

AICS TECHNICAL REPORT

N0. 2015-003

USER MANUAL

KMATH＿RANDOM

VERSION 1.1

By

LARGE-SCALE PARALLEL NUMERICAL COMPUTING TECHNOLOGY RESEARCH TEAM

RIKEN ADVANCED INSTITUTE FOR COMPUTATIONAL SCIENCE

Submitted on 28/08/2015

Accepted on 04/09/2015

 Published and copyrighted by

RIKEN Advanced Institute for Computational Science (AICS)

7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, 650-0047, Japan

User Manual

KMATH RANDOM
Version 1.1

Large-scale Parallel Numerical Computing Technology Research Team
RIKEN Advanced Institute for Computational Science

27 April 2015

2

Contents

1 Overview 5
1.1 Introduction . 5
1.2 License for use and copyright . 5

2 Before use 7
2.1 Software required for KMATH RANDOM installation 7
2.2 Obtaining KMATH RANDOM . 7
2.3 KMATH RANDOM directory configuration . 7
2.4 Compile and install procedure . 7

2.4.1 NTL installation . 8
2.4.2 Makefile.machine settings . 8
2.4.3 Selection of random number period . 9
2.4.4 SIMD instruction enabling and disabling 10
2.4.5 make . 11

2.5 Application build . 11
2.5.1 For use of C interface . 11
2.5.2 For use of C++ interface . 12
2.5.3 For use of Fortran90 interface . 12

3 Interface explanation 13
3.1 KMATH Random Init . 13
3.2 KMATH Random Finalize . 14
3.3 KMATH Random Seed . 15
3.4 KMATH Random Get . 15
3.5 KMATH Random Vector . 16
3.6 KMATH Random Serialize . 17
3.7 KMATH Random Deserialize . 18
3.8 Environment variables: KMATH RAND JUMP FILE PATH 19
3.9 Environment variables: KMATH RAND JUMP FILE PREFIX 19

4 KMATH RANDOM method of use 21
4.1 Creation of jump file . 21

4.1.1 Front-end/back-end tool builds . 21
4.1.2 Jump tool execution . 22

4.2 Basic method of use . 25
4.3 Internal state saving and restoring . 25
4.4 Benchmark . 27

4.4.1 From benchmark creation to job submission 27
4.4.2 Analysis of benchmark results . 30

3

4 CONTENTS

5 Conclusion 33
5.1 KMATH RANDOM, present and future . 33
5.2 Acknowledgements . 33

Chapter 1

Overview

1.1 Introduction

KMATH RANDOM is a large-scale parallel random number generator routine which uses the
dSFMT Mersenne twister random number generating algorithm [1]. This program set includes
a test program for verification of its operation. KMATH RANDOM supports C+, C++, and
Fortran90 interfaces.

Its purpose is to help speed up programs in large-scale parallel computer environments by
providing a fast, high-quality random number generating function to operate in those environ-
ments. In large-scale Monte Carlo simulation programs and other programs, it is necessary to
generate pseudorandom numbers in large quantities with minimal bias. The function provided
by KMATH RANDOM generates highly uniform random number sequences with the extremely
long periods needed to meet that requirement. It is designed to operate at a high speed in
a parallel computer environment, to ensure that random number generation does not become
the governing factor for the speed of overall program execution in large-scale parallel computer
environments.

The dSFMT random number generating algorithm used in KMATH RANDOM performs
high-speed random number generation with an extremely long pseudorandom number sequence
period of 2521 − 1 to 2216091 − 1 and a highly uniform distribution, and is thus characterized by
excellence in both execution speed and random number quality. KMATH RANDOM employs
the dSFMT internally in generating the random number sequences and thereby shares similar
properties with dSFMT.

To ensure that partial sequences of generated random numbers do not overlap between
parallel execution ranks, KMATH RANDOM reads and restores from a file (hereafter termed
a “jump file”) a different random number internal state for each rank (by parallel processing
in the flow shown in Fig. 1.1) on initialization of the random number generation routine. The
random number internal state recorded in this file is created using the dSFMT jump function,
by performing the jump operation sequentially for 2,000-rank portions, with a default random
number generation range of 2100 per rank.

1.2 License for use and copyright

Permission to use KMATH RANDOM is granted on the basis of the BSD 2-Clause License
(found in LICENCE.txt in the library).

5

6 CHAPTER 1. OVERVIEW

routine

application

random number internal
state generation tool
km_rand_gen_jump

jump file
(seed N)

：

rank 2000

system directory

䐟 generation

䐠 install

䐢 read

KMATH Random

environment variables
KMATH_RAND_JUMP_FILE_P

ATH

䐡 refer

jump file

jump file
(seed 1)

rank 1
rank 2
rank 3

(seed 2)

parallel calls⑤

Figure 1.1: KMATH RANDOM process flow.

LICENCE.txt� �
Copyright (C) 2014 RIKEN.

--

Copyright notice is from here

--

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--� �

Chapter 2

Before use

2.1 Software required for KMATH RANDOM installation

Several software packages are needed to compile KMATH RANDOM. Operation has been veri-
fied for the following software.

NTL Version 5.5 or later (needed to create the dSFMT jump file)
MPI MPICH2 version 1.5 later, MPICH version 3.0.2 or later

OpenMPI version 1.6.4 or later
compiler GNU compiler (gcc, gfortran, g++ version 4.1.2 or later) or

Fujitsu compiler
(mpifrtpx, mpifccpx, mpiFCC (cross compiler for K FX10))

2.2 Obtaining KMATH RANDOM

Relevant information on KMATH RANDOM can be obtained at the following URL.

http://www.aics.riken.jp/labs/lpnctrt/KMATH_RANDOM.html

Planning is in progress for provision of information on tarballs and on bugs and versions.

