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Abstract

The computation of the determinant for Wilson-Dirac operator contains two steps: 1) analytical
reduction from the determinant of the original sparse matrix to that of lower order dense matrix,
and 2) numerical evaluation of the latter determinant. The first part was already done by Ref. [1]
and we use their reduction. In this report, we present a efficient technique for the computation of the
determinant of the lower order dense matrix. Furthermore we address a reduction of Dirac-spinor
space and its implementation. The algorithm shown here was used in Ref. [2].
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1 Definition of problem

Our purpose here is to compute the determinant of the Wilson-Dirac operator in 4-dimensional
FEuclidean system with finite chemical potential p for one-flavor,

4
Dy (1) = buy = 56 3[4 (L= ) U (2)80tiy + €0 (L4 30) U (y) B0 (1)

v=1

where v, (v = 1,2,3,4) are the gamma-matrix in the system,  is the hopping parameter and
U, () are link variables. The determinant of the operator! in a time-blocked form with temporal
lattice size No = 8 is given by,

det D(u)
d(l) d(lg) 0 0 0 0 0 B_H/Td(lg)
d(gl) d(z) d(23) 0 0 0 0 0
0 dgy ds |dsy| 0 0 0 0
0 0 d d d 0 0 0
~ det 43) | da) | dus) 7 5
0 0 0 d(54) d(5) d(56) 0 0 ( )
0 0 0 | 0 |dg de den 0
0 0 0 0 0 dgwe dim d(zs)
et Td(gl) 0 0 0 0 0 d(87) d(g)

where we have defined the matrices of order 12N{ (where Ny, is the spatial lattice linear size ).
For example, the block diagonal elements d(;) for ¢ = 1,2,3,..., Ny(= 8) are three-dimensional
Wilson-Dirac operator. The block off-diagonal elements for ¢ = 1,2, ..., Ny — 1(=7) are hopping
term for the time-direction,

di+1p) = _2“P+Ul(t)5x,y’ (3)
d(t,tJrl) = _2KJP7 U4(t)(5x}y, (4)

and for ¢ = Np(= 8) due to the anti-periodic boundary condition for fermion field, the corner
elements are given by (additional minus sign cancels the original sign)

dii,ngy) = 2HP+UI(NT)6x,y7 (5)
dinpy = 26P_Uy(Nt)dxy, (6)
where we denote Uy(t) = U,—4(x¢ = t,x) is the link-variable for time-direction and Py = (14~4)/2.

The details of the Dirac-gamma matrices are given in appendix Appendix A.
By making use of the domain decomposition representation?,

Duy [ Dayy | 0 | e "Dy

D D D 0
det D = det (21) (2) (23) 7 15
(/’l’) O D(32) D(S) D(34) ( )

e TDiy | 0 | D D)

Mnclusion of the clover term is straightforward.
2Decomposed into four domains:

domain (1): for t=1,2,3,
domain (2): for t=4,
domain (3): for t=25,6,7,
domain (4): for t=38,

~ o~
O o

—_

(=]
—_ T = D =

—



and the reduction for the time direction [1], the determinant may be written as

where

with

det D(p) = Agdet[l — Hy — e/ TH, — e WTH_],

= det D(l) det D(g) det D(g*g) det D(4*4)7

—1 —1 —1 —1
= Dy D) D 9,0y D214) + D 4,4y Da32) D 5,0y D(234)

-1 -1
= DuayDuin)D (.9 Di234),

—1 —1
= D(4*4)D(432)D(2*2)D(214),

D (242
D(41)
D412
D (432)
D214
D234

D(2) = D(a1)D3y D(12) — D(23)D 3y D(32).

-1 —1
D4y = D1y D1y Daay — Das) D 5) D34

D(41)D6§D(12),

—1
D3 D 5)D(32),

D(21)D6§D(14),

-1
D(23)D 5)D(34)-

In this note, we do not derive this form, but we address how to numerically compute the expression

eq.(13) in an efficient way. Now, our task is to compute the following matrix products

and

D(21)D6§D(12)7
D(21)D(_1§D(14),
D(41)D6§D(14),
DDy Do),

—1
D43y D 5)D(34),

-1
D3y D 5)D(32),

—1

D23)D 5)D(32),
-1

D (23)D 3D 34)-

An algorithm to compute them will be given in section 2.1. On the other hand, the computation
of Ap in eq.(14) will be addressed in section 2.2.

In the rest of this section, we explain a key idea in the computation of eq.(24-27). For Ny = 8
case, D(12), D(14), D(21) and D4y are given in a block form

0
D(12) = 0 )
*
*
Dy = 01,
0
D(21) - ( O 0 * )7
Day = (= 0 0),



where each block element is a matrix with the size 12N} and there are many zeros. Thus, we need

only four corner elements (* element) of D(_S,

D! - - - ]. (36)

1 =
* — *

Usually, LU decomposition algorithm automatically computes all elements of D(_S, but we need
-1
. . . . . . (1) )
Question now is how to compute only the corners without computing others. This report provides
an answer to this demand and the details will be given in section 2.1.

only small fraction of them. The same goes for eq.(28-31) where D(_gj appears instead of D

