e "s/\(prefetch\t.*,\)0$$/\120/g" \

-e "s/\(prefetch\t.*,\)2$$/\122/g" $< > ddd_in_s_strp.s

By manual insertion of software prefetch, “L1D miss demand rate” and “Floating-point load
L2 cache access wait” decreased and the performance was improved in the all computation
regions. Gather prefetch that we tested in the detailed design (3) as a tuning for ARM64 and
SVE was ineffective. In the detailed design (4), we applied manual prefetch in the quadruple
loops to XYZT direction differential calculations.

14.2.6 OpenMP parallel region expansion

Because making omp parallel region is costly, we put “omp parallel” on higher level caller rou-
tines. “omp parallel” in the regions, ddd_in_s_, ddd_out_pre_s_, ddd_out_pos_s_, other_calc,
and jinv_ddd_in_s_ were moved to the outside of isap loop of caller routine: prec_ddd_s_.
This gave that “Instruction fetch wait” by “L1I miss rate” reduction, “Floating-point load L2
cache access wait” by “L1D miss demand rate” reduction, “Barrier synchronization wait”, “Inte-
ger load L1D cache access wait” by “Integer instruction” reduction, and “Integer load L2 cache
access wait” decreased for each region.

14.2.7 Tuning mult clvs by reordering arithmetic

A function __mult_clvs is used in ddd_in_s_, jinv_ddd_in_s_, and ddd_out_s_ for clover
term multiplication. We found by using simulator that the original code of __mult_clvs was
inefficient due to load and store operations because of register spill/fill. Fig. 14.1 is the outline of
the original code with which the computational latency can not be hidden because the red lined
arithmetic can not be performed before completing the previous arithmetic. A way to hide the
latency is to do independent arithmetic operations sequentially. On Fugaku, L1D Byte/FLOP
ratio in single precision is 2 and there are two floating-point operation pipelines. If the arithmetic
intensity is one FMA per one load (4 bytes per 2 operations) and there are 9+9 = 18 arithmetic
streams to hide 9 cycles of arithmetic latency for 2 arithmetic pipelines, one can obtain the
peak performance by round robin manner. This region almost satisfies the above conditions
with 32 registers, even if there are load operations for reuse of input date. Specifically, there are
16 arithmetic streams, with an arithmetic intensity of 4 loads and 4 FMAs. The order of the
operations and the code after the aligning the streams are shown in Fig. 14.2. We prevented
undesired compiler optimization, which is common subexpression elimination for long-distance
reuse, by splitting blocks with if statements. We also specified the compiler flags that suppress
instruction scheduling (-Knosch post ra -Knosch pre ra -Knoeval). We confirmed that these
optimizations reduced the number of spills from the original 512 to 14.

14.2.8 Optimization with ARM C Language Extensions（ACLE）

In the detailed design (3), the process of extracting the components that appear in the stencil
difference calculation in the X-direction, the SIMD vectorization direction, from the two vector
components into a single SIMD vector was implemented using the ACLE function for SVE. As
a result, the extraction of array elements for the difference calculation in the X-direction was
completed on the SIMD registers, the number of load/store instructions for temporary arrays
was reduced, and the execution efficiency greatly increased. Fig. 14.3 shows the conceptual
diagram of this optimization.
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void __mult_clvs(rvecs_t sc[3][4][2], rvecs_t a[2][36]) {
rvecs_t x[2][6][2];
rvecs_t y[2][2];

for (int c=0;c<3;c++){
for (int ri=0;ri<2;ri++){

for (int v=0;v < VLENS; vv++){
x[0][0+c][ri].v[v] = sc[c][0][ri].v[v] + sc[c][2][ri].v[v];
x[0][3+c][ri].v[v] = sc[c][1][ri].v[v] + sc[c][3][ri].v[v];
x[1][0+c][ri].v[v] = sc[c][0][ri].v[v] + sc[c][2][ri].v[v];
x[1][3+c][ri].v[v] = sc[c][1][ri].v[v] + sc[c][3][ri].v[v];

}
}

}

for (i=0;i<2;i++){
for (int v=0;v < VLENS; vv++){

y[i][0].v[v] = a[i][ 0].v[v] * x[i][0][0].v[v] +
a[i][ 6].v[v] * x[i][1][0].v[v] +
a[i][ 8].v[v] * x[i][2][0].v[v] +
a[i][10].v[v] * x[i][3][0].v[v] +
a[i][12].v[v] * x[i][4][0].v[v] +
a[i][14].v[v] * x[i][5][0].v[v] -
a[i][ 7].v[v] * x[i][1][1].v[v] -
a[i][ 9].v[v] * x[i][2][1].v[v] -
a[i][11].v[v] * x[i][3][1].v[v] -
a[i][13].v[v] * x[i][4][1].v[v] -
a[i][15].v[v] * x[i][5][1].v[v];

y[i][1].v[v] = a[i][ 0].v[v] * x[i][0][1].v[v] +
a[i][ 6].v[v] * x[i][1][1].v[v] +
a[i][ 8].v[v] * x[i][2][1].v[v] +
a[i][10].v[v] * x[i][3][1].v[v] +
a[i][12].v[v] * x[i][4][1].v[v] +
a[i][14].v[v] * x[i][5][1].v[v] +
a[i][ 7].v[v] * x[i][1][0].v[v] +
a[i][ 9].v[v] * x[i][2][0].v[v] +
a[i][11].v[v] * x[i][3][0].v[v] +
a[i][13].v[v] * x[i][4][0].v[v] +
a[i][15].v[v] * x[i][5][0].v[v];

}
}

for (int v=0;v < VLENS; vv++){
sc[0][0][0].v[v] = y[0][0].v[v] + y[1][0].v[v];
sc[0][0][1].v[v] = y[0][1].v[v] + y[1][1].v[v];
sc[0][2][0].v[v] = y[0][0].v[v] - y[1][0].v[v];
sc[0][2][1].v[v] = y[0][1].v[v] - y[1][1].v[v];

}
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Figure 14.1: mult clvs before optimizations.

Accumulation Registers :16

Load Registers : 4 (Max: 8)
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block

1st Block
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Figure 14.2: mult clvs after optimizations.

14.2.9 Integer register spill/fill suppression

In the detailed design (3), the loop was simplified by eliminating thread-balancing in sub-
sec. 14.2.3. Furthermore, inline expansion of __mult_clvs was performed to eliminate the
overhead of function calls. The compiler generates register spills/fills for other variables in order
to maintain registers that hold the results of common expressions. In order to avoid this behav-
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Figure 14.3: Conceptual diagrams of the X-direction data load for difference calculation before
(left) and after (right) optimization.

ior, we disabled the common expression by rewriting the base variable as (asm("":"+r"(x))).
In addition, we explicitly separated the base and immediate values in the source code to use
addressing with common base registers and immediate values as much as possible. As a result,
spill/fill of integer registers was suppressed by the compiler, and execution efficiency was im-
proved. Since this optimization was better than thread-balancing, the latest version of the code
does not adopt thread-balancing.

14.2.10 Scheduling operations on the source code to increase instruction-level
parallelism

A suitable source-code-level scheduling of operations can increase instruction-level parallelism.
Fig. 14.4 shows the source code before and after this tuning. Hereinafter this optimization is
referred to as hand-scheduling.

Before tuning
#define __mult_u_y_(upy,py,u) {\\

for (int c = 0; c < 3; ++c) {\

for (int s = 0; s < 2; ++s) {\

for (int j = 0; j < VLENS; ++j) {\

(upy).c[c][s][0][j]  = (u).c[0][c][0][j] * (py).c[0][s][0][j];\

(upy).c[c][s][1][j]  = (u).c[0][c][0][j] * (py).c[0][s][1][j];\

(upy).c[c][s][0][j] += (u).c[1][c][0][j] * (py).c[1][s][0][j];\

(upy).c[c][s][1][j] += (u).c[1][c][0][j] * (py).c[1][s][1][j];\

(upy).c[c][s][0][j] += (u).c[2][c][0][j] * (py).c[2][s][0][j];\

(upy).c[c][s][1][j] += (u).c[2][c][0][j] * (py).c[2][s][1][j];\

(upy).c[c][s][0][j] -= (u).c[0][c][1][j] * (py).c[0][s][1][j];\

(upy).c[c][s][1][j] += (u).c[0][c][1][j] * (py).c[0][s][0][j];\

(upy).c[c][s][0][j] -= (u).c[1][c][1][j] * (py).c[1][s][1][j];\

(upy).c[c][s][1][j] += (u).c[1][c][1][j] * (py).c[1][s][0][j];\

(upy).c[c][s][0][j] -= (u).c[2][c][1][j] * (py).c[2][s][1][j];\

(upy).c[c][s][1][j] += (u).c[2][c][1][j] * (py).c[2][s][0][j];\

}\

}\

}\

}

After tuning
#define __mult_u_y_vec_(upy,py,u) {                             \

vecs_t tmp0, tmp1, tmp2;                                    \

tmp0 = fload1_s(pt, (u).c, dims_glus, 0, 0, 0);             \

tmp1 = fload1_s(pt, (u).c, dims_glus, 0, 1, 0);             \

tmp2 = fload1_s(pt, (u).c, dims_glus, 0, 2, 0);             \

upy##_0_0_0 = fmul_s(pt, tmp0, py##_0_0_0);                 \

upy##_0_0_1 = fmul_s(pt, tmp0, py##_0_0_1);                 \

upy##_0_1_0 = fmul_s(pt, tmp0, py##_0_1_0);                 \

upy##_0_1_1 = fmul_s(pt, tmp0, py##_0_1_1);                 \

(snip)

upy##_0_0_0 = fnmadd_s(pt, tmp0, py##_2_0_1, upy##_0_0_0);  \

upy##_0_0_1 = fmadd_s(pt, tmp0, py##_2_0_0, upy##_0_0_1);   \

upy##_0_1_0 = fnmadd_s(pt, tmp0, py##_2_1_1, upy##_0_1_0);  \

upy##_0_1_1 = fmadd_s(pt, tmp0, py##_2_1_0, upy##_0_1_1);   \

upy##_1_0_0 = fnmadd_s(pt, tmp1, py##_2_0_1, upy##_1_0_0);  \

upy##_1_0_1 = fmadd_s(pt, tmp1, py##_2_0_0, upy##_1_0_1);   \

upy##_1_1_0 = fnmadd_s(pt, tmp1, py##_2_1_1, upy##_1_1_0);  \

upy##_1_1_1 = fmadd_s(pt, tmp1, py##_2_1_0, upy##_1_1_1);   \

upy##_2_0_0 = fnmadd_s(pt, tmp2, py##_2_0_1, upy##_2_0_0);  \

upy##_2_0_1 = fmadd_s(pt, tmp2, py##_2_0_0, upy##_2_0_1);   \

upy##_2_1_0 = fnmadd_s(pt, tmp2, py##_2_1_1, upy##_2_1_0);  \

upy##_2_1_1 = fmadd_s(pt, tmp2, py##_2_1_0, upy##_2_1_1);   \

}

Figure 14.4: Code before and after tuning to increase instruction-level parallelism.