2.3 KMATH RANDOM directory configuration

The directory configuration of this program is shown in Table 2.1.

It comprises random/ for storage of the random number library itself and the directory doc/
for documents (c/, c++/, f90/) for creation of the libraries for each language interface and the
directories (tool/, ptool/) for jump tools used to create the jump files. It also includes a test
program (test/) designed for development users.

2.4 Compile and install procedure

A number of steps are necessary to compile KMATH RANDOM. Proceed in the order shown
below.

7

8 CHAPTER 2. BEFORE USE

Table 2.1: KMATH RANDOM version 1.1 directory configuration.

Directory Storage file
random/ Random number library storage directory
arch/ Included files for Makefile for each architecture
c/ C interface source code
c++/ C++ interface source code
f90/ Fortran90 interface source code
dsfmt/ dSFMT source code, common source code for interfaces
test/ Source code for operation verification
0 comm split/ MPI communicator split test
1 interface/ Interface test
2 serialize/ Serialization test
3 comparison/ Comparison test

dSFMT-src-2.2/ dSFMT original source code (for comparison of results)
4 benchmark/ Benchmark

kmath random v1.0/ KMATH Random v1.0 code (for speed comparison)
tool/ Jump file generation source code (for front end)
jump/ Jump file storage directory

ptool/ Jump file generation tool source code (for back end)
jump/ Jump file storage directory

doc/ Document storage directory

2.4.1 NTL installation

NTL developed by Victor Shoup is needed to control the KMATH RANDOM jump files. It is
used to generate the data required for jump file configuration. In the cross-compiling environ-
ment of front-end nodes in the K computer and other computers, it is accordingly sufficient to
install NTL only on the front end and its installation on/in the back end is thus unnecessary
(except where the objective is to generate a jump file in the back end, with the objective of
reducing file transfers).

First, get the tarball from the developer’s site [2] (http://www.shoup.net/ntl/), and deploy
it on an appropriate working directory and then move the directory to the subdirectory src/.
There, execute configure and make. The NTL website provides detailed directions on installing
NTL.

ntl-7.0.1 compile� �
% tar zxvf ntl-7.0.1.tgz

% cd ntl-7.0.1/src

% /bin/sh ./configure

% make� �
2.4.2 Makefile.machine settings

Next, move to the KMATH RANDOM directory and implement the KMATH RANDOM build.
Set the path to the NTL library directory created as described in the previous section, in the
Makefile.machine file.

2.4. COMPILE AND INSTALL PROCEDURE 9

Makefile.machine� �
$ cd <kmath random root directory>

$ cat Makefile.machine

compilers

F90 = mpifrtpx

CC = mpifccpx

CXX = mpiFCCpx

xCC = fcc

xCXX= FCC

:

CFLAGS += -I/home/ra000005/a03137/include

CPPFLAGS += -I/home/ra000005/a03137/include

F90FLAGS = $(FFLAGS) -Free

LFLAGS = -L/home/ra000005/a03137/lib

ARFLAGS =

LFLAGS_CPP = $(LFLAGS) -lntl

LFLAGS_C = $(LFLAGS) -lntl -lstd -lstd_mt -lstdc++

LFLAGS_F90 = $(LFLAGS) -lntl -lstd -lstd_mt -lstdc++

$� �
Settings are made in several places.

1. MPI compiler (F90, CC, CXX)

2. Compiler for front end (xCC, xCXX)

3. Addition to CFLAGS and CPPFLAGS of include path to CFLAG NTL

4. Addition to LFLAGS of library path to LFLAGS NTL

2.4.3 Selection of random number period

The default random number generation period of dSMFT is 219937. To change the period,
change the following Makefile.machine file settings.

10 CHAPTER 2. BEFORE USE

Makefile.machine� �
$ cat Makefile.machine

:

#-- no debug

FFLAGS = -c -Kfast -Ksimd=2 -Cpp -DNDEBUG

CFLAGS = -c -Kfast -Ksimd=2 -DNDEBUG -DDSFMT_MEXP=19937

CPPFLAGS = -c -Kfast -Ksimd=2 -DNDEBUG -DDSFMT_MEXP=19937

#-- debug

FFLAGS = -c -O0 -g -Cpp -DDEBUG

CFLAGS = -c -O0 -g -DDEBUG -DDSFMT_MEXP=19937

CPPFLAGS = -c -O0 -g -DDEBUG -DDSFMT_MEXP=19937

:

$� �
The following periods are selectable. Select one and write it to Makefile.machine.

-DDSFMT_MEXP=521

-DDSFMT_MEXP=1279

-DDSFMT_MEXP=2203

-DDSFMT_MEXP=4253

-DDSFMT_MEXP=11213

-DDSFMT_MEXP=19937

-DDSFMT_MEXP=44497

-DDSFMT_MEXP=86243

-DDSFMT_MEXP=132049

-DDSFMT_MEXP=216091

If these settings are changed, it is then essential to re-create the jump files for restoring the
random number internal state and the serialization files described below. Care is necessary, as
abnormal termination of the program may occur if these files are used in the library without
having been re-created.

2.4.4 SIMD instruction enabling and disabling

dSFMT SIMD instruction use is enabled by default. To disable this setting, comment out the
following Makefile.machine settings.

2.5. APPLICATION BUILD 11

Makefile.machine� �
$ cat Makefile.machine

compilers

F90 = mpifrtpx

CC = mpifccpx

CXX = mpiFCCpx

:

#-- SSE2

CFLAGS += -DHAVE_SSE2

CPPFLAGS += -DHAVE_SSE2

:

$� �
If these settings are changed, it is then essential to re-create the jump files for restoring the

random number internal state and the serialization files described below. Care is necessary, as
abnormal termination of the program may occur if these files are used in the library without
having been re-created.

The random number sequences generated with these settings enabled differ from those gen-
erated when they are not, and care is also necessary in this regard.