2 Time reduced case

2.1 How to compute corner blocks of an inverse matrix
2.1.1 For lower corners

2-block for lower corners
First of all, consider 2-block size matrix,
day  daz) )
a9 = . 37
? ( diary  d2) 87)

By using the formula in eq.(178) in appendix Appendix B, the inverse matrix of ay (in a block
form) is given by

—1 —1 —1 —1 —1 —1
0l - dyy +dg)ydaz) Bygydendy)  —diydas By, (38)
S —By b dndy) B; ! 7
2(2)%(21)%(1) 2(2)
where the “B”ackward (hopping domains (2) — (1) — (2)) matrix is given by
Byz) = d) — dendydag). (39)

While the second index of By(yy refers to the lattice domain (it is (2)), the first index refers the
block size (it is 2) of aw, although Byy) itself is 1-block size. We call the first index “level”.
In the end, we obtain lower corner block elements

(2,2) element of a; ' = Bz_(é)’ (40)
(2,1) element of a; ' = —B;é)d(m)da, (41)

for 2-block size case.

In principle, one can compute other (upper) corner elements, but it requires additional calcula-
tion. As we will see later in section 2.1.2, other decomposition is useful for the computation of the
upper corner elements.

3-block for lower corners

For 3-block size case,
diy dazy 0
az = | dp1y dge) des |- (42)
0 daz dg

5



By using eq.(178), the inverse matrix of a3 (in a block form) is given by

Qg
-1

- _ 0 _ 1 1 0 -
Qy 1 + Qy 1 ’V ) “ Bg(é) [ 0 d(32) ] Qo —Qy ’V d( “ B3(3)
0

- Yo : 2
_B3(3) [ d(32) ]0‘2 ‘ B 3(3)
-1 -1
* * d(1)d(12)32(2)d(23)33(3)
= . * 1 ; * Q(Q)d(23)B ( )
Bg(s)d(32)Bz(2)d(21)d(1) Bs(s)d(32)Bz(2) ‘ By ( )

where the backward (hopping domains (3) — (2) — (3)) at level 3 matrix is given by

_ 0
By = dgz)—(0,dz)as’ ( dias) ) )

—1
= d(3) — d32)By5)d(23),

which can be obtained from By(y) that is the backward matrix at level 2 in eq.(39).
Thus we can see that

(3,3) element of az' = B3(é)7
(3,1) element of agl = 3(3)d(32)32(2)d(21)d(_1§7

for 3-block size case.

4-block for lower corners

For
o de1y  de) dezy 0
0 d@z de)  deg
0 0 daz)y  d
Then
(4,4) element of a; ' = B;(4) (deay — d(43)B§(§)d(34))*1,
—1 1 —1 —1 -1
(4,1) element of ay © = —B4(4)d(43)33(3)d(32)BQ(Q)d(gl)d(l),

for 4-block size case.

t-block for lower corners
Here we show only the results for ¢-block size case.
(t,t) element of a; ' = Bil) = (d@) — dg— 1)B;_11(t_1)d(t_1,t))*1,
(t,1) element of oy ' = (=)'*! B, " )d(t i 1)Bt - 1)d(t,1,t,2) 2(2)d(21)d(1)
If one wants to obtain those of D(_‘g;, one has to shift the domain in eq.(52) and (53)
(t) — (¢t + Nv/2),

but the level is intact.

(49)

(52)
(53)

(54)



2.1.2 For upper corners

2-block for upper corners

First of all, consider 2-block size matrix with n = Np/2 — 1

d n—1) d(n—l n)
By = ( ( ’ ) (55)
dinn-1)  dem)

By using the above formula, the inverse matrix of 32 (in a block form) is given by
Fl —FY diy 1 mdt
Byt = e L1, g D ( iy ) -1 s (56)
—diydnn-1)Fy, 1y Ay Ay dmn—1)Fo, 1y dn-1,m)d
where the “F”orward (hopping domains (n — 1) — (n) — (n — 1)) matrix is given by
F2(n—1) = d(n—l) - d(7z—1,n)d(;ll)d(n,n—1)' (57)

In the end, we obtain the upper corner block elements

(1,1) element of B+ = FQ_(le—l)’ (58)
(1,2) element of B;* = —F;(?l%l)d(n_Ln)d(;l), (59)

for 2-block size case.

3-block for upper corners

For 3-block size case,
din—2y  dm—2,n-1) 0

Bs=1| dm-1n-2  dm-1) dm-1n) |- (60)
0 dinn-1)  dw)
By using eq.(180), the inverse matrix of 33 (in a block form) is given by
By !
-1
d(n—2) ‘ d(n72,n71) 0
= | o1 61
( 8 2) 52 ( )
—1 —1 -1
F3(n—2) _FS(n—Q) [ din—2n-1) 0 ]52
= * * * (62)
* * *
—1 -1 -1 —1
Fsnea) | ¥ Fsnodmn—2n-0F50_1dn-1md0,)
* * *

where the forward (hopping domains (n — 2) — (n — 1) — (n — 2)) at level 3 matrix is given by
F3(n72) = d(n72) - d(n72,’ﬂ71)FQ_(i_l)d(nfl,TLfQ)? (64)

which can be obtained from Fy(,,_1) that is the forward matrix at level 2 in eq.(57).
Thus we can see that

(1,1) element of 33! = FS_(':L72)7 (65)
(1,3) element of 85" = Fy, 5 din-amn1)Fy_1)dn-1.md0,)s (66)

for 3-block size case.



