
2016-02-23 |

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Scalasca collaborations

Brian J. N. Wylie
Jülich Supercomputing Centre

b.wylie @ fz-juelich.de

6th International Symposium

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 2

Overview

 Scalasca toolset

■ collaborative development
 Use of Scalasca and associated tools on K computer

■ ABySS execution analysis & tuning
■ NEST execution analysis

 VI-HPS Tuning Workshops

■ collaborative training

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 3

Scalasca

 Toolset for scalable performance analysis of large-scale parallel applications

■ capable of runtime summary profile and parallel event trace analyses
■ for MPI, OpenMP, Pthreads and mixed MPI+threading

■ successfully used with 1.75M threads and 1.25M processes
■ supporting most popular HPC computer systems

■ Blue Gene/Q, Cray, Stampede, Tianhe, K computer, etc.
■ with CUBE analysis report explorer and utilities & OPARI source instrumenter components
■ using libraries for PAPI hardware counters, SIONlib scalable parallel file I/O, etc.
■ available under New BSD open-source license
■ http://www.scalasca.org (mailto: scalasca@fz-juelich.de)

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 4

Parallel execution inefficiency patterns

Critical path

Late Sender Late Sender, Wrong Order Wait at NxN

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 5

Automated execution trace analysis

■ automatic search for patterns of inefficient execution behaviour
■ classification of behaviour and quantification of significance

■ quicker than manual / visual inspection, guaranteed to cover entire event trace
■ parallel replay analysis exploits available memory & processors to deliver scalability

Call
path

P
ro

pe
rt

y

Location

Low-level
event trace

High-level
result

Analysis ≡

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 6

Scalasca development

 Started 2006 as scalable successor of pioneering KOJAK project (started 1998)

■ initial collaboration of JSC with University of Tennessee – Knoxville
■ now jointly developed with Technische Universität Darmstadt
■ support for K computer and Fujitsu FX10/100 contributed by AICS

 Scalasca2 using community-developed Score-P instrumentation & measurement infrastructure

■ partnership with GNS, UOregon, RWTH Aachen, TUDarmstadt, TUDresden, TUMunchen

■ on-going support and contributions from Fujitsu Ltd

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 7

Score-P architecture overview

Application

Vampir Scalasca Periscope TAU

Accelerator-based parallelism

(CUDA, OpenCL, [OpenACC])

Score-P measurement infrastructure

Event traces (OTF2)

User instrumentation

Call-path profiles

(CUBE4, TAU)

Online interface
Hardware counter (PAPI, rusage, [PERF])

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads, [OmpSs])

Instrumentation wrapper

Source code instrumentation

(OPARI2, PDT)

CUBE TAUdb

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 8

Scalasca workflow

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 9

Initial Scalasca performance analyses (recommended strategy)

 Rebuild with automatic instrumentation: MPI library + compiler-instrumented routines
 Initial runtime summary measurement scored to determine measurement filter

■ identifies frequently executed short routines which may need to be eliminated
■ to reduce memory requirements (mainly for event trace buffers, but also callpath profiles)
■ and to reduce execution dilation of measured routines and entire application

 New summary and trace measurements taken using optimised measurement filter
 Event traces automatically analysed to identify and quantify MPI wait-state inefficiencies

■ producing callpath profiles augmented with additional inefficiency metrics,
and identifying severest instances

 Event traces visualised with Vampir to examine execution time-lines

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 10

ABySS genome sequence assembler

 de novo, parallel, paired-end genome sequence assembler

■ developed by Canada's Michael Smith Genome Sciences Centre
 Sequence assembly algorithm: Stages:

■ load short read sequences, breaking each into k-mers* LOADING
■ find adjacent (overlapping) k-mers GEN_ADJ
■ remove k-mers resulting from read errors ERODE / TRIM
■ remove variant sequences (bubbles) DISCOVER / POP BUBBLES
■ generate contiguous sequences (contigs) ASSEMBLE

 ABYSS-P de Bruijn graph assembler implemented in C++ using MPI

■ master process directs remaining worker processes
 * all possible (ACTG-) base subsequences of length k from a read obtained through DNA sequencing

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 11

ABYSS-P scalability on K computer

 Evaluation with E. coli K12 MG1655
read sequence dataset (6.1 GB)
 Execution with single MPI rank/node