2.4.5 make

The build methods for the C, C++, and Fortran90 interface libraries are as follows.

Library build� �
$ cd <kmath random root path>

$ make

$ find . -name "*.a"

../c++/libkm_random.a

../f90/libkm_random.a

../c/libkm_random.a� �
The libraries indicated by the find command following the make command are generated

static libraries.

2.5 Application build

When the application build is performed using this routine on the K computer, it is necessary
to specify the following parameters in compiling and linking. The order of specifying the library
option is important, and if the order shown in the following example is not followed, link failure
may occur.

2.5.1 For use of C interface

Compile:

-I<kmath random root directory>/c

12 CHAPTER 2. BEFORE USE

Link:

-L<kmath random root directory>/c

-L<NTL path>/lib

-lkm_random -lntl -lstd -lstd_mt -lstdc++

2.5.2 For use of C++ interface

Compile:

-I<kmath random root directory>/c++

Link:

-L<kmath random root directory>/c++

-L<NTL path>/lib

-lkm_random -lntl

2.5.3 For use of Fortran90 interface

Compile:

-I<kmath random root directory>/f90

Link:

-L<kmath random root directory>/f90

-L<NTL path>/lib

-lkm_random -lntl -lstd -lstd_mt -lstdc++

Chapter 3

Interface explanation

This chapter describes the interfaces of the large-scale massively parallel random number gen-
eration routine.

Note This interface group in its current version (ver. 1.1) is not thread-safe. For use in a
multithreaded environment, the caller must properly perform mutual-exclusion processing.

3.1 KMATH Random Init

C Syntax

#include <kmath_random.h>

void* KMATH_Random_init(MPI_Comm comm);

Parameter Type IO Description
comm MPI_Comm In MPI communicator
return value void* Ret handle

C++ Syntax

#include <kmath_random.h>

bool KMATH_Random::init(MPI_Comm comm);

Parameter Type IO Description
comm MPI_Comm In MPI communicator
return value bool Ret state (true: normal)

Fortran90 Syntax

use kmath_random.mod

subroutine KMATH_Random_Init(handle, comm, ierr)

Parameter Type IO Description
handle type(s_km_rand) Out handle
comm integer In MPI communicator
ierr integer Out State (0: normal)

13

14 CHAPTER 3. INTERFACE EXPLANATION

Specify the communicator comm and initialize the large-scale massively parallel random
number generation routine with the initial seed value (1). The interface is a collective operation
and must be called for all ranks simultaneously.

At the time of execution of the interface, the jump file(s) corresponding to seed value 1 is
read and the random number internal state of each rank is restored. If the rank number in the
communicator exceeds the limit (the maximum rank number recorded in the jump file) and the
jump file thus cannot be read normally, the initialization will fail.

There is one jump file for each seed value, with the following (Fig. 3.1) binary formats.

Maximum rank number 4 bytes
Rank 0 initial random number internal state 3080 bytes
Rank 1 initial random number internal state 3080 bytes

...
Rank N − 1 initial random number internal state 3080 bytes

Figure 3.1: Jump file internal formats.

3.2 KMATH Random Finalize

C Syntax

#include <kmath_random.h>

int KMATH_Random_finalize(void* handle);

Parameter Type IO Description
handle void* In handle
return value int Ret state (0: success)

C++ Syntax

#include <kmath_random.h>

bool KMATH_Random::finalize();

Parameter Type IO Description
return value bool Ret state (true: normal)

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Finalize(handle, ierr)

Parameter Type IO Description
handle type(s_km_rand) In handle
ierr integer Out State (0: normal)

Specify the handle and finalize the large-scale massively parallel random number generation
routine. This interface, like the initialization, is a collective operation, and thus all ranks must
be called simultaneously.

3.3. KMATH RANDOM SEED 15

3.3 KMATH Random Seed

C Syntax

#include <kmath_random.h>

int KMATH_Random_seed(void* handle, int seed);

Parameter Type IO Description
handle void* In handle
seed int In seed value
return value int Ret State (0: success)

C++ Syntax

#include <kmath_random.h>

bool KMATH_Random::seed(int seed);

Parameter Type IO Description
seed int In seed value
return value bool Ret State (true: normal)

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Seed(handle, seed, ierr)

Parameter Type IO Description
handle type(s_km_rand) In handle
seed integer In seed value
ierr integer Out state (0: normal)

The seed value is assigned for the random number. The jump file corresponding to the seed
value is then read, and the random number internal state of each rank is restored. If the specified
seed value or the rank number in the communicator exceeds the limit and the jump file thus
cannot be read normally, this call will fail.

3.4 KMATH Random Get

C Syntax

#include <kmath_random.h>

int KMATH_Random_get(void* handle, double* value);

Parameter Type IO Description
handle void* In handle
value double* In random number value
return value int Ret state (0: success)

C++ Syntax

#include <kmath_random.h>

bool KMATH_Random::get(double& value) const;

Parameter Type IO Description
value double& Out random number value
return value bool Ret state (true: normal)

16 CHAPTER 3. INTERFACE EXPLANATION

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Get(handle, value, ierr)

Parameter Type IO Description
handle type(s_km_rand) In handle
value double precision Out random number value
ierr integer Out state (0: normal)

One random number value is obtained. The obtained random number is normalized in the
range 1.0 < v ≤ 2.0.