4-block for upper corners

For
din-3)  dmn-3n—2 0 0
ﬁ4 _ d(n—Z,n—S) d(n—2) d(n—2,n—1) 0
0 d(n—1,n—2) d(n—1) d(n—1,n)
0 0 d(n’nfl) d(n)
Then
(1,1) element of 87" = Fyu o = (dn-3) = din-sn-2)Fa(n_o)dn—20-3) "
1 —1 —1 —1 —1
(17 4) element of 54 = 7F4(n,3)d(n—3,n—2)Fg(nfg)d(n—Q,n—l)Fg(nfl)d(n—l,n)d(n)7

for 4-block size case.

t-block for upper corners

Here we show only the results for ¢-block (n = N1 /2 — 1) size case.

(1,1) element of ;' = Ft?i—t-&-l)

(din—t41) — d(n—t+1,n—t+2)Ftill(n,tﬂ)d(n—t+2,n—t+1))717

(1,1) element of 57" = (=) F, 0 hdin- st F ) gy B thzm-tr3)

-1

—1
XEy (1) d(n—1,m)d ) -

(70)

(71)

If one wants to obtain those of D(_?,;’ one has to shift the domain in eq.(70) and (71) as that of

eq.(54).

2.1.3 Flow

We can obtain the corners of D(_S by the following recursion method.

—1
Fo=dy, o1

21
Uo <= d(nyjo-1)
dot:2~NT/2—1
get dyy, d(tt—1) and d—14)
By <= dyy — de—1)Bodi—1,1)
B; < inverse of By ceek
Ly <= —Bid,t-1)Lo
By < B; copy
Lo = Ll copy
get d(nypj2—t)s A(Npj2—t,Npj2—t+1) a0d d(Np /2 t41, N /2 1)
Fy < d(npj2—t) — d(Npj2—t,Npj2—t41) FOd(Ny j2— 141, N /2—¢)
F| < inverse of F
Uy < —Fid(nyj2—t,Nvj2—t+1)Uo
Fy<= Fy copy
Uy <= U,y copy
enddo

Although B-L loop and F-U loop are independent each other, we show them in a combined form
just for a convenience of writing in note. This loop can be parallelized in an actual implementation.



The symbol * means that in the process with it the sub determinant can be computed as will be
discussed in section 2.2 for the evaluation of Ag. In the end, all corner elements are obtained by

(N1/2 —1,Nt/2 — 1) element of D(_l% = By, (72)
(Nt/2 —1,1) element of D(S = Ly, (73)

(1,1) element of D(_S = Iy, (74)

(1, Nt/2 — 1) element of D&; = Ui (75)

For D(_; case, the domain of d(,) has to be shifted as in eq.(54) compared with the previous one,

By = d(N /2+41) Tk
Lo <= diy, o1y

Fy < d(;;T N

Uy < d(j;rl)

dot=2~ Np/2—1
get d(Npj2+t)s A(Npj24¢,Npj2+t—1) a0d d(Ny /2161, Np/241)
By <= d(Npj24t) — A(Npj244,Np /246 -1) Bod(Np j24-t—1, N7 /244)

B; < inverse of By ceek
Ly < —Bid(Nyj24t,Nrj2+t-1) Lo
By < By copy

Ly < Ly copy

get d(np—t)s A(Np—t,Np—t+1) and d(Np 41, Np—t)
Fy <= dinp—t) — d(Np—t, Ny —t+1) FOA(Np—t41,No—1t)
F} < inverse of F}

U1 < —Fid(np—t,Ne—t+1)Uo

Fy <= Fy copy
Up <= U, copy
enddo
In the end, all corner elements are obtained by
(Nt/2 —1,Nt/2 — 1) element of D(_?j = By, (76)
(N1/2 —1,1) element of D(s) = I, (77)
(1,1) element of D(?j = I, (78)
(1, N1/2 — 1) element of D, ; = Ui. (79)
2.2 How to compute A
For the computation of Ay in eq.(14), we need
det D(l), (80)
det Dys). (81)



To evaluate the first one, for the expression in eq.(42) where the time slice is n = Np/2 — 1 = 3,
we use eq.(183)

det D1y = detas

day daz 0
= det | day dg  des

dz2)  ds)
N 0
= det 2 d(23)
0 deo) | d)
_ 0
= detay-det |d — (0,d 1 ) 82
etag - de [ 3) ( (32))042 (d(23) )} ( )

The first factor in eq.(82) is given by
detas = det < day  dag) )
@1y de)
— detdgy) - det [d(z) — dayd}dn)|
= det By(y) - det By(a),"." €q.(39), (83)

where we have defined By (1) = d(1). The second factor in eq.(82) is given by

_ 0
det |d3) — (0,d !
e (3) ( (32))02 < d(23) )}

det [d(s) — dgsa) Byghdeosy | e (38)

= det Byz) "." eq.(46). (84)
So in the end, eq.(82) is given by
det D(1y = det By (1) det By(o) det Bs(s). (85)
In general, for any n it is given by
n
det D(yy = H det Byy). (86)
t=1

The det By;) can be computed in the process of the B;(tl) by the LU decomposition. This com-
putation of det By is not so crucial. The computation of det D3y can be done in the exactly
same way. Furthermore, det D(2,2) and det D(4,4) can be also computed in the process of the their
inverse calculation by the LU decomposition.