■ 14 GB usable node memory

 Linear growth of memory for MPI

■ exhaustion for 16,384 ranks
■ message buffers required

for eager mode receipt
 Min. execution time for ~1024 nodes

■ rapid deterioration thereafter

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 12

Scalasca trace analysis
(1024 MPI processes)

Distribution of MPI
rank severity values
(rank 0 top-left)

Hierarchies
of metrics

Tree of execution callpaths
(values for selected metric)

 Callpath profile augmented
with additional metrics
quantifying wait states
calculated in parallel replay
analysis of event trace

 Presentation by CUBE
analysis report explorer
 Tree node severity values:
 closed = inclusive,
 open = exclusive;
 coloured according to
 scale below pane

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 13

Scalasca trace analysis
identifying severest
instance of Wait at NxN
in MPI_Allreduce
 Lots of point-to-point Send
and Irecv communication,
with negligible waiting time
 Comparatively large waiting
time in MPI collectives
(Allreduce, Barrier, etc.)
 Severest waiting instances
averaging 1.3 seconds and
with maximum durations of
over 2 seconds!

■ generally indicative of load-imbalance in preceding computation,
however, distribution pattern seems uniform across processes

time

lo
ca

tio
n

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

MPI_Allreduce

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 14

Vampir visualisation
of same event trace

Graphical (flat) function profile
for current time interval

Horizontal time-line of coloured execution states for each MPI process
below aggregate state chart provided for navigation when zooming

Distinguished phases of LOADING, ERODE/TRIM, ASSEMBLE
with “waves” of communication evident within LOADING stage

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 15

Vampir display zoomed
to time interval of
ERODE stage

Sequence of MPI_Allreduce calls within ERODE stage
many of the initial ones with huge waiting times
(over 2 seconds duration for severest instance on rank 271)
resulting from load-imbalance in preceding computation
– alternating distribution of severities

| ERODE |

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 16

Assessment of initial ABYSS-P performance analyses with Scalasca

 Positive insights

■ Complex Master-Worker execution with asynchronous message/work queues
■ Complex usage of MPI P2P and collective communication that varies by execution stage
■ Increasingly costly communication and load-balancing inefficiencies at larger scale
■ Extreme run-to-run execution time variations (likely mostly due to file I/O)

 Negative insights

■ Compiler-instrumentation prohibitively intrusive (even with extensive filtering)
■ Difficult to determine effective filter, due to complex (dual-role) code structure
■ Difficult to correlate Master directions with Worker activities
■ Difficult to distinguish important execution stages
■ Difficult to isolate origin of imbalances, e.g., file I/O

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 17

Revised performance analysis strategy

 MPI-only measurements (without compiler instrumentation) don't suffer intrusion

■ however, lack of context makes analyses even more difficult to interpret,
and traces are still huge

 Therefore, manually annotate ABYSS-P sources with user-instrumentation macros

■ to distinguish execution stages and other activities of interest (such as file I/O)
 Take execution measurements combining MPI + user instrumentation

■ enable trace collection only for selected execution stage(s) to reduce size

 Compare alternative ABYSS-P implementations and execution configurations

■ quantify how performance of stages varies with scale

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 18

DISCOVER /
POP BUBBLES stage

Each rank in turn executes POPBUBBLE while all others wait,
where in addition to local computation POPBUBBLE creates,
writes & flushes a separate file before notifying all of its peers

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 19

ABYSS-P tuning for K computer

 Use separate rank-local directories for files

■ avoids highly variable file-system contention for files in common directory
 Open (create) files in parallel, in advance of writes

■ removed from serialisation within POP_BUBBLE stage
■ reduces disruption of computation within ASSEMBLE stage

 Employ collective communication instead of eager point-to-point communication

■ avoids linearly growing MPI memory requirements, and bottleneck for Master rank 0
■ exploits MPI_Reduce and MPI_Alltoall optimised for K computer

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 20

ABYSS-P profile comparison: (original) (improved)

 8192 MPI processes on K computer
 Original version 941 seconds

■ 69% (651s) in coupled
POP/DISCOVER_BUBBLES

■ 14% (129s) in ASSEMBLE
■ 4.2% (45s) in LOADING

 Improved version 293 seconds

■ 4.4% (13s) in coupled
POP/DISCOVER_BUBBLES

■ 30% (84s) in ASSEMBLE
■ 12% (33s) in LOADING

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 21

ABYSS-P scalability on K computer (comparison)