3.5 KMATH Random Vector

C Syntax

#include <kmath_random.h>

int KMATH_Random_vector(void* handle, double* values, int size);

Parameter Type IO Description
handle void* In handle
values double* Out pointer to random number sequence
size int In obtained number
return value int Ret state (0: success)

C++ Syntax

#include <kmath_random.h>

bool KMATH_Random::get(double* values, int size) const;

Parameter Type IO Description
values double& Out pointer to random number sequence
size int In obtained number
return value bool Ret state (true: normal)

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Vector(handle, values, nvalue, ierr)

Parameter Type IO Description
handle type(s_km_rand) In handle
values(:) double precision Out random number sequence
size integer In obtained number
ierr integer Out state: (0: normal)

The specified number of random numbers are obtained and stored in the array values. The
obtained number must be 386 or more and must be divisible by 2. The obtained random number
is normalized in the range 1.0 < v ≤ 2.0.

3.6. KMATH RANDOM SERIALIZE 17

3.6 KMATH Random Serialize

C Syntax

#include <kmath_random.h>

int KMATH_Random_serialize(void* handle, const char* filename);

Parameter Type IO Description
handle void* In handle
filename const char* In file name
return value int Ret error

0: no error (normal)
−1: unexecuted initialization
−2 : MPI failure
−3: file I/O failure

C++ Syntax

#include <kmath_random.h>

int KMATH_Random::serialize(const char* filename);

Parameter Type IO Description
filename const char* In file name
return value int Ret error

0: no error (normal)
−1: unexecuted initialization
−2: MPI failure
−3: file I/O failure

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Serialize(handle, filename, ierr)

Parameter Type IO Description
handle type(s_km_rand) In handle
filename character(*) In file name
ierr integer Out error

0: no error (normal)
−1: invalid handle
−2: MPI failure
−3: file I/O failure

The current random number internal state is serialized (saved) to the file specified by the
filename. The interface is a collective operation and must be called for all ranks simultaneously.

The random number internal states in all ranks in the communicator are recorded in the
serialized file. The rank 0 process is responsible for the actual serialization processing, and one
file is thus created for one communicator.

The files are in the binary formats shown below (Fig. 3.2). The interfaces for C, C++, and
Fortran90 are mutually compatible.

18 CHAPTER 3. INTERFACE EXPLANATION

Maximum rank number 4 bytes
Rank 0 initial random number internal state 3080 bytes
Rank 1 initial random number internal state 3080 bytes

...
Rank N − 1 initial random number internal state 3080 bytes

Figure 3.2: Jump file internal formats.

3.7 KMATH Random Deserialize

C Syntax

#include <kmath_random.h>

int KMATH_Random_deserialize(void* handle, const char* filename);

Parameter Type IO Description
handle void* Inout handle
filename const char* In file name
return value int Ret error

0: no error (normal)
−1: invalid handle
−2: MPI failure
−3: file I/O failure
−4: rank number mismatch

C++ Syntax

#include <kmath_random.h>

int KMATH_Random::deserialize(const char* filename);

Parameter Type IO Description
filename const char* In file name
return value int Ret error

0: no error (normal)
−1: invalid handle
−2: MPI failure
−3: file I/O failure
−4: rank number mismatch

Fortran90 Syntax

use kmath_random_mod

subroutine KMATH_Random_Deserialize(handle, filename, ierr)

3.8. ENVIRONMENT VARIABLES: KMATH RAND JUMP FILE PATH 19

Parameter Type IO Description
handle type(s_km_rand) Inout handle
filename character(*) In file name
ierr integer Out error

0: no error (normal)
−1: invalid handle
−2: MPI failure
−3: file I/O failure
−4: rank number mismatch

The serialized file is read and the random number internal state is restored. The interface,
as in the serialization, is a collective operation and must be called for all ranks simultaneously.

If the rank number in the current communicator and the rank number when the file is created
are different, an error will occur and the error number −4 will be returned.

For the format of the file to be read, refer to the previous section.

3.8 Environment variables: KMATH RAND JUMP FILE PATH

Specifies the jump file reference path. If this environment variable is not set, the default reference
path will be as follows.

/etc/kmath/random/jump

3.9 Environment variables: KMATH RAND JUMP FILE PREFIX

Specifies the jump file prefix. If this environment variable is not set, the default prefix will be
as follows.

file

The actual jump file is controlled with the assignment of the ID for the given seed type only
(integer value) given, as in file 00001, file 00002,

20 CHAPTER 3. INTERFACE EXPLANATION

Chapter 4

KMATH RANDOM method of
use

The KMATH RANDOM process flow is as shown in Fig. 4 and also in Chapter 1. The following
is a more detailed description.

1. Jump file generation

2. Jump file installation (store in appropriate directory)

3. Startup of program using KMATH RANDOM

4. Reference to jump file storage location
(environment variables KMATH RAND JUMP FILE PATH)

5. Initialization by KMATH_Random_Init or recovery of internal state from jump file
by KMATH Random Deserialize

6. Obtaining of random number by KMATH_Random_Get, etc., independently for each process

7. KMATH RANDOM finalization

In this chapter, Section 4.1 describes the method of jump file generation (step 1) and
Sections 4.2 and 4.3 describe the method of program creation (executing steps 3 to 7) using
KMATH RANDOM. Section 4.4 provides a benchmark test and analysis for KMATH RANDOM.
For the build method for the KMATH RANDOM library itself and the program build method
using KMATH RANDOM, which are not described in this chapter, refer to Sections 2.4 and
2.5, respectively.

4.1 Creation of jump file

This section describes the method of creating the jump files for restoration of the random number
internal state in each rank in routine initialization.

4.1.1 Front-end/back-end tool builds

The random number internal state tool (hereinafter called the “jump file”) builds are different
for the front and back ends. The tool is created by make tool for the front end, and by
make ptool for the back end. The source code is actually nearly the same for both. It differs

21

22 CHAPTER 4. KMATH RANDOM METHOD OF USE

routine

application

random number internal
state generation tool
km_rand_gen_jump

jump file
(seed N)

：

rank 2000

system directory

䐟 generation

䐠 install

䐢 read

KMATH Random

environment variables
KMATH_RAND_JUMP_FILE_P

ATH

䐡 refer

jump file

jump file
(seed 1)

rank 1
rank 2
rank 3

(seed 2)

parallel calls⑤

Figure 4.1: KMATH RANDOM process flow.

only in the need to distinguish between the compilers in creating the two, since the back end
must be an MPI compiler.