2.3 Comments

e Note that this method works for Nt > 6.

e For Hermitian matrix H ) = 75D(1), we do not need to compute U by the above recursion
method, since it can be obtained by U = L.

e Memory: The size of working matrix is 12N. This is a big reduction compared with the old
method where the size 12N{ (Nt /2 — 1) was required. Thus, O(N2/4) memory size reduction
is achieved, and the memory size does not scale with N.

e Cost: The proposed method here needs 2 x (Np/2 — 1) inverses for matrix whose size is
12N{. Old method requires inverse of matrix whose size is 12N{(Nt/2 — 1) and the cost is
(12N3(Nt/2 —1))? for LU decomposition, while our case scales with 2(Nt/2 — 1) x (12N7)3.
We obtain N2 /8 reduction!!! Of course, we have to take into account the dense matrix-matrix
multiplications ((12N7)? x (Nt/2 — 2) x 2), but its cost is still proportional to linear of Nr.

10



e This method is useful for very large Np case. The cost scales with Nt linearly and the
required memory is independent of Nr.

e Note that loops for B and F' are independent, thus this part can be paralleled.

Ny, 4 6 8 10 12
memory (GB unit) | 0.2 | 1.3 | 7.3 | 27.7 | 82.6

Table 1: We use 12 working matrices with size 12NE with the double precision complex number.
Therefore the required memory size 12 x 16 x (12NE)2GB. Ny, = 8 is now feasible for any value of Nrt.

11



3 Time reduced + Dirac-spinor reduced case

3.1 Reduction of spinor space

3.1.1 D) related case

For ~5 multiplied Wilson-Dirac operator H (i) = 5D () case, by using eq.(3-6) with +5, the terms
in eq.(24-27) are given by

D(Ql)D(_SD(lg) = (0,..,o,d(NT/Q,NT/g_l))D(—S (1)

d(Np/2-1,Nr/2)

= d(Nr /2,80 /2By a1 (v j2- 1)d(Ne /21N /2)

= (26)*%PsUNT/2 = 1) By 5 vy jo 1y U(NT/2 = D)5 P, (87)

d(1,N1)
—1 —1 0
D@iyDq)Dasy = (0,..,0, d(NT/Q,NT/zq))D(l)

= d(Ny/2,Nr/2-1)

Nt /2 p—1 -1
[(*) v/ BNT/271(NT/271)d(NT/2—17NT/2—2)"'d(l)} d(1,nr)

= —(20)*sPLU(Nr/2 = 1)1 [(-)V/2. ] U(Nr) s Py, (88)
d(1,N7)
1 . 0
D(41)D(1)D(14) = (d(NT,1)707~-70)D(1) :
0

-1
- d(NTvl)FNT/Qfl(l)d(lvNT)

- (—2@275P_U(NT)FZGTI/Q_M)U(NT)T75P+, (89)
0
D(41)D(—1§D(12) = (d(NTJ),O,...,O)D(‘S (1)

d(Ny/2-1,N1/2)

N -1 -1
= d(np) [(_) T/QFNT/2—1(1)d(12)---d(NT/z—n}

d(Ny/2-1,N1/2)
= —@)*sPUND) [N Fihe o)
U(Np/2 = 1)15P-. (90)
Note that the minus sign in eq.(88) and (90) whose origin is the anti-periodic boundary condition.

From the above form, it is obvious that we need some fraction of spinor space since they are
sandwiched by the spinor projections Pi. In the following, we treat them separately.

12



How to obtain D 51D D 19

(1)
First by looking at
Bt(t) = d(t) d(t t— 1)Bt 1(t— 1)(1(,5,1 t)
diey = (26)* 3 PLU(t = 1) B (Ut = 1)y5P-
= duy — (2R)2U(t = ) Pys B )y P-U(t = 1).

t—1(t—1)

The second term is sandwiched by the P_ together with 5 which interchange all element

(01 Ay, A 0 1\ [ A_ A
75A75_<1 0>(A_+ A__ 1 0)"\ A Ay )

Therefore we need ++ component of Bt 1(t—1) hamely (Bt_—ll(t—l))'H' in

B! ( (B, 11(t 1)) (B, 11(t 1)) )

1D (B; 1(t— 1)) + Bt 1(t—1)/—

Eq.(91) is given by

Biwyt | Buwy - >
B -
" < Bi(t)—+ | Brr—-
< dipy 1+ | diyr- >
dy—+ | diy—— — (26Ut = DB, 1)++UE 1)

In the next step ¢t 4+ 1, one needs ++ component of B;(tl) namely

(B{(tl))++ = (Bt(t)++ - Bt(t)+—Bt?t1),,Bt(t)—+)_1
= (d)4+ — d(t)+th_(tl)__d(t)f+)717
with
Byty—— = day—— — (2r)*U(t = DB ;1)) ++ Ut = 1).
In the end,

D1yD\ D19y = 0 2 - 0
GHH (1)~ 012) 0 (2x)2U(Np/2—1)f (BNT/2 (e j21)++U (N1 /2 = 1) )

equivalently

(D(QI)D(_l;D(m))—— = (26)°U(N1/2 = )(By, Jj2—1(Nz/2-1))++U (N1 /2 = 1).