14.2.11 Statical set of the problem size at compile time

By giving the problem size as a constant at compile time, the efficiency was slightly improved.
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14.2.12 Improving efficiency of reduction computation in multiple loops

The following multiple loops with reduction computation appears in the iterative method.

Multiple loops with reduction� �
for(i=0; i<n; i++)

for(j=0; j<m; j++)

s += a[i][j];� �
This code was translated to use vector reductions in the outer loop as “Before optimization”.

We instead directly wrote a loop using the vector built-in function with the following loop struc-
ture as “After optimization”. Hereinafter this optimization is referred to as effective-reduction.

Before optimization� �
for(i=0; i<n; i++) {

vector = {0,0, ...};

for(j=0; j<m/VLEN; j+=VLEN) {

vector += {a[i][j], a[i][j+1], ...};

}s += sum(vector);

}� �

After optimization� �
vector = {0,0, ...};

for(i=0; i<n; i++) {

for(j=0; j<m/VLEN; j+=VLEN) {

vector += {a[i][j], a[i][j+1], ...};

}

}

s = sum(vector);� �
14.2.13 Summary of tuning for each computation region

The following is a summary of the tuning of each computation region.

• ddd_in_s_

– Optimization with ACLE

– Integer register spill/fill suppression

– Hand-scheduling

– Manual prefetch insertion

– Deleting work array tmp

• jinv_ddd_in_s_

– Same tuning as ddd_in_s_

– Manual prefetch insertion into loops other than ddd_in_s_

• ddd_out_pre_s_

– Similar tuning as ddd_in_s_

• ddd_out_pos_s_

– Similar tuning as ddd_in_s_

• other_calc

– Manual prefetch insertion

– Effective-reduction

• __mult_clvs

– Hiding operation latency by rearranging the order of mutually independent operations
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– Register spill/fill suppression by rearranging the order of operations

• Common to all computation regions

– Aligning updated array

– OpenMP parallel region expansion

– Statical set of the problem size at compile time

14.2.14 Utilizing FP16

The QCD quark solver uses an iterative algorithm to solve the large scale linear equation ob-
tained from the equation of motion of quarks on lattice. To obtain double precision solution for
the equation efficiently, we employ a mixed precision scheme, in which single precision (FP32)
arithmetic is primary used, in the solver algorithm. Using the following FP32 arithmetic proper-
ties, high efficiency on the cash and memory bandwidth utilization per FLOP and doubled peak
FLOP performance than that of double precision (FP64), we can improve the performance of
the solver. Fugaku supports half precision (FP16) arithmetic and its peak FLOP performance
is doubled than that of FP32. We expect a more performance gain by using FP16 arithmetic in
the mixed precision solver algorithm.

In the detailed design (4), we discussed a mixed precision algorithm incorporating FP16,
FP32, and FP64. In general, the total iteration counts tends to be large to obtain a FP64
solution with the mixed precision scheme. It could spoil the gain from the high peak performance
of lower precision arithmetic. Therefore, we investigate the convergence behavior of the mixed
precision algorithm with FP16. Because it is difficult to maintain the numerical precision of
vector norm and inner product computation with FP16 arithmetic, we employ FP16 in a fixed
iterative solver involved in the quark solver.

In the FP64-FP32 mixed precision algorithm used in the quark solver, we utilize FP32
arithmetic in the multiplication of a preconditioning matrix on a vector. The matrix-vector
multiplication of the preconditioning matrix is computed by solving roughly the corresponding
linear equation with an iterative algorithm entirely in FP32. In the FP32 solver algorithm, one
more fixed iterative solver is involved as the preconditioner for the FP32 linear equation. We
change the precision of the fixed iterative preconditioning to FP16 and investigate the whole
convergence behavior to obtain the FP64 solution. In this study, as the compiler set and the CPU
of Fugaku were in developing and not available, we employ a C++ class library half-1.12.0

(http://half.sourceforge.net/), which is compliant to IEEE-754, in implementing the FP16
iterative solver.

We investigate the convergence behavior of the quark solver at five quark masses corre-
sponding κ = 0.1324, 0.1333, 0.1342, 0.1348, 0.1350 on a configuration generated at β = 6.00
in pure Wilson gauge theory, where the corresponding pseudo-scalar meson masses aMPS are
aMPS ≃ 0.100, 0.090, 0.065, 0.035, 0.010, respectively. Figure 14.5 plots the residual norm of the
linear equation against each the FP32 solver iteration count. The left panels are the results
with the FP64-FP32-PF16 mixed precision solver, and the right ones are with the FP64-FP32
mixed precision one. The panels are vertically aligned according to the quark mass from the top
panels (heaviest quark mass) to the bottom ones (lightest). The total iteration counts for the
convergence becomes larger as we decrease the quark mass, and the count of the FP64-FP32-
PF16 mixed precision is ∼ 17% (∼ 26%) longer than that of the FP64-FP32 mixed precision
for κ = 0.1348 (κ = 0.1350). We could expect a performance elapse time gain with FP16 when
the computational performance gain with FP16 overcomes the increase of the computational
amount for the convergence with FP16.

http://half.sourceforge.net/
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Figure 14.5: Residual norm v.s. the FP32 solver iteration count.

In tuning period (1) of the project, we tested the program of the FP16-FP32-F64 mixed
precision algorithm on prototype. As the C/C++ compiler in the trad mode does not support
the native FP16 arithmetic, we use the compiler in the clang mode which supports the native
FP16. We confirmed that the native FP16 mnemonics were cast by the compiler. However, they
were not vector mnemonics but scalar ones. Since the compiler in the clang mode is currently
developing and the optimization ability is not complete yet, we cannot conclude the LQCD code
performance with FP16 at this stage and it remains for future studies.
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We note that the longer SIMD vector length of FP16 cannot fit the vector length of the
LQCD solver code. In our target problem, the lattice size is 1924 and it is divided to small
local-lattices for MPI parallelization. The local-lattice extent in the X-direction is 16 and this
length is identical to the FP32 SIMD vector length. The longer vector length 32 of FP16 exceeds
the local-lattice extent 16 to be vectorized so that half of the FP16 SIMD vector functionality
does not work. In order to fully utilize FP16 vector we need a reconstruction of preconditioning
method or parallelization scheme of the quark solver algorithm. For the small sized problem
with a small number of MPI processes, on the other hand, we can increase the local-lattice size
so that the FP16 SIMD vector can fully function. We will prepare the fixed iteration solver with
FP16 functional for these cases.

14.2.15 Double-buffering

Our target parallelism is fine grained, the lattice size per process is rather small so that the
performance of the halo exchange communication, which is nearest neighbor communication
in the 4D lattice, could affect the total performance of the quark solver. In order to reduce
the impact of the nearest neighbor communication to the total performance, we overlap the
halo exchange communication and the matrix stencil application on the interior sites in the
process. We further divide the lattice volume of nx×ny×nz×nt into two subvolumes with each
(nx/2) × ny × nz × nt. Accordingly the stencil matrix-vector multiplication is divided into the
following three operations; (STEP A) stencil matrix-vector multiplication within a subvolume,
(STEP B) stencil matrix-vector multiplication between two subvolumes, and (C) halo exchange
communication. The operation (STEP B) is further divided into two parts; (STEP B-1) packing
data to send for halo exchange, (STEP B-2) unpacking data received and computing remaining
stencil on the surface sites. The operation (STEP C) performs the MPI communication and can
be overlapped to the operation (STEP A) by using non-blocking MPI send/receive procedures.
The full stencil multiplication goes as (STEP B-1) → (STEP A)+(STEP C) → (STEP B-2).

We have implemented the communication-computation overlap scheme in the quark solver
as described above. The communication performance estimated for Fugaku, however, shows
that testing the completion of data sending and receiving can be a large performance bottleneck
for the total performance. As these tests are called in (STEP B-1) and (STEP B-2), we cannot
overlap them to (STEP A) or (STEP C). In order to reduce the overhead by the tests, as shown
in Fig. 14.6, we evaluated the performance of a double-buffering (DB) method by which these
tests can be delayed to overlap.

The boundary condition of the equation of motion of quarks is periodic in the 4D space-
time, the nearest neighbor halo exchange in each direction is required. Usually a pair of buffers
for data-send and data-receive is assigned in each direction and MPI_isend/irecv uses these
buffers for halo exchange. To reduce the latency furthermore, we planned to combine a RDMA
(one-sided) communication instead of the point-to-point communication and DB.

The DB scheme is implemented as follows. Each MPI process has one send-buffer and two
receive-buffers in each communication link. There are eight communication links in a process,
which correspond to eight directions in the 4D periodic boundary condition. The receive-buffer
has its own parity attribute, 0 and 1, respectively. Each MPI process has state P which is a
set of parity states for eight links. As the halo exchange communication is accomplished by all
the MPI processes simultaneously for each matrix-vector multiplication, the state P is identical
among all the MPI processes. With these setups the DB scheme in a link proceeds as

1. Copy the data to send into the send-buffer. An additional element, the receive-buffer-
occupy state flag, is attached as the last element of the send-buffer. The receive-buffer-
occupy state flag is set to “occupied”. For the uTofu implementation discussed later, the
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receive-buffer-occupy state flag is changed to another value different from each communi-
cation instead of “occupied”.

2. Transfer the data in the send-buffer using the RDMA put function. The RDMA put
function is asynchronous and non-blocking. The data will be transferred into one of the
receive-buffers with corresponding parity P . In order to test the completion of data transfer
on the receiver side quickly, we employ a mode that the completion is guaranteed when
the last element arrives in the receive-buffer.

3. Do stencil computation on the interior sites.

4. Wait for the data arrival by inspecting the receive-buffer-occupy state flag in the last
element of the receive-buffer with parity P . When the occupy state flag is changed to
“occupied” state, it is guaranteed that the new data are ready in the receive-buffer. For
the uTofu implementation, wait for the occupy state flag to change to a state different
from the previous communication.