Jump tool build for front end� �
$ cd <kmath random root path>

$ make tool

$ cd tool

$ ls -1

Makefile

dSFMT-calc-jump.hpp

dSFMT-jump.cpp

dSFMT-jump.h

dSFMT-jump.o

gen.sh

jump

km_dsfmt_jump.cpp

km_dsfmt_jump.h

km_dsfmt_jump.o

:

$� �
4.1.2 Jump tool execution

The two tools obtained by the builds in the previous section are km_rand_gen_jump, which
creates the jump files, and km_rand_chk_jump, which validates the created jump file. Their use

4.1. CREATION OF JUMP FILE 23

is illustrated in the following examples.

km rand gen jump

This tool creates the jump files, which are created only for numbers in the specified seed value
range. The format is as follows.

./km rand gen jump [parameter 1 [parameter 2]..]

The parameters that can be specified are as follows.

-seed <seed start> <seed end>

Seed value range. The jump file is created only for this seed value number. The default value is
seed start=1, seed end=1.

-max ranks <rank>

Maximum value of rank number. In random number generation, the rank size in the communi-
cator must be no larger than this value. The default value is 1.

-rand range <range>

Range of random number generation per rank. Specified as 2range. The default value is 100.

-install dir <path>

Constructed jump file save destination. The default value is ./jump.

-file prefix <prefix>

Prefix of created jump file. In the actual jump file name, the seed number is given after this
prefix. The default value is file.

km rand chk jump

This tool validates the created jump file. It calls dSFMT directly without going through any
interface. The random number internal states for all rank numbers recorded in the jump file
are restored in the structure dsfmt t, then one random number is generated and the value is
output to the standard output file. The format is as follows.

./km rand chk jump <jump file>

Example of km rand get gen jump execution (for front end)

jump file creation� �
$ mkdir jump

km_rand_gen_jump -seed 1 10 -max_ranks 2000

$ ls ./jump

file_00001 file_00003 file_00005 file_00007 file_00009

file_00002 file_00004 file_00006 file_00008 file_00010

$� �

24 CHAPTER 4. KMATH RANDOM METHOD OF USE

The created files, file_00001, file_00002, ..., are used to initialize the random number
generator. The file information is as follows.

Seed value range 1 ∼ 10
Maximum rank number 2000
Random number generation range per rank 2100

Jump file save destination ./jump

Jump file prefix file

When random numbers are generated by KMATH_Random_Get and KMATH_Random_Vector,
these files are read and the random number internal state controlled on memory changes. Care
is necessary in this regard, since the states serialized by KMATH_Random_Serialize and newly
written to the files differ from the initial internal states constructed by the tool. In any instance
where reproduction from the initial state or snapshot reproduction is desired, the jump files
must then be saved each time and passed to KMATH_Random_Deserialize.

It is also necessary to recreate the jump files if there is a change in the setting for use or
non-use of SIMD instructions by dSFMT and also if the random number period is changed.

Example of km rand get gen jump execution (batch process for back end)

The jump tool for the back end is used to generate jump files at the back end. To use it, refer
back to the previous section, as its use is illustrated by the same example as that given for the
front end in that section.

A job submission to the queue system is required to execute the tool at the back end. For
use in an interactive job, there is no substantial difference from the front end. For use in a batch
job, however, refer to the following example of job script following ptool/ for batch job input.

Batch job execution� �
$ cat gen.sh

#!/bin/bash -x

#

#PJM --rsc-list "node=10"

#PJM --rsc-list "elapse=01:00:00"

#PJM --stg-transfiles all

#PJM --stgin "./km_rand_gen_jump ./"

#PJM --stgout-dir "./jump ./jump"

#PJM -s

#

. /work/system/Env_base

mkdir jump

mpiexec -n 10 ./km_rand_gen_jump -seed 1 10 -max_ranks 2000

$ pjsub gen.sh

[INFO] PJM 0000 pjsub Job 2243314 submitted.

$

:

$ ls ./jump

file_00001 file_00003 file_00005 file_00007 file_00009

file_00002 file_00004 file_00006 file_00008 file_00010

$� �

4.2. BASIC METHOD OF USE 25

4.2 Basic method of use

For random number generation using KMATH RANDOM, in addition to calling the gener-
ating subroutine itself, it is necessary to call several subroutines for preprocessing and post-
processing. The following shows the type of procedure needed, by illustrating the method for
creation of a simple program for performing random number generation by multiple processes
with sample program test/1 interface/test c seq.c (Fig. 4.2) as an example. The program
test c seq.c starts up the number of MPI processes (ranks) specified at the time of execution,
and for all ranks performs 10 iterations of random number generation and writing to files.

Header file reading Reads header file for use of the function KMATH RANDOM (Fig. 4.2,
line 13). For C++ and Fortran90 interfaces, similarly reads the C++ header file
(#include <kmath_random.h>) and the Fortran module (use kmath_random_mod), re-
spectively.

Required variable declaration Declares the variable that records the KMATH RANDOM
handle (Fig. 4.2, line 19).

Random number generation routine initialization Specifies the MPI communicator used
for random number generation, executes the function KMATH Random Init in all ranks, and
initializes the random number generation routine (Fig. 4.2, line 22).

Random number seed setting Sets the random number seed using the function
KMATH Random Seed (Fig. 4.2, line 36). At this time, the jump files determined by the
environment variables KMATH JUMP FILE PATH and KMATH JUMP FILE PREFIX and the ran-
dom number seed value are read, and the random number internal state of each rank is
restored.