How to obtain D(Ql)D(*SD(M)

D(21)D(_1§D(14) = —(26)*yPLU(Np/2 — 1)1

[( N 2B (N2 1>d<NT/2—1,NT/2—1>-~-d<21)3f&)]
U(Nr)ys Py
= —(2r)%(—)N1 /2 (—2k) N1 /22
V5P U (N /2_ 1) BK{ /2—1(Nr/2-1)
V5 PLU(Nt/2 = 2) BN1/2 2(Nyp/2-2)"
5 PrU(2) By 15 PrU(1) 31(1)75P+U(NT)W5P+~

13

(91)

(92)

(93)



By using a property

wrane= (15 ) (47 47 ) (1 0)=(al 5) 0w
we obtain
(Den Dy Daa)—+ = =(=) @) 2UND/2 = 1)1 (B 1w o)+~
U(Nt/2 = 2) (Bys o a(neja2))+—--
U(2) (Byh)+- UM (B4 -U(Nr), (101)
with
(Bi)+— = —(Biy)++Buny+— By
= _(Big))++d(t)+*Brfz1})——’ (102)

where (Bt_(tl))++ and Byy)—_ are defined in eq.(95) and eq.(96) respectively. Note that there is the
minus sign in eq.(101) due to the anti-periodic boundary condition.

How to obtain D(41)D(_1§D(14)

First looking at

Ft(n7t+1) = d(n7t+1) - d(n7t+1,n7t+2)Ftill(n,t+2)d(n7t+2,n7t+1)

= dint11) — (2R)*P-Uln —t + )F, Y, 0 Un—t+1)"sP;

= dnisy) — 2R)’U =t + DPyysF, Y s PiU —t+ 1T (103)
The second term is sandwiched by the P, together with 5. Therefore we need —— component of

-1 -1 .
E (n—t42) Namely (thl(n7t+2))** mn
-1 -1
F ity = (Ft:f(”*” 2)++ (Ft:f(”*” )= ) | (104)
i) (B i)+ (Fli(nmty)—

Eq.(103) is given by
Fin—t4+1)

_ ( Fin—ty1)44 ‘ Fytnty1)4— )
Fytn—t+1)—+ | Frtn—t+1)——

_ ( d(n—t+1)++ - (QR)QU(TL —t+ 1)(Ft__11(n_t+2))——U(n —t+ 1)1- ‘ d(n—t+1)+— ) (105)
din—t41)—+ | din—ts1)——
In the next step t 4+ 1, one needs —— component of thi_ i+1) namely
(th$7t+1))** = (Ft(n*tJrl)** - Ft("*t+1)*+th;7t+1)++Ft(n*t+1)+*)_1
= (d(n—t+1)—— - d(n—t+l)—+Ft?$_t+1)++d(n—t+1)+—)717 (106)
with
Fitnt11)4+ = din—ss1)4+ — (26)2U(n —t + 1)(Ft__11(n_t+2))__U(n —t+ 1) (107)
In the end,
_ (26)2U (N1)(Ft 0 1i)——U(NT) 0
DD Py = ( Ne21) 0 ) (108)
equivalently
(Dun D} Dan)++ = (26)°U(N1)(Fyl 5y q)——U(Nr)T. (109)
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How to obtain D(41)D(—1§D(1Z)

This can be obtained by Hermite conjugate of D(gl)D(l%D(M), therefore we do not discuss it here.

3.1.2 D) related case

For ~y5 multiplied Wilson-Dirac operator H (u) = 5D (u) case, by using eq.(3-6) with -5, the terms
in eq.(28-31) are given by

—1 ~1 :
D(43)D(3)D(34) = (07 -+ O7d(NT,NT*1))D(3) 0
Ad(Ny—1,N1)

-1
= d(NTJVT*1)BNT/2—1(NT—1)d(NT*17NT)

= (26> P UWNT = 1By 5 vy U (N = D)5 P, (110)
d(Ny/241,N1/2)
D(43)D(;,§D(32) = (0,..,0,d(NT,NT_1))D(;3 ?
0
= d(Np,Nr-1)

N- —1 -1
[(_) T/2BNT/2—1(NT—1)d(NT*1,NT*2)"'d(NT/2+1)] d(Np/241,N2/2)

= (203 PLU(Nr = 1) [()Y/2.] U(Np/2) 5Py, (111)
d(NT/2-61,NT/2)
D(%)D(;D(gm = (d(NT/ZNT/QH),o,...,O)D(—g;
0
= d(NT/27NT/2+1)FZ;;/2—1(NT/2+1)d(NT/2+17NT/2)
= (26)*P-UNT/2)Fy. 15 1(ngj2r1y)U (N1/2) 75 Py (112)
0
Di3yDigyDsy = (d(np/2,Nx /241, 0, 0) D) (:)
d(Nr—1,N1)
= d(Ny/2,Nr/241) [(—)NT/QFJGTI/H(NT/HUd(NT/2+1,NT/2+2)~~d&§T71)]
d(Np—1,N1)
= @n)PsPUNT/2) [(N 2, )]
U(Ny — 1)y5P_. (113)

Note that there is no minus sign in eq.(111) and (113) compared with eq.(88) and (90). The above
equations are obtained by just shifting the domains as in eq.(54). In the following, we treat them
separately.
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How to obtain DD 3 D(34)

0 0
1 o
DasyD 5)D(34) = ( 0 (2k)2U(Np — 1)T(B§i/2—1(NT—1))++U(NT 1) ) .
equivalently
(D(43)D(_3§D(34))—— = (2x)°U(Nr — l)T(B];i‘/Qfl(NTfl))"r-"U(NT —1).