5. Unpack the data from the receive-buffer, and do remaining stencil computation using the
data.

6. Set the occupy state flag to “empty” in the receive-buffer. For the uTofu implementation,
this step has to be omitted.

7. Wait for the completion of the RDMA put function. After the completion, flip the parity
P state of the process.

In our previous version of the DB algorithm, we had a step asking the destination MPI
rank for the readiness of the receive-buffer by using RDMA Get communication before the first
step. However, this step is not required in the DB algorithm and omitted here. In order to
verify our DB algorithm, we implemented the algorithm in the Jacobi iterative solver for the
two-dimensional (2D) Laplace equation, which is also a stencil type application similar to the
LQCD quark solver. We have verified:

• The inquiry step for the receive-buffer can be omitted,

• The parity state is appropriately flipped to work the algorithm.

We implemented several versions for the verification program and executed them on FX100.
We search for the most efficient version by comparing the computation time and communication
bandwidth among them. The details of the versions, in which we also show the uTofu version
for later convenience, are as follows:

1. Two versions, single-buffering (SB) and DB versions using MPI-1 persistent point-to-
point communication functions. When Fujitsu MPI extension FJMPI are available for
the persistent communication, we employ the corresponding FJMPI functions. The arrival
signal polling for the receive-buffer, we employ MPI_Waitall function so that the receive-
buffer-occupy state flag is not attached.

In these versions, the following functions are used: FJMPI_Prequest_recv_init(),
FJMPI_Prequest_send_init(), FJMPI_Prequest_startall(), and MPI_Waitall().

2. SB and DB versions using MPI-2 one-sided communication functions. Some MPI-3 func-
tions are used for synchronization of buffers.
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Table 14.2: Communication functions used in DB
Implementation STEP A STEP B STEP C

1 FJMPI_Prequest_startall MPI_Waitall MPI_Waitall

2 MPI_Put Check MPI Win sync and re-
cieve buffer

MPI_Win_flush_local

3 FJMPI_Rdma_put Check recieve buffer FJMPI_Rdma_poll_cq

4 utofu_put Check recieve buffer utofu_poll_tcq

The receive-buffer is allocated with MPI_Win_allocate and exposed to the sender rank
with MPI_Win_lock. For the synchronization between the buffer and memory, MPI_Win_sync
is used. The completion of the MPI_Put is checked with MPI_Win_flush_local. Because
we have to call MPI_Win_sync later than the call to MPI_Win_flush_local, we have to
put “Put completed” before “Check local receive buffer” in Fig. 14.6. The timing of parity
flip is not changed.

Functions used are : MPI_Win_allocate(), MPI_Win_lock() (used with MPI_LOCK_EXCLUSIVE
mode),
MPI_Put(), MPI_Win_flush_local(), MPI_Win_sync()

3. DB version with Fujitsu’s RDMA functions. A wrapper library rdma_comlib, which uti-
lizes Fujitsu’s RDMA for the quark solver in K-computer, is employed by modifying it
capable of the DB algorithm.

Functions used are : FJMPI_Rdma_reg_mem(), FJMPI_Rdma_put(), FJMPI_Rdma_poll_cq()

4. DB version with uTofu. This version is based on the above Fujitsu’s RDMA version. (The
polling method for the data arrival completion is changed as described later.)

Functions used are : utofu_create_vcq(), utofu_query_vcq_id(), utofu_reg_mem(),
utofu_dereg_mem(), utofu_poll_tcq(), utofu_poll_mrq(), utofu_free_vcq(), utofu_put()

Table 14.2 summarizes the communication functions used in the SB and DB algorithms and the
location of these functions in the algorithms (see also Fig. 14.6 for the location and functions
used).

According to the above implementations and tests on FX100, we have verified the algorithm
for all versions. In the test we observed that the version 2 (MPI-2 put version) could not fully
utilize the network bandwidth. On the other hand, other versions could utilize the network
bandwidth by which the total performance is limited. Comparing the SB and DB versions, no
significant performance differences are observed. The best performance was achieved by Fujitsu’s
RDMA version (version 3) on FX100. Because the full functionality of uTofu was not available
and emulated on FX100 at that stage, we postponed the verification with uTofu.

After verifying the DB algorithm, we incorporate the version 1 (MPI-1 persistent) and version
3 (Fujitsu’s RDMA) into qws-0.1.8 (Version 0.1.8 of QWS). We further replace the version 3
(Fujitsu’s RDMA) to the version 4 (uTofu) for Fugaku after qws-0.2.2 version.
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Figure 14.6: DB algorithm with Fujitsu’s RDMA functions.

14.2.16 uTofu

4D lattice used in LQCD requires at most 8 directions to communicate, and in the domain
decomposition scheme, 7 of them should take place simultaneously. Since uTofu provides an
interface which enables simultaneous communication with those directions, it should be best
suited for bringing the performance of Fugaku. It is important to verify and compare various
implementation on the actual machine. The use of uTofu is also related to following subsec-
tions 14.2.17 and 14.2.18. In this subsection, we describe the implementation in qws-0.2.4
on the evaluation environment in the trial phase of Fugaku and the overview of the measured
performance.

Usage of vcq Commutation instructions must be given through Virtual Control Queue (vcq).
We prepare one vcq for each direction, 8 vcqs in total. A vcq transferring data to one
direction also receives the data from the same direction. We use MPI communication to
notify vcq id to the logical neighboring ranks in the application. All vcqs are constructed as
thread safe with UTOFU_VCQ_FLAG_THREAD_SAFE flag so that maximally 8 put instructions
can be simultaneously issued in thread parallel. With this thread parallelization, data
transfer from memory to TNI (with domain decomposed algorithm, data copy between
domains inside the rank as well) are accelerated.

Polling of the queue Notifications related to transferring (TCQ) and receiving (MRQ) piled
in the vcqs must be removed by occasional pollings. Polling TCQ to confirm data transfer
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completion automatically removes other notifications related to the transfer. Notifications
in MRQ are removed by additional pollings at the beginning of waiting for data receiving.

Specification change of the occupy state flag We have changed the specification of the
occupy state flag in the uTofu version. This is to use the cache injection. The received
data is written to memory by default but the cache injection directly writes them into
the cache instead4. In order for cache injection to work, in addition to having a suitable
memory alignment of the receive-buffer, no additional writes than receiving should be made
to the buffer. For this reason, we changed from the receiver to the sender that updates
the state of the flag in the data: the receiver does not change the state to “empty” but
the sender updates the value of the flag before each transfer. The receiver holds the
precious value and update of the value in the buffer is used to detect the completion of
data receiving.

Process mapping We use uTofu to notify the process mapping (rankmap) in qws-0.2.4. We
have changed this implementation to use MPI communication afterwards, however, what
follows is the original implementation with uTofu.

Each rank needs to know the rank number of the neighbors in 4D LQCD coordinates.
It is easy to calculate the six-dimensional (6D) Tofu coordinates of neighbors from own
Tofu coordinate, however, it is non-trivial to obtain the neighbor’s rank numbers. In qws-
0.2.4, we use Atomic Read Modify Write (ARMW) of uTofu to exchange them. The
ARMW communication requires vcq id of the neighboring ranks, which is calculated by
using utofu_create_vcq_with_cmp_id() function. One further needs to know the value
of control queue (cq) used in utofu_create_vcq_with_cmp_id() function to create a vcq,
however, a way to obtain the cq is not given in the uTofu specification. We guessed it
from the behavior of utofu_create_vcq_with_cmp_id()5.

We used the Jacobi solver for 2D Laplace equation in the previous section to verify the
behavior of DB scheme implemented with uTofu. We confirmed that the theoretical commu-
nication band width is well saturated and that a very good weak scaling up to three racks on
the real machine. The environment was the evaluation environment in the trial phase with the
compiler as of February, 2020. On the same environment, the MPI version roughly weak scaled
but the throughput was about a half of the uTofu version.

We also verified that uTofu version of qws-0.2.4 shows roughly a weak scaling up to 36 racks
on the evaluation environment in the trial phase and the compiler as of December 2019. The
performance up to three racks was almost the same as that on a single node, but became about
a half with more racks6. On the same environment, MPI version without rankmap did not show
weak scaling in general. By combining the rankmap, it showed a scaling up 16 racks but slower
than uTofu version by 40%, and did not scale at all with 36 racks.

14.2.17 Optimization of process mapping and TNI allocation

This subsection describes a method for searching for process mapping and TNI allocation related
to the execution time of adjacent communication. This method searches a configuration that

4In order to verify this change, the cache injection is disabled by a flag to the put instruction in qws-0.2.4.
5 This guess failed in the language environment lang/tcsds-1.2.27b so we stopped using ARMW and switched

to use MPI communication instead. After that, a table between MPI ranks and Tofu coordinates are sent to all
ranks with MPI Allreduce.

6 It turned out later that it was caused by the OS jitters.



CHAPTER 14. CODESIGN OF LQCD 197

minimizes the transfer message length of the Tofu link or TNI. In the following explanation, the
space of process allocation is expressed as {T1, T2, . . . , Tn},

Ti = (ti, si, oi, hi) ,

ti ∈ {TX,TY,TZ,TA,TB,TC, IN NODE} ,
si ∈ N , oi ∈ {torus,mesh} , hi ∈ N ,

(14.1)

where Ti is the respective axis of the network, ti denotes the physical axis of Tofu (when multiple
processes are allocated to one node, the axis is expressed as IN NODE), si is the length of Ti, oi
is torus if the coordinates at both ends of Ti are adjacent to each other, otherwise it is mesh, and
hi is the distance between the adjacent coordinates in the Ti axis as viewed in the ti axis. For
example, a physical X-axis of length 24 (24 being the entire system, it is torus) is represented
as (TX, 24, torus, 1).

The physical X-axis of length 24 is hypothetically divided into the axes TXc of length 2 and
TXd of length 12, and the coordinate x of TX corresponds to the coordinate [x mod 2] of TXc
and the coordinate [x/2] of TXd. they are (TX, 2,mesh, 1) and (TX, 12, torus, 2), respectively.

Step 1 For the input Tofu physical shape, enumerate the combinations of at most two divisions
for each physical axis. In other words, for all s1 and s2 satisfying s = s1×s2 for a physical
axis t of length s and tortuosity o, enumerate {(t, s1,mesh, 1), (t, s2, o, s1)}, where if either
s1 or s2 is 1, then {(t, s, o, 1)}.