Random number generation Random numbers are generated independently for each rank
(Fig. 4.2, line 41). As shown by the example in Fig. 4.2, it is possible to generate each
random number individually by the function KMATH Random Get, or else generate multiple
random numbers together by the function KMATH Random Vector.

Random number generation routine finalization Executes the function
KMATH Random Finalize in all ranks, and finalizes the random number generation routine
(Fig. 4.2, line 47).

4.3 Internal state saving and restoring

KMATH RANDOM includes the functions KMATH Random Serialize and
KMATH Random Deserialize for saving (serializing) and restoring the internal state of the ran-
dom number generation routine. If these functions are used, then following KMATH Random Init

it is possible to save and restore the internal state at any point up to the end of the execution by
KMATH Random Finalize. See Sections 3.6 and 3.7 for details on these functions. Both functions
are collective operations, and care is essential as all ranks must be called simultaneously.

The sample program test/2 serialize/test c io.c (Figs. 4.3 and 4.4) performs saving
and restoring of the internal state. In this program, the mode number is given by the first
argument in execution and the number of random numbers generated is given by the second,
where the processing is performed in accordance with the mode number as follows.

• If mode number 1: Random numbers in the specified number are generated and the results
are written to the file.

26 CHAPTER 4. KMATH RANDOM METHOD OF USE

� �
1
2 /**

3 *

4 * \file test_c_seq.c

5 * \brief test of KMATH random C module

6 * \authoers Toshiyuki Imamura (TI)

7 * \date 2013/02/04 (NT)

8 * \date 2013/12/17 (NT)

9 *

10 * (c) Copyright 2013 RIKEN. All rights reserved.

11 */

12
13 #include "kmath_random.h"

14 #include <stdio.h>

15
16 int main(int argc, char** argv)

17 {

18 int comm_rank, i;

19 void* h;

20
21 MPI_Init(&argc, &argv);

22 MPI_Comm_rank(MPI_COMM_WORLD, &comm_rank);

23
24 h = KMATH_Random_init(MPI_COMM_WORLD);

25 if (h == NULL)

26 {

27 printf("Failed to initialize. rank:%d\n", comm_rank);

28 MPI_Finalize();

29 return -1;

30 }

31
32 char file[128];

33 sprintf(file, "out_c_seq_rnk%04d", comm_rank);

34 FILE* fp = fopen(file,"w");

35
36 KMATH_Random_seed(h, 1);

37
38 for(i = 0; i < 10; ++i)

39 {

40 double v;

41 KMATH_Random_get(h, &v);

42 fprintf(fp, " %17.15f\n", v);

43 }

44
45 fclose(fp);

46
47 KMATH_Random_finalize(h);

48
49 MPI_Finalize();

50 return 0;

51 }� �
Figure 4.2: Source code test/1 interface/test c seq.c

4.4. BENCHMARK 27

• If mode number 2: Random numbers in the specified number are generated and the results
are written to the file, and the internal states of each rank are then collected and written
together to the file (Fig. 4.4, line 15) by the function KMATH Random Serialize.

• If mode number 3: The file recording the internal states is read by the function
KMATH Random Deserialize (Fig. 4.4, line 29), the internal state of each rank is restored,
and random numbers in the specified number are then generated and written to the file.

4.4 Benchmark

A benchmark test is performed on the routines of both the current version (1.1) and the previous
version (1.0). In the previous version, the build is done without SIMD instruction execution
enabled. In either case, random numbers are generated one billion times and the processing
time is measured.

4.4.1 From benchmark creation to job submission

From benchmark program creation to job submission� �
$ cd <kmath random root directory>/random/test/4_benchmark

$

$ ls -1

Makefile

kmath_random_v1.0

run.sh

run_small.sh

test.c

$

$ make

:

$ ls -1F | grep *

test*

$

$ cd kmath_random_v1.0/__comparison/

$ make

:

$ ls -1F | grep *

test*

$ cd <kmath random root directory>/test/4_benchmark

$ pjsub run.sh

[INFO] PJM 0000 pjsub Job 2246378 submitted.

$ kmath_random_v1.0/__comparison/

$ pjsub run.sh

[INFO] PJM 0000 pjsub Job 2246379 submitted.

$� �

28 CHAPTER 4. KMATH RANDOM METHOD OF USE

� �
1 /**

2 *

3 * \file test_c_io.c

4 * \brief serialize test of KMATH random C module

5 * \authoers Toshiyuki Imamura (TI)

6 * \date 2013/12/17 (NT)

7 *

8 * (c) Copyright 2013 RIKEN. All rights reserved.

9 */

10
11 #include "kmath_random.h"

12 #include <stdio.h>

13 #include <stdlib.h>

14
15 int main(int argc, char** argv)

16 {

17 int comm_rank, i, mode, count;

18 void* h;

19
20 if (argc < 3)

21 return -1;

22
23 MPI_Init(&argc, &argv);

24 MPI_Comm_rank(MPI_COMM_WORLD, &comm_rank);

25
26 h = KMATH_Random_init(MPI_COMM_WORLD);

27 if (h == NULL)

28 {

29 printf("Failed to initialize. rank:%d\n", comm_rank);

30 goto ERR;

31 }

32
33 mode = atoi(argv[1]);

34 count = atoi(argv[2]);

35
36 FILE* fp;

37 char ofile[256];

38
39 switch(mode)

40 {

41 case 1:

42
43 KMATH_Random_seed(h, 1);

44
45 sprintf(ofile, "out_c_io_1_%04d", comm_rank);

46 fp = fopen(ofile, "w");

47
48 for(i = 0; i < count; ++i)

49 {

50 double v;

51 KMATH_Random_get(h, &v);

52 fprintf(fp, "Rank:%04d V:%f\n", comm_rank, v);

53 }

54
55 fclose(fp);

56 break;� �
Figure 4.3: Source code test/1 interface/test c io.c (1/2).