How to obtain D(43)D(73%D(32)

(DusyDig D))+ = (DN @e)NPUNT = DNBYL 5 1 v —1))4+-

—1
U(Nt = 2)T By o a(nip—2)+—

U(Nt/2+ Q)T(Bz_(ﬁvT/2+2))+—

U(Nt/2+ 1) (B, a1+~ U(ND/2)T,
with

<Bt(t’))+* = _(Bt(t/))++Bt(t’)+—Bt(t,)__
= —(Byy)++dan+— By

t(t') t(t)——"

Note that there is no minus sign in eq.(116).

How to obtain D(23)D(_3§D(32)

D23 D5 Dsz) = ( (2)2U (N1 /2) (Fiy g1 (321 -=U (Nr/2)1 0 )
0 0/’

equivalently
(D(ZS)D@D(32))++ = (2“)2U(NT/2)(F1§T1/2—1(NT/2+1))“U(NT/Q)t'

How to obtain D(23)D_1D(34)

®3)

(114)

(115)

(116)

(117)

(118)

(119)

This can be obtained by Hermite conjugate of D(43)D(§3D(3g), therefore we do not discuss it here.

3.1.3 Flow

We can obtain D(2,9)—_ and (D(Ql)D(_l§D(14))_+ which are D(_S related quantities by the following

recursion method.
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get d(l),,
By <« inverse of d(1)__ ceek
LO = B()U(NT)T
get d(1)++, d1y+— and d()—
By <= dy+4 — dy—Bod)-+
B; < inverse of B, Cek
L < d(1)+_L0
Lo < By x 14
L < U(l)TLO
dOt:2NNT/2—1
get d(yy_
By =dy-— — (2x)2U(t - 1)TB Ut — 1)
By < inverse of By ceek
Ly < By x I
get d(t)++7 d(t)+7 and d(t)er
By < dy++ — d@y+—Bod)—+
B < inverse of B; .
L1 = d(t)+_L0
Lo < By x Ly
L < U(t)TLO
enddo
get d(nz/2)--
By < d(NT/Q),, — (QK)QU(NT/2 — 1)TBlU(NT/2 — 1)
LO P —(—)NT"'NT/Q_I(QFL)NT/QLl

Note the minus sign in the final step for Ly due to the anti-periodic boundary condition. The number
of required inversion is 2 + 2(Nt/2 — 2). The symbol x shows the dense matrix multiplication,
which is needed 14 2(Nt —2). The symbol x means that in the process with it the sub determinant
can be computed as will be discussed in section 3.6 for the evaluation of Ag. In the end, By and

Ly are
D@uoy-— = By,
(D(21)D(71§D(14))7+ == LO.

We can obtain D(4,4)44 which is D(l% related quantity by the following recursion method.

get dinp/2—1)4+

Fy < inverse of d(n,/2—1)4+ ceek

get d(npj2-1)—— d(Npj2—1)+— and d(npj2-1)—

Fi <=dngj2-1)-— —d(ngj2—1)+—Fod(npj2-1)—+

F, < inverse of F ceek

dot=2~ Np/2—1
get d(Np/2—t)++
Fy < d(nyj2—t)++ — (26)2U(N1/2 — ) LU (N /2 — )T
Fy < inverse of Fj ceek
get d(np/2—t)——» d(Np/2—t)—+ and d(npj2—1)4—
Fy <= dingja—ty—— — d(Npj2—t) -+ Fod(Np j2—1)+—
F; < inverse of F} ek

enddo

get d(np)++

Fy < d(ny)++ — (26)2U(N1)FLU(Np)t

The number of required inversion is 2 + 2(Nt/2 — 2). There is no dense matrix multiplication in
this case. The symbol * means that in the process with it the sub determinant can be computed
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as will be discussed in section 3.6 for the evaluation of Ag. In the end, Fy is
D(4*4)++ = F(). (122)

For D(g; case, the domain of d(,) has to be shifted as in eq.(54) compared with the previous
one and take into account the minus sign from the anti-periodic boundary condition. Actually, in
this case there is no such a minus sign. We can obtain D 4,4)—_ and (D(43)D(73§D(32)),+ which are

D(;% related quantities by the following recursion method.