Step 2 For each physical axis, select one from those listed in Step 1 and combine them. Then,
list all the combinations as P2. For example, when the lengths of the physical X, Y, and
Z axes are 24, 22, and 24, respectively, an example of p2 ∈ P2 is {(TX, 24, torus, 1), (TY,
11, mesh, 2), (TY, 2, mesh,1), (TZ, 8, torus, 3), (TZ, 3, mesh, 1), (TA, 2, mesh, 1), (TB,
3, torus, 1), (TC, 2, mesh, 1), (IN NODE, 4, mesh,1 )}.

Step 3 If all the elements of P2 have already been processed, terminate the algorithm. For
p2 ∈ P2, which has not yet been selected, select and combine axes to make a torus from
p2, and list the possible combinations assigned to each axis of the process partition. That
is, when the lengths of the four axes of the process partition are (n1, n2, n3, n4) and we
assign the following axesCi, enumerate all combinations of (C1, C2, C3, C4).

Ci = {(ti,1, si,1, oi,1, hi,1), . . . , (ti,n, si,n, oi,n, hi,n)} ⊂ p2 , (14.2)

where Ci satisfies ni ≤
∏

j si,j , and two or more ti,j exist except for IN NODE or oi,j =
torus exists. We assume that the torus passing through ni vertices can be constructed
even if ni is even and

∏
j si,j (except j for which ti,j=IN NODE) is odd. We can also

exclude combinations where there are j, k such that ti,j = ti,k, since they are equivalent to
combinations that do not split that physical axis. For example, for an axis with process
number 6, we can assign {(TY, 2,mesh, 1), (TZ, 3,mesh, 1)}. Let P3 be the result of the
enumeration.

Step 4 If all elements of P3 have already been processed, return to Step 3. For p3 ∈ P3 that has
not yet been selected, compute the corresponding F of the message length to be transferred
for each combination of the Tofu axis and the LQCD axis of process division. The elements
of F are

(t, q, d,m) ∈ F , t ∈ {TX,TY,TZ,TA,TB,TC, IN NODE} ,
q ∈ {QX,QY,QZ,QT} , d ∈ {plus,minus,both} , m ∈ N ,

(14.3)
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where t is the physical axis, q is the axis of process division of LQCD, d is the direction
of transmission as seen in the axis of process division, and m is the message length. The
following substeps are used to calculate F for the next assignment to the process partition
axis q.

{(t1, s1, o1, h1), . . . , (tn, sn, on, hn)} (14.4)

Step 4.1 On the q-axis, find the number of inter-node communication processes ninter and the
number of intra-node communication processes nintra per node. Set the overall number of
processes per node as n. If ti = IN NODE, nq = si; otherwise, nq = 1. In this case

ninter =
n

nq
, nintra =

(nq − 1)× n

nq
. (14.5)

Step 4.2 Assign the length of the message sent per process at the q-axis to mq. When ti ̸=
IN NODE, let (ti, q, both, ninter × mq × hi) ∈ F . Multiply by hi to include transfers to
other nodes due to hops. If ti = IN NODE, then (IN NODE, q, both, nintra ×mq).

Step 5 For F obtained in Step 4, calculate the total transfer message length for each Tofu
physical axis, where IN NODE is excluded. The total transfer message length for physical
axis t is the sum of m for all (t, q, d,m) ∈ F . If the best value among them exceeds the
best value from other assignments obtained so far, return to step 4.

Step 6 For F obtained in Step 4, list the possible combinations of the six TNI assignments. For
a physical axis t, when (t, qi,both,mi) ∈ F , we can use either Step 6a or 6b to assign TNI
a, b (a = b is also acceptable). These methods satisfy the restriction that, from the point
of view of a Tofu link, there is only one TNI that uses the Tofu link. Let Ia, Ib be the set
of communications assigned to a, b, respectively. Since there is no need to distinguish each
of the six TNI, we can express K = {(I ′1, n1), . . . , (I

′
m, nm)} instead of (I1, . . . , I6), where

ni is the number of j for which I ′i = Ij . In this way, when choosing the TNI to assign, we
can reduce it to |K| ways.

Step 6a When t is IN NODE, or when there is exactly one axis of qi that communicates in
both directions in one adjacent communication (i.e., when there is one i such that qi ∈
{QY,QZ,QT}), assign (t, qi, plus, mi) ∈ Ia, (t, qi, minus, mi) ∈ Ib or (t, qi, minus, mi)
∈ Ia, (t, qi, plus, mi) ∈ Ib to each different qi. This means that in the former case,
Ia is used for communication in the positive direction of qi, regardless of the direction
of t, and Ib is used for communication in the negative direction of qi, regardless of the
direction of t. When qi = QX and a = b, the communication of qi never occurs in both
directions at the same time, so only one of plus or minus shall be assigned. For example,
when {(t,QX,both,mx), (t,QY, both,my)} ⊂ F , the following assignments can be made
respectively.

A) {(t,QX, plus,mx), (t,QY, plus,my)} ⊂ Ia, {(t,QX,minus,mx), (t,QY,minus,my)} ⊂ Ib

B) {(t,QX,plus,mx), (t,QY,minus,my)} ⊂ Ia, {(t,QX,minus,mx), (t,QY, plus,my)} ⊂ Ib

C) {(t,QX,minus,mx), (t,QY, plus,my)} ⊂ Ia, {(t,QX, plus,mx), (t,QY,minus,my)} ⊂ Ib

D) {(t,QX,minus,mx), (t,QY,minus,my)} ⊂ Ia, {(t,QX, plus,mx), (t,QY, plus,my)} ⊂ Ib

In this case, “A and D” and “B and C” are the same if a, b are swapped, respectively, so
one of them can be omitted.

Step 6b When t is not an IN NODE, assign (t, qi, both, mi) ∈ Ia for all i. This means that if t
has only a one-way link (either TA or TC), the communication through t uses a regardless



CHAPTER 14. CODESIGN OF LQCD 199

of the direction of qi. If t has links in both directions, we further assign (t, qi, both, mi)
∈ Ib. This means that communication through one direction, positive or negative of t, will
use a regardless of the direction of qi, and communication through the other direction will
use b regardless of the direction of qi. Since we do not need to distinguish between the
positive and negative values of T until the end, we assign the same value. When a = b, in
order to express the existence of both directions, we further use ({t}, qi, both, mi) ∈ Ia.

Step 7 For the allocations listed in Step 6, calculate the transfer message length of the bot-
tleneck TNI. Calculate the transfer message length of the TNI for the allocation I =
{(t1, q1, d1,m1), . . . , (tn, qn, dn,mn)} in Step 7.1 and Step 7.2. If the transfer message
length of the bottleneck TNI is smaller than the best value so far, update the best value.
After completing Step 7, return to Step 4. The calculation of the transfer message length
of the TNI by step 7 can be performed in the allocation by step 6, and if it exceeds the
best value, the steps for the allocation can be terminated at that point.

Step 7.1 For each i for which ti = IN NODE, add mi.

Step 7.2 In I ′, excluding those processed in Step 7.1, for each q ∈ {QX,QY,QZ,QT}, divide it
into I ′ = ∪qIq, where Iq = {(tq,1, q, dq,1,mq,1), . . . , (tq,nq , q, dq,nq ,mq,nq)}. For each Iq, add
the largest mq,i of i that is dq,i ∈ {plus, both}. Furthermore, add the largest mq,i among
i that is dq,i ∈ {minus, both}. In addition, add the largest mq,i of i that is dq,i ∈ {minus,
both}. The reason why only the largest value is added is that only one link is used for
communication in the same direction on the same axis.

14.2.18 Estimation and verification of the efficient process mapping and wait
time of the nearest neighbor communication completion

Different lattices per process are used by ppptool and prototype to estimate the performance.
They are 32×6×6×2 and 32×6×4×3. For each case, the wait time in unit of millisecond; [ms]
of the nearest neighbor communication completion is shown in the following table. We state
how to estimate in the following subsections.

lattice size per process 　 wait time [ms]
　 each total

32× 6× 6× 2 0.018 0.36
32× 6× 4× 3 0.012 0.24

14.2.18.1 Estimate of the neighboring-communication timing for lattice size per
process 32× 6× 6× 2

The process division of 1924 lattice by 32× 6× 6× 2 lattice per process is 6× 32× 32× 96. The
amount of data transfer for each direction is

data transfer to QX± direction = 3456 bytes,
data transfer to QY± direction = 9216 bytes,
data transfer to QZ± direction = 9216 bytes,
data transfer to QT± direction = 27648 bytes.

The subscript ± indicates data transfer to forward and backward direction, respectively. For
QX direction, transfer to only forward or backward direction is used in one set of neighboring
communications. For other directions, transfer to both directions are needed.

By using the process mapping and TNI allocation search algorithm described in subsec. 14.2.17,
one finds that the process map in Table 14.3 is the best, which uses a 6D 24×22×24×2×3×2
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physical node shape. The map virtually divides each of TY and TZ axis into two axes. The
axes TYc/TYd and TZc/TZd in Table 14.3 are the names of virtual axis made from TY and
TZ axis, respectively.

Table 14.3: LQCD and Tofu axis (lattice size per process: 32× 6× 6× 2).
QCD number of Tofu axis number of process number of process number of process
axis process per node w/ intra-node comm. w/ inter node comm.
QX 6 TYc,TZc (2× 3) 1 0 4
QY 32 TYd,TB (11× 3) 1 0 4
QZ 32 TZd (8) 4 3 1
QT 96 TA,TC,TX (2× 2× 24) 1 0 4

The TY axis divided into TYc axis with length 2 and TYd axis with length 11, and the
TY coordinate y is associated with ymod 2 and

[y
2

]
, respectively. Therefore, a neighbor in the

TYc axis is also a neighbor in TY while a neighbor in the TYd axis is two-hop away in the TY
axis. Similarly, the TZ axis divided into TZc axis with length 3 and TZd axis with length 8,
and the TZ coordinate z is associated with zmod 3 and

[
z
3

]
, respectively. A neighbor in the

TZc axis is also a neighbor in TZ while a neighbor in the TZd axis is three-hop away in the TZ
axis. Since the TZ axis has a torus geometry, TZd axis becomes a torus as well. Therefore, we
can assign the TZd axis to the QZ axis. The TNI assignment and message size for this process
assignment is in Table 14.4. Each node has 6 TNIs and physical 6D Tofu coordinate (we denote

Table 14.4: TNI assignment and message size (lattice size per process: 32× 6× 6× 2).
Direction Direction Message length Number of Link Amount of data transfer

in the QCD in the Tofu TNI# per process communication Multiplicity to link/intra-node
coordinate coordinate (Byte) process (number of hops) (Byte)

QX TY± 0/1 3456 4 1 13824
TZ± 2 4 1 13824

QY- TB± 0 9216 4 1 36864
TY± 0 4 2 73728

QY+ TB± 1 9216 4 1 36864
TY± 1 4 2 73728

QZ- TZ± 2 9216 1 3 27648
LB 3 3 - 27648

QZ+ TZ± 2 9216 1 3 27648
LB 3 3 - 27648

QT- TA 4 27648 4 1 110592
TC 4 4 1 110592
TX± 4 4 1 110592

QT+ TA 5 27648 4 1 110592
TC 5 4 1 110592
TX± 5 4 1 110592

the path for the communication by link) has 10 directions. We assign TNIs such that each
link corresponds to a single TNI. This constraint is to avoid conflicts in TNI-link data transfers
caused by simultaneous using of a link by multiple TNIs. We use the same link and TNI for
both sending and receiving, which makes sending and receiving symmetric. Together with the
fact that the sending and receiving band widths are the same for TNIs and links, the arguments
bellow apply to both sending and receiving. In the table, LB denotes a loop-back to the sender
node.