4.4. BENCHMARK 29

� �
1 case 2:

2
3 KMATH_Random_seed(h, 1);

4
5 sprintf(ofile, "out_c_io_2_%04d", comm_rank);

6 fp = fopen(ofile, "w");

7
8 for(i = 0; i < count; ++i)

9 {

10 double v;

11 KMATH_Random_get(h, &v);

12 fprintf(fp, "Rank:%04d V:%f\n", comm_rank, v);

13 }

14
15 if (KMATH_Random_serialize(h, "./data_c_io") != 0)

16 {

17 printf("Write ERROR\n");

18 break;

19 }

20
21 fclose(fp);

22 break;

23
24 case 3:

25
26 sprintf(ofile, "out_c_io_2_%04d", comm_rank);

27 fp = fopen(ofile, "a");

28
29 if (KMATH_Random_deserialize(h, "./data_c_io") != 0)

30 {

31 printf("Read ERROR\n");

32 break;

33 }

34
35 for(i = 0; i < count; ++i)

36 {

37 double v;

38 KMATH_Random_get(h, &v);

39 fprintf(fp, "Rank:%04d V:%f\n", comm_rank, v);

40 }

41
42 fclose(fp);

43 break;

44
45 }

46
47
48 KMATH_Random_finalize(h);

49
50 ERR:

51 MPI_Finalize();

52
53 return 0;

54 }� �
Figure 4.4: Source code test/1 interface/test c io.c (2/2).

30 CHAPTER 4. KMATH RANDOM METHOD OF USE

Runs the built execution file. Refer to the shell script run.sh for batch job submission, which
is given in the benchmark program directory. One command line parameter can be specified
and the random number seed can be changed.

4.4.2 Analysis of benchmark results

With the above job submission, both the former and the present version execute a 1024-process
parallel test program and generate random numbers. The following is a comparison of the results
obtained on the two versions. The log shows five items: KMATH, Rand, Diff, First, and Last,
which give the following information.

KMATH Time from KMATH Init call to KMATH Finalize call
Rand Time of 1 billion calls of KMATH Random get

Diff Time required for initialization and discard (= KMATH Rand)
First First random number value
Last Last random number value (the billionth)

Computing time
In this example analysis of the execution results, they are sorted by routine initialization time
with the rank requiring the longest time at the bottom. The processing time is found to be
somewhat shorter on the current version, which is presumably attributable to its elimination of
the overhead due to initialization of the jump and other operations at initialization.

File IO time
The jump file read time depends on the rank number (i.e., the jump file size) and the initialization
of a large number of computing nodes takes time. As roughly estimated from experiments on
the K computer, a jump file recording the random number internal state for 10000 ranks reaches
approximately 3 MB. For staging in and reading a jump file with a file size of around 3 MB,
file opening (fopen) takes about 0.35 seconds processing time in each rank and each file reading
(fread) takes about 0.2 to 0.4 seconds. In the execution of the above benchmark, the jump file
size is 6032 KB.

SIMD performance
The number of executions of SIMD instructions can be determined by comparing system logs.
Basically, SIMD parallelization is performed by the compiler. In the previous version, as in
the current version, SIMD instructions are issued. In the current version, the number of SIMD
instructions issued is about 20 to 30%.

4.4. BENCHMARK 31

Results of benchmark program execution� �
$ cat run.sh.o2246378 | sort -k6 | tail

Rank00672: KMATH: 18.765974 | Rand: 18.463989 | Diff: 0.301985 | First: 1.562129 | Last: 1.176186

Rank00765: KMATH: 18.751880 | Rand: 18.464001 | Diff: 0.287879 | First: 1.171197 | Last: 1.862207

Rank00788: KMATH: 18.757943 | Rand: 18.464019 | Diff: 0.293924 | First: 1.954946 | Last: 1.241992

Rank00860: KMATH: 19.021160 | Rand: 18.464068 | Diff: 0.557092 | First: 1.881494 | Last: 1.628772

Rank00042: KMATH: 18.877124 | Rand: 18.464134 | Diff: 0.412990 | First: 1.516410 | Last: 1.848048

Rank00258: KMATH: 18.864152 | Rand: 18.464231 | Diff: 0.399921 | First: 1.045596 | Last: 1.779265

Rank00121: KMATH: 18.891643 | Rand: 18.464245 | Diff: 0.427398 | First: 1.216335 | Last: 1.173056

Rank00473: KMATH: 18.994540 | Rand: 18.464328 | Diff: 0.530212 | First: 1.968918 | Last: 1.118621

Rank00179: KMATH: 18.925652 | Rand: 18.464336 | Diff: 0.461316 | First: 1.260199 | Last: 1.467264

Rank00671: KMATH: 19.015893 | Rand: 18.464410 | Diff: 0.551483 | First: 1.394975 | Last: 1.487162

$ cat kmath_random_v1.0/__comparison/run.sh.o2246379 | sort -k6 |tail

Rank00515: KMATH: 20.874865 | Rand: 18.937350 | Diff: 1.937515 | First: 1.384332 | Last: 1.185851

Rank00003: KMATH: 20.891247 | Rand: 18.937434 | Diff: 1.953813 | First: 1.914003 | Last: 1.897960

Rank00120: KMATH: 20.876069 | Rand: 18.937446 | Diff: 1.938623 | First: 1.113646 | Last: 1.811843

Rank00903: KMATH: 20.882967 | Rand: 18.937597 | Diff: 1.945370 | First: 1.486338 | Last: 1.852805

Rank00532: KMATH: 20.861776 | Rand: 18.937662 | Diff: 1.924114 | First: 1.176010 | Last: 1.982283