get d(Np/241)——
By < inverse of d(n./241)—— ceek
Lo <= BoU(Np)T
get d(Np/2+1)++> A(Np/2+1)+— and d(Np/241)—+
By <= d(Nyj2+1)4++ — A(Nypj2+1)+—Bod(ng j241) -+
B; < inverse of By ceek
Ly <= d(nyj241)+-Lo
Lo < By x 14
dot=2~ Np/2—1
get d(np /244)——
By < d(Npj244)—— — (26)2U(Np/2 +t — D'BU(Nr/2+t—1)
By < inverse of By ceek
Lo <= By x Ly
get d(NT/2+t)++a d(NT/2+t)+f and d(NT/2+t)7+
By <= d(nyj24t)++ = ANy j24+4)+— Bod(Np j24+4)—+

B; < inverse of By ceek
L1 <= d(npj246)+-Lo
Lo<= By x Ly
L, < U(NT/2 + t)TLQ
enddo
get d(np)——

By < d(NT)—— — (QK)QU(NT — 1)TBlU(NT — 1)
LO P (7)NT+NT/271(2/€)NT/2L1

Note that there is no minus sign in the final step for Ly compared with the D(_S case. The number

of required inversion is 2 4+ 2(Nt/2 — 2). The symbol x shows the dense matrix multiplication,
which is needed 14 2(Nt —2). The symbol x means that in the process with it the sub determinant
can be computed as will be discussed in section 3.6 for the evaluation of Ay. In the end, By and
Lg are

D(ysay-— = By, (123)
(DusyDiz Ds2))-+ = Lo (124)

We can obtain D(2,2)44 which is D(Ej related quantity by the following recursion method.
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get d(Np—1)++

Fy < inverse of d(n.—1)4+ cek

get dinp—1)—— d(Np—1)+— and d(np 1)+
F1 <= d(Np—1)—— — d(Np—1)+-Fod(N—1)—+
F1 < inverse of F} ceek

dot=2~ Np/2—1
get d(Ny—t)++
Fy < d(NT,t)Jﬁ, — (25)2U(NT — t)FlU(NT — t)T

Fy < inverse of Fj ceek
get d(NT,t),,, d(NT,t),Jr and d(NT,t)Jr,
Fr<=ding—ty-— — d(Np—t)—+ Fod(np—t)4—
F, < inverse of F; ceek

enddo

get d(Np/1)++
Fy < d(NT/2)++ — (2:%)2[](]\7'1‘/2)1'7‘1U(]VT/2)'r

The number of required inversion is 2 + 2(N1/2 — 2). There is no dense matrix multiplication in
this case. The symbol * means that in the process with it the sub determinant can be computed

as will be discussed in section 3.6 for the evaluation of Ay. In the end, Fy is

D(zi2)44+ = Fo.
3.2 How to obtain D(_ziz) and D@}M)

For

D2, D949y —
D(242) = ( @2t 22+ )

Dway—+  Dsa)——

( eq.(125) d(NT/2)+_>
d(Npj2)-+  €q.(120) )’

by using eq.(180) the inverse matrix is

-1 —1
D_1 (D(gfg))++ (D(ziﬂz))Jrf
(2+2) (D(2*2))—+ (D(z*z) -
with
(D(_Qiz))++ = (D(2*2)++*d(NT/2)+—D(_QiQ),,d(NT/Q)—Jr)*l,
-1 -1 -1
(D(2*2))+, = _(D(2*2))++d(NT/2)+*D(2*2)——’
-1 —1 -1
(D(2*2))—— = D(2*2)77(17d(NT/2)—+(D(2*2))+—)'
Note that for Hermite matrix A,
A, A )’
A++ = AT++7
A__ = Al _,
A, = Al
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For

( Digay++  Dasay+— )
D(4*4)—+ D(4*4)——

eq.(122) dinoys )
_ , 135
(«anyq. eq.(123) (135)

D (414

by using eq.(180) the inverse matrix is

- (Dignay)++ (D)) +-
Dl = (4x4) (454) , (136)
(4=4) <(D(4*4))+ (D(4*4) -
with
(D) ++ = (Diaenyst = d(ney+—Dipngy_diney—1) ", (137)
(Do) +— = —(Dny)++dive)+—Dgasy— s (138)
-1 -1 -1
(D(4*4))77 = D(4*4)__(1_d(NT)7+(D(4*4))+7)' (139)
3.3 How to obtain Hy, and H.
For
_ Hoyy Hoy-
Hy = (H0+ ) (140)
_ (0 Hy-
no= (8 ), "
_ ([ H-++ O
H- <H_)_+ 0 ) (142)
the elements are given by
Hory = (Diy)s+Dains—(Dos) - Diigy—4 (143)
Ho— (D34)—+Darzy+— (Days) -~ Dioray—+, (144)
Hoy— = (Dy)+-Dsa)—+(Da)++ Diasays — (145)
Ho— - (D34)——Dazz)—+ (Do) ++ Diasay (146)
Hy 4 (Dga)++Dear2) 4~ (Dayn) —+- Diasay 4 - (147)
Hy - (Di1)—+Darz)+— (Days) —+ Diosay (148)
H_ iy (Diea)+—Diasz) 1 (Dan)+—Diara)—+- (149)
H = (Dyy)-—Dusy—+(Dys) s Dray—+ (150)
This can be written in a systematic way
Hy,, = APZPT, (151)
Hy_, = BPZPT, (152)
Horo = BQXQ, (153)
Hy— = CQXQT, (154)
Hy, = APYQ', (155)
H,__ = BPYQ', (156)
H_ ., = B'QY'PT, (157)
H . = CQy'ph. (158)



One needs 4(Hy) +2(Hy) +2(H-)+3(ABC)+3(XY Z) +2(PQ) = 16 matrices and 4+8+4 = 16

matrix multiplications.