The amount of the data transfer to link/intra-node is a sum of data transfer from all pro-
cesses in the node and pass through data due to the multiple hoppings. The amount is obtained
as a product of the message length, the number of communication processes and the link multi-
plicities. The number of communication processes are listed in Table 14.4. The link multiplicity
is 2 for the communication in TYd direction and 3 in TZd direction.
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Some rows in the Tables have “0/1” in the TNI assignment. Since the communication in
QX direction dose not use TY- and TY+ simultaneously, it uses the same TNI as one of QY-
and QY+ that shares the same link. For example, if communication to QX direction and QY-
direction use the same link, QX uses TNI#0.

By using Table 14.4, we can calculate the amount of data transfer for each link and TNI.
Since the QCD axes are mapped to a torus geometry, no communication to forward and back-
ward directions of the same QCD axis shares the same link. To calculate the amount of data
transferred through the link, we therefore add the data only to one direction. Furthermore, no
communication uses multiple links simultaneously in sending data to one direction. To obtain
amount of data transfer for each TNI, we add only the maximum one among the data transfer
to links from the TNI. We show the obtained amount of the data transfer for each link and TNI
in Table 14.5 and 14.6, respectively.

Table 14.5: Message size in a link (lattice size per process: 32× 6× 6× 2).
Tofu coord. QCD corrd. TNI# Injectgion size Sum’d Total

dirs. dirs. to a link (Byte) to Total (Byte)
TA QT- 4 110592 ✓ 110592

QT+ 5 110592
TB- QY- 0 36864 ✓ 36864

QY+ 1 36864
TB+ QY- 0 36864 ✓ 36864

QY+ 1 36864
TC QT- 4 110592 ✓ 110592

QT+ 5 110592
TX- QT- 4 110592 ✓ 110592

QT+ 5 110592
TX+ QT- 4 110592 ✓ 110592

QT+ 5 110592
TY- QX 0/1 13824 ✓ 87552

QY- 0 73728 ✓
QY+ 1 73728

TY+ QX 0/1 13824 ✓ 87552
QY- 0 73728 ✓
QY+ 1 73728

TZ- QX 2 13824 ✓ 41472
QZ- 2 27648 ✓
QZ+ 2 27684

TZ+ QX 2 13824 ✓ 41472
QZ- 2 27648 ✓
QZ+ 2 27684

LB QZ- 3 27648 - -
QZ+ 3 27648 - -

From Tables 14.5 and 14.6, one finds that the bottleneck is TA, TC, TX+, TX- and TNI#4,
5, of which amount of data transfer is 110,592 bytes and 110,592B/(6.12GB/s)=0.01807 [ms] is
the waiting time for each set of neighboring communication. QCDJDD has 20 sets of neighboring
communication in one iteration. Our estimation of waiting time for neighboring communication
in the whole evaluation region is 0.36 [ms].

14.2.18.2 Verification of the neighboring-communication timing for lattice size per
process 32× 6× 6× 2

We have theoretically estimated the performance of the nearest neighbor communication region
comlib_recv_wait_all_c in subsubsec. 14.2.18.1. In this subsection we examine the estimation
method by actually performing benchmark run on K. To simulate Fugaku’s communication
environment on K, we shrink the parallelization size to be contained in a bunch of nodes of
K, while the communication pattern per process is identical to Fugaku. Although the process
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Table 14.6: Message size in a TNI (lattice size per process: 32× 6× 6× 2).
TNI# QCD coord. Tofu coord. Injection size Summ’d Total

dirs. dirs. to a link (Byte) to Total (Byte)
0 QX TY- 13824 ✓ 87552

TY+ 13824
QY- TB- 36864

TB+ 36864
TY- 73728 ✓
TY+ 73728

1 QX TY- 13824 ✓ 87552
TY+ 13824

QY+ TB- 36864
TB+ 36864
TY- 73728 ✓
TY+ 73728

2 QX TZ- 13824 ✓ 69120
TZ+ 13824

QZ- TZ- 27648 ✓
TZ+ 27648

QZ+ TZ- 27648 ✓
TZ+ 27648

3 QZ- LB 27648 ✓ 55296
QZ+ LB 27648 ✓

4 QT- TA 110592 ✓ 110592
TC 110592
TX- 110592
TX+ 110592

5 QT+ TA 110592 ✓ 110592
TC 110592
TX- 110592
TX+ 110592

and TNI mapping pattern for Fugaku described in subsubsec. 14.2.18.1 cannot be completely
simulated on K, we can verify the algorithm of process mapping and estimation of communication
message length on the simulated benchmark on K as they are the same as those of Fugaku. We
can examine the performance bottlenecks by eliminating the intra-node commutation and the
TNI assignment on K as K only has four TNI’s.

We employ the same parameters as those in subsubsec. 14.2.18.1 for the benchmark on K.
The process mapping and the TNI assignment are shown in Tables 14.7 and 14.8, respectively. In
this case, the message size per single link and TNI is shown in Tables 14.9 and 14.10, respectively.
The estimation methods and meanings in the tables are the same as those in subsubsec. 14.2.18.1.
From these estimate, we find that the performance bottleneck is in the TZ± links and the message
length is 124416 byte in this assignment.

Table 14.7: LQCD and Tofu axis for verification benchmark on K (lattice size per process :
32× 6× 6× 2).

QCD # of Tofu axis # of procs. # of procs. # o procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TYc,TZc (2× 3) 1 0 4
QY 32 TYd,TB (11× 3) 1 0 4
QZ 32 TZd,TA,TC (8× 2× 2) 1 0 4
QT 96 TX (24) 4 3 1

We perform a benchmark to examine these process mapping and TIN assignment with a
reduced problem size on K. We employ the process topology 6 × 6 × 12 × 3 for the reduced
problem size and the number of nodes is 2× 6× 9× 2× 3× 2 = 1296. The process mapping is
shown in Table 14.11, where we assign single process on a node and enlarge the message size by
a factor four to simulate the load of a TNI link of Fugaku instead of placing four processes. By
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Table 14.8: TNI assignment and message size for verification benchmark on K (lattice size per
process : 32× 6× 6× 2).

QCD Tofu Message length # of procs. Link Message size
coord. coord. TNI# per procs. communicating multiplicity to link/intra-node
dirs. dirs. (Byte) (# of hops) (Byte)
QX TY± 0/1 3456 4 1 13824

TZ± 2/3 4 1 13824
QY− TB± 0 9216 4 1 36864

TY± 0 4 2 73728
QY+ TB± 1 9216 4 1 36864

TY± 1 4 2 73728
QZ− TA 2 9216 4 1 36864

TC 2 4 1 36864
TZ± 2 4 3 110592

QZ+ TA 3 9216 4 1 36864
TC 3 4 1 36864
TZ± 3 4 3 110592

QZ− TX± 0 27648 1 1 27648
LB 4 3 - 82944

QZ+ TX± 1 27648 1 1 27648
LB 5 3 - 82944

Table 14.9: Message size in a link for verification benchmark on K (lattice size per process :
32× 6× 6× 2).

Tofu coord. QCD corrd. TNI# Injection size Sum’d Total
dirs. dirs. to a link (Byte) to Total (Byte)
TA QZ− 2 36864 ✓ 36864

QZ+ 3 36864
TB− QY− 0 36864 ✓ 36864

QY+ 1 36864
TB+ QZ− 2 36864 ✓ 36864

QZ+ 3 36864
TC QY− 0 36864 ✓ 36864

QY+ 1 36864
TX− QT− 0 27648 ✓ 27648

QT+ 1 27648
TX+ QT− 0 27648 ✓ 27648

QT+ 1 27648
TY− QX 0/1 13824 ✓ 87552

QY− 0 73728 ✓
QY+ 1 73728

TY+ QX 0/1 13824 ✓ 87552
QY− 0 73728 ✓
QY+ 1 73728

TZ− QX 2/3 13824 ✓ 124416
QZ− 2 110592 ✓
QZ+ 3 110592

TZ+ QX 2/3 13824 ✓ 124416
QZ− 2 110592 ✓
QZ+ 3 110592

LB QT− 4 82944 - -
QT+ 5 82944 - -

this process mapping we can reserve the number of TNIs for a process and omit the intra-node
communication. The TNI#4 and #5 assignments in Table 14.10 are eliminated and the load of
TNI can be emulated.

When a Tofu axis is not decomposed for constructing QCD axis, the minimum length of
the Tofu axis is two to emulate the Fugaku’s communication pattern on K. When a Tofu axis
is decomposed for constructing QCD axis, for ex. TY or TZ, the length of (TYc, TZc), which
constructs nearest neighbor process coordinate in both of QCD and Tofu axis, must be the
same length as that of Fugaku, while that of (TYd, TZd), which is non-nearest neighbor pro-
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Table 14.10: Message size in a TNI for verification benchmark on K (lattice size per process :
32× 6× 6× 2).