 Improved execution time at scale

■ ASSEMBLE now dominates
■ DISCOVER/POP BUBBLES

50 times faster for 8,192
■ LOADING scales well and

reduced to a few seconds
 Much less memory required for MPI

■ only 0.5 GB for 82,944 ranks
 Rework of Master-Worker
coordination communication needed
for remaining ABYSS-P stages

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 22

ABySS execution analysis & tuning review

ABYSS-P executions on the K computer suffered critical performance and scaling issues

■ slowdown with more than 1024 compute nodes, excessive MPI memory requirements
 Analysis using Scalasca/Score-P/Vampir helped identify & quantify execution inefficiencies

■ file I/O variability, serial file creation, rank 0 coordination bottleneck, ...
■ automatic instrumentation provided a convenient starting point,

but needed to be complemented with manual instrumentation
■ Master/Worker execution stages and file I/O

 ABYSS-P remediation

■ rank-local directories, reorganised file handling, exploiting efficient MPI collectives
■ execution (and Scalasca measurement) now possible on full 82,944 compute nodes

■ only initial execution stages completed

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 23

NEST neural simulation tool

 Neuronal spiking network simulation tool [www.nest-simulator.org]

■ C++ implementation using MPI and OpenMP parallelisation
■ neurons distributed to MPI processes
■ synapses and associated connection information stored on post-synaptic process
■ exchange during simulation update based on MPI_Allgather(v) by master threads

 Experiments

■ empty-gap random connectivity simulation on K computer
■ gather_events performance governed by MPI&OMP computational load imbalances

■ HDF5 import module for large-scale data-driven simulation on JUQUEEN BG/Q
■ 1.9 TB connectivity map from high-resolution biological data
■ failure to use collective MPI File I/O significantly diminishes reading performance

http://www.nest-simulator.org/

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 24

NEST 82944x8 measurement on K computer: simulation gather_events
53s to gather spiking events from firing synapses

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 25

NEST 82944x8 measurement on K computer: simulation gather_events
Following OpenMP barrier shows imbalance after MPI collective communication

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 26

NEST 28672x16 measurement on JUQUEEN BG/Q: HDF5 import_synapses
Roughly 2 minutes to load and redistribute synapse data

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 27

NEST 28672x16 measurement on JUQUEEN BG/Q: HDF5 import_synapses
Collective redistribution is expensive, particularly due to preceding computational imbalance

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 28

NEST 28672x16 measurement on JUQUEEN BG/Q: HDF5 import_synapses
Collective HDF5 read found to be using inefficient individual MPI file reads due to data structure mismatch

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 29

Extreme scaling

 7th Jülich Blue Gene Extreme Scaling Workshop (1-3 Feb 2016)

■ latest of series starting with JUBL (BG/L), then JUGENE (BG/P), now JUQUEEN (BG/Q)
■ full 28 racks dedicated over 50 hours for 8 international code teams

 High Q Club [www.fz-juelich.de/ias/jsc/high-q-club]

■ application codes with demonstrated scalability to use entire JUQUEEN resource
■ up to 1.75M MPI processes or OpenMP threads running on 458,752 cores

■ currently 25 members, several more applications pending
 Discussion and information exchange

■ aXXLs@ISC-HPC15: Application Extreme-scaling Experience
 of Leading Supercomputing Centres

■ MAXI@ParCo15: Multi-system Application Extreme-scaling Imperative

http://www.fz-juelich.de/ias/jsc/high-q-club

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 30

High-Q Club member characteristics

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 31

Scalasca training offered through VI-HPS

 Virtual Institute – High Productivity Supercomputing [www.vi-hps.org]

■ focus on parallel performance, correctness & debugging tools
■ several VI-HPS Tuning Workshops each year

■ 3-5 days for application developers to get introduced to tools and receive guidance
and assistance applying tools to their own codes

■ RIKEN AICS hosting VI-HPS-TW20 (24-26 Feb 2016) for users of K computer and
related Fujitsu FX10/100 systems

 – Score-P, Scalasca, TAU & BSC tools
■ additional workshops at LRZ in Garching, Germany & CINES in Montpellier, France

http://www.vi-hps.org/

2016-02-23 | 6th RIKEN AICS Int'l Symp. (Kobe, Japan) 32

VI-HPS tools and their integration

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