3.4 How to obtain f/(q)
To compute the truncated V()

Vg = tr[Ho]+%tr[(H0)2]+tr[H+H_}, (159)
Viy = ol + () Hol, (160
we need
tr[Ho] = tr[Hop4]+ tr[Ho—_], (161)
tr[(Ho)®] = tr[(Hot+)? + Hos—Ho] + tr[(Ho—-)* + Ho—1 Hos -], (162)
tr[HyH_| = tr[Hy  H_ ], (163)
S e | (164)
tr[(H)9] = tr[(Hy,—-)7), (165)
tr[(Hy)?Ho] = tr[Hy 4 (Hy )" "Hoy] + tr[(Hy,——)"Ho-]. (166)

3.5 Comment

e A gain for each LU decomposition and matrix-matrix multiplication is (1/2)% = 1/8 but we
need twice, so total cost is proportional to 1/8 x 2 = 1/4.

e Since in the time reduced case, lapack is clever enough to skip zero element part, this spin
reduction is not so impressive compared with the time reduction case.

3.6 Computation of A,
When one computes eq.(86)

Nrp/2—1
det Dy = [[ det By, (167)
t=1
the computation of
det Bt(t), (168)

is needed. This can be obtained by the spin decomposition form together with eq.(184)

det( Biy++  Buy+- )

det Bt(t) Bt(t)er Bt(t),,

= det Bt(t),, det |:Bt(t)++ — Bt(t)+,Bti(tl)77Bt(t),+ . (169)

The first term can be obtained when one computes B;(tl)ff in eq.(96). The second term can be

obtained when one computes (B;(tl))++ in eq.(95).
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4 Benchmark

The actual benchmark was done on K computer and the computational cost is plotted as a function
of the lattice size in Fig.1. We find reduction method is several tens times faster than naive method.
Using reduction method algorithm changes from one matrix inversion for a matrix of order 12N2 Ny
to 5 x4 x (N7 /2 — 1)+ 2 matrix-matrix multiplications and 2 x 4 x (Nt/2 — 1) 4+ 2 matrix inversions
for matrices of order 6N{. So numerical cost is reduced from

6 x (12N Ny)? (170)

to

6 x (6N?)? x [28 x (Np/2 —1) +4]. (171)
In reduction method we use pzgemm, pzgetrf and pzgetri of ScaLAPACK optimized for the K com-
puter to compute matrix-matrix multiplication and matrix inversion which operates at ~50% and
~5% efficiency against the theoretical peak performance, respectively. Since most of computation
is done by higher performance pzgemm, one might get more speed-up, e.g. by a factor of O(100)
at N7 = 6. Our speed-up factor, however, is not such high because there are number of matrix
copying and making inside of determinant calculation to save memory in our implementation.

100000 g T ————
i °
— 10000 E
Z E E
E i
g 1000k i
< E =
g E
,é_“ L naive, 36 node
S —&— naive, 144 node
100 —e— reduction, 16 node 3
F —— reduction, 36 node ]
reduction, 64 node
i I—Q— reduction,144 node
10 1 1 1 1 11 1) 1 1 1 1 11 1)
1000 10000 100000

lattice size

Figure 1: Computational cost [s] as function of lattice size NP Ny. The lattice size is changed from the
left to right in the following ordering, 12x6x6x6, 12x12x6x6, 12x12x12x6, 24x12x12x6. In the
legend, “naive” means the determinant calculation without reduction, while “reduction” represents
the calculation according to the reduction technique for time and spinor space shown in this report.
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Appendix A
Dirac-gamma matrix notation

The Pauli matrices are

01=<(1) é) 0—2:(? _O’) 03:<(1] _01>. (172)

The Dirac-gamma matrix in the non-relativistic representation are given by

o 0 —Z'O'172,3 . 12 0
7,2,3 = ( i1 03 0 )7 V4 = < 0 —1, )7 (173)
0 1
V5 = —V1V2Y3V4 = < 1o 02 ) ) (174)
)
Ouv = 5[7;“'71/]' (175)
(0 0 (0 1,

Appendix B
Formula for block matrix

In this note, the following formula is useful. For inverse matrix,

(¢5)

B A '+ A7'B(D-CA™'B)"'CA™Y —A"'B(D-CA'B)™! (177)
- —(D—-CA™'B)"lCcA™! (D—-CA'B)~!
Al AT'BX'CATY —AT'BX !

= ( —X-1lcA-1 x-1 ) (178)
B (A-BD™'0)! —(A-BD'C)"'BD! (179)

- -D'C(A-BD'C)"* D'+ D 'C(A-BD'C)"'BD!

y—! ~-Y~'BD™!
( _p-'cy-! D4 DCY-'BD! ) (180)
with
= D-CA™'B, (181)
Y = A-BD'C. (182)
For determinant
A B _

det [ c D } = det Adet[D — CA™'B] (183)
= det Ddet[A — BD™'(C]. (184)
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