TNI# QCD coord. Tofu coord. Injection size Summ’d Total
dirs. dirs. to a link (Byte) to Total (Byte)

0 QX TY− 13824 ✓ 115200
TY+ 13824

QY− TB− 36864
TB+ 36864
TY− 73728 ✓
TY+ 73728

QT− TX− 27648 ✓
TX+ 27648

1 QX TY− 13824 ✓ 115200
TY+ 13824

QY+ TB− 36864
TB+ 36864
TY− 73728 ✓
TY+ 73728

QT+ TX− 27648 ✓
TX+ 27648

2 QX TZ− 13824 ✓ 124416
TZ+ 13824

QZ− TA 36864
TC 36864
TZ− 110592 ✓
TZ+ 110592

3 QX TZ− 13824 ✓ 124416
TZ+ 13824

QZ+ TA 36864
TC 36864
TZ− 110592 ✓
TZ+ 110592

4 QT− LB 82944 ✓ 82944
5 QT+ LB 82944 ✓ 82944

cess coordinate in Tofu axis, must be three or longer than that of Fugaku. With this length
assignment, load multiplicity of the links on Fugaku can be emulated on K. Table 14.11 shows
the minimum node size satisfying the above requirement on K. With the node assignment, the
message size of links and TNIs is the same as that of Tables 14.9 and 14.10, except that TNI#4
and #5 are not used as explained above and TB is used instead of TX for QT axis to construct
4D torus, in verification benchmark on K. In order to measure the actual message size and

Table 14.11: LQCD and Tofu axis for reduced size verification benchmark on K (lattice size per
process : 32× 6× 6× 2).

QCD axis # of procs. Tofu axis # of procs. Message length
in a node multiply factor per procs.

QX 6 TYc,TZc (2x3) 1 × 4
QY 6 TYd,TX (2x3) 1 × 4
QZ 12 TZd,TA,TC (3x2x2) 1 × 4
QT 3 TB (3) 1 × 1

timing on K, we employ a program which only performs the nearest neighbor communication
of LQCD. Table 14.12 shows the message size in each link measured with the benchmark on K.
The discrepancy to the theoretical estimate is about +3%, which comes from the overhead costs
of packet header and receive-acknowledge packets. Our theoretical estimate for the message size
is validated with this benchmark test on K.

Table 14.13 shows the timing for the nearest neighbor communication measured on K. The
timing is for the region waiting for the completion of receiving data and evaluated from the
total nearest neighbor communication time by subtracting the time to start data sending. The
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Table 14.12: Message size in a link, measured on K (lattice size per process : 32× 6× 6× 2).
Link Theory(Byte) Measured(Byte) (Meas./Theo.)×100%
A 36864 37832 +2.6%
B+ 27648 28512 +3.1%
B− 27648 28512 +3.1%
C 36864 37864 +2.7%
X+ 36864 37832 +2.6%
X− 36864 37832 +2.6%
Y+ 87552 89896 +2.7%
Y− 87552 89896 +2.7%
Z+ 124416 127792 +2.7%
Z− 124416 127792 +2.7%

theoretical timing is estimated as 27.65 [µs] from the message size, 124416 byte, which is the
largest and the bottleneck, and the effective bandwidth of Tofu network of K, 4.5 [GB/s].

Table 14.13: Measured nearest neighbor communication time on K (lattice size per process :
32× 6× 6× 2）.

Region Theory (µsec) Measured(µsec) (Meas./Theo.)×100 %
Wait for completion of data receiving 27.65 30.83 +11.5%
Start data sending - 3.71 -
Total - 34.54 -

The timing measured is larger than the theoretical estimation by 11.5%. The discrepancy
could be explained by the reduced efficiency in links where traffic congestion occurs due to
the multiplicity of QCD axis in Tofu axis or performance saturation of a TNI receiving data
from several QCD axes simultaneously. It is difficult to precisely evaluate these performance
bottlenecks as these occur and change depending on the execution timing. We adopt theoretically
estimated timing value for the QCD nearest neighbor communication performance on Fugaku,
because it causes only 3.6% increase in the total timing even with 11.5% increase in the time
waiting for data receiving.

14.2.18.3 Estimate of the neighboring-communication timing for lattice size per
process 32× 6× 4× 3

The process mapping shown in Table 14.14 is also valid and appropriate for the case that the
lattice size of a process is 32× 6× 4× 3 as shown in subsubsec. 14.2.18.1. The message size and
TNI assignment are shown in Table 14.15. Tables 14.16 and 14.17 show that the communication
bottlenecks are in the directions, TB−, TB+, TY−, TY+, with assignments TNI#2, #3, #4,
#5, and the message size is 73,728 byte. Thus we estimate the time for completion of receiving
data as 73728B/(6.12GB/s) = 0.01205 [ms]. Because the nearest neighbor communication occurs
20 times in one iteration of QCDJDD, the time for completion of receiving data in the whole
estimation region is estimated to be 0.24 [ms]. This estimate has been verified to be almost
correct by benchmark tests on Fugaku (see Table 14.30).

Table 14.14: LQCD and Tofu axis (lattice size per process : 32× 6× 4× 3),
QCD # of Tofu axis # of procs. # of procs. # of procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TA,TZc (2× 3) 1 0 4
QY 32 TZd,TC (8× 2) 2 2 2
QZ 48 TX (24) 2 2 2
QT 64 TY,TB (22× 3) 1 0 4
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Table 14.15: TNI assignment and message size (lattice size per process : 32× 6× 4× 3).
QCD Tofu Message length # of procs. Link Message size
coord. corrd. TNI# per procs. communicating multiplicity to link/intra-node
dirs. dirs. (Byte) (# of hops) (Byte)
QX TA 0 3456 4 1 13824

TZ± 0/1 4 1 13824
QY− TC 0 9216 2 1 18432

TZ+ 0 2 3 55296
LB 3 2 - 18432

QY+ TC 1 9216 2 1 18432
TZ− 1 2 3 55296
LB 2 2 - 18432

QZ− TX 3 13824 2 1 27648
LB 3 2 - 27648

QZ+ TX 2 13824 2 1 27648
LB 2 2 - 27648

QT− TB± 5 18432 4 1 73728
TY± 5 4 1 73728

QT+ TB± 4 18432 4 1 73728
TY± 4 4 1 73728

Table 14.16: Message size in a link (lattice size per process : 32× 6× 4× 3).
Tofu coord. QCD coord. TNI# Injection size Summ’d Total

dirs. dirs. to a link(Byte) to Total (Byte)
TA QX 0 13842 ✓ 13842
TB− QT∓ 5/4 73728 ✓ 73728
TB+ QT± 4/5 73728 ✓ 73728
TC QY∓ 0/1 18432 ✓ 18432
TX− QZ− 3 27648 ✓ 27648
TX+ QZ+ 2 27648 ✓ 27648
TY− QT∓ 5/4 73728 ✓ 73728
TY+ QT± 4/5 73728 ✓ 73728
TZ− QX 1 13824 ✓ 69120

QY+ 1 55296 ✓
TZ+ QX 0 13824 ✓ 69120

QY− 0 55296 ✓
LB QY− 3 18432 - -

QZ− 3 27648 - -
QY+ 2 18432 - -
QZ+ 2 27648 - -

Table 14.17: Message size in a TNI (lattice size per process : 32× 6× 4× 3).
TNI# QCD coord. Tofu coord. Injection size Summ’d Total

dirs. dirs. to a link (Byte) to Total (Byte)
0 QX TA 13824 69120

QX+ TZ± 13824 ✓
QY− TC 18432

TZ+ 55296 ✓
1 QX− TZ∓ 13824 ✓ 69120

QY+ TC 18432
TZ− 55296 ✓

2 QZ+ TX+ 27648 ✓ 73728
LB 27648 ✓

QY+ LB 18432 ✓
3 QZ− TX− 27648 ✓ 73728

LB 27648 ✓
QY− LB 18432 ✓

4 QT+ TB± 73728 ✓ 73728
TY± 73728

5 QT− TB∓ 73728 ✓ 73728
TY∓ 73728
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14.2.18.4 Verification of the neighboring-communication timing for lattice size per
process 32× 6× 4× 3

We discussed how to verify the elapsed time for the comlib_recv_wait_all_c region that
waits the nearest neighboring communication is finished in the case of lattice size per process
32 × 6 × 4 × 3 in software arrangement (1). In the same way as in subsubsec. 14.2.18.2, the
situation of communication can be reproduced with small number of nodes on Fugaku. Without
change of the Tofu axes, as shown in Table 14.18, by reducing size of TY to (TX×TA)× (TY×
TB) × (TZ × TC) = (24 × 2) × (2 × 3) × (24 × 2) on 36 racks, the communication pattern
is reproduced with the same links and TNI assignment as in the target system size. For the
number of racks less than 36, the torus geometry in X-axis and Z-axis is lost. In such cases, by
exchanging X-axis and Z-axis, the torus is composed in X-axis and Y-axis of Tofu. For example,
in the case of 3 racks with (TX×TA)× (TY×TB)× (TZ×TC) = (2× 2)× (2× 3)× (24× 2),
the communication pattern is reproduced by assigning the LQCD axes to the Tofu axes as
in Table 14.19. In this case one should note that TNI assignment for the X-axis and B-axis
are exchanged. The TZd axis is not needed to be torus since the QY axis is composed of
the TZd axis and TC axis. Therefore, without requiring the Tofu Z-axis being torus, the
communication pattern can be reproduced. The minimum construction is realized with 432
nodes as (TX × TA) × (TY × TB) × (TZ × TC) = (2 × 2) × (2 × 3) × (9 × 2), as listed in
Table 14.20.

Table 14.18: LQCD and Tofu axis for verification benchmark with 36 racks of Fugaku (lattice
size per process : 32× 6× 4× 3).

QCD # of Tofu axis # of procs. # of procs. # of procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TA,TZc (2× 3) 1 0 4
QY 32 TZd,TC (8× 2) 2 2 2
QZ 48 TX (24) 2 2 2
QT 6 TY,TB (2× 3) 1 0 4

Table 14.19: Same table as the Table 14.18, but with 3 racks.
QCD # of Tofu axis # of procs. # of procs. # of procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TA,TZc (2× 3) 1 0 4
QY 32 TZd,TC (8× 2) 2 2 2
QZ 6 TB (3) 2 2 2
QT 4 TY,TX (2× 2) 1 0 4

Table 14.20: Same table as the Table 14.18, but wit 432 nodes.
QCD # of Tofu axis # of procs. # of procs. # of procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TA,TZc (2× 3) 1 0 4
QY 12 TZd,TC (3× 2) 2 2 2
QZ 6 TB (3) 2 2 2
QT 4 TY,TX (2× 2) 1 0 4

14.2.18.5 Considering execution with 1 MPI process on 4 CMG

To avoid the bottleneck in TNI, we are examining the execution with 1 MPI process on 4
CMGs. Parallelizing a 1924 lattice with 147456 processes, the minimum communication surface
is achieved by the lattice size per process of nx×ny×nz×nt = 32×6×6×8 by process division
6× 32× 32× 24. In this case the communication size in each direction reads as follows.
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transferred data size in QX± direction = 13824 bytes
transferred data size in QY± direction = 36864 bytes
transferred data size in QZ± direction = 36864 bytes
transferred data size in QT± direction = 27648 bytes

Similarly to the discussion about the efficient process mapping, each of the TX axis and TY
axis is virtually divided into two axes. The TX axis is divided into the TXc axis of length 4 and
the TXd axis of length 6, and the TX coordinate x corresponds to xmod 4 and

[
x
4

]
, respectively.