Rank00448: KMATH: 20.900649 | Rand: 18.937692 | Diff: 1.962957 | First: 1.971146 | Last: 1.862640

Rank00177: KMATH: 20.880725 | Rand: 18.937693 | Diff: 1.943032 | First: 1.366891 | Last: 1.543183

Rank00852: KMATH: 20.851202 | Rand: 18.937843 | Diff: 1.913359 | First: 1.457589 | Last: 1.216967

Rank00508: KMATH: 20.897802 | Rand: 18.938084 | Diff: 1.959718 | First: 1.856374 | Last: 1.194903

Rank00334: KMATH: 20.875466 | Rand: 18.939159 | Diff: 1.936307 | First: 1.736941 | Last: 1.230808

$ cat run.sh.o2246378 | sort -k9 | tail

Rank00843: KMATH: 19.070450 | Rand: 18.459434 | Diff: 0.611016 | First: 1.077725 | Last: 1.516480

Rank00987: KMATH: 19.039628 | Rand: 18.428569 | Diff: 0.611059 | First: 1.127347 | Last: 1.708528

Rank00838: KMATH: 19.074573 | Rand: 18.463469 | Diff: 0.611104 | First: 1.332175 | Last: 1.534236

Rank00916: KMATH: 19.051415 | Rand: 18.440010 | Diff: 0.611405 | First: 1.550704 | Last: 1.216761

Rank00891: KMATH: 19.073662 | Rand: 18.462248 | Diff: 0.611414 | First: 1.629879 | Last: 1.243444

Rank00969: KMATH: 19.054204 | Rand: 18.442119 | Diff: 0.612085 | First: 1.478234 | Last: 1.548668

Rank00761: KMATH: 19.076265 | Rand: 18.460603 | Diff: 0.615662 | First: 1.482196 | Last: 1.492482

Rank00759: KMATH: 19.080420 | Rand: 18.461416 | Diff: 0.619004 | First: 1.825657 | Last: 1.428102

Rank00754: KMATH: 19.061866 | Rand: 18.441747 | Diff: 0.620119 | First: 1.044430 | Last: 1.346183

Rank00776: KMATH: 19.056881 | Rand: 18.435444 | Diff: 0.621437 | First: 1.037025 | Last: 1.647820

$ cat kmath_random_v1.0/__comparison/run.sh.o2246379 | sort -k9 |tail

Rank00204: KMATH: 20.908349 | Rand: 18.933447 | Diff: 1.974902 | First: 1.964720 | Last: 1.836223

Rank00832: KMATH: 20.908210 | Rand: 18.932970 | Diff: 1.975240 | First: 1.906966 | Last: 1.504693

Rank00207: KMATH: 20.909952 | Rand: 18.934280 | Diff: 1.975672 | First: 1.516986 | Last: 1.625560

Rank00190: KMATH: 20.910559 | Rand: 18.934203 | Diff: 1.976356 | First: 1.281674 | Last: 1.643301

Rank00147: KMATH: 20.911662 | Rand: 18.934374 | Diff: 1.977288 | First: 1.624243 | Last: 1.016437

Rank00167: KMATH: 20.912492 | Rand: 18.935168 | Diff: 1.977324 | First: 1.525658 | Last: 1.731941

Rank00405: KMATH: 20.912696 | Rand: 18.934336 | Diff: 1.978360 | First: 1.604427 | Last: 1.056995

Rank00165: KMATH: 20.914527 | Rand: 18.935986 | Diff: 1.978541 | First: 1.380315 | Last: 1.031952

Rank00967: KMATH: 20.917316 | Rand: 18.935278 | Diff: 1.982038 | First: 1.779593 | Last: 1.610631

Rank00953: KMATH: 20.916208 | Rand: 18.933213 | Diff: 1.982995 | First: 1.444039 | Last: 1.926610

$ tail -n 5 run.sh.i2246378

DISK SIZE (USE) : -

I/O SIZE : 8982.3 MB (8982214990)

FILE I/O SIZE : 8943.3 MB (8943265297)

EXEC INST NUM : 38518205469617

EXEC SIMD NUM : 2156386352

$ tail kmath_random_v1.0/__comparison/run.sh.i2246379

DISK SIZE (USE) : -

I/O SIZE : 392.4 MB (392336626)

FILE I/O SIZE : 353.4 MB (353387891)

EXEC INST NUM : 46965170405425

EXEC SIMD NUM : 1896914464

$� �

32 CHAPTER 4. KMATH RANDOM METHOD OF USE

Chapter 5

Conclusion

5.1 KMATH RANDOM, present and future

KMATH RANDOM currently has the following limitations. Certain functions are under con-
sideration for addition, which may bring improvements in future.

Firstly, as noted in Chapter 3, KMATH RANDOM is not currently thread-safe. For this
reason, even when execution is parallel in the nodes, the need arises to generate multiple MPI
processes.

Secondly, the period of the random number sequence is determined at the time of the
KMATH RANDOM build, and this parameter is limited in that it cannot be changed dy-
namically. For this reason, users wishing to use several different random number periods must
build the same number of libraries as the required number of periods. We are now considering
resolution of this problem by adding a function for selecting periods arbitrarily at execution.

Finally, we are considering the addition of a function that can replace the current random
number generation algorithm, which is fixed in dSFMT, with an arbitrary random number
generation library.

5.2 Acknowledgements

The results of KMATH RANDOM execution described in this user manual were obtained on
the K computer of RIKEN.

33

34 CHAPTER 5. CONCLUSION

Bibliography

[1] SIMD-oriented Fast Mersenne Twister (SFMT): twice faster than Mersenne Twister,
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index-jp.html

[2] NTL: A Library for doing Number Theory,
http://www.shoup.net/ntl/

35

	coverpage003
	ms_Imamura_KMATH_RANDOM-1.1_users_manual_2015-04-27_en