The TY axis is divided into the TYc axis of length 2 and the TYd axis of length 12, and the TY
coordinate z corresponds to zmod 2 and

[
z
2

]
, respectively. Table 14.21 displays the assignment

of the QCD axes to the Tofu axes.

Table 14.21: LQCD and Tofu axis (1 MPI process on 4 CMGs).
QCD # of Tofu axis # of procs. # of procs. # of procs.
axis procs. in a node w intra-node-comm. w inter-node-comm.
QX 6 TXd 1 0 1
QY 32 TB×TYd 1 0 1
QZ 32 TA×TC×TXc×TYc 1 0 1
QT 24 TZ 1 0 1

The message size in each link in this case is summarized in Table 14.22. If one assigns the

Table 14.22: Message size in a link (1 MPI process on 4 CMGs).
Link Message size Calculation
TX± 92160 Byte QX±-dir. size × 4 hops + QZ±-dir. size
TY± 110592 Byte QZ±-dir. size + QY±-dir size × 2 hops
TZ± 27648 Byte QT±-dir. size
TA 36864 Byte QZ±-dir. size
TB± 36864 Byte QY±-dir. size
TC 36864 Byte QZ±-dir. size

links and TNI as in Table 14.23, TNI#2,3,5 become bottlenecks so that the waiting time for
receive in each nearest neighbor communication consumes 110592B/(6.12GB/s)=0.01807 [ms].
This amounts to the same elapsed time discussed in subsubsec. 14.2.18.1 and is longer than the
elapsed time discussed in subsubsec. 14.2.18.3.

Table 14.23: Message size in a TNI (1 MPI process on 4 CMGs).
TNI No. Link Message size Calculation

0 TX+ 92160 Byte TX
1 TX− 92160 Byte TX
2 TY+ 110592 Byte TY
3 TY− 110592 Byte TY
4 TZ+, TZ−, TA 92160 Byte TZ+ + TZ− + TA
5 TB+, TB−, TC 110592 Byte TB+ + TB− + TC

14.3 Five-dimensional fermion matrix code

In LQCD, not only the Wilson-type fermion described so far but also variety of fermion matrices
are practically used. As an example, we consider the five-dimensional (5D) formulation that
improves the symmetry of light quarks. Since the 4D structure corresponding to space-time
is the same as the Wilson-type matrix, by the LQCD kernel library developed above can be
efficiently employed. On the other hand, for exploiting the cache effect it may deserve to treat
the fifth-dimensional lattice sites (typically of 10 to 100) as one of on-site degrees of freedom. We
compare these two implementations and thereby generalize the tuning techniques established in
the development of the LQCD library.
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We have implemented the codes of 5D fermion matrix in these two approaches. In the first
approach, we employ an existing general-purpose code set and modify its 5D fermion matrix
so as to call the LQCD library. In the second approach, we directly developed the 5D fermion
matrix code by referring the implementation of the LQCD library. Although in the prelimi-
nary performance measurement the latter code shows better performance, this may be caused
partially by less efficient implementation of linear algebraic functions in the former as well as
the parameter setup was not that the LQCD library exhibits its best performance. There is
still room to improve the performance of both the codes and continuous improvement is still
underway.

14.4 Study on improvement of nuclear force code

On 1924 lattice, the memory size needed to keep a single quark propagator is 16 Byte ×3 ×
4 × 3 × 4 × 1923 = 16.3 GByte. In order to calculate the spin-orbit forces (LS forces) and the
anti-symmetric LS forces in the coupled channel formalism including nuclear and hyperon forces
in the odd parity sector in 2+1 flavor QCD, it is necessary to keep seven propagators for up and
down quarks corresponding to the directions of momentum of quarks and seven propagators for
strange quark. The total memory size amounts to 228 GByte. Since this exceeds the memory
capacity of a single node of Fugaku, quark propagators have to be spatially divided.

On the other hand, 3D FFT is used for an efficient calculation of four point functions of
baryon fields. The current code performs the calculations by generating Wick contractions
of four point functions of baryon fields (semi-)automatically both for 115 channels of all the
combinations of two hyperons and for 7 directions corresponding to the directions of momentum
of two baryons. This requires 82,800,000 3D FFTs. Due to the situation where the quark
propagators are spatially divided, the 3D FFT is carried out with MPI communication, which
is difficult to perform. As a result, a very complicated algorithm and coding is needed to use
the momentum wall source to calculate nuclear and hyperon forces in the negative parity sector.
However, we have developed a method of dividing the four point functions of baryon fields into
parts and storing them after 3D FFT is over. We are currently investigating a better method.

14.5 Items requested from codesign to the system implementa-
tion

The implementation requests and improvement items that were fed back to the system through
this codesign are listed below.

1. MPI Allreduce up to 3 elements

The most time-consuming part of LQCD is the quark solver by the iterative method.
In the target problem, the execution time per iteration is very short, approximately one
millisecond, and the execution time of MPI Allreduce is non-negligible, thus we decided
to have a fast processing mechanism of MPI Allreduce up to three elements.

MPI Allreduce of 1 to 3 elements on Fugaku was realized by performing reduction and
broadcast processing in a tree structure using a dedicated hardware resource called TBI
(Tofu Barrier Interface), similar to the 1-element MPI Allreduce in K.

2. Zero OS jitter



CHAPTER 14. CODESIGN OF LQCD 210

Since the execution time per iteration is very short (about 1 millisecond) in the target
problem, the effect of OS jitter cannot be ignored. Therefore, Fugaku was equipped with
an assistant core to prevent OS jitter from occurring in the computational core.

3. RDMA communication mechanism

In quark solver, the sparse matrix-vector product is the main part of the operation. In
the target problem, the problem size per process is so small that all the data used in the
iterative method can be placed in the L2 cache and the time required for the out-of-process
data transfer for the sparse matrix-vector product and the execution time for the in-process
closed sparse matrix-vector product operation are comparable. This concluded that a DMA
communication mechanism for overlapping adjacent communications and operations was
also necessary for LQCD. And RDMA was implemented on Fugaku following K.

4. Reducing issue time for multiple RDMA communications

LQCD needs to issue 8 RDMA communications in a single sleeve area communication in
4D stencil calculation. As the overhead caused by issuing RDMA communication is large
in K, we examined the API for issuing multiple RDMA communication and its time-saving
effect. The use of uTofu made it possible to issue multiple RDMA communications.

5. Countermeasure for the problem of a significant increase in communication time due to
the impact of other jobs

In K, there are cases that the communication time increases significantly due to the influ-
ence of other jobs. The cause of this phenomenon is largely due to the ”I/O communication
of other jobs” that share the communication path. Since LQCD has a relatively large adja-
cent communication time, we sought to counter it on Fugaku. This problem can be solved
by considering the symmetry (X, Y, Z)=(2, 2, 8) for both SIO and GIO, assigning jobs to
the starting coordinates of the rack, and fixing the placement of I/O nodes (SIO, GIO) in
the node geometry. Specifically, set ”4lx6mx16n:strict-io” for the ”node” factor of the job
submission command as follows.

pjsub -L node=4lx6mx16n:strict-io job.sh (l,m, n = 1, 2, 3 . . . )

6. The list of implementation requests for the system, including other compiler optimization
improvements and library issues

(a) When inline expanding a function that returns an array of size equal to the SIMD
width, the value should be returned via a register

Developed as a mechanism to reduce the number of instructions related to value
return during function inline expansion.

(b) Enhanced Tree Height Reduction optimization

Added the ability to select an algorithm for Tree Height Reduction optimization.

(c) Removal of temporary arrays used across multiple loops

After applying the Tree Height Reduction optimization, the existing optimization
functions made it possible.
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(d) Reduction of the number of integer registers used by utilizing the addressing mode
during SIMD

Developed as an addressing mode selection function for Fugaku.

(e) GEMM library that takes as its argument an array in which the real and imaginary
parts of complex numbers are stored consecutively and alternately for the number of
SIMD elements

Matrix matrix product function for arrays with separated real and imaginary parts
in SIMD element units has been added.

(f) Matrix transposition function

Developed matrix transposition function as a BLAS extension.

(g) Batch mode support for FFT

Consider supporting this with FFTW.

14.6 Baseline performance measured on K

We run the quark solver on the target problem 1924 using 8 OpenMP threads per node on 82944
nodes of K. The process decomposition of QCDJDD on the virtual 4D node-shape and its layout
on the physical 6D node-shape (Tofu) are as follows:

TX × TY × TZ × TA × TB × TC = 24× 18× 16× 2× 3× 2
QX × QY × QZ × QT = 24× 24× 24× 6

The lattice size per node is 8 × 8 × 8 × 32 with this 4D process decomposition. This physical
6D node-shape are chosen for a better communication throughput and a shorter latency on the
virtual 4D process layout. The mapping between the Tofu network and virtual 4D network is
as follows.

QX = TX = 24
QY = TYc × TZd = 3 × 8 = 24
QZ = TZc × TA × TB × TC = 2× 2× 3× 2 = 24
QT = TYd = 6

where we decompose the Tofu axes TY and TZ as (TY = 18 = TYd×TYc, TYd=6, TYc=3), (TZ
= 16 = TZd×TZc, TZd=8, TZc=2), and combine them to have QY, QZ, and QT appropriately.
With this mapping, the processes in the QX direction and QZ direction are nearest neighboring
in the TX direction and the TZ direction, respectively. They are nearest neighboring in the
TY direction or next-to-nearest (two-hops) in the TZ direction for the QY direction, and are
next-to-next-to-nearest (three-hops) in the TY direction for the QT direction.

The measured performance is shown in Table 14.24 for single iteration of QCDJDD on K.
The computation efficiency is estimated based on the peak double precision performance as 1.
The performance on the regions ddd_in_s_ and comlib_recv_wait_all_c are measured with
communication-computation overlapping on K, while it will be estimated theoretically with the
ideal overlapping by taking the longest estimated time from the two regions in the Fugaku
performance estimate.
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Table 14.24: LQCD baseline performace measured on K.
Exec. Time [ms] Comp. Eff. (%)

Total time for computationl regions 27.99 34.8

Region name

jinv_ddd_in_s_ 14.09 41.9
ddd_in_s_ 6.52 44.3
ddd_out_pre_s_ 0.95 12.6
ddd_out_pos_s_ 3.84 16.9
other_calc 2.58 7.1

Total time communication regions 2.66

Region name

comlib_irecv_all_c 0.45
comlib_isend_all_c 0.17
comlib_recv_wait_all_c 0.16
comlib_send_wait_all_c 0.17
s_drbicgstab_dd_hpc_iter_reduc1_ 0.18
s_drbicgstab_dd_hpc_iter_reduc2_ 0.85
s_drbicgstab_dd_hpc_iter_reduc3_ 0.67
Time for overlapping -

Total time 30.65 31.8

14.7 Performance estimation for Fugaku

In this section, we describe the performance estimation method using ppptool and prototype
before the actual Fugaku became available. However, the results obtained by ppptool are omit-
ted due to NDA. In the performance estimation with ppptool and prototype, time for each
communication region has been estimated as follows. The result is shown in Table 14.25.

• s drbicgstab dd hpc iter reduc[123]

A high speed version of MPI Allreduce, which can process three individual reductions
simultaneously, will be used.

• comlib irecv all c

It is estimated as zero second as the region can be eliminated by using the DB algorithm.

• comlib isend all c

It is estimated from the execution time of the code only involving the communication
regions.

– We measure the execution time on K with the ppptool, and use it as the estimation
on Fugaku.

– For the estimate using prototype, we measure the time on prototype actually for
better estimate.

• comlib send wait all c

It is assumed that the timing is the same as K, wihch was measured with a code that
involves only the communication regions.

• comlib recv wait all c

It is estimated from the optimal waiting time for the completion of the nearest neighbor
communication (see also subsec. 14.2.18).

14.7.1 Performance estimate with prototype.

Table 14.26 shows the performance results measured on the two nodes of prototype. qws-
0.2.2+patch 200107 was used for the measurement. The lattice size per process is 32×6×4×3.
CE was not measured and PC is a tentative reference value.
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Table 14.25: Estimated Time in [ms] for the communication regions.
Lattice size per process

Region name 32× 6× 6× 2 32× 6× 4× 3
　 (For estim. with ppptool) (For estim. with prototype)

Eco mode OFF Eco mode ON Eco mode OFF Eco mode ON
Normal Boost Normal Boost Normal Boost Normal Boost

comlib irecv all c 0 0 0 0 0 0 0 0
comlib isend all c 0.13 0.13 0.13 0.13 0.081 0.073 0.082 0.074
comlib recv wait all c 0.36 0.36 0.36 0.36 0.241 0.241 0.241 0.241
comlib send wait all c 0.11 0.11 0.11 0.11 0.106 0.106 0.106 0.106
s drbicgstab dd hpc iter reduc1 0.02 0.02 0.02 0.02 0.020 0.020 0.020 0.020
s drbicgstab dd hpc iter reduc2 0.02 0.02 0.02 0.02 0.021 0.021 0.021 0.021
s drbicgstab dd hpc iter reduc3 0.04 0.04 0.04 0.04 0.043 0.043 0.043 0.043
in Total 0.68 0.68 0.68 0.68 0.512 0.504 0.513 0.505

Table 14.26: Performance estimate with prototype.
Mode Eco mode OFF Eco mode ON

Normal mode Boost mode Normal mode Boost mode
Region name ET CE PC ET CE PC ET CE PC ET CE PC

[ms] [%] [W] [ms] [%] [W] [ms] [%] [W] [ms] [%] [W]
all calc 0.452 - - 0.412 - - 0.509 - - 0.465 - -
overlapped 0.138 - - 0.126 - - 0.159 - - 0.145 - -
Computation region 0.590 - - 0.538 - - 0.668 - - 0.610 - -
Communication region 0.512 - - 0.504 - - 0.513 - - 0.505 - -
Time for overlapping 0.138 - - 0.126 - - 0.159 - - 0.145 - -
Total 0.964 - 117 0.916 - 138 1.022 - 85 0.970 - 99

14.8 Benchmark tests on Fugaku

Benchmark tests are performed on the boost mode 2.2 GHz without using Eco modes that
one of two floating-point arithmetic pipelines is limited. Elapse time and performance of 500
iterations of QCDJDD and ddd in s region measured on two MPI processes using two CMGs
for several problem sizes per MPI process are listed in Table 14.27 and Table 14.28. FLOP
indicates a floating-point operation count calculated theoretically. Efficiency indicates floating-
point operation efficiency against single precision floating-point operation peak. We see that
performance for 32× 6× 4× 6 is the best in the tests if the communications are not taken into
consideration.

Table 14.27: Elapse time and performance for 500 iterations of QCDJDD.
Size Elapse [s] TFLOPS Efficiency FLOP

32× 6× 4× 3 0.334867 0.8272 12.24% 69254421000
32× 6× 4× 6 0.515010 1.0839 16.04% 139560981000
32× 6× 8× 6 1.145754 0.9786 14.48% 280304661000

32× 6× 8× 12 2.606202 0.8616 12.75% 561369621000
32× 12× 8× 12 5.778703 0.7773 11.50% 1122981141000

We use a fast Allreduce using the Tofu barrier in quark solver. The Allreduce up to three
elements for MPI DOUBLE and MPI FLOAT can be performed on the Tofu barrier. In Ta-
ble 14.29, we show Allreduce benchmark results on 72 racks, 27648 nodes of 48× 12× 48 node
shape by using “Intel(R) MPI Benchmarks 2019 Update 6, MPI 1 part (IMB-MPI1)” with and
without Tofu barrier. Minimum (min), maximum (max), and average (avg) time for repetition
number, 10000 are shown. The number of bytes (byte) is a message length to be reduced per
one MPI Allreuce call. And the number of counts (count) is a number of elements. The data
type of MPI FLOAT is reduced as default of IMB-MPI1. We see that Allreduce up to three
elements with the Tofu barrier is about six times faster than one without the Tofu barrier and
it is faster to split MPI Allreduce for 15 elements into five MPI Allreduce for three elements.
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Table 14.28: Same as Table 14.27, but for region of ddd in s during 500 iterations of QCDJDD.
Size Elapse [s] TFLOPS Efficiency FLOP

32× 6× 4× 3 0.068043 1.1208 16.58% 19065600000
32× 6× 4× 6 0.119455 1.3170 19.49% 39329280000
32× 6× 8× 6 0.219403 1.4693 21.74% 80593920000

32× 6× 8× 12 0.559297 1.1699 17.31% 163584000000
32× 12× 8× 12 1.192644 1.1146 16.49% 332328960000

Table 14.29: Allreduce benchmark by IMB-MPI1.
with Tofu barrier without Tofu barrier

byte count min [µs] max [µs] avg [µs] min [µs] max [µs] avg [µs]
0 0 0.09 0.14 0.10 0.10 0.16 0.12
4 1 7.60 11.33 9.46 55.69 69.05 62.83
8 2 8.25 10.79 9.50 55.79 68.93 62.91

12 3 8.25 10.93 9.57 55.89 69.02 62.94
16 4 58.99 66.95 62.68 56.42 69.71 63.51
32 8 61.50 72.34 66.32 78.24 97.57 88.14
64 16 61.61 72.38 66.31 78.63 97.84 88.42

128 32 63.70 74.45 68.43 80.46 99.56 90.10

We show a weak scaling plot of the evaluation region in Fig. 14.7. The vertical line at
147456 nodes denotes the number of nodes used in the benchmark for the target problem size
while 158976 nodes is a total nodes of Fugaku. We see a nice weak scaling from 432 nodes to
147456 nodes of the target nodes with a few exceptions caused by OS jitters. The elapse time
increases 0.5 [ms] (about 7 %) from 432 nodes to 147456 nodes due to the time for Allreduce.
The elapse times of five benchmark tests on 147456 nodes are 0.8000, 0.7998, 0.7982, 0.7989, and
0.7978 [ms], respectively. These are about 38.3 times faster than the elapse time, 30.65 [ms], for
same problem setup on the full system of K. Performance is 102 PFLOPS, 10% floating-point
operation efficiency against single precision floating-point operation peak. Averaged power is
about 20 MW. The power efficiency is 5 GFLOPS/W.
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Figure 14.7: Weak scaling of the evaluation region.
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Table 14.30 shows a breakdown of the total elapse time for the target problem size on
147456 nodes. The total time is divided into calculation time (all calc) and communication time
(all comm). all comm is divided into three parts for neighboring communication and three parts
for Allreduce. Summed total elapse time in the table is slightly longer than 0.8000 [ms] which is
measured in peak performance tests because there is a non-negligible overhead to measure elapse
times for each region. We see half of time is spent for communication. In usual production runs,
we may better use a smaller number of nodes.

Table 14.30: Elapse time breakdown.
region Elapse time [ms]
all calc 0.400
all comm 0.407
comlib isend all c 0.029
comlib recv wait all c 0.254
comlib send wait all c 0.062
s drbicgstab dd hpc iter reduc1 0.015
s drbicgstab dd hpc iter reduc1 0.016
s drbicgstab dd hpc iter reduc1 0.031
total 0.807

14.9 Summary

We have achieved 102 PFLOPS, 10% floating-point operation efficiency against single precision
floating-point operation peak, of Clover–Wilson quark solver on 1924 lattice on Fugaku through
the codesign in FS2020 project. From this codesign activity, several feed backs especially on
communication was send to the system implementation. All the benchmark results on Fugaku
have been obtained on the evaluation environment in the trial phase. It does not guarantee the
performance, power and other attributes of Fugaku at the start of its public use operation.

Since this chapter was written in terms of the codesign of LQCD in the FS2020 project,
it also described optimizations that were rejected during the codesign process. The details of
the algorithms and optimizations that performed best in the codesign of LQCD are discussed
more professionally in our paper [136]. Finally, we would like to thank all the people who were
involved in the LQCD working group of the project.
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